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Abstract

A remarkable recent result of M. Bhargava shows in a certain precise sense that ‘most’
hyperelliptic curves over Q have no rational points. An object central to his proof is a
certain representation Z2 ⊗ Sym2 Z2 of GLn(Z). Elements in the set Z2 ⊗ Sym2 Z2 can be
viewed as a pair of n×n symmetric matrices with entires in Z up to a GLn(Z) equivalence.

Alternatively, Z2 ⊗ Sym2 Z2 has an algebraic number theoretic description. By taking ad-
vantage of this property, in this thesis, we investigate Z2 ⊗ Sym2 Z2 from the point of
view of Minkowski theory. In particular, by assuming the hyperelliptic curve C is given by
z2 = f(x, y), where f(x, y) is irreducible over Q, we gave a direct ‘Minkowski’ style proof
that a certain part of the set Z2 ⊗ Sym2 Z2, which contains the elements arising from the
rational points on C, is finite.

Although, our main principle of proof mirrors the classical proof of finiteness for the class
number of a number field, we develop new arguments when there exist some notable differ-
ences, and we strive to give self-contained proofs of some of the components of Bhargava’s
paper which we utilize.

Keywords: Rational points, hyperelliptic curves, Bhargava theory, Minkowski theory.
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Chapter 1

Introduction

A hyperelliptic curve over Q is a smooth, geometrically irreducible, complete curve C over
Q equipped with a fixed map of degree 2 to P1. Explicitly, we view any hyperelliptic curve
over Q of genus g as an equation of the form

C : z2 = f(x, y) = f0x
n + f1x

n−1y + . . .+ fn−1xy
n−1 + fny

n (1.1)

where n = 2g + 2, the coefficients fi lie in Z, and f factors into distinct linear factors over
Q̄.

A Q-rational point on C is a triple (x0, y0, z0) 6= (0, 0, 0) ∈ Q3 such that z2
0 = f(x0, y0).

Define the height H(C) of C by

H(C) := H(F ) := max
{
|fi|
}
. (1.2)

In [3], Bhargava proved the following remarkable result:

Theorem 1.1. As g → ∞, a density approaching 100% of hyperelliptic curves over Q of
genus g possess no Q-rational points.

An object which is central to the proof of Theorem 1.1 is the representation Z2⊗Sym2 Zn

of GLn(Z). An element v of Z2⊗Sym2 Zn can be viewed as a pair (A,B) of symmetric n×n
matrices with entries in Z. Then an element g ∈ GLn(Z) acts on (A,B) by the formula
g · (A,B) = (gAgt, gBgt). To such a pair v = (A,B), we may associate a binary form fv of
degree n, given by

fv(x, y) = (−1)
n
2 det(Ax−By). (1.3)

The coefficients of fv in fact generate the ring of polynomial invariants for the action of
GLn(Z) on Z2⊗Sym2 Zn (see, e.g., the work of Schwarz [14]), and fv is called the invariant
binary n-ic form associated to v ∈ Z2 ⊗ Sym2 Zn.

The orbits of GLn(Z) on Z2⊗Sym2 Zn were first considered in the case n = 2 by Hardy
and Williams [8] and more generally by Morales [10, 11]. A classification of the orbits in the
cases n = 2 and n = 3, in terms of ideal classes in quadratic and cubic rings, was given in
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[1] and [2], while a complete classification for general n in terms of module classes of rings
of rank n was given by Wood [16].

The key algebraic construction used in the proof of Theorem 1.1 and Corollary 1.2 is
the observation that a Q-rational point on C gives rise to an element v ∈ Z2⊗Sym2 Zn such
that fv = f . Bhargava then shows by intricate geometry of numbers counting arguments
that, for ‘most’ integral binary n-ic forms f (in the sense of Theorem 1.1), there do not
exist any such integral orbits with invariant binary form equal to f .

The key algebraic construction above also extends to showing that an element of the
fake 2-Selmer set of C gives rise to a GLn(Z) orbit of Z2 ⊗ Sym2 Zn having invariant form
f . Thus, Theorem 1.1 implies

Corollary 1.2. As g → ∞, a density approaching 100% of hyperelliptic curves over Q of
genus g possess an empty fake 2-Selmer set.

The fake 2-Selmer set of C can be used to as a criterion to determine if C has no Q-
rational points [4]. Hence, the above corollary implies for ‘most’ hyperelliptic curves C over
Q, the method in [4] succeeds in establishing C has no Q-rational points.

In this thesis, we investigate the representation Z2 ⊗ Sym2 Z2 from the point of view of
Minkowski theory. This is possible because Z2⊗Sym2 Z2 has an algebraic number theoretic
description (see paragraph after Definition 4.8).

In particular, we show how to carry a direct ‘Minkowski’ style proof that a certain part
of the set Z2 ⊗ Sym2 Z2 (which contains the elements arising from Q-rational points on C)
is finite (Theorem 5.8). For simplicity, we only treat the case that f ∈ Z[x, y] is irreducible
in Q[x, y].

While the principle of proof mirrors the classical proof of finiteness for the class number
of a number field, some notable differences arise which require new arguments. Additionally,
we strive to give self-contained proofs of some of the components from [3] which we require
to prove our main theorems.
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1.1 Terminology and Notation

1. R+ is the set of positive real numbers.

2. Z+ = N is the set of positive integers.

3. Let N be a Z-submodule of M . Then (M : N) is the index of Z-module N in M .

4. Let K be a field and K∗ be the multiplicative subgroup of all nonzero elements of K.

5. O is an order in the number field K.

6. f denotes an homogeneous polynomial in Z[x, y] of even degree n which is irreducible
in Q[x, y]

7. Kf is the number field generated by Q[x]/(f) and Rf is the order associated with f .

8. Nf (I) := NRf (I) is the norm of I with respect to the order Rf .

9. 〈α1, . . . , αm〉 denotes Z-module generated by α1, . . . , αm lying a Z-module M .

10. GLn(R) denotes the general linear group of degree n over a ring R.

3



Chapter 2

Z-modules

In this chapter, we review some basic results on modules over Z, or more generally, a
principal ideal domain R.

Lemma 2.1. Let R be a principal ideal domain and M be a finitely generated R-module.
Then any submodule of M is also finitely generated. Moreover, if M is generated by n

elements, then any submodule of M can also be generated by n elements.

Proof. See [5, Corollary 2, §10.6].

Theorem 2.2. Let R be a principal ideal domain, then any submodule of Rn is a direct
sum of cyclic modules. More precisely, if M is a finitely generated R-module, then

M ∼= Rs ⊕R/a1R⊕R/a2R⊕ . . .⊕R/arR, (2.1)

where the ai’s are non-zero non-units and

ai|ai+1, i = 1, 2, ..., r − 1; (2.2)

the decomposition (2.1), subject to (2.2) is unique, up to isomorphism.

Proof. We follow the proof in [5, Theorem 2, §10.6] by using the presentation (see Lemma 2.1
above):

0→ Rm → Rn →M → 0,

where m ≤ n, and the mapping f : Rm → Rn can be represented by an m × n matrix
A =

(
aij
)
. Thus by a suitable choice of bases we can take A in the diagonal form and it

leads to the form (2.1) for M , where s = n −m if we omit terms corresponding to units.
The ai are unique as the invariant factors of A.
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Lemma 2.3. Let M ′ ⊆ M both be free Z-modules of rank n with bases {y1, y2, . . . , yn}
and {x1, x2, . . . , xn} respectively. If we write yi =

∑n
i=1 cijxi with cij ∈ Z, then the index

(M : M ′) equals |det(cij)|.

Proof. See [7, Theorem §4.15].

Definition 2.4. Bound for a quotient module
Let N be a Z-submodule of a free Z-module M . If there exists a positive integer δ, such

that δM ⊆ N , we say that M/N is bounded by δ.

Lemma 2.5. Let N ⊆ M be free Z-modules both of rank n. Then M/N is bounded by δ,
where δ = (M : N).

Proof. Recall the proof of Theorem 2.2 proceeds by picking isomorphisms M ∼= Zn and
N ∼= Zn. Then the inclusion N ⊆ M corresponds to a Z-module homomorphsim φ : Zn →
Zn, which in turn, can be represented by a n× n matrix A with integer entries.

By the elementary divisor theorem [5, Theorem 2, §10.6], by changing bases for the
source and target copies of Zn, the matrix A can be put in diagonal form with entries
a1, . . . , an such that ai|ai+1 for i = 1, . . . , n− 1. Thus, M/N has the structure

M/N ∼= Z/a1Z⊕ Z/a2Z . . .⊕ Z/anZ (2.3)

where ai|ai+1 for i = 1, ..., n− 1.
If we multiply δ = a1 · a2 · . . . · an = (M : N) to (2.3), we will have δM/N = 0 , which

implies M/N is bounded by δ.

Corollary 2.6. Let N ⊆ M be free Z-modules, both of rank n. If there exists a positive
integer δ′ such that δ′M ⊆ N , then we have (M : N)|δ′n.

Proof. M/N has the same structure as in (2.3), and if δ′M ⊆ N , we have that ai|δ′ for
i = 1, . . . , n. Hence, (M : N) = a1 · a2 · . . . · an

∣∣∣ (δ′)n.
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Chapter 3

Minkowski Theory for Orders

Definition 3.1. Norm and Trace
Let L|K be a field extension of number field K. The trace and norm of an element

x ∈ L∗ are defined to be the trace and determinant of the endomorphism

Tx : L −→ L, Tx(α) = xα,

of the K-vector space L:

TrL|K(x) = Tr(Tx),

NL|K(x) = det(Tx).

Definition 3.2. Integrality, Integral Bases and Integral Closure
Let f : A −→ B be a ring homomorphism. An element b ∈ B is called integral over A,

if it satisfies a monic polynomial

xn + a1x
n−1 + . . .+ an = 0

with coefficients ai ∈ A and degree n ≥ 1.
A system of integral elements ω1, ω2, ..., ωn in B is called an integral basis of B over

A if and only if for any b ∈ B,

b = a1ω1 + ...+ anωn

for unique determined coefficients ai ∈ A.
If all elements in B are integral over A and f is injective, we call B is an integral

closure Ā of A. Notice that B can also be called an integral extension of A and denote it
by B/A.
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Utilizing Definition 3.2, we can have another way to compute trace and norm of the
element x in Definition 3.1.

Proposition 3.3. If L|K is a separable extension and σ : L −→ K̄ varies over different
K-embeddings over L into algebraic closure K̄ of K, then we have

TrL|K(x) =
∑
σ

σx

NL|K(x) =
∏
σ

σx

Proof. See [13].

Definition 3.4. Ring of Integers OK
The ring of integers OK ⊆ K is defined to be the integral closure of Z ⊂ Q in an

algebraic number field.

Definition 3.5. Order O
Let K be a number field of degree n. An order of K is a subring O of OK which has an

integral basis over Z of length n. The ring OK is called the maximal order of K. In concrete
terms, orders are obtained as ring of the form

O = Z[α1, . . . , αn],

where α1, . . . , αn are all algebraic integers such that K = Q[α1, . . . , αn].

Definition 3.6. Discriminant d(α1, . . . , αn)
The discriminant of a basis α1, ..., αn of a separable extension L|K is defined by

d(α1, ..., αn) = det
(
(σiαj)

)2
,

where σi, i = 1, 2, ..., n varies over the K-embeddings of L ↪→ K̄. Because of the relation

TrL|K
(
αiαj

)
=
∑
k

(σkαi)
(
σkαj

)
,

the matrix
(
TrL|K(αiαj)

)
is the product of the matrix (σkαi)T and (σkαj). Thus one may

also write

d(α1, ..., αn) = det
(
TrL|K(αiαj)

)
.

We now recall some basic theory involving the ring of integers OK , which we at the
same time generalize to a general order O, where possible.
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Lemma 3.7. Suppose {α1, . . . , αn} is a basis of K over Q, which is contained in an order
O in K and let d = d(α1, . . . , αn) be the discriminant. Then one has

dO ⊆ Zα1 + . . .+ Zαn.

Proof. We know from Lemma 2.9 in [13] that if {α1, . . . , αn} is a basis of K over Q, which
is contained in OK , and has discriminant d = d(α1, . . . , αn), then,

dOK ⊆ Zα1 + . . .+ Zαn.

