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Abstract

We investigate certain genome rearrangement problems studied in relation to genome evolu-
tion. We introduce the SCJ-TD-FD rearrangement model to explain the directed evolution
from an ancestor A to a descendant D, where D may contain multiple copies of genes from
A. We study the pairwise genome distance problem that aims at finding the most parsimo-
nious sequence of cuts, joins and single-gene duplications that transforms A to D, under
this model. Next, we study the rooted median problem under the SCJ-TD-FD model, for
which the problem is shown to be NP-hard. We provide an Integer Linear Program that, on
simulated data, predicts an optimal median with high accuracy. Finally, we study the Small
Parsimony Problem under the SCJ-TD-FD model that aims at finding the gene orders at
the internal nodes of a given species tree. We define an ILP-based approach to reconstruct
the ancestral gene orders and present our experiments on a data-set of Anopheles mosquito

genomes.

Keywords: genome rearrangements, duplications, Single-Cut-or-Join, distance, parsimony,

median.
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Chapter 1

Introduction

Evolution is the process that is responsible for the diversity of life in nature. The genome of
an organism evolves over time through a variety of mechanisms, leading to changes in the
structure or size of the genome. The genome of a species consists of sets of chromosomes
that are organized into an ordered sequence of genes, referred to as gene order. The change
in the gene order of a genome is one of the mechanisms responsible for its evolution. Such a
shuffling of gene order in the chromosome was first reported by Dobzhansky and Sturtevant
when they compared the genomes of fruit flies from various parts of North America [24].
According to their observations, the changes observed in the order of genes in various species
could be explained using a sequence of inversions. For instance, in Figure 1.1, the inversion
of the order of genes from C to G indicates the difference between the genomes of two strains
of fruit fly.

However, the shuffling of genes in the gene order is not the only mechanism of genome
evolution. Among other events, the duplication of genes also plays a major role in evolution
of genomes, even displaying variations in gene function for different copies of the same
gene [47, 39]. The changes in the arrangement or content of genes along chromosomes are

collectively referred to as genome rearrangements.
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Figure 1.1: Inversions in Drosophila chromosomes [24]



The evolutions of a species can take place either on a nucleotide level or on a gene level.
It was previously studied by comparing sequences of nucleotides or amino acids. Genome
rearrangements are extremely rare as compared to nucleotide level mutations, and so pro-
vide the ability to trace back the evolutionary history to a more distant past [59, 58]. As
mentioned above, the evidence of genome rearrangements as an important evolutionary
mechanism was first presented in the 1930s. However, subsequent research did not consider
changes in gene order as a mode of evolution until the early 1980s, due to the lack of avail-
able data in the form of assembled genomes or genome maps. The development of genome
sequencing and mapping techniques and genome assembly algorithms spurred a renewed
interest in the field of genome rearrangements [60, 84, 62]. In the early 1990s, the search
for a structured approach to analyze genome rearrangements led to the development of
computational questions that started a vibrant research direction in computational biology
[73, 75].

The extent of evolution between two genomes can be determined through the number
of evolutionary events that can explain the difference between them. The number of evo-
lutionary events taking place can be estimated using the notion of evolutionary distance,
which is based on the principle of "Occam’s razor", also known as the principle of par-
simony. While the assumption of parsimony may not lead us to the biological truth, the
evolutionary hypothesis using the least number of events (genome rearrangements, in this
case) is considered to be a reasonable approximation of reality, making it a reliable source
of evolutionary information. Under the assumption of parsimony, the distance between two
genomes is measured as the least number of genome rearrangements required to transform
one genome to another. The problem of finding the distance between genomes is mainly
studied in two situations. If the two genomes both belonged to extant species, the distance
tells how closely related they are. On the other hand, if one of the species is an ancestor of
the other, the distance measures the degree of evolution from the ancestor to the descen-
dant; this last context, that we consider in this thesis, has received much less attention so
far due to the lack of assembled ancient genomes.

Computing the distance between two given genomes with no restrictions on their gene
content is not an easy problem. Hence, initial research focused on genomes with equal gene
content, i.e. without the presence of duplicate genes. Under the assumption of equal gene
content, finding the distance between two genomes is tractable for a wide range of models
of evolution through genome rearrangements (see [35, 86| for early results and [29] for a
survey dating back to 2009). Moreover, some genome rearrangement models can even handle
unequal gene content resulting from gene loss and new gene creation [21, 12]. However, the
addition of duplications as a possible event makes the problem of computing the distance
intractable for most models (see [79][81] for recent examples). Note however that there
exist some tractable models which involve only large-scale duplication events such as whole

genome duplication [28] or whole chromosome duplication [88]. Yet, there were no models



that could account for single-gene duplications. To answer this problem, we introduce an
evolutionary model using single-gene duplications, building on the model discussed in [28],
that computes an evolutionary scenario in polynomial time.

The distance problem considers only two genomes at a time. However, the notion of
parsimony can be extended to three or more genomes. The median problem entails com-
puting a common ancestor of three or more genomes that minimizes the total distance from
the ancestor to each of the descendants. The median problem is the simplest instance of
a problem of reconstructing the gene order of an ancestral species. The problem has been
found to be tractable in specific but limited cases. On restricting the genome structure to
contain only linear or circular chromosomes, the median problem is intractable for most
erstwhile rearrangement models [63, 15]. However, on relaxing this structural restriction,
Sankoff et al. found a polynomial time algorithm to compute the median [83] in a model
called the breakpoint model. A few years later, Feijao and Meidanis introduced a related
rearrangement model, called the Single-Cut-or-Join (SCJ) model, for which the median
problem could also be solved in polynomial time [28].

The Small Parsimony Problem can be seen as the generalization of the median problem
that considers the reconstruction of more than one ancestral gene order. In this problem,
the evolutionary tree, known as the species tree, depicting the relationship between all the
species is provided. While the median problem requires to compute a single ancestor, the
Small Parsimony Problem aims at finding all ancestors along the species phylogeny, for a
given set of extant species (see Figure 1.2). This problem is intractable for most models
with the notable exception of the Single-Cut-or-Join model, under which it is tractable [28].
The SCJ model is a set theoretic model based on the notion of adjacencies that can be used
to determine the gene order of a genome. A cut indicates the breaking (or removal) of an
adjacency from the set while a join is the introduction of an adjacency. This problem has
been studied using multiple strategies - both distance-based and otherwise [46]. We provide
Integer Linear Programming based approaches to address both the median as well as the
Small Parsimony Problem, using a duplication-aware version of the SCJ model.

The Small Parsimony Problem is one of the key problems investigated in relation to
ancestral reconstruction. The closest approximation of ancestral reconstruction however, is
the Large Parsimony Problem, which is an extension of the Small Parsimony Problem with
no evolutionary tree provided. This problem has not studied comprehensively, since it is
even more difficult than the Small Parsimony Problem.

The remaining parts of the thesis have been arranged as follows. Chapter 2 discusses
certain biological terms that may be used frequently throughout the discussion. Chapter
3 provides a brief history of previously studied genome rearrangement models. Chapter 4
introduces the new rearrangement model that accounts for single-gene duplications. It also
provides a tractable algorithm to compute the optimal parsimonious scenario. Chapter 5

uses the novel distance to compute the optimal median genome for two versions of the
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Figure 1.2: Reconstruction of ancestral gene orders A and B using (a) the species phylogeny
and (b) extant gene orders

median problem. We also present our results on simulated data in both these chapters.
Chapter 6 reuses the same evolutionary model to solve the Small Parsimony Problem. We

then report our findings on a data set of Anopheles mosquito genomes.



Chapter 2

Basics of computational biology

This thesis introduces a genome rearrangement model and looks at some problems studied
mainly in relation to the ancestral reconstruction of genomes. However, before proceeding
to the mathematical part of the discussion, it serves well to establish the definitions of some

important biological terms.

2.1 Genes and genomes

Deoxyribonucleic acid (DNA) is a complex organic molecule that contains the genetic in-
structions for the development and function of living things. DNA molecules are com-
posed of four basic molecules called nucleotides, each consisting of a five carbon sugar
(2’-deoxyribose), a phosphate group and one of the four bases - adenine (A), cytosine (C),
guanine (G) and thymine (T) [78]. DNA molecules commonly possess a chain-like double-
helix structures with two nucleotides sequences, called strands, wound against each other
in opposite directions (see Figure 2.1).

Genes are the basic functional units of heredity. Each gene consists of a continuous
stretch along the DNA, contributing to a specific function or trait. The existence of genes

was first suggested by Gregor Mendel through his experiments regarding hereditary charac-
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Figure 2.1: Schematic diagram of a DNA segment



teristics of pea plants. Recording certain physical traits such as color and size displayed by
the child as well as its parents, Mendel noticed a pattern in the pea plants, which suggested
that the peas had inherited their physical characteristics from their parents.

