
Expanders in Power Law Graphs
by

Anton Cherniavskyi

M.Sc., Kyiv Polytechnic Institute, Ukraine, 2013

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c⃝ Anton Cherniavskyi 2018
SIMON FRASER UNIVERSITY

Fall 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Approval

Name: Anton Cherniavskyi

Degree: Master of Science (Computing Science)

Title: Expanders in Power Law Graphs

Examining Committee: Chair: Binay Bhattacharya
Professor

Valentine Kabanets
Senior Supervisor
Associate Professor

Andrei Bulatov
Supervisor
Professor

Bojan Mohar
Internal Examiner
Professor
Department of Mathematics

Date Defended: October 22, 2018

ii



Abstract

Random power-law graphs on n vertices can be defined in different ways. One model we
study describes graphs where the expected number of vertices of degree x is proportional to
a power law 1/xβ, for constant β > 0. In another model, the exact degree sequence follows
the power-law distribution and each vertex i has degree pn/iβ, for 0 < p ≤ 1 and β ≥ 0.

We show that for these models, power-law graphs contain “large” edge and vertex expanders.
Those are graphs in which all subsets of vertices up to a certain size have, respectively, many
outgoing edges or large vertex boundary. We also explore the trade-offs between expansion
of the subsets and their maximum size.

Our findings agree with and complement known results about the presence of linear size
expanders in Erdős-Rényi graphs and about the connected components of power-law graphs.

Keywords: random power-law graphs; expanders; expansion property; diameter
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Chapter 1

Introduction

A power-law distribution is widespread and has been studied for almost a century [Lot26].
Its natural examples range from Pareto principle [Par97] to the distribution of species within
genera of plants [Yul25], population of cities [Zip49], and magnitude of earthquakes [GR54].
As for computing science, many industrial SAT (boolean satisfiability) instances that reflect
real-world problems were found to follow a power law [ABL09a]. Another notable example
is Barabási-Albert model [BA99]: it describes preferential attachment processes known as
“the rich get richer”, and implicitly develops a power-law distribution with the exponent 3.

Generally, a power law is a relation f(x) = axb. A few examples are shown in Figure 1.1.
One of its important characteristics is that it is scale-free: f(c1x) = (acb

1)xb = c2f(x). For
instance, scale-free networks like the Internet topology and social networks are of a special
interest: they preserve the overall properties at any scale, resulting in their high resistance
to accidental failures [BB03, FFF99].

Power-law graphs are those with either degrees or degree frequencies being proportional
to a power law x−β, where β ≥ 0 is a constant. Figure 1.2 illustrates a power-law graph
with n = 200 vertices, each vertex i having degree n0.6/i0.4.

Graph expansion is another basic concept of this work. It was introduced in 1960s [KB67],
but expanders, graphs having a high expansion, were later rediscovered and received their
name in 1973 [Pin73]. One example of such a sparse yet well-connected graph would be a
Paley graph shown in Figure 1.3.

Expanders were proven to be beneficial for solving routing problems. Discovered routing
schemes have robustness and path diversity close to those of the underlying graph [FGRV14],
and achieve an optimal congestion in case of power-law graphs [GMS03], all this while using
only linear number of edges. Decomposing a graph of arbitrary density into a collection of
edge expanders is a base of some divide-and-conquer algorithms [MS17]. Fast convergence
of random walks on expanders [Mih89] helps with graph exploration. In addition, expanders
often arise when justifying the results like SAT lower bounds [AHI05, ABBO+05, PRST16],
the hardness of pseudorandom generators [ABSRW04] for various proof systems, and even
PCP theorem [Din07].
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Figure 1.1: Power-law functions

Figure 1.2: Example of a power-law graph and its degree distribution

The original motivation for this research was trying to learn about SAT formulas with
power-law structure. Intuitively, such an additional information may lead to faster algo-
rithms for some restricted families of formulas.

Another intriguing idea was about the presence of expanders in the variable incidence
graphs (VIG) of SAT formulas. Expanders would represent tight and relatively short con-
nections between the variables. Thus one would typically assume that if there are no large
expanders in VIG, it might indicate that satisfiability of the formula could be efficiently
decided, e.g., via decomposition.

In this thesis, we work with several models of random power-law graphs, study their
properties and trade-offs between the parameters, and show existence of expanding sub-
graphs for different ranges of the exponent β.

1.1 Related Work

The following results inspired us to look for expanders inside power-law graphs.
Aiello, Chung, and Lu [ACL01] introduced a random graph model for power-law graphs

and described different properties, including connectivity and emergence of giant connected

2



Figure 1.3: 13-Paley graph is an example of an expander

components. This model is asymptotically equivalent to our coin toss model from Section 3.2.
The difference is that our model defines the expected degree sequence rather than the exact
one, and that is crucial for our proof.

Chung and Lu [CL04] found the average distance in random graphs with given expected
degree sequences, both general and power-law with 2 < β < 3. The latter produces the
“octopus” graphs described in Section 3.5.

Ansotegui, Bonet, and Levy [ABL09b] presented a power-law model which was shown to
fit well industrial SAT instances used in recent international competitions for SAT solvers.
They also focused on fitting the SAT instances, i.e., estimating the appropriate distributions
that would produce analogous degree sequences. We talk about this model in Section 3.4.

Krivelevich [Kri18] looked for a linearly sized expanders inside graphs that are “locally
sparse”, as well as inside random G(n, p) graphs. The paper also contained the algorithm
for actually finding the expanding subgraphs.

Finally, Mihail, Saberi, and Tetali [MST06] capitalized on the structure of power-law
graphs by displaying that one can discover the nodes via a random walk with lookahead in
sublinear time. Considering another work by Mihail [Mih89], this result also hints on possible
expansion properties of graphs with paths of constant length replaced by new edges.

As can be seen, there is a substantial amount of research done concerning separately
power-law models and expander graphs due to their wide popularity and usefulness. Gkant-
sidis, Mihail, and Saberi [GMS03] made significant steps in the direction of combining these
two topics. They considered random power-law graphs with the exponent 2 < β < 3, degrees
of vertices between 3 and O(

√
n), and volume O(n). They also had to slightly modify graph

construction used by Aiello et al. [ACL01] in order to ensure certain connectivity proper-
ties. These graphs were shown to have conductance Θ(1), which generalizes the notion of
(n/2, Θ(1)) edge expansion.

3



Table 1.1: Comparison of power-law graph models

Model Object Definition

Permutation model
exact

degrees deg(i) = pn

iβ

Model 3 [ACL01]
frequencies
of degrees

|{i ∈ V | deg(i) = x}| = eα

xβ

Coin toss model
expected

E
G

[|{i ∈ V | deg(i) = x}|] = eα

xβ

Model 4 [CL04] degrees E
G

[deg(i)] = wi = ci−1/(β−1), β > 2

1.2 Contribution of the Thesis

We defined the models of power-law graphs, which would complement the ones studied
earlier. Table 1.1 presents their comparison. The permutation model was chosen so as to fit
the uniformly random case when the exponent β = 0.

The main result is that, under these models, the subgraphs containing the vertices of
sufficiently large degrees are edge or vertex expanders w.h.p.

More precisely, in the coin toss model, if β < 1, actually the whole graph is an edge
expander. For 1 ≤ β ≤ 1.6 we have a linear size expanding subgraph, and for β > 1.6 the
size of the expander is only Θ(n1/β). In all the cases edge expansion is close to one half of
the expected average degree d, which is linear in the size of the subgraph.

In the permutation model, the case β = 0 matches the previously known fact that the
whole graph has edge and vertex expansion almost d − 2. When β > 0, we generalize the
argument to show existence of the edge expanders of size n/2 with expansion d/2, but the
average degree d deteriorates for larger β. Also, if β > 1, there is an additional constraint
p ζ(β) > 2 which essentially limits β ≤ 1.72. Meanwhile, vertex expansion of the subgraph
with vertices of degree at least d0 is almost d0/2− 2 whenever β > 0.

Obtained results about linear size expanders inside power-law graphs resemble existing
result of the same nature for Erdős-Rényi graphs [Kri18]. The size of our expanders is also
comparable to the sizes of the largest connected components in power-law graphs [ACL01],
i.e., we say that the largest components are not just connected, but “highly connected”.
Table 1.2 summarizes these details.

We proceed by showing that the core of the “octopus” graph with the vertices of degree
at least n1/ log log n is an edge expander w.h.p. and it contains a large vertex expander.

As a side result, we prove the logarithmic diameter of vertex expanders with only small
expanding subsets of size at most ϵn, for some constant ϵ > 0, as opposed to ϵ = 1/2 in the
canonical result.

4



Table 1.2: Consistency of sizes between our results and the other papers

β (0; 1.6] (1.6; 1.72] (1.72; 3.48) (3.48;∞)

The largest components
in power-law graphs [ACL01] the giant component, Θ(n) O

(
n2/β log n

)
Our edge expanders
in coin toss model Θ(n) Θ

(
n1/β

)
Vertex/edge expanders
in G(n, p) [Kri18] Θ(n)

Our edge expanders
in permutation model Θ(n) —

To sum up, our findings provide better understanding of the structure of power-law
graphs from some general families for a wide range of parameters. This knowledge can be
further used to employ any techniques applicable to expanders on these power-law graphs.

1.3 Our Methods

For the coin toss model, we first obtain the necessary lower bounds on the expected average
degree. This is done by approximating the expected size of an arbitrary cut, applying
Chernoff concentration bounds, and following the common argument for edge expansion.
Then we decide the size of an expanding subgraph and try to keep it linear in the size of
the whole graph by choosing an appropriate minimum degree of vertices to be included in
this subgraph.

While working with the permutation model, we adopt and generalize the existing ap-
proaches from Section 2.5.2 and 2.5.3 for edge and vertex expansion of regular graphs.

Throughout this work, we deal with varying approximations of harmonic numbers, so
we have to treat different ranges of the exponent β separately. Lastly, our proof of small
diameter of vertex expanders resembles a common technique for graph decomposition.

1.4 Thesis Structure

In Chapter 2 we present all the necessary definitions, approximations, and known results
about expanders, on which this research is based. Chapter 3 contains the detailed description
of the main models of power-law graphs used in this work. In Chapter 4 we show the
existence of expanding subgraphs for the coin toss and permutation models, and analyze
the diameter of graphs with vertex expansion of small sets. Finally, we compare the behavior
of the random graphs under different models in Chapter 5, including their diameters and
sizes of expanders and connected components.
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Chapter 2

Preliminaries

Here we explain the basic definitions as well as the notation used in the following chapters.

2.1 Probability Theory and Inequalities

We say an event E(n) over a sample space Ω happens with high probability (w.h.p.) when

lim
n→∞

Pr
Ω

[E(n)] = 1 (2.1)

2.1.1 Union Bound

If Ω is a sample space and E1, . . . , En are events over Ω, then

Pr
Ω

[
n∪

i=1
Ei

]
≤

m∑
i=1

Pr
Ω

[Ei] (2.2)

2.1.2 Chernoff Bounds

Let X1, . . . , Xn ∈ {0, 1} be independent random variables, and X =
n∑

i=1
Xi with expected

value µ = E[X] =
n∑

i=1
Pr[Xi = 1].

Pr[X ≥ (1 + δ)µ] ≤

exp(−δ2µ/(2 + δ)) if δ > 1,

exp(−δ2µ/3) if 0 < δ ≤ 1.
(2.3)

Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), for 0 < δ < 1 (2.4)

We can combine these two:

Pr[|X − µ| ≥ δµ] ≤ 2 exp(−δ2µ/3), for 0 < δ < 1 (2.5)

6



2.1.3 Combinations (
n

k

)k

≤
(

n

k

)
= n!

k!(n− k)!
≤
(

en

k

)k

(2.6)

It is easy to show:
n

k
≤ n−m

k −m
, for 0 ≤ m < k ≤ n, so

(
n

k

)k

= n

k
. . .

n

k
≤ n

k

n− 1
k − 1

. . .
n− k + 1

1
=
(

n

k

)
(

n

k

)
= n

k

n− 1
k − 1

. . .
n− k + 1

1
≤ nk

k!
= kk

k!

