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Abstract

One of the first prominent theorems in structural graph theory is the Kuratowski-Wagner
theorem which characterizes planar graphs as those with no K3,3 or K5 minor. Numerous
other classical theorems give precise descriptions of the class of graphs with no H-minor
for numerous small graphs H. In particular, such classifications exist when H is W4, W5,
Prism, K3,3, K5, Octahedron, and Cube. One of the most useful tools in establishing such
results are splitter theorems which reduce a graph while preserving both connectivity and
containment of a given minor.

In this thesis we consider analogous problems for a different containment relation: immer-
sion. Although immersion is a standard containment relation, prior to this thesis there were
almost no precise structure theorems for forbidden immersions. The most prominent theo-
rems in this direction give a rough description of graphs with no W4 immersion and those
with no K3,3 or K5 immersion.

Our main contributions include precise structure theorems for the class of graphs with no
H-immersion when H is one of K4,W4, Prism, and K3,3. To assist in this exploration, we
have also established two splitter theorems for graph immersions, one for 2k-edge-connected
graphs, and another for 3-edge-connected and internally 4-edge-connected graphs.

Keywords: immersion; weak immersion; edge-connectivity; splitter theorem; chain theo-
rem; structural theorem
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Chapter 1

Introduction

1.1 Overview

The study of containment relations between graphs is a central topic in structural graph
theory. A variety of containment relations may be defined when studying graphs, some of
these, such as minor and topological minor are quite well-explored. A graph H is a minor
of another graph G if a subgraph of a graph G can be transformed to H by a series of
edge contraction. Graph H is a topological minor of G if G contains a subdivision of H
as a subgraph. Arguably, the first significant structural theorem about graph minors is the
Kuratowski-Wagner theorem, which characterizes planar graphs.

Theorem 1.1 (Kuratowski [27]; Wagner [47]). A graph is planar if and only if it does not
contain K3,3 or K5 as a minor (subdivision).

One of the main interests about planar graphs is the 4-colour theorem (4CT) which
asserts that every planar graph is 4-colourable. Thanks to the Kuratowski-Wagner theorem,
the 4CT is equivalent to the assertion that graphs with no K3,3 and K5 minor are 4-
colourable. There is a famous conjecture due to Hadwiger generalizing that.

Conjecture 1.2 (Hadwiger [25]). Every graph with no Kt+1-minor is t-colourable.

As a step toward Hadwiger’s conjecture, Wagner [47] characterized graphs with no K5-
minor, and in doing so he proved that in fact Hadwiger’s conjecture for t = 4 is equivalent
to the 4CT. Wagner also found a structural theorem for graphs with no K3,3 minor. In
Table 1.1 we have included some of the graphs H for which the class of graphs which do not
contain an H-minor is characterized. In fact, for any 3-connected graph H with |E(H)| ≤ 11
the class of graphs without H-minor is characterized, see [17].

Observe that for cubic graphs, minor relation and topological minor relation are equiv-
alent. Accordingly, the results on characterizing family of graphs without a certain cubic
graph (such as K4 and Prism) as minor can also be considered as results on excluding the
graph as topological minor. Further, results regarding topological minor ofW4,W5,W6, and
W7 are also present in the literature, see [20, 40, 41].
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H characterization of H-minor free graphs is due to
K5 Wagner, 1937 [47]
K3,3 Wagner, 1937 [47]
K4 Dirac, 1952 [18]
W4 Tutte, 1961 [46]
Prism Dirac, 1963 [19]
W5 Oxley, 1989 [36]
Cube Maharry, 2000 [33]
Octahedron Ding, 2013 [13]
V8 Maharry and Robertson, 2016 [32]

Table 1.1

In this thesis we are interested in a somewhat less-explored type of containment, immer-
sion. A pair of distinct edges with a common neighbour xy, yz is said to split off at y if we
delete these edges and add a new edge xz. We say a graph G immerses H, or alternatively
H is immersed in G, or G has an H immersion, and write G � H, if a subgraph of G can
be transformed to a graph isomorphic to H through a series of splitting pairs of edges. If
G � H and G � H, we may write G � H. Equivalently, we could say the graph G has an
H immersion if there is a function φ with domain V (H) ∪ E(H) satisfying the following
properties:

• φ maps V (H) injectively to V (G)

• φ assigns every e = uv ∈ E(H) a path φ(e) ⊆ G with ends φ(u) and φ(v)

• If e, f ∈ E(H) are distinct, then φ(e) and φ(f) are edge-disjoint.

In this case, a vertex in φ(V (H)) is called a terminal of the H immersion.
Let us pause here to comment that the above definition of immersion is generally known

in the literature as weak immersion. There is a more restrictive notion of graph immersion,
called strong immersion, which has the additional restriction that for every edge e ∈ E(H)
the path φ(e) is internally disjoint from the vertices in φ(V (H)). This thesis only concerns
weak immersion which we henceforth refer to simply as immersion.

It is worth mentioning that if H is a topological minor of G, then it is a minor of G,
and it is also immersed in G (in both weak and strong senses). However, the minor and
immersion relations are not comparable.

In this thesis, we have proved precise structural theorems for the class of graphs with
no H immersion when H is one of K4,W4, Prism, and K3,3, among others. To state our
results, we will need to introduce some terminology, and notation, which is done in Section
1.2.

2



1.2 Basic definitions

Throughout, we will consider finite undirected graphs which may have parallel edges, but
we will forbid loops (except where explicitly stated otherwise), as they contribute nothing
to the theory for the graphs of interest. We will call on standard terminology for graphs as
found in [12].

Let G be a graph. For u, v ∈ V (G), we call two distinct edges with ends u, v copies.
For X ⊂ V (G), we use δG(X) to denote the edge-cut consisting of all edges of G with
exactly one endpoint in X, the number of which is called the size of this edge-cut, and
is denoted by dG(X). When G is connected we refer to both X and Xc(= V (G) \ X) as
sides of the edge-cut δG(X). (For the sake of simplicity, whenever the graph concerned
is clear from the context, we may drop the subscript G.) An edge-cut is called internal
if it has at least two vertices on either side, and trivial otherwise. We say G is k-edge-
connected (internally k-edge-connected) if every edge-cut (internal edge-cut) in G has size
at least k. The (internal) edge-connectivity of the graph G is the maximum k for which G
is (internally) k-edge-connected. We denote the edge-connectivity of G by λ(G), and the
internal edge-connectivty of G by λi(G).

For a subset X ⊂ V (G), we write G.X to denote the graph obtained from G by iden-
tifying X to a single vertex, followed by deleting any loops created. We call a graph G a
doubled path (doubled cycle) if G is obtained from a path (cycle) by adding a second copy of
every existing edge. Our structural theorems often feature a reduction which we introduce
below.

Definition 1.3. Let G be a graph and let X ⊂ V (G) satisfy |X| = k. We say G[X] is a
chain of sausages of order k in G if either X is a single vertex of degree four, or G.(V (G)\X)
is a doubled cycle (of length k + 1). We also define sausage reduction to be an operation
which replaces every maximal chain of sausages of order ≥ 3 with a chain of sausages of
order two. A graph G is said to be sausage reduced if it does not contain sausages of order
≥ 3.

Figure 1.1: Sausage reduction

Throughout this thesis, when depicting graphs we use . . . next to a chain of sausages to
mean that the chain of sausages can be of any positive order.

3



Families of obstructions for immersion of a small graph H often turn out to feature
a structure involving particular nested k-edge-cuts (for some k depending on H). This
structure is captured in the next definition.

Definition 1.4. For a set X, we say there is an (a, b)-segmentation of X if there exist
subsets X1 ⊂ X2 ⊂ . . . ⊂ Xt of X satisfying the following:

• |X1| = a, |X \Xt| = b,

• |Xi+1 \Xi| = 1, for i = 1, . . . , t− 1.

We refer to X1 as head, and to X \Xt as tail of the segmentation, and we may simply say
X has a segmentation relative to (X1, X \Xt).

For a graph G, we say G has an (a, b)-segmentation of width k if there is an (a, b)-
segmentation of V (G) such that for every Xi, for i = 1, . . . , t, we have dG(Xi) = k. See
Figure 1.2 for an example of a graph segmentation.

Figure 1.2: A graph with a (3, 3)-segmentation of width four

1.3 Structural theorems for forbidden immersions

Our results in this thesis include precise structural theorems for graphs which do not im-
merse H, where H is one of K4, W4, Prism, or K3,3. A recurrent phenomena which appear
in all our theorems is this: For a graph G to immerse a particular graph H, all that is needed
is “the right edge-connectivity”, “enough vertices” (depending on H), and in the case where
H is nonplanar, for G to not have “obvious topological obstructions to immersing H”.

However, the description of obstructions for graphs on small number of vertices is some-
what complicated. So in this chapter, for the sake of clarity and simplicity of the presenta-
tion, we are going to state corollaries of our results for “big enough” graphs. We will also
state our theorems for graphs with certain edge-connectivity assumptions. However, in all
instances, our results lead to a complete description of all graphs in the class (without any
edge-connectivity restriction).

1.3.1 K4 immersion

In [4], Booth et al. give a wealth of structural theorems regarding graphs with no K4

immersion and use them to obtain a fast algorithm for testing the existence of K4 immersion
in a graph. We give a precise structural theorem for graphs without a K4 immersion.

4



Theorem 1.5. Let G be a graph with λ(G) ≥ 3, |V (G)| ≥ 4. Then G � K4 if and only if

• G is a doubled cycle, or

• G has a (2, 2)-segmentation of width three.

As we will see in Chapter 3, the theorem above is in fact derived as a corollary of a
stronger result onK4 immersion in which up to two terminals ofK4 are specified in advance.

1.3.2 W4 immersion

A wheel graph, denoted Wn, for every n ≥ 3, is a simple graph obtained from Cn (a cycle of
length n) by adding a new vertex (not on the cycle) which has an edge to every vertex of
the cycle. Despite considerable attention in the setting of topological minor, the problem of
characterizing family of graphs with no immersion of wheel graphs has been studied only
for W4. Belmonte et al. have used facts about the presence of a wall graph as a topological
minor to show

Theorem 1.6 (Belmonte et al. [3]). Let G be a graph with λ(G) ≥ 3, λi(G) ≥ 4. If G �W4

then either G is cubic or has tree-width at most 2213.36.58. log(26.32.54).

Our result on graphs excluding W4 as immersion is in the same setting as the above
theorem, except that we insist that the graph be sausage reduced.

Theorem 1.7. Let G be a graph with λ(G) ≥ 3, λi(G) ≥ 4 which is sausage reduced. If
|V (G)| ≥ 6 then G �W4 unless G is cubic.

In Chapter 4, we prove a stronger form of Theorem 1.7 in which the assumption on the
order of G is relaxed to |V (G)| ≥ 5. As a corollary we then derive that the upper bound on
the tree-width in Theorem 1.6 can be reduced to three.

In fact, the above theorem is obtained as a result of a stronger theorem characterizing
the graphs without an immersion of W4 in which the terminal corresponding to the center
of W4 is specified in advance.

1.3.3 Prism immersion

As mentioned earlier, a classic theorem of Dirac characterizes the structure of graphs which
do not have Prism (the graph below) as a (topological) minor. However, to our knowledge,
this problem has not been looked into in the setting of graph immersions. The following is

a result of our characterization of graphs which exclude an immersion of Prism:

5



Theorem 1.8. Let G be a 3-edge-connected graph so that for any subset X ⊂ V (G) with
|X| = 2 we have d(X) ≥ 4. If G is sausage reduced and |V (G)| ≥ 7, then G has a Prism
immersion unless G ∼= K3,4.

1.3.4 Immersion of Kuratowski graphs

Giannopoulou, Kamiński, and Thilikos obtained the first result on graphs which exclude
Kuratowski graphs, i.e. K3,3 and K5 as an immersion. They used a result on the existence
of a particular graph as a minor in planar graphs with branch-width ≥ 11 to prove the
following:

Theorem 1.9 (Giannopoulou et al. [23]). If G is a graph not containing K5 or K3,3 as
an immersion, then G can be obtained by applying consecutive i-edge sums, for i ≤ 3, to
graphs that either are planar and sub-cubic or have branch-width at most 10.

In Chapter 7, we will give a precise structural theorem for the family of graphs not
containing K3,3 as an immersion. Our theorem on excluding K3,3 asserts the following:

Theorem 1.10. Let G be a graph with λ(G) ≥ 3, λi(G) ≥ 4 which is sausage reduced. If
|V (G)| ≥ 9, then G does not immerse K3,3 if and only if

• G is planar and cubic, or

• G has a (3, 3)-segmentation of width four.

Our main result on K3,3 immersion which appears in Chapter 7 includes graphs on six,
seven, and eight vertices as well. This enables us to obtain a precise structure for graphs
with no K3,3 and K5 immersion. As a result, we see that the upper bound on branch-width
in Theorem 1.9 can be replaced by three. As in the world of graph minors, once K3,3 is
excluded, additionally excluding K5 has little effect. Indeed, Theorem 1.10 is true with the
same outcome when we forbid K5 in addition to K3,3.

Many of our structural theorems are proved in the setting of rooted immersions, and
this allows us to use one structural theorem in proving another. The following figure shows
the dependencies between our structural theorems; it also indicates that we will use another
tool, called a splitter theorem, that we introduce in the next section.

1.4 Splitter Theorems

In the theory of graph minors, one of the most important tools in establishing precise
structural theorems for graphs without a certain graph as minor are chain theorems and
splitter theorems.

Let G be a graph with a certain connectivity. One natural question is that whether there
is a way to “reduce” G while preserving the same connectivity, and possibly also the presence

6



Ch 3: Immersion of Dm

Ch 5: Immersion of Prism

Ch 2: Splitter theorems

Ch 4: Immersion of W4

Ch 7: Immersion of K3,3

Ch 6: Immersion of Eyeglasses

of a particular graph “contained” in G. Broadly speaking, in answering such questions, two
types of theorems arise. In the first type, chain theorems, one tries to “reduce” the graph
down to some basic starting point, which is typically a particular small graph, or a small
family of graphs. The other type of theorems are splitter theorems. Here, there is the extra
information that another graph H is properly “contained” in G , and both have a certain
connectivity. The idea is then to “reduce” G to a graph “one step smaller”, while preserving
the connectivity, and the “containment” of H.

The best known such results are the ones where the connectivity concerned is vertex-
connectivity, the “reduction” is an edge-contraction or edge-deletion, and the “containment”
relation is that of minor. In this realm, the first chain result is due to Tutte, who showed if
a graph G is 2-connected, for every edge e ∈ E(G), either G \ e or G/e is 2-connected. The
next result, also due to Tutte, is a classical result of a reduction theorem of chain variety.

Theorem 1.11 (Tutte [46]). If G is a simple 3-connected graph, then there exists e ∈ E(G)
such that either G \ e or G/e is simple and 3-connected, unless G is a wheel.

Another classical result of chain type is that every simple 3-connected graph other than
K4 has an edge whose contraction results in a 3-connected graph, see [24]. There is a wide
body of literature sharpening these results and extending them to other connectivity, see
for instance [26, 2, 16, 34, 37], and also to the world of matroids [22, 7].

Reduction theorems of splitter variety for graph minors started with a result for 2-
connected graphs which appears in a more general form in the work of Brylawski [5], and
Seymour [42]. This result asserts that if G,H are 2-connected graphs, and H is a proper
minor of G, then there is an edge e ∈ E(G) such that G \ e or G/e is 2-connected, and
has H as a minor. The more famous splitter theorem is Seymour’s Splitter Theorem for
3-connected graphs, which asserts:

Theorem 1.12 (Seymour [43]). Let G,H be 3-connected simple graphs, where H is a proper
minor of G. Also, suppose if H is a wheel, then G has no larger wheel minor. Then G has
an edge e such that either G \ e or G/e is simple and 3-connected, and contains H as a
minor.
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There is an extremely wide body of literature extending these results to other connec-
tivity and the realm of matroids, and binary matroids, see, for example, [38, 8, 9]. In this
thesis, however, we are concerned with the setting of edge-connectivity and immersion. A
significant chain theorem in this setting is due to Lovász ([30], Problem 6.53, see also [24]).
We say a vertex v ∈ V (G) of even degree is completely split if d(v)/2 consecutive splits are
performed at v, and then the resulting isolated vertex v is deleted.

Theorem 1.13 (Lovász [30]). Suppose G is 2k-edge-connected. Then by repeatedly applying
complete split, and edge-deletion it can be reduced to a graph on two vertices, with 2k parallel
edges between them.

This theorem was later generalized by a significant theorem of Mader that is key in our
proofs in Chapter 2, and is stated there. In Chapter 2, we have established two splitter
theorems for immersions, the first of which is an analogue of the aforementioned result of
Lovász, and is stated below.

Theorem 1.14. Suppose G,H are 2k-edge-connected loopless graphs, where k ≥ 2 . If
G � H then there exists an operation taking G to G′ so that G′ is 2k-edge-connected and
G′ � H, where an operation is either

• deleting an edge,

• splitting at a vertex of degree ≥ 2k + 2,

• completely splitting a 2k-vertex,

each followed by iteratively deleting any loops, and suppressing vertices of degree 2.

In comparison with graph minors, the literature on splitter theorems for graph immer-
sions is extremely sparse. Indeed, we only know of two significant papers concerning this,
namely [14, 15], where Ding and Kanno have proved a handful of splitter theorems for im-
mersion for cubic graphs, and 4-regular graphs. In particular, they have shown the following
(see [15], Theorem 9):

Theorem 1.15 (Ding, Kanno[15]). Suppose G,H are 4-edge-connected 4-regular graphs,
and G � H. Then there exists a vertex whose complete split takes G to G′ so that G′ is
4-edge-connected 4-regular, and G′ � H.

Our second theorem, stated below, is similar to the first one, but is for a different type
of connectivity, and generalizes Theorem 1.15. In the statement of the theorem, Q3 denotes
the graph of the cube, and K3

2 denotes the graph on two vertices with three parallel edges
between them.

Theorem 1.16. Let G,H be 3-edge-connected and internally 4-edge-connected graphs,
where G � H. Further, assume |V (H)| ≥ 2, and (G,H) � (Q3,K4), (Q3,K

3
2 ). Then there
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exists an operation taking G to G′ such that λ(G′) ≥ 3, λi(G′) ≥ 4, and G′ � H, where an
operation is either

• deleting an edge,

• splitting at a vertex of degree ≥ 4,

each followed by iteratively deleting any loops, and suppressing vertices of degree 2.

As a result of the above splitter theorem, we obtain the following chain type theorem:

Corollary 1.17. Let G be 3-edge-connected, internally 4-edge-connected, and |V (G)| ≥ 2.
If G � Q3,K

3
2 , then one of the operations in the statement of Theorem 1.16 may be applied

to G, where the resulting graph is 3-edge-connected, internally 4-edge-connected.

In the world of graph minors, an immediate simple consequence of Seymour’s Splitter
Theorem, first observed by Wagner [47], is that every 3-connected graph on at least six
vertices containing K5 as a minor, has a K3,3-minor. This fact is then used to obtain a
precise structural description of graphs with no K3,3-minor. In parallel to this, and as an
application of Theorem 1.16, we will establish the following analogue of this result for
immersions. The result will be a step towards understanding graphs with no K5 immersion.

Corollary 1.18. Suppose G is a 3-edge-connected, and internally 4-edge-connected graph
such that G � K5. If |V (G)| ≥ 6 then G � K3,3, or G ∼= K2,2,2.

1.5 More known results on graph minors/immersions

1.5.1 Graph minors

Section 1.1 gave an overview mentioning some classical excluded minor structural theorems.
There is a grand graph minors project of Robertson and Seymour that built upon these
works and achieved some powerful consequences.

Grid theorem. A graph G either has a g × g grid as a minor or has tree-width at most
w(g), for some function w.

Rough structure for graphs without H-minor. Such a graph can be constructed from
graphs embedded in a surface of bounded genus with bounded number of vortices of
bounded width, and a bounded number of apex vertices, using a certain sum operation.

Well-Quasi-Ordering. Graphs under minor containment are well-quasi-ordered. (That
is, for every infinite set of graphs, one of them contains another one as minor.)

Despite these powerful tools, Hadwiger’s conjecture remains a major challenge.
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1.5.2 Graph immersions

It is natural to consider the immersion analogues of the graph minors project. The analogue
of Grid theorem and Well-Quasi-Ordering was proved using techniques similar to that of
graph minor projects. A corresponding rough structure theorem for graphs with no Kt

immersion, however, was obtained relatively simply using Gomory-Hu theorem.

Grid theorem. Chudnovsky et al. [6] proved that a 4-edge-connected graph G either has
a g × g grid as an immersion or has tree-width at most w(g), for some function w.

Rough structure for graphs without Kt immersion. DeVos et al. [11] andWollan [48]
proved that for every such a graph, there exists a laminar family of edge-cuts, each
with size < (t− 1)2, so that every block of the resulting vertex partition has size less
than t.

Well-Quasi-Ordering. Robertson and Seymour showed that graphs are well-quasi-ordered
under weak immersion containment [39]. This confirmed a conjecture of Nash-Williams
[35].

There is also an analogue of Hadwiger’s conjecture in the setting of graph immersions,
due to Lescure and Meyniel and, independently, to Abu-Khzam and Langston.

Conjecture 1.19 (Lescure and Meyniel [29]; Abu-Khzam and Langston [1]). Every graph
which does not have a weak immersion of Kt+1 is t-colourable.

The conjecture has been confirmed for 1 ≤ t ≤ 7 thanks to the work of Abu-Khzam and
Langston [1], Lescure and Meyniel [29], and DeVos et al. [10]. For large values of t, Le and
Wollan [28] have recently proved that every graph with chromatic number at least 3.5t+ 4
immerses Kt.

1.6 The story of this research program

Our research started with the (unexpectedly ambitious!) problem of determining the struc-
ture of graphs with noK5 orK3,3 immersion. It is not hard to see that this problem naturally
reduces to 3-edge-connected and internally 4-edge-connected graphs. Furthermore, Kura-
towski’s Theorem shows that every graph with no K3,3 or K5 immersion is planar, which
brings us to planar graphs. Intuitively, if G is a “well-enough connected” planar graph
with a vertex v having at least four distinct neighbours, performing a “non-planar” split
at v should result in a non-planar graph. Accordingly, we adopted the seemingly natural
approach of working with a minimum counterexample G, and trying to prove that G is
“well-enough connected”.

Initially we were able to prove that G has the following connectivity:
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• For X ⊂ V (G), if d(X) = 4 we have either |X| ≤ 2 or |V (G) \X| ≤ 2.

• if G has a cut-vertex v, G \ v has exactly two components, one of which is a single
vertex.

We proceeded by proving that other certain forms of separation are also forbidden for G.
However, taking further steps got much harder than before.

In fact, it was at this point that the need for splitter theorems was felt. We established
splitter theorems, in particular for graphs of our original interest, i.e. 3-edge-connected,
internally 4-edge-connected graphs. One very useful corollary of our splitter theorem (The-
orem 1.16) is Corollary 1.18, which enabled us to focus on excluding K3,3 as an immersion
(rather than also excluding K5). However, that was as far as the splitter theorem helped
with our research on Kuratowski graphs. Thus, we resumed wrestling with the 2-vertex cuts
in G which proved to be the hardest part of the problem. It took over a year to prove that

• G does not have a 2-vertex cut.

Finally, we had succeeded in reducing the problem to the world of 3-connected planar
graphs! However, the problem was still involved. It took us another year to prove that

• G does not exist.

The whole proof of our result ran about 150 pages and consisted of massive case analysis;
there were applications of Menger’s theorem and uncrossing cuts arguments, as well as
relying on the planarity of G which enabled us to work with a blend of arguments on
vertex-bridges and certain edge-bridges (as introduced in Chapter 6), and peripheral cycles.
However, the final result, the fruit of a few years of research, was yet to bear fruits of its
own! Right upon the completion of work, two observations caught our attention:

• None of the sporadic graphs with no immersion of K3,3 have a cut-vertex.

• All sporadic sausage reduced graphs with no K3,3 immersion are on ≤ 8 vertices, most
of which only on 6 vertices.

The first one, in particular, inspired another line of inquiry. It seemed to be suggesting that
if G is not one of the generic obstructions to existence of K3,3 and has a cut-vertex v, then
the graph induced on the nontrivial component of G \ v together with v (and rooted at
v) has a rooted immersion of W4. We started investigating rooted W4 immersion with the
hope that it would help dealing more efficiently with cut-vertices in the proof of K3,3 result.
This theorem was also a hard one, with the proof involving many technical lemmas. This
is the proof of rooted W4 problem which appears in Appendix B.

The second observation, on the other hand, inspired us to harness the computer to verify
our K3,3 theorem for small graphs to avoid much case analysis in the proof of K3,3 result.
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On this front, we managed to get the computer to go beyond the order of all sporadic graphs
without K3,3 immersion, thereby putting us in a very strong position to apply induction.

Yet another significant development in the proof of K3,3 result came along; we noticed
that the rootedW4 result could in fact serve as a much more powerful tool for K3,3 problem
than originally intended. Indeed, we could take advantage of it not only to handle cut-
vertices in G (a minimum counterexample to the K3,3 result), but also to handle “deep”
edge-cuts in G. To complete this approach, a structural theorem about another rooted
graph, which we call eyeglasses, was proved. With all these powerful tools, we managed to
get a totally different proof of our result, which is only eight pages, and avoids case analysis.
More importantly, it demonstrates a new paradigm for tackling structural problems in the
world of graph immersions. This is the proof that appears in Chapter 7.

On the other hand, we noticed that the approach of getting the computer to handle
small graphs, and then combining structural results on certain smaller rooted graphs can
also be employed for the problem of rooted W4 immersion. (The smaller rooted graphs
featuring in the rooted W4 problem are certain four-vertex graphs with two roots, which
we call Dm, with results appearing in Chapter 3.) As with the case of K3,3, the new proof
for rooted immersion of W4 is much shorter than the original proof, and is not as nearly
technical. In Chapter 4 we have included the new proof, which demonstrates another usage
of our new paradigm for obtaining precise structural theorems on excluding small graphs
as immersions.

Finally, we applied our new approach to the problem of immersing Prism graph. For
this proof, which is one of the cleanest in this thesis, we have developed a new convenient
inductive tool which takes advantage of our chain theorem.
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Chapter 2

Splitter Theorems for Graph
Immersions

Let G,H be nonisomorphic graphs with a certain connectivity, where G “contains” H. One
may ask whether there is a way to “step down from G towards H” while preserving the
same connectivity all along the way. Broadly speaking, in answering such a question, two
types of theorems arise. In the first type, chain theorems, the starting graph H is typically a
particular small graph, or is any graph from a specific small family of graphs. On the other
hand there are so called splitter theorems in which H can be chosen arbitrarily.

The main results of this chapter provide splitter theorems in the setting where the
“containment” relation is graph immersion, and the connectivity concerned is certain edge-
connectivity. We will give splitter theorems for graph immersions for two families of graphs—
in Section 2.1 for k-edge-connected graphs, for any even k ≥ 4, and in Section 2.2 for
3-edge-connected, internally 4-edge-connected graphs.

The family of 3-edge-connected, internally 4-edge-connected graphs is of particular inter-
est to us due to the fact that the problem of characterizing graphs not immersing Kuratowski
graphs naturally boils down to this family of graphs. As we will see in Section 2.3, and as
a result of our splitter theorem, for a graph G in this family with |V (G)| ≥ 6 which is not
isomorphic to the Octahedron, G � K5 implies G � K3,3. Our splitter theorem for 3-edge-
connected, internally 4-edge-connected graphs also has a second significant corollary—it
gives us a chain type theorem for this family of graphs.

The rest of this chapter is organized as follows: In Section 2.1 we state the preliminary
definitions and key tools, and prove our splitter theorem for k-edge-connected graphs, for
k ≥ 4 even. In Section 2.2, we state and prove our result for 3-edge-connected, internally
4-edge-connected graphs, as well as a chain type theorem for this family. Finally in Section
2.3 we will see a useful corollary of our result in Section 2.2 for Kuratowski graphs.
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2.1 k-edge-connected graphs, k ≥ 4 even

The main result of this section is the following splitter theorem for k-edge-connected loopless
graphs, where k ≥ 4 is even.

Theorem 2.1. Suppose G,H are k-edge-connected loopless graphs, where k ≥ 4 is an even
number. If G � H, there exists an operation taking G to G′ so that G′ is k-edge-connected
and G′ � H, where an operation is either

• deleting an edge,

• splitting at a vertex of degree ≥ k + 2,

• completely splitting a k-vertex,

each followed by iteratively deleting any loops.

Note that in order to have a splitter theorem for the family of k-edge-connected graphs,
we do need to embrace completely splitting a k-vertex as one of our operations, since as
soon as we do a split at a k-vertex, the graph will have a trivial (k − 2)-edge-cut.

2.1.1 Preliminaries

Before embarking on the proof of Theorem 2.1, we fix some notation and highlight a couple
facts and theorems which will feature in our proofs. Let G be a graph. For X,Y disjoint
subsets of V (G), we denote the set of edges between X,Y by EG(X,Y ), the size of which
will be denoted by eG(X,Y ). For distinct vertices x, y ∈ V (G), we simply write eG(x, y)
to denote the number of edges between x and y. Also, the maximum size of a collection of
pairwise edge-disjoint paths between x and y is denoted by λG(x, y). For the sake of brevity,
whenever the graph concerned is clear from the context, we may drop the subscript G. For
a graph G, and X ⊆ V (G), we use the notation Xc to denote V (G) \X.

Observation 2.2. Suppose G is a graph, and X 6= Y are distinct nonempty subsets of
V (G). Then, by counting the edges contributing to the edge-cuts, we have

d(X ∩ Y ) + d(X ∪ Y ) + 2e(Xc ∩ Y,X ∩ Y c) = d(X) + d(Y ).

Observe that this also implies the following inequality

d(X ∩ Y ) + d(X ∪ Y ) ≤ d(X) + d(Y ).

Another frequently used fact is the classical theorem of Menger. A proof may be found,
for instance, in [12].

Theorem 2.3 (Menger). Let G be a graph, and x, y distinct vertices of G. Then λG(x, y)
equals the minimum size of an edge-cut of G separating x from y.
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The next theorem, which is a slight strengthening of a well-known theorem by Mader,
is an extremely powerful tool when working with immersions, and is also a key ingredient
in our proofs.

Theorem 2.4 (Mader [31], see also Frank [21]). Let G be a graph and suppose for s ∈ V (G)
we have d(s) ≥ 4, and s is not incident with a cut-edge. Then δ(s) can be partitioned into
bd(s)/2c disjoint pairs (ei, fi), i = 1, . . . , d(s)/2, so that in the graph G′i resulting from
splitting ei, fi, for any x, y ∈ V (G′i) \ s, we have λG(x, y) = λG′i

(x, y), i = 1, . . . , d(s)/2.

Theorem 2.1 will be proved through a series of lemmas. We will begin by introducing a
few convenient definitions which are motivated by the study of completely splitting a vertex
u of even degree, k. We consider this operation as k

2 many splits at u (followed by deleting
u), and often need to talk about graphs that are “halfway through the action”. We need
to keep track of the vertex that is being split, as well as the edges that have been created
as a result of splits at u. In terms of edge-connectivity, we need to make sure that the
intermediate graphs do not have edge-cuts of size less than k, except for possibly δ(u). The
idea is then to stop doing splits at u the first time that this “halfway-through-the-action”
graph is about to have an edge-cut of size < k (other than δ(u)), and do something else
(“good operation”) instead, and then “undo” the splits that was done at u. The “good
operations” are defined in a way that, in particular, allow for “undoing the splits at u”. All
this is made precise in the following technical definitions.

Definition 2.5. Let k be an even number. A k-enhanced graph is a triple (G,U, F ), where
G is a graph, U ⊂ V (G) and F ⊂ E(G) such that

• U is either empty, or consists of a single vertex, where d(U) is an even number,

• if U is empty, then F is also empty, and otherwise, d(U) + 2|F | ≤ k.

If in the inequality above, equality holds we say (G,U, F ) is reversible. If U is nonempty,
we call the vertex in U the special vertex, and an edge in F is called a special edge. To sew a
special edge xy of (G,U, F ), where U = {u}, means to delete xy (from G and thus from F ),
and add edges xu and uy. We say splitting off xy, yz is a bad split if xy ∈ F and yz ∈ F . We
also say a complete split of a vertex v /∈ U with d(v) = k is a bad complete split if at least
one of the splits done at v is a bad split. In the case that U is empty, for the sake of brevity
we may simply write G to refer to (G, ∅, ∅). When talking about graph concepts (such as
deleting an edge) on a k-enhanced graph (G,U, F ), their corresponding in G is meant.

Suppose (G,U, F ) is a k-enhanced graph. If H is a subgraph of G, then we associate
H with the k-enhanced graph (H,U, F ∩ E(H)). Also, if H is a graph obtained from G by
splitting a 2-edge-path xyz (to create xz), then we associate H with the k-enhanced graph
(H,U, F ′), where for e ∈ E(H) \ xz we have e ∈ F ′ if e ∈ F , and

• if y ∈ U then xz ∈ F ′,
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• if y /∈ U then xz ∈ F ′ if xy ∈ F or yz ∈ F .

Let O be one of the operations in the statement of Theorem 2.1. We denote by O(G) the
graph obtained from G by applying O, and we write O(G,U, F ) to denote the k-enhanced
graph associated with O(G) (by the above rules).

A k-enhanced graph (G,U, F ) (or for brevity (G,U)) is called nearly k-edge-connected
if either G is k-edge-connected, or U is nonempty and every edge-cut in G apart from δ(U)
has size at least k.

Suppose (G,U, F ) is nearly k-edge-connected, and H is a k-edge-connected graph, where
k ≥ 4 is even, and G � H. We define a good operation on (G,U, F ) to be either

• a split at the special vertex,

• a (complete) split at a non special vertex of degree 6= k + 1 which is not a bad
(complete) split,

• deleting a non special edge,

so that the resulting graph G′ immerses H and the k-enhanced graph associated with G′ is
nearly k-edge-connected.

Let us highlight some useful observations about the setting we work in.

Observation 2.6. Suppose (G,U, F ) is a reversible k-enhanced graph, and there is no
special edge incident with u.

1. If O is a good operation on (G,U, F ), then O(G,U, F ) is also reversible.

2. If (G,U, F ) is nearly k-edge-connected, then the graph obtained from (G,U, F ) by
sewing all its special edges is k-edge-connected.

Note. Throughout the rest of this section, we will assume that k ≥ 4 is even,
and H is a k-edge-connected graph, and G is a graph where G � H.

2.1.2 k-edge-cuts

The lemmas in this subsection concern k-edge-cuts in nearly k-edge-connected enhanced
graphs. We start by establishing a technical lemma, which makes use of Mader’s Theorem
to provide us with a tool for dealing with k-edge-cuts, as well as (k + 1)-edge-cuts.