The DNA is molecule is packaged into compact thread-like structures called chromo-
somes, by tightly coiling around proteins known as histones. It carries the hereditary infor-
mation of the organism in the form of genes, arranged in an oriented sequence. Chromosomes
can be linear or circular in structure. The complete set of chromosomes in an organism is
called a genome. Thus, the genome contains the entire hereditary information of the organ-

ism.

2.2 Evolution

Evolution is the gradual change in the genetic structure of an organism. Evolutionary infor-
mation is stored in the genome, and is passed on by one generation to the next. Organisms
can evolve mainly through two types of events - point mutations and genome rearrange-
ments. Point mutations result from changes affecting a single nucleotide in the DNA se-
quence. These are local changes such as substitution of a nucleotide by another or insertion
or deletion of nucleotide. Point mutations may be caused due to errors in the process of
DNA replication during cell division. In some case, mutations also occur as a result of dam-
age sustained by the DNA. The rate at which such mutations occur may increase due to
exposure to ultaviolet (UV) radiation or mutagenic chemicals [9].

Genome rearrangements are evolutionary events that alter the structure or size of the
genome on a gene level. Numerous events can bring about these changes, some of which
have been illustrated in Figure 2.2. In the figure, each gene g has a head and a tail, gy
and g; respectively. Duplications, gene creations and losses alter the content of the genomes
(indicated by arrows). Inversions and translocations change the sequence of genes (indicated
by segments). The study of rearrangements plays an important role in the analysis of genome
evolution. Here we take a look at some of the important evolutionary events responsible for

changes in the gene order.

2.2.1 Gene duplications

Gene duplications are evolutionary events in which gene segments of variable length are
duplicated. In some cases, even entire chromosomes or genomes might be duplicated [88].
Duplications have been shown to be an important mechanism of genome rearrangement
[39][44]. Gene duplications result from various mechanisms such as unequal cross-over, repli-
cation slippage or whole chromosome (or whole genome) duplication [89]. Unequal cross-over
often leads to tandem duplications, a consecutive sequence of duplicated genes appearing
immediately next to the original sequence. Replication slippage occurs due to misalignment

of the two strands while DNA replication, leading to duplication of short gene sequences.
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Figure 2.2: Examples of genome rearrangement events

Chromosome or genome duplication result from the failure of the daughter chromosomes
to separate after DNA replication. This type of duplication has been known to be common
in plants [20]. After duplication, the two copies of the gene evolve independently of each

other. Despite their similarity, the copies may perform altogether different functions.

2.2.2 Fusions and fissions

Fusions and fissions also play an important role in genome evolution. A fusion event refers
to the connection of two previously disjoint gene extremities. A fission event denotes the
separation of two previously consecutive genes in a chromosome. Fusions and fissions may
be the product of various other genome rearrangement events, such as inversions, translo-
cations or gene losses, discussed below. Fusions and fissions have been commonly observed

in mammalian evolution [87, 43].

2.2.3 Inversions and translocations

An inversion involves a reversal of a segment of DNA within a chromosome. Thus, during
an inversion event, the gene order as well as the orientation of each gene in the segment
is reversed. Genome rearrangement through a sequence of inversions was one of the first
problems studied in this field. Inversions can have major functional consequences and have
been associated with genetic disorders [66]. A translocation is the relocation of part of one
chromosome to another chromosome. Chromosomal translocations have been known to be
a common characteristic in cancer genomes [41]. Inversions and translocations may result

in the fusion or fission of chromosomes.
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Figure 2.3: An example of (a) rooted and (b) unrooted phylogenetic X-trees

2.2.4 Gene loss

Gene losses are important in shaping the content of a genome. They can either result from a
gradual loss of function or due to an abrupt mutational event. Gene losses have been shown

to be a recurrent phenomenon in bacterial genomes [40][56] or in Drosophila genomes [34].

2.3 Phylogenetic trees

The evolutionary relationships between various biological entities are often described using
connected acyclic graphs called phylogenetic trees. From an evolution perspective, the leaves
(nodes of degree 1) of the phylogenetic tree represent currently existing entities, such as
existing species or genes whereas interior nodes (degree 2 or more) represent their ancestors.
The edges or branches between two nodes indicate the extent of evolution, usually in terms
of time or number of mutations. For a set of entities X, the phylogenetic tree with the set
X as its leaves is called the phylogenetic X-tree. The entities belonging to the set X (leaves)
are called extant entities.

Phylogenetic trees can be rooted or unrooted. Figure 2.3 shows an example of rooted
and unrooted phylogenetic X-trees with X = {A, B,C, D}. A rooted phylogenetic tree is
generally used in the context of directed evolution. It has a unique node, called root, that
represents the most recent common ancestor of the species at the leaves. All nodes of the
tree are directed away from the root. Thus, by assigning appropriate directions to every
branch, it can ensured that there exists a directed path from the root to each node, which
is unique to the node. Depending on the direction of the branch, the source of the branch
is called the parent while the sink is called the child of the parent.

A rooted tree in which all internal nodes have at most two outgoing branches is called
a rooted binary tree. Similarly, an unrooted tree in which each internal node has degree at
most three is called a unrooted binary tree. Binary trees provide a complete evolutionary
scenario since there is a clear distinction between consecutive edges of the tree, making it
possible to determine the immediate descendants for any internal node of the tree. Unless

specified, we will assume all trees to be rooted binary trees.



2.3.1 Species trees

The phylogenetic X-tree defined on the set X of extant species is called the species tree.
The set of ancestral species is represented by the internal nodes of the species tree. For any
branch along a rooted species tree, the species closer to the root is the direct ancestor of the
species farther from the root. Thus, the species tree contains the entire evolutionary history
of a set of species. The branching at any ancestral node of the tree refers to a speciation

event.

2.3.2 (Gene trees

Similar to a species tree, a gene tree contains essential information about the history of a
set of genes belonging to the same family. The phylogenetic X-tree defined on the set X of
extant genes is called the gene tree. The internal nodes of the gene tree represent ancestral
genes. The branching at each internal node is either a speciation event or a duplication event.
The immediate descendant genes after a speciation belong to different species while those
after a duplication event belong to the same species. Ancestral genes might also undergo
loss or transfer. However, these events are ignored for the purposes of this discussion.

In Figure 2.4 (b), we see a gene tree inscribed inside a tube-like species tree. Species A is the
root while M is its descendant. Leaves D1 and D are the descendants of M. The gene tree
belongs to the blue gene family from part (a). The squares represent duplication events along
the branch while dots represent speciation events. For instance, gy € M undergoes speciation

to produce gi € D; and then further undergoes duplication to produce gi, g? € Ds.

2.3.3 Reconciliation

Given a species tree and a gene tree, one of the key questions in the analysis of genome
rearrangements is recognizing which gene in the tree belongs which species. However, gene

trees may evolve differently as compared to a species tree due to events such as duplications,
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Figure 2.4: a) Orthology relations and b) corresponding reconciliations



incomplete lineage sorting or lateral gene transfers. Since the given trees may not always
agree with each other, obtaining this information is not obvious. As the gene orders of the
extant species are already available, it is easy to identify each extant gene with its source
species. However, this is not possible for the ancestral genes and species.

As discussed before, each ancestral gene of the gene tree might undergo either speciation
or duplication. Reconciliation induces a speciation or duplication event at each gene in the
gene tree and at each branch in the species tree [16]. This information is necessary for
understanding the relationship between different genes originating from the same ancestor
in a gene tree. Reconciliation is the process of mapping the genes of a given tree with their

respective species in the species tree.

Lowest Common Ancestor mapping: For a tree T, let V(7T') and E(T) denote its
vertices and edges, respectively. For a subset of leaves X, the lowest common ancestor of
X, denoted by lcar(X) is the internal node farthest from the root of 7', that is ancestor of
every leaf [ € X. Let T, be the subtree of T" with an internal node v as the root. Further for
an internal node v € T, let Ly(v) denote the set of extant entities in T,,. Thus, for v € T,
v = leap(Lr(v)). Consider a gene tree G and a species tree S. The leaves of G are already
labeled with the species to which they belong. A reconciliation of G with S is a mapping
M : V(G) — V(S) such that for g € G and s € S, M(g) = s if s = lcag(La(g)) [17]. Let
¢(g) denote a child of g in G. If M(c(g)) = s, then there is a duplication at g, otherwise

there is a speciation at g.