(
n

k

)k

≤
(

en

k

)k

The last step uses the Maclaurin series of the exponential function:

ek =
∞∑

n=0

kn

n!
≥ kk

k!
(2.7)

2.1.4 Stirling’s Approximation and the Number of Perfect Matchings

Let M(m) denote the number of perfect matchings on the set of even size m:

M(m) = (m− 1)!! = (m− 1)(m− 3) . . . (3)(1) = m!
2m/2(m/2)!

(2.8)

We can use Stirling’s approximation:

m! = (1 + o(1))
√

2πm(m/e)m (2.9)

M(m) = (1 + o(1))
√

2πm(m/e)m

2m/2√πm(m/2e)m/2 = (1 + o(1))
√

2(m/e)m/2 (2.10)

2.1.5 The Upper Bounds for the Sum of a Special Series

The following sum Sn occurs in several proofs. We will need to upper bound it for n→∞
and some constants 0 < α ≤ 1/2, c1 > 0, and c2 > 0:

Sn =
αn∑
s=1

(c1(s/n)c2)s (2.11)

Each subsequent bound will require more rigorous analysis.

Proposition 2.1. Sn < 1, when c2 ≥ 1 + log c1.

Proof. Sn =
αn∑
s=1

(c1(s/n)c2)s ≤
αn∑
s=1

(c1αc2)s ≤
∞∑

s=1
2−c3s ≤

∞∑
s=1

2−s < 1, where c3 = c2− log c1

is a constant greater or equal 1:

c3 ≥ 1 ⇐⇒ c2 ≥ 1 + log c1 (2.12)

c1αc2 ≤ c12−c2 = 2−c3 ≤ 2−1 (2.13)

7



Proposition 2.2. Sn ≤ o(1) for some sufficiently small α.

Proof. First, we pick α so that (c1αc2) < 1/10, using some constant c3 > 10:

α = (c1c3)−1/c2 (2.14)

Then we consider small and large values of s separately. Define 0 < ϵ < 1 such that

ϵ < (1− ϵ)c2 ⇐⇒ ϵ <
c2

1 + c2
(2.15)

S′ =
nϵ∑

s=1
(c1(s/n)c2)s ≤

nϵ∑
s=1

(
c1

n(1−ϵ)c2

)s

≤ nϵ c1
n(1−ϵ)c2

= o(1) (2.16)

S′′ =
αn∑

s=nϵ+1
(c1(s/n)c2)s <

αn∑
s=nϵ+1

10−s ≤ αn

10nϵ = o(1) (2.17)

Sn = S′ + S′′ ≤ o(1).

Proposition 2.3. Sn ≤ o(1) for any α ≤ 1/2 and c2 > max{1, log c1}.
Moreover, c1 and c2 can be superconstants in terms of n, as long as c1 = o

(
nc2−1

)
.

Proof. The argument is identical to the known one [GMS03].

For s ≥ 1, let’s define f(s) = (c1(s/n)c2)s, then Sn =
αn∑
s=1

f(s). The first two derivatives

will help us understand the behavior of f(s).
First, the simple case is when c1 = c2 = 1:

d

ds

(
s

n

)s

= d

ds
exp

(
s ln s

n

)
=
(

s

n

)s (
ln s

n
+ s

1/n

s/n

)
=
(

s

n

)s (
ln s

n
+ 1

)
d2

ds2

(
s

n

)s

=
(

s

n

)s
(

1
s

+
(

1 + ln s

n

)2
)

> 0

We can see that
(

s

n

)s

is concave up for any s ≥ 1 and attains its minimum at s = n/e.
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Then we perform similar steps for f(s):

f ′(s) = d

ds

(
c1

(
s

n

)c2)s

= d

ds
exp

(
s ln

(
c1

(
s

n

)c2))
=

=f(s)
(

ln
(

c1

(
s

n

)c2)
+ s

c1c2(s/n)c2−1(1/n)
c1(s/n)c2

)
=

=f(s)
(

ln
(

c1

(
s

n

)c2)
+ c2

)
=

=f(s)c2

(
ln c

1/c2
1 s

n
+ 1

)
=

=f(s)c2

(
ln s

n
+ ln c1

c2
+ 1

)

(2.18)

f ′′(s) = d2

ds2

(
s

n

)s

=
(

s

n

)s
(

1
s

+
(

1 + ln s

n

)2
)

=

=c2
s

f(s) + c2

(
ln s

n
+ 1

)
f ′(s) + (ln c1)f ′(s) =

=c2
s

f(s) + c2

(
ln s

n
+ ln c1

c2
+ 1

)
f ′(s) =

=c2
s

f(s) + (f ′(s))2

f(s)

(2.19)

Define s0 to be an extreme point of f(s):

f ′(s0) = 0 (2.20)

ln c
1/c2
1 s

n
= −1 (2.21)

s0 = n

ec
1/c2
1

(2.22)

And verify that f ′′(s) > 0 for any s ≥ 1:

c2
s

f(s) + (f ′(s))2

f(s)
> 0 (2.23)

c2
s

+
(

f ′(s)
f(s)

)2
> 0 (2.24)


f ′(s) < 0 if s < s0,

f ′(s) = 0 if s = s0,

f ′(s) > 0 if s > s0.

(2.25)

f ′′(s) > 0, for s ∈ [1; αn] (2.26)

9



Therefore, f(s) is concave up on the whole interval [1; αn] with these endpoints:

f(1) = c1
nc2

(2.27)

f(αn) = (c1αc2)αn ≤
(
c12−c2

)αn (2.28)

f(1) = o(1/n) when c2 > 1, and f(αn) = o(1/n) when c12−c2 < 1 ⇐⇒ c2 > log c1.
Additionally, both c1 and c2 might be superconstants in terms of n, if this holds:

c1 = o
(
nc2−1

)
(2.29)

To sum up, given c2 > max{1, log c1},

Sn =
αn∑
s=1

f(s) ≤
αn∑
s=1

max{f(1), f(αn)} = o

(
αn

n

)
= o(1).

Note that if c2 in Proposition 2.3 is not large enough, there is no advantage in terms of
the size of expanding sets compared to Proposition 2.2:

c1αc2 < 1 ⇐⇒ α < c
−1/c2
1 (2.30)

2.2 Generalized Harmonic Numbers and Riemann Zeta
Function

Generalized harmonic numbers are defined as

Hn,m =
n∑

k=1

1
km

(2.31)

We will extensively use these approximations for large n:

Hn,β ≈



n1−β

1− β
if β < 1,

ln n if β = 1,

ζ(β) if β > 1.

(2.32)

The zeta function was introduced in 1737 by Euler, later Riemann allowed its argument
to be a complex number. Riemann zeta function is defined for all s ∈ C with ℜ(s) > 1,
see Figure 2.1:

ζ(s) =
∞∑

n=1

1
ns

(2.33)

For x ∈ R, we know that ζ(x) ≈ 1 + 2−x when x≫ 1, and lim
x→∞

ζ(x) = 1.

10



Figure 2.1: Riemann zeta function for s ∈ C with ℜ(s) > 1 and ℑ(s) = 0

For m > 1 as n → ∞, applying the Euler-Maclaurin formula (A.1) to the remainders∑
n>N

n−s of the sum (2.33) provides the following connection:

ζ(s) = HN,s + 1
(s− 1)N s−1 + 1

2N s
+ O

( 1
N s+1

)
, for some N ≫ 1 (2.34)

Hn,m = ζ(m)− 1
(m− 1)nm−1 −

1
2nm

−O

( 1
nm+1

)
= ζ(m)− o(1) (2.35)

2.3 Gilbert and Erdős-Rényi Random Graphs

The most commonly used models of uniform random graphs are G(n, p) and G(n, m) intro-
duced by Gilbert [Gil59] and by Erdős and Rényi [ER59].

G(n, p) contains all graphs where each pair of vertices is connected by an edge with

probability p. We denote the maximum number of edges N =
(

n

2

)
, then the expected

number of edges in such graphs is pN .

Pr
G∼G(n,p)

[G has m edges] =
(

N

m

)
pm(1− p)N−m (2.36)

Pr
G∼G(n,p)

[deg(v) = k] =
(

n− 1
k

)
pk(1− p)n−k−1, for v ∈ V (G) (2.37)

On the other hand, G(n, m) describes the graphs with n vertices and exactly m edges.
They may be generated by successively selecting m pairs of not yet connected vertices, so

that each of
(

N

m

)
possible graphs is chosen uniformly at random.

Erdős and Rényi [ER60] depict the following structural properties of G(n, p) graphs.
When p = o(1/n), the graph is simply a disjoint union of trees. Then consider the case
p = c/n, where c is some constant. If c < 1, the size of the largest component is just O(log n),

11



at the critical point c = 1 its size is Θ
(
n2/3

)
, and a unique giant component of size Θ(n)

emerges when c > 1. Finally, the graphs are disconnected w.h.p. when p < (1 − ϵ) log n/n

and become connected w.h.p. when p > (1 + ϵ) log n/n, for any ϵ > 0 [ER59].
As per Chung and Lu [CL01, CL04], the diameter of G(n, p) is Θ(log n) when p = c/n,

for some constant c > 1, and (1+o(1)) log n

log np
if p = ω(1/n). The diameter of a disconnected

graph is assumed to be the maximum diameter of its connected components.
If we choose m = pN , G(n, p) and G(n, m) models are almost identical for large n and

p > log n/n, but some important properties might be different for smaller p. For example,
let p = 3/n and so m = 3

2
(n− 1). In this case G(n, p) is disconnected w.h.p., while G(n, m)

yields a connected graph with high expansion [Mah09] as almost 3-regular.
Independence of edges of G(n, p) makes it similar to our coin toss model for power-law

graphs, and G(n, m) corresponds more to m edges model and permutation model, which
will be defined in Chapter 3.

2.4 Expander Graphs

2.4.1 Combinatorial Expansion

First, we look at the combinatorial notions of expansion.

Definition 2.4. A graph G is called (αn, γ) edge expander if for some γ > 0

min
S⊂V

0<|S|≤αn

|∂S|
|S|
≥ γ, (2.38)

where the left-hand side expression with α = 1/2 is the Cheeger constant h(G), and

∂S = e(S, V \S) = {(u, v) ∈ E | u ∈ S, v ∈ V \S}. (2.39)

Definition 2.5. Analogously, (αn, γ) vertex expander satisfies the following condition:

min
S⊂V

0<|S|≤αn

|NG(S)|
|S|

≥ γ, (2.40)

where NG(S) is the external neighborhood of S in G, i.e.,

NG(S) = {v ∈ V \S | ∃u ∈ S, (u, v) ∈ E}. (2.41)

Definition 2.6. (αn, γ) unique-neighbor expander is a graph satisfying

min
S⊂V

0<|S|≤αn

|{v ∈ V \S | v is adjacent to exactly one u ∈ S}|
|S|

≥ γ. (2.42)
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2.4.2 Spectral Expansion

Let the vertex v have deg(v) and define T = diag(deg(v)). The Laplacian of G without
loops or multiple edges is L = T − 1

2 LT − 1
2 . If G is d-regular, then L = I −A/d [Chu97].

Lu,v =


deg(v) if u = v,

−1 if (u, v) ∈ E(G),

0 otherwise.

(2.43)

Lu,v =


1 if u = v and deg(v) ̸= 0,

− 1√
deg(u) deg(v)

if (u, v) ∈ E(G),

0 otherwise.

(2.44)

The spectrum of G are the eigenvalues of L {λ1, . . . , λn}, 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Eigenvalue 0 has eigenvector T 1/21.

Let g : V → R be an arbitrary function, g = T 1/2f for some f , and both g and f are
viewed as column vectors. The Rayleigh quotient is

⟨g,Lg⟩
⟨g, g⟩

=
∑

u∼v (f(u)− f(v))2∑
v f(v)2 deg(v)

(2.45)

and it is related to the spectral expansion of G, also known as the spectral gap,

λG = λ2 = inf
f⊥T

1
2 1

∑
u∼v (f(u)− f(v))2∑

v f(v)2 deg(v)
(2.46)

2.4.3 Connections Between Different Types of Expansion

Trivially, vertex expansion γ1 implies edge expansion γ1. For d-regular graphs, edge expan-
sion γ2 implies vertex expansion γ2/d.