Lemma 2.7. Let (G,U, F ) be nearly k-edge-connected, and let u′ be a vertex of degree k
where u′ /∈ U . Then there exists a complete split, O, at u′ which is not bad, and moreover,
O(G,U, F ) is nearly k-edge-connected.
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Proof. Choose O to be a complete split of u′ so that subject to O(G,U, F ) being nearly
k-edge-connected, the number of bad splits done by O is minimum. Note that it follows from
Mader’s Theorem (Theorem 2.4) that O is well defined. To prove the lemma, it suffices to
show that O does not involve any bad splits. Otherwise, there exist special edges xu′, yu′

that are split under O. Since |F | ≤ k
2 , there exist non special edges zu′, wu′ that are split

under O. We claim that one of the following complete splits of u′

• O1 that splits xu′ with zu′ and splits yu′ with wu′, and agrees with O on other splits,

• O2 that splits xu′ with wu′ and splits yu′ with zu′, and agrees with O on other splits,

contradicts the choice of O. Otherwise, since the number of bad splits done by O1 and O2

is one less than the number of bad splits done by O, none of O1(G,U, F ) and O2(G,U, F )
are nearly k-edge-connected. Then, nearly k-edge-connectivity of O(G,U, F ) implies that
there exists an edge-cut δ(X) of size k− 1 or k− 2 in G∗ = O(G)− xy− zw that separates
{x, z} ⊂ X from {y, w}, and there exists an edge-cut δ(Y ) of size k− 1 or k− 2 in G∗ that
separates {x,w} ⊂ Y from {y, z}. Let G′ = O(G), so δG′(X) and δG′(Y ) are edge-cuts of
size k + 1 or k in G′ with x ∈ X ∩ Y , z ∈ X ∩ Y c, w ∈ Xc ∩ Y , y ∈ Xc ∩ Y c.

Remark. Let K be a graph with Z ⊂ V (K), Z = Z1 ∪ Z2, Z1 ∩ Z2 = ∅. Then we have

d(Z) = d(Z1) + d(Z2)− 2e(Z1, Z2) (∗)

Note that dG′(X) = dG′(Y ) = k + 1 is impossible. Otherwise, using (∗), by possibly
replacing Y with Y c, we may assume that dG′(X ∩Y ) is even and dG′(X ∩Y c) is odd. Since
dG′(Y ) = k + 1 is odd, by (∗), we conclude that dG′(Xc ∩ Y ) is odd, and so both Xc ∩ Y
and X ∩Y c contain a non special vertex, and thus dG′(Xc∩Y ), dG′(X ∩Y c) ≥ k+ 1. Then,
since xy ∈ EG′(X ∩ Y,Xc ∩ Y c), we get the contradiction

2k + 2 = d(X) + d(Y ) = d(Xc ∩ Y ) + d(X ∩ Y c) + 2e(X ∩ Y,Xc ∩ Y c) ≥ k + 1 + k + 1 + 2.

So, without loss of generality, we may assume dG′(X) = k; we may also assume that none
of y, z, w are the special vertex, and thus dG′(Xc ∩ Y ), dG′(X ∩ Y c) ≥ k. Now, we get

2k + 1 ≥ d(X) + d(Y ) = d(Xc ∩ Y ) + d(X ∩ Y c) + 2e(X ∩ Y,Xc ∩ Y c) ≥ k + k + 2

which is impossible. This completes the proof of the lemma.

Lemma 2.8. Suppose (G,U) is nearly k-edge-connected, and there exists X ⊂ V (G) such
that d(X) = k, and every x ∈ X is of degree k + 1. Then there exists Z ⊆ X with |Z| ≥ 2
such that d(Z) = k and for every e ∈ E(G[Z]), (G \ e, U) is nearly k-edge-connected.
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Proof. Choose Z ⊆ X such that d(Z) = k, and subject to this Z is minimal. Since every
z ∈ Z has degree k+ 1, we have |Z| 6= 1, and Z ∩U = ∅. Let e ∈ E(G[Z]), and we will show
that (G\ e, U) is nearly k-edge-connected. For a contradiction, suppose e is in a k-edge-cut,
δ(Y ). Note that d(Zc) = d(Z) = k implies that Zc contains at least one vertex v other
than the special vertex. We may assume (by possibly replacing Y by Y c) that v /∈ Y . Since
(G,U) is nearly k-edge-connected, d(Z ∩ Y ), d(Zc ∩ Y c) ≥ k. However, it follows from

k + k ≤ d(Z ∩ Y ) + d(Zc ∩ Y c) ≤ d(Z) + d(Y ) = k + k

that d(Z ∩ Y ) = k, which contradicts minimality of Z.

Let us make an observation before proceeding:

Observation 2.9. Suppose G is a graph with X ⊂ V (G) such that there exists an immersion
of H with all terminals in X. Then G.Xc contains H as an immersion.

The following lemma enables us to handle k-edge-cuts in nearly k-edge-connected en-
hanced graphs:

Lemma 2.10. Suppose (G,U, F ) is nearly k-edge-connected and G has a nontrivial k-edge-
cut δ(X) such that some immersion of H has no terminal in X, then there exists a good
operation.

Proof. If the special vertex is in X, we will split it using Mader’s Theorem (Theorem 2.4).
Else, if there exists a vertex x ∈ X with d(x) ≥ k + 2, we use Mader’s Theorem to do a
split at x which is not bad (this is possible since |F | ≤ k

2 ). Also, if there exists a vertex
x ∈ X with d(x) = k, we use Lemma 2.7 to do a complete split at x. In either case,
let (G′, U, F ′) be the resulting nearly k-edge-connected enhanced graph. To see that the
operation is good, observe that there remain k edge-disjoint paths in G′ between any pair
of non special vertices, one in X, and the other in Xc (as it was the case in G). Therefore
G′ immerses G.X, and thus immerses H.

Now suppose every vertex in X is of degree k + 1. Note that if Z is a subset of X with
|Z| ≥ 2 and d(Z) = k, then the degree assumption (together with |F | ≤ k

2 ) imply that
there is a non special edge in E(G[Z]). It follows from this together with Lemma 2.8 that
there is a non special edge e lying in G[Z], for some Z ⊆ X such that (G \ e, U) is nearly
k-edge-connected. Now, the same argument as above shows that G \ e � H, so deleting e is
indeed a good operation.

2.1.3 (k + 1)-edge-cuts

The next two lemmas which concern a broader family of graphs, will later be helpful dealing
with (k + 1)-edge-cuts in nearly k-edge-connected enhanced graphs.
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Lemma 2.11. Let G be an internally k-edge-connected graph in which every vertex of degree
< k is of even degree, and let x ∈ V (G). If d(x) is odd, then there exists y ∈ V (G) \ x such
that λ(x, y) ≥ k + 1.

Proof. We prove the statement by induction on |V (G)|. Note that by parity, there must exist
another vertex of odd degree, y, in G. If every cut separating x from y is of size ≥ k+ 1, by
Menger’s Theorem (Theorem 2.3) we are done. Otherwise, there exists a k-edge-cut δ(Y ),
with y ∈ Y , separating x from y.

Note that degree properties imply that |Y | ≥ 2, so the graph G′ = G.Y , which satisfies
the lemma’s hypothesis, has fewer vertices than G. Also x is of odd degree in G′ as well,
thus, by induction hypothesis there exists y′ ∈ V (G′) \ x such that λG′(x, y′) ≥ k + 1. It
follows that λG(x, y′) ≥ k + 1 as well, since λG(x, y) = k implies that G � G′.

Lemma 2.12. Let G be an internally k-edge-connected graph in which every vertex of degree
< k is of even degree. If δ(X) is a (k + 1)-edge-cut in G, there exist x ∈ X, y ∈ Xc such
that λ(x, y) ≥ k + 1.

Proof. Let G1 = G.X,G2 = G.Xc, with s, t being the nodes replacing X,Xc, respectively.
Note that both G1, G2 satisfy Lemma 2.11’s hypothesis. Also, s is a vertex of odd degree
in G1, so, by Lemma 2.11, there exists y ∈ Xc such that λG1(s, y) ≥ k+ 1, thus G � G2. It
can be similarly argued that there exists x ∈ X such that λG2(x, t) ≥ k+ 1, which together
with G � G2 shows that λG(x, y) ≥ k + 1.

Having the lemma above in hand, we can now efficiently handle (k + 1)-edge-cuts:

Lemma 2.13. If (G,U, F ) is a nearly k-edge-connected enhanced graph with a nontrivial
(k + 1)-edge-cut δ(X) such that some immersion of H has no terminal in X, then there
exists a good operation.

Proof. If the special vertex is in X, we will split it using Mader’s Theorem. Else, if there
exists a vertex x ∈ X with d(x) ≥ k + 2, we use Mader’s Theorem to do a split at x
that is not bad (this is possible since |F | ≤ k

2 ). Also, if there exists a vertex x ∈ X with
d(x) = k, we use Lemma 2.7 to completely split x. We claim these operations are good.
Let (G′, U, F ′) be the nearly k-edge-connected enhanced graph resulting from applying one
of these operations on (G,U, F ). First, note that δ(X) remains a (k + 1)-edge-cut in G′,
since doing a split changes the size of an edge-cut by an even number, and, by the near
edge-connectivity of (G′, U), dG′(X) ≥ k. We may now apply Lemma 2.12 to choose x ∈ X,
y ∈ Xc with λ(x, y) ≥ k + 1. Thus G′ immerses G.X, and therefore, G′ immerses H.

Now, suppose every vertex in X is of degree k+1. Since d(X) = k+1, G[X] is connected,
and by parity |X| ≥ 3, and since |F | ≤ k

2 , there is a non special edge e ∈ G[X]. If (G \ e, U)
is nearly k-edge-connected, then the same argument as above shows that deletion of e is
a good operation. So, we may now assume that e is in a k-edge-cut, δ(Y ). Using (∗), by
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possibly replacing Y with Y c, we may assume that d(X ∩ Y c) is even and d(X ∩ Y ) is
odd. Since d(Y ) = k is even, by (∗), we conclude that d(Xc ∩ Y ) is odd, and so Xc ∩ Y is
nonempty. Thus, both X ∩ Y c and Xc ∩ Y contain a non special vertex. We also have

2k + 1 = d(X) + d(Y ) ≥ d(X ∩ Y c) + d(Xc ∩ Y ) ≥ 2k,

so by parity d(X ∩Y c) = k. Therefore, δ(X ∩Y c) is a nontrivial k-edge-cut (as every vertex
in X is of degree k + 1) with no terminal of H in X ∩ Y c. Applying Lemma 2.10 we may
conclude that a good operation exists.

2.1.4 Finishing the proof of Theorem 2.1

The next three lemmas concern the three operations allowed in stepping from G towards H,
both of which are k-edge-connected loopless graphs with G � H, and show that in each case
we can take a step maintaining k-edge-connectivity and the presence of an H immersion.

Lemma 2.14. Suppose that G, H are k-edge connected loopless graphs where G � H, and
there is a complete split of a k-vertex u of G preserving an H immersion. Then a good
operation exists.

Proof. Consider the complete split of u as k
2 many splits at u, and choose a sequence of

splits which, while preserving an H immersion, results in the fewest number of loops. If u
could be completely split without ever creating a too small of an edge-cut other than δ(u)
along the way, we are done. Otherwise, we will stop doing these splits the first time the
resulting graph G′ is about to have an edge-cut of size < k other than δ(u). In G′, therefore,
there exists a subset X 6= {u}, {u}c of V (G) for which dG′(X) ≥ k, doing the next split,
however, makes it an edge-cut of size less than k, so dG′(X) = k or k+ 1. Now, let U = {u}
and let F be the set of edges of G′ which are created by splitting at u. Note that since every
edge in F is created by a single split at u, (G′, U, F ) is reversible.

Now, since completely splitting u results in d(X) < k and preserves an immersion of H,
there is an immersion of H with all terminals on one side of δ(X), say Xc. First, suppose
δ(X) is a nontrivial cut. Then Lemma 2.10 or 2.13 applied to (G′, U, F ) guarantee the
existence of a good operation, O, which either is a split at u, or is a (complete) split at a
vertex other than u which is not bad, or is deleting a non special edge. Let (G′′, U, F ′) =
O(G′, U, F ), so (G′′, U) is nearly k-edge-connected. Note that since G is loopless, there is
no special edge incident with u in G′. Now, by Observation 2.6, (G′′, U, F ′) is reversible. If
O is a split at u, we resume doing splits at u. In all the other cases, let G∗ be the graph
obtained from (G′′, U, F ′) by sewing all its special edges. Then, it follows from reversibility
of (G′′, U, F ′) and Observation 2.6 that G∗ is k-edge-connected. Also it follows from G∗ �
G′′ � H that G∗ � H, as desired.

Now suppose δ(X) is a trivial cut with X = {v}. Therefore the next split at u would
create a loop at v. Let G′1 be the graph obtained from performing this split, so G′1 � H. Note
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that there cannot be a vertex w ∈ NG′(u) \ v, because if there was one, then let G′2 be the
graph obtained from G′ by splitting off vuw. Note that G′2 is isomorphic to G′1 after deleting
the loop at v, and thus it follows fromH being loopless and G′1 � H that G′2 � H. Moreover,
G′2 has no loop and this contradicts the choice of the sequence of splits at u. Therefore
NG′(u) = {v}, implying that dG′(v) = dG′({u, v}) + dG′(u). This, however, contradicts
dG′(X) ∈ {k, k + 1}, as dG′(X) = d(v) = dG′({u, v}) + dG′(u) ≥ k + dG′(u) ≥ k + 2, where
the inequalities hold because (G′, U) is nearly k-edge-connected and u is of even degree.
This completes the proof.

Lemma 2.15. Let G, H be k-edge connected loopless graphs where G � H, and there is an
edge e ∈ E(G) such that G \ e � H. Then a good operation exists.

Proof. Suppose e is in a k-edge-cut. If it is incident with a k-vertex u, then, by the previous
lemma, u could be completely split off while maintaining an H immersion and k-edge-
connectivity. Otherwise, e is in a nontrivial k-edge-cut with all terminals of H on one side
of the cut. Thus we can use Lemma 2.10 to find a good operation.

Lemma 2.16. Let G, H be k-edge connected loopless graphs where G � H. If there is a
split at a vertex v preserving an H immersion, then a good operation exists.

Proof. Suppose splitting at v makes an edge-cut δ(X) too small, then d(X) = k or k + 1.
Also, all terminals of H are on one side of the cut, say Xc. If δ(X) is a nontrivial edge-cut
Lemma 2.10 or 2.13 may be applied. If |X| = 1, with d(X) = k, we apply Lemma 2.14 to
completely split the vertex in X, and if d(X) = k + 1 we will apply Lemma 2.15 to delete
an edge incident to v.

The proof of Theorem 2.1 is now immediate:

Proof of Theorem 2.1. Since H ≺ G, there is either a complete split at a vertex of degree
k, or an edge deletion or a split at a vertex of degree at least k+ 2 that takes G to G′ such
that G′ � H. Now, apply Lemmas 2.14, 2.15, and 2.16.

2.2 3-edge-connected, internally 4-edge-connected graphs

In this section we establish a splitter theorem for the family of 3-edge-connected, internally
4-edge-connected graphs. Later, as an application, we will also see a chain theorem for this
family. The following is our main result in this section:

Theorem 2.17. Let G,H be 3-edge-connected, and internally 4-edge connected loopless
graphs, with G � H. Further, assume |V (H)| ≥ 2, and (G,H) � (Q3,K4), (Q3,K

3
2 ). Then

there exists an operation taking G to G′ such that G′ is 3-edge connected, internally 4-edge
connected, and G′ � H, where an operation is either
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• deleting an edge,

• splitting at a vertex of degree ≥ 4,

each followed by iteratively deleting any loops and isolated vertices, and suppressing vertices
of degree 2.

As in the proof of Theorem 2.1, we will consider each operation separately, and the proof
of the theorem will then be immediate. First, we will adjust our notion of a good operation
as follows:

Definition 2.18. Suppose G,H are 3-edge-connected, and internally 4-edge connected
loopless graphs, with G � H. We define a good operation to be either a split at a vertex of
degree ≥ 4, or a deletion of an edge from G which preserves 3-edge-connectivity, internal
4-edge-connectivity, and an immersion of H in the resulting graph.

Lemma 2.19. Suppose G,H are as in Theorem 2.17, and there is an edge e such that G\e
has an H immersion. Then if (G,H) � (Q3,K4), (Q3,K

3
2 ), a good operation exists.

Proof. Since deletion of e is followed by suppression of any resulting vertices of degree
two, G \ e is clearly 3-edge-connected. If deletion of e does not preserve internal 4-edge-
connectivity, then e must be contributing to some 4-edge-cut, δ(X), in which each side has
either at least three vertices, or has two vertices which are not both of degree 3. We call
such a cut an interesting cut.

Note that H too is internally 4-edge-connected, thus all, but possibly one, of the ter-
minals of an immersion of H lie on one side of this cut, say X. Let X ′ be the maximal
subset of V (G) containing X, such that δ(X ′) is interesting. Suppose there is an edge uv
in X ′c not contributing to an interesting edge-cut, then deleting uv is a good operation. It
is because G \ uv is 3-edge-connected, internally 4-edge-connected. Also G \ uv has an H
immersion, because it immerses (G \ e).Xc.

We may now assume that uv is in some interesting edge-cut δ(Y ). Note that maximality
ofX ′ implies thatX ′∩Y,X ′∩Y c 6= ∅. Also, we claim that there cannot be edges contributing
to both δ(X ′), δ(Y ). To prove the claim, suppose, to the contrary, that there are edges
between, say, X ′ ∩ Y,X ′c ∩ Y c, i.e. e 6= 0 in Figure 2.1. Then it follows from

8 = d(X ′) + d(Y ) = d(X ′c ∩ Y ) + d(X ′ ∩ Y c) + 2e ≥ 3 + 3 + 2e

that if e 6= 0, then e = 1 and, moreover, d(X ′c ∩ Y ) = d(X ′ ∩ Y c) = 3.
Using a similar argument, one can see that, if in addition to e 6= 0, there are also edges

between X ′∩Y c, X ′c∩Y , then d(X ′c∩Y c) = 3. Thus, both X ′c∩Y c, X ′c∩Y would consist
of a single vertex of degree 3, contradicting δ(X ′) being interesting. Therefore the number
of edges contributing to both δ(X ′), δ(Y ) equals e.
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Y

X ′

...a

...c

· · · b· · · d

...e

X ′ ∩ Y

X ′ ∩ Y c X ′c ∩ Y c

X ′c ∩ Y

Figure 2.1: Cuts δ(X ′), δ(Y ) relative to each other

We will now show that e 6= 0 results in a contradiction. Note that from d(X ′c ∩ Y ) = 3
we may conclude, without loss of generality, that b ≥ 2. Now, by alternatively looking at
the cuts δ(X ′c ∩ Y ), δ(X ′), δ(X ′ ∩ Y c), δ(Y ), we see that if b ≥ 2, then c ≤ 1, so a ≥ 2, thus
d ≤ 1. Therefore, d(X ′ ∩ Y ) = c+ d+ e ≤ 3, so X ′ ∩ Y consists of a single vertex of degree
three. This, however, together with the earlier conclusion of X ′ ∩ Y c consisting of a single
vertex of degree three contradicts δ(X ′) being interesting. Therefore e = 0, so there are no
edges contributing to both δ(X ′) and δ(Y ).

Now, we show that a = b = c = d = 2. For a contradiction, we will assume that, say a >
2, and, similar to the argument above, alternatively look at the cuts δ(X ′), δ(X ′∩Y ), δ(Y ).
It then follows that c ≤ 1, so d ≥ 2, thus b ≤ 2. So, in order for d(X ′c ∩ Y ) = b+ c ≥ 3, we
must have b = 2, c = 1. Also, we have d(Y ) = 4 = b+d, so d = 2, thus d(X ′∩Y ) = c+d = 3.
Hence, each X ′c∩Y and X ′∩Y consist of a single vertex of degree three, which contradicts
δ(Y ) being interesting.

Therefore, a = b = c = d = 2, and thus δ(X ′c∩Y ), δ(X ′c∩Y c) are 4-edge-cuts. However,
by maximality of X ′, they cannot be interesting cuts. Thus each of X ′c∩Y,X ′c∩Y c consists
of only one vertex, or two vertices both of degree 3.

We are now ready to prove that a good operation exists unless (G,H) ∼= (Q3,K4) or
(G,H) ∼= (Q3,K

3
2 ). Consider different possibilities for X ′c ∩ Y,X ′c ∩ Y c:

• Both sets consist of one vertex, see Fig. 2.2(a). Here, a good operation is to split off
wuv. Note that the resulting graph immerses H, as it immerses (G \ e).Xc.

• Only one set consists of one vertex. Then it is easy to verify that X ′c should be as in
Fig. 2.2(b). Here, deleting vw is a good operation.

• Both sets have two vertices in them, see Fig. 2.3. Here the operation will be deleting
uw or vz, from which we claim at least one is a good operation unless G ∼= Q3.
Suppose that deleting both uw and vz destroy internal 4-edge-connectivity, thus both
these edges contribute to some interesting cuts.
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(b)

Figure 2.2: At least one of X ′c ∩ Y,X ′c ∩ Y c consists of only one vertex

Y

X ′

v

w u

z

nu

nw

nz

nv

Figure 2.3: Both X ′c ∩ Y,X ′c ∩ Y c consist of two vertices

As before, it can be argued that the cuts look like as in Fig. 2.4 with respect to each
other. Now, ignoring {u, v, w, z} in Figures 2.3, and 2.4, we can see that there exists

w

v u

z

nu

nv

nz

nw

Figure 2.4: Both uw and vz are in interesting edge-cuts

a 2-edge cut separating {nu, nw} from {nv, nz}, and another one separating {nu, nv}
from {nw, nz}, implying that nu, nv, nw, nz form a square, thus G ∼= Q3. It now only
remains to notice that K4,K

3
2 are the only internally 4-edge-connected graph that Q3

immerses.
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Our next task is to deal with splits in G that preserve an H immersion, which will be
done in Lemma 2.21. The following statement, which holds for a broader family of graphs
than the ones we work with, features in the proof of Lemma 2.21.

Lemma 2.20. Suppose H is a 3-edge-connected graph, and Y is a minimal subset of V (H)
such that δ(Y ) is a nontrivial 3-edge-cut in H. Then for every edge e in H[Y ], H \ e is
internally 3-edge-connected.

Proof. For a contradiction, suppose an edge e = yz in H[Y ] contributes to some nontrivial
3-edge-cut δ(Z), where z ∈ Z. We will look into how Y,Z look like with respect to one
another. Note both Y ∩ Z and Y ∩ Zc are nonempty, as z ∈ Y ∩ Z, y ∈ Y ∩ Zc. Also, both
Y c ∩ Z and Y c ∩ Zc are nonempty. It is because, if, say Y c ∩ Z = ∅, then δ(Y ∩ Z) would
be a nontrivial 3-edge-cut, which contradicts the choice of Y , as Y ∩ Z ( Y .

Now, since H is 3-edge-connected, we have d(Y ∩ Z), d(Y c ∩ Zc) ≥ 3. It now follows
from d(Y ∩ Z) + d(Y c ∩ Zc) + 2e(Y c ∩ Z, Y ∩ Zc) = d(Y ) + d(Z) that d(Y ∩ Z) = d(Y c ∩
Zc) = 3 and e(Y c ∩ Z, Y ∩ Zc) = 0. Similarly, we obtain d(Y ∩ Zc) = d(Y c ∩ Z) = 3 and
e(Y ∩ Z, Y c ∩ Zc) = 0. Now, since d(Y ) = 3 = e(Y ∩ Z, Y c ∩ Z) + e(Y ∩ Zc, Y c ∩ Zc),
we have, say, e(Y ∩ Z, Y c ∩ Z) ≤ 1. Similarly, it follows from d(Z) = 3 that we have, say,
e(Y ∩ Z, Y ∩ Zc) ≤ 1. Hence, d(Y ∩ Z) ≤ 2, a contradiction.

Lemma 2.21. Suppose G,H are as in Theorem 2.17, and there is a split at a vertex v
preserving an H immersion. Then if (G,H) � (Q3,K4), (Q3,K

3
2 ), a good operation exists.

Proof. Let uvw be the 2-edge-path that is to be split. Note if d(v) = 3, then deleting the
edge incident to v other than vu, vw preserves the H immersion. Hence, by Lemma 2.19
we are done. Also, observe that if a split is done at a vertex of degree at least four, the
resulting graph is 3-edge-connected. Therefore, we only need to look into the case where
splitting off uvw destroys internal 4-edge-connectivity. So, it must be the case that uv, vw
contribute to some 4- or 5-edge-cut δ(X) = {uv,wv, x1y1, x2y2(, x3y3) : u,w, xi ∈ X}, where
|X|, |Xc| ≥ 2. We now split the analysis into cases depending on d(X).

Claim. If d(X) = 4, then a good operation exists.

Proof of Claim. Since H is 3-edge-connected, all terminals of H lie on one side of the cut.
Also, since G is 3-edge-connected, each side of the cut contains an edge completely lying in
it, i.e. E(G[X]), E(G[Xc]) 6= ∅.

First, suppose all terminals of H are in X. Observe that if we can modify Xc in a
way that it preserves the connectivity of y1, y2 in G[Xc], an H immersion is present in
the resulting graph. We propose to delete an edge e ∈ E(G[Xc]), and claim that deleting e
preserves the H immersion. It suffices to show e is not a cut-edge in G[Xc] separating y1, y2.
For a contradiction, suppose e = δ(Y ) separates y1, y2 in G[Xc], where y1 ∈ Y . We may
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also assume, without loss of generality, that v ∈ Y . Then δG(Y c) would be a 2-edge-cut in
G, a contradiction. Therefore, we can delete e using Lemma 2.19.

Next, suppose all terminals of H are in Xc. Similarly to the previous case, if we modify
X in a way that preserves the connectivity of x1, x2 in G[X], an H immersion is sure to
exist in the resulting graph. Again, we propose to delete an edge e ∈ E(G[X]), and claim
that deleting e preserves the H immersion. It suffices to show e is not a cut-edge in G[X]
separating x1, x2. For a contradiction, suppose e = δ(Y ) separates x1, x2 in G[X], where
x1 ∈ Y . Note that the 3-edge-connectivity of G implies that δ(Y ) separates u,w as well.
We may assume without loss of generality that u ∈ Y,w ∈ Y c. Then dG(Y ) = dG(Y c) = 3,
thus it follows from internal 4-edge-connectivity of G that |Y | = |Y c| = 1 and Y = {u =
x1}, Y c = {w = x2}. Therefore,X consists of two vertices u,w of degree three. Thus deleting
uw preserves the H immersion. This proves the claim.

So now we may assume that d(X) = 5, and we will show that a good operation exists.
By the internal edge-connectivity of H, all terminals of H but possibly one, lie on one side
of the cut. First, suppose that most terminals of H are in X. Observe that if G[Xc] is
modified in a way that preserves the presence of three edge-disjoint paths form a vertex in
it to X not using uv, vw, the presence of H immersion is guaranteed. Next, suppose that
most terminals of H are in Xc. In this case, if we manage to modify G[X] in a way that
preserves the presence of three edge-disjoint paths form a vertex in X to Xc avoiding uv and
vw, the presence of H immersion is guaranteed. We claim such modifications are possible.

Let G′ be the graph resulting from splitting off uvw, followed by suppressing v in case
dG(v) = 4. We denote the edge created by splitting uvw by e′. Note, by the claim above,
we may assume G′ is 3-edge-connected.

Take an arbitrary nontrivial 3-edge-cut δG′(Y ) inG′. Observe that δG(Y ) must have been
a 5-edge-cut in G, which both edges of the split 2-path uvw contributed to. So, in particular,
e′ lies either completely in Y or in Y c. Also, there must be an edge other than e′ in G′[Y ].
It is because 3-edge-connectivity of G implies 6 ≤

∑
v∈Y dG(v) = dG(Y ) + 2eG(G[Y ]) =

5 + 2eG(G[Y ]). Thus eG(G[Y ]) > 0, and so there is an edge 6= e′ in G′[Y ].
Now, let Z denote the side of δ(X) containing most terminals of H (so Z = X or Xc).

We will show that there is an edge lying in Zc which we could delete, while preserving an
H immersion. Since δG′(Z) is a nontrivial 3-edge-cut, we may choose a minimal Y ⊆ Zc

such that δG′(Y ) is a nontrivial 3-edge-cut.
It is argued above that there exists an edge e 6= e′ in G′[Y ]. We claim deletion of e

preserves the H immersion. It is because it follows from Lemma 2.20 that G′ \e is internally
3-edge-connected. Now, 3-edge-connectivity of G′ and dG′(Y ) = 3 imply that G′[Y ] \ e has
a vertex of degree at least three. Therefore, there exist in G′ \ e three edge-disjoint paths
from such a vertex to Z. Observe that since these set of paths cover δG′(Z), deleting e from
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G preserves the presence of an H immersion. We now can use Lemma 2.19 to find a good
operation. This completes the proof of the lemma.

The proof of Theorem 2.17 is now immediate.

Proof of Theorem 2.17. Apply Lemmas 2.19, and 2.21. One of these must apply since H is
immersed in G.

Having established Theorem 2.17, we will now take advantage of it to establish a chain
theorem for the family of 3-edge-connected, and internally 4-edge-connected graphs.

Corollary 2.22. Let G be 3-edge-connected, internally 4-edge-connected, and |V (G)| ≥ 2.
If G � Q3,K

3
2 , then one of the operations in the statement of Theorem 2.17 may be applied

to G, where the resulting graph is 3-edge-connected, internally 4-edge-connected.

Proof. Since G is 3-edge-connected, G � K3
2 . Now, apply Theorem 2.17 for H = K3

2 .

2.3 Implication for immersing Kuratowski graphs

In this section, we work towards establishing the following corollary of Theorem 2.17 re-
garding immersion of Kuratowski graphs:

Corollary 2.23. Suppose G is 3-edge-connected, and internally 4-edge-connected, where
G � K5. If |V (G)| ≥ 6 then G � K3,3, or G ∼= K2,2,2.

The idea is to examine 3-edge-connected, internally 4-edge-connected graphs “one step
bigger”, or perhaps “a few steps bigger”, thanK5, and see if they immerseK3,3. One subtlety
here is that we are working with multigraphs, thus even graphs “much bigger than” K5 may
happen to be on five vertices, and thus not do possess K3,3 as immersion. Therefore, we
need some tool to limit the graphs necessary to examine. Given that K5 itself is 4-edge-
connected, Lemma 2.25 serves very well in doing so. First, however, we need the following
definition.

Definition 2.24. We define a good sequence from G to H to be a sequence of graphs

G = Gl, Gl−1, . . . , G2, G1, G0 ∼= H

in which each Gi, i = 0, . . . , l−1, is 3-edge-connected, and internally 4-edge-connected, and
Gi is obtained from Gi+1 by either

• deleting an edge, or

• splitting at a vertex of degree at least 4,

each followed by iteratively suppressing any vertices of degree two, and deleting loops and
isolated vertices. Let Oi be the operation taking Gi to Gi−1, for i = 1, . . . , l.
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Lemma 2.25. Let G be a 3-edge-connected, internally 4-edge-connected graph, and let H
be a 4-edge-connected graph, with |V (G)| > |V (H)|. Suppose there is a good sequence from
G to H, and choose a good sequence from G to H

G = Gl, Gl−1, . . . , G2, G1, G0 ∼= H

such that min{k : |V (Gk)| > |V (H)|} is as small as possible. Then either

(a) G1 is as in Fig. 2.5(a) and the last operation, O1, is a complete split of u which does
not result in creating any loops.

u

v1 v2 v3 v4 v1 v2 v3 v4

u w u

v1 v2 v3

(a) (b) (c)

Figure 2.5: The last graphs in the sequence

(b) G1 is as in Fig. 2.5(b), with v1 6= v2, v3 6= v4, and O1 is deleting uw.

(c) G1 is as in Fig. 2.5(c) and O1 is deleting an edge incident with u.

(d) G2 is as in Fig. 2.5(c) and O2 is deleting uv1 (and thus forming an edge v2v3), and
O1 is deleting v2v3, so G2 \ u ∼= H.

Proof. Let Gt+1 be the graph in the sequence which attains the min{k : |V (Gk)| > |V (H)|},
thus |V (Gt)| = |V (H)|. Without loss of generality we may assume V (Gt) = V (H) =
{v1, v2, . . . , v|H|}. First, consider the case where Ot+1 is a split. Since this split reduces the
number of vertices, it must be a split at a vertex u of degree 4, see Fig. 2.5(a). Let v1v2, v3v4

be the edges resulting from splitting u. We claim that Gt
∼= H and v1 6= v2 and v3 6= v4.

For a contradiction, suppose Gt � H, and consider Ot.

• If Ot is splitting a 2-edge-path where both edges are present in Gt+1, or is deleting an
edge present in Gt+1, then let O′t+1 = Ot, and O′t = Ot+1.

• If Ot is splitting a v1v2vi path, i = 1, 2, . . . , |V (H)|, let O′t+1 be splitting uv2vi, and
let O′t be splitting v1uvi (and thus splitting v3uv4).

• If Ot is splitting a 2-edge-path whose both edges are created by Ot+1, say v2 = v3,
and Ot is splitting v1v2v4, then let both O′t+1 and O′t be deleting one copy of uv2 edge
(so O′t will be followed by suppressing u).
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• If either v1 = v2 or Ot is deleting one of the edges created by Ot+1, say v1v2, then let
O′t+1 be deleting uv1, and let O′t be deleting uv2.

Now, let G′t (G′t−1) be the graph obtained from Gt+1 (G′t) by applying O′t+1 (O′t). Observe
that in all cases it follows from 4-edge-connectivity of H that G′t is indeed internally 4-edge-
connected. Now, note that |V (G′t)| > |V (H)| and G′t−1

∼= Gt−1. So, by replacing Gt, Gt−1

with G′t, G′t−1 we obtain another good sequence from G to H which contradicts our choice
of the good sequence Gl, . . . , Gt+1, Gt, Gt−1, . . . , G0. This proves that t = 0, and (a) occurs.

Next, consider the case where Ot+1 is deleting an edge. Since this deletion reduces the
number of vertices, at least one of its endpoints is of degree 3. If both endpoints have degree
3 (see Fig. 2.5(b)), then a similar argument as above shows that t = 0, and thus (b) happens.
In the only remaining case, only one endpoint of the deleted edge has degree 3 in Gt+1, let u
be the endpoint of degree three and δ(u) = {uv1, uv2, uv3} (see Fig. 2.5(c)). We may assume
Ot+1 is deleting uv1. As before, Ot is neither splitting a 2-edge-path where both edges are
present in Gt+1, nor it is deleting an edge present in Gt+1. Also, Ot cannot be splitting
v2v3vi, i = 1, . . . , |V (H)|. Otherwise let O′t+1 be splitting uv3vi, and let O′t be deleting
uv1(and thus followed by suppressing u). Note that |V (G′t)| > |V (H)| and G′t−1

∼= Gt−1,
and it follows from 4-edge-connectivity of H that G′t is internally 4-edge-connected. As
before, this results in another good sequence from G to H which contradicts the choice of
the good sequence Gl, . . . , Gt, Gt−1, . . . ,H. So, either t = 0 , and (c) occurs, or Ot is deleting
v2v3 in which case t = 1, i.e. (d) occurs.

Now, we use this lemma to establish a result on K5 immersions discussed earlier and
restated here.

Corollary 2.26. Suppose G is 3-edge-connected, and internally 4-edge-connected, where
G � K5. If |V (G)| ≥ 6, then G � K3,3, or G ∼= Octahedron, where Octahedron is the graph
in Fig. 2.6.

Proof. Suppose G � K5, and |V (G)| > 5. By Theorem 2.17, a good sequence from G to K5

exists. Thus, we can choose a good sequence

G = Gl, Gl−1, . . . , G2, G1, G0 ∼= K5

such that min{k : |V (Gk)| > 5} is as small as possible, and apply the previous lemma. It
can be easily verified that if cases (b), or (c) of the previous lemma occur, then G1 � K3,3,
and if case (d) happens, G2 � K3,3, thus G � K3,3.