Orthology relations: Consider two genes g; and go and let lcag({g1,92}) = g. If the
event at g is a speciation then ¢g; and go are orthologs while if it is a duplication, then they
are paralogs. Orthology relations help in determining which ancestry of a gene [32]. For
instance, in Figure 2.4, the genes gi p, and gi p, are orthologs while gi p, and gé p, are
paralogs.

In the current context, reconciliation will be used to obtain the orthology relations be-
tween genes, as will be discussed subsequently. However, it also has applications in inferring
a species tree from discordant gene trees [71] or reconstructing the gene trees using others
[68]. Numerous softwares have been proposed for reconciliation, relying on approaches based
on parsimony (minimize the number of evolutionary events) [36] or probability (maximum

likelihood) [33].

2.4 Genome representation

A genome consists of a set of chromosomes which are maximal contiguous sequences of
genes. A chromosome with k genes can have either k — 1 adjacencies, in which case it is a

linear chromosome, or k adjacencies, in which case it is a circular chromosome.

Definition 2.4.1. A gene is an oriented piece of DNA, identified by a head and a tail, both

of which are called gene extremities.

10



In this representation, gene x is represented using a pair of gene extremities (z¢, xp), ¢

denotes the tail of the gene x and xj, denotes its head.

Definition 2.4.2. The sequential ordering of oriented genes along a chromosome is referred

to as gene order.

FEach chromosome can be linear or circular. In our examples, a circular chromosome is
represented using round brackets (e.g. (a,b,c)) while a linear chromosome is represented
using square brackets (e.g. [a, b, c]), where a gene b in reverse orientation is denoted by b.

Alternatively, a genome can be represented by a set of gene extremity adjacencies.

Definition 2.4.3. An adjacency is an unordered pair of gene extremities that are adjacent

in a genome.

For example (a, b, ¢) is encoded by the set of adjacencies {ayby, bict, cpai} and [a, b, c] by
{apbp, bici}.

We assume that a given gene a can have multiple copies in a genome, with its number of
occurrences being called its copy number. A genome in which every gene has copy number 1 is
a trivial genome [85]. In this context, a non-trivial genome sometimes cannot be represented
unambiguously by a set of adjacencies unless we distinguish the copies of each gene, for
example by denoting the copies of a gene a with copy number k by a!,...,a*. For example,
the genome (a', b, ¢!, a?), [a3, d, ¢?], with two duplicated genes of respective copy numbers 3
and 2, is represented by {a}bp, bict, cha?, atat, ajdy, dpct}t. We call a gene family the set of
all copies of a gene that is present in both considered genomes. A gene family is trivial if it
has exactly one copy in both genomes. From now, we identify a genome with its multi-set

of adjacencies.

Let A and D be the respective adjacency sets for the genomes [a, b, ¢, d] and [a, b, ¢, d|[b, €.
Then the multiset difference between the two sets is denoted by A — D (similarly D — A).
Thus, if A = {apb, bpcp, crdi} and D = {apby, bpcy, crdp, brep} then A— D = {¢dy} whereas
D — A = {cidp, bpep )

Finally, we describe two rearrangement events that will be used frequently throughout
this discussion. Both events are closely related to the notion of an adjacency set, described

above.
Definition 2.4.4. A cut is an event that deletes an adjacency from a genome.

Definition 2.4.5. A join is an event that creates an adjacency by joining two gene ex-

tremities that were previously not adjacent to any other extremity in the genome.

Figure 2.5 illustrates the cut and join events from A to D. The genome A and D can be
respectively represented by their adjacency sets as {apbp, bict, cpdi} and {biey, cpag, apdp, }.
The adjacencies in A that are missing from D are cuts while adjacencies present in D but

not in A are joins. If a linear chromosome undergoes a cut, it gets split into two linear

11



Cuts: Joins:
anby, chay
cpdy apdy,

Figure 2.5: Cut and join operations on genome A leading to genome D

chromosomes while a cut in a circular chromosome results in a linear chromosome. Joining
two distinct linear chromosomes yields a single linear chromosome while joining the free

extremities of a linear chromosome results in a circular chromosome.

This chapter provided a background on the key aspects of computational biology that will
be useful in the upcoming discussion on genome rearrangements. It also introduced some
of the important evolutionary events that result in the change of gene order. In the next
chapter, we will take a look at the main computational problems that are motivated by
genome rearrangements. We will also review the important methods designed to solve these

problems, in order to study the evolution of genomes through genome rearrangements.
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Chapter 3

Genome rearrangement problems:
A brief overview

The analysis of genome rearrangements started almost 80 years ago, when Dobzhansky and
Sturtevant [24] observed that the evolution of certain Drosophila species could be explained
using a sequence of reversals. In 1988, Jeffrey Palmer observed some interesting patterns in
the evolution of plant organelles [62]. He compared the mitochondrial genomes of cabbages
and turnips. About 99.9% of the genes were identical in both the genomes. However, it
was noted that the gene orders of both these vegetables were considerably different. These
discoveries along with similar findings suggested that genome rearrangements might play
an important role in genome evolution [60, 50]. Up until then, evolution was traditionally
explained through nucleotide-level changes in the DNA sequence. However, in the light of
newly found evidence, pioneered by David Sankoff, novel approaches based on comparison
of gene sequences were investigated [73, 75].

These events can be viewed as evolutionary "earthquakes' leading to chromosomal faults,
ultimately resulting in disruption of gene order. In comparison to point mutations, genome
rearrangements are rare events [69]. However, they can accumulate over time, prompting a
clear distinction between the gene orders of the original and evolved genomes. As a result,
the similarity between the gene orders of two species can reveal their proximity to each other.
Thus, genome rearrangements act as good phylogenetic markers. Inevitably, combinatorial
problems posed by genome rearrangements have attracted significant interest over the years.

In this section, we provide a brief history of these problems.

3.1 Computational problems on genome rearrangements

The study of genome rearrangements involves solving a combinatorial "puzzle' to find the
shortest sequence of rearrangements that can transform one genome into another. We are
provided a set of genomes as input. Each genome is defined by the order of genes along the

chromosomes. Considering certain structural constraints, each puzzle aims at finding the
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most parsimonious rearrangement scenario to explain the evolution between the genomes.
Here we take a look at some important computational problems studied in relation to

genome rearrangements.

Pairwise genome rearrangement distance: Given the gene orders of two input genomes,
this problem aims at finding the most parsimonious sequence of genome rearrangements that
can transform one genome into the other. For a particular instance of the problem, the set of
genome rearrangements to be used to obtain such an evolutionary scenario is also specified.
In the context of directed evolution, the distance is always computed from the ancestor to
the descendant. In general, the distance between two genomes X and Y will be denoted as
d(X,Y).

Genome median: Given the gene orders of k genomes, G1, G, ..., G, the genome me-
dian problem aims at computing their common ancestor M such the sum Zi-“:l d(M,G;) is
minimized. The median problem is of theoretical interest as it can be used as an iterative
step for computing the ancestral gene orders for the Small Parsimony Problem (discussed
below).

Small Parsimony (SPP): In this problem, we are provided a species tree, with the leaves
and internal nodes of the tree representing the extant and ancestral species, respectively.
Given the gene orders of the extant species, the gene content of the ancestral species and
the orthology relations for each gene family, the aim is to reconstruct the gene orders of the
ancestral species while minimizing the sum of the genome rearrangement distances along
the branches of the tree. The overall distance is called the SPP score.

The median problem forms the simplest instance of the Small Parsimony Problem, since
it requires to compute only one ancestral gene order. The median problem can also be
used to solve the SPP using an iterative approach [76]. In this approach, each ancestral
node defines an instance of the median problem (the node itself representing the median M
of its neighbors). Initially, each ancestral node is assigned a random gene order, governed
by the gene content of the node. In each iteration, the gene order of an ancestral node
is updated as the median of its three neighbors, if such an update improves the overall
distance. This iterative technique has often been used for ancestral reconstruction under
various frameworks [57].

The SPP has also been solved using other optimization-based approaches which recon-
struct ancestors using scaffolding techniques that preserve contiguous genome segments or
distance-based techniques (without the iterative process). These techniques will be discussed
in detail in Chapter 6.

Large Parsimony: This problem is a harder version of the SPP as the species tree is
not provided. The aim of this problem is to find a species tree that minimizes the score

of the small parsimony problem associated with the tree. For n given extant genomes, the
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possible number of trees is (2n — 5)!! which renders the Large Parsimony Problem NP-hard

in general.

3.2 Genome rearrangement models

We have seen that various events such as inversions, translocations and gene-duplication can
alter the gene order. However, traditional frameworks under which the genome rearrange-
ment problems are studied include only a few of these events at a time in their analysis.
These frameworks, referred to as genome rearrangement models, are defined by a set of
evolutionary events that explain the transformation of a given genome into another. Such

a restriction enables us to solve the problem from a combinatorial perspective.