The Cheeger inequalities [Che69, HLW06, Chu07] provide the link between combinato-
rial and spectral expansion:

h2(G)
2

(1)
≤ λG

(2)
≤ 2h(G), (2.47)

or equivalently λG

2
≤ h(G) ≤

√
2λG (2.48)

2.4.4 Construction of Expanders

There are many ways to generate expander graphs: algebraic constructions and zig-zag prod-
uct [HLW06, Vad12], lifts [AL06], splicers and selectors [FGRV14], local edge flips [ABL+16],
random coverings of a fixed good expander [Pud15], and so on.
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In Chapter 4 we show yet another way — random power-law graphs contain expanding
induced subgraphs with vertices of large degrees.

2.5 Expansion of Random Regular Graphs

Theorem 2.7 (Theorem 4.16 [HLW06]). ∀d ≥ 3 ∀δ > 0 ∃γ, α > 0 such that a random
d-regular graph on n vertices is (αn, γ) edge expander and (αn, γ) vertex expander w.h.p.,
γ = d− 2− δ.

2.5.1 Vertex Expansion of Leftregular Bipartite Graphs

Here G is assumed to be a bipartite multigraph with n vertices on each side.

Definition 2.8. A graph G is called d-leftregular if each left-vertex is connected to exactly
d vertices from the right. In this case expansion is checked for all subsets S of left-vertices.

Theorem 2.9 ([Vad12]). ∀d ≥ 2 ∃α > 0 ∀n : a uniformly random d-leftregular G is
(αn, d− 2) vertex expander w.h.p.

Proof. For a subset S of a fixed size s ≤ αn from the left side, NG(S) is a set of at most sd

vertices from the right labeled v1, v2, . . . , vsd. For each successively chosen vi from NG(S),

Pr
G,S

[vi ∈ {v1, . . . , vi−1}] = |{v1, . . . , vi−1}|
n

≤ i− 1
n
≤ sd

n

Pr
G,S

[|NG(S)| ≤ (d− 2)s] ≤ Pr
G,S

[at least 2s repeats in NG(S)] ≤
(

sd

2s

)(
sd

n

)2s

Pr
G

[∃ non-expanding S] ≤
(

n

s

)(
sd

2s

)(
sd

n

)2s

≤
(

en

s

)s (esd

2s

)2s (sd

n

)2s

=
(

e3d4s

4n

)s

Denote c = (e3d4)/4 and choose α = e−3d−4, so that cα = 1/4.

Pr
G

[G is not (αn, d− 2) vertex expander] ≤
αn∑
s=1

(
c

s

n

)s

= o(1).

2.5.2 Edge Expansion of Regular Graphs

Theorem 2.10 ([Mag06]). ∀d ≥ 3 ∀δ > 0 ∃γ, α > 0 ∀even n : a random d-regular graph
G = (VG, EG) is (αn, γ) edge expander w.h.p., γ = d− 2− δ.

Proof. Consider a new graph H = (VH , EH) with dn vertices and EH being a uniformly
random perfect matching. Partition VH into sets S1, . . . , Sn of size d, and identify the vertices
from each Si with a single vertex i in G.

Let S ⊆ VG = {1, . . . , n} be such that |S| = s ≤ αn. We can assume S = {1, . . . , s} and
it is identified with S1 ∪ . . . ∪ Ss. Then to pick S we simply choose ds vertices from H.

To upper bound |∂(S)| we can lower bound the number of edges inside S.

Pr
G,S

[|e(S, VG\S)| < γs] = Pr
G,S

[
|e(S, S)| ≥ (d− γ)s

2

]
≤
( dn/2

(d−γ)s/2
)(dn−(d−γ)s

γs

)
(dn

ds

)
14



Pr
G

[G is not (αn, γ) edge expander] ≤
αn∑
s=1

(
n

s

)(
e dn

(d−γ)s

)(d−γ)s/2 (
edn−(d−γ)s

γs

)γs

(
n
s

)ds
=

=
αn∑
s=1

(
n

s

)
(edn)(d−γ)s/2 eγs (dn− (d− γ)s)γs sds

((d− γ)s)(d−γ)s/2 (γs)γs nds
≤

≤
αn∑
s=1

(
n

s

)
(ed)ds/2 (edn)γs sds

(d− γ)(d−γ)s/2 (γs)γs nds

(
n

s

)(d−γ)s/2
=

=
αn∑
s=1

(
n

s

)
(ed)ds/2+γs

(d− γ)(d−γ)s/2 γγs

(
s

n

)(d−γ)s/2
≤

≤
αn∑
s=1

(ed)ds/2+γs

(d− γ)(d−γ)s/2

(
e

γγ

)s ( s

n

)( d−γ
2 −1)s

=

=
αn∑
s=1

(c1 (s/n)c2)s,

where c1 = e(ed)d/2+γ

γγ(d− γ)(d−γ)/2 ≥ 0 and c2 = d− γ

2
− 1.

We need c2 > 0, which requires
γ < d− 2, (2.49)

then by Proposition 2.2,
Pr
G

[G is not (αn, γ) edge expander] = o(1).

We will prove one of our results, Theorem 4.5, in a similar fashion.

Theorem 2.11 ([Bol88]). Let d ≥ 3 and 0 < ϵ < 1 be such that

(1− ϵ) log (1− ϵ) + (1 + ϵ) log (1 + ϵ) > 4/d. (2.50)

Then any random d-regular graph G has h(G) ≥ (1− ϵ)d/2 w.h.p.

The proof of this result uses the number of matchings between endpoints of edges not
crossing the cut (S, V \S).

Note that these two theorems sacrifice different parameters. While Theorem 2.10 shows
how to achieve almost optimal expansion close to d− 2, only sufficiently small subsets are
expanding. On the contrary, Theorem 2.11 talks about the Cheeger constant h(G), so the
subsets may be as large as n/2, but the expansion might be as small as d/2.

2.5.3 Vertex Expansion of Regular Graphs

Theorem 2.12 ([Rao12]). ∀d ≥ 3 ∀δ > 0 ∃γ, α > 0 ∀even n : a random d-regular graph
G = (V, E) is (αn, γ) vertex expander w.h.p., γ = d/2− 2− δ.

Proof. Let E be the union of d uniformly random perfect matchings.
For any subset S of size |S| = s ≤ αn, and any subset T of (1 + γ)s vertices we will

bound the probability that NG(S) ⊆ T under one of the perfect matchings.
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Any fixed perfect matching E′ ⊂ E might be viewed as connecting one pair of unmatched
vertices sequentially, until every vertex has a match. Let Ei denote the event that i’th vertex
in S is matched to some vertex in T under E′. Of course, Ei is well defined only for i ≤

⌈
s

2

⌉
.

For the sake of simplicity, lets assume s is even.

Pr
G,S,T,E′

s/2∧
i=1

Ei

 =
s/2∏
i=1

Pr
G,S,T,E′

[
Ei

∣∣∣∣∣
i−1∧
k=1

Ek

]
≤

s/2∏
i=1

Pr
G,S,T,E′

[Ei] ≤
((1 + γ)s

n

)s/2

Pr
G,S,T

[NG(S) ⊆ T ] ≤
((1 + γ)s

n

)sd/2

Pr
G

[∃ non-expading S of size s] ≤
(

n

s

)(
n

(1 + γ)s

)((1 + γ)s
n

)sd/2
≤

≤
(

en

s

)s ( en

(1 + γ)s

)(1+γ)s ((1 + γ)s
n

)sd/2
=
(

(en)2+γ((1 + γ)s)d/2

nd/2(1 + γ)1+γs2+γ

)s

=

=
(

e2+γ(1 + γ)d/2−1−γ
(

s

n

)d/2−2−γ
)s

=

= (c1 (s/n)c2)s.
We need c2 > 0, which requires γ < d/2− 2. For sufficiently small α,

Pr
G

[G is not (αn, γ) vertex expander] ≤
αn∑
s=1

(c1(s/n)c2)s = o(1).

2.6 Edge Expansion of Random Graphs With Given Degrees

Gkantsidis et al. [GMS03] deal with the power-law graphs and their model is based on the
one from Aiello et al. [ACL01]. However, this following result holds for random graphs with
general degree sequences.

Theorem 2.13 (Lemma 3.2 [GMS03]). Let (w1, . . . , wn) be a sequence of integers and

w1 ≥ w2 ≥ . . . ≥ wn ≥ dmin = 3 (2.51)

D =
n∑

i=1
wi (2.52)

Let G = (V, E) be a random graph with a degree sequence (w1, . . . , wn) generated according
to the permutation model from Section 3.1.3. Then there is a constant γ > 0 satisfying

γ < 1− 2/dmin

γ ≤ 1− 8/(3 dmin)

γ ≤ 0.0175

(2.53)

and w.h.p. the conductance of G is min
S⊂V

0<vol(S)≤D/2

|e(S, V \S)|
vol(S)

≥ γ, where vol(S) =
∑
i∈S

wi.
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Proof. For a constant γ > 0 a set S with vol(S) ≤ D/2 is called “bad” if |e(S, V \S)|
vol(S)

< γ.

We will show that for some γ, Pr
G

[∃ bad S] ≤ o(1).

Pr
G

[∃ bad S] =
D/2∑

k=dmin

Pr
G

[∃ bad S, vol(S) = k] ≤

≤
D/2∑

k=dmin

(
D/dmin

k/dmin

)
Pr
G

[a fixed S, vol(S) = k, is bad].

Let A denote a set of k mini-vertices corresponding to S, and Ā to be (D − k) mini-
vertices that correspond to V \S. Let BA ⊂ A be a set of mini-vertices matched to the ones
from Ā, and similarly BĀ ⊂ Ā is matched to some mini-vertices from A. S is “bad” when

|BA| = |BĀ| < γk. For each cardinality from 0 to γk, there are at most
(

k

γk

)
and

(
D − k

γk

)
ways to choose BA and BĀ respectively. Then we consider a random perfect matchings with
all mini-vertices from A\BA matched inside A\BA, and the same for Ā\BĀ and BA ∪BĀ.

Pr
G

[∃ bad S] ≤
D/2∑

k=dmin

(
D/dmin

k/dmin

)
γk

(
k

γk

)(
D − k

γk

)
M(2γk) M(k − γk) M(D − k − γk)

M(D)
We will use the approximation (2.10) for the number of perfect matchings on m vertices,

where c1 and c2 are some positive constants:

c1(m/e)m/2 < M(m) < c2(m/e)m/2 (2.54)

γk
M(2γk) M(k − γk) M(D − k − γk)

M(D)
<

< c4γk

(2γk

e

)γk (k − γk

e

)(k−γk)/2 (D − k − γk

e

)(D−k−γk)/2 ( e

D

)D/2
=

= c4γk
(2γk)γk (k − γk)(k−γk)/2 (D − k − γk)(D−k−γk)/2

DD/2 <

< c4γk (2γ)γk k(k+γk)/2 (D − k)(D−k−γk)/2

DD/2 .
We apply Stirling’s approximation (2.9), for some constant c3 > 0.(

D/dmin

k/dmin

)
= (D/dmin)!

(k/dmin)!((D − k)/dmin)!
<

< Θ(1)
(

D

dmin

)D/dmin+1/2 (dmin

k

)k/dmin+1/2 ( dmin

D − k

)(D−k)/dmin+1/2
≤

≤ c3

(
DD

kk(D − k)D−k

)1/dmin

.

Finally, we use
(

n

m

)
≤ (en/m)m.

(
k

γk

)(
D − k

γk

)
≤
(

e

γ

)2γk (D − k

k

)γk

Let’s combine all of the above.
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Pr
G

[∃ bad S] <

D/2∑
k=dmin

c5γk
2γke2γk

γγk

(
k

D

)k((1−γ)/2−1/dmin)

Define α = 2e2

γ
, β = 1− γ

2
− 1

dmin
, and

G(k) = c5γkαγk
(

k

D

)βk

(2.55)

We require β > 0, which means dmin >
2

1− γ
, so dmin ≥ 3. Also γ < 1− 2/dmin.

dG(k)
dk

=
(1

k
+ γ ln α + β ln k

D
+ β

)
G(k) (2.56)

d2G(k)
dk2 =

(
− 1

k2 + β

k
+
(

dG(k)
dk

)2)
G(k) (2.57)

dG(k)/dk < 0 for k = 3 dmin when D is large.
d2G(k)/dk2 > 0 for k ≥ 3 dmin and γ ≤ 1− 8/(3 dmin).

Clearly,
3 dmin∑

k=dmin

G(k) = o(1).