So, suppose case (a) of the previous lemma occurs. Again, it can easily be verified that if
the two edges created by o1 share an endpoint, then G1 � K3,3, thus G � K3,3. Otherwise,
K3,3 is not immersed in G1, as G1 would be the Octahedron, which, being planar, doesn’t
have K3,3 as a subgraph. On the other hand, it has six vertices, all of degree 4, so an
immersion of K3,3 cannot be found doing splits either.
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Figure 2.6: Octahedron

Therefore, if G ∼= Octahedron, G � K3,3. However, if G properly immerses Octahedron,
then it immerses K3,3 as well. To see that, note that the 6-vertex graphs from which Octa-
hedron is obtained after deletion of an edge or splitting a 2-edge path, all immerse K3,3. On
the other hand, if |V (G)| > 6, we may again use Lemma 2.25 for H = Octahedron, since
Octahedron itself is 4-edge-connected.

To reduce the number of graphs we examine, it now helps to notice that we only need
to consider the case where a 4-vertex 7 gets split to create edges {23, 15}, or {23, 14}. It is
because in all other cases, the graph obtained by splitting 2-paths 163, 264 would be one of
the graphs we already looked at, all of which immerse K3,3.

If vertex 7 is split to create {23, 15}, an immersion of K3,3 may be found after splitting
2-path 173. Also, if vertex 7 is split to create {23, 14}, then K3,3 lies as a subgraph in G.
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Chapter 3

Immersion of Dm

This chapter centres around certain rooted graphs on four vertices which we call Dm, for
m ≥ 2. The main result, appearing as Theorem 3.4, characterizes the structure of graphs
which do not immerse Dm, for any m ≥ 2. Let us first define a rooted graph, and the
corresponding notion of immersion for rooted graphs.

Definition 3.1. A rooted graph with k roots is a connected graph G together with an
ordered tuple (x1, . . . , xk) of distinct vertices. We call xi the i-th root of G. If G and
(x1, . . . , xk), and H and (y1, . . . , yk) are rooted graphs, we say G contains H as a rooted
immersion if there is a (possibly empty) sequence of splits and deletions which transforms
G into a graph isomorphic to H, where this isomorphism sends xi to yi, for i = 1, . . . , k. We
may also write (G;x1, . . . , xk) �r (H; y1, . . . , yk) to denote that G has a rooted immersion
of H. Throughout this document, when depicting rooted graphs, we show the roots of a
graph by solid vertices. For the sake of simplicity, if k = 2 and there is an automorphism of
H which sends y1 to y2, we simply refer to H as a rooted graph with roots y1, y2.

The family of the rooted graphs concerned in this chapter is introduced below.

Definition 3.2. For m ≥ 2, let Dm denote the graph with roots x0, x1 where e(x0, x1) =
m− 2, and Dm \ E(x0, x1) is isomorphic to the rooted graph below.

Figure 3.1: Graph D2

Observe thatD3 is isomorphic withK4 with two roots. Accordingly, our result on exclud-
ing a Dm immersion can be used to characterize unrooted graphs without K4 immersions.
This is done in Section 3.2.
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Since in this chapter we will be dealing with graphs with two roots, we often need
to distinguish between the edge-cuts which separate the two roots of the graphs and the
ones which have both roots on the same side. This calls for a more refined notion of edge-
connectivity, introduced below.

Definition 3.3. Let G be a connected graph with roots x0, x1.

• The minimum size of an (internal) edge-cut that separates x0, x1 will be denoted by
λs(G) (λi

s(G)).

• The minimum size of an (internal) edge-cut that does not separate x0, x1 will be
denoted by λn(G) (λi

n(G)).

In preparation for the main result of this chapter, we introduce two families of graphs
which do not immerseDm. Let G be a rooted graph with two roots x0, x1. If C is a connected
component of G \ {x0, x1}, we call G[C ∪ {x0, x1}] \ E(x0, x1) a lobe of G. We also say

Type Am. G has type Am if it has a segmentation of width m relative to some (X0, X1)
with |Xi| ≤ 2 and xi ∈ Xi, for i = 0, 1.

Type Bm. G has type Bm if it satisfies the following:

• Every lobe L of G is obtained from an x0 − x1-path by adding nL − 1 copies of
each edge for some nL ≥ 2 (so each parallel class has size nL).

• If |V (L)| ≥ 4, we have nL = 2, for every lobe L.

• eG(x0, x1) +
∑

L nL = m+ 1, where the sum is taken over all lobes L of G.

Note that if G has type Am, then it has a (2, 2)-segmentation of width m. We are now all
set to state our main theorem concerning the structure of graphs excluding Dm immersion,
for any m ≥ 2.

Theorem 3.4. Let m ≥ 2, and let G be a rooted graph with roots x0, x1, where |V (G)| ≥ 4.
Assume further that

• λn(G) ≥ 3,

• λi
n(G) ≥ 4, and

• λs(G) ≥ m.

Then G �r Dm if and only if G has type Am or type Bm.

This result is indeed a very useful one, as it gives us the opportunity to ask for an
immersion ofDm in a graph, while two of the terminals ofDm have been specified in advance.
Accordingly, this result not only interesting on its own, but also can serve as a helpful tool
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in problems of finding the structure of graphs excluding bigger graphs as immersion. In
Chapters 4, 5 we will see applications of this theorem when finding an immersion of rooted
W4, as well as prism.

The rest of this chapter is organized as follows: Section 3.1 is devoted to the proof of
Theorem 3.4. In Section 3.2, we give a precise structural theorem for the family of 3-edge-
connected (rooted) graphs which do not immerse (rooted) K4 (with one or two roots).

3.1 Proof of Theorem 3.4

In this section, we prove the main result of this chapter. First, we will see the proof of the
easier direction, ‘if’ direction.

3.1.1 ‘if’ direction

The following simple observation often proves quite useful when arguing about the existence
of an immersion of a graph, and we will call upon it in the following chapters as well.

Observation 3.5. Let G,H be two graphs and G has an immersion of H. Suppose v ∈ V (G)
is a terminal of H, corresponding to u ∈ V (H). If dG(v) and dH(u) have different parity
then an edge (of G) incident with v can be deleted while preserving an immersion of H.

Now, let us see why type Am, type Bm graphs do not immerse Dm.

Proof of Theorem 3.4,‘if’ direction. Suppose G has type Am, and suppose for a contradic-
tion that G �r Dm. Let Y0 ⊂ Y1 ⊂ . . . ⊂ Yt be a (2, 2)-segmentation of width m of
G. We may assume without loss of generality that x0 ∈ Y0, x1 ∈ V (G) \ Yt. Then since
d(Y0) = m < m+ 1, the only terminal of Dm in Y0 is x0. Thus, Y1 has at most two termi-
nals of Dm, however, it follows from d(Y1) = m that the only terminal of Dm in Y1 is x0.
By repeating this argument, we can see that the only terminal of Dm in Yt is x0, and since
|V (G) \ Yt| ≤ 2, Dm is not immersed in G—a contradiction.

Now suppose G is type Bm. If m = 2, observe that (since |V (G)| ≥ 4) we have
eG(x0, x1) = 1 and G \ E(x0, x1) is a doubled x0 − x1-path. Then Observation 3.5 implies
that G �r D2 if and only if a graph G′ obtained from G by deleting an edge incident with
x0 immerses D2. Note the only such graph G′ for which dG′({x0, x1}) ≥ 4 is G′ = G \ x0x1.
However, since G′ has type A2, we have G′ �r D2, and thus G �r D2.

Now consider m ≥ 3. If e(x0, x1) > 0, let G′ = G \ x0x1. Observe that G �r Dm if and
only if G′ �r Dm−1. However, since G′ is type Bm−1, by induction we have G′ �r Dm−1 and
thus G �r Dm. On the other hand, if e(x0, x1) = 0 then G immerses Dm if and only if the
graph G′ resulting by splitting off an x0x1-path in a lobe L of G immerses Dm. However,
then G′ has type Bm with an edge between x0, x1, so G′ does not immerse Dm.
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3.1.2 ‘only if’ direction

As the reader may expect, the proof of the reverse direction is more involved. Before giv-
ing the proof we begin with a couple observations which follow immediately from degree
considerations.

Observation 3.6. Suppose that G is type Am relative to X0, X1 as in the above definition.
If d(xi) = m we may assume Xi = {xi}, for i = 0, 1.

Observation 3.7. Let G be a graph with a segmentation of width k relative to some (U,W ).
Observe that if x ∈ V (G) \ (U ∪W ), then d(x) is even.

Proof. Let U = X1 ⊂ X2 ⊂ . . . ⊂ Xt = V (G) \ W be the segmentation of G. Since
x ∈ V (G) \ (U ∪W ), there exists i, 0 ≤ i ≤ t − 1 such that Xi+1 = Xi ∪ {x}. Then since
d(Xi) = d(Xi+1) = k, we have e(x,Xi) = e(x, V \Xi+1), and thus d(x) = 2e(x,Xi).

We generalize the notation used in Chapter 1 to rooted graphs, and to the cases where
more than one subset of vertices are identified:

Notation. Let G be a graph with a (possibly empty) set R of root vertices. Let X1, . . . , Xk

be disjoint subsets of V (G). The graph obtained from G by identifying each Xi, for i =
1, . . . , k, to a new vertex x∗i will be denoted by G.{X1, . . . , Xk}. (Since we are assuming
graphs have no loops, any loops formed by this operation are removed.) If we need the
resulting graph to be rooted, we declare (R \

⋃
i(Xi)) ∪ {x∗1, . . . , x∗k} to be the set of root

vertices of G.{X1, . . . , Xk}.

Lemma 3.8. Theorem 3.4 holds under the added assumption |V (G)| = 4.

Proof. Assume that V (G) = {x0, x1, y0, y1} with terminals x0 and x1. We may assume that
G satisfies λi

s(G) ≥ m+1, as otherwise G is type Am relative to {x0, yi}, {x1, y1−i} for some
i = 0, 1. Let G∗ be the graph obtained from the simple graph underlying G by deleting the
edge x0x1 if it is present. First suppose that |E(G∗)| = 5. In this case G has a subgraph
H isomorphic to D2 in which dH(xi) = 2 for i = 0, 1. It follows from λs(G) ≥ m and
λi

s(G) ≥ m+ 1 that the graph G′ = G \ E(H) satisfies λs(G′) ≥ m− 2, and thus G has an
immersion of Dm.

Next suppose that dG∗(y0) = dG∗(y1) = 1. In this case G has one of the first two graphs
(from the left) in Figure 3.2 as a subgraph, so Dm ≺ G. Next suppose that dG∗(y0) = 1
and dG∗(y1) ≥ 2. If y0 is adjacent to a root, say x0, then G immerses the middle graph
in Figure 3.2; if y0 is adjacent to y1, then G immerses the second graph from the right in
Figure 3.2. Since both of these graphs immerse Dm we may assume dG∗(yi) ≥ 2 for i = 0, 1.
If dG∗(x0) = 0, then G must immerse the rightmost graph in Figure 3.2, so again we have
Dm ≺ G.
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Figure 3.2: Immersions in G when dG∗(yi) = 1 or dG∗(xi) = 0

At this point, we have shown dG∗(yi) ≥ 2 and dG∗(xi) ≥ 1 for i = 0, 1 and there are just
three possibilities for the graph G∗ (up to interchanging the names of the roots x0, x1 and
the names of the non-roots y0 and y1). They are the three graphs shown in the Figure 3.3
and will be handled in separate cases.

x0

x1

y0 y1

x0

x1

y0 y1

x0

x1

y0

y1

Figure 3.3: Possibilities for G∗

In all three of our cases, we shall classify the paths between x0 and x1 into a small
number of types and these are indicated in Figure 3.4. For instance, for the rightmost graph
we say that a path is type α if it has vertex sequence x0, x1, type β if it has vertex sequence
x0, y0, x1, and type γ if it has vertex sequence x0, y0, y1, x1. Now in all three cases, we choose
a maximum cardinality packing of edge-disjoint paths from x0 to x1 say P1, P2, . . . , Pk and
we let a (b, c) denote the number of these paths of type α (β, γ). Note that λs(G) ≥ m

implies k ≥ m. An edge e ∈ E(G) \
(⋃k

i=1E(Pi)
)
is called an extra edge. Note that there

are no extra edges of type α since this would contradict the maximality of our packing.

α β

x0

x1

y0

y1

α

β γ

x0

x1

α

β γ

x0

x1

y0
y1

y0 y1

Figure 3.4: Types of Paths

Case 1: G∗ is the leftmost graph in Figure 3.3

We note that b ≥ 1 and split into subcases based on b. First suppose that b = 1.
If e(y0, y1) = 1, then d(y0), d(y1) ≥ 3 forces the existence of extra edges x0y0 and x1y1.
Now λi

s(G) ≥ m + 1 implies a ≥ m and we find Dm ≺ G. If e(y0, y1) ≥ 2, then the
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maximality of our packing implies min{e(x0, y0), e(x1, y1)} = 1, but then λi
n(G) ≥ 4 implies

max{e(x0, y0), e(x1, y1)} ≥ 3. Since a ≥ m − 1 we again find that Dm ≺ G. Next suppose
that b = 2. If a ≥ m, then we have Dm ≺ G. If a = m− 1, then G will be type Bm if there
are no extra edges, and Dm ≺ G if there is an extra edge. If a = m− 2, then λi

s(G) ≥ m+ 1
implies that there is an extra edge y0y1 and we have Dm ≺ G. Finally, we suppose b ≥ 3.
If k = a+ b ≥ m+ 1, then Dm ≺ G. Otherwise a+ b = m and λi

s(G) ≥ m+ 1 implies that
there is an extra edge y0y1 and again we have Dm ≺ G.

Case 2: G∗ is the middle graph in Figure 3.3

First note that b, c ≥ 1. If k = m, then λi
s(G) ≥ m + 1 implies that there is an extra

edge of the form x0y0 or of the form x1y1, and similarly there is an extra edge of the form
x0y1 or of the form x1y0. We cannot have both x0yi and yix1 as extra edges, since this
would contradict the maximality of our packing, but then we have Dm ≺ G. Accordingly,
we may now assume k ≥ m+1. Now we split into subcases depending on the values of b, c. If
b = c = 1, then d(yi) ≥ 3 implies the existence of an extra edge incident with yi for i = 1, 2
and this gives Dm ≺ G. If b = 1 and c ≥ 2, then d(y0) ≥ 3 implies the existence of an extra
edge of the form x0y0 or x1y0 and in either case we have Dm ≺ G. A similar argument
handles the case b ≥ 2 and c = 1. Finally, we consider the case b, c ≥ 2. If k ≥ m+ 2, then
Dm ≺ G. If m = k + 1, then G has type Bm if there are no extra edges, and Dm ≺ G if
there is an extra edge.

Case 3: G∗ is the rightmost graph in Figure 3.3

First suppose that e(x0, y0) = 1 and note that this implies a = e(x0, x1) ≥ m − 1. If
e(x1, y1) ≥ 2, thenDm ≺ G. Otherwise it follows from λn(G) ≥ 3 that e(x1, y0), e(y0, y2) ≥ 2
and again we get G � Dm. Therefore, e(x0, y0) ≥ 2 and we may assume (without loss) that
in our maximum packing we have b, c ≥ 1. First suppose that c = 1. If there is an extra
edge y0y1, then (using b ≥ 1) we find Dm ≺ G, otherwise d(y1) ≥ 2 implies an extra edge
of the form y1x1. This extra edge gives an immersion of Dm unless k = m so we may now
assume this. However, if k = m, then it follows from d({y1, x1}) ≥ m+ 1 that there exists
an extra edge which forces an immersion of Dm. So we may now assume c ≥ 2 and then we
are immediately finished if k ≥ m+ 1 since a path of type γ together with a x0x1 path may
be traded for an edge between y0 and x1. In the only remaining case k = m, and it follows
from d({y1, x1}) ≥ m + 1 that there is an extra x1y0 edge which forces immersion of Dm.
This completes the proof.

With this lemma in hand, we now prove Theorem 3.4.

Proof of Theorem 3.4, ‘only if’ direction. Towards a contradiction, suppose G = (V,E) is
a counterexample to the theorem for which |V | + |E| is minimum. We will prove some
properties of G which finally shows that G does not exist.
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(1) λi
s(G) ≥ m+ 1.

Suppose (for a contradiction) that there exists an edge-cut δ(U) of size at most m in
G which separates x0 ∈ U from x1, where |U |, |V \ U | ≥ 2. Since λs(G) ≥ m, we have
d(U) = m. Define the graphs G0 = G.(V \ U), G1 = G.U , and let y0, y1 be the new
vertices resulting by identifying V \U,U to a vertex, respectively (so dGi(yi) = m). For
i = 0, 1, let xi, yi be root vertices of Gi. By the edge-connectivity of G, G �r Gi, and
thus Gi �r Dm. If |V (Gi)| ≥ 4, then (by the minimality of our counterexample G) the
theorem implies that Gi is type Am or type Bm. However, from dGi(yi) = m we deduce
that Gi is type Am. So, there exists Xi ⊆ V (Gi) with xi ∈ Xi and |Xi| ≤ 2 so that
the graph Gi has a (2, 1)- segmentation of width m. On the other hand, if |V (Gi)| ≤ 3,
for Xi = V (Gi) \ yi we have xi ∈ Xi, |Xi| ≤ 2, and the graph Gi has a has a (2, 1)-
segmentation (of length 1) of width m. It now follows that the original graph G has
type Am relative to X0 and X1, and this contradiction establishes (1).

(2) For every vertex v ∈ V \ {x0, x1} we have d(v) > 2e(v, xi), for i = 0, 1.

Suppose (for a contradiction) that v ∈ V \ {x0, x1} exists with, say, d(v) ≤ 2e(v, x0).
Let G′ be the graph obtained from G by identifying {x0, v} to a new root vertex,
and note that Lemma 3.8 implies that |V (G′)| ≥ 4. On the other hand, it follows
from d(v) ≤ 2e(v, x0) that G � G′, and thus G′ � Dm. Now, G being a minimum
counterexample implies that the theorem holds for G′, and so it is either type Am or
type Bm. It follows from (1) that G′ is not type Am. It is now straightforward to check
that G satisfies the theorem.

In the picture below, we have considered a few different graphs G for which G.{x0, v}
has type B4. Note that the leftmost graph has type B4, and in the other graphs there
is a rooted immersion of D4 on {x0, x1, u, v}. It is easy to verify that other cases also
result in a graph which either has type B4 or immerses D4.

x0

v v

x0

u

x1

x0

v

u

x1

x0

x1

v

u

v

x0

u

x1

(3) There does not exist i = 0, 1 and U ⊂ V \ {x0, x1} for which |U | ≥ 2 and d(U) = 4, and
e(xi, U) ≥ 2.

Towards a contradiction, suppose such U exists with, say, e(x0, U) ≥ 2. Choose distinct
e, e′ ∈ E(x0, U), and let {f, f ′} = δ(U) \ {e, e′}. Now let G′ be the graph obtained from
G by subdividing f, f ′ with a new vertex, and then identifying the two new vertices of
degree two to a new vertex y.
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Consider H = G′[U ∪ {x0, y}], rooted at x0, y. By construction, dH(x0) = dH(y) = 2,
and we have |E(H)| < |E|. If λs(H) < 2, it follows from λi(G) ≥ 4 that |U | = 2, and
that both vertices in U have degree three, and thus there exist u ∈ U with eG(u, x0) = 2.
This, however, contradicts (2), and thus λs(H) ≥ 2. Moreover, λn(H) ≥ λn(G) ≥ 3,
and λi

n(H) ≥ λi
n(G) ≥ 4. So, we can apply the theorem to H to conclude that either

H �r D2 or H has type A2 or type B2. Since the root vertices of H have degree two,
H must be type A2, and (by Observation 3.6) it is a doubled path. This, however,
implies that there exists u ∈ U with d(u) = 4 and eG(u, x0), which contradicts (2).
Thus, H �r D2.

Next, let K be the graph obtained from (G.U) \ {e, e′} by adding a new vertex z which
has two edges to U and m−2 edges to x0. It follows from d(U) = 4 and λ(G) ≥ m that
there are m edge-disjoint z − x1 paths in K. This, together with H �r D2 implies that
G �r Dm—a contradiction.

Before proceeding, let us introduce some helpful notation. We call an edge e ∈ E safe if the
graph G′ obtained from G \ e, followed by suppressing any resulting degree two vertices,
satisfies |V (G′)| ≥ 4, and dG′(x0), dG′(x1) ≥ m. Observe that if e is safe, (1) implies that
λs(G′) ≥ m. Moreover, it follows from λi

n(G) ≥ 4 that λn(G′) ≥ 3. Below, we will confirm
that we also have λi

n(G′) ≥ 4, which then puts us in a position to apply the theorem to it.

(4) If e ∈ E is safe, and G′ is the graph obtained from G \ e by suppressing degree two
vertcies, then λi

n(G′) ≥ 4.

Suppose (for a contradiction) that λi
n(G′) = 3. Let U1, . . . , Uk be the maximal subsets of

V (G′)\{x0, x1} for which |Ui| ≥ 2 and dG′(Ui) = 3. Note that for 1 ≤ i < j ≤ k the sets
Ui and Uj are distinct. It is because otherwise d(Ui∩Uj)+d(Ui∪Uj) ≤ d(Ui)+d(Uj) =
6, which together with λn(G′) ≥ 3 would imply that d(Ui ∪ Uj) = 3—contradicting
maximality of Ui, Uj .

Now, let G′′ be the graph obtained from G′ by identification of each set Ui to a
new vertex ui. Note that (3) implies that |V (G′′)| ≥ 4. Moreover, we have λs(G′′) ≥
m,λn(G′′) ≥ 3 and λi

n(G′′) ≥ 4. On the other hand, since λn(G′) ≥ 3 we have G′ � G′′,
and thus G′′ �r Dm (else G �r G

′ �r Dm). Since |V (G′′)| < |V |, we can apply the
theorem to G′′ to conclude that it is either type Am or type Bm. Now since every
non-root vertex in a graph of type Bm has even degree, it must be that G′′ has type
Am. Now, Observation 3.7 implies that (by possibly relabeling x0, x1) the graph G′′

has type Am relative to (X0, X1), where X0 = {x0, u1}. Furthermore, it follows from
dG′′(x0) ≥ m, dG′′(u1) = 3 together with dG′′({x0, u1}) = m that eG′′(x0, u1) ≥ 2. This,
however, implies that eG(x0, U1) ≥ 2, and since dG(U1) = 4, we get a contradiction
with (3). This completes the proof of (4).

(5) Every vertex v ∈ V \ {x0, x1} has odd degree.
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Towards a contradiction, suppose v violates (5). It follows from (2) that there is a
neighbour u of v which is not a root vertex. Since d(v) ≥ 4, uv is safe. So the graph
obtained from G \ uv by suppressing degree two vertices satisfies the hypothesis of the
theorem. Since G �r G

′, we have G′ �r Dm, so G′ either has type Am or type Bm. Since
dG′(v) is odd (by Observation 3.7) G′ must be type Am relative to (X0, X1), with v in
X0∪X1, say X0 = {x0, v}. Now dG′(x0) ≥ m, dG′({x0, v}) = m together with the parity
of dG′(v) imply that 2eG′(x0, v) ≥ dG′(v). However this implies 2eG(x0, v) ≥ dG(v),
which is a contradiction with (2).

(6) We have d(x0) = d(x1) = m.

Suppose (for a contradiction) that d(x0) > m. If x0 has a neighbour v other than x1,
let e = x0v; else, let e = x0x1. In either case e is safe, and consider G′ which is the
graph obtained from G \ e by suppressing degree two vertcies. Since G �r G

′, we have
G′ �r Dm and since |E(G′)| < |E|, we can apply the theorem to G′. Since G′ has non-
root vertices of odd degree, it has type Am relative to (X0, X1). As before, it follows
from Observation 3.7 that either |V (G′)| = 4, and both non-root vertices of G′ have
odd degree, or |V (G′)| = 5 and there is a unique non-root vertex of G′ which has even
degree. In either case, we may assume X0 = {x0, u}. It now follows from dG′(x0) ≥ m

and dG′(X0) = m that 2eG′(x0, u) ≥ dG′(u). Now, note that e must be in δ(X0), and
thus we get 2eG(x0, u) ≥ dG(u), which is a contradiction with (2).

We can now finish the proof. Note that it follows from (5) and (6) that |V | ≥ 6. Let
v ∈ V \ {x0, x1} and note that by (2), we may choose an edge e = vv′, where v′ /∈ {x0, x1}.
The edge e is safe, and as in the proof of (5) and (6) the graph G′ obtained from G \ e
by suppressing degree two vertcies has type Am. Since |V | ≥ 6, there exist at least two
vertices w,w′ ∈ V \ {x0, x1, v, v

′} and it follows from (5) that w,w′ have odd degree (in
both G and G′). Therefore we may assume G′ has type Am relative to (X0, X1), where
X0 = {x0, w}. However, then we have m = eG′(X0) = eG(X0) which contradicts (1). This
final contradiction completes the proof of 3.4.

3.2 Immersion of K4

This section is devoted to characterizing the graphs which do not immerse K4 with either
two, one, or no roots.

3.2.1 Immersion of K4 with two roots

Observe that D3 is isomorphic with K4 with two roots. So, Theorem 3.4 already provides
us with a description of graphs with two roots which do not immerse K4 (with two roots).
However, as we will see in Corollary 3.10, Theorem 3.4 can be restated for m = 3 in a way
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in which we drop the assumption of λi
n(G) ≥ 4. Before getting to that, let us make a helpful

observation:

Observation 3.9. Suppose G is a 3-edge-connected graph with two root vertices, and
|V (G)| ≥ 4. If G has type B3 then G is a doubled cycle.

Proof. Let x0, x1 be the roots of G. If E(x0, x1) is empty, it follows from definition of type
B3 that G has exactly two (x0, x1)-lobes. Moreover, either lobes will be doubled-paths, and
thus G is a doubled cycle. On the other hand, if E(x0, x1) is nonempty, definition of type
B3 implies that G has exactly one (x0, x1)-lobe. Furthermore, the unique lobe has at least
four vertices, and thus is a doubled-path. Therefore, e(x0, x1) = 2, and again G is a doubled
cycle.

We can now restate Theorem 3.4 for m = 3, or equivalently K4 with two roots, as
follows:

Corollary 3.10. Let G be a 3-edge-connected graph where |V (G)| ≥ 4, with two root ver-
tices. Then G �r D3 if and only if either of the following occurs:

• G is a doubled cycle.

• G has a segmentation of width three relative to (X0, X1) in which if |Xi| ≥ 3, then Xi

does not contain a root vertex.

Proof. Suppose G �r D3. If λi
n(G) ≥ 4, we apply Theorem 3.4 and Observation 3.9 to G to

conclude that G is a doubled cycle. So, suppose λi
n(G) = 3, let U1, . . . , Uk be the maximal

subsets of V (G) \ {x0, x1} for which |Ui| ≥ 2 and dG(Ui) = 3. A similar argument as in the
proof of (4) in the proof of Theorem 3.4 shows that for 1 ≤ i < j ≤ k we have Ui ∩ Uj = ∅.
Now, let H be the graph obtained from identifying each Ui to a new vertex ui, so λi

n(H) ≥ 4.
Since λ(G) ≥ 3, we have G �r H, and thus H �r D3. Since dH(u1) = 3 Observation 3.7
implies that H must have type A3 relative to (X0, X1), where (by possibly relabeling x0, x1)
X0 = {x0, u1} and X1 = {x1, v}, where v = u2 if u2 exists. This implies that if U2 exists,
G has a segmentation of width three relative to either (U1, U2), and otherwise G has a
segmentation of width three relative to (U1, X1), as desired.

3.2.2 Immersion of K4 with up to one root

Corollary 3.10 gives the structure of 3-edge-connected graphs excluding a D3 immersion,
or equivalently an immersion of K4 with two roots. Our next task is to characterize the
structure of 3-edge-connected graphs excluding a rooted immersion of K4 with one root.
The next lemma is a step towards such a result, not to mention that it also proves helpful
in Chapter 5, while proving our theorem on prism immersions. For the sake of brevity, in
the next two statements, we say rooted K4 to exclusively refer to K4 with exactly one root.
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Lemma 3.11. Let G be a 3-edge-connected graph with |V (G)| ≥ 4. Let G be rooted at x,
where d(x) = 3. Then either G �r K4 or there exists Y ⊂ V \ x with |Y | ≤ 2 such that G
has a segmentation of width three relative to {x}, Y .

Proof. Choose Y ⊂ V \ x such that d(Y ) = 3, |Y | ≥ 2, and Y is minimal subject to this. If
|Y | ≥ 3, let G′ = G.(V \Y ), and note that since G is 3-edge-connected G �r G

′. Now choose
y ∈ Y , and declare V \ Y, y to be the roots of G′. We have |V (G′)| ≥ 4 and λi(G′) ≥ 4.
Since dG′(V \ Y ) = 3, G′ is not a doubled cycle, so by Corollary 3.10 we have G′ �r D3,
and thus G �r K4.

Now, suppose |Y | ≤ 2. Let G′ = G.Y where y′ is the vertex resulting from identifying
Y , and note that G � G′. Let x, y′ be the roots of G′. It follows from Corollary 3.10 and
dG′(x) = dG′(y′) = 3 that either G′ �r D3 or G′ has a segmentation of width three relative
to ({x}, {y′}). Thus, either G �r K4 or G has a segmentation of width three relative to
({x}, Y ), where |Y | ≤ 2, as desired.

We are now prepared to determine 3-edge-connected graphs which do not immerse rooted
K4 (with one root):

Corollary 3.12. Let G be a 3-edge-connected graph with up to one root vertex and |V (G)| ≥
4. Then G �r K4 unless:

• G is a doubled cycle.

• G has a (2, 2)-segmentation of width three.

Proof. First, suppose G has a root vertex x. If λi(G) ≥ 4, choose an arbitrary vertex y 6= x,
and declare G to be rooted at x, y. Then Corollary 3.10 implies that G �r D3 or G is a
doubled cycle. Observing that a doubled cycle fails to immerse K4 we are done in this case.
So, consider the case where G has an internal 3-edge-cut. Let us record a useful statement.

Observation. Suppose G has an internal 3-edge-cut δ(X), with x ∈ X. Then either G �r

K4 or there exists Y ⊂ V \X with 1 ≤ |Y | ≤ 2 such that G has a segmentation of width
three relative to (X,Y ).
If |V \X| ≤ 2, the statement trivially holds. Otherwise, consider G.X with the root vertex
X, and note that G.X �r K4 implies G �r K4. Now, apply Lemma 3.11.

Now, suppose G has an internal 3-edge-cut δ(Z), with x ∈ Z. Choose W ⊂ Z such
that x ∈ W , d(W ) = 3, |W | ≥ 2, and W is minimal subject to this. Then by the above
observation, either G �r K4 or there is Y ⊂ V \W with 1 ≤ |Y | ≤ 2 such that G has a
segmentation S0 of width three relative to (W,Y ). If |W | ≤ 2, there is nothing left to prove.

So, suppose |W | ≥ 3, and let G′ = G.(V \W ), with y being the vertex resulting from
the identification of V \W . Note that if G′ with roots x, y immerses D3 then G �r K4.
Since dG′(y) = 3 we may apply Corollary 3.10 to deduce that either G �r K4 or there exists
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U ⊂ W such that G′ has a segmentation S1 of width three relative to ({y}, U); moreover,
if |U | ≥ 3, then x /∈ U . So, in particular, U 6= W . Let S1 be {y} ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂
Yk = V (G′) \ U . Note that our choice of W implies that Y1 = {y, x}. In particular, if we
let W ′ = W \ x, then δ(W ′) is an internal 3-edge-cut. So by the above observation, either
G �r K4 or there exists T ⊂ W ′ with 1 ≤ |T | ≤ 2 such that G has a segmentation S2 of
width three relative to (T, V \W ′). It now follows from the existence of S0,S1,S2 that G
has a (2, 2)-segmentation of width three (relative to (T, Y )), as desired.

Observe that, perhaps surprisingly, the root vertex does not appear in the conclusion for
graphs with one root. This immediately proves the corollary for graphs with no root.
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Chapter 4

Immersion of W4

The main goal of this chapter is to give the precise structure of the graphs excluding an
immersion of W4 (with zero or one root). As mentioned in Section 1.3, the unrooted version
of this problem has been studied before. Our structural theorem on the structure of graphs
without a W4 immersion is as follows:

Theorem 4.1. Let G be 3-edge-connected, and internally 4-edge-connected which is sausage
reduced. If |V (G)| ≥ 5, then G �W4 if and only if

1. G is cubic, or

2. G is isomorphic to one of the graphs below.

Theorem 4.1 follows from a stronger theorem describing graphs without aW4 immersion
in which the image of the center of W4 is specified in advance. Throughout this chapter, we
use the term rooted W4 to refer to a graph isomorphic to W4 in which the center of W4 is
declared to be the root vertex. To state our result on rooted W4, we need to introduce four
families of rooted graphs which do not have a rooted immersion of W4. Let G be a graph
with the root vertex u. Then we say

Type 1. G is type 1 if it has a (2, 3)-segmentation of width four in which u is in the head
of the segmentation.

If U,W are the head and tail of such a segmentation, respectively, we may say G has
type 1 relative to (U,W ).
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Type 2. G is type 2 if there exists a set W ⊆ V (G) \ {u} with |W | ≤ 2 so that the graph
G∗ obtained by identifying W to a single vertex w has a doubled cycle C satisfying
one of the following:

(2A) u and w are not adjacent in C and G∗ = C + uw

(2B) u and w have a common neighbour v in C and G∗ = C + uv + vw

(2C) u and w are adjacent in C and G∗ = C + uw

. . .

. . .

W

(a) Type 2A

W
. . .

(b) Type 2B

W
. . .

(c) Type 2C

Figure 4.1

Type 3. G is type 3 if after sausage reduction is isomorphic to a graph in Figure 4.2. That
is G is type 3 if it can be obtained from a graph in Figure 4.2 by replacing the pair
of green vertices with a chain of sausages of arbitrary order ≥ 2.

Figure 4.2: Type 3 graphs after sausage reduction

Type 4. G is type 4 if either

• it can be obtained from the leftmost graph in Figure 4.3 by the following process:
For each vertex y, y′, y′′ either do nothing or add one new edge incident with this
vertex and in parallel with an existing edge.

• it is isomorphic to one of the four rightmost graphs in Figure 4.3.

y′

y′′

y

Figure 4.3: Type 4 graphs

Theorem 4.2. Let G be a 3-edge-connected, internally 4-edge-connected graph with |V (G)| ≥
5 and with a root vertex x. Then G contains a rooted immersion of W4 if and only if G
does not have one of the types 1, 2, 3, or 4.
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The proof of the above theorem, as presented in this chapter, is computer-assisted. As
we will see in Section 4.1, we have used the computer to search for an immersion of rooted
W4 on the graphs which satisfy the assumptions of Theorem 4.2, and have at most eight
vertices. However, this result was first proved independent of the computer, with the proof
appearing in Appendix B. We have favored the new computer-assisted proof mostly due to
the fact that the argument for the existence of a rooted immersion of W4 is considerably
more suggestive for ‘big enough’ graphs. Indeed, the current argument for existence of
rooted W4 in (sausage reduced) graphs on at least eight vertices, shows a paradigm for
finding an immersion of a bigger graph using structural theorems on immersion of smaller
rooted graphs. In the proof of Theorem 4.2 that is presented below, we will see how our
results in Chapter 3 on the existence of D2- and D4 immersion play a central role in finding
an immersion of rooted W4.

4.1 Rooted W4 immersions

4.1.1 Proof of the ‘if’ direction of Theorem 4.2

Before proving the easier part of the theorem, we make a couple simple observations.

Observation 4.3. Suppose that G is a graph, rooted at x, which has a rooted immersion
of W4 with T being the set of terminals.