3.2.1 Reversal model

Palmer’s discovery of a novel pattern in the evolution of plant organelles led to the obser-
vation that the transformation between the mitochondrial genomes of the two vegetables
(cabbages and turnips) could be achieved by a series of inversions [62]. Subsequent research
was motivated towards finding the least number of inversions to transform a genome into
another. In one of his pioneering works, Sankoff imagined gene orders as permutations,
with numbers used to denote genes [73, 75]. Thus, a reversal or inversion of a segment
(7, ...,mj), applied to a gene order (mq,...,my), 1 < i < j < n results in the gene order

(71’1, TG =15 Ty eeey Ty TU54-1, ...,7Tn).

Reversal distance: Given two permutations, each representing a gene order, the reversal
model explains the rearrangement from one gene order to the other using a sequence of
reversals. The reversal distance problem involves finding the shortest sequence of reversals
that can convert a gene order into another [37]. The number of reversals in the shortest
such sequence is the reversal distance between the two genomes in question.

Each gene in a permutation can be assigned an orientation or sign, depending on the
DNA strand on which they are located. However, in initial reversal models, permutations
were considered without the knowledge of the DNA strand on which the genes were located
and were referred to as unsigned permutations. Further, the genomes consisted of a single
chromosome without any duplicate genes. This limited the analysis to smaller genomes.
Under these conditions, the reversal distance problem was deemed to be intractable [37].
For unsigned permutations, Caprara later confirmed the NP-hardness of computing the
reversal distance [14]. There were, however, plenty of approximation results for the problem
38][3][18].

However, gene orders could be better represented through the notion of signed permu-
tations, by assigning an orientation to each gene. A signed reversal of a segment (7, ..., 7;),

applied to a gene order (my,...,m,), 1 < i < j < n would result in the gene order

15



Mouse
1 76 -10 9 -8 2 -1 354
-

_:._.—e-ﬁ---q-—c—c—.—q—.—-—
- -—.—.—»—M
1 2 3 4567 8 9 10 11
Human

Figure 3.1: A sequence of inversions transforming a segment of a mouse genome to that of
a human genome [64]

(71, o Ty =Ty ooy =T, W1, oo, T). An example of genome rearrangement using signed
reversals is illustrated in Figure 3.1. Although this change led to a larger search space for
possible intermediate genomes, the orientations of the genes provided a better signal for

choosing good reversals.

Breakpoint graph: Under this model, Hannenhalli and Pevzner proved that the reversal
distance problem could be solved in O(n*) time for signed unichromosomal [35]. They used
a concept called the breakpoint graph. This was one of the first tractability results in this
field.

A breakpoint graph is defined for a pair of permutations. Consider a permutation
1, ..., T, Of genes 1,...,n. Two vertices 2¢ and 2i — 1 are introduced for each gene i €
{1,2,...,n}. Further, two extra vertices mp = 0 and 7,41 = 2n + 1 are introduced. The
breakpoint graph is then defined on the these 2n + 2 vertices. A breakpoint is defined by a
pair (m;, mi+1) of consecutive genes in the permutation. A pair of vertices (2m;_1,2m; — 1)
is joined by a black edge while a pair (2i,2i + 1) is joined by a gray edge (see Figure 3.2).
For the graph thus defined, the distance between the two permutations, (1,2,...,n) and
(m, w2, ..., ™) is given by

d=n—c+h+f

where ¢ is the number of cycles with alternate black and gray edges, h is the number of
hurdles and f a binary variable called a fortress. The latter two (hurdles and fortress) are
combinatorial constructs determined using the partial order defined by the permutations.
Subsequent algorithms have yielded a best known complexity of O(nlogn) for the signed
unichromosomal reversal distance problem [82]. In case of multichromosomal genomes, re-

versals alone may be insufficient to transform a genome into another. However, reversals
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Figure 3.2: A breakpoint graph between two permutations, one denoted by black edges, the
other by gray edges

Model Pairwise distance | Genome median
Unsigned, unichromosomal NP-hard™ NP-hard™]
Signed, unichromosomal O(nlogn) 182! NP-hard['?!

Table 3.1: Complexity of problems under the reversal model

along with translocations, fissions and fusions could explain the transformation between the
two genomes. Aided by a new rearrangement model (discussed in the next subsection), ef-
ficient algorithms (O(n)) were provided to compute the optimal number of rearrangements

in case of multichromosomal genomes [6].

Reversal median: The median problem is the easiest phylogenetic questions posed by
genome rearrangements. In case of unichromosomal, the reversal median problem is NP-

hard [15]. The problem is still open for the case of multichromosomal reversals.

3.2.2 Double-Cut-and-Join (DCJ)

The positive results for the reversal distance were limited to instances where the number
of chromosomes in both genomes were equal. Further, it was necessary that homologous
genes are located in the same chromosome for both genomes. In practical, the number of
chromosomes and the location of the genes may vary in both genomes. In such a case, when
the number of chromosomes in both the genomes varied, explaining the evolutionary scenario
solely using reversals was not viable. Other rearrangements events such as translocations,
fusions and fissions were required to exactly determine the evolutionary scenario. Moreover,
there was no obvious biological intuition behind the use of combinatorial constructs like
hurdles and fortresses. In order to simplify matters, the Double-Cut-and-Join model was
introduced [86].

In a typical genome rearrangement event, the genome is cut at a maximum of two
places and the cuts are suitably repaired. A DCJ event mirrors this mechanism. A Double-
Cut-and-Join operation applied to two adjacencies ab and cd involves replacing the two
adjacencies with either 1) ac and bd or 2) ad and be. Here a, b, ¢ and d are gene extremities.
If the genome is cut at less than 2 places, it can still be modeled as a DCJ operation
using empty chromosome, which is simply a hypothetical construct of a temporary circular

chromosome consisting of two adjacent telomeres [5]. In this manner, rearrangement events
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Model Pairwise distance | Genome median
Unichromosomal O(n)b! NP-hard[®?]
Multichromosomal, circular/mixed O(n)b! NP-hard 83
Multichromosomal, linear O(n)!39] Open

Table 3.2: Complexity of problems under the DCJ model

such as reversals, translocations, fusions and fissions can all be modeled as a DCJ event.
In Figure 3.3, in each example red arrows indicates locations of cuts while black arrows

indicate joins. An empty chromosome is used to model fusion and fission events.

Adjacency graph: The adjacency graph is a reformulation of the breakpoint graph. The
graph is bipartite with a set of vertices pertaining to either genomes. Each set of vertices
consists of either adjacencies or individual extremities (which are not adjacent to any other
extremity in the genome) belonging to the genome. Two vertices are joined by an edge if
and only if they share an extremity. An illustration of the graph is shown in Figure 3.4.

The DCJ distance can then be computed as
d=n—c—1i/2

where ¢ is the number of cycles in the graph and ¢ is the number of paths of odd length.
The DCJ distance problem was proved to be solvable in linear time for unichromosomal as
well as multichromosomal genomes [5, 86]. However, this is the case in which the genes in
both genomes are assumed to be unique. For genomes containing duplicate genes, even if

the gene content of both genomes is equal, computing the DCJ distance is NP-hard [70].
DCJ median: Although computing the DCJ distance is possible in linear time, the general

median problem under the DCJ model was proved to be NP-hard, even in the simplest case

—De DD o o e D> —D D> D D> <

Fusion

Figure 3.3: A DCJ operation used to model various rearrangement events
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Figure 3.4: An example of an adjacency graph [53]

with & = 3. However, the problem is still open in case the genomes are forced to be linear
[83].

3.2.3 Breakpoint model

The notion of breakpoint was introduced in some of the earlier studies on genome rear-
rangements [84, 60] . Given two genomes G1 and Ga, a breakpoint in Gy is defined as an
adjacency that is not seen in G2. Genome rearrangement events result in the disruption of
gene orders, through a series of breaks and repairs. Subsequent studies debated if specific
regions in the genome are prone to breakage. Through their analysis of conserved segments -
segments in the genome that have not been disrupted, Nadeau and Taylor [60] observed that
the breakpoints were randomly distributed throughout the genome. Pevzner and Tesler [64],
using the breakpoint graph for the human-mouse distance, reported that rearrangements
are more likely to happen within the chromosome. Moreover, it was also noted in [64] that
the breakpoints in certain fragile regions in the genome are used repeatedly, which was in

contrast with earlier results in [60].