As dO ⊆ dOK , we have the result of Lemma 3.7.

Lemma 3.8. Let O be an order in K. For any k ∈ K, k can be written as a
z , where a ∈ O

and z ∈ Z, z 6= 0.

Proof. Since K|Q is an algebraic extension, k ∈ K satisfies

ank
n + an−1k

n−1 + an−2k
n−2 + . . . + a0 = 0, (3.1)

where a0, a1, . . . , an ∈ Z, an 6= 0.
Multiplying an−1

n on both sides of (3.1), we have

(ank)n + an−1(ank)n−1 + . . .+ a0a
n−1
n = 0,

which implies ank ∈ OK .
From lemma 2.5, we know the nonzero δ = (OK : O) ∈ Z+ makes δank ∈ O. So we

obtain k as a
z , for an a 6= 0 ∈ O and z = δan ∈ Z.

Theorem 3.9. Let M be a nonzero finitely generated O-module in K. Then M is a free
Z-module of rank (K : Q).

Proof. Since M is a nonzero finitely generated O-module in K, it has a generating set
S = {µ1, . . . , µr}.

By Lemma 3.8, there exists a nonzero integer z such that zµi ∈ O, ∀µi ∈ S. Therefore
zM ⊆ O. Then from Lemma 3.7,

dzM ⊆ dO ⊆ Zα1 + . . .+ Zαn,

where d = d(α1, . . . , αn) is the discriminant and {α1, . . . , αn} is a basis of K|Q.
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Let M0 := Zα1 + . . .+Zαn. By Theorem 2.2, dzM ⊆M0 is a free Z-module, and hence
also M , as the map

M −→ dzM

m 7−→ dzm

is an isomorphism between Z-modules. Thus,

rankZ(M) = rankZ(dzM) ≤ rankZ(M0) = (K : Q).

So finally,

n = (K : Q) = rankZ(O) ≤ rankZ(M) = rankZ(dzM) ≤ rankZ(M0) = (K : Q) = n.

Definition 3.10. The discriminant of an order O is defined as ∆(O) := d(α1, . . . , αn),
where {α1, . . . , αn} is a Z-basis for O.

Lemma 3.11. If O is an order, ∆(O) ∈ Z, where ∆(O) is the discriminant of O.

Proof. Let O be an order with a Z-basis {α1, . . . , αn}. From Definition 3.6, we can write
∆(O) = det

(
TrL|K(αiαj)

)
.

Since each a = αiαj ∈ O ⊆ OK and ∀a ∈ OK , T rL|K(α) ∈ Z. Therefore, each
TrL|K(αiαj) ∈ Z and ∆(O) = det

(
TrL|K(αiαj)

)
∈ Z.

Lemma 3.12. Let a ⊆ a′ be two nonzero finitely generated O-modules in K. From Theo-
rem 3.9, we know a ⊆ a′ are both free Z-modules of rank n. Then, the index (a′ : a) is finite
and satisfies

d(a) = (a′ : a)2 · d(a′).

Proof. As defined in Definition 3.6:

d(a) = d(α1, . . . , αn) = det
((
σiαj

))2
,

where {α1, . . . , αn} is a Z-basis of a and d(a) is independent of the choice of Z-basis.
Let {β1, β2, . . . , βn} be a Z-basis of a′, then

d(a) = d(α1, . . . , αn) = det(T )2 · d(β1, . . . , βn),

where T = (bij) is the base change matrix from {β1, . . . , βn} to {α1, . . . , αn} with αi =∑
bijβj .

9



By Definition 3.6 again,

det(T )2 · d(β1, . . . , βn) = det(T )2 · d(a′).

Therefore, we have

d(a) = det(T )2 · d(a′).

Notice by Lemma 2.3 the index (a′ : a) equals the absolute value of det(T ). Thus, we
have d(a) = (a′ : a)2 · d(a′) as required.

Definition 3.13. Lattice
Let V be an n-dimensional R-vector space. A lattice Γ in V is a subgroup of the form

Γ = Zv1 + . . .+ Zvm

with R-linearly independent vectors v1, . . . , vm of V . The m-tuple (v1, . . . , vm) is called a
basis and the set

Φ = {x1v1 + . . .+ xmvm | xi ∈ R, 0 ≤ xi < 1}

a fundamental mesh of the lattice. The lattice is called complete if m = n.
A subset X of V is called centrally symmetric if, given any point x ∈ X, then −x ∈ X;

and it is called convex if, given any two points x, y ∈ X, the whole line segment {ty + (1−
t)x | 0 ≤ t ≤ 1} joining x with y is contained in X.

Definition 3.14. Volume of a lattice
Let V be an euclidean vector space, i.e., an R-vector space of finite dimension n equipped

with a symmetric, positive definite bilinear form

〈 , 〉 : V × V −→ R.

The parallelopiped spanned by n linearly independent vectors {v1, v2, . . . , vn},

Φ = {x1v1 + · · ·+ xnvn | xi ∈ R, 0 ≤ xi < 1}

has volume
vol(Φ) = |detA|

where A = (aij) is the matrix if the base change form {e1, . . . , en} to {v1, v2, . . . , vn} and so
that vi =

∑
k aikek. Here, {e1, . . . , en} is an orthonormal basis spans a cube with volume 1.
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Since (
〈 vi, vj〉

)
=

∑
k,l

aikajl〈ek, el〉

 =

∑
k

aikajk

 = AAT ,

we have the invariant notation

vol(Φ) =
∣∣∣ det

(
〈vi, vj〉

) ∣∣∣ 1
2 .

Let Γ be a lattice spanned by {v1, v2, . . . , vn}. Then Φ is a fundamental mesh of Γ , and
we write short

vol(Γ ) = vol(Φ).

With the above definitions, we now state the well-known Minkowski’s Lattice Point
Theorem .

Theorem 3.15. Minkowski’s Lattice Point Theorem
Let Γ be a complete lattice in the Euclidean vector space V and X a centrally symmetric

and convex body of V . Suppose that

vol(X) > 2nvol(Γ ).

Then X contains at least one non-zero lattice point γ ∈ Γ .

Proof. See Theorem 4.4 in [13].

We consider the canonical mapping

j : K −→ KC :=
∏
τ

C, a 7−→ ja = (τa), (3.2)

which results from the n complex embeddings τ : K → C (see [13, Chapter 4]). The C-vector
space KC is equipped with the Hermitian inner product

〈x, y〉 =
∑
τ

xτ ȳτ . (3.3)

We recall that a Hermitian inner product is given by a form H(x, y) which is linear in
the first variable and satisfies H(x, y) = H(y, x) as well as H(x, y) > 0 for x 6= 0 and we
can view KC as a hermitian space with respect to (3.3).

Next, we will introduce the definition of Minkowski space. First, notice that every em-
bedding τ : K → C is either real or complex, and if the embeddings τ : K → C are real, their
images already landed in R. Second, all the other complex embeddings come as in pairs.
Also, they can be thought of as embeddings into R2 by splitting into real and imaginary
parts.
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Definition 3.16. Minkowski space KR

Let

ρ1, . . . , ρr : K −→ R

be the real embeddings. The complex embeddings come in pairs

σ1, σ̄1, . . . , σs, σ̄s : K −→ C

We choose from each pair some fixed complex embeddings, and let ρ vary over the family
of real embeddings and σ over the family of chosen complex embeddings. So we define the
Minkowski space KR of K as

KR = {(zτ ) ∈
∏
τ

C | zρ ∈ R, zσ̄ = z̄σ}. (3.4)

From Proposition §5.1 in Neukirch[13], we know there is an isomorphism

f : KR −→
∏
τ

R = Rr+2s

given by the rule (zτ ) 7−→ (xτ ) where

xρ = zρ, xσ = Re(zσ), xσ̄ = Im(zσ).

Now consider V again from Definition 3.14. This isomorphism transforms the canonical
metric 〈 , 〉 into the inner product

〈x, y〉 =
∑
τ

ατxτyτ

where ατ = 1 (resp. ατ = 2), if τ is real (resp. τ is complex).

Lemma 3.17. Modification of Proposition 5.2 in [13]
Let a be a nonzero ideal of O, then Γ = ja is a complete lattice in KR and its fundamental

mesh has volume

vol(Γ ) =
√
|dO|(O : a),

where j is the canonical mapping defined in (3.2).

Proof. Let {α1, . . . , αn} be a Z-basis of a, then

Γ = Z jα1 + . . .+ Z jαn.

12



We choose a numbering of the embeddings τ : K −→ C, τ1, ..., τn, and form the matrix
A = (τlαi). Then according to Lemma 3.12, we have

d(a) = d(α1, ..., αn) = (detA)2 = (O : a)2d(O)

and on the other hand

(
〈jαi, jαk〉

)
=

 n∑
l=1

τlαiτ̄lαk

 = AĀT .

By Definition 3.14, this yields

vol(Γ ) =
∣∣∣ det

(
〈jαi, jαk〉

) ∣∣∣ 1
2 = | det(A)| =

√
|dO|(O : a). (3.5)

Theorem 3.18. Modification of Theorem 5.3 in [13]
Let a be a nonzero integral ideal of K, and let cτ > 0, for τ ∈ Hom(K,C), be real

numbers such that cτ = cτ̄ and

∏
τ

cτ > A(O : a),

where A =
(

2
π

)2√
|dO|. Then there exists a ∈ a, a 6= 0, such that

|τa| < cτ , ∀τ ∈ Hom(K,C).

Proof. The set X = {(zτ ) ∈ KR

∣∣∣ |zτ | < cτ} is centrally symmetric and convex. Its volume
vol(X) can be computed via the map

f : KR
∼−→
∏
τ

R, (zτ ) 7→ (xτ ),

given by xρ = zρ, xσ =Re(zσ), xσ̄ =Im(zσ).
It comes out to be 2s times the Lebesgue-volume of the image

f(X) =
{

(xτ ) ∈
∏
τ

R
∣∣∣ |xρ| < cρ, x

2
ρ + x2

ρ̄ < c2
ρ

}
This gives

vol(X) = 2svolLebesgue
(
f(X)

)
= 2s

∏
ρ

(2cρ)
∏
σ

(
πc2

ρ

)
= 2r+sπs

∏
τ

cτ .
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Now using Lemma 3.17, we obtain

vol(X) > 2r+sπs
( 2
π

)s√
|dO|(O : a) = 2nvol(Γ ).

Thus, the hypothesis of Minkowski’s lattice point theorem is satisfied. So there exists a
lattice point ja ∈ X, a 6= 0, a ∈ a. In other words, |τa| < cτ .

Theorem 3.19. Modification of Lemma 6.2 in [13]
In every nonzero ideal a of an arbitrary order O ⊆ OK , there exists an a ∈ a, a 6= 0 such

that

|NK/Q(a)| 6
( 2
π

)s√
|dO|N(a),

where N(a) = (O : a).

Proof. Given ε > 0, we choose positive real numbers cτ , for τ ∈ Hom(K,C), such that
cτ = cτ̄ , and

∏
τ

cτ =
( 2
π

)s√
|dO|N(a) + ε.

Then by previous theorem we find an element a ∈ a, a 6= 0, satisfying |τa| < cτ . Thus

|NK/Q(a)| =
∏
τ

|aτ | <
( 2
π

)s√
|dO|N(a) + ε.

This being true for all ε > 0 and since |NK/Q(a)| is always a positive integer, there has to
exist an a ∈ a, a 6= 0, such that

|NK/Q(a)| ≤
( 2
π

)s√
|dO|N(a).

Definition 3.20. Inverse of an O-module
Let a be a nonzero O-module in K. We define the inverse of a in a similar manner as

when a is an OK-module, that is a−1 = {x ∈ K | xa ⊆ O}.

One can check by the module definition that a−1 is indeed an O-module in K.

Lemma 3.21. Let a be a nonzero finitely generated O-module in K, then a−1 is a nonzero
finitely generated O-module as well.