1. If G has a segmentation X0 ⊂ X1 ⊂ . . . ⊂ Xk of width four with x ∈ X0 and |X0| ≤ 2,
then T ∩Xk = {x}.

2. If v ∈ T \x has d(v) even, then there is an edge e incident with v so that G−e �r W4.

3. The graph obtained from G by sausage reducing it has a rooted immersion of W4.

Proof. The first part follows from the fact that for every set X ⊂ V (W4) with |X| = 2 which
contains the center we have d(X) = 5. The second part is immediate from our definitions,
and the last follows from part 2 and the edge-connectivity of W4.

Proof of the ‘if’ direction of Theorem 4.2. We show that graphs of types 1, 2, 3, or 4 do not
immerse rooted W4. For graphs of type 1, this is immediate from part 1 of the previous
observation. To verify this for graphs of type 3, by part 3 of the previous observation we
only need to show that graphs in Figure 4.2 do not have a rooted immersion of W4. This,
as well as verifying the statement for graphs of type 4, is easy enough to do by hand, but
we have used a computer to do so.

So let G, rooted at x, be type 2 relative to W , and suppose (for a contradiction) that
G �r W4 with T being the set of terminals. By part 3 of the above observation, we may
assume G is sausage reduced. Suppose that there is a chain of sausages G[{y, z}] in V (G) \
(W ∪ x). Note that |{y, z} ∩ T | ≤ 1, otherwise it follows from part 2 of the previous
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observation and the internal 4-edge-connectivity of W4 that the graph G′ obtained from
G by deleting one copy of the edge yz contains a rooted immersion of W4. This, however,
is impossible since G′ has type 1. Therefore, if we let G′′ be the graph obtained from G

by splitting off any chain of sausages disjoint from W ∪ x (if present) down to only one
vertex, then G′′ �r W4. This, immediately gives a contradiction in the cases where G has
type 2C, or |W | = 1. In other cases, |W | = 2, and |V (G′′)| = 5, so every vertex in G′′ is a
terminal of W4. Then, by part 2 of the above observation, an edge incident to each vertex
in V (G′′)\ (W ∪x) may be removed while an immersion of W4 is preserved. However, in the
resulting graph either d(x) < 4, or there is an internal 3-edge-cut, so this is impossible.

4.1.2 Proof of the ‘only if’ direction of Theorem 4.2

The goal for this section is to prove Theorem 4.2 which gives the structure of graphs with no
rooted W4 immersion. To begin the proof of this theorem, assume (for a contradiction) that
it is false, and choose a graph G = (V,E) with root vertex x so that G is a counterexample
to Theorem 4.2 with |V |+ |E| minimum.

(1) For every y ∈ N(x) we have d({x, y}) ≥ 5.

Suppose (for a contradiction) this is false and choose y ∈ N(x) so that d({x, y}) < 5.
Let X = {x, y}. Note that the internal 4-edge-connectivity of G implies d(X) = 4. If
|V (G)| = 5, then G has a (2, 3)-segmentation of width four relative to (X,V \X), and
thus G has type 1. So we must have |V (G)| ≥ 6. If G.X has a rooted W4 immersion,
then it follows from internal 4-edge-connectivity that G also has a rootedW4 immersion,
giving us a contradiction. So, the minimality of the counterexample G implies that
the theorem holds for G.X, so it must have type 1, 2, 3, or 4. Let x∗ be the root
vertex of G.X, where x∗ is the vertex obtained from identifying X. Since x∗ has degree
four, G.X can only be type 1, and moreover we may assume G.X has in fact a (1, 3)-
segmentation of width four relative to ({x∗},W ), for some W ⊂ V (G.X). Now the
graph G has a (2, 3)-segmentation of width four relative to (X,W ), and thus has type
1. This contradiction completes the proof.

(2) Let δ(X) be a 4-edge-cut in G with x ∈ X and |X| ≥ 3. Then G.(V \X) �r D4.

Let y denote the vertex in G′ = G.(V \X) resulting from identifying V \X. Note that
G′ is internally 4-edge-connected, and |V (G′)| ≥ 4. So, if G′ �r D4, it follows from
Theorem 3.4 that G′ has type A4 or type B4. However, since dG′(y) = 4, G′ must be
type A4. So there exists U ⊂ V (G′) such that x ∈ U , |U | ≤ 2 and G′ has type A4 relative
to U, {y}. This in particular implies that dG(U) = dG′(U) = 4 which contradicts (1).

(3) Let δ(X) be a 4-edge-cut in G with x ∈ X and |X|, |V \X| ≥ 3. Then G[V \X] is a
chain of sausages.
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Let G′ = G.(V \X), and denote the vertex resulting from identifying V \X by y. By (2),
we know that G′ with roots x, y has a rooted immersion of D4. Consider the graph H
which is isomorphic to D4 on vertex set {x, y, v0, v1}, and with x, y as roots. Let P, P ′

(Q,Q′) be the two paths in G′ which correspond to the two xy edges (yv0, yv1 edges)
in the H immersion. Let {e, e′} = δG′(y)∩ (P ∪P ′), and let {f, f ′} = δG′(y)∩ (Q∪Q′).
Now let G′′ be the graph obtained from G by subdividing e, e′ (f, f ′) with a new vertex,
and then identifying the two-vertices to a new vertex, a (b).

X

y

Immersion of D4 in G′

X V \X

b

a

G′′

xx

V \X

a

b

Immersion of D2 in G∗

X V \X

G′ �r D4, G
∗ �r D2 implies G �r W4

x

We define G∗ = G′′[V \ X ∪ {a, b}], with a, b as its root vertices. Observe that (since
G′ �r D4) if there is a rooted immersion of D2 in G∗, then G �r W4. So G∗ �r D2. Note
it follows from |V \ X| ≥ 3 and the internal edge-connectivity of G that G∗ satisfies
the hypothesis of Theorem 3.4 for m = 2. So, G∗ is type A2 or type B2, and since
dG∗(a) = 2, G∗ must be type A2. Now since dG∗(a) = dG∗(b) = 2, G∗ is in fact a chain
of sausages, as desired.

(4) Every X ⊆ V with |X| ≥ 2, |V \X| ≥ 3 with x ∈ X satisfies d(X) ≥ 5.

By (1) we may assume |X| ≥ 3. Since G is internally 4-edge-connected, we have d(X) ≥
4. Suppose d(X) = 4, then using (3), we know that G[V \ X] is a chain of sausages
of order at least three in G. Since W4 is simple and 3-edge-connected, it follows from
Observation 4.8 that if we let G′′ be the graph obtained from G by sausage reducing it,
we have G′′ �r W4. Note that G′′ is 3-edge-connected, and internally 4-edge-connected
as G is. Since |V (G′′)| < |V (G)|, G′′ satisfies the theorem. Note G′′ is sausage reduced
and since G has a chain of sausages of order ≥ 3, G′′ has at least one pair of neighbours
each of degree four, with two edges between them. So, in particular, G′′ is not type 4.

So G′′ has one of the types 1, 2, or 3. However, if G′′ is type 1 relative to some (U,W ),
then δG(U) would be a 4-edge-cut in G which contradicts (1), so G′′ is not type 1.
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Suppose G′′ is type 2 relative to W . We will assume that W is minimal subject to
this. Let G′′[Y ] be a chain of sausages in G′′ (so, is of order at most two). Now, since
dG′′(Y ) = 4, and dG′′(W ) = 5, the minimality of W implies that W ∩Y = ∅. Therefore,
G is also type 2 – a contradiction. Note that G′′ is not isomorphic to one of the graphs
in Figure 4.2 either, else G would be type 3. This final contradiction completes the
proof of (4).

Let us pause to make a helpful observation which will be called upon in later chapters as
well.

Observation 4.4. Let G,H be (rooted) graphs, and let u, v ∈ V (G) satisfy e(u, v) >

|E(H)|. Then G � H (G �r H) if and only if the graph G′ obtained from G by deleting one
copy of uv edge satisfies G′ � H (G′ �r H).

Proof. It is because the maximum contribution of uv to any set of paths P corresponding to
the edge-set of H occurs when uv appears in every path in P. So the maximum contribution
of uv to P is |E(H)| times.

We now continue by establishing more properties of G.

(5) |V (G)| ≥ 9.

Suppose G is a graph with a root vertex x, where d(x) ≥ 4 and |V (G)| ≤ 8. Suppose
further that G is 3-edge-connected, internally 4-edge-connected, and satisfies (4). We
will show that G satisfies Theorem 4.2, i.e. if G �r W4, it is either type 2 or type 4, or
it is isomorphic to one of the graphs in Figures 4.2.

Note that thanks to Observation 4.4, (5) can get verified through a finite calculation.
In fact it follows that to verify (5) it suffices to check the finite number of rooted
3-edge-connected, internally 4-edge-connected graphs, with edge-multiplicity at most
|E(W4)| = 8, for which the root vertex x has degree at least four, and for any set
Y ⊂ V (G) \ {x} with |Y | ≥ 3 we have d(Y ) ≥ 5. This calculation is done in Sagemath,
and here is a high-level description of the algorithm.

Let 5 ≤ n ≤ 8.

Step 1. We take the list of connected simple graphs on n vertices, and use it to
generate all rooted graphs on n vertices. Then, the rooted graphs which have a rooted
immersion of W4 are filtered out.

Step 2. For any rooted graph G surviving from Step 1, repair(G) generates a list
consisting of all edge-minimal rooted multigraphs G′ such that:

• the underlying simple graph of G′ is G,

• dG′(x) ≥ 4, where x is the root vertex of G′,
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• δ(G′) ≥ 3,

• G′ is internally 4-edge-connected,

• for any internal edge-cut δ(Y ) with x /∈ Y and |Y | ≥ 3 we have d(Y ) ≥ 5,

• G′ does not have a rooted immersion of W4.

Step 3. Suppose the simple rooted (connected) graph G is such that G1 = repair(G)

is nonempty. Then, using G1, we generate G2 = obstruction(G) which consists of
all rooted multigraphs whose underlying simple rooted graph is G, meet the edge-
connectivity conditions that the graphs in G1 satisfy, have edge-multiplicity at most
eight, and do not immerse rooted W4.

Step 4. Every graph in G2 is tested if it has type 2, or is isomorphic to one of the
graphs in Figures 4.2 or 4.3.

The calculation is done rather fast. The calculation for every n ∈ {5, 6, 7} took a
desktop computer less than a minute. However, the calculation for n = 8 took much
longer– almost 20 minutes. It took the computer one minute to carry out step 1, i.e.
to check the nearly 72,500 connected simple rooted graphs on eight vertices for a W4

immersion, thereby giving a list N8 of almost 40,000 simple rooted connected graphs on
eight vertices which do not immerse rooted W4. Then 20 minutes was spent on carrying
out steps 2, 3 for every graph in N8. Since no obstruction is found for n = 8, step 4 is
not performed for this case.

(6) There do not exist v, w ∈ V \ x such that e(v, w) ≥ 1
2d(w).

Suppose for a contradiction that such v, w exist. Let G′ = G.{v, w}, rooted at x. Note
that |V (G′)| = |V (G)| − 1, and since e(v, w) ≥ 1

2d(w), we have G �r G
′. Therefore

G′ �r W4, and Theorem 4.2 holds for G′. Since |V (G′)| ≥ 8, G′ has one of the types 1,
2, or 3. However, G′ being type 1 implies that there is an internal 4-edge-cut in G with
at least three vertices on opposite side of x, contradicting (4). So G′ is not type 1. In
a similar manner we conclude that G′ is sausage reduced, and since |V (G′)| ≥ 8, G′ is
not type 2 or 3 either, a contradiction. (Observe that after sausage reduction a graph
of type 2 or 3 has at most seven vertices).

(7) Suppose δ(Y ) is an internal 4-edge-cut in G, with |Y | ≤ |V \ Y |. Then we have x /∈
Y, |Y | = 2, and both vertices in Y have degree three.

It follows from (4) that |Y | = 2, and x /∈ Y . Let Y = {u, v}. Since d(Y ) = 4, we have
e(u, v) > 0. It follows from (6) that exactly two edges of δ(Y ) is incident with each u, v,
and that e(u, v) = 1, as desired.

(8) Let δ(X) be a 5-edge-cut in G with x ∈ X and |X| ≥ 3. Then G.(V \X) �r D4.
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Let y denote the vertex in G′ = G.(V \X) resulting from identifying V \X. If G′ �r D4,
it follows from Theorem 3.4 that G′ has type A4 or type B4. If G′ has type A4, we get
a contradiction with (1), so G′ must be type B4. Then, however, it is straightforward
to check that there will be a neighbour u of x with e(x, u) = 2 and d(u) = 4. This
contradicts (6), and this contradiction proves (8).

(9) There does not exist a 5-edge-cut δ(X) in G such that x ∈ X, |X| ≥ 3, |V \X| ≥ 4.

Let Y = V \X. By (8) we know that G.Y �r D4. Thus there exists e ∈ δ(X) such that
(G \ e).Y �r D4 as well. Let H = G \ e, in which vertices of degree two (resulting from
the deletion of e) are suppressed, and let Y ′ denote the set corresponding to Y in H.
Note that |Y ′| ≥ 3, and an argument similar to that of (3) then shows that H[Y ′] is
a chain of sausages (of order at least three). However, it is easy to check that whether
the endpoint of e in G is a vertex present in H or it got suppressed, there is a vertex
of degree four incident with parallel edges in Y , which contradicts (6).

(10) G is simple.

For a contradiction suppose adjacent vertices u, v exist such that e(u, v) ≥ 2. Let G′

be the graph obtained from G by deleting one copy of uv. Note that (5) implies that
|V (G′)| ≥ 9 and (6) implies that G′ is 3-edge-connected. It also follows from (7) that
G′ is internally 4-edge-connected. So by minimality of G, Theorem 4.2 holds for G′. If
G′ is type 1, then there exists X ⊂ V with |X|, |V \X| ≥ 4 such that dG′(X) = 4, and
this contradicts (4) or (9). Now note that it follows from (6) that G′ is sausage reduced.
So |V (G′)| ≥ 9 implies that G′ is not type 2 or 3 either, a contradiction.

With this last item in place, we are now ready to complete the proof of Theorem 4.2. Choose
an edge e which is not incident with x. Let G′ be the graph obtained from G by deleting
e, and suppressing any degree two vertices. So |V (G′)| ≥ |V (G)| − 2 ≥ 7, and G′ is 3-edge-
connected. It follows from (7) that G′ is also internally 4-edge-connected. So by minimality
of G, Theorem 4.2 holds for G′. As in the proof of (10), G′ cannot have type 1, otherwise
G would contradict either (4) or (9). Finally, note that G′ is sausage reduced. It is because
if G′[X ′] is a chain of sausages of order ≥ 3 in G′, then (4) implies that e ∈ δG(X), where
X is the set in G which corresponds to X ′ in G′. But then G[X] would contain parallel
edges, contradicting (10). This rules out the possibility of G′ having any type other than
2A. Moreover, it implies that if G′ has type 2A relative to {x},W , for some W ⊂ V with
|W | = 2, then both chain of sausages between {x},W are of order exactly two. A quick
check shows that then G contradicts (10). This establishes Theorem 4.2.

4.1.3 A note about the code

The code used in the proof of Theorem 4.2 is written in Sagemath, however its use of the
graph package is limited to generating simple rooted graphs. The computation first ran
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using the graph package of Sagemath more heavily. However, certain issues arose which
made a transition from the package advantageous.

The first issue was that with the rootedW4 problem, we needed to check for isomorphism
of rooted graphs. However, the isomorphism tester in Sagemath works with non-rooted
graphs. Of course, this issue is solvable by putting a loop on the root vertex whenever
checking for isomorphism (since our original graphs are loopless). However, as this addition
and removal of loops was done many times, it slowed down the code. The other issue is not
particular to the rooted graphs, and has to do with the slowness of copying the graph object
of Sagemath. Since any simple graph in our computation goes through a few operations (for
instance to increase the multiplicity of edges so that the resulting graph meets the minimum
required size of various edge-cuts), the slowness of copying graphs was a rather significant
factor in the computation time.

So, it seemed beneficial to try running the code not using the graph package. Once
simple graphs on a given number of vertices was generated, we continued the rest of the
code with a new representation of graphs. This new representation uses dictionary objects
of Sagemath. An issue here was that the isomorphism tester that we wrote for this new
representation of graphs is not as nearly sophisticated as Sagemath’s graph isomorphism
tester. A comparison of the two testers over a sample of 2000 simple non-rooted graphs
on eight vertices showed a slow-down by a factor of three. Despite this, the new code was
considerably faster than the one using the graph package. The new code was run in 25
minutes, whereas the first code took over 2.5 hours to finish.

4.2 Unrooted W4 immersions

In this section we will use our result on rooted immersions of W4 to prove our theorem on
unrooted immersions of W4. For this purpose we will frequently need to call on the type 1
obstruction to the existence of a rooted W4 immersion. Recall that we say a graph G with
root u has type 1 if it has a (2, 3)-segmentation of width four relative to some (U,W ) with
u ∈ U . In other words if there exist U = U0 ⊂ U1 ⊂ . . . Ut = V (G) \W , where

• u ∈ U ,

• |U | ≤ 2, |W | ≤ 3,

• d(Uj) = 4, for 0 ≤ j ≤ t,

• |Uj+1 \ Uj | = 1, for 0 ≤ j ≤ t− 1.

The theorem we prove here has a slightly different form than Theorem 4.1. Here we
have relaxed the assumption that the graph should be sausage reduced. However, it is
straightforward to see that the two results are in fact equivalent.
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Theorem 4.5. Let G be 3-edge-connected, and internally 4-edge-connected. If |V (G)| ≥ 5,
then G �W4 if and only if

1. G is cubic, or

2. G is isomorphic to the left graph in Figure 4.4.

W

Figure 4.4: Non-cubic sausage reduced graphs without a W4 immersion

3. G after sausage reduction is isomorphic with the second left graph above. That is, G
can be obtained from the second left graph above by replacing the pair of green vertices
with an arbitrary chain of sausages of order at least two.

4. G after sausage reduction is isomorphic with the second right graph above. That is,
G can be constructed from the second right graph above by replacing each pair of
same-colored vertices with an arbitrary chain of sausages of order at least three.

5. There exists W ⊂ V (G) with 1 ≤ |W | ≤ 2 so that the graph obtained from G by
identifying W to a single vertex is a doubled cycle (as in the rightmost graph above).

Proof. Let G = (V,E) be a minimal counterexample to the theorem. We will establish a
sequence of properties of G eventually proving it cannot exist.

(1) There is a vertex of even degree in G.

If G is cubic the theorem holds, so we may choose u ∈ V (G) with d(u) ≥ 4. If we treat
u as a root vertex, there cannot be a rooted immersion of W4, so by Theorem 4.2 this
rooted graph must have type 1, 2, 3, or 4. All graphs of types 2, 3, and 4 have a vertex of
even degree, so we are done unless our rooted graph has type 1 relative to some (U,W ).
If |V (G)| = 5, then G has a vertex of even degree by parity, and else, by Observation
3.7 any vertex in V \ (U ∪W ) has even degree.

(2) If u ∈ V (G) has even degree, there is a (2, 3)-segmentation of width four of G relative
to some (U,W ), where u ∈ U .

Treat u as a root vertex of G and apply Theorem 4.2. Since G does not have an
immersion of W4 (and d(u) is even), this rooted graph must have type 1, 3, or 4. For
types 3 or 4 a straightforward check shows that G has an immersion ofW4 unless either
case 2 or 3 occur.
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(3) If u ∈ V (G) has even degree, there exists v ∈ N(u) with e(u, v) ≥ 2 so that d({u, v}) =
4. (Note that v must also have even degree.)

Apply (2) to u and let U be the head of the corresponding (2, 3)-segmentation of width
four. Then setting U = {u, v} we have 4 = d({u, v}) = d(u) + d(v) − e(u, v) and it
follows that v has the desired properties.

(4) If U0, . . . , Ut is a (2, 3)-segmentation of width four of G and Uj+1 \ Uj = {v}, then
e(v, Uj) = 2 = e(v, V \ Uj+1).

Choose an edge xy ∈ E(G[Uj ]) (E(G[V \ Uj+1])). Then it follows from the internal
4-edge-connectivity of G that there are four edge-disjoint paths, two starting at each
x, y which end at {v, V \ Uj+1} ({v, Uj}). On the other hand, it follows from d(Uj) =
4 = d(Uj+1) that e(v, Uj) = e(v, V \ Uj+1). So, if either e(v, Uj) = 3 = e(v, V \ Uj+1)
or e(v, Uj) = 4 = e(v, V \ Uj+1), then G immerses the graph below, and thus has a W4

immersion, a contradiction. So, we must have e(v, Uj) = e(v, V \ Uj+1) ≤ 2 and since

v

V \ Uj+1Uj

d(v) ≥ 3 this completes the proof of (4).

(5) If U0, . . . , Ut is a (2, 3)-segmentation of width four of G with t ≥ 1 and 0 ≤ j ≤ t − 1,
then either G.Uj or G.(V \ Uj+1) is a doubled cycle.

Suppose for a contradiction that the above is violated. Let Uj+1\Uj = {x} and construct
a new graph G′ (G′′) from G by identifying Uj (V \Uj+1) to a vertex y and deleting all
edges between x and y. Declare x and y to be root vertices of both G′ and G′′ and note
that x and y both have degree 2 in both G′ and G′′. It now follows from our assumptions
and Theorem 3.4 that G′ and G′′ have rooted immersions of D2. Therefore G has an
immersion of W4, giving a contradiction.

(6) If |V | ≥ 6 there exists X ⊂ V with |X| ≤ 3 so that G.X is a doubled cycle.

It follows from (1) and (2) that we may choose a (2, 3)-segmentation of width four
U0, . . . , Ut. Since |V | ≥ 6 we must have t ≥ 1. If either G.U0 or G.(V \Ut) is a doubled
cycle we are done. Otherwise, there exists 1 ≤ j ≤ t so that both G.Uj and G.(V \ Uj)
are doubled cycles. It is because since G.U0 is not a doubled cycle, (5) implies that
G.(V \ U1) is a doubled cycle. Now, if G.U1 is also a doubled cycle we are done. Else,
it follows from (5) that G.(V \ U2) is a doubled cycle. By repeating this argument, it
follows that G.(V \ Ut) is a doubled cycle– a contradiction.
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However, in this case the original graph G is either a doubled cycle or may be obtained
from K4 by replacing a pair of opposite edges by doubled paths (i.e either case 4 or 5
happens).

With the last property in place we are ready to complete the proof. First we will resolve
the case when |V | ≥ 6. In this case we may apply (6) to choose a nonempty set X with
|X| ≤ 3 so that G.X is a doubled cycle. If |X| ≤ 2 then we are finished, so we may assume
|X| = 3. The graph G.(V \X) has four vertices, and the vertex V \X has degree 4 in this
graph. It follows that there must exist y ∈ X with dG(y) even. Now (3) implies that there
exists a set Y ⊆ V with y ∈ Y and |Y | = 2 so that d(Y ) = 4 and the graph induced on Y
has at least 2 edges. If Y 6⊆ X then G.(X \ y) is a doubled cycle and the proof is complete.
Let X \ Y = {z} and note that dG(z) must be even since d(Y ) and d(X) are both even. As
before, we may apply (3) to choose a set Z ⊆ V with z ∈ Z and |Z| = 2 so that d(Z) = 4
and the graph induced on Z has at least 2 edges. Also as before, if Z 6⊆ X then G.(X \ z)
is a doubled cycle and we are done. So Z ⊆ X and we have Y ∪ Z = X. Since d(y) is even
and d(Y ) is even the unique vertex in Y \y must also have even degree. A similar argument
for Z shows that all vertices in X have even degree. Now uncrossing arguments give us

d(Y ∩ Z) + d(Y ∪ Z) ≤ d(Y ) + d(Z) = 8

d(Y \ Z) + d(Z \ Y ) ≤ d(Y ) + d(Z) = 8

It follows from these inequalities and the above parity considerations that every vertex in
X has degree 4. Furthermore, the graph G.(V \X) must be a doubled cycle of length 4. We
conclude that G is either a doubled cycle, or a graph obtained from K4 by replacing two
non-adjacent edges by doubled paths.

It remains to prove the theorem when |V | = 5. It follows from (1) and (3) that we may
choose a 2 element subset X ⊆ V so that d(X) = 4, both vertices in X have even degree,
and the graph induced on X has at least two edges. Now G.X is a graph on four vertices
and the vertex replacing X has even degree, so there exists y ∈ V \ X with dG(y) even.
Applying (3) we may choose a set Y ⊆ V with y ∈ Y and d(Y ) = 4 so that the graph
induced on Y has at least 2 edges. If X ∩ Y 6= ∅ then by arguments as in the case when
|V | ≥ 6 we deduce that the graph G.(V \ (X ∪Y )) is a doubled cycle and the proof is done.
If Y ∩X = ∅ then define {z} = V \ (X ∪Y ). Since d(X) and d(Y ) are even, it must be that
d(z) is even, and now we may apply (3) to z to choose a set Z with z ∈ Z and |Z| = 2 so
that the graph induced on Z has at least 2 edges. Now either X ∩ Z 6= ∅ or Y ∩ Z 6= ∅ and
an argument similar to the previous case completes the proof.
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4.3 Additional tools

In this section, we will see a couple easy observations about some reductions that enable
us to assume a “good enough edge-connectivity” when trying to characterize the family
of graphs which do not immerse a “well edge-connected graph”. We will also see a couple
observations about tree-width and branch-width that are helpful in finding these parameters
for graphs which arise as obstructions to the existence of, for instance,W4 immersion. These
statements will be called upon later in this chapter, as well as in the following chapters.

4.3.1 Reductions

Let H be a 3-edge-connected (and internally 4-edge-connected) graph. The next two obser-
vations explain why the problem of finding the structure of graphs which exclude an immer-
sion of H boils down to the family of 3-edge-connected (and internally 4-edge-connected)
graphs.

Observation 4.6. Let H be a 3-edge-connected graph. A graph G does not immerse H if
and only if G can be reduced to a graph where every component does not immerse H by one
of the following operations

• If e is a cut-edge in G, then modify G to G \ e.

• If K is a 2-edge-connected component of G, and X ⊂ V (K) has δK(X) = {x1y1, x2y2},
where x1, x2 ∈ X then modify G to G \ δK(X) + x1x2 + y1y2.

Proof. Observe that a graph G immerses H if and only if one of its components does.
Suppose G has a cut-edge e. Clearly G \ e � H implies G � H. On the other hand,
λ(H) ≥ 3 implies that if G � H then G \ e � H.

Now, supposeK is a 2-edge-connected component of G, which has a 2-edge-cut δK(X) =
{x1y1, x2y2}, where x1, x2 ∈ X ⊂ V (K). Let K1 = K[X] + x1x2 and K2 = K[X] + y1y2.
Then it follows from λ(H) ≥ 3 that if K immerses H, either K1 � H or K2 � H. Also it
follows from the edge-connectivity of K that K immerses both K1 and K2. So, G � H if
and only if G \ δK(X) + x1x2 + y1y2 � H.

Observation 4.7. Let H be a graph with λi(H) ≥ 4. Suppose K is a 3-edge-connected
component of a graph G, and δK(X) is a 3-edge-cut in K. Then G immerses H if and
only if the graph obtained from G by replacing K with the disjoint union of K.X and
K.(V (K) \X) immerses H.

Proof. Let K1 = K.X, and K2 = K.(V (K) \ X). Note that λi(H) ≥ 4 implies that if
K � H, one of the graphs K1 or K2 immerse H. On the other hand, it follows from the
edge-connectivity ofK thatK � K1,K2. So, G immersesH if and only if the graph obtained
from G by replacing K with disjoint union of K1 and K2 immerses H.
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The observation below shows that for many graphs H, characterizing the graphs without
an immersion of H boils down to sausage reduced graphs.

Observation 4.8. Let H be a simple graph with δ(H) ≥ 3. Then G immerses H if and
only if G after sausage reduction immerses H.

Proof. Suppose G[X] is a chain of sausages of order three in G, for some X ⊂ V (G). Let G′

be the graph obtained from G by completely splitting a vertex in X. Since G � G′, it is clear
that G′ � H implies G � H. Now, suppose G � H, and we will show that G′ � H. Note
that it follows from δ(H) ≥ 3 and H being simple that X contains at most two terminals of
H. So, in an immersion of H at least one vertex in X gets completely split. By symmetry,
we may assume the split vertex is any of the vertices in X. Now, if G has a chain of sausages
G[Z] of order ≥ 4, by repeatedly applying this argument we can decrease the order of the
chain of sausages one at a time, while preserving the immersion of H, until the resulting
graph is sausage reduced.

4.3.2 Tree-width; Branch-width

We start by giving the definitions of tree-width, and branch-width, and some variants of
them. A tree-decomposition of a graph G is a pair (T, (Wt : t ∈ V (T ))) such that the
followings hold:

• T is a tree

• Wt ⊆ V (G) for each t ∈ V (T )

• V (G) =
⋃

(Wt : t ∈ V (T ))

• for every edge uv of G, there exists t ∈ V (T ) with u, v ∈Wt

• for t1, t2, t3 ∈ V (T ), if t2 is in the path of T between t1, t3, then Wt1 ∩Wt3 ⊆Wt2 .

The max{|Wt| − 1 : t ∈ V (T )} is called the width of the tree-decomposition. We call
a tree-decomposition a path-decomposition if the tree T is a path. A graph G is said to
have tree-width (path-width) k, if k is the minimum such that G has a tree-decomposition
(path-decomposition) of width k. The tree-width of G will be denoted by tw(G), and the
path-width of G by pw(G), respectively.

A branch-decomposition of a graph G is a cubic tree (a tree where every vertex either
has degree three or one) T together with an injective mapping from E(G) to leaves of T .
Let e ∈ E(T ) be an edge, and let Te, T

′
e be the two subtrees of T \ e. Let F, F ′ correspond

to the subset of edges of G which are a leaf in Te, T
′
e, respectively. Assign to e a label

w(e) which is the number of vertices shared by F, F ′. The width of the decomposition is
max{w(e) : e ∈ E(T )}. In the spacial case where the graph obtained from T by deleting leaf
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vertices is a path, the branch-decomposition is called caterpillar-decomposition. The branch-
width (caterpillar-width) of G is defined to be the minimum k such that G has a branch-
decomposition (caterpillar-decomposition) of width k. The branch-width and caterpillar-
width of G is denoted by bw(G), cw(G), respectively.

Observation 4.9. Let G be a graph, and H a subdivision of G. Then

• if tw(G) ≥ 2, we have tw(G) = tw(H).

• If bw(G) ≥ 2, we have bw(G) = bw(H)

Proof. Let x = x0, x1, . . . , xk = y be the path in H which corresponds to an edge e = xy ∈
E(G). Clearly we have tw(H) ≥ tw(G) and bw(H) ≥ bw(G). First, we will show tw(H) ≤
tw(G). For a tree decomposition (T, (Wt : t ∈ V (T ))) of G, there is a vertex t ∈ V (T ) such
that {x, y} ⊆Wt. Modify T by appending a path t, t1, . . . , tk−1 to t, where the set associated
with each ti is {x, xk−i+1, xk−i}, for i = 1, . . . , k−1. Since |{x, xk−i+1, xk−i}| = 3, the width
of the new tree-decomposition does not exceed tw(G).

Next, we will show bw(H) ≤ bw(G). Consider a branch-decomposition T of H, and
replace the leaf in T which corresponds to xy with

2
2

2 2

2 2 xk−1xk
2

. . .

22

xk−1xk−2x0x1 x1x2

Observation 4.10. Let G be a graph, and H the underlying simple graph of G. Then

• tw(G) = tw(H)

• bw(G) = bw(H)

Proof. Clearly, we have tw(G) = tw(H), and bw(G) ≥ bw(H). To verify bw(G) ≤ bw(H),
consider a branch-decomposition T of H. If e1, . . . , ek in E(G) are copies of e ∈ E(H),
replace the leaf corresponding to e in T with

2

e2e1

2

2 2

2 2

ek−1

ek
2

. . .

22

The following is an immediate corollary of Observations 4.9 and 4.10.

Corollary 4.11. Let H be a graph. If G is a graph which is obtained from H by sausage
reducing it, then tw(G) = tw(H) and bw(G) = bw(H).
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4.4 Graphs with arbitrary edge-connectivity without a W4
immersion

In this section, we will use Theorem 4.5 to identify graphs with arbitrary edge-connectivity
which do not immerse W4. Since W4 is 3-edge-connected, and internally 4-edge-connected,
we can use Observations 4.6, 4.7 to get the following as an immediate corollary of Theorem
4.5.

Corollary 4.12. A graph G has no W4 immersion if and only if G can be reduced to a
graph where every component is either

1. of order at most four, or

2. is one of the types in the statement of Theorem 4.5

by the operations

• If e is a cut-edge in G, then modify G to G \ e.

• If H is a 2-edge-connected component of G, and X ⊂ V (H) has δ(X) = {x1y1, x2y2},
where x1, x2 ∈ X then modify G to G \ δ(X) + x1x2 + y1y2.

• If H is a 3-edge-connected component of G, and and X ⊂ V (H) exists such that δ(X)
is an internal 3-edge-cut in H, then replace H with the disjoint union of H.X and
H.(V (H) \X).

We also get the following corollary of Theorem 4.5, which is a significant strengthening
of previously known result about immersion of W4 (Theorem 1.6).

Corollary 4.13. Let G be a graph which does not immerse W4. Then G can be constructed
from i-edge-sums, for i = 1, 2, 3 from cubic graphs and graphs with path-width (caterpillar-
width) at most 3.

Proof. Thanks to Observations 4.9, 4.10 it suffices to note that K2,3 and any graph on at
most four vertices has path-width (caterpillar-width) at most three.
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Chapter 5

Immersion of Prism

In this chapter we study the problem of Prism immersion in graphs, and find a precise
description of those who do not contain Prism as immersion. As Observation 4.8 implies,
inserting long chain of sausages does not change the presence of a Prism immersion in a
graph. However, as with the case of W4, once the long chain of sausages are reduced, every
graph with “the right edge-connectivity” and “enough vertices” immerses Prism. In the case
of Prism, “enough number of vertices” turns out to be quite small—with only one exception,
it is seven!

Figure 5.1: Prism graph

In preparation for our theorem, we introduce four families of graphs which do not im-
merse Prism. Consider the graph K2,3 with bipartition ({u1, u2}, {v1, v2, v3}). Let J2,3 be
the graph obtained from K2,3 by adding a second copy of every existing edge except for
u2v1 and u2v2. We declare v3 to be the root of J2,3. Also, in the description below, we let
C2

4 denote the doubled cycle on four vertices, with two opposite vertices being the roots.
Finally, Consider K4 on the vertex set {u1, u2, v1, v2}. Let J4 be the graph obtained from
subdividing u1u2 with a new vertex s, and adding a second copy of v1v2, and each edge
incident with s. Declare J4 to be rooted at s. Let G be a graph. Then we say

Type 1. G is type 1 if there exists a set W ⊂ V (G) with |W | = 2 so that one of the
following holds:

• The graph G.W , with root W , is isomorphic with J2,3, see the structure on the
left in Figure 5.2.
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• There exist a setW ′ ⊂ V (G) disjoint fromW such that |W ′| = 2 and G.{W,W ′},
with roots W,W ′ is isomorphic to C2

4 , see the structure on the right in Figure
5.2.

Figure 5.2: Graphs of type 1

Type 2. G is type 2 if there exists a set W ⊂ V (G) with |W | = 2 so that the graph G.W
with root W after sausage reduction is isomorphic with J4, see the structure below.

Figure 5.3: Graphs of type 2 after sausage reduction

Type 3. G is type 3 if G after sausage reduction is isomorphic to one of the graphs in
Figure 5.4. That is G is type 3 if it can be obtained from a graph in Figure 5.4 by
replacing any pair of same-colored (not white) vertices with a chain of sausages of
arbitrary order ≥ 2.