To upper bound the sum for 3 dmin ≤ k ≤ D/2, we can use max{G(3 dmin), G(D/2)}.

G(3 dmin) = c6D−3 dminβ = o

( 1
D

)
(2.58)

G(D/2) = c7D

(
αγ

2β

)D/2
= o

( 1
D

)
(2.59)

for constants c6, c7, and

3 dminβ > 1

αγ < 2β
=⇒


γ ≤ 1− 8/(3 dmin)

γ(1
2

+ 2 log2 e− log2 γ) <
1
2
− 1

dmin

(2.60)

If dmin = 3, the last inequality holds whenever γ ≤ 0.0175.

Pr
G

[∃ bad S] <
3 dmin∑

k=dmin

G(k) +
D/2∑

k=3 dmin

G(k) ≤ o(1).

2.7 Vertex Expanders in Locally Sparse Graphs and G(n, p)

For a graph G = (V, E) on n vertices and a subset W ⊆ V set vol(W ) =
∑

v∈W

deg(v).

We say that the set S ⊆ V touches an edge, if it contains at least one of its endpoinds,
and S spans an edge, if it contains both endpoints.
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Theorem 2.14 ([Kri18]). Let c1 > c2 > 0, 0 < α < 1, ∆ > 0, and G = (V, E), ∆(G) ≤

∆,
|E|
|V |
≥ c1. Then there exist a constant γ = γ(c1, c2, α, ∆) > 0 and poly(n)-time algorithm

that finds either W ⊂ V of size |W | ≤ αn spanning at least c2|W | edges, or an induced
(|W |/2, γ) vertex expander on |W | ≥ αn vertices.

Proof outline. The idea is to begin with G and iteratively decrease the number of vertices,
while maintaining the density. See Algorithm 1 for details.

Proposition 2.15 ([Kri18]). Let c1 > c2 > 1 be reals. Define α =
(

c2
5c1

)c2/(c2−1)
. Let G be

a random graph drawn from the probability distribution G

(
n,

c1
n

)
. Then w.h.p. every set of

k ≤ αn vertices of G spans fewer than c2k edges.

Proposition 2.16 ([Kri18]). For every c > 0 and all sufficiently small δ > 0 the following
holds. Let G be a random graph drawn from the probability distribution G

(
n,

c

n

)
. Then

w.h.p. every set of δ

ln 1/δ
n vertices of G touches fewer than δn edges.

Theorem 2.17 (Linear size expanders in G(n, p) graphs [Kri18]). ∀ϵ > 0 ∃γ > 0 : a
random graph G ∼ G

(
n,

1 + ϵ

n

)
contains w.h.p. an induced bounded degree (n′/2, γ) vertex

expander on n′ ≥ γn vertices.

Proof outline. A known fact about G

(
n,

1 + ϵ

n

)
is the existence of a giant connected com-

ponent with “enough” edges. Removing a constant fraction of vertices having the highest
degree, we get the bounded maximum degree by Proposition 2.16. Then Proposition 2.15
guarantees the local sparsity, and we apply Theorem 2.14.
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Chapter 3

Random Power-Law Graphs

3.1 Models of Graphs

We will work with models of graphs that define either degree sequences or frequencies
of degrees. In the latter case one can easily obtain the degree sequence as well, e.g., the
frequencies (x1, x2, x3) = (2, 1, 4) would be transformed into the degrees (1, 1, 2, 3, 3, 3, 3).

Given a degree sequence (w1, . . . , wn), there are several ways to generate corresponding
random graphs G = (V, E) [Hop08]. Depending on the particular model, this will be either
exact (fixed) or expected degree sequence.

All subsequent models possibly result in pseudographs — multigraphs with self-loops.
Therefore, the degree sequences are only required to be pseudographic: degrees must be
non-negative, and in case of exact degrees, they should add up to an even number [Hak62].

3.1.1 Coin Toss Model

For each pair of vertices i and j, we include the edge (i, j) in the graph with probability

pij = Pr
G

[(i, j) ∈ E] =


wiwj∑
k∈V wk

if i ̸= j,

w2
i

2
∑

k∈V wk
otherwise.

(3.1)

Given expression is a valid probability, if we have

max
k

w2
k <

∑
k∈V

wk (3.2)

This assumption also implies that the sequence is graphic, i.e., realizable by some graph.
The standard convention is that self-loop edges contribute 2 to the degrees of the nodes.

Considering this, we show that the model is well-defined:

E
G

[deg(i)] =
∑
j ̸=i

pij + 2pii =
∑

j ̸=i wiwj + w2
i∑

j∈V wj
= wi (3.3)
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Alternatively, one can generate a graph by including some number of edges between i

and j according to a Poisson process with mean λ = wiwj∑
k∈V wk

. High degree vertices would

then form a clique.
In this model all edges are independent, and (w1, . . . , wn) are the expected degrees.

3.1.2 m Edges Model

We generate m = 1
2
∑
k∈V

wk edges uniformly at random by successively selecting pairs of

vertices with probability proportional to their degrees. In this case wi’s are also expected
degrees, however, we get the exact number of edges, which are no longer independent.

3.1.3 Permutation Model

We create a sequence with wi mini-vertices for each vertex i, randomly permute it, and
connect each consecutive non-intersecting pair of mini-vertices with an edge. Equivalently,
one can choose a uniformly random perfect matching on this sequence. Then we put an
edge between vertices i and j if at least one pair of mini-vertices corresponding to both of
them is adjacent.

This model guarantees the exact number of edges and they are not independent, but
the degree sequence is now exact.

3.1.4 Full Graph Selection Model

We randomly pick a graph G from a family of all graphs with given exact degree sequence,
but it is usually not practical.

In this chapter we will examine the properties of power-law graphs under different mod-
els.

3.2 Coin Toss Power-Law Model

We are given the expected degree sequence (w1, . . . , wn), where wv = E[deg(v)].

Pr
G

[(u, v) ∈ E] = wuwv

Vol(G)
, assuming max

v
w2

v < Vol(G) (3.4)

Vol(G) = E
G

[vol(G)] = E
G

[∑
v∈V

deg(v)
]

=
∑
v∈V

wv (3.5)

Let the expected number of vertices with degree x be equal to y, which follows the
power-law distribution for some α = α(n) > 0 and constant β > 0. Note that α and β are
the only open parameters is this model.

E
G

[|{v ∈ V | deg(v) = x}|] = y = eα

xβ
, where x ∈ {1, . . . , dmax}. (3.6)
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Table 3.1: Properties of power-law graphs [ACL01], β0 ≈ 3.4785

β (0; 1) 1 (1; 2) 2 (2; β0) (β0;∞)

the largest
component n the giant component, Θ(n)

O
(
n2/β log n

)
the 2nd largest
component — O(1) O

( log n

log log n

)
O(log n)

|V | = n
eα/β

1− β
αeα ζ(β)eα

|E| 1
2

e2α/β

2− β

1
4

αeα 1
2

ζ(β − 1)eα

Our model is asymptotically identical to Aiello et al. [ACL01], whose properties are
summarized in Table 3.1. The only distinction is in defining the expected frequencies instead
of the exact ones.

3.2.1 Maximum Degree, Expected Size, and the Number of Edges

Like Aiello et al. [ACL01], we ignore isolated vertices, y ≥ 1 and 0 ≤ ln y = α − β ln x,
consequently, we may deduce

dmax = eα/β (3.7)

The size of the graph and the expected number of edges are

n =
eα/β∑
x=1

eα

xβ
E
G

[|E|] = Vol(G)
2

= 1
2

eα/β∑
x=1

x
eα

xβ
(3.8)

To get some intuition about the density of G, we consider the special case when dmax = n.

n =
n∑

x=1

eα

xβ
= eαHn,β eα = n

Hn,β
(3.9)

E
G

[m] = 1
2
E
G

[
∑
v∈V

deg(v)] = 1
2

n∑
x=1

x
eα

xβ
= eα

2

n∑
x=1

x1−β = eα

2
Hn,β−1 = n

2
Hn,β−1
Hn,β

(3.10)

Hn,−1 = n(n + 1)
2

, Hn,0 = n, Hn,1 = log n + O(1), Hn,β = O(1), if β > 1.

E
G

[m] =



Θ
(
n2
)

if β = 0,

Θ
(
n2/ log n

)
if β = 1,

Θ(n log n) if β = 2,

Θ(n) if β > 2.

(3.11)
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3.2.2 Expected Volume and Average Degree

When n→∞, the expected volume Vol(G) is well-defined only for β > 2.

Vol(G) ≈
∫ ∞

1
x

eα

xβ
dx = eα

2− β

[
x−β+2

]∞
1

= eα

β − 2
(3.12)

On the other hand, considering dmax = eα/β we get

Vol(G) ≈ eα

2− β

((
eα/β

)−β+2
− 1

)
= 1

2− β

(
e2α/β − eα

)
(3.13)

The expected average degree is

d = Vol(G)
n

(3.14)

The second-order average degree is

d̃ =
∑

v∈V w2
v

Vol(G)
≈



d
(β − 2)2

(β − 1)(β − 3)
if β > 3

1
2

d ln 2dmax

d
if β = 3

dβ−2 (β − 2)β−1d3−β
max

(β − 1)β−2(3− β)
if 2 < β < 3

(3.15)

3.3 Permutation Power-Law Model

In the permutation model each vertex v ∈ {1, . . . , n} has exactly wv neighbors chosen with
probability proportional to their degrees,

deg(v) = wv = pn

vβ
, 0 < p ≤ 1. (3.16)

If β = 0, the coin toss model with expected degree sequence (w1, . . . , wn) would be
identical to G(n, p) with self-loops:

wv = pn vol(G) = pn2 |E| = pn2

2

Pr
G

[(u, v) ∈ E] = wuwv∑
i wi

= (pn)2

pn2 = p

Note that the degrees wi should be integers so we have to round down (3.16). The issue
of emerging error is addressed in Section 4.2.1.
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3.4 k-CNF Power-Law Model

Generation of CNF f having m clauses with k literals each is done by adding variable
i ∈ {1, . . . , n} with a random sign to the current clause C ∈ {C1, . . . , Cm} at a position t,
1 ≤ t ≤ k, with probability pi = wi∑n

j=1 wj
, where wi = i−β [ABL09b].

If any resulting clause is a tautology (it contains both some variable and its negation)
or simplifiable (there is the same literal at multiple positions), then it is discarded and
regenerated from scratch. Essentially it means that we are choosing variables for each clause
without replacement.

The variable incidence graph (VIG) G(f) = (V, E) is defined on V = {1, . . . , n}, and
edge (i, j) is added to E whenever both i and j appear in the same clause. The signs of
the literals are ignored in VIG, so we will ignore them as well, writing “i ∈ C” instead of
“i ∈ C ∨ −i ∈ C”.

Pr
G(f)

[(i, j) ∈ E] = 1−
∏
C

(1− Pr[i ∈ C ∧ j ∈ C]), for i ̸= j (3.17)

For simplicity, let’s assume k = 3.
Pr[i ∈ C ∧ j ∈ C] =

∑
1≤x≤n
x/∈{i,j}

(Pr[C = (i, j, x)] + Pr[C = (j, i, x)] + . . . + Pr[C = (x, j, i)])

px ≤ 1− pi − pj

Pr[C = (i, j, x)] = pi
pj

1− pi

px

1− pi − pj

Pr[C = (i, x, j)] = pi
px

1− pi

pj

1− pi − px
, and so on.

3.4.1 Noncentral Hypergeometric Distribution

Sampling of elements from different classes with weights without replacement is captured
by Wallenius’ noncentral hypergeometric distribution.

We have
c∑

i=1
mi objects total from c classes, mi is the number of objects of class i. n

objects are sampled without replacement. The probability that an object from class i is
sampled is proportional to wi.

If at step t we have sampled (x1,t, . . . , xc,t) objects, i.e., exactly xi,t objects from class i,
then the probability that the next draw gives an object from class i is

(mi − xi,t)wi∑c
j=1 (mj − xj,t)wj

(3.18)
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The multivariate case:

mwnchypg(x; n, m, w) =
(

c∏
i=1

(
mi

xi

))(∫ 1

0

c∏
i=1

(1− twi/d)xi dt

)
(3.19)

d = w(m− x) =
c∑

i=1
wi(mi − xi) (3.20)

The probability function can be calculated using a variety of methods: recursive calculation,
binomial expansion methods, Taylor expansion methods, continued fraction expansion, and
numerical integration [Fog08]. At the same time direct formal analysis does not look promis-
ing. Instead, we can use the fact that the sequence of expected degrees in VIG G(f) also
follows power-law distribution.