Proof. Given a is a nonzero finitely generated O-module, we know from Theorem 3.9 that
a is a free Z-module of rank n, that is

a = Zβ1 + . . .+ Zβn (3.6)
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where {β1, . . . , βn} is a Z-basis of a.
Take an element β1 from the Z-basis {β1, . . . , βn} of a. We know from Definition 3.20

that
xβ1 ∈ O, ∀x ∈ a−1. (3.7)

By Definition 3.5, O is a free Z-module of rank n. So (3.7) implies

xβ1 ∈ O = Zα1 + . . .+ Zαn, ∀x ∈ a−1 (3.8)

where {α1, . . . , αn} is a Z-basis of O.
Let αi

β1
= ri, 1 ≤ i ≤ n. We can write (3.8) as

x ∈ a−1 ⊆ Zr1 + . . .+ Zrn := B, ∀x ∈ a−1. (3.9)

Then (3.9) implies the O-module a−1 is a submodule of a finitely generated Z-module
B. Therefore, by Lemma 2.1, a−1 is a finitely generated Z-module as well.

Definition 3.22. Product of two O-modules
Let a and b be two nonzero O-modules, where O is an order from Definition 3.5.
We define the product of a and b by

ab =
{∑

i

aibi

∣∣∣∣∣ ai ∈ a, bi ∈ b

}
.

Definition 3.23. Extension of an O-module to an OK-module
Let a be a nonzero finitely generated O-module in K and suppose

a = Oα1 + . . .+Oαn, (3.10)

where {α1, α2, . . . , αn} is an O-generating set of a.
We define

OKa := OKα1 + . . .+OKαn.

One can check by module definition that OKa is an OK-module that contains a. Also,
the following lemma shows OKa is independent of the O-generating set of a, and therefore,
it is well-defined.

Lemma 3.24. OKa is the smallest OK-module in K that contains a, which means

OKa =
⋂
M∈Ω

M

where Ω is the set of all OK-modules in K which contain a.
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Proof. OKa ⊆
⋂
M∈Ω

M follows from the construction of OKa and the fact that each M is an

OK-module in K containing a. On the other hand, we have from Definition 3.23 that OKa

is an OK-module in K containing a, so OKa will be one of those M ’s in Ω, and therefore⋂
M∈Ω

M ⊆ OKa.

Lemma 3.25. Let OKa be defined as in Definition 3.23. Then (OKa : a) | δn, where
δ = (Ok : O).

Proof. From Lemma 2.5, δOK ⊆ O. So δOKa ⊆ Oa = a, and by Corollary 2.6, we have
(OKa : a)

∣∣∣δn.
Definition 3.26. Let R be a collection of ordered pairs (M,N) of nonzero finitely generated
O-modules in K. We write M .R N if there is a positive integer c such that cM ⊆ N for
every (M,N) ∈ R. We write M ≈R N if and only if M .R N and N .R M .

Remark 3.27. Our convention for the definition of M .R N is that the constant c can
always be in principle made explicit (possibly dependent on O, R).

In what follows, we will often express the condition M .R N in a more informal way.
For example, the statement

“Let a be any nonzero O-module in K. Then O ≈ a · a−1.”
translates more formally to

“O ≈R a·a−1 whereR =
{

(O, a · a−1) : a is a nonzero finitely generated O-module in K
}
.”

As one can see, the formal statements can be cumbersome; however, the informal state-
ment carries a slight abuse of quantification, since it could be interpreted that a is fixed
first (which is not the case).

Lemma 3.28. Let M,N, T be any three nonzero finitely generated O-modules in K. Then

• M ≈ N,N ≈ T =⇒ M ≈ T ,

• M ≈ N =⇒ MT ≈ NT ,

• M ≈ N =⇒ O ≈M−1N .

Proof.

• By Definition 3.26, M ≈ N,N ≈ T means M . N,N . T as well as N .M,T . N .

From M . N,N . T , we know there exist positive integers c1 and c2 for which

c1M ⊆ N, c2N ⊆ T.

Then, we have

c1c2M ⊆ c2N ⊆ T
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and it gives M . T .

We use the same argument for T . N,N .M , and it results T .M . Thus M ≈ T .

• By Definition 3.26 again, M ≈ N gives c1M ⊆ N and c2N ⊆M , where c1 and c2 are
positive integers.

Since T is a nonzero O-module. If c1M ⊆ N , then c1MT ⊆ NT . So

MT . NT. (3.11)

Similarly, c2N ⊆M will give us c2NT ⊆MT , which implies

NT .MT. (3.12)

Therefore,
MT ≈ NT. (3.13)

• Notice that T in (3.13) can be replaced by M−1, which is proven to be a nonzero
finitely generated O-module by Lemma 3.21. So, (3.13) becomes

MM−1 ≈ NM−1. (3.14)

From Lemma 3.30, we have O ≈MM−1, which implies

O ≈ NM−1. (3.15)

Lemma 3.29. Let a be any nonzero finitely generated O-module. Then a ≈ OKa, where we
regard OKa as an O-module.

Proof. Take OKa to be the one defined in Definition 3.22 and we know from Lemma 3.24
that a ⊆ OKa as O-modules. So a . OKa is trivially true.

On the other hand, we know from Lemma 2.5 that δOKa ⊆ a as O-modules, where
δ = (OK : O) ∈ Z+, and we have OKa . a.

Lemma 3.30. Let a be any nonzero finitely generated O-module in K. For the positive
integer δ = (OK : O), we have that δ2O ⊆ aa−1 ⊆ O, that is O . a · a−1 . O. Hence, we
see that O ≈ a · a−1.

Proof. From Definition 3.23,

a ⊆ OKa, a−1 ⊆ OKa−1.
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As OKa−1 · OKa ⊆ OK , we know

OKa−1 ⊆ (OKa)−1.

Taken together, we have

a ⊆ OKa and a−1 ⊆ OKa−1 ⊆ (OKa)−1 (3.16)

and it can be depicted by the following diagram:

OKa (OKa)−1

⊇

⊇ OKa−1

⊇
a a−1

(3.17)

On the left-hand side of (3.17), let {α1, . . . , αn} be an O-generating set of a so that

a = Oα1 + ...+Oαn (3.18)

and
OKa = OKα1 + ...+OKαn. (3.19)

From Lemma 2.5, we know there exists a nonzero integer δ = (OK : O) such that
δOK ⊆ O. So we multiply by δ on both sides of (3.19) and it gives

δOKa = δOKα1 + . . .+ δOKαn ⊆ Oα1 + ...+Oαn = a. (3.20)

Therefore, by Definition 3.26, OKa . a.
On the right-hand side of (3.17), for each generator αi ∈ {α1, . . . , αn} ⊆ OKa in (3.19),

we have
x · αi ∈ OK , ∀i, 1 ≤ i ≤ n (3.21)

where x is any element in (OKa)−1.
Multiply again by δ on both sides of (3.21), we have

δ · x · αi ∈ δ · OK ⊆ O, ∀i, 1 ≤ i ≤ n

and it implies
(δ · x) ∈ a−1, ∀x ∈ (OKa)−1. (3.22)

Therefore,
(OKa)−1 . a−1. (3.23)
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With the above two “approximate” inequalities in hand, our next task is to show the
inequality holds for the product of OKa and (OKa)−1, that is, OKa · (OKa)−1 . a · a−1.

Notice that (OKa)−1 is a finitely generated OK-module with the property:

OKa · (OKa)−1 = OK . (3.24)

Multiplying by δ2 on both sides of (3.24), we have

δ2 · OKa · (OKa)−1 = δ2 · OK ,

which can be written in concrete terms:

δ2 · OK = δ2(OKa)−1(OKa) = δ2
n∑

i,j=1
OKβjαi =

n∑
i,j=1

(δOKαi) · (δβj), ∀i, j, 1 ≤ i, j ≤ n,

(3.25)
where {β1, . . . , βn} is an OK-generating set of (OKa)−1 and {α1, . . . , αn} is from (3.18).

From (3.20) and (3.22), the right-hand side of (3.25) satisfies

n∑
i,j=1

(δOKαi) · (δβj) ⊆ a · a−1 ⊆ O, ∀i, j, 1 ≤ i, j ≤ n. (3.26)

Therefore, all together we have δ2 · O ⊆ δ2 · OK ⊆ a · a−1 ⊆ O, and that shows the
lemma.

Corollary 3.31. Let a any nonzero finitely generated O-module in K. Then a ≈ (a−1)−1.

Proof. We have that

a = a · O ≈ a · (a−1 · (a−1)−1)

≈ (a · a−1) · (a−1)−1

≈ O · (a−1)−1.

Lemma 3.32. Let a be any nonzero finitely generated O-module in K. Then OKa−1 ≈
(OKa)−1.

Proof. Notice from Definition 3.26, (3.16) gives

a−1 . OKa−1 . (OKa)−1 (3.27)
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and it directly combines with (OKa)−1 . a−1 (3.23) to give

(OKa)−1 ≈ OKa−1.

Definition 3.33. Let O be an order in K. A nonzero O-module M is called a based O-
module if M is equipped with an ordered Z-basis of rank n over Z. Furthermore, if M is an
ideal of O, M is called a based ideal of O.

Let O be an order from Definition 3.5 and a be a nonzero finitely generated O-module
in K. By Theorem 3.9, a is a free Z-module of rank n, thus a based O-module.

Definition 3.34. Norm of a based O-module
Let a be a based O-module equipped with a Z-basis {β1, . . . , βn}. We define the Norm

NO(a) of a as the determinant of the K-linear transformation mapping αi to βi for i =
1, . . . , n, where {α1, . . . , αn} is a Z-basis of the order O.

Remark 3.35. Let M be the matrix corresponding to the K-linear transformation defined
above. If different Z-bases of a and O are used,M will become PMQ, where P,Q ∈ GLn(Z).
So NO(a) depends on Z-bases of a and O, but |NO(a)| will be well-defined.

Remark 3.36. If a is a nonzero ideal of O, then the K-linear transformation in Defini-
tion 3.34 is indeed a Z-linear transformation and |NO(a)| ∈ Z. Moreover, we know from
Lemma 2.3 that |NO(a)| = (O : a).

Remark 3.37. NOK (OKa) is defined in a similar manner as NO(a) since OK is the max-
imal order of K and OKa is an OK-module.

Lemma 3.38. Let a be a principal ideal of order O, which is generated by a ∈ K∗. Then,
|NO(a)| = |NK/Q(a)|, where NK/Q(a) is from Definition 3.1.

Proof. From Definition 3.5, {α1, α2, . . . , αn} is a Z-basis of the orderO. Then {aα1, aα2, . . . , aαn}
is a Z-basis of a = a ·O, and if M =

(
mij

)
denotes the matrix, where aαi =

∑
mijαj . Then

by Definition 3.1, det(M) = NK/Q(a). So we have |NO(a)| = |NK/Q(a)|.

Definition 3.39. Let R be a collection of ordered pairs of elements in R+.We say x .R y

if and only if there is a constant c ∈ R+ such that x ≤ cy for every (x, y) ∈ R. We say
x ≈R y if and only if x .R y and y .R x.

Remark 3.40. Our convention for the definition of x .R y is that the constant c can
always be in principle made explicit (possibly dependent on O, R).
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As with Definition 3.26, we will express the condition x .R y in a more informal way,
with a slight abuse of quantification. Thus, when we make a statement such as

“ Let a, b be any nonzero finitely generatedO-modules inK. ThenNO(a·b) ≈ NO(a)NO(b).”,
it should be read as

“NO(a · b) ≈R NO(a)NO(b) where
R =

{
(NO(a · b), NO(a)NO(b)) : a, b are nonzero finitely generated O-modules in K

}
.”

Lemma 3.41. Let x1, x2, y1, y2 be any four numbers ∈ R+ such that x1 ≈ x2, y1 ≈ y2.
Then x1y1 ≈ x2y2.

Proof. Given that x1 ≈ x2 and y1 ≈ y2, from Definition 3.39 we get

x1 ≤ c1x2, y1 ≤ c2y2, where c1, c2 ∈ R+.

Therefore, we can have
x1y1 ≤ c1c2 · x2y2,

which gives
x1y1 . x2y2.

Similarly, we have x2y2 . x1y1 and the lemma is proven.

Lemma 3.42. Let a, b be two nonzero based O-modules in K, where b ⊆ a. Then the index

(a : b) = |NO(b)|
|NO(a)| = c ∈ Z+.