Figure 5.4: Graphs of type 3 after sausage reduction

Type 4. G is type 4 if it is isomorphic to one of the eight graphs in Figure 5.5.

Type 5. G is type 5 if it is obtained from a graph in Figure 5.6, by replacing each pair
of same-colored vertices by a chain of sausages of order at least two. In the leftmost
graph, W is a subset of vertices of G with |W | ≤ 3.

We can now state our result on Prism immersion as follows:

Theorem 5.1. Let G be a 3-edge-connected graph with |V (G)| ≥ 6 so that for every X ⊂
V (G) with |X| = 2 we have d(X) ≥ 4. Then G has a Prism immersion if and only if G
does not have one of the types 1, 2, 3, 4, or 5.
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Figure 5.5: Graphs of type 4

W

Figure 5.6: Graphs of type 5

Observe that the theorem above implies that under the assumptions of the theorem, if a
graph G is sausage reduced, and has more than six vertices, then it either immerses Prism
or it is isomorphic to K3,4. So, we get Theorem 1.8 as a corollary.

In Section 5.1 we revisit our chain result on 3-edge-connected, internally 4-edge-connected
graphs to get a new tool for the proof of our main theorem. Section 5.2 is devoted to the
proof of Theorem 5.1. The proof, as with the proof of rooted W4 is computer-assisted. We
will also call on a result established in Section 5.1, as well as our result from Chapter 3 on
immersion of K4 with one root.

5.1 A corollary of Theorem 2.17

Recall that in Chapter 2 we established the following corollary, which we have restated
below for convenience.

Corollary 5.2. Let G be a graph with λ(G) ≥ 3, λi(G) ≥ 4, and |V (G)| ≥ 2. If G � Q3,K
3
2 ,

there exists an operation taking G to G′ such that λ(G′) ≥ 3, λi(G′) ≥ 4, where an operation
is either

• deleting an edge,

• splitting at a vertex of degree ≥ 4,

each followed by iteratively deleting any loops, and suppressing vertices of degree 2.

The Corollary above can be improved upon if we equip G with the additional assumption
that G does not have a four-vertex u with |N(u)| ≤ 3 (where N(u) is the set of neighbours
of u). This assumption may not look so natural to consider at first, and thus Lemma 5.3
may look like a bit unmotivated to the reader at this point. However, as we will see later in
Section 5.2 in the heart of the proof of Theorem 5.1, the following lemma is indeed helpful.

61



Lemma 5.3. Under the assumptions of Corollary 5.2, suppose further that

(∗) There does not exist a vertex u of degree four in G for which |N(u)| ≤ 3.

Then one of the operations in the statement of Corollary 5.2 may be applied to G, so that
the resulting graph G′ is sausage reduced, and also λ(G′) ≥ 3, λi(G′) ≥ 4.

Proof. By Corollary 5.2, we know that one of the operations in the statement of Corollary
5.2 may be applied to G, so that the resulting graph G′ has λ(G′) ≥ 3 and λi(G′) ≥ 4.
If G′ is sausage reduced we have nothing left to prove. So, we may assume that G′ has a
chain of sausages G′[X] of order three. As shown in the figure below we will assume that
X = {u, v, w}, where u and w are nonadjacent. Note that it follows from (∗) that G itself

u v w

is sausage reduced. So it must be the case that the chain of sausages G′[X] is created only
after performing one of the operations in Corollary 5.2. We can assume that |X| = 3. Let
o be the operation taking G to G′. First, suppose that o is a complete split at (a vertex
of degree four) x. In this case dG(u) = dG(w) = 4, so it follows from (∗) that exactly one
copy of either uv, vw is created after o. This implies that eG(x, v) = 2, which together with
dG(x) = 4 contradicts (∗). Next, suppose that o is a split at a vertex of degree at least five.
Here, the implication of (∗) for u,w is that one copy of, say, uv is created by doing a split
at w. Then, however, (∗) is violated for v.

In the remaining case, o is deletion of an edge e. Suppose eG(u, v) ≥ 2. Then (∗) implies
that e is not a uv edge. So either dG(u) = dG′(u) = 4 or dG(v) = dG′(v) = 4 and both
cases contradict (∗). Thus eG(u, v), eG(v, w) ≤ 1. It follows that G may be obtained from
G′ by subdividing uv with a new vertex x, subdividing vw with a new vertex y, and then
either identifying x, y or adding xy edge. In the former case, v violates (∗), so the later case
occurs, i.e. G is as in the figure below. We will see that we could perform an alternative

u v w

ex y

operation at G to get G′′, where G′′ is sausage reduced, and λ(G′′) ≥ 3, λi(G′′) ≥ 4.
Here, instead of o we can delete xv from G to get G′′. Note that as we saw above,

deletion of an edge which is incident with exactly one three-vertex does not create a chain
of sausages of order more than two. So, G′′ is sausage reduced. Clearly λ(G′′) ≥ 3. We will
show that λi(G′′) ≥ 4. Else, suppose an internal 4-edge-cut δG(X) exists that separates x, v.

Without loss of generality, we may assume x ∈ X. Observe that the graph obtained
from G′′ by identifying y and v is isomorphic to G′, which is internally 4-edge-connected.
So, y must be in X. If X = {x, y}, there is nothing to verify. Otherwise, it follows from
edge-connectivity of G and eG({x, y}, {v}) = 2 that G[X] is connected. So {u,w} ∩X 6= ∅,
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say u ∈ X. Then since δG′′(X) is an internal edge-cut, we get w /∈ X. This, however,
implies dG(X ∪ v) = 2—a contradiction. So, G′′ is internally 4-edge-connected, as desired.
This completes the proof of Lemma 5.3.

5.2 Proof of Theorem 5.1

Before starting the proof of Theorem 5.1, we will see that the graphs which sausage reduction
reduces them to less than six vertices are exactly the ones appearing as type 5 graphs in
this chapter. As the following lemma will get called upon in other chapters as well, we have
included the type 5 definition in the statement for convenience.

Lemma 5.4. Suppose G is 3-edge-connected with |V (G)| ≥ 6. Let G′ be the graph obtained
from G by sausage reducing it. If |V (G′)| < 6, then G is type 5.

That is, G is obtained from a graph in the picture below, by replacing each pair of same-
colored vertices by a chain of sausages of order at least three. In the leftmost graph, W is a
subset of vertices of G with |W | ≤ 3.

W

Proof. First, suppose there is only one maximal chain of sausages in G getting reduced.
Since any maximal chain of sausages gets reduced to exactly two vertices, if |V (G′)| ≤ 5,
it must be that there are at most three more vertices in G′, hence G′ is as in the leftmost
graph above. So, suppose there are at least two disjoint maximal chain of sausages in G

which got reduced in G′. Since |V (G′)| ≤ 5, there must be exactly two disjoint maximal
chain of sausages in G of order ≥ 3. Let x1, x2 (y1, y2) be the vertices in G′ resulting from
reducing the first (second) maximal chain of sausages. If V (G′) = {x1, x2, y1, y2}, then since
the original chain of sausages were maximal, we have {y1, y2} ⊂ N(x1) ∩N(x2), that is G′

is as the second left graph in the above picture.
So, suppose |V (G′)| = 5, and let z be the vertex in G which is not in any chain of

sausages. Since every vertex other than z has degree four, parity implies that dG′(z) is also
even, and by edge-connectivity we have dG′(z) ≥ 3. Therefore dG′(z) ∈ {4, 6, 8}. If dG′(z) =
8, since dG′({x1, x2})+dG′({y1, y2}) = 8 we have δG′(z) = δG′({x1, x2})∪δG′({y1, y2})—that
is G′ is as in the middle graph above. If dG′(z) = 6, then e({x1, x2}, {y1, y2}) must equal one
(note that by definition the graph induced on a chain of sausages is a doubled path). Thus,
in this case G′ is as in the second right graph above. Finally, suppose dG′(z) = 4. Since z is
not part of the chain of sausages that was replaced by {x1, x2} we have e(z, x1), e(z, x2) ≤ 1.
Similarly, e(z, y1), e(z, y2) ≤ 1, and since dG′(z) = 4, we have e(z, xi) = e(z, yi) = 1, for
i = 1, 2. That is, G′ is as in the rightmost graph above.
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We are now prepared to prove our main theorem on Prism immersion.

Proof of Theorem 5.1. Assume (for a contradiction) that G = (V,E) is a counterexample
to the theorem for which |V |+ |E| is minimum. We will establish a sequence of properties
of G.

(1) λi(G) ≥ 4.

Suppose (for a contradiction) there exists an edge-cut δ(X) which violates (1). It then
follows from the assumptions that |X|, |V \X| ≥ 3. We first claim thatG′ = G.(V \X) �r

K4. Let y be the vertex in G′ obtained from identifying V \X, and note that dG′(y) = 3,
and |V (G′)| ≥ 4. We now apply Lemma 3.11 to G′, rooted at y. If G′ does not have a
rooted immersion of K4, there would be a 3-edge-cut in G′ with exactly two vertices of
V (G′)\{y} on a side. Given that V (G′)\{y} ⊂ V (G), the existence of such an edge-cut
contradicts the assumptions of Theorem 5.1.

A similar argument shows that G.X has a rooted immersion of K4 as well. It is now
straightforward to see that linking together the set of paths which give an immersion of
rooted K4 in G.(V \X) and in G.X give an immersion of Prism in G—a contradiction.

(2) G is sausage reduced.

Suppose not, and let G′ be the graph obtained from G by sausage reducing it. By
Observation 4.8, G′ does not immerse Prism. It follows from (1) that G′ is 3-edge-
connected, and internally 4-edge-connected. Since |V (G′)| < |V (G)|, G′ satisfies the
theorem. If |V (G′)| < 6, by Lemma 5.4, G is type 5, a contradiction. So, we must have
|V (G′)| ≥ 6. Since G has a chain of sausages of order ≥ 3, G′ has at least one pair of
neighbours each of degree four with two edges between them. So G′ either has one of
the structures in Figures 5.2, 5.3 or it is isomorphic to a graph in Figure 5.4. It is easy
to check that in any case, G has type 2, or 3, a contradiction.

(3) |V (G)| ≥ 10.

Suppose for a graph G we have 6 ≤ |V (G)| ≤ 9. Further suppose that G is 3-edge-
connected, internally 4-edge-connected, and does not have any chain of sausages of
order more than two. We will show that G satisfies Theorem 5.1, i.e. if G does not
immerse Prism, it is either type 1, or has the structure in Figure 5.3, or it is isomorphic
to one of the graphs in Figures 5.4 or 5.5. By Observation 4.4, to verify (3) it suffices
to check the finitely many 3-edge-connected graphs with edge-multiplicity at most nine
satisfying (1) and (2). This calculation is done in Sagemath, with the code appearing
in the Appendix. Here is a high-level description of the algorithm.

Let 6 ≤ n ≤ 9.
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Step 1. We take the list of connected simple graphs on n vertices, and filter out the
ones which immerse Prism.

Step 2. For any graph G surviving from Step 1, repair(G) generates a list consisting
of all edge-minimal multigraphs G′ such that:

• the underlying simple graph of G′ is G,

• δ(G′) ≥ 3,

• G′ is internally 4-edge-connected,

• G′ does not have chain of sausages of order more than two,

• G′ does not immerse Prism.

Step 3. Suppose the simple connected graph G is such that repair(G) is nonempty.
Let G1 = repair(G). Then, using G1, we generate G2 = obstruction(G) which is the
list consisting of all multigraphs whose underlying simple graph is G, meet the edge-
connectivity conditions that the graphs in G1 satisfy, have edge-multiplicity at most
nine, and do not immerse Prism.

Step 4. Every graph in G2 is tested if it has type 1, or has the structure in Figure 5.3,
or it is isomorphic to one of the graphs in Figures 5.4 or 5.5.

The calculation is done rather fast. It took a desktop computer 2 minutes to do the
calculation for every n ∈ {6, 7, 8}. However, the time spent on n = 9 was more. It took
the computer 6 minutes to carry out step 1, i.e. to check the nearly 262,000 connected
simple graphs on nine vertices for a Prism immersion, thereby giving a list N9 of almost
24,800 simple connected graphs on nine vertices without a Prism immersion. Then 12
minutes was spent on carrying out steps 2, 3 for every graph in N9. Since no obstruction
is found for n = 9, step 4 is not performed for this case.

(4) There does not exist u ∈ V which has a neighbour v such that e(u, v) ≥ 1
2d(u).

Suppose for a contradiction that such u, v exist, and let G′ = G.{u, v}. Note |V (G′)| =
|V (G)|−1 ≥ 9, and since e(u, v) ≥ 1

2d(u), we have G � G′. Therefore G′ � Prism , and
Theorem 5.1 holds for G′. Note, however, that since G is sausage reduced, so is G′, and
thus G′ immerses Prism—a contradiction.

With the help of items (1) - (4), and a couple results established earlier, we will now
complete the proof of Theorem 5.1. Since |V (G)| ≥ 10 , we have G � Q3,K

3
2 . On the

other hand, (4) implies that every degree four vertex of G has four distinct neighours. So,
by Lemma 5.3, one of the operations in the statement of Corollary 5.2 may be performed
to G to get G′ where G′ is 3-edge-connected, internally 4-edge-connected, and is sausage
reduced. Since |V (G′)|+ |E(G′)| < |V |+ |E|, Theorem 5.1 holds for G′. On the other hand,
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|V (G′)| ≥ |V (G)| − 2 ≥ 10 − 2 = 8. Since all graphs of type 1, 2, 3, or 4 after sausage
reduction have at most seven vertices, G′ is not one of the types. So, G′ immerses Prism,
and thus G immerses Prism—a contradiction which completes the proof of Theorem 5.1.

As our last task in this chapter, we use Theorem 5.1 to characterize graphs with arbitrary
edge-connectivity excluding an immersion of Prism. Since Prism is 3-edge-connected, we can
use Observation 4.6 for the case where H is the Prism graph to deduce how we can break a
graph into 3-edge-connected pieces via operations mentioned in Observation 4.6. Moreover,
suppose G is 3-edge-connected which has a 3-edge-cut δ(X) with |X| = 2. Observe that G
immerses Prism if and only if G.X does (by edge-connectivity of G we have G � G.X).
From all this, we get the following as an immediate corollary of Theorem 5.1:

Corollary 5.5. A loopless graph G does not immerse the Prism graph if and only if G can
be reduced to a graph where every component is either

1. of order at most five, or

2. is one of the types 1, 2, 3, 4, or 5.

by the operations

• If e is a cut-edge in G, then modify G to G \ e.

• If H is 2-edge-connected component of G, and X ⊂ V (H) has δ(X) = {x1y1, x2y2},
where x1, x2 ∈ X then modify G to G \ δ(X) + x1x2 + y1y2.

• If H is a 3-edge-connected component of G and δ(X) is a 3-edge-cut in H with |X| = 2,
then replace H by H.X.
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Chapter 6

Immersion of Eyeglasses

Generally speaking, precise structural theorems for rooted graphs are extremely useful tools
in finding immersion of bigger (rooted) graphs. They enable us to break the bigger graph
into smaller rooted pieces whose ‘tying together in the right way’ give an immersion of the
desired bigger graph. This idea was instantiated in Chapter 4 where we saw how ‘tying’
D2, D4 together gives a rooted immersion of W4.

In light of this, and originally motivated by the study of K3,3 immersion, in this chapter
we study the immersion of a rooted graph which we refer to as Eyeglasses. An Eyeglasses
is a graph obtained from a path of length three in which the edges incident with the two
ends of the path are doubled, and the two ends of the paths are the roots of the graph, see
Figure 6.1.

Figure 6.1: Eyeglasses

As with our results on Dm immersion, the structural theorem for Eyeglasses will also
prove to be quite useful in finding immersion of certain bigger graphs. In this thesis, we
will see an application of this only in Chapter 7, where an Eyeglasses ‘tied in the right
way’ with rooted W4 helps in finding an immersion of K3,3. We expect that this result has
applications elsewhere as well.

Our sole task in this chapter is to establish a structural theorems for graphs with two
degree-two roots which exclude Eyeglasses as an immersion. Let us begin by introducing a
convenient definition, and then three classes of graphs which do not immerse Eyeglasses.

Definition 6.1. We say a rooted graph H with root x is mostly cubic if for every vertex
v ∈ V (H) \ x we have d(v) = 3, and d(x) = 4.

Now, suppose G = (V,E) has two root vertices x0, x1, where d(x0) = d(x1) = 2.
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Type 1 G is type 1 if

• G.{x0, x1} with root {x0, x1} is planar, and mostly cubic.

• There are four distinct vertices s0, s1, t0, t1 ∈ V \ {x0, x1} such that N(x0) =
{s0, t0}, N(x1) = {s1, t1},

• There is a planar embedding of G \ {x0, x1} in which s0, s1, t0, t1 appear on the
boundary of the outer face, in this cyclic order (see Figure 6.2a).

Type 2 G is type 2 if there exist two distinct vertices s, t ∈ V \ {x0, x1} such that

• N(x0) = N(x1) = {s, t},

• G \ {x0, x1} is isomorphic to an s− t-doubled path (see Figure 6.2b).

Type 3 G is type 3 if it is isomorphic to the graph in Figure 6.2c (also known as D2).

cubic

planar

(a) Type 1

...

(b) Type 2 (c) Type 3

Figure 6.2: Obstructions to an immersion of Eyeglasses

Theorem 6.2. Let G be a graph with |V (G)| ≥ 4 and two root vertices x0, x1, where
d(x0) = d(x1) = 2. Assume further that λs(G) ≥ 2, λn(G) ≥ 3, and λi

n(G) ≥ 4. Then G

has a rooted immersion of Eyeglasses if and only if G is not of one of the types 1, 2, or 3.

In our proof of the above theorem we call on a well-known problem, appearing in the
literature as 2-linkage problem [45], or two-disjoint paths problem [44]. Let (s0, t0, s1, t1) be
an ordered set of distinct vertices of a simple graph G. If G has two vertex-disjoint paths
P0, P1 so that Pi is an si − ti-path, for i = 0, 1, we say G has a 2-linkage. The following
characterization of graphs without a 2-linkage follows from Theorem 1 in [45]:

Theorem 6.3 (Thomassen [45]). Let (s0, t0, s1, t1) be an ordered set of distinct vertices of
a graph G, let T = {s0, t0, s1, t1}. Suppose that for any set X ⊂ V (G) \ T with |X| = 3,
G \ X has at most one component disjoint from T , and if such a component exists, it is
trivial. Then either of the following holds:

• G has a 2-linkage, or

68



• G has a planar embedding in which s0, s1, t0, t1 appear on the boundary of the infinite
face in this cyclic order.

We are now well-prepared to prove the main result of this chapter.

Proof of Theorem 6.2. It is straightforward to see that the graphs of type 1, 2 and 3 do not
have an immersion of Eyeglasses. For the reverse direction, suppose (for a contradiction) that
G = (V,E) is a counterexample to the theorem. We will establish a sequence of properties
of G, eventually proving that it does not exist. For the sake of exposition, if there is an
immersion of Eyeglasses on {x0, v0, v1, x1} in which there is an immersion of two edges
between xi, vi, for i = 0, 1 and a v0v1 edge, we write there is an immersion of Eyeglasses on
(x0, v0, v1, x1).

First we will show that every vertex in G other than x0, x1 has degree three. For the
items (1)- (8) assume (for a contradiction) that G has a vertex v with d(v) ≥ 4. Then we
may choose four edge-disjoint paths P1, P2, P3, P4 starting at v, where two of these paths
end at x0 and the other two end at x1. (To see this, add a new vertex s which has two edges
to each xi, for i = 0, 1, and then apply Menger’s Theorem to get four edge-disjoint v − s
paths.) Suppose P1, P2 end at x0 and P3, P4 end at x1. Let Vi denote the internal vertices
of Pi, and H = G \

⋃
iE(Pi). Note since dG(x0) = dG(x1) = 2, we have x0, x1 /∈

⋃
i Vi, and

dH(x0) = dH(x1) = 0.

(1) There does not exist a nontrivial path (containing at least one edge) in H between Vi

and Vj , for 1 ≤ i 6= j ≤ 4.

Else, let Q be a nontrivial path in H from x ∈ Vi to y ∈ Vj . If, say, {i, j} = {1, 2}, then
P1 ∪ . . .∪P4 ∪Q has a rooted immersion of Eyeglasses on (x0, x, v, x1), a contradiction.
Also, if {i, j} = {1, 3}, then P1 ∪ . . . ∪ P4 ∪ Q gives a rooted immersion of Eyeglasses
on (x0, x, y, x1)– again a contradiction.

(2) V1 ∩ V2 = ∅.

It is because if there existed x ∈ V1 ∩ V2, then P1 ∪ . . . ∪ P4 would have a rooted
immersion of Eyeglasses on (x0, x, v, x1).

(3) If V1 ∩ V3 is nonempty, then V1 ∩ V4 is empty.

Suppose (for a contradiction) that x ∈ V1 ∩ V3 and y ∈ V1 ∩ V4. Note by (2) we have
V3 ∩ V4 = ∅, and thus x 6= y. Without loss of generality, we may assume x appears
before y on P1. However, then P1 ∪ . . . ∪ P4 has a rooted immersion of Eyeglasses on
(x0, v, x, x1), a contradiction.

(4) If V1 ∩ V3 is nonempty, then the order of appearing the vertices in V1 ∩ V3 on P1, P3 is
the same.
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Otherwise, there exist x, y ∈ V1 ∩ V3 so that x appears before y on P1, but after y
on P3. Then P1 ∪ . . . ∪ P4 would contain an Eyeglasses immersion on (x0, y, x, x1), a
contradiction.

Let us pause to introduce a convenient notion.

Definition 6.4. Let G be a graph, and H a subgraph of G. We define an edge-bridge of H
to be a nontrivial connected component of G \ E(H). For B an edge-bridge of H, we also
call a vertex in V (B) ∩ V (H) an attachment of B on H.

For the next four items, suppose B is an edge-bridge of
⋃4

i=1E(Pi).

(5) v /∈ V (B) ∩ (
⋃

i V (Pi)).

For a contradiction, suppose B has an attachment to v. If B had attachments only at v
there would exist three edge-disjoint pathsQ1, Q2, Q3 from a vertex w in V (B)\

⋃
iE(Pi)

to v. Then
(⋃4

i=1 Pi

)
∪
(⋃3

j=1Qj

)
would have a rooted immersion of Eyeglasses on

(x0, v, w, x1), a contradiction. So, suppose B has attachments to v, and say x ∈ V1.
Then there would exist a path Q in B from v to x. Then P1 ∪ . . . ∪ P4 ∪ Q gives an
immersion of Eyeglasses on (x0, x, v, x1) – a contradiction.

(6) Suppose B has attachments to V1 at two distinct vertices w,w′. If P ′1 is the w − w′-
subpath of P1, then V (P ′1) ∩

(⋃4
i=2 Vi

)
= ∅.

Suppose (for a contradiction) that there exists x ∈ V (P ′1) ∩
(⋃4

i=2 Vi

)
, and let Q be a

path in B from w to w′. Note that x /∈ {w,w′}, otherwise Q would be a nontrivial path
from V1 to V2∪V3∪V4, contradicting (1). Note (2) implies that x ∈ V3∪V4, say x ∈ V3.
Then P1∪ . . .∪P4∪Q has an immersion of Eyeglasses on (x0, w, x, x1), a contradiction.

(7) |V (B) ∩ V (P1)| ≤ 1.

Suppose (for a contradiction) that |V (B) ∩ V (P1)| ≥ 2. Let w,w′ be the first and last
attachments of B on P1. By (6), there exist y, y′ such that y is the last vertex before
w which is in V (P1) ∩ (V (P3) ∪ V (P4)), and y′ is the first vertex after w′ which is in
V (P1)∩(V (P3)∪V (P4)). Now let P ′1 be the path obtained from the y−y′-subpath of P1

by deleting y, y′. Let B denote all edge-bridges of
⋃

iE(Pi) that have some attachment
in P ′1. It then follows from (6) together with (5) that d (V (P ′1) ∪ (

⋃
B∈B V (B))) < 3,

contradicting λn(G) ≥ 3.

(8) B = ∅, and thus E(G) =
⋃

iE(Pi).

Else, it follows from (7) that |V (B)∩V (P1)| = 1. Let V (B)∩V (P1) = {w}, where by (5)
we have w ∈ V1. Since G is loopless, there must exist x ∈ V (B)\V1. Therefore there are
three edge-disjoint x− w-paths Q1, Q2, Q3 in B. It follows from dG(B ∪ {w}) ≥ 3 and
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(1) that w ∈ V3∪V4. Then
(⋃4

i=1 Pi

)
∪
(⋃3

j=1Qj

)
has a rooted immersion of Eyeglasses

on (x0, x, w, x1).

We are now ready to prove that G, except for x0, x1, is cubic. Else, it follows from (8)
and edge-connectivity that every vertex on V (Pi) \ {v} appears on at least two Vi’s. Now
(2) together with (3) and (4) imply that G has type 2– a contradiction.

So G except for x0, x1 is cubic, let N(x0) = {s0, t0} and N(x1) = {s1, t1}. If, say, s0 = t0

then G immerses Eyeglasses. To see why take a vertex y ∈ G\{x0}, where y 6= x1. It follows
from λs(G) ≥ 2 that there exist in G′ three edge-disjoint paths, starting at y, two ending
at x1, and one ending at s0. Therefore, G immerses Eyeglasses as claimed, a contradiction.
If, say, s0 = s1 then since d(s0) = 3, we have dG(V (G) \ {x0, x1, s0}) = 3. Therefore, by
edge-connectivity of G we have |V (G) \ {x0, x1, s0}| = 1, so G is isomorphic to the graph
in Fig. 6.2c, a contradiction.

Therefore |{s0, t0, s1, t1}| = 4, and we will consider G′ = G \ {x0, x1}. If there existed
two vertex-disjoint paths P0, P1 in G′, where P0 is an s0 − t0 path, and P1 is an s1 − t1
path then we would get a contradiction. It is because then connectivity of G implies that
there exists a path Q from V (P1) to V (P2), which is enough for G to immerse Eyeglasses.
So, suppose such paths do not exist. In other words, G′ does not have a 2-linkage.

In order to be able to take advantage of Theorem 6.3 we need to verify one more
technical condition. Let T = {s0, s1, t0, t1}. We need to verify that if for X ⊆ V (G′) \ T
we have |X| = 3, then G′ \X has at most one component not intersecting T , and if such
a component exists, it is trivial. Let C be a component of G′ \ X so that C ∩ T = ∅. We
define X ′ = {x ∈ X : e({x}, C) ≥ 2}. Then dG′(X ′ ∪ C) = 3, so it follows from λi

n(G) ≥ 4
that |X ′ ∪ C| ≤ 1, in particular, |C| ≤ 1. Also, if C ′ 6= C is a component of G′ \X so that
C ′ ∩ T = ∅, we would have dG(C ∪ C ′ ∪X) ≤ 3, contradicting λi

n(G) ≥ 4.
So we can now apply Theorem 6.3 to deduce that the desired paths in G′ exist unless

if G′ is planar, and has an embedding with s0, s1, t0, t1 appearing on the boundary of the
outer face with this cyclic order. However, then G is type 1– a contradiction.
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Chapter 7

Immersion of K3,3

This chapter concerns immersion of the Kuratowski graphs, K3,3 and K5. It is not hard
to see that the problem naturally reduces to the family of 3-edge-connected and internally
4-edge-connected graphs. Moreover, as we saw in Chapter 2, the problem on the this family
of graphs essentially boils down to the problem of K3,3 immersion, which is resolved in this
chapter. The result on excluding Kuratowski graphs as immersion is in fact the analogue of
Kuratowski-Wagner Theorem in the setting of graph immersions. Let us start by introducing
four families of graphs which do not immerse K3,3.

Type 0. G is type 0 if it is planar and cubic.

Type 1. G is type 1 if it has a (3, 3)-segmentation of width four.

Type 2. G is type 2 if there exist disjoint sets W,W ′ ⊆ V (G) with |W |, |W ′| ≤ 2 such that
the graph G∗ obtained by identifying W (W ′) to a single vertex w (w′) has a doubled
cycle C containing w,w′ satisfying one of the following:

(2A) w and w′ are not adjacent in C and G∗ = C + ww′ (see Fig. 7.1a)

(2B) w and w′ have a common neighbour v in C and G∗ = C + wv + vw′ (see Fig.
7.1b)

(2C) w and w′ are adjacent in C and G∗ = C + ww′ (see Fig. 7.1c)

W ′W . . .

. . .

(a) Type 2A

W ′W

. . .

(b) Type 2B

W ′W

. . .

(c) Type 2C

Figure 7.1: Type 2 graphs
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Type 3. G is type 3 if after sausage reduction it is isomorphic to one of the 20 graphs in
Figure 7.2. That is G is type 3 if it can be obtained from a graph in Figure 7.2 by
replacing any pair of same-colored (not white) vertices with a chain of sausages of
arbitrary order ≥ 2.

Figure 7.2: Graphs of Type 3 after sausage reduction

Type 4. G is type 4 if it is isomorphic to one of the 14 graphs in Figure 7.3.

Figure 7.3: Type 4 graphs

With these definitions of types, we can now state our characterization of graphs with
no K3,3 immersion as follows:

Theorem 7.1. Let G be a graph with λ(G) ≥ 3, λi(G) ≥ 4 and |V (G)| ≥ 6. Then G does
not immerse K3,3 if and only if G is one of the types 0, 1, 2, 3, or 4.

Suppose G has one of the types 0, 1, 2, 3, or 4. Observe that if G is sausage reduced and
|V (G)| ≥ 9, then G is either type 0, or type 1. This shows that Theorem 1.10 is in fact a
corollary of the above theorem. On another note, recall that in Chapter 2 we showed that

Theorem 7.2. Suppose G is a graph with |V (G)| ≥ 6 such that λ(G) ≥ 3, λi(G) ≥ 4.
If G � K5 we have G � K3,3 unless G is isomorphic to the octahedron (the last graph in
Figure 7.3).

Therefore, as an immediate corollary of Theorems 7.1, 7.2 we have the following struc-
tural theorem identifying the graphs which exclude both Kuratowski graphs as immersion:
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Corollary 7.3. Let G be a graph with |V (G)| ≥ 6, and λ(G) ≥ 3, λi(G) ≥ 4. Then G does
not immerse K3,3 or K5 if and only if G is one of the types 0, 1, 2, 3, or 4 except for the
octahedron.

7.1 Helpful tools for proof of Theorem 7.1

Since our proof of Theorem 7.1 relies on our results on the structure of graphs excluding
rooted W4 and Eyeglasses, we are going to restate the parts of these results that are needed
in this chapter for convenience. The following is part of our result on immersion of rooted
W4, established in Chapter 4:

Theorem 7.4. Let G be a graph with |V (G)| ≥ 5 and with a root vertex x, where d(x) ∈
{4, 5}. Suppose λ(G) ≥ 3, λi(G) ≥ 4. Then G contains a rooted immersion of W4 if and
only if G does not have one of the following types:

Type I. G is type I if it has a (2, 3)-segmentation of width four in which x is in the head
of the segmentation.

Type II. G is type II if there exists a set W ⊆ V (G)\{x} with |W | ≤ 2 such that the graph
G∗ obtained by identifying W to a single vertex w has a doubled cycle C satisfying
one of the following:

(II A) x and w are not adjacent in C and G∗ = C + xw

(II B) x and w have a common neighbour v in C and G∗ = C + xv + vw

(II C) x and w are adjacent in C and G∗ = C + xw. Moreover we have |W | = 2.

It is worth noting that for type II graphs we have d(x) = 5. The following result on
the immersion of Eyeglasses is proved in Chapter 6. Recall that we call a rooted graph H
with root x is called mostly cubic if for every vertex v ∈ V (H) \ x we have d(v) = 3, and
d(x) = 4.

Theorem 7.5. Let G = (V,E) be a graph with |V | ≥ 5 and two root vertices x0, x1, where
d(x0) = d(x1) = 2. Assume further that λs(G) ≥ 2, λn(G) ≥ 3, and λi

n(G) ≥ 4. Then G has
a rooted immersion of Eyeglasses if and only if G does not have one of the following types:

Type III G is type III if

• G.{x0, x1} with root {x0, x1} is planar, and mostly cubic.

• There are four distinct vertices s0, s1, t0, t1 ∈ V \ {x0, x1} such that N(x0) =
{s0, t0}, N(x1) = {s1, t1},

• There is a planar embedding of G \ {x0, x1} in which s0, s1, t0, t1 appear on the
boundary of the outer face, in this cyclic order.
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Type IV G is type IV if there exist two distinct vertices s, t ∈ V \ {x0, x1} such that

• N(x0) = N(x1) = {s, t},

• G \ {x0, x1} is isomorphic to an s− t-doubled path.

Let us continue with an easy, yet helpful observation.

Observation 7.6. Suppose G is a graph which immerses K3,3. Moreover, suppose G has a
segmentation of width four U0 ⊂ U1 ⊂ U2 . . . ⊂ Ut with |U0| ≤ 3. If T is the set of terminals
of an immersion of K3,3 in G, then |T ∩ Ut| ≤ 2.

Proof. Note since the edge-boundary of any triple of vertices of K3,3 has size at least five,
|T ∩ U0| ≤ 2. Therefore, |T ∩ U1| ≤ |T ∩ U0|+ |U1 \ U0| ≤ 3. However, since d(U1) = 4 < 5,
we have |T ∩ U1| ≤ 2. By repeating this argument we conclude that |T ∩ Ut| ≤ 2.

Lemma 7.7. Suppose G = (V,E) is a graph with λ(G) ≥ 3, λi(G) ≥ 4, where G � K3,3.
Suppose further that X ⊂ V exists such that

• |X|, |V \X| ≥ 3,

• d(X) = 4, and

• G.X (with root X) has a rooted immersion of W4.

Then one of the following occurs:

1. G[X] is a chain of sausages, or

2. for every vertex v ∈ X we have dG(v) = 3, and G.(V \X) has a rooted immersion of
W4.

Proof. Denote the root vertex of G′ = G.X by a (resulting from identification of X). Let
the terminals of a rooted immersion of W4 in G′ be {a, v1, v2, v3, v4}, where there is an
immersion of C4 on v1v2v3v4v1 in this cyclic order. Let Pavi be the path in G′ corresponding
to the avi edge of W4, and let ei = E(Pavi) ∩ δG′(a), for 1 ≤ i ≤ 4. Now we define G′′ to
be the rooted graph obtained from G by subdividing e1, e3 (e2, e4) with a new vertex, and
then identifying the two-degree vertices to a new vertex b (c). Let G∗ = G′′[X ∪{b, c}] with
roots b, c.

Observe that (since G′ �r W4) if there is a rooted immersion of Eyeglasses (Fig. 6.1) in
G∗, then G � K3,3. Note that |V (G∗)| ≥ 5, and it follows from edge-connectivity of G that
G∗ satisfies the hypothesis of Theorem 7.5. So we may conclude that G∗ is either type III
or IV. In the former case for every v ∈ X we have dG(v) = 3 and G.(V \X) has a rooted
immersion of W4; in the latter case G[X] is a chain of sausages, as desired.
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7.2 Proof of Theorem 7.1

We now embark on the proof of Theorem 7.1. First, we see why type 0, 1, 2, 3 and 4 graphs
do not immerse K3,3. Suppose G is type 0. Since G is cubic, it has a K3,3 immersion if
and only if it has a K3,3-subdivision. However, since G is planar, G does not have a K3,3-
subdivision, so G � K3,3. Now suppose G has type 1, relative to U0, . . . , Ut. If G has an
immersion of K3,3, let T be the set of terminals of K3,3 in G. It follows from Observation
7.6 that |T ∩ Ut| ≤ 2. However, then since |V \ Ut| ≤ 3, we get |T | ≤ 5– a contradiction.