Breakpoint reuse: Pevzner and Tesler defined a reuse statistic r based on the number of
breakpoints, as a measure to infer the breakpoint prone regions in the genome. Computing

the distance d according to the Hannenhalli-Pevzner theory,

2d(G1, Ga)
r =
b
where b denoted the number of breakpoints in G;. The value of r ranges between 1 to 2
with the endpoints indicating minimum or maximum reuse [77].
However, this formula assumed that every rearrangement results in 2 cuts. This does
not always hold true, since some DCJ operations may lead to one or even no cut in the

genome. To address this discrepancy, the reuse statistic was redefined as



Model Pairwise distance | Genome median
Unichromosomal O(n)!83 NP-hard[6?]
Multichromosomal, circular/mixed O(n)®] O(n*)83], 149]
Multichromosomal, linear O(n)8 NP-hard 83

Table 3.3: Complexity of problems under the breakpoint model

where ¢ measures the exact number of cuts in the scenario while b refers to the number of

vertices in G that fell on long paths.

Breakpoint distance: Based on the conservation of adjacencies, the breakpoint distance

between G and G4 is given by

e(G1,G2)

dyp(G1,G2) =n — a(G1,G2) — 5

where n is the number of genes, a(G1,G2) is the number of adjacencies common to both
genomes whereas e(G1,G2) is the number of telomeres common to both genomes. Notice
that this distance can easily be translated into the DCJ distance through the adjacency
graph. Each common adjacency corresponds to a 2-cycle in the adjacency graph while each
common telomere corresponds to a one path. Similar to the DCJ distance, the breakpoint

distance problem is also solvable in linear time.

Breakpoint median: The breakpoint median problem was proved to be NP-hard for
linear, unichromosomal genomes [63]. However, if the median is allowed to have circular
chromosomes, the problem of computing the median can be solved in polynomial time by
reformulating the genome median as a maximum weight matching problem [83]. A graph
is defined on vertices Vi U Vo, where V; denotes the set of gene extremities of M while
the set V5 consists of one vertex t, for each gene extremity x. All edges are weighted with
the following weight scheme. An edge between two extremities x,y € Vi is weighted by
the number of genomes G; containing the adjacency zy. An edge between two extremities
x,y € Vo is weighted 0. An edge zt, is weighted by half the number of genomes G; with x
as a telomere, while an edge xt, is weighted 0. Given such a graph, any matching on the
graph defines a median genome M. Moreover, a maximum weight matching in this graph

defines an optimal median M, thus making the problem tractable with circular genomes.

3.3 Single-Cut-or-Join (SCJ)

Unlike the DCJ model, which can be explain the distance using a series of genome rear-
rangement events, the breakpoint model is not mechanistic. Feijao and Meidanis proposed

a mechanistic version of the breakpoint distance using a set theoretic distance [28]. One of
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Model Pairwise | Genome Small
distance | median | parsimony

Unichromosomal O(n)i? Open Open
Multichromosomal, circular/mixed | O(n)P8 | O(n)®! | O(n?1)P8
Multichromosomal, linear o) | O(n) Open

Table 3.4: Complexity of problems under the SCJ model. Here, n is the number of genes in
an genome and [ is the number of leaves in the phylogeny.

the more notable features of the SCJ model is the tractability of the median as well as the

Small Parsimony Problem under this model.

SCJ distance: In the SCJ model, each rearrangement is either a cut or a join. For a given
pair of genomes G1 and G, represented by their adjacency sets, the SCJ distance between
the two is given by:

dscy(G1,G2) = |G1 — Go| + |Ga2 — G1|

Note that the model requires both genomes to have equal gene content with each gene
distinctly identified. Using the above formula, the SCJ distance can be computed in linear

time.

SCJ median: Along with the pairwise distance problem, the SCJ median problem was also
solved in polynomial for linear, circular or mixed multichromosomal genomes [28]. It was
proved that minimizing the total distance Zle widscy(Gy, M) is equivalent to maximizing
the score of the median s(M) = 2%, w;|M N G;| — ¥, w;|M|. Consider a median that

consists solely of an adjacency a = xy. The score s(a) can be computed as:
k k
s(a) = 2Zwi|a NG| — Zwi|a|
i=1 i=1

k
=2 Zwi—Zwi where S, = {i|la € G;}
i€Sq i=1
The score s(a) represents the contribution of an adjacency a towards the score of the
median. Clearly, if this contribution is negative, it would be desirable to leave a out of the
optimal median. Moreover, if s(a) > 0 for some a = xy, then for any other extremity z # y,
s(zz) < 0 thus avoiding any conflicts with other adjacencies. Thus, the median M defined
by the set of adjacencies with s(a) > 0 is an optimal median.
To obtain an optimal median solution consisting only of linear chromosomes, it suffices

to remove the least weighted edge from an existing circular chromosome.

SCJ Small Parsimony: The SCJ rearrangement model is the only model under which the

Small Parsimony Problem is can be solved in polynomial time. In the SCJ model, a genome
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Figure 3.5: Assignment of characters to internal nodes, with the cost of transition along
each branch (in boxes)

can be represented as a set of adjacencies. The small parsimony problem can be solved by
using the Fitch algorithm individually for each adjacency [30, 28].

In this approach, each adjacency is treated as a binary state 0 or 1 determining its
absence or presence in the genome. The algorithm follows the principle of parsimony and
thus, tries to avoid the transition of states (from 0 to 1 or vice versa). This directly translates
to minimizing the number of cuts and joins along the tree. For each adjacency, the algorithm
is carried out in two passes. The first, an upward pass determines the set of all possible
states at a node in the tree. The reverse pass then chooses a state from these sets such that
the overall number of state transitions is minimized. An illustration of the Fitch algorithm
is provided in Figure 3.5. At each internal node, U denotes the sets of possible states
for each adjacency, generated during the upward pass while L denotes the assignment of
parsimonious states for each adjacency. For a particular ancestral node in the tree, the set

of adjacencies with state 1 defines the genome at the node.

3.4 The SCJ-TD-FD model

The SCJ-TD-FD model is an extension of the SCJ model, consisting of two types of evo-
lutionary events: genome rearrangements and duplications. Genome rearrangements are
modeled by Single-Cut-or-Join (SCJ) operations, that either delete (cut) or create (join)
an adjacency in a genome. For duplication events, we consider two types of duplications,
both creating an extra copy of a single gene: Tandem Duplications (TD) and Floating Du-
plications (FD).

Definition 3.4.1. A tandem duplication of an existing gene g is the event in which a new

copy of g, say ¢’ is introduced immediately next to the original gene g in the chromosome.
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Figure 3.6: An example of a tandem duplicate ¢’ of of g, used to transform A to D.

A tandem duplication thus results in the addition of an adjacency gpg;. If there was an
adjacency gp, it gets replaced by the adjacency g, z. An example of a tandem duplication
is shown in Figure 3.6. In this example, the adjacency gpy: has been replaced by g}, y: and
an adjacency gpg; has been introduced. Note that the number of cut and join operations is

dependent on the adjacencies of the gene g in A and D.

Definition 3.4.2. A floating duplication of a gene g is the event in which a new copy of g,

say ¢ is introduced as a single-gene circular chromosome.

A floating duplication results in the addition of the adjacency g} g;. An example of a
floating duplication is illustrated in Figure 3.7.

The motivation for this type of duplication is that gene insertions and gene deletions
have been modeled with artificial circular chromosomes before, greatly simplifying how to
deal with such type of operations. For instance, in the Double-Cut-and-Join (DCJ) model, a
deletion of a gene can be seen as a DCJ operation that applies two cuts to remove the given

gene from a chromosome, followed by two joins to “repair” the broken chromosome and

A Tt Ty gi 9n Yo Yn Zr Zh

%7 Floating duplication of g

e a 7 > ! J
Tt Th 9t 9n Yt Yn 2t Zn g i
2 cuts, g9, and yj,z
/ !
Tt Th gt 9n Yt Yn 2t Zh 9 9n

%7 2 joins, gj,2 and yug;

! !
Ti  Tp i 9n Yo Yn 9 9 2 2

e

D &% gt 9n Yt Yn gt 9n 2t 2

Figure 3.7: An example of a floating duplicate ¢’ of of g, used to transform A to D.
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to circularize the deleted gene. A gene insertion is the inverse of this operation. This idea
was effectively used in the DCJ indel model by Compeau [19]. We discuss the possibility of
using a single-gene linear chromosome instead of a circular one at the end of Section 4.3.2.