Proof. Let {β1, . . . , βn} and {γ1, . . . , γn} be Z-bases of a and b respectively.
Then we have

(a : b) = |det(A)| = c ∈ Z+, by Lemma 2.3 (3.28)

where A is the matrix such that 
γ1
...
γn

 = A


β1
...
βn

 (3.29)

Now, consider {α1, . . . , αn} as a Z-basis of the order O. We can write down matrices B
and C as follows:


β1
...
βn

 = B


α1
...
αn

 , (3.30)
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γ1
...
γn

 = C


α1
...
αn

 . (3.31)

From (3.29) and (3.30), we have
γ1
...
γn

 = AB


α1
...
αn

 . (3.32)

Comparing (3.32) with (3.31), we obtain

|det(A)| · | det(B)| = |det(C)|, (3.33)

and by Definition 3.34, (3.33) can be rewritten as

(a : b) · |NO(a)| = |NO(b)|, (3.34)

which gives the desired result.

Corollary 3.43. Let a, b be two nonzero based O-modules, where b ⊆ a ⊆ O and |NO(b)| =
|NO(a)|. Then a = b.

Proof. By Lemma 3.42,
(a : b) · |NO(a)| =

∣∣NO(b)
∣∣ .

Then we have (a : b) = 1 since |NO(a)| = |NO(b)|. Furthermore, b ⊆ a implies a = b.

There is an “approximate” version of the above corollary:

Lemma 3.44. Let a, b be any two nonzero based O-modules where b ⊆ a and |NO(b)| ≈
|NO(a)|. Then a ≈ b.

Proof. Given b ⊆ a , we have

(a : b) = |NO(b)|
|NO(a)| = c ∈ Z+,

from Lemma 3.42. Furthermore, |NO(b)| ≈ |NO(a)| implies an existence of c1 ∈ R+ such
that

1 ≤ |NO(b)|
|NO(a)| ≤ c1.
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Let c2 be the lcm of all integers from 1 to bc1c. Then Lemma 2.5 implies

c2 · a ⊆ b.

As b ⊆ a is given, we have a ≈ b.

Lemma 3.45. Suppose a and b are any two nonzero based O-modules in K such that a ≈ b.
Then |NO(a)| ≈ |NO(b)|.

Proof. From a ≈ b, we know

c1a ⊆ b, (3.35)

c2b ⊆ a, (3.36)

where c1 and c2 ∈ R+. By Lemma 3.42, (3.35) gives

(b : c1a) = |NO(c1a)|
|NO(b)| = c ∈ Z+. (3.37)

Notice c1a is a free Z-module whose Z-basis can be obtained by multiplying c1 to each
element in a Z-basis of a. Then from Definition 3.34, we obtain

|NO(c1a)| = cn1 · |NO(a)|,

and therefore (3.37) becomes

(b : c1a) = cn1 · |NO(a)|
|NO(b)| = c ∈ Z+. (3.38)

Notice from (3.35) and (3.36) we have

c1c2b ⊆ c1a ⊆ b. (3.39)

Thus, the index c = (b : c1a) is less than or equal to the index of (b : c1c2b) = (c1c2)n and
we have

cn1 · |NO(a)|
|NO(b)| = c ≤ (c1c2)n,

which implies
1
cn2
· |NO(a)| ≤ |NO(b)|. (3.40)

Therefore,
|NO(a)| . |NO(b)|.

23



Instead of (3.39), we can reverse the roles of a and b to get another inclusion

c1c2a ⊆ c2b ⊆ a. (3.41)

Following a similar argument, (3.41) gives |NO(b)| . |NO(a)|. Therefore, we have |NO(b)| ≈
|NO(a)| from a ≈ b.

Lemma 3.46. Let a be any nonzero based O-module, and OKa be the corresponding OK-
module defined in Definition 3.23. Then |NOK (OKa)| ≈ |NO(a)|.

Proof. Given a is a nonzero O-module, a is a free Z-module equipped with a Z-basis:
{β1, . . . , βn}. Let A denote the transition matrix from {β1, . . . , βn} to {α1, . . . , αn}, where
{α1, . . . , αn} is a Z-basis of O. Next, we consider B, the transition matrix from a Z-basis
of O to a Z-basis of OK to, and by Lemma 3.24, OKa is an OK-module with a Z-basis as
well, so we let C be the transition matrix from a Z-basis of OKa to a Z-basis of OK . Lastly,
consider D, which is the transition matrix from the Z-basis of a to the Z-basis of OKa.

The above can be depicted by the following diagram:

OK
C←−−−−−−− OKa

B

x
xD

O A←−−−−−−− a

As {α1, . . . , αn} and {β1, . . . , βn} are fixed,

A = B−1 · C ·D,

which gives
det(A) = 1

det(B) · det(C) · det(D) (3.42)

From Definition 3.34, we have

|NOK (OKa)| = |det(C)|, |NO(a)| = |det(A)|.

Furthermore, we know by Lemma 2.5,

(OK : O) = δ = |det(B)|,

so that (3.42) becomes

|NO(a)| = 1
δ
· |NOK (OKa)| · | det(D)|,
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which is
δ · |NO(a)| = | det(D)| · |NOK (OKa)|. (3.43)

From Lemma 3.25 and Lemma 2.3, |det(D)| = (OKa : a)
∣∣∣∣δn, and |det(D)| ∈ N. Hence,

1 ≤ |det(D)| ≤ δn

and from (3.43) we have

1 · |NOK (OKa)| ≤ δ · |NO(a)| = |det(D)| · |NOK (OKa)| ≤ δn · |NOK (OKa)|,

which implies
1
δ
· |NOK (OKa)| ≤ |NO(a)| (3.44)

as well as
|NO(a)| ≤ δn−1 · |NOK (OKa)|. (3.45)

Therefore, from (3.44) and (3.45)

|NOK (OKa)| ≈ |NO(a)|.

For a nonzero OK-module a in OK , |NOK (a)| = (OK : a), which coincides with the
usual definition of the norm N(a) of a from algebraic number theory. Recall this satisfies
N(ab) = N(a)N(b) for any nonzero OK-modules a, b in OK using the fact that OK is a
Dedekind domain. This property can be extended to |NOK (·)| for all nonzero OK-modules.

Lemma 3.47. Let a, b be nonzero OK-modules in K. Then

|NOK (ab)| = |NOK (a)||NOK (b)|.

Proof. Let c ∈ N be such that ca and cb are contained in OK . Then

|NOK (ca · cb)| = N(ca · cb) = N(ca)N(cb) = |NOK (ca)||NOK (cb)|.

By Proposition 5.1,

|NOK (ca · cb)| = |NK/Q(c2)||NOK (ab)|

|NOK (ca)| = |NK/Q(c)||NOK (ab)|

|NOK (cb)| = |NK/Q(c)||NOK (b)|.

Hence, we obtain the result upon cancelling NK/Q(c)2 6= 0 from both sides.
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Lemma 3.48. Let a and b be any nonzero based O-modules in K. Then |NO(ab)| ≈ |NO(a)|·
|NO(b)|.

Proof. We know from Definition 3.22 that ab, the product of two O-modules, is also an
O-module in K. Then from Lemma 3.25, we have that OKab is a nonzero OK-module, and
Lemma 3.46 gives

|NO(ab)| ≈ |NOK (OKab)|. (3.46)

SinceOK is a Dedekind domain, |NOK (OKab)| = |NOK (OKa)|·|NOK (OKb)|, by Lemma 3.41
(3.46) becomes

|NO(ab)| ≈ |NOK (OKa · OKb)| = |NOK (OKa)| · |NOK (OKb)| ≈ |NO(a)| · |NO(b)|, (3.47)

which gives the desired result.

Theorem 3.49. Let K be a number field and O be an order in K. If a is any nonzero
finitely generated O-module in K, then there exists an ideal a1 of O such that

|NO(a1)| .
( 2
π

)s√
|dO|,

where a1 = αa for some α ∈ K∗.

Proof. Given a is a nonzero finitely generated O-module in K, we consider a−1 first. Lemma
3.21 shows that a−1 is also a nonzero finitely generated O-module, thus a free Z-module of
rank n, and we write:

a−1 = Zβ1 + . . .+ Zβn, (3.48)

where {β1, . . . , βn} is a Z-basis of a−1.
From Lemma 3.8, we know each βi in the above Z-basis has the property such that

βi = O
Z . Therefore, we can choose a nonzero r ∈ Z to clean all the denominators from β1 to

βn. Then we have

rβi ∈ O, 1 ≤ i ≤ n, i ∈ Z⇐⇒ ra−1 ⊆ O (3.49)

Let b := ra−1 and we can tell b is a nonzero finitely generated O-module, which is contained
in O. Thus b is an ideal of O and from Theorem 3.19, there exists an a ∈ b, a 6= 0 such that

|NK/Q(a)| 6
( 2
π

)s√
|dO| · |N(b)|, (3.50)

where |N(b)| = (O : b).
Notice that (3.50) can be rewritten as

|NOK
(
OK (a)

)
| 6

( 2
π

)s√
|dO| · |NO(b)|, (3.51)
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since by using Lemma 3.38 and Lemma 2.3, we have that

|NK/Q(a)| = |NOK
(
OK (a)

)
|, |N(b)| = |NO(b)|.

Then (3.51) implies
|NOK

(
OK(a)

)
|

|NO(b)| 6
( 2
π

)s√
|dO|. (3.52)

Apply Lemma 3.46 to |NOb| on the left-hand side of (3.52), we get

|NOK
(
OK(a)

)
|

|NO(b)| ≈ |NOK (OK(a))|
|NOK (OKb)|

= |NOK (OK(a) · (OKb)−1)| by Lemma 3.47

≈ |NOK (OKab−1)| by Lemmas 3.32, 3.28, and 3.29

≈ |NO(ab−1)| by Lemma 3.46 again.

Therefore,
|NO(ab−1)| .

( 2
π

)s√
|dO|. (3.53)

Recall that b := ra−1 is an ideal of O. Then b−1 is a finitely generated O-module and so is
ab−1. Moreover, a ∈ b, so ab−1 ⊆ O and ab−1 is indeed an ideal of O.

Now {rβ1, . . . , rβn} is an Z-basis of b and consider any element x ∈ b−1 so that,

xrβi ∈ O, ∀i ∈ Z, 1 ≤ i ≤ n. (3.54)

Recall from (3.48) that {β1, . . . , βn} is a Z-basis of a−1, and we deduce from (3.54) that
xr ∈ (a−1)−1, so x ∈ (a−1)−1

r . Therefore,

b−1 ⊆ a

r
⇒ ab−1 ⊆ a

r
(a−1)−1, (3.55)

that is, ab−1 ⊆ α(a−1)−1, where α = a
r ∈ K

∗.
On the other hand, we know that a

r ·b = a
r ·ra

−1 ⊆ O so a
r ⊆ b−1. Hence, αa = a

r a ⊆ ab
−1.

Therefore, we have
αa ⊆ ab−1 ⊆ α(a−1)−1 ≈ αa

by Corollary 3.31. Hence, αa ≈ ab−1 and finally we have

|NO(αa)| ≈ |NO
(
ab−1

)
| .

( 2
π

)s√
|dO|.
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Chapter 4

Symmetric Tensors

Let C be a hyperelliptic curve over Q given in the form as in (1.1)

C : z2 = f(x, y) = f0x
n + f1x

n−1y + . . .+ fny
n, (4.1)

where f ∈ Z[x, y] is a homogeneous polynomial of even degree n = 2g + 2, g ≥ 0, g ∈ Z.

Lemma 4.1. Let f(x, y) = f0x
n + . . . + fny

n ∈ Q[x, y] be a homogeneous polynomial. If
f(x, y) is reducible in Q[x, y], then all factors of f(x, y) are homogeneous polynomials as
well.

Proof. Suppose
f(x, y) = f1(x, y) · . . . · fk(x, y),

with total degree of each fi(x, y) being denoted by di ∈ [1, n).
Notice that the highest degree part of each fi(x, y) has degree di, and their product is a

monomial of f(x, y) with degree n. On the other hand, the non-highest degree parts of each
fi(x, y) all have degree ≤ di, but their products are monomials of f(x, y) with degree < n,
which contradicts the fact that f(x, y) is a homogeneous polynomial. Thus, the fi(x, y) are
homogeneous polynomials.

Lemma 4.2. Let f(x, y) = f0x
n + . . .+ fny

n ∈ Q[x, y] be a homogeneous polynomial with
f0 6= 0.

Then f(x, y) ∈ Q[x, y] is irreducible if and only if f(x, 1) ∈ Q[x] is irreducible.