Theorem 3.1 (Theorem 1 [ABL09b]). In the k-CNF power-law model with continuous
probability distribution ϕ(x, β) = (1− β)x−β, when n→∞,

Pr
f

[variable i has k occurrences] ∝ k−α, where α = 1/β + 1. (3.21)

Let xi be the number of occurrences/clauses with variable i.

Pr[xi = k] = ck−α (3.22)

Events “occurrence of i in clause C” are independent for all clauses, so the actual number
of occurrences will be close to its expectation.

E[xi] =
m∑

k=1
k Pr[xi = k] =

m∑
k=1

ck1−α = cHm,α−1

For any pair (i, j), if xi + xj ≥ m, then Pr[(i, j) ∈ E] = 1 by the pigeonhole principle.
Otherwise xi + xj < m and

Pr
G(f)

[(i, j) ∈ E] = Pr[∃C : i ∈ C ∧ j ∈ C] = 1−
(m−xi

xj

)(m
xj

) =

= 1− (m− xi)!
(m− xi − xj)!

(m− xj)!
m!

=

= 1−
xj−1∏
k=0

m− xi − k

m− k
.
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Table 3.2: Properties of the “octopus” graphs [CL04], β′ is the actual exponent

β (2; 3) 3 (3;∞)
β′ = 1/(β − 1) (1/2; 1) 1/2 (0; 1/2)

average distance O(log log n) Θ(log n/ log log n) Θ(log n/ log d̃)
diameter Θ(log n)

3.5 “Octopus” Power-Law Graph Model

The “octopus” graph model was defined by Chung and Lu [CL04]:

E
G

[deg(i)] = wi = ci−1/(β−1) (3.23)

i0 ≤ i < n + i0 (3.24)

c = β − 2
β − 1

dn
1

β−1 (3.25)

i0 = n

(
d(β − 2)

dmax(β − 1)

)β−1
(3.26)

The known results about the average distance and the diameter of resulting graphs are
collected in Table 3.2. The generation process is the same as in Section 3.1.1.

We consider the same specific family of such graphs, as Chung and Lu [CL04]:

2 < β < 3 =⇒ 1
2
≤ 1

β − 1
≤ 1 (3.27)

d > 1 (3.28)

dmax ≫ d (3.29)

log dmax ≫ log n/ log log n (3.30)

The graphs are generated like in the coin toss model and (3.2) is assumed to be true.
Note that dmax and d are simply parameters of this model.
The maximum degree wi0 = β − 2

β − 1
dn

1
β−1 i

−1/(β−1)
0 = dmax.

And the average degree is 1
n

n+i0∑
k=i0

wi ≈
1
n

n∑
k=1

wi = 1
n

n∑
k=1

β − 2
β − 1

dn
1

β−1 k−1/(β−1) =

= β − 2
β − 1

d

n(β−2)/(β−1)

n∑
k=1

k−1/(β−1) ≈

≈ β − 2
β − 1

d

n(β−2)/(β−1)
n1−1/(β−1)

1− 1/(β − 1)
= d.
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3.5.1 The Second-Order Average Degree of “Octopus” Graphs

Chung and Lu [CL04] only state the final results, so we provide the derivations here for
completeness.

d̃ = 1
dn

n∑
k=1

w2
i = 1

dn

n∑
k=1

(
β − 2
β − 1

)2
d2n

2
β−1 k−2/(β−1) =

=
(

β − 2
β − 1

)2 d

n1−2/(β−1)

n∑
k=1

k−2/(β−1)

Case β > 3:

d̃ ≈
(

β − 2
β − 1

)2 d

n1−2/(β−1)
n(β−3)/(β−1)

(β − 3)/(β − 1)
= (β − 2)2

(β − 1)(β − 3)
d

Case β = 3:

i0 = n

(
d

2dmax

)2

d̃ ≈ d

4

n∑
k=i0

k−1 ≈ d

4
(ln n− ln i0) = d

4
(ln n− ln n− 2 ln d

2dmax
) = d

2
ln 2dmax

d

Case 2 < β < 3:

d̃ ≈
(

β − 2
β − 1

)2 d

n(β−3)/(β−1)

n∑
k=i0

k−2/(β−1) ≈

≈
(

β − 2
β − 1

)2 d

n(β−3)/(β−1)

(
n(β−3)/(β−1)

(β − 3)/(β − 1)
− i

(β−3)/(β−1)
0

(β − 3)/(β − 1)

)
≈

≈ − (β − 2)2

(β − 1)(β − 3)
d

(
d(β − 2)

dmax(β − 1)

)β−3
= (β − 2)β−1

(β − 1)β−2(3− β)
dβ−2d3−β

max.

3.5.2 Diameter of “Octopus” Graphs

Theorem 3.2 (Theorem 2.6 [CL04]). Suppose a power-law random graph with exponent
β has average degree d > 1 and maximum degree dmax ≫ n1/ log log n. If 2 < β < 3, its
diameter is Θ(log n) w.h.p.

Proof outline. The core of the “octopus” graph is defined to contain all vertices of degree at
least n1/ log log n. Combining the following claims gives O(log n) diameter of the graph w.h.p.

Claim 1: The diameter of the core is O(log log n) w.h.p.
Claim 2: Almost all vertices with degree at least log n are within distance O(log log n)

from the core.
Claim 3: Each vertex in the giant connected component is within distance O(log n) from

a vertex of degree at least O(log n).

Such a specific structure explains the name of these graphs.
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Chapter 4

Expanders in Power-Law Graphs

From now on, we will work with an induced subgraph H = (VH , EH) of G, obtained by
retaining only vertices of degree at least d0. This definition is both intuitive and easy to
work with. We denote the size |VH | = n′.

If H is an expander, then outputting H is as simple as checking the degree of each vertex
during the process of generation of the graph G. Connecting large spectral gap with high
combinatorial expansion would allow one to eliminate error of outputting non-expander,
but it is still an open problem for our models.

4.1 Coin Toss Model

Theorem 4.1 (Existence of an edge expander). ∃d0 ∀c < 1/3 ∀δ > 0 ∃γ, c1 = c1(β, c) > 0 :
let G = (V, E) be a random power-law graph and H = (VH , EH) be its induced subgraph on
|VH | = n′ vertices, such that VH = {v ∈ V | deg(v) ≥ d0}.

Then if 0 < β < 1, the whole graph G is (n/2, γ) edge expander w.h.p.
Otherwise, the subgraph H is (n′/2, γ) edge expander w.h.p.

dmax = max
v∈V

deg(v) (4.1)

d0 =



1 if 0 < β < 1,

dmax/
√

n if β = 1,
dmax

n1/β
if 1 < β ≤ 1.6,

c dmax if β > 1.6.

(4.2)
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n′ =



n if 0 < β < 1,

n/2 if β = 1,
n

(β − 1) ζ(β)1/β
if 1 < β ≤ 1.6,

c−β+1 − 1
β − 1

(n/ζ(β))1/β = Θ
(
n1/β

)
if β > 1.6.

(4.3)

c1 =



(1− β)2

2− β
if 0 < β < 1,

1− c

(ln 1/c)2 if β = 1,

(β − 1)2

2− β

1− c2−β

(c−β+1 − 1)2 if 1 < β < 2 or β > 2,

ln 1/c

(1/c− 1)2 if β = 2.

(4.4)

In all cases the average degree d and the expansion γ are as follows:

d = c1n′ (4.5)

γ = d

2
− δ (4.6)

The proof of the theorem is on page 36.

Lemma 4.2. ∀δ > 0 ∃γ : If the expected average degree of a graph H on n′ vertices is
d > 10 ln n′, then H is (n′/2, γ) edge expander w.h.p., γ = d/2− δ.

Proof. Given an arbitrary cut (S, T ): e(S, T ) = {(u, v) ∈ EH | u ∈ S, v ∈ T}. Using (3.4),

E
G

[|e(S, T )|] = Vol(S) Vol(T )
Vol(H)

(4.7)

The volume of an arbitrary subset S ⊂ VH of a fixed size |S| = s ≤ n′/2 is Vol(S) = sd,
where d = Vol(H)/n′ is the expected average degree of H.

Define a random variable XS to be the size of a cut (S, VH\S) with expected value µ.

XS = |e(S, VH\S)| (4.8)

µ = E
G

[XS ] = Vol(S) Vol(VH\S)
Vol(H)

= Vol(S)
(

1− s

n′

)
(4.9)

µ

s
= d

(
1− s

n′

)
(4.10)

d

2
≤ µ

s
≤ d (4.11)
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We will use the Chernoff bound for the lower tail (2.4) for some 0 < λ < 1.

γs = (1− λ)µ

0 < λ = 1− γs/µ

γ < µ/s (4.12)

Therefore, the only requirement is γ < d/2. Now, as for the expansion of H,
Pr
G,S

[S is non-expanding] = Pr
G,S

[XS ≤ γs] ≤ exp(−λ2µ/2) = exp(−(µ− γs)2/2µ) =

= exp(−µ/2 + γs− γ2s2/2µ) ≤ exp(γs− µ/2).

Pr
G

[H is not (n′/2, γ) edge expander] ≤
n′/2∑
s=1

(
n′

s

)
Pr
G,S

[S is non-expanding] ≤

≤
n′/2∑
s=1

(
en′

s
exp

(
−(µ/s− γ)2

2µ/s

))s

=
n′/2∑
s=1

exp
((

1 + ln n′

s
− (µ/s− γ)2

2µ/s

)
s

)
≤

≤
n′/2∑
s=1

exp
((

1− ln s

n′ −
d

2
(
1− s/n′)+ γ − γ2

2d (1− s/n′)

)
s

)
≤

≤
n′/2∑
s=1

exp
((

1 + ln n′ − d

4
+ γ

)
s

)
≤

≤
n′/2∑
s=1

( 1
n′(1+σ)

)s

≤ n′/2
n′(1+σ) = o(1).

The last line is obtained if we satisfy this inequality for some small constant σ > 0:

1 + ln n′ − d

4
+ γ ≤ −(1 + σ) ln n′

0 < γ ≤ d

4
− (2 + σ) ln n′ − 1

d > 4
(
(2 + σ) ln n′ + 1

)
d > 10 ln n′
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Lemma 4.3 (Size and volume of the subgraph H). If d0 = c dmax for 0 < c < 1, then

n′ =



(
1− c1−β

)
n if β < 1,

ln 1/c

α
n ≈ (ln 1/c) n

ln n
if β = 1,

c−β+1 − 1
β − 1

(n/ζ(β))1/β if β > 1.

(4.13)

Vol(H) =



1− c2−β

2− β
e2α/β if β < 2,

(ln 1/c) eα if β = 2,

c−β+2 − 1
β − 2

e2α/β + c−β+1 − 1
2

eα/β if β > 2.

(4.14)

d = Vol(H)
n′ = Θ(n′) (4.15)

Proof. Consider (3.8) and n′ =
dmax∑
x=d0

eα

xβ
, Vol(H) =

dmax∑
x=d0

x
eα

xβ
.

Case β < 1: similarly to (3.13),

n = eα/β

1− β
n′ = eα

1− β

(
d1−β

max − d1−β
0

)
= 1− c1−β

1− β
eα/β

Case β = 1: dmax = eα.

n = (ln dmax) eα = αeα n′ = (ln dmax − ln d0)eα = (ln 1/c)eα

Case β > 1:
n = eαHdmax,β

n′ = eα (Hdmax,β −Hc dmax,β) =
(

1− Hc dmax,β

Hdmax,β

)
n =

=

1−
ζ(β)− 1

(β−1)(c dmax)β−1 − 1
2(c dmax)β −O

(
1

(c dmax)β+1

)
ζ(β)− 1

(β−1)dβ−1
max
− 1

2 dβ
max
−O

(
1

dβ+1
max

)
n =

=


c−β+1−1

(β−1)dβ−1
max

+ c−β−1
2 dβ

max
+ O

(
1

dβ+1
max

)
ζ(β)− 1

(β−1)dβ−1
max
− 1

2 dβ
max
−O

(
1

dβ+1
max

)
n =

=
(

c−β+1 − 1
(β − 1)dβ−1

max

+ c−β − 1
2 dβ

max

+ O

(
1

dβ+1
max

))
eα =

= c−β+1 − 1
β − 1

dmax + c−β − 1
2

+ O

( 1
dmax

)
≈

≈ c−β+1 − 1
β − 1

eα/β ≈ c−β+1 − 1
β − 1

(
n

ζ(β)

)1/β

.
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Now for the expected volume, case β < 2:

Vol(H) = eα

2− β

(
d2−β

max − d2−β
0

)
= 1− c2−β

2− β
e2α/β

Case β = 2: dmax = eα/2.