Next, suppose G is type 2 relative to W,W ′. For a contradiction suppose G � K3,3, and
let T be terminals of an immersion of K3,3 in G. Note it follows from Observation 7.6 that
at most two vertices of a chain of sausages are in T . Then we may split all but two vertices
of any chain of sausages while preserving a K3,3 immersion. So, we may assume G is sausage
reduced. Now, if a chain of sausages has two vertices u, v of T , Observation 3.5 implies that
we may delete an edge incident to each u, v while preserving a K3,3 immersion. The only
way to do so without d({u, v}) dropping to < 4 is to delete one copy of the edge uv. Call
the resulting graph G′. However, G′ is type 1, so does not immerse K3,3, a contradiction.
Therefore at most one terminal of K3,3 lies on any chain of sausages between W,W ′.

So, if we let G′′ be the graph obtained from G by splitting off each chain of sausages
down to only one vertex, then G′′ � K3,3. This immediately gives a contradiction in the
cases where either G has type 2C, or |W | = 1, or |W ′| = 1, as then |V (G′′)| ≤ 5. So, suppose
G has type 2A or 2B, and |W | = |W ′| = 2. So we have |V (G′′)| = 6, and thus every vertex of
G′′ should be in T . Then again by Observation 3.5, we may delete an edge incident to each
vertex not in W ∪W ′, while preserving an immersion of K3,3. However, then the resulting
graph would have an internal 3-edge-cut, and thus cannot immerse K3,3– a contradiction.

Finally, suppose G is type 3 or 4. Observe that using Observation 7.6, it only suffices to
show that the graphs in Figure 7.2 and 7.3 do not immerse K3,3. This verification is indeed
straightforward enough to do by hand, although we also got the computer to do it (the
computer code appears in the Appendix).

Lemma 7.8. If G = (V,E) is a counterexample to Theorem 7.1, then G is planar and is
not cubic.

Proof. First, suppose (for a contradiction) that G is nonplanar. Then by Kuratowski’s
Theorem, it has a subdivision of K3,3 or K5. Since G does not immerse K3,3, it must have
a subdivision, and thus an immersion of K5. However, this contradicts Theorem 7.2.

Next, suppose (for a contradiction) that G is cubic. In this case, the edge-connectivity
of G implies that G is simple. Then by Lemma 7.8, G is planar. However, then G would be
type 0, a contradiction.
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For the reverse direction, suppose (for a contradiction) that G = (V,E) is a counterex-
ample to the theorem with minimum |V | + |E|. We will establish a sequence of properties
of G, eventually proving that it does not exist.

7.2.1 4-edge-cuts

The main result of this subsection is Lemma 7.11 which essentially asserts that one side of
every 4-edge-cut in a minimum counterexample to Theorem 7.1 has at most two vertices.
Let us first make an easy observation.

Observation 7.9. Let the rooted graph H with root u be type I relative to (U,W ). If
dH(u) = 4, we may assume U = {u}.

We now proceed by establishing the following lemma which is a helpful tool in proving
Lemma 7.11.

Lemma 7.10. Suppose G = (V,E) is a counterexample to Theorem 7.1. Let δ(X) be a
4-edge-cut of G with |X|, |V \X| ≥ 3. Then either G[X] or G[V \X] is a chain of sausages.

Proof. If |X| = |V \X| = 3, G has type 1, a contradiction. So without loss of generality, we
may assume |V \X| ≥ 4. Let G′ = G.X, with the root vertex a (resulting from identification
of X). Note that dG′(a) = 4 and λ(G′) ≥ 3, λi(G′) ≥ 4. First, suppose G′ �r W4, and apply
Lemma 7.7. If G[X] is a chain of sausages we are done. Else, G.(V \ X) has a rooted
immersion of W4 and every vertex in X is of degree three. Now we replace X with V \X in
the statement of Lemma 7.7. Note that Lemma 7.8 implies that G[V \X] must be a chain
of sausages– as desired.

Next, suppose G′ �r W4. Since dG′(a) = 4, it follows from Theorem 7.4 that G′ has
type I structure relative to some (U,W ). Since dG′(a) = 4, we may assume U = {a}. Thus,
if |X| ≤ 3 then G has type 1, a contradiction. Therefore, |X| ≥ 4, and let G′′ = G.(V \X)
with the root vertex b. Observe that G′′ �r W4. Otherwise, since dG′′(b) = 4, G′′ would
have type I relative to some (U ′,W ′). Then since we may assume U = {a}, U ′ = {b}, G
would have type 1, a contradiction.

So, G′′ = G.(V \X) �r W4. On the other hand, note that since G′ = G.X has type I
and |V (G′)| ≥ 5, there are vertices of degree even (and thus not equal three) in G[V \X].
So, Lemma 7.7 implies that G[V \X] is a chain of sausages, as desired.

Lemma 7.11. If G = (V,E) is a counterexample to Theorem 7.1 with |V |+ |E| minimum,
then every X ⊂ V with |X|, |V \X| ≥ 3 satisfies d(X) ≥ 5.

Proof. Suppose (for a contradiction) that the lemma does not hold, and let G′ be the graph
obtained by sausage reducing G. By Lemma 7.10, |V (G′)| < |V (G)|, so G′ satisfies the
theorem. If G′ � K3,3 then Observation 4.8 implies G � K3,3, which is a contradiction. So
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either |V (G′)| < 6, or G′ has one of types 0, 1, 2, 3 or 4. If |V (G′)| < 6, apply Lemma 5.4,
and a straightforward check reveals that in this case G has type 1, a contradiction.

So, suppose |V (G′)| ≥ 6. Since sausage reduction has been applied to G nontrivially
to obtain G′, G′ has at least one pair of neighbours each of degree four, with two edges
between them. So, in particular, G′ is not simple (so is not type 0), and is not type 4 either.
So G′ has one of the types 1, 2, or 3. However, Lemma 7.10 implies that G′ is not type 1.
Note that G′ is not isomorphic to one of the 20 graphs in Figure 7.2 either, else G would be
type 3. Suppose G′ is type 2 relative to W,W ′. Let G′[Y ] be a chain of sausages in G′. Since
dG′(W ) = 5, we have |W ∩ Y |, |W ′ ∩ Y | ≤ 1. It is now straightforward to see that if G′ has
type 2A or 2B, G also has the same type—a contradiction. In the remaining case, G′ has
type 2C. As before, if, say |W ∩ Y | = ∅, we find that G also has type 2C—a contradiction.
So, we must have |W ∩Y |, |W ′∩Y | = 1, in which case G has type 2A, again a contradiction.
This completes the proof of the lemma.

7.2.2 Computation

In this subsection, we state the result of the computation done by computer.

Lemma 7.12. If G = (V,E) is a counterexample to Theorem 7.1 with |V |+ |E| minimum,
then |V (G)| ≥ 10.

Proof. Suppose |V (G)| ≤ 9, and G is 3-edge-connected, internally 4-edge-connected, and
in which one side of every edge-cut of size four has at most two vertices. We will show
that G satisfies Theorem 7.1, i.e. if G � K3,3, it is either type 0, 2, or is isomorphic
to one of the graphs in Figure 7.2, or 7.3. Using Observation 4.4, we see that to verify
the lemma it suffices to check the finite number of 3-edge-connected, internally 4-edge-
connected graphs, with edge-multiplicity at most |E(K3,3)| = 9, for which every X ⊂ V (G)
with 2 < |X| < |V (G)| − 2 satisfies d(X) ≥ 5. This calculation is done in Sagemath, with
the code appearing in the Appendix. Here is a high-level description of the algorithm.

Let 6 ≤ n ≤ 9.
Step 1. We take the list of all connected simple graphs on n vertices, and filter out

the ones which immerse K3,3.
Step 2. For any graph G surviving from Step 1, repair(G) generates a list consisting

of all edge-minimal multigraphs G′ such that:

• the underlying simple graph of G′ is G,

• δ(G′) ≥ 3,

• λi(G′) ≥ 4,

• for any set X ⊂ V (G) where 3 ≤ |X| ≤
⌊

n
2
⌋
we have dG′(X) ≥ 5,

• G′ does not immerse K3,3.
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Step 3. Suppose the simple connected graph G is such that repair(G) is nonempty.
Let G1 = repair(G). Then, using G1, we generate G2 = obstruction(G) which is the list
consisting of all multigraphs whose underlying simple graph is G, meet the edge-connectivity
conditions that the graphs in G1 satisfy, have edge-multiplicity at most nine, and do not
immerse K3,3.

Step 4. Every graph in G2 is tested if it has one of the types 0, 2, or is isomorphic to
one of the graphs in Fig. 7.2 or 7.3.

The calculation is done rather fast. It took a desktop computer 25 minutes to do the
calculation for every n ∈ {6, 7, 8}. However, the time spent on n = 9 was considerably more.
It took the computer 1 hour to carry out step 1, i.e. to check the nearly 262,000 connected
simple graphs on nine vertices for a K3,3 immersion, thereby giving a list N9 of almost 34,100
simple connected graphs on nine vertices without a K3,3 immersion. Then a total of 4 hours
was spent on carrying out steps 2, 3 for every graph in N9. Since no obstruction is found
for n = 9, step 4 is not performed for this case.

7.2.3 Two local properties

We continue by recording two local properties of a minimal counterexample, which get
frequently called upon.

Lemma 7.13. If G = (V,E) is a counterexample to Theorem 7.1 with |V |+ |E| minimum,
then:

(1) There does not exist u ∈ V which has a neighbour v such that e(u, v) ≥ 1
2d(u).

(2) If δ(X) is an internal 4-edge-cut in G, with |X| ≤ |V \X|, we have |X| = 2, and both
vertices in X have degree three.

Proof. For part (1), suppose for a contradiction that such u, v exist, and let U = {u, v}. Let
G′ = G.U , where a denotes the vertex resulting from identifying u, v. Note e(u, v) ≥ 1

2d(u)
implies G � G′. Therefore, G′ � K3,3, and since |V (G′)| = |V (G)| − 1, Theorem 7.1 holds
for G′. Since |V (G′)| ≥ 9, G′ has one of the types 0-3. However, since dG′(a) = dG(U) ≥ 4,
G′ is not type 0. Also, G′ being type 1 implies that there is a 4-edge-cut in G with at least
three vertices on either side, contradicting Lemma 7.11. So G′ is not type 1. In a similar
manner we conclude that G′ is sausage reduced, and since |V (G′)| ≥ 9, G′ is not type 2 or
3 either, a contradiction. (Observe that after sausage reduction a graph of type 2 or 3 has
at most eight vertices).

For part (2), note that it follows from Lemma 7.11 that |X| = 2, let X = {u, v}. Since
d(X) = 4, we have e(u, v) > 0. It follows from part (1) that exactly two edges of δ(X) is
incident with each u, v, and that e(u, v) = 1.
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7.2.4 5-edge-cuts

In this subsection we study 5-edge-cuts in a minimal counterexample to Theorem 7.1. The
main result is Lemma 7.19, which tells us that one side of every 5-edge-cut in a minimal
counterexample has at most three vertices. The lemma is a powerful tool in carrying out the
inductive step in the proof of Theorem 7.1. In this subsection, we see a couple of lemmas
which eventually lead to establish the result. First, we take note of a useful fact about
planar graphs:

Proposition 7.14. If G is a 2-connected graph embedded in the plane, every face of G is
bounded by a cycle.

Let us proceed by introducing some convenient terminology.

Definition 7.15. Suppose G is a graph, and X ⊂ V (G). Let e ∈ δ(X), with x being the
endpoint of e in X. Then we say X is almost cubic relative to e if d(x) ∈ {3, 4}, and for
every vertex u ∈ X \ {x} we have d(u) = 3.

We now start looking into 5-edge-cuts. In the lemmas throughout this subsection, we
assume G is a minimum counterexample to Theorem 7.1 with |V | + |E| minimum. The
next lemma motivates studying rooted immersion of W4 in a minimum counterexample to
Theorem 7.1.

Lemma 7.16. Let δ(X) be a 5-edge-cut in G, where |X|, |V \X| ≥ 4. Then either of G.X
or G.(V \X) has a rooted immersion of W4.

Proof. For a contradiction, suppose G′ = G.X �r W4 and G.(V \ X) �r W4. Denote the
root vertex of G′ by a. Since dG′(a) = dG(X) = 5, by Theorem 7.4, G′ is type I or II.
However, it follows form Lemma 7.11 that G′ is not type I, and does not have any chain
of sausages of order > 1. So G′ must be type II A or II B, in which any chain of sausages
has order one, and therefore |V (G.(V \ X))| ≤ 5. Since |V (G.(V \ X))| = |X| + 1, we
get |X| ≤ 4. Then, a similar argument for G.(V \ X) shows that |V \ X| ≤ 4, and thus
|V (G)| ≤ 8. However, then we get a contradiction with Lemma 7.12.

Lemma 7.17. Let δ(X) be a 5-edge-cut such that |X|, |V \X| ≥ 4. Suppose e ∈ δ(X) exists
such that (G \ e).X �r W4, then:

• (G \ e).(V \X) �r W4,

• X is almost cubic relative to e.

Proof. Let H be the graph obtained from G by deleting e in which any vertices of degree
two (resulting from deletion of e) are suppressed. Note that λ(H) ≥ 3, and Lemma 7.13(2)
implies that λi(H) ≥ 4. Also, clearly G immerses H, so H � K3,3. On the other hand,
let X ′ ⊂ V (H) denote the set corresponding to X ⊂ V (G). Since |X ′| ≥ |X| − 1 and
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|V (H) \X ′| ≥ |V (G) \X|, we have |X ′|, |V (H) \X ′| ≥ 3. We now apply Lemma 7.7 to H
to conclude that either cases below occur:

• H[X ′] is a chain of sausages, or

• for every vertex v ∈ X ′ we have dH(v) = 3, and H.(V \X ′) has a rooted immersion
of W4.

If the latter case happens, we have nothing left to prove. In the former case, G must contain
a vertex of degree four in X which is incident with parallel edges– contradicting Lemma
7.13(1).

The next lemma features two new rooted graphs, W+
4 and W5. We define W+

4 to be the
rooted graph appearing on the left below, and rooted W5 to be the graph obtained from
W5, whose center is treated as the root vertex, see the graph on the right below.

Lemma 7.18. Let δ(X) be a 5-edge-cut such that |X|, |V \ X| ≥ 4, and assume G′ =
G.(V \X) �r W4. Then G.X �r W4, and moreover, one of the following holds:

• G′ �r W5, and every vertex in X has degree three, or

• G′ �r W
+
4 , and there exists a vertex of degree four x ∈ X such that every vertex in

X \ x has degree three.

Proof. Since G′ �r W4 (and d(X) = 5), there exists e ∈ δ(X) such that (G \ e).(V \X) �r

W4. So Lemma 7.17 implies that (G \ e).X �r W4 (and thus G.X �r W4) and that X is
almost cubic relative to e. Let e = xy, where x ∈ X, so we have d(x) ∈ {3, 4} and for every
vertex u ∈ X \ x we have d(u) = 3. So, to prove the lemma, it remains to show that all
neighbours of the root vertex of G′ lie on a common cycle. Denote the root vertex of G′ by
a. Note that it follows from Lemma 7.8 that G′ is planar, so by Proposition 7.14, it suffices
to show that G′ \ a is 2-connected. Since G′ \ a = G[X] is subcubic, it suffices to prove that
it is 2-edge-connected. This follows from |X| ≥ 4, λi(G) ≥ 4 and Lemma 7.13(2).

With the lemmas above in hand, the proof of our main result on 5-edge-cuts in G, stated
below, is straightforward.

Lemma 7.19. There does not exist a 5-edge-cut δ(X) in G, where |X|, |V \X| ≥ 4.

Proof. Towards a contradiction, let δ(X) be a 5-edge-cut in G with |X|, |V \ X| ≥ 4.
Applying Lemma 7.16, without loss of generality, we may assume G.X �r W4. Then Lemma
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7.18 implies that G.(V \X) �r W4 as well. It also implies that if we let S, T denote the set
of endpoints of δG(X) in X,V \X, respectively, then up to symmetry one of the following
holds:

• |S| = |T | = 5, and every vertex in X ∪ (V \X) has degree three.

Here G will be cubic, a contradiction with Lemma 7.8.

• |S| = 5, |T | = 4, and there exists t ∈ T such that d(t) = 4, and for every v ∈ V \ t we
have d(v) = 3.

In this case, choose e ∈ δ(X) which is not incident with t. Then (G \ e).(V \ X)
immerses W4. On the other hand, d(G\e).X(t) = 4, so X is not almost cubic relative
to e– a contradiction with Lemma 7.17.

• |S| = |T | = 4, and there exist s ∈ S, t ∈ T such that for every v ∈ V \ {s, t} we have
d(v) = 3, and d(t) = d(s) = 4.

Note it follows from Lemma 7.13(1) that e(s, t) ≤ 1, so we can choose e ∈ δ(X)
incident with s which is not incident with t. Then (G \ e).(V \ X) immerses W4.
However, d(G\e).X(t) = 4, so X is not almost cubic relative to e– again a contradiction
with Lemma 7.17.

7.2.5 Finishing the proof

In this subsection, we use Lemmas 7.12, 7.13, and 7.19 to prove Theorem 7.1.

Proof of Theorem 7.1. Towards a contradiction, let G = (V,E) be a counterexample to
the theorem with |V | + |E| minimum. We first show that G is simple. Suppose (for a
contradiction) that adjacent vertices u, v exist such that e(u, v) ≥ 2. Let G′ be the graph
obtained fromG by deleting one copy of uv. Note that Lemma 7.13(1) implies that λ(G′) ≥ 3
and thus |V (G′)| = |V (G)| ≥ 10. It also follows from Lemma 7.13(2) that λi(G′) ≥ 4. So by
minimality of G, Theorem 7.1 holds for G′. If G′ is type 0, it is cubic and simple, and thus
G contradicts Lemma 7.13(2). If G′ is type 1, we get a contradiction with either Lemma
7.13(2) or 7.19. Now note that it follows from Lemma 7.13(1) that G′ is sausage reduced.
So |V (G′)| ≥ 10 implies that G′ is not type 2 or 3 either– a contradiction.

We are now ready to complete the proof of Theorem 7.1. Since G is not cubic, it has a
vertex v of degree ≥ 4. Choose an edge e which is not incident with v. Let G′ be the graph
obtained from G by deleting e, and suppressing any degree two vertices. So |V (G′)| ≥
|V (G)| − 2 ≥ 8, and λ(G′) ≥ 3. It follows from Lemma 7.13(2) that λi(G′) ≥ 4. So by
minimality of G, Theorem 7.1 holds for G′. Since G′ is not cubic, it is not type 0. As in the
last paragraph, G′ cannot have type 1 either, otherwise G would contradict either Lemma
7.13(2) or 7.19.
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Finally, note that G′ is sausage reduced. It is because if G′[X ′] is a chain of sausages of
order ≥ 3 in G′, then Lemma 7.13(2) implies that e ∈ δG(X), where X is the set in G which
corresponds to X ′ in G′. But then G[X] would contain parallel edges, a contradiction. So,
if G′ has type 2, it is type 2A relative to some W,W ′, where |W | = |W ′| = 2. However then
(since G is simple) G would contradict 7.19. If G′ is type 3, since |V (G′)| ≥ 8, it must be
isomorphic to the last graph in Figure 7.2. Then, however, G is not simple– a contradiction.
This contradiction completes the proof of Theorem 7.1.

7.3 Corollaries of Theorem 7.1

In this section, we use Theorem 7.1 to identify all graphs which do not immerse K3,3. We
will also see a strengthening of the only previously known result about graphs which do not
immerse K3,3 or K5.

7.3.1 Graphs of arbitrary edge-connectivity excluding a K3,3 immersion

We will use Theorem 7.1 to characterize graphs with arbitrary edge-connectivity which do
not immerse K3,3. Since K3,3 is 3-edge-connected, internally 4-edge-connected, we can use
Observations 4.6, 4.7 to get the following as an immediate corollary of Theorem 7.1.

Corollary 7.20. A graph G has no K3,3 immersion if and only if G can be reduced to a
graph where every component is either

1. of order at most five, or

2. is one of the types 0, 1, 2, 3, or 4.

by the operations

• If e is a cut-edge in G, then modify G to G \ e.

• If H is a 2-edge-connected component of G, and X ⊂ V (H) has δ(X) = {x1y1, x2y2},
where x1, x2 ∈ X then modify G to G \ δ(X) + x1x2 + y1y2.

• If H is a 3-edge-connected component of G, and δ(X) is an internal 3-edge-cut in H,
then replace H by the disjoint union of H.X and H.(V (H) \X).

7.3.2 Tree-width and branch-width of graphs without K3,3 immersion

As we saw earlier in this chapter, as an immediate corollary of Theorems 7.1, 7.2 we have the
following structural theorem identifying the graphs which exclude both Kuratowski graphs
as immersion:

Corollary 7.21. Let G be a with |V (G)| ≥ 6, and λ(G) ≥ 3, λi(G) ≥ 4. Then G does
not immerse K3,3 or K5 if and only if G is one of the types 0, 1, 2, 3, or 4 except for the
Octahedron.
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It follows from Observations 4.10 and 4.11 that in order to find tree-width and branch-
width of graphs of types 2, 3, or 4, it suffices to consider only the ones which are sausage
reduced, and have distinct underlying simple graphs. It is then easy to check that all
such graphs have treewidth at most three, except for octahedron, which is known to have
treewidth four. Below, we will find that if G a type 1 graph, then cw(G) ≤ 3 and pw(G) ≤ 3.
We begin with an easy yet helpful observation.

Observation 7.22. Let G be a 3-edge-connected graph with a segmentation of width four
relative to U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Ut, where |U0|, |V \ Ut| ≤ 3. Let Ui \ Ui−1 = {xi}, and let
Zi = {v ∈ Ui, δ(v) ∩ δ(Ui) 6= ∅}, for i = 1, . . . , t. Then for every 1 ≤ i ≤ t we have:

(1) e(xi, Ui−1) = e(xi, V \ Ui) ≥ 2

(2) xi ∈ Zi and |Zi| ≤ 3.

Proof. (1) Since d(Ui−1) = d(V \ Ui) = 4, we have e(xi, Ui−1) = e(xi, V \ Ui). Since G is
3-edge-connected, we have d(xi) ≥ 3, and thus e(xi, Ui−1) ≥ 2.

(2) It follows from part (1) that xi ∈ Zi, and since d(Ui) = e(Ui−1, V \Ui)+e(xi, V \Ui) =
4, we have |Ui−1 ∩ Zi| ≤ e(Ui−1, V \ Ui) ≤ 2, and thus |Zi| ≤ 3.

Let G be a graph. For u and v adjacent vertices in G, we call the set of edges E(u, v) a
parallel class of G. For F ⊆ E(G), let G[F ] denote the subgraph of G on all vertices that
are incident with an edge in F , and with the edge-set F .

Lemma 7.23. Let G be a graph with a segmentation of width four relative to some (U,W ),
where |U |, |W | ≤ 3. Then there exists a partition of E(G) into {E0, E1, . . . , Ek} such that

• Every Ei with 1 ≤ i ≤ k − 1 is a parallel class

• |V (G[E0])|, |V (G[Ek])| ≤ 3

•
∣∣∣V (G [⋃j

i=0Ei

])
∩ V

(
G
[⋃k

i=j+1Ei

])∣∣∣ ≤ 3, for 0 ≤ i ≤ k − 1.

Proof. Let U = U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Ut = V \W be a segmentation of width four of
G. Let S be a union of parallel classes of G. We say S has a good ordering if there exists a
partition of S into parallel classes {E1, . . . , Ek} such that

if we let Gj , G
c
j be the subgraph of G induced by

⋃j
i=0Ei and E \E(Gj), respectively,

then |V (Gj) ∩ V (Gc
j)| ≤ 3.

Note that in order to prove the lemma, it suffices to show that E(G) has a good ordering.
Clearly, there is a good ordering of E[G(U0)]. If t = 0, it is straightforward to see that
this good ordering can be extended to a good ordering of E(G). So, suppose t ≥ 1. Let
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Ui \ Ui−1 = {xi}, for i = 1, . . . , t, and let Zi = {v ∈ Ui, δ(v) ∩ δ(Ui) 6= ∅}, for i = 0, . . . , t.
Suppose there exists a good ordering of E(G[Ui−1]), and we extend this to a good ordering
for E(G[Ui]) by appending edges in E(xi, Ui−1) to it in a certain order. Note that by
Observation 7.22(2) we have |Zi| ≤ 3. If |Zi−1| ≤ 2, adding the edges in E(xi, Ui−1) in any
order to (E1, . . . , Ek) results in a good ordering. Suppose |Zi−1| = 3. Then it follows from
Observation 7.22(1) that there exists v ∈ Zi−1 \ Zi. Now, we extend (E1, . . . , Ek) by first
adding the parallel class of the edge vxi, and then adding other edges between xi, Ui−1 (if
any) in an arbitrary order. This gives a good ordering of E(G[Ui]).

Immediately from the above lemma we find that:

Observation 7.24. Let G be a graph with a segmentation of width four relative to some
(U,W ), where |U |, |W | ≤ 3. Then caterpillar-width of the underlying simple graph of G is
at most three.

Lemma 7.25. Let G be a graph with a segmentation of width four relative to some (U,W )
where |U |, |W | ≤ 3. Then path-width of G is at most three.

Proof. Let U = U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Ut = V \ W be a segmentation of width four
of G. We show that G has a path-decomposition of width three in which U0 is the set of
vertices of G which is associated to one endpoint of the path. First, suppose t = 0. Then it
is straightforward to see that such a path-decomposition exists.

Now, suppose t ≥ 1. Let Ui \ Ui−1 = {xi}, and let Zi = {v ∈ Ui, δ(v) ∩ δ(Ui) 6= ∅},
for i = 1, . . . , t. It follows from Observation 7.22(2) that there is a vertex u ∈ U0 \ Z1.
Now consider the graph G \ u, which has a (3, 3)-segmentation of width four (relative to
(Z1, V \ Ut). Let P be a path-decomposition of width three for G \ u in which the set
associated with an endpoint s of the path is Z1. Now extend this path by one vertex whose
only neighbour is s, and associate to this vertex U1. Since |U1| ≤ 4, the width of this path-
decomposition is at most three. Inductively, we get a path-decomposition of width at most
three for G.

As a result of Corollary 7.21, and Lemmas 7.23, 7.25 we get the followings, one of which
is a sharpening of the previously known result (Theorem 1.9) about the structure of graphs
which exclude K3,3 and K5 as immersion.

Corollary 7.26. Let G be a connected graph with |V (G)| ≥ 6. If G � K3,3 or K5, then G
can be constructed via 1-, 2-, and 3-edge-sum of simple planar cubic graphs and graphs with
tree-width (branch-width) at most three.

Corollary 7.27. Let G be a graph which does not immerse K3,3. Then G can be constructed
from i-edge-sums, for i = 1, 2, 3 from cubic graphs, octahedron, and graphs with tree-width
(branch-width) at most 3.
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Appendix A

Code used in the proof of Theorem
7.1

Here, we have included the code written in Sagemath whose result features in the proof of
Theorem 7.1.
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K_{3, 3}-immersion

# Here is the function which takes a graph H, and a vertex v and returns 
nonisomorphic graphs resulted by splitting off different pair of edges at v (one 
stage) (First draft by Stefan Hannie)

def split_off (H, v):
    S = []
    N = H.edges_incident (v, labels = False)
    for pair in Combinations (N, 2):
        for w in pair [0]:
            if not w == v: x = w
        for w in pair [1]:
            if not w == v: y = w
        G = H.copy ()
        G.allow_multiple_edges (True)
        if not x == y: G.add_edge (x, y)
        G.delete_edges ([(v, x), (v, y)])
        if G.degree (v) < 2: G.delete_vertex (v)
        if is_new (S, G):
            yield G
            S.append (G) 

# Checks whether x is a "new" graph to L, meaning that no graph isomorphic to x is 
already in L
def is_new (L, x):
    if L == []: return True
    else:
        T = True
        for y in L:
            if x.is_isomorphic (y): return False
        return True 

# Takes a graph G, a vertex v, and a positive integer k, and returns all graphs 
obtained by doing k splits at v in all possible ways
def split_off_k (G, v, k):
    if k == 1:
        for g in split_off (G, v): yield g
    if k >= 2:
        Lt = []
        for g in split_off_k (G, v, k-1):
            for g_split in split_off (g, v):
                if is_new (Lt, g_split):
                    yield g_split
                    Lt.append (g_split) 

# This function takes a list of graphs, and cuts off all the isomorphic ones
def cutIso (L):
    S = []
    for g in L:
        if is_new (S, g): S.append(g) 
    return S 
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# This function computes the size of minimum edge-cut separating tuples of 
vertices with at most six vertices from the rest of the graph for multigraphs

def mind_k_tuple (G, k, min_needed = None):
    if min_needed == None:
        if k >= G.order(): return 0
        a = G.size()
        for tuple in Combinations (G.vertices(), k):
            l = len (G.edge_boundary (tuple))
            if l < a:
                [a, cert] = [l, tuple]
        return [a, cert]
    else:
        if k >= G.order(): return False
        for tuple in Combinations (G.vertices(), k):
            if len (G.edge_boundary (tuple)) < min_needed: return False
        return True 

def has_trivial_econ (G):
    if not min (G.degree()) >= 3: return False
    for e in Set (G.edge_iterator(labels = False)):
        if len (G.edge_boundary (e)) < 4: return False
    return True 

# Takes a multigraph on at most 9 vertices, and checks if it has min degree three, 
is int 4-ec, and there is no (<=4)-edge-cut separating at least three vertices 
opposite others

def well_edge_connected (G, reduced = False):
    if G.order() < 6: return False
    if not reduced and not has_trivial_econ (G): return False
    if not mind_k_tuple (G, 3, 5): return False
    if G.order() < 8: return True
    else: return mind_k_tuple (G, 4, 5) 

# Computes the number of edges between two vertices
def e_mult (G, u, v):
    if not u in G.neighbors(v): return 0
    m = 0
    for e in G.edges_incident(v):
        if u in e: m = m+1
    return m 

# Computes the minimum and maximum edge-multiplicity in a graph G
def min_max_mult (G):
    [m, M] = [100, 0]
    for e in Set (G.edges()):
        k = e_mult (G, e[0], e[1])
        if k > M: M = k
        if k < m: m = k
    return [m, M] 
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# Decides if G is a doubled cycle
def is_doubled_cycle (G, four_regular= False):
    if not four_regular:
        if not G.is_regular(4) : return False
    if not min_max_mult (G) == [2, 2]: return False
    H = G.to_simple ()
    return H.is_isomorphic (graphs.CycleGraph (G.order())) 

# Tells if G has type 2A with respect to u, v
def is_Type2A (G, u, v):
    if not G.degree (u)== 5 == G.degree (v) or not e_mult (G, u, v) == 1: return 
False
    #  or not min_max_mult(G) == [1, 2]
    for x in G.vertex_iterator():
        if not x in [u, v]:
            if not G.degree (x) == 4: return False
    H = G.copy ()
    H.delete_edge (u, v)
    return is_doubled_cycle (H, True) 

# Tells if G has type 2B with respect to u, v
def is_Type2B (G, u, v):
    if u in G.neighbors (v) or not G.degree (u)== 5 == G.degree (v): return False
    # or not min_max_mult(G) == [2, 3]
    [candidate, deg4] = [[], []]
    for x in G.vertex_iterator():
        if not x in [u, v]:
            if G.degree(x) == 6:
                if e_mult (G, u, x) == 3 and e_mult (G, x, v) == 3: 
candidate.append (x)
                if len (candidate) > 1 : return False
            elif G.degree(x) == 4: deg4.append (x)
    if len (candidate) == 0 or not len (deg4) == G.order() -3: return False   
    H = G.copy()
    H.delete_edges ([(candidate[0], u), (candidate[0], v)])
    return is_doubled_cycle (H, True) 

# Tells if G has type 2C with respect to u, v
def is_Type2C (G, u, v):
    if not G.degree (u)== G.degree (v) == 5 or not e_mult (G, u, v) == 3: return 
False
    # if not min_max_mult (G) == [2, 3]
    for x in G.vertex_iterator():
        if not x in [u, v]:
            if not G.degree (x) == 4: return False
    H = G.copy()
    H.delete_edge (u, v)
    return is_doubled_cycle (H, True) 

# Takes a multigraph H and outputs a list, whose 0-th entry tells if H has type 
2-sub. If it is type 2-sub, the 1-st and 2-nd entry shows the "bags"
def is_Type2sub (H, sub_type):
    [deg4, deg5] = [[], []]
    for x in H.vertex_iterator():
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        if H.degree (x) == 4: deg4.append (x)
        elif H.degree (x) == 5: deg5.append (x)
    k = H.order()- len (deg4)
    if sub_type == 'A' or sub_type == 'C':
        if k > 4: return [False]
    elif sub_type == 'B' and k > 5: return [False]
    T = False
    if len (deg5) == 2:
        if sub_type == 'A' or sub_type == 'C':
            if k == 2: T = True
        elif k == 3: T= True
    if T:
        if sub_type == 'A':
            if is_Type2A (H, deg5[0], deg5 [1]): return [True, deg5]
        if sub_type == 'B':
            if is_Type2B (H, deg5[0], deg5 [1]): return [True, deg5]
        if sub_type == 'C':
            if is_Type2C (H, deg5[0], deg5 [1]): return [True, deg5]
    Eset = sorted (Set(H.edges(labels = False)), key=lambda e: e_mult (H, e[0], 
e[1]), reverse = True)
    CE = Combinations (Eset, 2)
    S = False
    if len (deg5) > 0:
        if sub_type == 'A' or sub_type == 'C':
            if k == 3: S = True
        elif k == 4: S = True
    if S:
        for v in deg5:
            for e in Eset:
                if not v in e:
                    K = H.copy()
                    K.allow_multiple_edges(True)
                    K.merge_vertices (e)
                    if sub_type == 'A':
                        if is_Type2A (K, e[0], v): return [True, v, e]
                    if sub_type == 'B':
                        if is_Type2B (K, e[0], v): return [True, v, e]
                    if sub_type == 'C':
                        if is_Type2C (K, e[0], v): return [True, v, e]
    for pair in CE:
        K = H.copy()
        K.allow_multiple_edges(True)
        [e, f] = [pair [0], pair [1]]
        if not e[0] in f and not e[1] in f:
            K.merge_vertices (pair [0])
            K.merge_vertices (pair [1])
            if sub_type == 'A':
                if is_Type2A (K, e[0], f[0]): return [True, e ,f]
            if sub_type == 'B':
                if is_Type2B (K, e[0], f[0]): return [True, e ,f]
            if sub_type == 'C':
                if is_Type2C (K, e[0], f[0]): return [True, e ,f]
    return [False] 

# Tells if H has type 2
def is_Type2 (H, well_econ = False):
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    k = H.order()
    if not well_econ or k == 6:
        return is_Type2sub (H, 'A')[0] or is_Type2sub (H, 'B')[0] or is_Type2sub 
(H, 'C')[0]
    else:
        if k == 7: return is_Type2sub (H, 'A')[0] or is_Type2sub (H, 'B')[0]
        elif k == 8: return is_Type2sub (H, 'A')[0]
        else: return False 

def two_ecut_rdn_X (G, X):
    H = G.copy()
    H.allow_multiple_edges (True)
    E_X = H.edge_boundary (X, labels = False)
    for vx in E_X[0]:
        if not vx in X: u = vx
    for vx in E_X[1]:
        if not vx in X: v = vx
    if not u == v : H.add_edge (u, v)
    H.delete_vertices (X)
    return H 