Proof. Suppose f(x, y) ∈ Q[x, y] is a reducible. Then by Lemma 4.1, f can be written as

f(x, y) = f1(x, y) · . . . · fk(x, y), (4.2)

where each fi(x, y) ∈ Z[x, y] is homogeneous polynomial of degree ≥ 1. Since f0 6= 0, the
degree of fi(x, y) is equal to the degree of fi(x, 1). Replacing y with 1 in (4.2) will give a
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corresponding factorization of f(x, 1) ∈ Z[x],

f(x, 1) = f1(x, 1) · . . . · fk(x, 1),

where fi(x, 1) ∈ Q[x] has degree ≥ 1. Thus, f(x, 1) is reducible as well.
Suppose f(x, 1) ∈ Q[x] is reducible. Then it can be written as

g(x) = f(x, 1) = f1(x) · . . . · fk(x),

where each fi(x) ∈ Q[x] is a polynomial of degree ≥ 1. Then

f(x, y) = yng(x/y) = yn1f1(x/y) · . . . · ynkfk(x/y),

where ni is the degree of fi(x). Thus, f(x, y) is reducible.

Definition 4.3. Let f(x, y) ∈ Z[x, y] and f ′(x′, y′) ∈ Z[x′, y′] be homogeneous polynomials.
We say f(x, y) is equivalent to f ′(x′, y′) via γ, denoted f(x, y) ∼ f ′(x′, y′), if and only

if there is a γ ∈ SL2(Z) such that

f(x, y) = f ′(x′, y′),

where (x, y) = (x′, y′) · γ.

We make the following assumptions on f which will remain in force throughout the
thesis:

1. Up to equivalence by an element in SL2(Z), we may assume without loss of generality
that f0 6= 0 throughout.

2. f(x, y) ∈ Z[x, y] is irreducible in Q[x, y], which implies f(x, 1) ∈ Z[x] is irreducible in
Q[x].

Lemma 4.4. Suppose that (x0, y0, z0) ∈ Q3 is a Q-rational point on z2 = f(x, y). Then
without loss of generality, by scaling (x, y) and z, we can assume x0, y0, z0 ∈ Z and (x0, y0) =
1.

Proof. Given a solution (x0, y0, z0) ∈ Q3 to z2 = f(x, y), let λ be a nonzero integer such
that λ(x0, y0) ∈ Z2. Write λ(x0, y0) = d(x1, y1), where d ∈ Z is nonzero and the gcd of
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(x1, y1) is 1. Then

f(x1, y1) = f

(
λx0
d
,
λy0
d

)

=
(
λ

d

)n
· f(x0, y0)

=

(λ
d

)n
2

· z0

2

By Gauss’ Lemma,
(
λ
d

)n
2 · z0 is an integer.

Consider Kf := Q[x]/(f(x, 1)) = Q[θ], where θ denotes the image of x in the Q-algebra
Kf . Since we assume f(x, 1) is irreducible in Q[x], Kf is indeed a number field rather than
a general Q-algebra.

The following is proven in [12, Prop. 1.1].

Theorem 4.5. Let
Rf = 〈1, ζ1, . . . , ζn−1〉 (4.3)

be the Z-module generated by the elements 1, ζ1, . . . , ζn−1, where

ζk = f0θ
k + f1θ

k−1 + . . .+ fk−1θ, 1 ≤ k ≤ n− 1. (4.4)

Then

1. {1, ζ1, . . . , ζn−1} is a Z-basis for the Z-module Rf ,

2. Rf is an order in the number field Kf .

3. The multiplication in Rf is explicitly given by

ζiζj =
min(i+j,n)∑
k=j+1

fi+j−kζk −
i∑

k=max(i+j−n,1)
fi+j−kζk. (4.5)

Theorem 4.6. Let
If (k) = 〈1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1〉 (4.6)

be Z-modules generated by 1, θ, . . . , θk, ζk+1, . . . , ζn−1, where 0 ≤ k ≤ n− 1.
Then

1. {1, θ, . . . , θk, ζk+1, . . . , ζn−1} forms a Z-basis for the Z-module If (k). Furthermore,
If (k) = Ikf for 1 ≤ k ≤ n− 1, where If = If (1).

2. If (k) are ideals of the ring Rf .
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Proof. 1. See [3].

2. See [15, Prop. A.3].

Remark 4.7. Let I ⊆ Kf be a nonzero based Rf -module of the order Rf ⊆ Kf . Defini-
tion 3.34 gives the norm NRf (I) of I. Since Rf in (4.3) depends only on the polynomial
f(x, y) in (4.1), and we will study this dependence in this chapter, it’s more convenient to
adopt Bhargava’s notation, Nf (I) instead of NRf (I). This convention will remain in force
throughout this chapter.

Definition 4.8. Symmetric Tensors
Consider a pair (I, α) such that

I2 ⊆ α · In−3
f , (4.7)

Nf (I)2 = Nf (α ·Rf ) ·Nf (In−3
f ), (4.8)

where Nf (I) is from Remark 4.7, I ⊆ Kf is a nonzero based Rf -module, α ∈ Kf , and
I2 ⊆ αIn−3

f .
Two pairs (I, α) and (J, β) are equivalent if and only if there exists κ ∈ K×f such that

J = κI and β = κ2α, which we denote by (I, α) ∼ (J, β).
Let Sf denote the set of all equivalence classes of pairs (I, α) as above.

The set Sf defined above is stated in [3, Theorem 6] to be in bijection with elements
in Z2⊗ Sym2Zn which have an invariant the binary n-ic form f with nonzero discriminant,
where Z2⊗Sym2Zn denotes the set of pairs (A,B) of symmetric n×nmatrices with entries in
Z. Geometrically, such pairs (A,B) correspond to a pencil of quadrics which have invariant
(−1)n/2 det(Ax−By) = f . The general form of the bijection is proven in [16, Theorem 3.1
and 5.5].

Recall from [3, p.5]: If f(x, y) ∼ f ′(x′, y′), via γ =

 a b

c d

 ∈ SL2(Z), then the root

θ′ of f ′(x′, 1) is given by
θ′ = dθ − c

−bθ + a
, (4.9)

where θ is the root of f(x, 1), or equivalently,

θ = aθ′ + c

bθ′ + d
. (4.10)

We state and give a self-contained proof of [3, (7)] below.

Theorem 4.9. Suppose f(x, y) ∼ f ′(x′, y′) via γ =

 a b

c d

 ∈ SL2(Z).
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Then there is a Z-module isomorphism φ : If (k) ∼= If ′(k) given by

φ : δ 7−→ (−bθ + a)−k · δ, ∀δ ∈ If (k). (4.11)

Proof. As (−bθ+a)−k is a nonzero element of the number field Kf , φ is clearly a Z-module
isomorphism between If (k) and If (k)(−bθ + a)−k, and it is left to show

If (k)(−bθ + a)−k = If ′(k). (4.12)

To show (4.12), it suffices to show the containment If (k)(−bθ+ a)−k ⊆ If ′(k), as switching
the roles of f and f ′, and replacing γ with its inverse γ−1 will obtain the reverse containment.
The required containment (4.12) will be shown below.

Theorem 4.10. SL2(Z) is generated by two elements γ1 =

 0 −1
1 0

 and γ2 =

 1 1
0 1

.
Proof. See [9, Theorem 4.1].

Lemma 4.11. In addition to γ1 and γ2, SL2(Z) is also generated by γ1, γ
′
2, where γ′2 = 1 0

−1 1

.
Proof. Let γ′2 =

 1 0
−1 1

, we have γ′2 = γ1 · γ2 · γ−1
1 , and it proves the lemma.

It suffices to prove (4.12) for any set of generators for SL2(Z), which will be done in the
next two lemmas.

Lemma 4.12. (4.12) is true when γ = γ1.

Proof. Since γ = γ1, we have that

(x, y) = (x′, y′) · γ1, (4.13)

from Definition 4.3.
By (4.13), we have that f ′(x′, y′) = f(y′,−x′), so we obtain

f ′(x′, y′) = f ′0x
′n + f ′1x

′n−1
y′ + . . .+ f ′n−1x

′y′
n−1 + f ′ny

′n

= f(y′,−x′)

= f0y
′n + f1(−x′)y′n−1 + . . .+ fn−1y

′−x′n−1 + fn−x′n

= f ′0y
n + (−f1)x′y′n−1 + . . .+ (−fn−1)y′x′n−1 + fnx

′n.
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Equating coefficients of the corresponding monomials, we obtain the following relations
between coefficients:

fn = f ′0

−f ′n−1 = f ′1
...

f0 = f ′n.

Noticing on the right-hand side of (4.12), If ′(k) is a free Z-module given by

If ′(k) = 〈1, θ′, θ′2, . . . , θ′k, ζ ′k+1, . . . , ζ
′
n−1〉 (4.14)

= 〈1, θ−1, θ−2, . . . , θ−k, ζ ′k+1, . . . , ζ
′
n−1〉 (4.15)

by (4.13).
By γ1, If (k)(bθ + a)−k on the left-hand side of (4.12) becomes If (k)(−θ)−k, which is

given by

If (k)(−θ)−k = (−θ)−k · 〈1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1〉 (4.16)

= 〈θ−k, θ1−k, θ2−k, . . . , 1, ζk+1
θk

, . . . ,
ζn−1
θk
〉. (4.17)

A comparison between (4.17) and (4.15) shows an overlap of {1, θ−1, θ−2, . . . , θ−k}, so it is
left to show ζk+1

θk
, . . . , ζn−1

θk
from (4.17) are contained in (4.15) as a Z-combination.

Now, let’s consider ζk+l
θk

, for 1 ≤ l ≤ n− (k + 1), l ∈ Z,

ζk+l
θk

= 1
θk

(
f0θ

k+l + f1θ
k+l−1 + . . .+ flθ

k + . . .+ fk+l−1θ
)

by (4.4)

= f0θ
l + f1θ

l−1 + . . .+ fl−1θ + fl + fl+1
θ

+ . . .+ fk+l−1
θk−1

= f ′n
(−θ′)l +

−f ′n−1
(−θ′)l−1 + . . .+

(−1)l+1 · f ′n−l+1
(−θ′)

+ (−1)l · f ′n−l + (−1)l+1 · f ′n−l−1(−θ′) + . . .+ (−1)k+l−1 · f ′n−k−l+1(−θ′)k−1

by (4.13) and coefficients relation.
To simplify the above expression, we introduce the equivalence relation

a ≡ b mod
(
If ′(k)

)
,

to mean

a ≡ b mod
(
If ′(k)

)
if and only if a− b ∈ If ′(k),
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where a, b ∈ Kf ′ . So according to this equivalence relation, ζk+l
θk
≡ f ′n

(−θ′)l + −f ′n−1
(−θ′)l−1 + . . . +

(−1)l+1·f ′n−l+1
(−θ′) mod

(
If ′(k)

)
, that is,

ζk+l
θk
≡
f ′n + f ′n−1θ

′ + . . .+ f ′n−l+1θ
′l−1

(θ′)l mod
(
If ′(k)

)
. (4.18)

Recall (θ′, 1) is a root of f ′(x′, 1), so that

f ′n + f ′n−1θ
′ + . . .+ f ′n−l+1θ

′l−1 + f ′n−lθ
′l + . . .+ f ′1θ

′n−1 + f ′0θ
′n = 0.

Hence, we have that

f ′n + f ′n−1θ
′ + . . .+ f ′n−l+1θ

′l−1 = −
(
f ′n−lθ

′l + . . .+ f ′1θ
′n−1 + f ′0θ

′n
)
,

which can be subsituted into the top of (4.18). Thus, (4.18) becomes

ζk+l
θk
≡ f ′n−l + . . .+ f ′0θ

′n−l ≡ ζ ′n−l mod (If ′(k)), 1 ≤ l ≤ n− (k + 1), l ∈ Z. (4.19)

Then we know from (4.19) that ζk+l
θk
≡ 0 mod

(
If ′(k)

)
, for 1 ≤ l ≤ n − (k + 1), which

implies Lemma 4.12 is true when we use the generator γ1 =

 0 −1
1 0

 ∈ SL2(Z).

Lemma 4.13. (4.12) is true if γ = γ′2.