In this chapter, we were introduced to the important problems investigated in rela-
tion to genome rearrangement. It also presented a review of the various frameworks under
which genome rearrangement problems have been studied in the past. It discussed the SCJ
distance, based on a set theoretic evolutionary model, using which the median and small
parsimony problems can be solved in polynomial time. Finally, it discussed a variant of the
SCJ model that can handle single-gene duplications. In the subsequent chapters, we will
analyze the distance, median and small parsimony problems under this model. Contrary
to previously studied models, we will see that some of problems are tractable despite the

presence of gene duplication as an evolutionary event.
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Chapter 4

A tractable variant of the Single
Cut or Join distance with
duplicated genes

The previous chapter highlighted various evolutionary models that have been used to study
genome rearrangements. We also got acquainted with the SCJ-TD-FD model that uses
single gene duplications in addition to single cuts and joins.

The following chapter highlights the key results on the genome distance problem, pub-
lished in proceedings of the RECOMB-CG, 2017 satellite conference [27]. We use the SCJ-
TD-FD model to solve the genome distance problem. The results presented in this chapter
are a product of joint collaboration with Dr. Pedro Feijao. The SCJ-TD-FD model is an

extension of his work in [28].

4.1 Introduction

Genome rearrangement problems aim at finding a plausible evolutionary scenario to ex-
plain the evolution of a genome. Under parsimony assumptions, this translates to finding
a scenario with the least number or cost of genome rearrangement events. The pairwise
genome rearrangement distance problem aims at finding a most parsimonious or most likely
sequence of genome rearrangements, within a given evolutionary model, that transforms
one given genome into another given genome, thus giving a possible evolutionary scenario
between the two given genomes. In the absence of duplicated genes, computing the pair-
wise distance is tractable for most rearrangement models. However, when gene duplication
is allowed as an evolutionary event, most rearrangement distance problems become NP-
hard. Although there exist polynomial time algorithms that handle large-scale duplications
[28, 88|, erstwhile approaches have been unable to handle single-gene duplication events.
Here, we present an exception to this trend. We prove that the rearrangement distance with

duplicated genes can be computed in polynomial time, under the SCJ-TD-FD model.
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Figure 4.1: The transformation from A to D using cuts, joins and single gene duplications.

Given an ancestor A and a descendant D, we use the SCJ-TD-FD model to propose
an evolutionary scenario from a duplication-free ancestor A to descendant D that may
contain duplicated genes. This setting is inspired by the development of algorithms to
reconstruct ancestral gene orders along a given species phylogeny using reconciled gene trees
that provide, for each gene family within the set of considered genomes, one-to-one or one-
to-many orthology relations between each ancestral gene and its descendant gene(s), if any.
This general framework was introduced by Sankoff and El-Mabrouk in [74] (see also [17]). It
was later implemented in the DeCo* family of algorithms [25] to reconstruct ancestral gene
orders in a duplication-aware evolutionary model from data including extant gene orders
and reconciled gene trees. In this context, the genome A represents an ancestral genome,
reconstructed for example with DeCo*, the genome D represents a descendant of A and we
are interested in computing a directed distance, from an ancestor to its descendant, where all
members of a same gene family present in genome A are considered as distinguishable thanks
to the information provided by the reconciled gene tree of this family. In the evolutionary
model we consider, rearrangements are either Single Cuts or Single Joins, while duplications
can only be single gene duplications, but of two different types, Tandem Duplications (TD)
or Floating Duplications (FD) in which a new copy is introduced as a circular chromosome
(refer Figure 4.1). It is shown that in this model the distance problem can be simply reduced
to deciding, for each gene family with duplicates in D, the length of a tandem array of
duplicates to introduce in A and we provide a polynomial time algorithm for this problem.

The remaining chapter is organized as follows: in Section 4.2, we discuss the main
problem statement. In Section 4.3 we present our theoretical results, a closed equation for
the SCJ distance with duplications and a linear time algorithm to find an optimal scenario.

Finally, we provide preliminary experimental results in Section 4.4.
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4.2 Problem statement

The pairwise distance problem. We consider the case of directed evolution from a
trivial ancestral genome A to a descendant genome D. The evolutionary model excludes
gene loss and de-novo gene creation, so we assume that every gene a in A has at least one
descendant in D and conversely every gene D has a unique ancestor gene in A. If so, we

say that A and D have the same gene families set.

The directed SCJ-TD-FD (d-SCJ-TD-FD) distance problem. Let A be a trivial
genome and D be a non-trivial genome, such that no gene family is absent from either A
or D. Compute the minimum number of SCJ, TD and FD operations needed to transform
A into D, denoted by dpscy(A4, D).

Note that if D is a trivial genome, the usual SCJ distance, denoted by dgcj(A, D) is
defined by the symmetric differences of the adjacencies sets of A and D: dgcy(A4,D) =
|A— D|+|D — A| where the first term accounts for the number of cuts and the second term

for the number of joins.

4.3 Algorithmic results

In this section, we show that, after a preprocessing step of removing obvious TD and FD
in D, the d-SCJ-TD-FD distance can be calculated with the symmetric difference between
the adjacency (multi)sets of the input genomes, with an extra factor to account for the gene
duplications. We first focus on the preprocessing. Next we describe a linear time algorithm

to compute a parsimonious scenario.

4.3.1 The directed SCJ-TD-FD distance

An observed duplication in D is defined as an adjacency of the form gpg;, that defines either
a single-gene circular chromosome or a tandem array of two (or more) copies of a gene g
that occur consecutively and with the same orientation. We denote by ¢ the number of such
adjacencies in D and by D’ the genome obtained from D by removing first all genes but
one from each tandem arrays, and then all single-circular chromosomes for genes from non-
trivial families but one if all genes of the family are in such circular chromosomes. D can

obviously be obtained from D’ by ¢(D) duplications and the following lemma is immediate:
Lemma 1. dpscy(A4, D) = dpscy(A, D/> + t(D)

As a consequence, we assume from now on that D has been preprocessed as described
above and does not contain any tandem array or any extra copy of a non-trivial family
that is in a single-gene circular chromosome. We say that D is reduced. Note that single-
gene linear chromosomes are not impacted by this preprocessing as, in our setting, if the
considered gene is from a non-trivial family, the linear chromosome it forms required at

least a cut to be created.
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Theorem 1. Given a trivial genome A and a reduced non-trivial genome D such that no
gene family is absent from either A or D and where D has (A, D) more genes than A, the
d-SCJ-TD-FD distance between A and D is given by

dpsci(A,D) =|A— D|+|D — A| 4+ 25(A, D).

Proof. First, we show that dpscy(4, D) > |A— D|+|D — A|+20(A, D). To obtain D from
A, we need exactly (A, D) gene duplications. Each duplication of a gene g will create the
adjacency gpg:, regardless of the type of the duplication or the timing of the duplication
event. Therefore, 6(A, D) adjacencies of the type gng: will have to be cut, as D is reduced
and has no adjacency of this type. In addition, any adjacency in A — D and D — A defines
an unavoidable cut or join respectively. Therefore, we can not transform A into D with less
than |[A — D| + |D — A| + 2§(A, D) operations.

Now, we show that dpgcy(A, D) < |A—D|+|D—A|+2§(A, D), by induction on (A, D).
For the base case §(A, D) = 0, the result follows immediately as both genomes are trivial
and dpscy(A, D) = dscy(A, D).

We now assume that §(A, D) > 0, and pick a gene g with one copy in A and more
than one copy in D. Depending on how the adjacencies of g are conserved or not in D, we
have a few different subcases to consider. However, in each subcase the general strategy
remains the same, as follows. We build a genome Ay from A by applying one duplication
(FD or TD) and also relabeling the original copy g as ¢/, creating an adjacency gng: in the
case of an FD or g ¢+ in the case of a TD. Then we build a genome Dy from D by also
relabeling one copy of g to ¢/, thus creating a new trivial gene family and an instance of
the d-SCJ-TD-FD problem with exactly (A, D) — 1 duplicated gene copies. We can apply
the induction hypothesis, leading to the inequality

dpscy(Az, D2) < |Ay — Do| + | Dy — As| +2(6(A, D) — 1).

Also, as D and D» are identical but for the relabeling of g, there is a scenario from A to D,

going from A to As and then to D, resulting in the upper bound
dpsci(A, D) < dpsci(A, A2) + dpsci(Az2, D2) = 1 + dpsci(Asz, D2).
We will then show that we can build As and Dy in a way that they satisfy

|A—D|+|D — A| =|As — Da| 4+ |Da — Ay| — 1,
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where the —1 term is due to the extra gng; adjacency on Ay created with the duplication.

Together with the above inequalities this will lead to
dpsci(A, D) <1+ dpsci(Az, D2) < [A—D|+|D — Al +25(A, D)

and the result follows. To show that we can build As and Dy that satisfy the above condi-
tions, we will consider three subcases.