Vol(H) = (ln dmax − ln d0)eα = (ln 1/c)eα

Case β > 2:

Vol(H) = eα (Hdmax,β−1 −Hc dmax,β−1) =

=
(
− 1

(β − 2)dβ−2
max

− 1
2dβ−1

max

+ 1
(β − 2)(c dmax)β−2 + 1

2(c dmax)β−1 + O

(
1

dβ
max

))
eα =

=
(

c−β+2 − 1
(β − 2)dβ−2

max

+ c−β+1 − 1
2dβ−1

max

+ O

(
1

dβ
max

))
eα =

= c−β+2 − 1
β − 2

d2
max + c−β+1 − 1

2
dmax + O(1) ≈

≈ c−β+2 − 1
β − 2

e2α/β + c−β+1 − 1
2

eα/β

Finally, the average degree is always Θ(n′).

d = Vol(H)
n′ =



1− β

2− β

1− c2−β

1− c1−β
eα/β if β < 1,

1− c

ln 1/c
eα if β = 1,

β − 1
2− β

1− c2−β

c−β+1 − 1
eα/β if 1 < β < 2,

ln 1/c

1/c− 1
eα/2 if β = 2,

β − 1
β − 2

c−β+2 − 1
c−β+1 − 1

eα/β + O(1) if β > 2.
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Considering H independently from G\H, we need to account for e(H, G\H).

Vol(G) =



Θ
(
n2
)

if β < 1,

Θ
((

n

log n

)2
)

if β = 1,

Θ
(
n2/β

)
if 1 < β < 2,

Θ (n log n) if β = 2,

Θ (n) if β > 2.

(4.16)

Vol(H) =
∑
v∈H

wv = Θ
(
n′2
)

=


Θ
(
n2
)

if β < 1,

Θ
((

n

log n

)2
)

if β = 1,

Θ
(
n2/β

)
if β > 1.

(4.17)

2 |e(H)| = Vol(H)− |e(H, G\H)| (4.18)

|e(H, G\H)| = Vol(H) Vol(G\H)
Vol(G)

(4.19)

|e(H)| = Vol(H)2

2 Vol(G)
(4.20)

|e(G)| =|e(H)|+ |e(H, G\H)|+ |e(G\H)| =

=Vol(H)2/2 + Vol(H) Vol(G\H) + Vol(G\H)2/2
Vol(G)

=

=(Vol(H) + Vol(G\H))2

2 Vol(G)
= Vol(G)2

2 Vol(G)
= Vol(G)

2

(4.21)

How much smaller would 2 e(H) be than Vol(H) that we use?

2 e(H) = Vol(H)2

Vol(G)
= Vol(H) x (4.22)

x = Vol(H)
Vol(G)

=


Θ(1) if β < 2,

1
log n

if β = 2,

1
n1−2/β

if β > 2.

(4.23)

It means the larger β, the fewer edges are between high-degree vertices in H than edges
from H to low-degree vertices in G\H.

In order to get larger subgraph H for β ≥ 1, we need to include more vertices in H.

Lemma 4.4 (Linear size subgraph H). When β = 1, leaving the vertices of degree at least
d0 = dmax/

√
n results in the subgraph H of size n′ = n/2. And when 1 < β ≤ 1.6, we pick

d0 = dmax

n1/β
to get H of size n′ = Θ(n).
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Proof. Case β = 1: dmax = eα. In this case n = αeα and α ≈ ln n by (A.4).

d0 = dmaxe−x

ln d0 = ln dmax − x

n′ = (ln dmax − ln d0)n

α
= xn

α

x = ln n

2
: d0 = dmax√

n
, n′ ≈ n

2
x = c ln n : d0 = dmax

nc
, n′ ≈ cn

Vol(H) = eα(dmax − dmaxn−c) = e2α(1− n−c)

d = Vol(H)
n′ = eα

cα
(1− n−c) = n′

c2α2 (1− (n′/c)−c) ≈ 1
c2 (1− (n′/c)−c) n′

(ln(n′/c))2

If c = 1/2, d ≈ 4
(

1− 1√
2n′

)
n′

(ln(2n′))2 = ω(ln n′).

Case β > 1:

n′ =
(

1− Hx,β

Hdmax,β

)
n

1− Hx,β

Hdmax,β
= c

(1− c)Hdmax,β = Hx,β

(1− c)
dmax∑
k=1

1
kβ

=
x∑

k=1

1
kβ

(1− c)
dmax∑

k=x+1

1
kβ

= c
x∑

k=1

1
kβ

Known special case: H2x,2 = 1
2

(
ζ(2) + 1

2

(
Hx,2 + Hx− 1

2 ,2

))

(1− c)
(

ζ(β)− 1
(β − 1)dβ−1

max

− 1
2 dβ

max

−O

(
1

dβ+1
max

))
=

= ζ(β)− 1
(β − 1)xβ−1 −

1
2 xβ

−O

( 1
xβ+1

)
1

(β − 1)xβ−1 + 1
2 xβ

− 1− c

(β − 1)dβ−1
max

− 1− c

2 dβ
max

+ O

( 1
xβ+1

)
= c ζ(β)
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(1− c)Hdmax,β = Hx,β

(1− c)
dmax∑
k=1

1
kβ

=
x∑

k=1

1
kβ

ζ(β)−Ha,β =
∫ ∞

a

1
tβ

dt + 1
2aβ
−

k∑
i=2

bi

i!
f (i−1)(a)−

∫ ∞

a

Bk({1− t})
k!

f (k)(t) dt =

= 1
(β − 1)aβ−1 + 1

2aβ
− −β

12aβ+1 −O

( 1
aβ+1

)

(1− c)Hdmax,β = (1− c)
(

ζ(β)− 1
(β − 1)dβ−1

max

− 1
2dβ

max

+ O

(
1

dβ+1
max

))

Hd0,β = ζ(β)− 1
(β − 1)dβ−1

0
− 1

2dβ
0

+ O

(
1

dβ+1
0

)

If d0 = xdmax,

dmax = eα/β

n = eαHdmax,β ≈ eαζ(β) = dβ
maxζ(β)

n′ = eα (Hdmax,β −Hx dmax,β) =

= eα

(
x−β+1 − 1

(β − 1)dβ−1
max

+ x−β − 1
2dβ

max

+ O

(
1

dβ+1
max

))
=

= x−β+1 − 1
(β − 1)

dmax + x−β − 1
2

+ O

( 1
dmax

)
≈ x−β+1 − 1

(β − 1)

(
n

ζ(β)

)1/β

We now choose x = ny.

n′ ≈ n1/β−y(β−1)

(β − 1) ζ(β)1/β

1/β − y(β − 1) = 1

y = 1/β − 1
β − 1

= −1/β

d0 = dmax

n1/β
=⇒ n′ ≈ n

(β − 1) ζ(β)1/β
= Θ(n).

We note that (β − 1) ζ(β)1/β > 1 requires β ≤ 1.6.
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Finally, we get the expected average degree d for different ranges of β:

d = Vol(H)
n′ = Hdmax,β−1 −Hd0,β−1

Hdmax,β −Hd0,β

1 < β < 2 : d = d2−β
max − d2−β

0
(2− β) Θ(1)

= 1− n−(2−β)/β

(2− β) Θ(1)
d2−β

max = Θ
(
d2−β

max

)
= Θ

(
n′(2−β)/β

)
β = 2 : d = ln dmax − ln d0

Θ(1)
=

1
β ln n

Θ(1)
= Θ(ln n′)

β > 2 : d = Θ(1)

We can see that Lemma 4.2 is applicable for 1 ≤ β ≤ 1.6 because d = ω(ln n′).

Proof of Theorem 4.1. For 1 ≤ β ≤ 1.6 we use Lemma 4.4 and Lemma 4.2 and we are done.
Otherwise, we get n′ and Vol(H) from Lemma 4.3, which covers all possible values of β.
Case 0 < β < 1:

Vol(S) = s
1− β

2− β

1− c2−β

1− c1−β
eα/β = (1− β)2

2− β

1− c2−β

(1− c1−β)2 sn′

Let c1 = (1− β)2

2− β

1− c2−β

(1− c1−β)2 > 0, then Vol(S) = c1sn′.

Pr
G,S

[S is non-expanding] ≤ exp(γs− µ/2) = exp
((

γ − c1(n′ − s)/2
)

s
)
.

Pr
G

[H is not (ϵn′, γ) edge expander] ≤
ϵn′∑
s=1

(
n′

s

)
Pr
G,S

[S is non-expanding] ≤

≤
ϵn′∑
s=1

(
eγ+1 n′

s
e−c1(n′−s)/2

)s

= o(1).

When 1 ≤ s ≤ ϵn′, the last equality holds for any ϵ > 0 satisfying the following condition:

eγ+1 n′

s
e−c1(n′−s)/2 <

1
10

eγ+1n′e−c1n′(1−ϵ)/2 <
1
10

c1n′(1− ϵ)/2 > ln
(
10eγ+1n′

)
ϵ < 1− 2

c1n′ ln
(
10eγ+1n′

)
= 1− ln(c2n′)

c3n′ = 1− o(1)

We choose ϵ = 1/2.
To satisfy the requirement (4.12) when 1 ≤ s ≤ n′/2,

γ < µ/s = c1(1− s

n′ )n
′

γ = c1
2

n′ − δ, for any δ ≥ 0

Finally, we restrict c < 1/3 to have c1 ≤ 1 and Vol(S) ≤ sn′.
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Note that if 0 < β < 1 and d0 = 1, then n′ = n and Vol(H) = Vol(G) but the argument
still holds, i.e., the whole graph G is an edge expander w.h.p.

Case β = 1:
Vol(S) = s

1− c

ln 1/c
eα = 1− c

(ln 1/c)2 sn′

Let c1 = 1− c

(ln 1/c)2 > 0, then Vol(S) = c1sn′.

The rest of the proof is identical to the previous case, but necessarily c > 0.
Case 1 < β < 2:

Vol(S) = s
β − 1
2− β

1− c2−β

c−β+1 − 1
eα/β = (β − 1)2

2− β

1− c2−β

(c−β+1 − 1)2 sn′

Let c1 = (β − 1)2

2− β

1− c2−β

(c−β+1 − 1)2 > 0, then Vol(S) = c1sn′.

The case is identical to β = 1.
Case β = 2:

Vol(S) = s
ln 1/c

1/c− 1
eα/2 = ln 1/c

(1/c− 1)2 sn′

Analogously, c1 = ln 1/c

(1/c− 1)2 > 0 and again Vol(S) = c1sn′.

Case β > 2: similarly to the case 1 < β < 2,

Vol(S) = s

(
β − 1
β − 2

c−β+2 − 1
c−β+1 − 1

eα/β + O(1)
)
≈ (β − 1)2

β − 2
c−β+2 − 1

(c−β+1 − 1)2 sn′

4.2 Permutation Model

According to our choice of H, n′ = |VH | is the largest number from {1, . . . , n} such that

deg(n′) = pn

n′β ≥ d0 (4.24)

n′ ≈ (pn/d0)1/β (4.25)

vol(H) =
n′∑

v=1

pn

vβ
= pnHn′,β = d0n′βHn′,β (4.26)

vol(S) = s
vol(H)

n′ (4.27)

We can apply Theorem 2.13 to show small constant conductance of H, as long as d0 ≥ 3.
For edge and vertex expansion we have the following theorems.

37



Theorem 4.5 (Existence of an edge expander). ∀0 < p ≤ 1 ∃d0 = d0(p, n, β) ∀δ > 0 ∃γ, ϵ >

0 : let G be a random power-law graph where each vertex v has deg(v) = pnv−β, and H is
its induced subgraph of size n′ obtained by retaining vertices of degree at least d0.