# Takes a graph G and reduces its 1, 2- edge-cuts, and internal 3-edge-cuts
def red (G):
    small_deg = []
    for v in G.vertices():
        if G.degree(v) <3:
            small_deg.append(v)
    if G.order()- (len (small_deg)) < 6: return graphs.CompleteGraph (3)
    H = G.copy()
    H.allow_multiple_edges (True)
    
    # We reduce 1, 2-edge-cuts
    for j in [1, 2]:
        for k in [4, 3, 2, 1]:
            while H.order () >= max ([6, 2*k]):
                L = mind_k_tuple (H, k)
                if L[0] == j:
                    if j == 1: H.delete_vertices (L[1])
                    else: H = two_ecut_rdn_X (H, L[1])
                else: break
            if H.order() < 6: break
        if H.order() < 6: break
                
    # We reduce internal 3-edge-cuts
    for k in [4, 3, 2]:
        while H.order () >= max ([6, 2*k]):
            L = mind_k_tuple (H, k)
            if L[0] == 3:
                H.merge_vertices (L[1])
            else: break
        if H.order () < 6: break
    return H 

# This function takes a multigraph on six vertices as input and determines whether 
it has a subgraph of K_{3,3}
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def has_K33_sbg_six (G):
    # H is the underlying simple graph of G
    H = G.copy()
    H.allow_multiple_edges(False)
    # counti is the number of connceted components of H of size i
    [count1, count2, count3] = [0, 0, 0]
    for x in (H.complement()).connected_components_sizes():
        if x > 3: return False
        else:
            if x == 1: count1 = count1 + 1
            elif x == 2: count2 = count2 + 1
            elif x == 3: count3 = count3 + 1
    if count3 == 0 and count1 == 0: return False
    return True 

# Takes a graph H on six vertices and decides whether it has an immersion of 
K_{3,3}. The optional arguments tell if we already know H is reduced, or well-
edge-connected, or not type 2
def has_K33_im_six (H, reduced = False, econ = 'undecided', type2 = 'undecided'):
    if econ == 'poor': return False
    if not econ == 'well':
        if not reduced:
            if not red(H).is_isomorphic (H): return False
        if not mind_k_tuple (H, 3, 5): return False
    if type2 == 'undcided':
        if is_Type2 (H, True): return False
    if has_K33_sbg_six (H): return True
    
    #hideg consits of all vertices of degree at least five
    hideg = [ v for v in H.vertex_iterator() if H.degree(v) >= 5]
    if hideg == []: return False
    
    Lv_1_less_split = [H]
    for v in hideg:
        Lv = []
        # Lv is a list consisting of graphs obtained by doing at most (d_H(v)- 
3)// 2 splits at v at all graphs in L
        for j in range ((H.degree (v)- 3)// 2):
            Lv_j_split = []
            for g in Lv_1_less_split:
                for g_split in split_off (g, v):
                    if min (g_split.degree()) >= 3:
                        T = True
                        for e in Set (g_split.edge_iterator(labels = False)):
                            if len (g_split.edge_boundary (e)) < 4:
                                T = False
                                break
                        if T and mind_k_tuple (g_split, 3, 5) and is_new 
(Lv_j_split, g_split):
                            if has_K33_sbg_six (g_split): return True
                            else:
                                Lv_j_split.append (g_split)
            Lv_1_less_split = Lv_j_split
            Lv += Lv_j_split
        L = Lv  
    return False 
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# Takes G and two vertices of it, and decides if there is an arrangement x_1x_2 
... x_{|V|-2} of V(G) \{u, v} for which d(u) = d({u, x_1, \ldots, x_i}) =4, for 
every i<= |V|-2
def is_nested_4ecut (G, u, v, rest =[], checked_deg_uv = False, checked_deg_rest = 
False):
    if not checked_deg_uv:
        if not G.degree (u)== G.degree (v) == 4: return [False]
    if not checked_deg_rest:
        for x in G.vertex_iterator():
            if not G.degree (x) in [2, 4, 6, 8]: return [False]
    if rest == []:
        rest = [x for x in G.vertex_iterator() if not x in [u, v]]
    for perm in itertools.permutations (rest):
        chunk = [u]
        for i in range (G.order() -2):
            chunk += [perm[i]]
            if not len (G.edge_boundary(chunk)) == 4: break
            elif i == G.order()-3: return [True, perm]
    return [False] 

#The 0-th entry tells if G has type 1. If it is type 1, then we get three other 
entries, the first triple of vertices, the permutation of other vertices in 
between, and lastly the second triple of vertices
def is_Type1 (G):
    even_deg = [v for v in G.vertex_iterator() if G.degree (v) % 2 == 0]
    if len (even_deg) < G.order () - 6: return [False]
    for rest in Combinations (even_deg, G.order()-6):
        comb_6 = [v for v in G.vertices() if not v in rest]
        for triple1 in Combinations (comb_6, 3):
            if len (G.edge_boundary (triple1)) == 4:
                triple2 = [v for v in comb_6 if not v in triple1]
                if len (G.edge_boundary (triple2)) == 4:
                    [u, v] = [triple1[0], triple2 [0]]
                    H = G.copy()
                    H.allow_multiple_edges(True)
                    H.merge_vertices(triple1)
                    H.merge_vertices(triple2)
                    L = is_nested_4ecut (H, u, v, rest, True, True)
                    if L[0]: return [True, triple1, L[1], triple2]
    return [False] 

# determines if a graph on at least seven vertices immerses K_{3,3} by splitting 
its vertices completely (one at a time), and check if the resulting graph on fewer 
vertices immerse K_{3,3}
def has_im_split (G, global_info):
    for v in sorted (G.vertex_iterator(), key=lambda v: G.degree(v)):
        for g in split_off_k (G, v, (G.degree (v)//2)):
            if has_K33_im (g, global_info): return True
    return False 

# The G_info tells us what we already know about G. It tells us if G is (3-e-cut) 
reduced, is well-edge-connected.
# global_info[0] gives the helper for reduced graphs on seven and eight vertices 
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that are not well_edge_con or type 1, 2. global_info[1] gives the list of the 
known well-edge-connected exceptions, and global_info[2] indicates the largest n 
for which all the exceptions of order <=n are known is.
# The econ can be either 'well', 'poor', or 'undecided'-- meaning that G is /is 
not/ we don't know if is well-edge-connected, respectively.

def has_K33_im (G, global_info = [[{}, {}], [], 5], G_info = [False, 
'undecided']):
    [reduced, econ] = G_info
    if econ == 'well' or reduced: H = G
    else: H = red (G)
    k = H.order ()
    if k < 6: return False
    if econ == 'well': well_econ = True
    else:
        if econ == 'poor' and reduced: well_econ = False
        else: well_econ = well_edge_connected (H, True)
    if k == 6:
        if not well_econ: return False
        elif is_Type2 (H, True) : return False
    else:
        if min_max_mult (H)[1] > 1 and is_Type2 (H, well_econ) : return False
    [helper, exception, accuracy] = global_info
    
    if accuracy >= k and well_econ:
        for g in exception:
            if H.is_isomorphic (g):
                return False
        return True
    if not well_econ:
        if is_Type1 (H)[0]: return False
        elif k in [7, 8]:
            H = H.canonical_label()
            H_dict = H.copy (immutable = True)
            if H_dict in helper [k -7]: return helper [k -7] [H_dict]
            T = has_im_split (H, global_info)
            helper [k -7] [H_dict] = T
            return T
    if k == 6: return has_K33_im_six (H, True, 'well', 'no')
    return has_im_split (H, global_info) 

def edges_multiplicity (G):
    L = {}
    for e in Set (G.edges (labels = False)):
        L[e] = e_mult (G, e[0], e[1])
    return L 

def has_less_multiplicity (L, M):
    for x in L:
        if not x in M or L[x] > M[x]: return False
    return True 

# L is a list of multigraphs with the same underlying simple graph. The output is 
the minimal ones
def get_minimal (L):
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    if len(L) == 0: return []
    maxnumberofedges = 30
    [L_mid, L_final, minimal_comb]= [[], [], []]
    [m, M] = [500, 0]
    for i in range (maxnumberofedges +1 ):
        L_mid.append ([])
    # L_mid[k] consists of all graphs in L that have k number of edges
    for k in range (maxnumberofedges +1):    
        L_mid [k] = [graph_2 for graph_2 in L if graph_2.size () == k ]
        if len (L_mid [k]) > 0:
            if k < m: m = k
            if k > M: M = k
    # every graph in L_mid[m] is minimal
    L_final += L_mid [m]
    for minimal in L_mid [m]:
        minimal_comb.append (edges_multiplicity (minimal))
    for extra in range (m+ 1, M+ 1):
        # L_t is the minimal graphs found in this round, and comb_t is the 
combination of graphs in L_t
        comb_t = []
        L_t = []
        # every graph in L_mid [extra], extra > m, is compared against all graphs 
already in L_final from previous rounds.
        for graph_1 in L_mid [extra]:
            # T will tell us if h is a supergraph of a graph in L_final
            T = False
            graph_1_comb = edges_multiplicity (graph_1)
            for comb in minimal_comb:
                if has_less_multiplicity ( comb, graph_1_comb ):
                    T = True
                    break
            if not T:
                L_t.append (graph_1)
                comb_t.append (graph_1_comb)
        L_final += L_t
        minimal_comb += comb_t
    return L_final 

# Adds k edges to the boundary of X in parallel to the existing edges in all 
possible ways
def add_dX (G, X, k):
    L = []
    E_X = G.edge_boundary (X)
    Set_E_X = Set (E_X)
    for added in itertools.combinations_with_replacement (Set_E_X, k):
        Gplus = G.copy ()
        Gplus.allow_multiple_edges (True)
        Gplus.add_edges (added)
        L.append (Gplus)
    return L 

# Determines if a graph immerses K_{3,3}
def is_loser (G, global_info = [[{}, {}], [], 5], info_underlying = [[], [], [], 
[]], G_info = [False, 'undecided']):
    [wincomb, failcomb, non_iso_winners, non_iso_losers] = info_underlying
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    [helper, exception, accuracy] = global_info
    if accuracy >= G.order():
        if G_info [1] == 'undecided':
            if well_edge_connected (G): G_info = [True, 'well']
            else: G_info [1] = 'poor'
        if G_info [1] == 'well': return not has_K33_im (G, global_info, G_info)

    G_comb = edges_multiplicity (G)
    for comb in wincomb:
        if has_less_multiplicity (comb, G_comb):
            return False
    for comb in failcomb:
        if has_less_multiplicity (G_comb, comb):
            return True
    for x in non_iso_winners:
        if G.is_isomorphic (x):
            wincomb.append (G_comb)
            return False
    for x in non_iso_losers:
        if G.is_isomorphic (x):
            failcomb.append (G_comb)
            return True
            
    if has_K33_im (G, global_info, G_info):
        non_iso_winners.append (G)
        wincomb.append (G_comb)
        return False
    else:
        non_iso_losers.append (G)
        failcomb.append (G_comb)
        return True 

# Adds edges in parallel to the existing edges in the edge boundary of m-tuples in 
G, so that if m=1, d(tuple) >=3, if m=2, d(tuple)>= 4, and if m>=3, d(tuple) >=5 
# info_underlying is the information we have so far about what combination of 
edges make G immerse or not immerse K_{3,3}

def repair_d_m_tuple (G, m, global_info, info_underlying):
    H = G.copy()
    H.allow_multiple_edges (True)
    L = [H]
    if m == 1: needed = 3
    elif m == 2: needed = 4
    elif m >= 3: needed = 5
    for m_tuple in Combinations (H.vertices() , m):
        Lt = []
        for g in L:
            k = len (g.edge_boundary (m_tuple))
            if k >= needed: Lt.append (g)
            else: 
                for h in add_dX (g, m_tuple, needed- k):
                    if not h in Lt: 
                        if H.order()== 6: Lt.append (h)
                        elif is_loser (h, global_info, info_underlying): Lt.append 
(h)
        L = Lt
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    return L 

# Takes a simple graph H as input, and outputs all edge-minimal graphs G up to 
isomorphism whose undelying simple graph is H, are 3-edge-connected, internally 
4-edge-connected, and d(X) >= 5 for X\subset V(G) with |X|, |V(G) \X| >= 3, and 
have edge-multiplicity up to nine, and do not immerse K_{3, 3}
def repair (H, global_info, info_underlying):
    L = [H]
    #every graph in L, has the right number of edges in the edge-boundary of any 
<=m set of vertices
    for m in range (1, H.order()//2 + 1):
        Lt = []
        for minimal in L:
            for g in repair_d_m_tuple (minimal, m, global_info, info_underlying):
                if not g in Lt: Lt.append (g)
        if Lt == []: return []
        L = get_minimal (Lt)
    if H.order () == 6: L = [x for x in L if is_loser (x, global_info, 
info_underlying, [True, 'well'])]
    return L 

# Takes a simple graph G as input, and outputs all graphs H up to isomorphism 
whose undelying simple graph is G, are 3-edge-connected, internally 4-edge-
connected, and d(X) >= 5 for X\subset V(H) with |X|, |V(H) \X| >= 3, and have 
edge-multiplicity up to nine, and do not immerse K_{3, 3}
def Obstruction (G, global_info = [[{}, {}], [], 5]):
    H = G.copy()
    H.allow_multiple_edges (True)
    info_underlying = [[], [], [], []]
    
    losers = repair (H, global_info, info_underlying)
    if losers == []: return []
    #losers = [x for x in L if is_loser (x, global_info, info_underlying, [True, 
'well'])]
    obstruction = cutIso (losers)
    for step in range (8* H.size()):
        Lt = []
        for g in losers:
            for e in Set (g.edges()):
                if e_mult (g, e[0], e[1]) < 9 :
                    gplus = g.copy()
                    gplus.allow_multiple_edges(True)
                    gplus.add_edge(e)
                    Lt.append (gplus)
        losers_step = [x for x in Lt if is_loser (x, global_info, info_underlying, 
[True, 'well'])]
        if losers_step == []: break
        losers = cutIso (losers_step)
        for x in losers:
            if not x in obstruction: obstruction.append(x)
    return obstruction 

import datetime
import itertools 
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# L[i-6] consists of all graphs of order i, M [i-6] contains all connected graphs 
of order i, N[i-6] contains all graphs in M[i-6] which don't immerse K_{3,3}, and 
O[i-6] consists of all "obstructions" arising from the graphs in N[i-6]
global_info = [[{}, {}], [], 5]
[L, M, N, O] = [[], [], [], []]
exception = []
for i in [6, 7, 8, 9]:
    L.append (list(graphs(i)))
    M.append ([g for g in L[i -6] if g.is_connected()])
    print 'Size of L_', i, len (L[i -6]), 'Size of M_',i, len (M[i -6])
    now = datetime.datetime.now()
    N.append ([g for g in M [i -6] if not has_K33_im (g, global_info)])
    then = datetime.datetime.now()
    print 'N_', i, 'has size', len (N[i -6]), 'is calculated in', then - now
    now = datetime.datetime.now()
    O_i = []
    for g in N[i -6]:
        O_g = Obstruction (g, global_info)
        if not O_g == []: O_i += O_g
    then = datetime.datetime.now()
    print 'O_', i, 'has size', len (O_i), 'is calculated in', then - now
    now = datetime.datetime.now()
    for g in O_i:
        if not is_Type2 (g, True):
            exception.append (g)
    then = datetime.datetime.now()
    print 'The number of not type 2 obstructions until now is', len (exception), 
'Filtering out type 2 graphs for n =', i, 'took', then - now
    [global_info [1], global_info [2]]= [exception, i]
    O.append (O_i) 

Size of L_ 6 156 Size of M_ 6 112
N_ 6 has size 102 is calculated in 0:00:00.207323
O_ 6 has size 4016 is calculated in 0:00:45.566772
The number of not type 2 obstructions until now is 31 Filtering out
type 2 graphs for n = 6 took 0:00:08.609543
Size of L_ 7 1044 Size of M_ 7 853
N_ 7 has size 605 is calculated in 0:00:04.361521
O_ 7 has size 3709 is calculated in 0:01:28.735165
The number of not type 2 obstructions until now is 33 Filtering out
type 2 graphs for n = 7 took 0:00:03.575169
Size of L_ 8 12346 Size of M_ 8 11117
N_ 8 has size 4363 is calculated in 0:01:30.946276
O_ 8 has size 1405 is calculated in 0:18:34.866261
The number of not type 2 obstructions until now is 34 Filtering out
type 2 graphs for n = 8 took 0:00:01.157978
Size of L_ 9 274668 Size of M_ 9 261080
N_ 9 has size 34101 is calculated in 0:59:15.704713
O_ 9 has size 0 is calculated in 3:51:32.119485
The number of not type 2 obstructions until now is 34 Filtering out
type 2 graphs for n = 9 took 0:00:00.000004

for g in exception:
    g.show() 
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Appendix B

A second proof of Theorem 4.2

In this chapter, we present a proof for Theorem 4.2 which is not computer-assisted. For
convenience, we restate the theorem here, with a slightly different naming of graphs of
types 3 or 4. Before stating this theorem we will need to introduce four families of graphs
which do not have the rooted immersion ofW4. In preparation for that let us now introduce
two particular little graphs which will be helpful in defining our families. The rooted graph
J2,3 is obtained from a graph isomorphic to K2,3 with bipartition ({x, z}, {y, y′, y′′}) by
adding a second copy of each edge incident with x and then declaring x to be the root
vertex. We define the rooted graph J2,2 = J2,3 − y′′.

Theorem B.1. Let G be a 3-edge-connected, internally 4-edge-connected graph with |V (G)| ≥
5 and with a root vertex x. Then G contains a rooted immersion of W4 if and only if G
does not have one of the following types:

Type 1. G is type 1 if it has a (2, 3)-segmentation of width four in which u is in the head
of the segmentation.

Type 2. G is type 2 if there exists a set W ⊆ V (G) \ {u} with |W | ≤ 2 so that the graph
G∗ obtained by identifying W to a single vertex w has a doubled cycle C satisfying
one of the following:

(2A) u and w are not adjacent in C and G∗ = C + uw

(2B) u and w have a common neighbour v in C and G∗ = C + uv + vw

(2C) u and w are adjacent in C and G∗ = C + uw

Type 3. G is type 3 if it is isomorphic to a rooted graph obtained from J2,2 in one of the
following ways:

(3A) • Add a doubled path from x to z internally disjoint from {y, y′}, and
• for each vertex in {y, y′} either add another copy of an edge with this vertex
and x or do nothing.

(3B) Add a doubled path from x to z internally disjoint from {y, y′} and add an edge
with ends yy′
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Figure B.1: Type 2 graphs
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Figure B.2: Type 3 graphs

Type 4. G is type 4 if it is isomorphic to a rooted graph obtained from J2,3 in one of the
following ways:

(4A) For each vertex in {y, y′, y′′} either add another copy of an edge incident to this
vertex or do nothing.

(4B) • Add the edge yy′, and
• either add another copy of the edge xy′′ or do nothing.

(4C) Add the edge xz
(4D) Add the edges xy and yz

For type 3A we may add up to one more copy of uy and/or uy′ edge. For type 4A we may
also add up to one more edge incident to each of y, y′, y′′ in parallel to an existing edge. For
type 4B we may add up to one more copy of the edge uy′′. For convenience, throughout this
section, we will use the same labeling of vertices as in Figures B.2 and B.3 when graphs of
type 3 or 4 are dealt with.

To begin the proof of this theorem, assume (for a contradiction) that it is false, and choose
a graph G = (V,E) with root vertex x so that G is a counterexample to Theorem B.1 with
|V |+ |E| minimum. Our proof will involve numerous lemmas establishing properties of this
minimum counterexample G. This argument is divided over 5 subsections.
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Figure B.3: Type 4 graphs
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B.1 Connectivity I

For the purposes of determining if a given rooted graph has a rooted W4 immersion, the
problem reduces naturally to the case when the graph is 3-edge-connected and internally
4-edge-connected as we have seen (in Observations 4.6, 4.7). However, there is another type
of connectivity which will be useful for us. Say that a graph H with a root vertex u is near-
root k-edge-connected if d({u, v}) ≥ k for every v ∈ N(u). For brevity, we say that H is
nicely edge-connected if H is 3-edge-connected, internally 4-edge-connected, and near-root
5-edge-connected.

Lemma B.2. The graph G is nicely edge-connected.

Proof. By assumption G is 3-edge-connected and internally 4-edge-connected, so we only
need to show that it is near-root 5-edge-connected. Suppose (for a contradiction) this is false
and choose X ⊆ V (G) with x ∈ X and |X| = 2 so that d(X) < 5. Note that the internal
4-edge-connectivity of G implies d(X) = 4. If |V (G)| = 5, then G has type 1 relative to the
sequence of subsets X, so we must have |V (G)| ≥ 6. If GX has a rooted W4 immersion,
then it follows from internal 4-edge-connectivity that G also has a rooted W4 immersion,
giving us a contradiction. Otherwise, the minimality of the counterexample G implies that
the theorem holds for G.X, so it must have type 1, 2, 3, or 4. However, since the root vertex
of G.X has degree 4, it can only be type 1, so we may choose a nested sequence of sets
U0 ⊆ U1 . . . ⊆ Ut in G.X in accordance with this type. We may also assume that U0 consists
only of the root vertex (since it has degree four). For every 0 ≤ i ≤ t let U ′i be the subset
of V (G) obtained from Ui by deleting X (the root vertex of G.X) and then adding both
vertices (of G) contained in X. Now the graph G has type 1 relative to U ′0 ⊆ U ′1 . . . ⊆ U ′t
and this contradiction completes the proof.

We define the graph hat to be a graph obtained from K3 by choosing a vertex u and adding
a second copy of each edge incident with u. We call u the top of hat.

Lemma B.3. Let H be a 3-edge-connected and internally 4-edge-connected graph with
|V (H)| ≥ 3 and let w ∈ V (H) satisfy d(w) ≥ 4. Then H immerses a graph H ′ isomorphic
to hat where w is the top of the hat H ′.

Proof. If H − w has no edges, choose u, v ∈ V (H) \ {w} and note that e(u,w), e(w, v) ≥ 3
(by 3-edge-connectivity) so the graph H[{u, v, w}] has the desired immersion. Otherwise,
choose e = uv ∈ E(H) with w 6= u, v and form a new graph H∗ from H as follows: Add
a new edge e′ with ends u, v, then subdivide the edges e and e′, and then identifying the
two resulting vertices of degree 2 to a new vertex z. It follows from the internal 4-edge-
connectivity of G that the graph H∗ has 4 edge-disjoint paths P1, . . . , P4 from w to z. Now
the paths P1 − {z}, . . . , P4 − {z} together with the edge e form a rooted hat immersion in
H as desired.

Lemma B.4. The graph G− x is connected.

Proof. Assume (for a contradiction) that G − x is disconnected. Define two new rooted
graphs hook and hat with the figure below. As usual, we say that an arbitrary rooted graph
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H has a rooted hook (hat) immersion if there is an immersion of hook (hat) in H with the
added property that the root of hook (hat) corresponds to the root of H. Our argument
leans on finding rooted hook and hat immersions in subgraphs of G (note that we treat x
as a root vertex in any subgraph of G containing it).

Claim: Let H be a component of G− x and let H+ = G[{x} ∪ V (H)].

1. If H is trivial, then H+ has a rooted hook immersion.

2. If H is nontrivial, then H+ has a rooted hat immersion.

To prove the first part of the Claim, simply choose v ∈ V (H) and then apply 3-edge-
connectivity of G to choose 3 edge-disjoint paths from v to x. For the second part of the
claim, begin by choosing an edge e = uv ∈ E(H). Form a new graph H∗ from H+ by adding
a new edge e′ with ends u, v, then subdividing the edges e and e′, and then identifying the
two resulting vertices of degree 2 to a new vertex w. It follows from the internal 4-edge-
connectivity of G that the graph H∗ has 4 edge-disjoint paths P1, . . . , P4 from w to x. Now
the paths P1 − {w}, . . . , P4 − {w} together with the edge e form a rooted hat immersion in
H+ as desired.

It follows from a straightforward application of the above claim that G contains a rooted
W4 immersion in all of the following cases:

• G− x has at least four components

• G− x has at least two nontrivial components

• G− x has one nontrivial component and at least two trivial components

Since G is a counterexample to Theorem B.1 it cannot have a rooted W4 immersion. There-
fore we have just one remaining possibility: G − x has exactly one nontrivial component
and exactly one trivial component (G − x cannot have only trivial components thanks to
|V (G)| ≥ 5).

Let y be the vertex contained in the unique trivial component of G − x and note that
e(x, y) ≥ 3. Choose z ∈ N(x) \ {y} and form a new graph G′ from G by splitting off yx
with xz. Note that if {X,Y } is a partition of V (G) with x ∈ X for which eG′(X,Y ) <
eG(X,Y ) then it must be that z, y ∈ Y . Using this it is straightforward to verify that the
graph G′ is nicely edge-connected. If G′ contains a rooted W4 immersion, then G also has
a rooted W4 immersion and this is a contradiction. Therefore, by the minimality of the
counterexample G it must be that G′ has type 1, 2, 3, or 4. Now, G′ cannot be type 1 since
it is near-root 5-edge-connected. The graph G′ cannot be type 2 since dG′(x) = dG(x)−2 =
eG(x, y) + dG({x, y}) − 2 ≥ 6 (here dG({x, y}) ≥ 5 by the near-root 5-edge-connectivity of
G). To prepare for the remaining cases, observe that in the graph G′ the vertex y satisfies
N(y) = {x, z} and e(y, z) = 1. By our analysis, G′ must have type 3 or 4, but then by
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reversing the split used to obtain G′ we find that G has a rooted immersion of the following
graph.

x
y

It is straightforward to check that this graph has a rooted W4 immersion, and this final
contradiction completes the proof.

Lemma B.5. The graph G − x does not have a cut-edge e so that both components of
(G− x)− e have at least two vertices.

Proof. Suppose (for a contradiction) that the above scenario is realized. Let e = yy′, let H
be the component of (G− x)− e containing the vertex y, and define H+ = G[{x} ∪ V (H)].
Choose an edge f ∈ E(H+) incident with y, say f = yz, and form a new graph H∗ from
H+ by subdividing the edge f with a new vertex w and then adding a new edge between
w and z. It follows from the 3-edge-connectivity and internal 4-edge-connectivity of G that
the graph H∗ is 3-edge-connected. Choose 3 edge-disjoint paths P1, P2, P3 from x to w in
H∗. Now P1 − w,P2 − w,P3 − w are edge-disjoint paths in H+ (none of which contain the
edge e) all starting at x with two ending at z and one ending at y. It now follows from a
similar argument applied to the other component of (G− x)− e that the original graph G
has a rooted immersion of the following graph.

x

y y′

It is straightforward to check that this graph has a rooted W4 immersion, and this
contradiction completes the proof.

B.2 Four neighbours

We continue to work on our rooted graphG which is a minimum counterexample to Theorem
B.1. In this section we call on the connectivity results from the previous section to prove
that the root vertex x of G must have at most 3 neighbours. First we require a basic lemma
concerning 2-edge-connected graphs. A graph F is Eulerian if it is connected and every
vertex has even degree.

Lemma B.6. Let H be a 2-edge-connected graph and let z, y1, y2 ∈ V (H) be distinct. Then
there exists an Eulerian subgraph F ⊆ H with z ∈ V (F ) and (possibly trivial) pairwise
vertex disjoint paths P1, P2 so that Pi is a path from yi to V (F ).

Proof. Choose two edge-disjoint paths from z to y1 and let F be the union of these two
paths. If y2 ∈ V (F ) the proof is complete. Otherwise, choose two edge-disjoint paths Q1, Q2
from y2 to V (F ) and assume Q1, Q2 are internally disjoint from V (F ). If Q1 and Q2 have
both endpoints in common, then F ∪ Q1 ∪ Q2 is Eulerian and satisfies the lemma, so we
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may assume otherwise. If one of Q1, Q2 has z as an endpoint and the other has y1 as an
endpoint, then we may choose a path R ⊆ F from z to y1 and then Q1 ∪ Q2 ∪ R is an
Eulerian graph satisfying the lemma. Otherwise, we may choose i ∈ {1, 2} so that Qi has
an endpoint in V (F ) \ {z, y1}. Now the Eulerian graph F and the path P2 = Qi satisfy the
lemma, thus completing the proof.

Lemma B.7. Let H be a 2-edge-connected graph and let y1, . . . , y4 ∈ V (H) be distinct. Then
there exists an Eulerian subgraph F ⊆ H and (possibly trivial) pairwise vertex disjoint paths
P1, . . . , P4 so that Pi is a path from yi to V (F ).

Proof. We proceed by induction on |V (H)|. First suppose that the graph H has a cut-
vertex z. If there is a component K of H − z with no vertex in {y1, . . . , y4}, then the result
follows by applying induction to the graph H − V (K). Next suppose that z ∈ {y1, . . . , y4}
and observe that for every component K of H − z with V (K) ∩ {y1, . . . , y4} = {yi}, the
graph H[K ∪ {z}] contains an Eulerian subgraph spanning z and yi (this follows from the
existence of two edge-disjoint paths from z to yi). Similarly, ifK is a component ofH−z with
V (K)∩{y1, . . . , y4} = {yi, yj} then we may apply the previous lemma to choose an Eulerian
subgraph F of H[K ∪{z}] containing z. Combining the Eulerian subgraphs from each such
component gives a solution to the problem. Therefore, we may assume z 6∈ {y1, . . . , y4}.
Suppose that K is a component of H − z with V (K) ∩ {y1, . . . , y4} = {yi}. In this case we
may apply induction to the graph H ′ = H − V (K) with the vertex z in place of yi. Now
we may modify the structure from this solution on H ′ by appending a path from yi to z to
get a solution to the original problem. In the only remaining case, H − z has exactly two
components, say K,K ′, each containing two vertices of {y1, . . . , y4}. Now the result follows
by applying the previous lemma to H[K ∩ {z}] and H[K ′ ∪ {z}]. This completes the proof
in the case H has a cut vertex, so we may now assume H is 2-connected.

Suppose there exists a cycle C with |V (C)∩{y1, . . . , y4}| ≥ 3. If C contains all of y1, . . . , y4
there is nothing left to prove. Otherwise, choose i ∈ {1, . . . , 4} so that yi 6∈ V (C) and
choose a path P containing yi in the interior so that both ends of P are in V (C) but P
is internally disjoint from V (C). If both ends of P are in {y1, . . . , y4} then G has a cycle
containing y1, . . . , y4 and the proof is complete. Otherwise the cycle C together with a
suitable subpath of P satisfy the lemma. So, every cycle of H contains at most two of
y1, . . . , y4.

Choose a cycle C containing y1 and y2 (note that y3, y4 6∈ V (C)). Choose a path P with
y3 in the interior so that P has both ends in V (C) but is internally disjoint from C.
If y4 ∈ V (P ) there is a cycle containing at least three of y1, . . . , y4, contradicting our
assumptions. Similarly, if P has an endpoint in {y1, y2} there is a cycle containing y1, y2,
and y3 which is a contradiction. So, if P has ends z1, z2, the graph C is the disjoint union of
two internally disjoint paths, P ′, P ′′ from z1 to z2 each of which contains one of y1, y2 in its
interior. Finally, choose a path Q with y4 in the interior so that Q has both ends in C ∪ P
but is internally disjoint from V (C) ∪ V (P ). If Q does not have both ends in one of V (P ),
V (P ′), or V (P ′′) there is a cycle containing three of y1, . . . , y4 which is contradictory. So,
we may assume (without loss) that both ends of Q are in V (P ). If Q∪P does not contain a
cycle C ′ with y3, y4 ∈ V (C ′) we again get a contradiction as G has a cycle containing three
of y1, . . . , y4. So there must exist a cycle C ′ ⊆ P ∪ Q containing y3 and y4 and now the
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graph C ∪P ∪Q contains two vertex disjoint paths from {y1, y2} to V (C ′) and these paths
together with the subgraph C ′ satisfy the lemma.

Lemma B.8. The root vertex x of G satisfies |N(x)| ≤ 3.

Proof. Assume (for a contradiction) that |N(x)| ≥ 4. Let L be the set of leaf vertices in
G−x and note that Lemma B.5 implies that the graph H = G−x−L is 2-edge-connected.
Next we establish a sequence of properties concerning L and H.

(1) H does not have a vertex which is adjacent to three vertices in L.

Suppose for a contradiction that z ∈ V (H) is adjacent to the distinct vertices y, y′, y′′ ∈
L. Note that the graph G′ = G − {y, y′, y′′} must be connected (this follows from the
internal 4-edge-connectivity of G). If G′ contains two edge-disjoint paths from x to
z, then G has a rooted W4 immersion. So, we may assume that G′ has a cut-edge e
separating x and z. Note that the 3-edge-connectivity of G implies that e is the only
cut-edge in G′. Let e = uv, let Gx (Gz) be the component of G′ − e containing x (z)
and assume that u ∈ V (Gx) and v ∈ V (Gz). If Gx is nontrivial, then x 6= u (otherwise
x would be a cut-vertex) and Gx has two edge-disjoint paths from x to u. By combining
these paths together with the edge e, a path in Gz from v to z and the edges incident
with y, y′, y′′ we obtain a rooted W4 immersion. Thus Gx must be trivial. If v 6= z then
there are two edge-disjoint paths from v to z and combining these with e and the edges
incident to y, y′, y′′ we obtain a W4 immersion. So, we must have v = z. If Gz is also
trivial, then G is type 3. Otherwise, we may choose another vertex w ∈ V (Gz) \ {z}
and three edge-disjoint paths between w and z. Now these three paths together with
the edge e and the edges incident to y, y′, y′′ form a rooted W4 immersion.

(2) H does not have two vertices each adjacent to a vertex in L.

Suppose for a contradiction that z, z′ ∈ V (H) are distinct, y, y′ ∈ L and that yz, y′z′ ∈
E(G). Consider the graph G′ = G− {y, y′} and note that our assumptions imply that
G′ is 2-edge-connected. Choose two edge-disjoint paths P1, P2 in G′ starting at z and
ending at z′. If either path contains x, then these paths and the edges incident to
y, y′ form a rooted W4 immersion. Otherwise, there exist two edge-disjoint paths in
G′ starting at x and ending at a vertex of V (P1) ∪ V (P2) and we may choose such
paths Q1, Q2 edge-disjoint from P1, P2. If both Q1 and Q2 end in V (P1) or both end in
V (P2) then we have a rooted W4 as before. Otherwise, we may assume that Q1 ends in
V (P1) \ V (P2) and Q2 ends in V (P2) \ V (P1) and now P1, P2, Q1, Q2 together with the
edges incident to y, y′ form a rooted W4 immersion.

(3) |L| ≤ 1

If this condition is violated, then by the previous two properties we may assume that
L = {y, y′} and that z ∈ V (H) is adjacent to both y and y′. First suppose that there
exist distinct vertices z′, z′′ ∈ V (H)\{z} so that xz′, xz′′ ∈ E. Choose two edge-disjoint
paths P1, P2 in the graph H from z to z′. If z′′ is contained in one of these paths, then
these paths together with the edges xz′, xz′′ and the edges incident with y, y′ form a
rootedW4 immersion. Otherwise we may choose two edge-disjoint paths Q1, Q2 starting
at z′′ and ending at a vertex of V (P1)∪ V (P2) and we may further assume that Q1, Q2
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are edge-disjoint from P1, P2. If both Q1 and Q2 end in V (P1) or both end in V (P2)
then we have a rooted W4 immersion as before. Otherwise the path Q1 does not end
in {z, z′} and now the paths P1, P2, Q1 together with the edges xz′, xz′′ and the edges
incident with y, y′ form a rooted W4 immersion.