Case (i): Assume that g is not a telomere (and so there are two adjacencies involving ¢ in
A, say xg; and gpy) and there is a copy of g in D whose extremities for also adjacencies xg;
and gpy. We say that the context of g is strongly conserved between A and D. Note that
x and y do not need to belong to trivial gene families and there might be several copies of
x,1y,9 in D that conserve the context of g in A.

In this case, we build A, by applying an FD to create an extra copy of g and relabel
the original copy of g in A as ¢’; we also relabel ¢’ an arbitrary copy of g in D that has the
same context than g in A, to obtain Dy (see Fig. 4.2. Comparing the adjacency sets of A
and D with As and D, we can see that from A to Ay two adjacencies where renamed from
zg: and gpy to xg; and gjy, and exactly the same change happened from D to Ds. Also,
the adjacency gng: was added in Ag. As a result, Ay = A — {zg, 9ny} + {29}, 91y, 9n gt }-
Similarly, Do = D — {zg:, gny} + {g;, g,y}. Therefore, we have that |[A — D| 4+ |D — A| =
|A2 — Da| 4 |D2 — Az| — 1. Note that this relabeling only works if we introduce a an extra
copy of g in A with an FD here; if instead we introduce it with a TD, it would not be
possible to get adjacencies zg; and g,y in Da, as the copy of g involved in both adjacencies
would be different.

/
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z 9 Y r 9 ¥

Figure 4.2: The context of g is strongly conserved between A and D (Case (i)).

Case (ii): Assume that g is not a telomere in A, its context is not strongly conserved between
A and D, but both adjacencies involving g, zg; and gy, are present in D on different copies
of g. We say that the context of g is weakly conserved between A and D. Again x and y
need not to be trivial gene families and there might be several occurrences of adjacencies
zg: and gpy in D.

In this case, we build As by applying a TD on g, relabeling the gene ¢ that has the
adjacency xg; as a new gene ¢’ in both Ay and D, as shown on Fig. 4.3. Comparing
the adjacency sets of A and As, we notice that the adjacency xg; changes to zg;, and

gngt is added. Thus, Ay = A — {xg:} + {xg;, gngt}. From D to Dy we also have the same
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change, and possibly one more, depending if g) is a telomere in D (no change) or if g;,
has an adjacency gjw. In the former case, Dy = D — {xg;} + {zg,}. Otherwise, Dy =
D —A{zg:, ghw} + {zg;, g,w}. In either case, the possible adjacency g, w does not exist in A
or Ay. Consequently, the equality |A — D| + |D — A| = |As — Da| + |Da — Az| — 1 holds.
Note also that in this case an FD would not be optimal, because it would force the
labeling of the adjacency gny to gy, and since the adjacency gpy on D cannot have the

label g}y, this would force an extra pair of SCJ operations.

x g Yy x 9 g Yy
A s Ay .
z 9 g vy z 4 g v
D - . —— Dy o — o ——

Figure 4.3: The context of g is weakly conserved between A and D (Case (ii)).

Case (iii) : We assume now that the context of g in A is neither strongly nor weakly
conserved, and so at most one adjacency of g in A is also present in D.

This case is similar to case (i), if we assume that either xg; or gy, are present in D, or
neither. In the same way, we apply an FD on g, labeling the original copy as ¢’, as shown in
Fig. 4.4. On D, we pick a gene g that has an adjacency xg; or gpy if any or, if no adjacency
involving g is conserved in D, we pick an arbitrary g, and relabel it as ¢’.

Now, any adjacencies that were conserved between A and D will remain conserved
between A and D, and no new conserved adjacencies have been created. Since, as before,
Ay has a new gpg; adjacency, the equality |A — D| +|D — A| = |Ay — Da| + |Da — Ag| — 1
holds.

These three cases cover all possible configurations for g, so the theorem is proved.

/
g
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z 9 z 9
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Figure 4.4: At most one adjacency of g is conserved (Case (iii)).

4.3.2 Computing a parsimonious scenario

It follows from Lemma 1 and Theorem 1 that computing the d-SCJ-TD-FD distance can be
done in linear time in the size of the considered genomes A and D. Moreover, they define a
simple algorithm that computes a parsimonious scenario in terms of duplications, cuts and

joins from A to D, described in Algorithm 1 below.
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Algorithm 1 Compute an SCJ-TD-FD parsimonious scenario between a trivial genome A
and a genome D

Reduce D into a reduced genome D’
Let AA=Aandi=1
while (A’, D') has a non trivial gene family do
Let g be an arbitrary gene from a non trivial family in A’; relabel g by ¢'.
if the context of ¢ is strongly conserved then
relabel the corresponding copy of g in D’ by ¢
add to A’ a single-gene circular chromosome g.
else if the context of g is weakly conserved then
create an extra copy of ¢* with a TD
relabel a copy of ¢ involved in adjacency zg; in D’ by ¢'.
else if one adjacency of g is conserved in D’ then
relabel the corresponding copy of ¢ in D’ by ¢
add to A’ a single-gene circular chromosome g*.
else
relabel an arbitrary copy of g in D’ by ¢
add to A’ a single-gene circular chromosome g’
t=1+1
Compute an SCJ scenario from A’ to D’.
Recreate in D', the tandem arrays and single-gene circular chromosomes removed when
reducing D into D’.

Theorem 2. Given a trivial genome A with n 4 genes and a possibly non-trivial genome D
on the same set of gene families and with np genes, Algorithm 1 computes a parsimonious
SCJ-TD-FD scenario that transforms A into D and can be implemented to run in time and

space O(np).

The correctness of the algorithm follows immediately from the fact that it implements
exactly the rules described to compute the SCJ-TD-FD distance (Lemma 1 and Theorem 1).
The linear time and space complexity follows from the fact that these rules are purely local
and ask only to check for the conservation of adjacencies in both considered genomes.

Every iteration of the while loop in Algorithm 1 takes place only if there is a non-trivial
gene family left in D’. The maximum number of iterations is the number of duplicates
genes, 0(A, D) = np —ny which is O(np) when np > n4. In each iteration, we check if the
context of the chosen gene g is strongly conserved, weakly conserved or not conserved. This
involves trying to match the adjacencies of g in A with those in the adjacency set of D’ that
involve a copy of g. This can be done in constant time, with a linear time preprocessing of

the data. Hence, the worst-case time complexity is O(np).

Remark 1. We have discussed in Section 4.2 the rationale to create duplicate genes with
a FD creating a circular single-gene chromosome. However if the evolutionary model of

the FD event created a linear single-gene chromosome, this would introduce a dissymetry
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between TD and FD (namely no adjacency is created with an FD), while in our model
each created copy induces a cost of two due to the necessary break of the created adjacency
required in the process of obtaining the reduced genome D’. We conjecture that the use of
linear chromosomes would affect the choice of duplication event (FD or TD) only when the

context is not conserved, which would result in a more complicated distance formula.

4.3.3 Relation to the exemplar distance framework.

Sankoff [72] introduced the notion of Exemplar Breakpoint (EBP) distance, where an ez-
emplar of a non-trivial genome is obtained by keeping exactly one gene copy from each gene
family. In the directed evolution setting, an exemplar can be assumed to be the original
gene from A having evolved into a gene now present in D, all other copies having been
created by duplications. So the EBP distance problem aims to find an exemplar for each
group of duplicates in D such that the trivial genome that results from deleting all non-
exemplar copies minimizes the breakpoint distance to A. The notion of exemplar distance
can naturally be used in conjunction with the SCJ distance instead of the BP distance, a
problem we denote the ESCJ distance. The EBP distance problem has been shown to be
NP-hard even in the directed evolution case where every duplicated gene has exactly two
copies in D [13], and it is immediate to extend this hardness result to the directed ESCJ
distance problem.

Intuitively, the directed ESCJ distance and the d-SCJ-FD-TD distance problems seem
very similar. For example in the case of duplicated genes having exactly two copies in D,
the later aims at deciding which copy in D is exemplar (i.e. evolved from the original copy
in A) and then, for the second copy, if it originates from a TD or a FD, thus resulting in
a matching between two genomes with two copies of each duplicate, opposed to the ESCJ
setting where the matching is between genomes with one copy of each gene.

It is interesting to notice that both problems, although similar, have opposed properties
in terms of tractability, and that the d-SCJ-TD-FD distance problem is tractable despite
considering a larger solution space. Moreover, one can ask if there is a strong correlation
between the distance obtained in both settings. It is not difficult to find examples that
show that both distances can be quite different: the ESCJ distance between A = [a, b, ¢, d]
and D = [a,¢,b,d,c,a,d,b] is 0, whereas the SCJ-TD-FD distance between the same two
genomes is 18 (4 duplications, 7 cuts, 7 joins). However, although the difference between

both distances can be arbitrarily large, tight bounds can be derived.