Then if β = 0, the whole graph G is (ϵn, γ) edge expander w.h.p.
Otherwise, H is (ϵn′, γ) edge expander w.h.p.
When β > 1, the additional requirement is p ζ(β) > 2. More roughly, ζ(β) > 2 or

β ≤ 1.72, and the smaller p, the smaller β for which subsets still expand.

n′ =

n if β = 0,

n/2 if β > 0.
(4.28)

d0 =

pn if β = 0,

2βpn1−β if β > 0.
(4.29)

d =



d0

d0/(1− β)

d0 ln n′

d0 ζ(β) n′β−1

=



pn if β = 0,

2βp

1− β
n1−β if 0 < β < 1,

2p ln(n/2) if β = 1,

2p ζ(β) if β > 1.

(4.30)

γ =

d− 2− δ if β = 0,

d/2 if β > 0.
(4.31)

Theorem 4.6 (Existence of a vertex expander). ∀0 < p ≤ 1 ∃d0 = d0(p, n, β) ∀δ >

0 ∃γ, ϵ > 0 : let G be a random power-law graph where each vertex v has deg(v) = pnv−β,
and H is its induced subgraph of size n′ obtained by retaining vertices of degree at least d0.

Then if β = 0, the whole graph G is (ϵn, γ) vertex expander w.h.p.
Otherwise, if 0 < β < 1, H is (ϵn′, γ) vertex expander w.h.p. At the same time, either

ϵ = 1/2 and γ = 1− δ, or ϵ is sufficiently small and

γ =

d/2− 2− δ if β = 0,

d0/2− 2− δ if 0 < β < 1.
(4.32)

The proof of this theorem can be found on page 41.

Proof of Theorem 4.5. Case β = 0: deg(v) = pn for each v ∈ V , so we choose d0 = pn,
then trivially H = G and n′ = n. This reduces the proof to known case for regular graphs
described in Section 2.5.2.

38



As for the other cases when β > 0, we want our subgraph H to have linear size, so we
need to choose appropriate d0.

n′ = (pn/d0)1/β = cn

d0 = pn

(cn)β
= p

cβ
n1−β

Fixing c = 1/2 gives us

n′ = n/2

d0 = 2βpn1−β = 2pn′1−β

Pr
G

[H is not (ϵn′, γ) edge expander] =
ϵn′∑
s=1

(
n′

s

)
Pr
G,S

[|e(S, VH\S)| < γs] =

=
ϵn′∑
s=1

(
n′

s

)
Pr
G,S

[
|e(S, S)| ≥ vol(S)− γs

2

]
≤

≤
ϵn′∑
s=1

(
n′

s

)( vol(H)/2
(vol(S)−γs)/2

)(vol(H)−(vol(S)−γs)
γs

)
(vol(H)

vol(S)
) ≤

≤
ϵn′∑
s=1

(
en′

s

)s
(
e vol(H)

vol(S)−γs

)(vol(S)−γs)/2 (
evol(H)−(vol(S)−γs)

γs

)γs

(
vol(H)
vol(S)

)vol(S) ≤

≤
ϵn′∑
s=1

en′

s

(
e vol(H)

(vol(H)/n′−γ)s

)(vol(H)/n′−γ)/2 ( e vol(H)
γs

)γ

(
n′

s

)vol(H)/n′


s

=

=
ϵn′∑
s=1

(
e1+γ/2

γγ
ed/2

( 1
d− γ

)(d−γ)/2 (vol(H)
s

)(d+γ)/2 ( s

n′

)d−1
)s

=

=
ϵn′∑
s=1

(
e1+γ/2

γγ
ed/2 d(d+γ)/2

(d− γ)(d−γ)/2

(
s

n′

)d/2−γ/2−1
)s

,

where d = vol(H)/n′ is the average degree of H.
In order to upper bound the probability of H not being an edge expander we need

d− γ − 2 > 0 (4.33)

Let γ = d/2 so we can simplify further. Note that (4.33) becomes d > 4.

Pr
G

[H is not (ϵn′, γ) edge expander] ≤
ϵn′∑
s=1

(
e1+d/4

(d/2)d/2 ed/2 d3d/4

(d/2)d/4

(
s

n′

)d/4−1
)s

=

=
ϵn′∑
s=1

(
e(2e)3d/4

(
s

n′

)d/4−1
)s

.

Unfortunately, we cannot use Proposition 2.3 with c1 = e(2e)3d/4, c2 = d/4− 1 because
c2 < log c1, even though the condition c1 = o

(
n′c2−1

)
is met.
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What’s left to argue is that in all cases this expression may be upper bounded by o(1),
while also maintaining d > 4.

Case 0 < β < 1:

vol(H) = d0
1− β

n′

d = d0
1− β

= 2p

1− β
n′1−β = Θ(n′1−β)

Clearly, our choice of d0 satisfies (4.33).
As for the summation, we consider small and large values of s separately.

• s ≤
√

n′ :

√
n′∑

s=1

(
e(2e)3d/4

(
s

n′

)d/4−1
)s

≤ e
√

n′(2e)
√

n′3d/4

√
n′∑

s=1

(
s

n′

)(d/4−1)s

≤ e
√

n′(2e)
√

n′3d/4

√
n′∑

s=1

( 1√
n′

)d/4−1

≤ e
√

n′(2e)
√

n′3d/4
√

n′

n′d/4−1

= en′1/2(2e)
3
4 Θ(n′3/2−β) 1

n′Θ(n′1−β)/4−3/2 = o(1)

• otherwise:
ϵn′∑

s=
√

n′+1

(
e(2e)3d/4

(
s

n′

)d/4−1
)s

<
ϵn′∑

s=
√

n′+1

10−s ≤ ϵn′

10
√

n′ = o(1)

For this we need: e(2e)3d/4ϵd/4−1 <
1
10

, or ((2e)3ϵ)d/4

ϵ
<

1
10e

.

We can choose ϵ = 1
10(2e)3 , and we are done because d = Θ(n′1−β).

Pr
G

[H is not (ϵn′, γ) edge expander] ≤ o(1).
Case β = 1:

n′ = pn/d0

vol(H) = d0n′ ln n′

d = vol(H)
n′ = d0 ln n′ = Θ(n′1−β ln n′)

This is identical to the previous case 0 < β < 1.
Case β > 1:

vol(H) = ζ(β) d0n′β

d0 = 2pn′1−β

d = ζ(β) d0n′β−1 = 2p ζ(β) = O(1)
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Here we get an additional requirement p ζ(β) > 2, because we need d > 4. As 0 < p ≤ 1
and ζ(β) is monotonically decreasing, it serves as an upper bound for β.

Finally, let c1 = e(2e)3d/4, c2 = d/4− 1 be some positive constants, then for sufficiently
small ϵ:

Pr
G

[H is not (ϵn′, γ) edge expander] ≤
ϵn′∑
s=1

(
c1

(
s

n′

)c2)s

= o(1).

More precisely, c1ϵc2 < 1/10, or ϵ = (c1c3)−1/c2 for some c3 > 10.

Proof of Theorem 4.6. The approach is identical to Theorem 2.12, but d perfect matchings
on n vertices are replaced by a single perfect matching on vol(H) mini-vertices, which
correspond to n′ vertices of H.

When β = 0, G is pn-regular graph, so the original proof with Proposition 2.2 or Propo-
sition 2.3 suffice.

Otherwise, β > 0. For any S ⊂ VH of size |S| = s ≤ ϵn′ and T ⊂ VH of size (1 + γ)s,

d = vol(H)
n′ (4.34)

vol(S) = sd (4.35)

vol(T ) = (1 + γ)sd (4.36)

All mini-vertices from S are matched to mini-vertices in T with probability

Pr
G,S,T

[NH(S) ⊆ T ] ≤
( vol(T )

vol(H)

)vol(S)/2

As for the number of sets S of a given size (the same goes for T ),
(

n′

s

)
would only work

for regular graphs, while
(

vol(H)
vol(S)

)
would overcount because mini-vertices corresponding

to the same vertex in H are indistinguishable. Instead we use the trick as Gkantsidis et
al. [GMS03] by taking the minimum degree d0 into account.

Pr
G

[∃ non-expading S of size s] ≤
(

vol(H)/d0
vol(S)/d0

)(
vol(H)/d0
vol(T )/d0

)( vol(T )
vol(H)

)vol(S)/2
≤

≤
(

en′

s

)sd/d0 ( en′

(1 + γ)s

)(1+γ)sd/d0 ((1 + γ)s
n′

)sd/2
=

=
((

en′

s

)(2+γ)d/d0 ( 1
1 + γ

)(1+γ)d/d0 ((1 + γ)s
n′

)d/2)s

=

=
(

e(2+γ)d/d0(1 + γ)d(1/2−(1+γ)/d0)
(

s

n′

)d(1/2−(2+γ)/d0)
)s

.

In order to proceed we need this exponent to be positive:

d(1/2− (2 + γ)/d0) > 0 (4.37)

0 ≤ γ < d0/2− 2 (4.38)
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Note that this requires d0 > 4, while similar theorems 2.12 and 2.13 ask for d0 ≥ 3.
When β > 0, it translates into

d0 = 2βpn1−β > 4 (4.39)

n1−β > 22−β (4.40)

β < 1 (4.41)

Pr
G

[H is not (ϵn′, γ) vertex expander] ≤
ϵn′∑
s=1

Pr
G

[∃ non-expading S of size s] = o(1).

This final step may be achieved in two ways. First, we may apply Proposition 2.2, then
ϵ must be some small constant. Secondly, it also follows from Proposition 2.3, but we need
to verify c1 = o

(
n′c2−1

)
and c2 > max{1, log c1}.

c1 = e(2+γ)d/d0(1 + γ)d(1/2−(1+γ)/d0)

log c1 = (log e)(2 + γ)d/d0 + (log(1 + γ))(d/2− (1 + γ)d/d0)

c2 = d/2− (2 + γ)d/d0

c2 − log c1 = d/2− (2 + γ)d/d0 − (log e)(2 + γ)d/d0 − (log(1 + γ))(d/2− (1 + γ)d/d0)

c2 − log c1 > 0, for any γ < 1,

In this case we get ϵ = 1/2, but both conditions are satisfied only when γ < 1.

4.2.1 Error from Rounding Degrees

To get the exact degree sequence, one needs to round down the expression (3.16) for deg(v).
In this case the error of vol(G) is at most n. For our choice of d0 this error is negligible
compared to vol(H) when 0 ≤ β ≤ 1, but it might be significant otherwise.

vol(H) =



Θ
(
n2
)

if β = 0,

Θ
(
n2−β

)
if 0 < β < 1,

Θ(n log n) if β = 1,

Θ(n) if β > 1.

(4.42)

4.3 “Octopus” Graphs

The core of the “octopus” graph is defined as an induced subgraph with all the vertices of
degree at least d0 = n1/ log log n.
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The number of vertices of degree more than d is about
(

β − 2
β − 1

)β−1
n.

wx = β − 2
β − 1

dn
1

β−1 x−1/(β−1) > d

β − 2
β − 1

n
1

β−1 > x1/(β−1)

x <

(
β − 2
β − 1

)β−1
n

Analogously, i1 is the index of the last vertex included in the core:

wx = β − 2
β − 1

dn
1

β−1 x−1/(β−1) ≥ n1/ log log n = d0

β − 2
β − 1

dn
1

β−1 −1/ log log n ≥ x1/(β−1)

x ≤
(

β − 2
β − 1

d

)β−1
n

1− β−1
log log n =

(
c

d0

)β−1
= i1

i1 ≤ n implies a restriction on the average degree:

d ≤ β − 1
β − 2

n1/ log log n (4.43)

By our assumptions, i1 = i0

(
dmax

n1/ log log n

)β−1
≫ i0.