Proof. Since γ = γ2, we have that

(x, y) = (x′, y′) · γ′2 (4.20)

from Definition 4.3.
Notice from (4.20), we have (x′, y′) = (x+ y, y), so

f(x, y) = f0x
n + f1x

n−1y + . . .+ fn−1xy
n−1 + fny

n

= f ′(x+ y, y)

= f ′0(x+ y)n + f ′1(x+ y)n−1y + . . .+ f ′n−1(x+ y)yn−1 + f ′ny
n.

From binomial expansion theorem, for 0 ≤ k ≤ n, k ∈ Z, we have

fk =
k∑
l=0

f ′l

(
n− l
n− k

)
. (4.21)
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Now, let’s look at both If (k)(bθ + a)−k and If ′(k) in this case,

If ′(k) = 〈1, θ′, θ′2, . . . , θ′k, ζ ′k+1, . . . , ζ
′
n−1〉. (4.22)

If (k)(bθ + a)−k becomes If (k) = 〈1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1〉, and by θ′ = θ + 1

If (k) = 〈1, θ′ − 1, (θ′ − 1)2, . . . , (θ′ − 1)k, ζk+1, . . . , ζn−1〉. (4.23)

We can see from (4.23) and (4.22) that 1, θ′−1, (θ′−1)2, . . . , (θ′−1)k ∈ If ′(k). So it suf-
fices to show ζk+1, . . . , ζn−1, 0 ≤ k ≤ n−2 in (4.23) can be written as Z-linear combinations
of ζ ′k+1, . . . , ζ

′
n−1 from (4.22).

In order to complete the argument, we require the next assertion.

Assertion 4.14. For ζk in the basis {1, ζ1, . . . , ζk, . . . , ζn−1} of Rf , we have that

ζk = a
(k)
k ζ ′k+a

(k)
k−1ζ

′
k−1 + . . .+a

(k)
1 ζ ′1−a

(k)
k

(
ζ ′k−1 + f ′k−1

)
−a(k)

k−1

(
ζ ′k−2 + f ′k−2

)
− . . .−a(k)

1 f ′0,

(4.24)
where

a(k)
m =

(
n−m
n− k

)
, for 1 ≤ m ≤ k − 1. (4.25)

Proof. We prove it by induction on k.
The base case is when k = 1. By (4.4), ζ1 = f0θ, and from (4.20) and (4.21) we can

write ζ1 as ζ ′1 − f ′0, which satisfies Assertion 4.14.
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Next, we assume (4.24) is true for ζk, 1 < k < n− 1. By (4.4) again,

ζk+1 = θ (ζk + fk)

=
(
θ′ − 1

)
(ζk + fk) by (4.20)

=
(
θ′ − 1

)ζk + f ′k +
(
n− k + 1
n− k

)
f ′k−1 + . . .+

(
n

n− k

)
f ′0

 by (4.21)

=
(
θ′ − 1

)(
ζ ′k + a

(k)
k−1ζ

′
k−1 + . . .+ a

(k)
1 ζ ′1 −

(
ζ ′k−1 + f ′k−1

)
− a(k)

k−1

(
ζ ′k−2 + f ′k−2

)
− . . .− a(k)

1 f ′0

+ f ′k +
(
n− k + 1
n− k

)
f ′k−1 + . . .+

(
n

n− k

)
f ′0

)
by induction hypothesis

=
(
θ′ − 1

)ζ ′k + f ′k + (a(k)
k−1 − 1)ζ ′k−1 +

(n− k + 1
n− k

)
− 1

 f ′k−1

+
(
a

(k)
k−2 − a

(k)
k−1

)
ζ ′k−2 +

(n− k + 2
n− k

)
−
(
n− k + 1
n− k

) f ′k−2 + . . .

+ (a(k)
k−l − a

(k)
k−l+1)ζ ′k−l +

(n− k + l

n− k

)
−
(
n− k + l − 1

n− k

) f ′k−l + . . .

+ (a(k)
1 − a

(k)
2 )ζ ′1 +

(n− 1
n− k

)
−
(
n− 2
n− k

) f ′1
+

( n

n− k

)
− a(k)

1

 f ′0
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By (4.25), we can write the above as

ζk+1 =
(
θ′ − 1

)(
ζ ′k + f ′k

+

(n− k + 1
n− k

)
− 1

 · (f ′k−1 + ζ ′k−1)

+

(n− k + 2
n− k

)
−
(
n− k + 1
n− k

) · (f ′k−2 + ζ ′k−2) + . . .

+

(n− k + l

n− k

)
−
(
n− k + l − 1

n− k

) · (f ′k−l + ζ ′k−l) + . . .

+

(n− 1
n− k

)
−
(
n− 2
n− k

) · (f ′1 + ζ ′1)

+

( n

n− k

)
−
(
n− 1
n− k

) · f ′0
)
.

Notice that for 1 ≤ l ≤ k, we have(
n− k + l

n− k

)
−
(
n− k + l − 1

n− k

)
= (n− k + l)!

(n− k)! l! −
(n− k + l − 1)!
(n− k)! (l − 1)!

= (n− k + l − 1)!
(n− k − 1)! l!

=
(
n− (k − l + 1)
n− (k + 1)

)
,

which equals a(k+1)
k−l+1 by (4.25).

Therefore we can rewrite ζk+1 as

ζk+1 =
(
θ′ − 1

)(
ζ ′k + f ′k

+ a
(k+1)
k · (f ′k−1 + ζ ′k−1) + a

(k+1)
k−1 · (f

′
k−2 + ζ ′k−2) + . . .

+ a
(k+1)
k−l+1 · (f

′
k−l + ζ ′k−l) + . . .+ a

(k+1)
2 · (f ′1 + ζ ′1) + a

(k+1)
1 · f ′0

)
= a

(k+1)
k+1 ζk′+1 + a

(k+1)
k ζ ′k + a

(k+1)
k−1 ζ ′k−1 + . . .+ a

(k+1)
1 ζ ′1

− a(k+1)
k+1

(
ζ ′k + f ′k

)
− a(k+1)

k

(
ζ ′k−1 + f ′k−1

)
− a(k+1)

k−1

(
ζ ′k−2 + f ′k−2

)
− . . .− a(k+1)

1 f ′0

and it proves the desired result by using Assertion 4.14.
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An immediate result which follows from (4.12) is when k = 0,

If (0) = If ′(0)

and it gives
Rf = Rf ′ (4.26)

by (4.3) and (4.6).

Corollary 4.15. Suppose f(x, y) ∼ f ′(x′, y′) via γ =

 a b

c d

 ∈ SL2(Z). Let Sf and Sf ′

denote sets of all equivalence classes of pairs (I, α) and (I ′, α′) respectively as in Defini-
tion 4.8. Then there is a bijection ψ between Sf and Sf ′ given by

ψ : (I, α) 7−→
(
I, (−bθ + a)n−3 · α

)
.

Proof. First, we check the image
(
I, (−bθ + a)n−3 · α

)
= ψ

(
(I, α)

)
is indeed an element in

Sf ′ .
From Definition 4.8, (I, α) ∈ Sf satisfies

I2 ⊆ α · In−3
f , (4.27)

Nf (I)2 = Nf (α ·Rf ) ·Nf (In−3
f ). (4.28)

By (4.12), (4.27) becomes
I2 ⊆ (−bθ + a)n−3α · In−3

f ′ . (4.29)

As for (4.28) we have

Nf (I)2 = Nf

(
α · (−bθ + a)n−3 · (−bθ + a)−(n−3) ·Rf

)
·Nf (In−3

f )

= Nf

(
α · (−bθ + a)n−3 ·Rf

)
·Nf

(
(−bθ + a)−(n−3) · In−3

f

)
by Theorem 5.1.

By (4.12) again, the above equation gives

Nf (I)2 = Nf

(
α · (−bθ + a)n−3 ·Rf

)
·Nf (In−3

f ′ ). (4.30)

Moreover, (4.30) implies

Nf ′(I)2 = Nf ′

(
α · (−bθ + a)n−3 ·Rf ′

)
·Nf ′(In−3

f ′ ) (4.31)
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by (4.26) and Remark 3.35, Therefore, from (4.29) and (4.31) we can verify
(
I, (−bθ + a)n−3 · α

)
=

ψ
(
(I, α)

)
is an element in Sf ′ . Note also that the map ψ is well-defined on equivalence

classes.
Next, we switch the roles of f(x, y) and f ′(x′, y′), and replacing γ with its inverse

γ−1 =

 a′ b′

c′ d′

 ∈ SL2(Z). Then consider a map ψ′ from Sf ′ to Sf given by

ψ′ :
(
I ′, α′

)
7−→

(
I ′, (−b′θ′ + a′)n−3 · α′

)
, (4.32)

where θ′ is the root of f ′(x′, 1) satisfies (4.9).
Following the same argument as before, we can show the image

(
I ′, (−b′θ′ + a′)n−3 · α′

)
=

ψ′
(
I ′, α′

)
is an element in Sf .

Furthermore, we can verify that

ψ

(
ψ′
(
I ′, α′

))
= ψ

(
I ′, (−b′θ′ + a′)n−3 · α′

)
=
(
I ′, (−bθ + a)n−3 · (−b′θ′ + a′)n−3 · α′

)
=

I ′,
−b · (aθ′ + c

bθ′ + d

)
+ a

n−3

· (−b′θ′ + a′)n−3 · α′

 by (4.10)

=
(
I ′, (−b′θ′ + a′)−(n−3) · (−b′θ′ + a′)n−3 · α′

)
=
(
I ′, α′

)
.

Also,

ψ′
(
ψ (I, α)

)
= ψ′

(
I, (−bθ + a)n−3 · α′

)
=
(
I, (−b′θ′ + a′)n−3 · (−bθ + a)n−3 · α

)
=

I,
−b′ · ( dθ − c

−bθ + a

)
+ a′

n−3

· (−bθ + a)n−3 · α

 by (4.9)

=
(
I, (−bθ + a)−(n−3) · (−bθ + a)n−3 · α

)
= (I, α) .

We can see from the above that ψ ◦ψ′ = 1Sf ′ and ψ
′ ◦ψ = 1Sf . So ψ is a bijection from

Sf to Sf ′ .

Theorem 4.16. Suppose (x0, y0, z0) is an integer solution to z2 = f(x, y) with (x0, y0) = 1.
Then this solution gives rise to an element (I, α) ∈ Sf .
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Proof. Applying a γ ∈ SL2(Z) to f(x, y), we may assume (x0, y0) · γ = (0, 1). Notice, in
doing this operation, we produce a new f ′(x′, y′) with z′20 = f ′n, and apply γ−1 will yield
the original f(x, y).

Next, set α′ = θ′ and note that

θ′In−3
f ′ = 〈z′20 , θ′, θ′2, . . . , θ′n−2, f ′0θ

′n−1〉. (4.33)

Let
I ′ = 〈z′0, θ′I

(n−4)/2
f ′ 〉 = 〈z′0, θ′, θ′2, . . . , θ′(n−2)/2, ζ ′n/2, . . . , ζ

′
n−1〉. (4.34)

In order to show I ′ is a Rf ′-module, recall Rf ′ = 〈1, ζ ′1, . . . , ζ ′n−1〉. We need to check that
for every for i = 1, . . . , n− 1, ζ ′i times each of the elements

z′0, θ
′, θ′2, . . . , θ′(n−2)/2, ζ ′n/2, . . . , ζ

′
n−1 (4.35)

is a Z-linear combination of the same elements above.
Note that in the newly produced polynomial f ′(x′, y′), we have

z′20 = f ′n. (4.36)

Also, by (4.4), we can verify that

ζ ′n = −f ′n = z′20 ∈ I ′ (4.37)

ζ ′1, . . . , ζ
′
n ∈ I ′. (4.38)

First, we can see that (4.38) guarantees each element in {1, ζ ′1, . . . , ζ ′n−1} times z′0 is a
Z-linear combination of elements in (4.35).

Next, let us consider ζi ·
(
θ′
)k, for 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ n−2

2 . Notice that there are
two possibilities of this product:

• k + i ≤ n.

When we have this case,

ζ ′i · (θ′)k =
(
f ′0θ
′i + . . .+ f ′i−1θ

′
)
·
(
θ′
)k

= f ′0θ
′i+k + . . .+ f ′i−1θ

′k+1

= ζ ′i+k − f ′iθ′k − f ′i+1θ
′k−1 − . . .− f ′i+k−1θ

′.