If there do not exist two vertices in V (H) \ {z} which are incident with x, then z must
be adjacent to x and there must be one vertex z′ ∈ V (H) \ {z} adjacent to x (since
|N(x)| ≥ 4). In this case, choose two edge-disjoint paths P1, P2 in the graph H from z
to z′. Now P1, P2 together with the edges xz, xz′ and the edges incident with y, y′ form
a rooted W4 immersion.

(4) If |N(x)| = 4 and L 6= ∅, the unique vertex in V (H) with a neighbour in L is not
adjacent to x.

Suppose for a contradiction that the stated condition is violated. So we may assume
that L = {y} and that z ∈ V (H) is adjacent to both x and y. Since |N(x)| = 4,
there are exactly two other neighbours of x, say z′, z′′ ∈ V (H) \ {z}. First suppose that
e(x, z′) > 1. In this case we may choose two edge-disjoint paths P1, P2 in H starting at
z′′ with one ending at z and the other ending at z′. Now the paths P1, P2 together with
the edges between x and {z, z′, z′′} and the edges incident with y form aW4 immersion.
So, we must have e(x, z′) = 1 and by a similar argument e(x, z′′) = 1. By assumption
we must have d({x, y}) ≥ 5 and this implies that e(x, z) > 1. Choose two edge-disjoint
paths P1, P2 in H from z to z′. If one of these paths contains z′′, then together with the
edges between x and {z, z′, z′′} and the edges incident with y we have a W4 immersion.
Otherwise we may choose two edge-disjoint paths Q1, Q2 in H starting at z and ending
in V (P1) ∪ V (P2) and we may assume Q1, Q2 are edge-disjoint from P1, P2. Now the
paths P1, P2, Q1, Q2 together with the edges between x and {z, z′, z′′} and the edges
incident with y form a W4 immersion.

With this last item in place, we are now ready to complete the proof. If |N(x)∩ V (H)| ≥ 4
then choose a set Y ⊆ N(x) ∩ V (H) with |Y | = 4. Otherwise the assumption |N(x)| ≥ 4
and the numbered properties imply that |N(x)∩V (H)| = 3 and |L| = 1. In this case we let
Y be the set consisting of N(x) ∩ V (H) together with the unique vertex in V (H) adjacent
to the vertex in L. Note that by the previous property we have |Y | = 4. Now we may
apply Lemma B.7 to choose an Eulerian subgraph K of H and paths P1, . . . , P4 from Y
to V (K) as indicated. Now we may perform splits to transform the graph K into a cycle
and it follows that G has a rooted immersion of W4, a contradiction which completes the
proof.

B.3 One step above an obstruction

The purpose of this subsection is to prove the following lemma, showing that G does not
have one of a few particular local operations taking it to a smaller rooted graph which is
still nicely edge-connected (and immersed in G).

Lemma B.9. The graph G does not have a vertex v ∈ N(u) and an operation matching
one of the descriptions below taking G to a nicely edge-connected graph G′.
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1. If |N(u)| ≤ 3, split a vertex v of degree 4, where e(u, v) = 2.

2. If e(u, v) ≥ 2, and d(v) ≥ 5, and there exists z ∈ N(v) \N(u): Split uv and vz.

3. If e(u, v) ≥ 2, and d(v) ≥ 5, and N(v) ⊆ {u} ∪N(u): Split uv and vz for z ∈ N(u).

4. If v ∈ N(u) satisfies e(u, v) = 3 and d(v) = 4, delete one copy of the edge uv.

Before starting the proof of the above lemma, we record below an immediate corollary of
Theorem 3.4 for m = 2 that, perhaps surprisingly, is useful for graphs on four vertices.

Corollary B.10. Let H be a graph with V (H) = {x1, x2, y1, y2} and root vertices x1, x2.
Assume that x1 and x2 are not adjacent and d(xi) ≥ 2 and d(yi) ≥ 3 for i = 1, 2. Then H has
a rooted D2 immersion if and only if there does not exist i, j ∈ {1, 2} so that d({xi, yj}) ≤ 2.

Proof. Since G is a minimum counterexample, Theorem 4.2 holds for G′. If G′ has a rooted
immersion of W4, then G also has a rooted immersion of W4 which is a contradiction. The
graph G′ cannot have type 1 since it is near-root 5-edge-connected. Therefore G′ must have
type 2, 3, or 4. Next we establish some conventions for working with these possibilities.

When G′ is type 2, we will assume that it is type 2 relative to the set W as appearing
in the definition. Furthermore, we will assume that W is minimal subject to this. So if
|W | = 2, then G′ is not type 2 relative to any singleton contained in W . If |W | = 2 we
let W = {w,w′} and if |W | = 1 we let W = {w}. As in the definition of type 2, let G∗
denote the graph obtained from G′ by identifying W to a single vertex w∗. We assume the
following

• If G′ is type 2A, the two internally disjoint u − w∗ doubled paths in G∗ have ver-
tex sequences u, x1, x2 . . . , xk, w

∗ and u, y1, y2 . . . , yl, w
∗ (see Fig. B.1a). We will also

assume NG′(u) ∩W = {w}.

• IfG′ is type 2B, the doubled path from u to w∗ inG∗ has vertex sequence u, x1, x2 . . . , xk, w
∗,

and the tripled 2-path from u to w∗ has vertex sequence u, y, w∗(see Fig. B.1b).

• IfG′ is type 2C, the doubled path from u to w∗ inG∗ has vertex sequence u, x1, x2 . . . , xk, w
∗

(see Fig. B.1c).

w
0

w

xk

w
0

w

xk

y

Figure B.4

Claim: If G′ has type 2 and |W | = 2 we have the following immersions:

1. If G′ is type 2A and N(u) ∩W = {w}, then H = G′[W ∪ {xk, yl}] satisfies

126



(a) H with roots xk and yl has a rooted immersion of D2 unless it is isomorphic to
one of the two graphs on the left in Figure B.5.

(b) H has an immersion of the graph on the left in Figure B.4 unless it is isomorphic
to the leftmost graph in Figure B.5 where xk is the top vertex and yl the bottom.

2. If G′ is Type 2B, thenH = G′[W∪{xk, y}] with roots xk and y has a rooted immersion
of D2 unless it is isomorphic to the graph on the right in Figure B.5.

3. If G′ is type 2C and does not have type 2A or 2B, then H = G′[W ∪ {xk}] satisfies

(a) H immerses a triangle.
(b) Suppose e(u,w) = 1 (and thus e(u,w′) = 2). Then H immerses the graph on the

right in Figure B.4.

w
0

w

xk

y

w
0

w

Figure B.5

Proof of Claim: For (a) of the first part, observe that the depicted graphs are the only
possible cases in which the vertex w has degree at most two in the graph H. Otherwise
Corollary B.10 implies that H has the desired rooted immersion unless there exists U ⊆
V (H) with |U | = 2 and dH(U) ≤ 2. If such a set U exists, degree considerations imply that
the underlying simple graph of H must be a path of length three from xk to yl where the
middle edge has multiplicity either 1 or 2 in H. In the former case we have a contradiction to
the internal 4-edge-connectivity of G; in the latter we have a contradiction to our minimality
assumption on W . The proof of (b) follows immediately from (a).

For the second part, Corollary B.10 implies the existence of a rooted D2 immersion in H
unless there exists U ⊆ V (H) with |U | = 2 and dH(U) ≤ 2. If such a set U exists, then
either H is as depicted on the right in the figure, or the underlying simple graph of H is a
path of length three from xk to y where the middle edge has multiplicity either 1 or 2 in H.
The former case contradicts the internal 4-edge-connectivity of G and the latter contradicts
the minimality assumption on W .

For (a) of the third part, note that the desired immersion exists if xk has two neighbours
in H or if there are two edges with both ends in W . Otherwise we may assume (without
loss) that e(xk, w) = e(y, w′) = 2 and e(w,w′) = e(y, w) = 1, but then dG({y, w′}) = 4
contradicting the near-root 5-edge-connectivity of G. For (b) we must have dH(w′) ≥ 2 or
we get a similar contradiction to the near-root 5-edge-connectivity. If dH(w′) = 2, then G′
is type 2A relative to {xk, w} which is a contradiction. So we must have dH(w′) ≥ 3 and
the result follows easily from this. This completes the proof of the claim.

The remainder of the proof of the lemma will be broken up into cases depending on the
operation taking G to G′ and then subcases depending on the type of the resulting graph.
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For each such subcase we will then have to consider all of the possibilities for the vertex v
(and possibly z). Our first case is where the operation taking G to G′ is Operation 1.

• If G′ is type 2A:
If NG(v) = {u, x1} or {u, y1}, then G is type 2A (a contradiction). Now if w /∈
NG(v), then |NG(u)| > 3, a contradiction. So, w ∈ NG(v) and without loss we have
NG(v) = {u,w, x1}. If |W | = 1, and k ≥ 2, then G has a rooted W4-immersion on
{u, v, x1, xk, w}. However, if k = 1, then G is type 2A (relative to {x1, w}).
Next suppose |W | = 2, and let H = G′[W ∪{xk, yl}] = G[W ∪{xk, yl}]. If H immerses
the graph on the left in Figure B.4, then G has a rooted W4-immersion. Otherwise
part 1 of the claim implies that G is type 2A relative to {w, x1}.

• If G′ is type 2B:
It is straightforward to verify that if N(v) = {u, x1}, then G has type 2B. Also, one
could easily see that if N(v) = {u, x1, y} then G immerses the graph in Fig. B.6a,
thus immerses W4. In the remaining cases, we have N(v) = {u, y}. If |W | = 1, then
G is type 2A (relative to {y, w}). Suppose |W | = 2, and let H = G[W ∪ {xk, y}] =
G′[W ∪ {xk, y}]. Observe that if there is an immersion of D2 in H with roots xk, y,
then G has a W4-immersion on {u, v, y, w,w′}. Otherwise part 2 of the claim implies
that G has type 2A relative to the doubleton consisting of y and the vertex in W
joined to y by two edges.

u

(a)

u w

y′

v y

(b)

u

v y

w

(c)

Figure B.6

• If G′ is type 2C (and not 2A or 2B):
IfNG(v) = {u, x1}, thenG has type 2C. We now split the analysis into cases depending
on |NG′(u)∩W |. First suppose N(u)∩W = {w}. If N(v) = {u,w}, then G is type 2A
(relative to {w,w′}). Also, it is easy to see that if N(v) = {u, x1, w} then G immerses
the graph in Fig. B.6a, thus immerses W4.
Next suppose NG′(u) ∩W = {w,w′}, where eG′(u,w) = 1 (, and so eG′(u,w′) = 2).
Note v is adjacent to w, otherwise |NG(u)| > 3. There are now two possibilities:
NG(v) = {u,w, x1}, or NG(v) = {u,w,w′}. In the latter case, G is type 2A (relative
to {w,w′}). In the former case, part 3 of the claim implies that G′[W ∪ {xk}] =
G[W∪{xk}] immerses a triangle. Therefore,G has aW4-immersion on {u, v, x1, xk, w}.

• G′ is type 3 or 4:
Observe that |NG′(u)| ≥ 3. So, in order for |NG(u)| ≤ 3 to hold, we must have
|NG(v)| = 2. Let NG(v) = {u, z}, where z is a neighbour of u in G′, and thus
eG′(u, z) ≥ 2. It could then immediately be seen that in all type 3, and 4 graphs
z 6= w. If G′ has type 3 and z = x1 then G has the same type as G′. So, suppose
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z ∈ {y, y′, y′′} (, see Fig. B.2 and B.3). If G′ has type 3B or 4B, and z = y, then G
immerses the graph in Fig. B.6b, which has a W4-immersion on {u, v, y, y′, w}.
For the remaining cases, we have NG′(z) = {u,w}. Note it follows from the internal
4-edge-connectivity of G that dG({v, z}) ≥ 4. So dG′(z) ≥ 4, so either eG′(u, z) ≥ 3,
or eG′(z, w) ≥ 2. If eG′(u, z) ≥ 3, G has a W4-immersion. Observe that it suffices
to verify this for G′ being type 4A, and z = y. In this case, G has a W4-immersion
on {u, v, y, y′, w}. On the other hand, if eG′(u, z) < 3, we have eG′(z, w) ≥ 2. So, in
particular G′ has type 4A or type 4B with z = y′′. In the latter case, G has type 3B.
In the former case, suppose z = y. Then if e(y′, w) = e(y′′, w) = 1, G has type 3A.
Else, G immerses the graph in Fig. B.6c, which has a W4-immersion.

Next, we consider the case where Operation 2 applied to G gives G′. Note that in this case
the vertex z must satisfy eG′(u, z) = 1, so G′ cannot be type 2B. Below we resolve the other
subcases.

• If G′ is type 2A:
Since eG′(u, z) = 1 we may assume (without loss) that z = w and v = x1. If |W | = 1,
and k < 3, then G has type 2B. However if k ≥ 3, there is a W4-immersion in G on
{u, x1, x2, xk, w}. So, suppose |W | = 2. If k = 1, then G is of type 2B. If k ≥ 2 and
G[W ∪{xk, yl}] = G′[W ∪{xk, yl}] has an immersion of the graph on the left in Figure
B.4, then G has a W4-immersion on {u, x1, xk, w, w

′}. Otherwise, by applying part 1
of the claim we deduce that for k = 2 the graph G is type 2B (relative to {x2, w})
and for k ≥ 3 the graph G has a rooted W4 immersion on {u, x1, x2, xk, w}.

• If G′ is type 2C (and not 2A or 2B):
Since eG′(u, z) = 1 it must be that |NG′(u) ∩ W | = 2. Let W = {w,w′}, where
eG′(u,w) = 1 (, and so eG′(u,w′) = 2), so z = w. There are two possibilities for v, it
could be x1 or w′. If v = w′, then G is type 2C. So suppose v = x1. Now by part 3 of
the claim we find that H = G[W ∪ {xk}] immerses the graph on the right in Figure
B.4. It follows from this that G has a rooted W4-immersion on {u, x1, xk, w, w

′}.

• If G′ is type 3 or 4:
Since eG′(u, z) = 1 it must be that G′ is type 4C and z = w. However, then G is type
4D.

The next step is to consider the cases where the operation on G which takes it to G′ is
Operation 3. Note that in this case the vertex z must satisfy eG′(u, z) ≥ 2 and v must
satisfy N(v) \N(u) = {u}. So, in particular, the root vertex u of G′ must have a neighbour
which has no other neighbour outside N(u) ∪ {u}. It follows that G′ cannot be type 2B.
Below, we consider the remaining cases:

• If G′ is type 2A:
First suppose that v = w. If |W | = 1, in order for NG(v) ⊂ {u} ∪ N(u) to hold, we
must have k = 1 and l = 1, thus |V (G)| < 5, a contradiction. If |W | = 2, then the
3-edge-connectivity of G implies that G[W ] is connected and we have a violation of
NG(v) ⊂ {u} ∪N(u). Therefore, v 6= w.
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Without loss we may now assume v = x1. Since eG′(u, z) ≥ 2 it must be that z = y1.
Now observe in order for NG(x1) ⊂ {u} ∪ N(u) to hold we must have k = 1 and
NG(x1) = {u, y1, w}. If |W | = 1, since |V (G)| ≥ 5, we have l ≥ 2. Then it is easy to
verify that G has a W4-immersion on {u, x1, w, y1, yl}. And if |W | = 2, part 1 of the
claim implies that there is an immersion of D2 with roots xk = x1 and yl (since w is
incident with at least three edges of δ(W )). Therefore, we get an immersion of W4 on
{u, x1, w, w

′, y1}.

• If G′ is type 2C (and not 2A or 2B):
Note x2 ∈ NG′(x1)\({u}∪NG′(u)), so we must have v 6= x1 (since N(v) ⊆ N(u)∪{u}),
and thus v ∈ W . If z ∈ W , then G too has type 2C. In the only remaining case
z /∈ W and v ∈ W . So z = x1. Now part 3 of the claim implies that G[{xk} ∪W ] =
G′[{xk} ∪W ] immerses a triangle. It follows that G has a rooted W4-immersion on
{u, x1, xk, w, w

′}.

• If G′ is type 3 or 4:
Observe that in all type 3 and 4 graphs, except for type 4C, if v ∈ N(u), then
N(v) \ ({u} ∪ N(u)) is nonempty. So the only case we need to check is when G′ is
type 4C, and eG′(u, z) ≥ 2. We may assume without loss of generality that z = y. If
v = y′, by splitting y′u and uy′′ we get an immersion of W4 in G. And if v = w, we
split yw,wy′ and split y′u, uy′′, and delete one copy of edge uw to get aW4-immersion
in G.

Lastly, we consider the cases where the operation on G which takes it to G′ is Operation 4.
It is easy to verify that G′ cannot be type 2, or 3B. If G′ is type 3A (with v ∈ {y, y′}) or 4A
or 4B (with v = y′′), then G also has the same type. Finally, if G′ is type 4C or 4D, then
G immerses the graph in Fig. B.7, which has a W4-immersion (split yu, uy′, and y′′u, uy′,
and delete y′w).

u w
y′

y

y′′

Figure B.7

B.4 Connectivity II

Thanks to Lemma B.8, we know that our minimum counterexample G has a root vertex
x with at most 3 neighbours. It follows that there is at least one vertex y ∈ N(x) with
e(x, y) ≥ 2. The main goal in this section is to prove a lemma which gives us an additional
edge-connectivity property which applies whenever such a vertex y also satisfies d(y) ≥ 5.
Before proving this, we need a lemma to resolve one rather special case.

Lemma B.11. The graph G does not contain distinct vertices y, z, z′ ∈ V \ {x} satisfying:
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• N(y) = {x, z, z′}

• e(y, x) = e(y, z) = e(y, z′) = 2

• d(z) = d(z′) = 3

Proof. Assume for a contradiction that the lemma is false. Note that z cannot be adjacent
to z′, as otherwise δ({y, z, z′}) = E(x, y), contradicting 3-edge-connectivity. Let N(z) =
{w, y}, and N(z′) = {w′, y}.

First suppose that w = x and note that we must have w′ 6= x (otherwise x would be a
cut vertex). It is not possible for V (G) = {x, y, z, z′, w′} since in this case w′ has to be
a neighbour of x, however d({x,w′}) < 5. It follows from this and the internal 4-edge-
connectivity of G that d(x) ≥ 6. Since e(x, {y, z}) = 3, x has a neighbour v 6= y, z. By
Lemma B.8 we may assume N(x) = {y, z, v}. Therefore, e(x, v) ≥ 3. Consider H = G −
{y, z, z′}. It follows from 3-edge-connectivity of G that H is 2-edge-connected. So, if v 6= w′

we may choose two edge-disjoint v − w′ paths in H. These paths together with the edges
incident with x, y, z, z′ in G give a rooted W4 immersion. If v = w′, then choose v′ ∈
V (G)\{x,w′}. Since w′ is a cut-vertex in G separating v′ from {x, y, z, z′}, there exist three
edge-disjoint v′ − w′ paths in G (not using xw′ edges). Now these paths together with the
edges incident with x, y, z, z′, w′ in G give a rooted W4 immersion.

Next suppose that w = w′. Let G∗ be the graph obtained from G− y by identifying {z, z′}
to a new vertex z∗ and consider x and z∗ to be root vertices of G∗. Note that |V (G∗)| ≥ 4
as otherwise we would have w ∈ N(x) and dG({x,w}) = 4 contradicting the near-root
5-edge-connectivity of G. If G∗ has a rooted immersion of D2 then the original graph G
has a rooted immersion of W4 and we are done. Otherwise, it follows from Theorem 3.4 for
m = 2 (and dG∗(z∗) = 2) that G∗ has a set of vertices X with x ∈ X and |X| ≤ 2 so that
the graph obtained from G∗ by identifying X to a single vertex is a doubled path. In this
case, we find that the original graph G has type 1, and this is a contradiction.

In the only remaining case we have that x,w,w′ are distinct and it follows from this that
the graph H = G− {y, z, z′} is 2-edge-connected. Choose two edge-disjoint paths P1, P2 in
H from x to w. If w′ is contained in one of these paths then P1, P2 together with the edges
incident to y, z, z′ give a rooted W4 immersion. Otherwise we may choose 2-edge-disjoint
paths Q1, Q2 from w′ to V (P1) ∪ V (P2) and we may assume that Q1, Q2 are edge-disjoint
from P1, P2. If either Q1 or Q2 ends at a vertex in (V (P1) ∪ V (P2)) \ {x,w} then this
path together with P1, P2 and the edges incident with y, z, z′ give a rooted W4 immersion.
Otherwise Q1 and Q2 both end in {x,w} and the paths P1, P2, Q1, Q2 together with the
edges incident with y, z, z′ give a rooted W4 immersion.

Lemma B.12. If the graph G contains a vertex y ∈ N(x) which satisfies d(y) ≥ 5 and
e(x, y) ≥ 2, then every internal edge-cut separating x and y has size at least 6.

Proof. Suppose for a contradiction that the lemma is false, and choose a minimal set Y ⊆ V
satisfying the following properties:

• x 6∈ Y and y ∈ Y ,
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• |Y |, |V \ Y | ≥ 2

• d(Y ) ≤ 5

Note that the 3-edge-connectivity of G implies that the subgraph induced on Y is connected.
Now we will choose a neighbour of y according to the following rule: If (N(y) ∩ Y ) \N(x)
is nonempty, let z ∈ (N(y) ∩ Y ) \N(x). Otherwise, let z ∈ N(y) ∩ Y . We proceed to prove
a series of properties concerning Y and z.

(1) There does not exist Z ⊆ V satisfying all of the following properties:

• x, z ∈ Z and y 6∈ Z,
• |Z| ≥ 3 and |V \ Z| ≥ 2
• d(Z) ≤ 5

Suppose (for a contradiction) that Z satisfies all of the above. If Y ∪ Z = V then
Y ′ = V \ Z satisfies Y ′ ⊆ Y and |Y ′| ≥ 2 and d(Y ′) ≤ 5 so it contradicts the choice of
Y . So all four of the sets Y \Z, Z \Y , Y ∩Z, and V \ (Y ∪Z) are nonempty. The edges
between x and y are contained in E(Y \ Z,Z \ Y ) so by uncrossing we have

d(Y ∩ Z) + d(Y ∪ Z) = d(Y ) + d(Z)− 2e(Y \ Z,Z \ Y ) ≤ 5 + 5− 4 = 6.

It now follows from 3-edge-connectivity that d(Y ∩ Z) = 3 = d(Y ∪ Z) and from
internal 4-edge-connectivity that Y ∩ Z = {z} and V \ (Y ∪ Z) = {z′} for some vertex
z′. Furthermore, we must have equality in the above equation, so d(Y ) = d(Z) = 5. The
number d(Y \Z) must be even since d(Y ) = d(Y \Z) + d(Y ∩Z)− 2e(Y \Z, Y ∩Z). If
d(Y \Z) = 4 then Y \Z cannot equal {y} by the assumption d(y) ≥ 5, but then Y \Z
contradicts the choice of Y . Therefore we must have d(Y \ Z) ≥ 6. It follows from a
parity argument (similar to that for d(Y \ Z)) that d(Z \ Y ) is even. Uncrossing gives
us

d(Z \ Y ) + d(Y \ Z) ≤ d(Y ) + d(Z) = 10

from which it follows that d(Z \ Y ) = 4 and d(Y \ Z) = 6. Furthermore, we must have
d(z, Z \ Y ) = 1 = d(w,Z \ Y ) and d(z, Y \ Z) = 2 = d(w, Y \ Z). Now form a new
graph H from G by identifying Z \ Y to a new root vertex (of degree 4). Note that
|V (H)| < |V (G) follows from the assumption |Z| ≥ 3. The graphH is 3-edge-connected,
internally 4-edge-connected, and near-root 5-edge-connected. If |V (H)| = 4 then Lemma
B.11 gives a contradiction. Otherwise |V (H)| ≥ 5 and Theorem 4.2 applies nontrivially
to H. Since the root vertex in H has degree 4 and H is near-root 5-edge-connected, H
must contain a rootedW4 immersion. Now the internal 4-edge-connectivity of G implies
that G also contains a rooted W4 immersion.

(2) N(y) ∩ Y ⊆ N(x) (in particular z ∈ N(x)).

Suppose (for a contradiction) the above condition is violated. It then follows from our
choice of z that z 6∈ N(x). Form a new rooted graph G′ from G by splitting off the
edges xy and yz. Note that dG′({x, z}) = dG(x) + dG(z) − 2 ≥ 5. It now follows from
(1) that the graph G′ is nicely edge-connected, but this contradicts Lemma B.9.
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(3) d({x, z}) > 6

Suppose (for a contradiction) that d({x, z}) ≤ 6. Note that Y ∪ {x} 6= V , so all four of
the sets {x}, {z}, Y \{z} and V \(Y ∪{x}) are nonempty. Suppose (for a contradiction)
that Y \ {z} contains a neighbour z′ of y. It follows from uncrossing that

d(Y ∪ {x}) + d(z) = d({x, z}) + d(Y )− 2e(x, Y \ {z}) ≤ 11− 2e(x, Y \ {z}). (B.1)

Since d(Y ∪ {x}), d(z) ≥ 3 it must be that the only edges between x and Y \ {z} are
two edges with endpoints x, y. However in this case the vertex z′ contradicts (2). So y
is an isolated vertex in the graph induced on Y \ {z}. Now uncrossing yields

4 + d(y) + d(Y \ {y, z}) ≤ d(x) + d(Y \ {z}) ≤ d({x, z}) + d(Y ) ≤ 11.

Since d(y) ≥ 5 it follows that Y \ {y, z} = ∅. The entire graph G must have at least
5 vertices, so the set W = V \ ({x} ∪ Y ) has size at least 2. Now internal 4-edge-
connectivity implies d(W ) = d(Y ∪ {x}) ≥ 4 so equation (B.1) implies d(z) = 3 and
d(W ) = 4. If e(y, z) = 1 then d(Y ) = d({y, z}) = d(y) + d(z) − 2 ≥ 6 which is a
contradiction. Therefore, e(y, z) = 2 and now the constraints d(W ) = 4, d({x, z}) ≤ 6,
and d(Y ) = d({y, z}) ≤ 5 imply that d(y,W ) = 2 = d(x,W ).

Now we will consider the graph H obtained from the graph induced on V \ {z} by
deleting the edges between x and y. First suppose that H has a cut-edge e separating
x and y and let U be the vertex set of the component of H − e that contains x. Since
dH(x) = 2 the set U \ {x} is nonempty and dG(U \ {x}) ≤ 3. It follows from this that
U = {x, y′} for some y′ ∈ N(x). However, we now have dG(U) = 4 and this contradicts
Lemma B.2. So the graph H has no cut-edge separating x and y and therefore H is
2-edge-connected. If H has a rooted D2 immersion with the roots x, y then the original
graph G has a W4-immersion. Otherwise it follows from Theorem 3.4 that H may be
obtained by taking a path from x to y and then adding one additional copy of each
edge. In this case G is type 2 giving us a contradiction.

With this last item in place we are ready to complete the proof of the lemma. Let G′ be
the graph obtained from G by splitting the x− y− z. It follows from (3) and (1) that G′ is
nicely edge-connected. Now we get a contradiction as in the proof of (2).

B.5 Proof of main theorem

In this section we will complete our proof of our theorem on rooted W4 immersions. We
require just one additional lemma before we commence with this argument.

Lemma B.13. The graph G does not have a vertex y ∈ N(x) satisfying the following:

• e(x, y) ≥ 2

• |N(y)| = 3

• N(y) \ {x} ⊆ N(x)
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Proof. Let N(y) = {x, y′, y′′}, so y′, y′′ ∈ N(x). Note by Lemma B.8 we may assume
N(x) = {y, y′, y′′}.

First, suppose e(y, y′) ≥ 2 and e(y, y′′) ≥ 2. Then it follows from 3-edge-connectivity that
d({x, y, y′, y′′}) ≥ 3. So we have, say, e(y′, V \ {x, y, y′, y′′}) ≥ 2, and thus dG({x, y′}) ≥ 7.
Now we split off edges xy and yy′ to get a new graph G′. Note |V (G′)| ≥ 5, and it follows
from Lemma B.12 and dG({x, y′}) ≥ 7 that G′ is nicely-edge-connected. However this gives
a contradiction to Lemma B.9.

Next, suppose e(y, y′) ≥ 2 and e(y, y′′) = 1. Then it follows from dG({x, y, y′}) ≥ 4 that
dG({x, y′}) ≥ 7. Now we split off edges xy and yy′ to get a new graph G′. As in the previous
case, G′ is nicely-edge-connected, and we get a contradiction.

Finally, suppose e(y, y′) = e(y, y′′) = 1. By near-root 5-edge-connectivity of G we have
d({x, y}) ≥ 5, so either e(x, y′) ≥ 2 or e(x, y′′) ≥ 2. Suppose (for a contradiction) that
both e(x, y′) ≥ 2 and e(x, y′′) ≥ 2. Then d({x, y, y′, y′′}) ≥ 3 implies that, say e(y′, V \
{x, y, y′, y′′}) ≥ 2. Thus d(y′) ≥ 5, and y′ has a neighbour z /∈ {x} ∪ N(x). Now, we form
a new graph G′ by splitting off xy′ and y′z. Lemma B.12 implies that G′ is nicely-edge-
connected and we will get a contradiction as before.

Therefore, suppose e(x, y′) ≥ 2, and e(x, y′′) = 1. It then follows from d({x, y, y′}) ≥ 4
that d(y′) ≥ 5. If y′ has a neighbour z ∈ V \ {x, y, y′′}, we will split off xy′ and y′z, and
as before, Lemma B.12 gives us a contradiction. Also, if N(y′) ⊆ {x} ∪ N(x), we would
have e(y′, y′′) ≥ 2, and using a similar argument as above for y′ (instead of y) we get a
contradiction.

Proof of Theorem B.1. We will establish a sequence of properties of G eventually proving
it cannot exist.

(1) There does not exist y ∈ N(x) so that e(x, y) ≥ 2 and d(y) ≥ 5.

Suppose (for a contradiction) that such a vertex y exists. If there exists a vertex z ∈
N(y)\{x} which is not a neighbour of x then we may form a new graph G′ by splitting
off the edges xy and yz. It follows from Lemma B.12 that G′ is nicely edge-connected,
but this contradicts Lemma B.9. It follows that N(y) \ {x} ⊆ N(x). Next suppose that
N(y) = {x, z} for some z ∈ V . As before, we form the graph G′ by splitting off the
edges xy with yz. Lemma B.12 implies that G′ is 3-edge-connected and internally 4-
edge-connected. In addition, it follows from dG({x, y, z}) ≥ 4 that dG′({x, z}) ≥ 5 and
this implies that G′ is nicely edge-connected. Now we get a contradiction by the same
argument as above. The only remaining case is resolved by Lemma B.13.

(2) There does not exist y ∈ N(x) so that e(x, y) ≥ 3.

Suppose (for a contradiction) that such a vertex y exists. The set N(y) \ {x} must be
nonempty by Lemma B.4. However d(y) ≤ 4 by (1), so the only possibility is e(x, y) = 3
and d(y) = 4. In this case we form a new graph G′ from G by deleting one edge with
ends x, y. It follows from the internal 4-edge-connectivity of G that dG′({x, y′}) ≥ 5
for every y′ ∈ N(x) \ {y} and thus G′ must be nicely edge-connected. However this
contradicts Lemma B.9.
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(3) If |V (G)| > 5, there does not exist y ∈ N(x) satisfying e(x, y) = 2 and d(y) = 4 and
E(y,N(x) \ {x}) = ∅.

Suppose (for a contradiction) that such a vertex y exists. Let e, e′ be the edges incident
with y and not x and assume e = yz and e′ = yz′. Construct a new graph G′ from G
by splitting the vertex y so as to form a new edge with ends x, z and another new edge
with ends x, z′. It follows from our assumptions that G′ is nicely edge-connected, but
this contradicts Lemma B.9.

(4) We have |N(x)| = 3 and 5 ≤ d(x) ≤ 6.

It follows from Lemma B.8 that |N(x)| ≤ 3. First suppose that d(x) = 4 and choose
y ∈ N(x) so that e(x, y) ≥ 2. Note that (2) implies e(x, y) = 2. Now d({x, y}) ≥ 5 (by
the near-root 5-edge-connectivity of G), but this implies d(y) ≥ 5 which contradicts
(1). So it must be that d(x) ≥ 5. It follows from this and (2) that |N(x)| = 3 and
5 ≤ d(x) ≤ 6 as claimed.

(5) There is at most one pair of adjacent vertices in N(x).

Suppose (for a contradiction) that N(x) = {y, y′, y′′} where y is adjacent to both y′

and y′′. If e(x, y) > 1 then (1) and Lemma B.13 give us a contradiction. Now (4) and
(2) imply that d(x, y) = 1 and e(x, y′) = 2 = e(x, y′′). It follows from the near-root
5-edge-connectivity of G and (1) that d(y′) = d(y′′) = 4. (Note that Lemma B.13
implies that y′ and y′′ are not adjacent.) If |V (G)| = 5 then G has type 2 and we
have a contradiction. Otherwise, note that the internal 4-edge-connectivity of G implies
that e(y, V \ {x, y, y′, y′′}) ≥ 2. Let N(y′) = {x, y, z} (, and note z may be equal to
y). Now, form a graph G′ by splitting the vertex y′ so as to form one new edge with
ends x, y and another with ends x, z. The graph G′ is 3-edge-connected and internally
4-edge-connected as a result of G having these properties. Furthermore, the near-root
5-edge-connectivity of G and the observation eG(y, V \ {x, y, y′, y′′}) ≥ 2 imply that G′
is nicely edge-connected. Now Lemma B.9 gives us a contradiction.

(6) d(x) = 6.

Suppose (for a contradiction) that this condition fails. Then by (4) and (2) we may
assume N(x) = {y, y′, y′′} where e(x, y) = e(x, y′) = 2 and e(x, y′′) = 1. Now (1) and
the near-root 5-edge-connectivity of G imply d(y) = d(y′) = 4. The vertices y and
y′ must be non-adjacent as otherwise we would have d({x, y, y′}) ≤ 3 contradicting
the internal 4-edge-connectivity of G. If |V (G)| = 5 then G has type 2, which is also
a contradiction, so |V (G)| ≥ 6. Now by (5) one of the vertices y, y′ must have no
neighbour in N(x) \ {x} and this gives a contradiction to (3).

(7) There does not exist a pair of adjacent vertices in N(x).

Suppose (for a contradiction) that N(x) = {y, y′, y′′} and that e(y′, y′′) > 0. Note that
by (6) and (2) we must have e(x, y) = e(x, y′) = e(x, y′′) = 2. It follows from this and
(1) that e(y′, V \ {x, y′′}), e(y′′, V \ {x, y′}) ≤ 1. However, since G is internally 4-edge-
connected we must have e(y′, V \{x, y′′}), e(y′′, V \{x, y′}) = 1. Note that this condition
together with (1) implies e(y′, y′′) = 1. If d(y) = 3 then d({x, y, y′, y′′}) = 3 and the
internal 4-edge-connectivity of G implies that G is type 4B. Otherwise (1) implies that
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d(y) = 4. If |V (G)| > 5 then y gives us a contradiction to (3); otherwise G has type 3B
which again gives us a contradiction.

With this last property in place, the proof is nearly done. Every y ∈ N(x) satisfies e(x, y) = 2
by (6) and (2) and then y must satisfy d(y) ≤ 4 by (1). If |V (G)| = 5 then (7) implies that
G has type 3A or 4A. Otherwise the internal 4-edge-connectivity of G implies that there
exists y ∈ N(x) with d(y) = 4. Now this vertex y gives a contradiction to (3) and this
completes the proof.
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