Let n′ denote the size of the core.

n′ = i1 − i0 (4.44)

log n′ ≈ log i1 ≈ log n

(
1− β − 1

log log n

)
(4.45)

The average degree of the core is∑i1
k=i0

wi

i1 − i0
≈ β − 2

β − 1
dn

1
β−1

1
i1

i1∑
k=1

k−1/(β−1) ≈ β − 2
β − 1

dn
1

β−1
1
i1

i
1−1/(β−1)
1

(β − 2)/(β − 1)
=

= d

(
n

i1

) 1
β−1

= d

((
β − 2
β − 1

d

)β−1
n

− β−1
log log n

)− 1
β−1

= d

(
β − 2
β − 1

d

)−1
n1/ log log n =

= β − 1
β − 2

n1/ log log n = ω(log n′)
As a result, the core is edge expander w.h.p. by Lemma 4.2.
Moreover, this core contains G(n′, p) with p = d2

0/dn [CL04], and if d = Θ(1), then its
expected degrees are

n′p =
(

c

d0

)β−1 d2
0

dn
= Θ

(
dβ−2d3−β

0

)
= Θ

(
dβ−2n(3−β)/ log log n

)
= ω(log n)

Chung and Lu [CL04] use this fact to prove O(log log n) diameter of the core.
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We can apply Theorem 2.17 on this G(n′, p) to get linear size vertex expander of diameter
O(log n) inside of the core. If we could also say that other vertices are not “too far” from
this expander, it could serve as an alternative step for the proof of O(log n) diameter of the
whole “octopus” graph.

4.4 Diameter of Vertex Expanders

In this section we focus on (ϵn, γ) vertex expanders, especially on the case ϵ < 1/2, and the
results apply to all graph models.

First, consider an example: a graph G that consists of two disconnected (n/4, γ) vertex
expanders of size n/2 each. Any subset of G of size up to n/4 is the union of subsets of
these two parts, and it expands proportionally. Therefore, G is (n/4, γ) vertex expander as
well, and yet it is not connected.

In general, when ϵ ≤ 1/4, the connectivity of (ϵn, γ) vertex expander is not guaranteed.
A well known fact about (n/2, γ) vertex expanders is that they have diameter O(log n)

[Rao12, HLW06]. We extend on this by demonstrating that the diameter is still O(log n)
even for small constant ϵ < 1/2, assuming the graph is connected.

Theorem 4.7. Let G = (V, E) be a connected (s(n), γ) vertex expander of size n, where
s(n) ≤ n/2 and γ = Ω(1). Then the diameter of G is O

(
n

s(n)
log s(n)

)
.

Corollary 4.7.1. The diameter of a connected (ϵn, γ) vertex expander of size n, where
ϵ ≤ 1/2 and γ are some positive constants, is O(log n).

Similarly, s(n) = Θ
(

n

log n

)
gives us diameter O

(
log2 n

)
, and s(n) = Θ(

√
n) gives

O
(√

n log n
)
. We now prove an intermediate result needed for the theorem.

Lemma 4.8. If G = (V, E) is a connected (s(n), γ) vertex expander, then there exists a par-
titioning {S1, . . . , Sk} of V , such that k = O(n/s(n)) and each Si has diameter O(log s(n)).

Proof. Let B(v, r) = {u ∈ V | dist(v, u) ≤ r} denote a ball of radius r ≥ 0 around vertex v.
For any v ∈ V and r ≥ 1, if |B(v, r − 1)| ≤ s(n), then |B(v, r)| ≥ min {s(n), (1 + γ)r}

by the expansion property of G. As all subsets of size up to s(n) are expanding, there exists

r0 =
⌈
log1+γ s(n)

⌉
= Θ(log s(n)), (4.46)

such that |B(v, r0)| ≥ s(n). The diameter of B(v, r0) is O(r0).
We maintain an invariant that all Si are disjoint and have diameter O(r0) throughout

the following partitioning process.
Begin with arbitrary v1 ∈ V and select S1 = B(v1, r0). As long as there is some other

vertex v whose B(v, r0) contains at least s(n)/2 of not yet selected vertices, add these new
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vertices to the next set Si. We will stop after k ≤ 2n/s(n) steps. Every remaining vertex u

must be within distance r0 from some Sj , so we add each such u to the corresponding Sj .

Proof of Theorem 4.7. Lemma 4.8 gives us the partitioning {S1, . . . , Sk} of V . We create
a graph G′ of size k from G by contracting each Si into a single vertex and merging multiple
edges. Note that G′ is connected by construction.

Now consider arbitrary u, v from G. Clearly, the distance between their corresponding
vertices in G′ is at most k. Let D be the maximum diameter of any Si. Then dist(u, v) in
G is at most k(2D + 1) which is exactly O

(
n

s(n)
log s(n)

)
.
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Chapter 5

Comparison of the Graph Models

We have briefly compared our findings to some previous papers in Chapter 1. Now we would
like to address more correspondences, both quantitative and qualitative.

5.1 Overview of the Expansion Properties

As usual, we denote the size of the subgraphs n′, the minimum degree d0 and the average
degree d, the expansion γ, and ϵ, δ > 0 are some arbitrary small constants.

5.1.1 Previously Known Results

We saw in Chapter 2 that random d-regular graphs are themselves (ϵn, d − 2 − δ) vertex
and edge expanders.

The model from Gkantsidis et al. [GMS03] is similar to our coin toss model and it
describes the graphs with a small constant conductance 0.0175, which is a generalization of
(n/2, γ) edge expansion.

Lastly, G(n, p) graphs contain (n′/2, Θ(1)) vertex expanders of linear size [Kri18].

5.1.2 Our Results

Graphs in the coin toss model contain (n′/2, d/2 − δ) edge expanders. The size of these
subgraphs is n′ = Θ(n) when β ≤ 1.6, but only n′ = Θ

(
n1/β

)
for larger β.

In the permutation model, on the other hand, we were able to prove the existence of
(n′/2, d/2) edge expanders if β ≤ 1.72, and also both (n′/2, 1 − δ) and (ϵn′, d0/2 − 2 − δ)
vertex expanders for 0 < β < 1. The trade-off between the maximum size of expanding
subsets and the expansion rate is the most apparent in this model. And as we know, any
vertex expansion would imply the same edge expansion, but unluckily, we couldn’t secure
even weak vertex expansion for β > 1.72.
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5.2 Uniform Random Graphs

Although power-law graphs have less uniform structure than G(n, p), we produced evidence
that they are still random enough because of the large expanding subgraphs.

G(n, p) graphs have a sharp threshold for connectivity [ER59] and become connected
w.h.p. when p = (1 + ϵ) log n/n, for ϵ > 0, that is, when the expected degrees are d ≈ pn >

log n. It harmonizes with our Lemma 4.2, which explains that graphs with the expected
average degree d > 10 log n are (n/2, d/2− δ) edge expanders, for any small constant δ > 0.

Theorem 2.17 adds to this by saying that G(n, p) graph in supercritical regime with
p = (1 + ϵ)/n w.h.p. contains (n′/2, γ) vertex expander on n′ = Θ(n) vertices [Kri18].

The parameters are c1 = 1 + ϵ, c2 = 1 + ϵ2/10, α =
(

c2
5c1

)c2/(c2−1)
, and ∆ = 4 ln 1

ϵ
.

In this case it guarantees the vertex expansion

γ = c1 − c2

∆ log2
1
α

= ϵ− ϵ2/10(
4 ln 1

ϵ

)
c2

c2−1 log2
5c1
c2

= ϵ− ϵ2/10(
4 ln 1

ϵ

)
1+ϵ2/10

ϵ2/10 log2
5c1
c2

<
ϵ

8 ln(1/ϵ)
(5.1)

which is less than 1 for ϵ < 0.89, so it is also similar to our (n′′/2, 1 − δ) vertex expander
for the permutation model with 0 < β < 1, n′′ = n/2, and arbitrary small constant δ > 0.

5.3 Connected Components and the Coin Toss Model

Table 1.1 highlights similarities between the sizes of our expanding subgraphs in the coin
toss model from Section 3.2 and the largest connected components of power-law graphs
from Aiello et al. [ACL01], although there are still some gaps.

For example, we know that the giant component exists for β ∈ (0; 3.48) [ACL01, CL06].
For 3.48 < β < 4, the size of each connected component is at most Θ

(
n2/β log n

)
, and for

β > 4 it is Θ
(
n2/(β+2) log n

)
.

Our proof provides a linear size edge expander only for β up to 1.6, and then we have
a single jump to Θ

(
n1/β

)
, which is close to a square root of the size of the corresponding

largest component. The conclusion here is that the largest connected components of power-
law graphs have strong expansion properties, even though their average degree d = ω(1),
so they are not sparse.

5.4 Coin Toss and Permutation Models

If we consider the graphs from permutation model when p = 1, we notice that we get
the same (n′/2, d/2 − δ) edge expander as in the coin toss model for any 0 < β ≤ 1.6. It
demonstrates that power-law graphs with small β possess a similar structure regardless of
whether we define degrees or frequencies of degrees to follow a power law.
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Chapter 6

Conclusions

In this work we established existence of expanders in power-law graphs under several models
and studied their behavior for various ranges of the exponent β. We also made an overview
of the structure of random graphs, comparing them side by side with our findings to con-
trast some correspondences and differences. In particular, we showed that power-law graphs
with small β have similar to G(n, p) expansion properties, just as one would expect. Also
the largest components of power-law graphs and our edge expanders have comparable sizes,
so these components are presumably well-connected.

One possible direction for future research is the improvement of the current results. This
includes tightening gaps between sizes of connected components and expanding subgraphs,
increasing the quality of expansion, and weakening the conditions for having large expanding
sets of size up to n/2. It would be useful to connect spectral and combinatorial expansion
of power-law graphs. By analogy with connectivity in percolation theory, interesting open
problem is to decide the expansion of sparse graphs obtained by randomly removing each
edge with probability proportional to the degrees of its endpoints.

Another promising direction is the development of enhanced SAT algorithms for power-
law formulas, facilitated by the available structural information. Self-similarity of a power
law might be exploited to design recursive SAT algorithms. Finally, the results about random
walks with lookahead suggest studying the expansion of k-th power of power-law graphs,
for some small constant k.
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Appendix A

Miscellaneous

A.1 Approximations

A.1.1 Euler-Maclaurin Formula

Euler-Maclaurin summation formula provides an approximation of the sum
n∑

i=0
f(i) via the

integral
∫ n

0
f(x) dx, and the error term is an integral with Bernoulli numbers.

b∑
n=a

f(n) =
∫ b

a
f(t) dt + 1

2
(f(b) + f(a))+

+
k∑

i=2

bi

i!

(
f (i−1)(b)− f (i−1)(a)

)
−

−
∫ b

a

Bk({1− t})
k!

f (k)(t) dt

(A.1)

where {x} denotes the fractional part of x. One of its interesting applications is the Stirling’s
approximation formula.

If f(x) and all its derivatives tend to 0 as x→∞, the formula can be simplified.

∞∑
n=a

f(n) =
∫ ∞

a
f(t) dt + 1

2
f(a)−

k∑
i=2

bi

i!
f (i−1)(a)−

∫ ∞

a

Bk({1− t})
k!

f (k)(t) dt (A.2)

For k ≥ 2: |Bk({x})| ≤ π2

3
k!

(2π)k
< 4 k!

(2π)k
.
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A.1.2 Lambert Function

Lambert function W (x) is defined by the relation

z = W (zez) (A.3)

When x > 0, W (x) = ln x− ln W (x), and lim
x→∞

W (x)
ln x

= 1. Thus, we can approximate it as

W (x) ≈ ln x (A.4)

A.2 Finding Expanding Subsets In Locally Sparse Graphs

Algorithm 1 Algorithmic proof of Theorem 2.14 ([Kri18])
procedure FindExpander(G, α)

V1 ← V
for i← 1, imax do

di = |Ei|
|Vi|
≥ c2

δ = edge boundary of the sparsest cut (Wi, Vi\Wi)
if |Vi| ≤ αn then ◃ Gi is small and dense

break
else if there are isolated vertices then

remove isolated vertices ◃ density increases
continue

else if λGi >
δ2

2∆2 then
Gi is edge-expander by (2.47)(2)
and ∆(Gi) ≤ ∆ ◃ Gi is a vertex-expander
break

else
find Wi ⊂ Vi using the proof of (2.47)(1)
s.t. vol(Wi) ≤ vol(Vi)/2
and eGi(Wi, Vi\Wi) ≤ δ|Wi|
if Wi touches at most di|Wi| edges then

remove Wi ◃ density doesn’t decrease
else ◃ Wi spans less than (di − δ)|Wi| edges

remove Vi\Wi ◃ density might decrease
di+1 ≥ di − δ

end if
end if

end for
end procedure
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