It’s clear that the above product is a Z-linear combination of elements in (4.35).

• k + i > n.
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Again, we consider the product

ζ ′i · (θ′)k =
(
f ′0θ
′i + . . .+ f ′i−1θ

′
)
·
(
θ′
)k

=
(
f ′0θ
′i + . . .+ f ′i−1θ

′
)
·
(
θ′
)n−i

·
(
θ′
)k−n+i

=
(
f ′0θ
′n + . . .+ f ′i−1θ

′n−i+1
)
·
(
θ′
)k−n+i

=
(
ζ ′n − f ′iθ′n−i − . . .− f ′n−1θ

′
)
·
(
θ′
)k−n+i

= ζ ′n · θ′k−n+i − f ′iθ′k − f ′i+1θ
′k−1 − . . .− f ′n−1θ

′k−n+i−1

= −f ′n · θ′k−n+i − f ′iθ′k − f ′i+1θ
′k−1 − . . .− f ′n−1θ

′k−n+i−1

by (4.37).

From k+ i > n, 1 ≤ i ≤ n−1 and 1 ≤ k ≤ n−2
2 , we have 1 ≤ n− i < k ≤ n−2

2 and that
gives lower limits for exponents k−n+i and k−n+i−1. k−n+i = k−(n−i) < k ≤ n−2

2
and k − n+ i− 1 = k − (n− i− 1) ≤ k ≤ n−2

2 .

Therefore, we can see that ζ ′i · (θ′)k in this situation is also a Z-linear combination of
elements of (4.35).

Finally, for i = 1, . . . , n− 1 and j = n/2, . . . , n− 1, we have (4.5)

ζ ′iζ
′
j =

min(i+j,n)∑
k=j+1

fi+jζ
′
k −

i∑
k=max(i+j−n,1)

fi+j−kζ
′
k

which expresses this product as a Z-linear combination of ζ ′1, . . . , ζ ′n. By (4.38), we can con-
clude that ζ ′iζ ′j is a Z-linear combination of elements of (4.35). This concludes the verification
that I ′ is a Rf ′-module.

By (4.4), we can verify that the elements

θ′, θ′2, . . . , θ′(n−2)/2, ζ ′n/2, . . . , ζ
′
n−1 (4.39)

in the Z-basis of I ′ can each be obtained as a Z-combination of θ′, θ′2, . . . , θ′n−2, f ′0θ
′n−1 and

hence lie in θ′ · In−3
f ′ by (4.33). Thus, z0 times any element in (4.39) can be written as as a

Z-combination of θ′, θ′2, . . . , θ′n−2, f ′0θ
′n−1 and hence lies in θ′ · In−3

f ′ . Also, from (4.34), it’s
clear that (θ′)i · (θ′)j , 1 ≤ i, j ≤ n−2

2 lie in θ′ · In−3
f ′ . Lastly, we have verified (ζi)′ · (θ′)k as

well as ζ ′iζ ′j are contained in θ′ · In−3
f ′ . Therefore, we have that

I ′2 ⊆ θ′ · In−3
f ′ .

Furthermore, with (4.4), (4.33) and (4.34), we can write down transition matrices T1

from I ′ to Rf ′ , and T2 from θ′In−3
f ′ to Rf ′ as follows:
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T1 =



z′0 ∗ . . . . . . . . . . . . . . . . . . ∗
0 1

f ′0
∗ . . . . . . . . . . . . . . . ∗

... 0 1
f ′0

∗ . . . . . . . . . . . . ∗
...

... . . . . . . ∗ . . . . . . . . . ∗
... 0 . . . 0 1

f ′0
∗ . . . . . . ∗

... 0 . . . . . . 0 1 ∗ . . . ∗

...
... 0 . . . . . . ...

...
... . . . . . . ∗

0 0 . . . 0 . . . . . . . . . 0 1


Noticing from Definition 3.34, Nf ′(I ′) = |Det(T1)| and for the sake of calculating Det(T1),
it’s not necessary for us to figure out all ∗’s.

Nf ′(I ′) = |Det(T1)| = |z′0/f
′n−2/2
0 |. (4.40)

Similarly, for T2, where

T2 =



z′20 ∗ . . . . . . . . . . . . . . . . . . ∗
0 1

f ′0
∗ . . . . . . . . . . . . . . . ∗

... 0 1
f ′0

∗ . . . . . . . . . . . . ∗

0
... . . . . . . ∗ . . . . . . . . . ∗

... 0 . . . 0 1
f ′0

∗ . . . . . . ∗
... 0 . . . . . . 0 1

f ′0
∗ . . . ∗

...
... . . . . . . . . . ...

...
... 0 1

f ′0
∗

0 0 . . . 0 . . . . . . . . . 0 1


and we can have

Nf ′(θ′In−3
f ′ ) = |Det(T2)| = |z′20 /f ′n−2

0 |. (4.41)

Thus, by (4.40) and (4.41), we get

Nf ′(I ′)2 =
(
z′0/f

′(n−2)/2
0

)2
= Nf ′(θ′In−3

f ′ ),
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which equals

Nf ′(I ′)2 =
(
z′0/f

′(n−2)/2
0

)2
= Nf ′(θ′) ·Nf ′(In−3

f ′ )

by Theorem 5.1. Therefore, (I ′, θ′) lies in Sf ′ . By Corollary 4.15, (I ′, θ′) ∈ Sf ′ corresponds
to a pair (I, α) ∈ Sf . It is verified in [3, p. 8] that the pair (I, α) in Sf does not depend on
the choice of γ.

Proposition 4.17. Let (x0, y0, z0) ∈ Z3 be a solution to z2 = f(x, y) with (x0, y0) = 1,
and (I, α) ∈ Sf be the element associated to (x0, y0, z0) from Theorem 4.16. Then (I, α) ∼
(I1, α1) ∈ Sf where

c0 · α1 ∈ Rf ,

for some positive integer c0 which only depends on f .

Proof. We apply a γ =

 a b

c d

 ∈ SL2(Z) such that (x0, y0) · γ = (0, 1) so that (0, 1, z′0)

is an integer solution to z′2 = f ′(x′, y′), where f(x, y) ∼ f ′(x′, y′) via γ.
By Theorem 4.16, the solution (0, 1, z′0) to z′2 = f ′(x′, y′) is associated with a pair (I ′, θ′).

Moreover, (I ′, θ′) ∈ Sf ′ corresponds to
(
I ′, θ′ · (−bθ + a)n−3

)
∈ Sf from Corollary 4.15.

Using (4.9), we know

(
I ′, θ′ · (−bθ + a)n−3

)
=
(
I ′,

dθ − c
(−bθ + a)n−2

)
,

which is equivalent to
(
(−bθ + a)

n−2
2 · I ′, dθ − c

)
∈ Sf by Definition 4.8.

Recall from (4.3) and (4.4), ζ1 = f0θ is an element in a Z-basis of Rf . Thus, if we
multiply dθ − c by f0 ∈ Z, we have both dθ · f0 ∈ Rf and c · f0 ∈ Z ⊆ Rf .
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Chapter 5

Main Theorems

In this chapter, we prove the main theorems of this thesis and end with some concluding
remarks.

Recall from Theorem 4.16 in Chapter 4 that a solution (x, y, z) ∈ Z3 to a hyperelliptic
curve z2 = f(x, y) in (4.1) gives rise to an element (I, α) ∈ Sf , where we recall that

I2 ⊆ αIn−3
f , (5.1)

Nf (I)2 = NKf/Q(α) ·Nf (In−3
f ). (5.2)

From Theorem 3.49, there exists an element β ∈ K∗f such that J = Iβ is an ideal of the
order Rf with

Nf (J) .
( 2
π

)s
·
√
|dRf |.

The following proposition shows that the norm of a general nonzero order, i.e., NO(·) is
multiplicative when one of the O-modules is principal. Thus, this result can be applied to
Nf (·).

Proposition 5.1. Let I be a nonzero finitely generated O-module and β be an element in
K∗. Then NO(Iβ) = NO(I · βO) = NO(I) ·NO(βO).

Proof. We know from Theorem 3.9 that I is a free Z-module of rank n, so we write

I = Zγ1 + . . .+ Zγn, (5.3)

where {γ1, . . . , γn} is a Z-basis of I.
We also know that O has a Z-basis {α1, . . . , αn}. Thus, {βα1, . . . , βαn} will be a Z-basis

of βO and we write
βO = Zβα1 + . . .+ Zβαn. (5.4)

Notice that (5.3) and (5.4) allows us to specifically write down transition matrices A =
(aij) and B = (bij), from a Z-basis of I to a Z-basis of O and from a Z-basis of βO to a
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Z-basis of O respectively, that are,

γi =
n∑
j=1

aijαj and βαi =
n∑
j=1

bijαj , where aij , bij ∈ K∗. (5.5)

Next, we consider the product of two O-modules I and βO. From (5.3), we can see
{βγ1, . . . , βγn} is a Z-basis for Iβ = I · βO, so we have

I · βO = Zβγ1 + . . .+ Zβγn. (5.6)

Let C = (cij) be the transition matrix from a Z-basis of I · βO to a Z-basis of O,

n∑
j=1

cikαk = βγi (5.7)

and because of (5.5) the right-hand side of (5.7) can be written as

βγi =
n∑
j=1

aijβαj =
n∑
j=1

aij

n∑
k=1

bjkαk,

=
n∑
k=1

 n∑
j=1

aijbjk

αk.
Therefore, we have C = A ·B, and by Definition 3.34, we obtain

NO(Iβ) = NO(I) ·NO(βO).

We consider the pair (I, α) from Theorem 4.16 again, which satisfies (5.1) and (5.2),
and let β ∈ K∗ be chosen from Theorem 3.49 such that Nf (Iβ) . ( 2

π )s ·
√
|dRf |.

By Theorem 5.1, if we multiply the pair (I, α) by β2, norm equation (5.2) becomes

Nf (Iβ)2 = NKf/Q(αβ2) ·Nf (In−3
f ). (5.8)

Next, we will give an an important property of Nf (Ikf ) on the right-hand side of (5.8).

Proposition 5.2. We have that Nf (Ikf ) = 1
fk0
.

Proof. Recall from (4.6) in Theorem 4.6 that

Ikf = If (k) = 〈1, θ, θ2, . . . , θk, ζk+1, . . . , ζn−1〉,

where
ζk = f0θ

k + f1θ
k−1 + . . .+ fk−1θ, ∀f ′is ∈ Z.
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From (4.3) we have that

Rf = 〈1, ζ1, ζ2, ζ3, ζ4, . . . , ζn−1〉 ⊆ Ikf .

Then a transition matrix from a basis of Ikf to a basis of the order Rf can be written down
as follows:

T =



1 ∗ . . . . . . . . . . . . . . . . . . ∗
0 1

f0
∗ . . . . . . . . . . . . . . . ∗

... 0 1
f0

. . . . . . . . . . . . . . . ∗
...

... . . . . . . . . . . . . . . . . . . ∗
... 0 . . . 0 1

f0
∗ . . . . . . ∗

... 0 . . . . . . 0 1 ∗ . . . ∗

...
... . . . . . . . . . ...

...
... . . . . . . ∗

0 0 . . . . . . . . . . . . . . . 0 1


It’s not necessary for us to figure out all ∗’s in T for the purpose of calculating det(T ).
Since there are k number of 1

f0

′
s along the diagonal of T , by Definition 3.34, we have

Nf

(
If (k)

)
= Nf (Ikf ) = 1

fk0
.

By the preceding proposition, we know that Nf (Ikf ) = 1
fk0
. So Nf (In−3

f ) = 1
fn−3

0
in (5.2)

is fixed when the hyperelliptic curve z2 = f(x, y) is fixed.

Proposition 5.3. Consider In−3
f from (5.1). There exists a nonzero constant c1 dependent

only on Rf such that c1 · In−3
f ⊆ Rf .

Proof. Using the same idea as in Proposition 5.2, we write down a transition matrix T ′

from a Z-basis of Rf to a Z-basis of In−3
f as follows:

T ′ =



1 0 0 . . . 0 . . . . . . . . . 0

0 f0 f1
... fn−3

...
...

... 0

0 0 f0
...

... . . . . . . . . . 0

0 0 0 . . . f1 . . . . . . . . . 0
...

...
...

... f0 . . . . . . . . . 0

0 0
...

... 0 1 . . . . . . 0
... 0

...
... 0 0 1 . . . 0

...
...

...
...

... . . . . . . . . . ...
0 0 . . . . . . . . . . . . 0 0 1
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with determinant det(T ′) = fn−3
0 6= 0 ∈ Z.

Then, its inverse T ′−1 = 1
det(T ′) · Adj(T

′) will be a transition matrix from a Z-basis of
In−3
f to a Z-basis of Rf with entries ∈ Q. Let c1 = det(T ′) = fn−3

0 , then c1 ·T ′−1 = Adj(T ′)
is a transition matrix from a Z-basis of c1 · In−3

f to a Z-basis of Rf and the definition of
adjoint matrix guarantees all entries in Adj(T ′) to be integers. Therefore, c1 ·T ′−1 = Adj(T ′)
is indeed a Z-transition matrix from a Z-basis of c1 · In−3

f to a Z-basis of Rf so that
c1 · In−3

f ⊆ Rf as Z-modules.

From Proposition 5.2 and (5.8), we obtain that

|NKf/Q(αβ2)| .
( 2
π

)s√
|dRf |.

Note that this provides insufficient information to show there are finitely many possibilities
for γ = αβ2. However, the additional constraint which comes from the next proposition will
be used later to show that there are only finitely many possibilities for γ.

Lemma 5.4. Let (I, α) ∈ Sf arise from a Q-rational point on the hyperelliptic curve as
in Theorem 4.16. With Definition 3.39 and the above proposition, we can derive a new
relationship between I2 and αIn−3

f in addition to (5.1), that is,

I2 ≈ αIn−3
f .

Proof. Let c0, c1 be positive integers result from Proposition 4.17 and 5.3.
Consider c3 = c0 · c1, then we have

c3 · αIn−3
f ⊆ Rf . (5.9)

Recall from (5.1) that I2 ⊆ αIn−3
f . Therefore, by (5.9), we have

c2
3I

2 ⊆ c2
3αI

n−3
f ⊆ Rf . (5.10)

Similar as in (5.8), (5.10) also gives a norm equation :

Nf (c3I)2 = NKf/Q(c2
3α) ·Nf (In−3

f ) (5.11)

and on whose right-hand side, we have

NK/Q(c2
3α) ·Nf (In−3

f ) = NOK (c2
3α) ·Nf (In−3

f )

≈ Nf (c2
3α) ·Nf (In−3

f ) (by Lemma 3.46)

= Nf (c2
3αI

n−3
f ) (by Theorem 5.1).
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While, on the left-hand side of (5.11):

Nf (c3I)2 = Nf (c3I) ·Nf (c3I) ≈ Nf (c2
3I

2) (by Lemma 3.48).

Therefore, we can derive an “approximate” version of (5.8) as follows:

Nf (c2
3I

2) ≈ Nf (c3I)2 = NKf/Q(c2
3α)Nf (In−3

f ) ≈ Nf (c2
3αI

n−3
f ). (5.12)

Notice that (5.10) and (5.12) combines with Lemma 3.44 gives us c2
3I

2 ≈ c2
3αI

n−3
f , so we

we obtain I2 ≈ αIn−3
f as desired.

Proposition 5.5. Let (I, α) arise from a Q-rational point on the hyperelliptic curve z2 =
f(x, y). Let β be chosen as in Theorem 3.49 such that Iβ ⊆ Rf and |Nf (Iβ)| . M , where
M =

(
2
π

)s√
|dRf |. Then there is a positive integer c only dependent on Rf such that

cαβ2 ∈ Rf .

Proof. From Lemma 5.4, we have I2 ≈ αIn−3
f and it gives Rf ≈ αI−2In−3

f by Lemma 3.28.
Recall from the proof of Theorem 3.49, we choose a r ∈ K∗ so that

rI−1 := b ⊆ Rf (5.13)

=⇒ r2I−2 = b2 ⊆ Rf , (5.14)

From Lemma 3.21, I−1 is an Rf -module, and we can see from (5.13) and (5.14) that both
b and b2 are ideals of Rf .

Moreover, we know from Theorem 3.19 that there will exist an a ∈ b such that |NK/Q(a)| ≤
( 2
π )s
√
|dRf |.

So the choice of β is given by β = a/r, and

Rf ≈ αI−2In−3
f

=⇒ Rf ≈ αr−2b2In−3
f Since r2I−2 = b2 by (5.14)

=⇒ αa2r−2b2In−3
f ≈ a2Rf . b2Rf Multiply by a2 ∈ b2 ⊆ b on both sides

=⇒ αa2r−2In−3
f . Rf Multiply by b−2since it is also an Rf -module from Lemma 3.21

=⇒ αβ2 . Rf β2 = a2r−2 and 1 ∈ Rf ⊆ In−3
f

=⇒ There is a positive integer c dependent only on Rf such that cαβ2 ∈ Rf .

Putting together Theorem 3.49 and Proposition 5.5, we obtain:

Theorem 5.6. Let f ∈ Z[x, y] be a homogeneous polynomial of even degree n ≥ 2 which is
irreducible in Q[x, y]. Let (I, α) ∈ Sf be any element which arises from a Q-rational point
on the hyperelliptic curve z2 = f(x, y) as in Theorem 4.16. Then (I, α) ∼ (J, γ) where
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1. J ⊆ Rf and |Nf (J)| . ( 2
π )s
√
|dRf |,

2. |NKf/Q(γ)| . ( 2
π )s
√
|dRf |,

3. there is a positive integer c only dependent on f such that cγ ∈ Rf .

Lemma 5.7. Let K be a number field and consider all embeddings σ : K ↪→ C. Let O be
an order in K. For any principal O-module a in K, there exists an element b ∈ K∗ such
that bO = a and |bσ| ∈ O

(
|NO(a)

1
n |
)
for every embedding σ, where bσ means σ(b).

Proof. Consider the Minkowski unit map given by

τ : K∗ −→ Cn

u −→ τ(u)σ,

where

τ(u)σ =


(
log|uσ| − 1

n log|NK/Q(u)|
)
σ
, if σ is a real embedding,

(
log|uσ|2 − 1

n log|NK/Q(u)|
)
σ
, if σ is a complex embedding.

Let σ1, . . . , σr be all real embeddings and σr+1, . . . , σr+s be all complex embeddings.
Then we apply the trace map to τ(u)σ as follows:

Tr
(
τ(u)σ

)
= log

 |uσ1 |∣∣∣NK/Q(u)
1
n

∣∣∣
+ . . .+ log

 |uσr |∣∣∣NK/Q(u)
1
n

∣∣∣


+ log

 |uσr+1 |2∣∣∣NK/Q(u)
1
n

∣∣∣
+ . . .+ log

 |uσr+s |2∣∣∣NK/Q(u)
1
n

∣∣∣


= log

 |uσ1 | · . . . · |uσr | · |uσr+1 |2 · . . . · |uσr+s |2∣∣∣NK/Q(u)
∣∣∣


= log

 |uσ1 | · . . . · |uσr | · |uσr+1 | · |uσ̄r+1 | · . . . · |uσr+s | · |uσ̄r+s |∣∣∣NK/Q(u)
∣∣∣


= log


∣∣∣NK/Q(u)

∣∣∣∣∣∣NK/Q(u)
∣∣∣
 = 0

by Proposition 3.3.
As we can see from the above, due to the addition of 1

n log|NK/Q(u)|, τ(u) will be
contained in the trace-zero hyperplane H = {x ∈ [

∏
τ R]+

∣∣∣ Tr(x) = 0}.
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We can recall from Theorem (7.3) in [13]: there is a map λ : O×K −→ H whose image
forms a complete lattice in H. Moreover, Conrad proved in [6, p.7] that this property holds
for any order in K, which means τ(O×) is a complete lattice in H as well.

Therefore, if a is a generator of an O-module a, there will be a u ∈ O× such that
τ(a) + τ(u) lies in the fundamental parallelopiped of a complete lattice τ(O×).

Since τ(a) + τ(u) = τ(au), if we let b = au, then b will also be a generator of a and τ(b)
will lie in the fundamental parallelopiped of τ(O×) as well.

Let {u1, u2, . . . , un} be a basis of O×/{±1}, then for each embedding σ, we have
∣∣∣log|bσ| − 1

n log
∣∣∣NK/Q(b)

∣∣∣ ∣∣∣ ≤ 1
2
∑n−1
i=1

∣∣∣log|ui,σ|∣∣∣, if σ is a real embedding

∣∣∣log|bσ|2 − 1
n log

∣∣∣NK/Q(b)
∣∣∣ ∣∣∣ ≤ 1

2
∑n−1
i=1

∣∣∣log|ui,σ|∣∣∣, if σ is a complex embedding.

(5.15)

By the logarithmic properties, (5.15) becomes

∣∣∣∣∣∣∣log
 |bσ |∣∣∣NK|Q(b)

1
n

∣∣∣

∣∣∣∣∣∣∣ ≤

∣∣∣log(∏n−1
i=1 |ui,σ|

) 1
2
∣∣∣, if σ is a real embedding

∣∣∣∣∣∣∣log
 |bσ |2∣∣∣NK|Q(b)

1
n

∣∣∣

∣∣∣∣∣∣∣ ≤

∣∣∣log(∏n−1
i=1 |ui,σ|

) 1
2
∣∣∣, if σ is a complex embedding.

(5.16)

Take exponential function ex on both sides of (5.16) and let Uσ =
∏n−1
i=1 e

|log|ui,σ ||/2,
1
Uσ

∣∣∣NK/Q(b)
1
n

∣∣∣ ≤ |bσ| ≤ Uσ∣∣∣NK/Q(b)
1
n

∣∣∣, if σ is a real embedding

√
1
Uσ
NK/Q(b)

1
n ≤ |bσ| ≤

√
Uσ
∣∣∣NK/Q(b)

1
n

∣∣∣, if σ is a complex embedding.

Since b is a generator of an O-module a, by Lemma 3.38, we have that |NK|Q(b)| =
|NO(a)|. So if U = max(Uσ), then the above becomes

1
U |NO(a)|

1
n ≤ |bσ| ≤ U |NO(a)|

1
n , if σ is a real embedding

√
1
U |NO(a)|

1
n ≤ |bσ| ≤

√
U |NO(a)|

1
n , if σ is a complex embedding.

(5.17)

From (5.17), we can see |bσ| ∈ O(|NO(a)|
1
n ) for all embeddings and if σ is a complex

one, we have the better bound: |bσ| ∈ O(|NO(a)|
1

2n ).
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Theorem 5.8. Let f ∈ Z[x, y] be an homogeneous polynomial of even degree n ≥ 2 which
is irreducible in Q[x, y]. Then there are only finitely many pairs (J, γ) ∈ Sf satisfying
conditions 1-3 of Theorem 5.6, up to multiplication by a unit of Rf .

Proof. The quantity |Nf (J)| is a positive integer and hence by condition 1, there are only
finitely many possibilities for |Nf (J)|. Since J ∼= Zn is contained in Rf ∼= Zn and both are
free Z-modules of rank n, J is of the form d1Z ⊕ . . . ⊕ dnZ ⊆ Zn ∼= Rf where di|di+1 and
the di are positive integers. It follows that J ⊇ dnZn, where dn divides |Nf (J)| = d1 · · · dn.
For each choice of dn, there are only finitely many choices of J ⊇ dnZn.

Note if (J, γ) ∈ Sf and satisfies conditions 1-3 of Theorem 5.6, then for any unit u ∈ R×f ,
(Ju, γu) also lies in Sf and satisfies conditions 1-3 of Theorem 5.6. By Lemma 5.7, there
exists a unit u ∈ R×f such that (J ′, γ′) = (Ju, γu) and (J ′, γ′) lies in Sf with conditions 1-3
of Theorem 5.6 being satisfied, and |γ′σ| ∈ O(M∗

1
n ), where M∗ = max(M, 1).

Now, j(γ′) lies in the discrete set Γ = j(1
cRf ) and the compact set

Γ =
{
x ∈ KR : |x| ≤ O(M

1
n )
}
.

Hence, there are finitely many choices for j(γ′), and thus for γ′.
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