Lemma 2. Let A be a trivial genome, D be an arbitrary genome on the same set of gene
families than A, dpscy(4, D) and dgscy(A, D) denote the d-SCJ-FD-TD and the ESCJ
distances, respectively. Let k be the difference between the number of genes in D and the

number of genes in A. The following bounds

k < dpscy(A, D) — desci(A, D) < 5k
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are tight.

Proof. First, we obtain the genome A’ by applying dgscy(A, D) SCJ operations on A in a
way that the duplicated genes in D are in the same order as the corresponding matched
genes in A’, as given by an optimal exemplar matching. In the SCJ-FD-TD model, we need
to apply at least k duplications on A’ to obtain D, so dpscy(A4, D) > dgsci(A,D) + k
(otherwise dgscy(A, D) would not be optimal). To show that this bound is tight, we can see
that the trivial case of no duplications holds. But, whenever A and D differ by only k tandem
duplications, the bound is tight, since in this case dgscy(A, D) = 0 and dpscy(A, D) = k.

Now, from A’, we can apply k free duplications, followed by k cuts on these duplications.
Also, perform at most k cuts, between any two genes on A’ if both have more than one
copy on D. Since A’ was ordered in relation to its corresponding copies on D, it is possible
to join the "fragments" of A’ that were created with the previous 2k cuts with 2k joins in
a way to transform A’ in D, and therefore we built a d-SCJ-FD-TD scenario from A to D
with dgscy(A, D) + 5k operations.

Any pair of circular genomes A = (1,2,...,n)and D = (1,n,2,1,...,7,i—1,...,n,n—1)
satisfies the tight bound. O

4.4 Experimental results

We ran experiments on simulated instances with the aim to evaluate the ability of the d-
SCJ-TD-FD distance to correlate with the true number of syntenic events. We followed a
simulation protocol inspired from [80]. The code itself was programmed in Python and is
available via github!. We first describe the simulation protocol, followed by the results we
obtained.

We started from a genome A composed of a single linear chromosome containing 1000
single-copy genes. Then, we transformed A genome into a genome D through a sequence
of random segmental duplications and inversions. We fixed the number N of evolutionary
events (from 50 to 500 by steps of 50) and the probability P that a given event is a segmental
duplication (from 0 to 0.5 by steps of 0.1). A segmental duplication is defined by three
parameters: the position of the first gene of the duplicated segment, the length of the
duplicated segment, and the breakpoint where the duplicated segment is transposed into;
we considered two models of segmental duplications, one with fixed segment length L (with
L taking values in {1,2,5}) and one where for each segment, L is picked randomly (under
the uniform distribution) in {1,2, 5, 10}. Inversion breakpoints were chosen randomly, again
under the uniform distribution. For each array of parameters, we ran 50 replicates.

For each instance, we compared two quantities to the true number of cuts and joins in the

scenario transforming A into D, which is roughly four times the number of inversions plus

"https://github.com/acme92/SCITDFD
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three times the number of segmental duplications: first we compared the full SCJ-TD-FD
distance, defined as stated in Theorem 1 and the number of cuts and joins (|JA—D|+|D—A|).
Figure 4.5 illustrates the results we obtained.

We can make several observations from these results. The first one is a general trend
that both measured quantities (the number of cuts and joins and the full SCJ-TD-FD
distances) scale linearly with the true number of cuts and joins. The second observation is
that, as expected, the slope and a y-intercept of the graphs depend from both the frequency
of duplications and the length of the duplicated segments. This leaves open the question
of using the SCJ-TD-FD distance as an estimator of the number of cuts and joins in an
evolutionary model where the probability of duplication compared to rearrangements (that
can be estimated for example from reconciled gene trees and adjacency forests [25]) is given

and the length of duplicated segments is expected to follow a well defined distribution.

4.5 Conclusion

In this work, we introduced a simple variant of the SCJ model that accounts for duplications,
and showed that, in this model, computing a directed parsimonious genomic distance from a
trivial ancestral genome to a non-trivial descendant genome can be done in linear time. The
tractability stems mostly from the combination of assuming that one genome is trivial and
of a simplified model of duplication where gene duplication are single-gene events. However
we believe it is interesting to push the tractability boundaries of the SCJ models toward
augmented models of evolution (here accounting for duplications). Moreover, our work is
motivated by the increasing performance of ancestral gene order reconstruction methods,
that can now account for complex gene histories using reconciled gene trees and motivate
the directed distance approach, and provides an additional positive result along the line of
the research program outlined in [74]. For example, our algorithm will allow to extend the
small parsimony algorithm PhySca introduced in [46] to a duplication-aware framework by
allowing to score exactly and quickly an ancestral gene order configuration within a species
phylogeny.

There are several avenues to extend the results we presented in this chapter. It will likely
be easy to modify our algorithm to work in an extended the evolution model to integrate
the loss of gene families and de-novo creation of genes. Our main result provides a simple
algorithm that computes a parsimonious scenario, however it is likely one among a large
number of parsimonious scenarios, and it is open to see if the results of [54] about counting
and sampling SCJ parsimonious scenarios can be extended to our model. An important
open question toward a more realistic model of evolution concerns the possibility to include
larger scale duplications as unit-cost events. The case of a single whole genome duplication
and of whole-chromosome duplications have been shown to be tractable [28, 88], but to

the best of our knowledge there is no known result including segmental duplications in

34



® &

S

True number of cuts and joins/ SCJ-TD-FD distance

True number of cuts and joins/ inferred number of cuts and joins

4 L L L L L L L 08 L L L L L L L L
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of inversions and duplications Number of inversions and duplications
16 T T T T T T T T 16 T T T T T T T T

kS

®

o

True number of cuts and joins/ SCJ-TD-FD distance

True number of cuts and joins inferred number of cuts and joins

4 09
08
07
09 . . . . . . . . 06 ;i . . . . . . .
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of inversions and duplications Number of inversions and duplications
16 T T T T T T T T 16
515
i 14
&
214t
H 12
513
H
E
5
Ei2
B 1

°

True number of cuts and joins/ SCJ-TD-FD distance

True number of cuts and joins/

06 e
08 s
074 b
06 . . . . . . . . 02 . . . . . . . .
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of inversions and duplications Number of inversions and duplications
16 T T T T T T T ———
——p=0 —
—o—p=01
P=02
1415 | ——poo3 1
—=— P04
P=05 /
12f o 1

True number of cuts and joins/ SCJ-TD-FD distance
°

True number of cuts and joins/ inferred number of cuts and joins

7 L L L L L L L
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of inversions and duplications Number of inversions and duplications

Figure 4.5: Experimental results, for four duplications parameters — single-gene segmental
duplication (top row), two-genes segmental duplication (second row), five-genes segmental
duplications (third row), variable length segmental duplications (bottom row) — and two
measured quantities — inferred cuts and joins (left column) and SCJ-TD-FD distance (right
column).
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which a contiguous segment of genes is duplicated either in tandem or appearing as a single
chromosome. It also remains to be seen if the directed SCJ-TD-FD distance can be used
toward the computation of an estimated distance in a more realistic evolutionary distance,
similarly to the use of the breakpoint distance to estimate the true DCJ distance [11]; our
experimental results suggest this is a promising avenue, although it might be difficult to
obtain analytical results in models mixing rearrangements and duplications. Finally, the
question of the tractability of the small parsimony problem in our model is also, to the
best of our knowledge, still open. It is known to be tractable in the pure SCJ model (with
no duplications) due to the independence of adjacencies; this assumption does not hold

anymore here and the small parsimony problem is thus likely more difficult in our model.
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Chapter 5

Median problems with single gene
duplications

The previous chapter discussed the problem of finding the distance between two genomes,
using the SCJ-TD-FD model. It is proved that computing the SCJ-TD-FD distance and
even an evolutionary scenario is possible in linear time.

The following chapter presents some interesting results on the median problem, accepted
for the RECOMB-CG, 2018 satellite conference [51]. We discuss two genome median prob-
lems under the SCJ-TD-FD model. We see how the introduction of an ancestral genome in
one of the problems leads to contrasting hardness results. Under the SCJ-TD-FD distance,
the directed (unrooted) median problem is found to be tractable whereas the rooted median
problem is NP-hard. The analysis of the tractability results for the unrooted and rooted
versions of the SCJ-TD-FD median problem is credited to Dr. Pedro Feijao and Dr. Manuel

Lafond, respectively.

5.1 Introduction

The reconstruction of ancestral genomes for a given species phylogeny is an important prob-
lem in computational biology [61, 55]. One of the important problems, studied in the context
of genome rearrangements, is the Small Parsimony Problem, which aims to reconstructing
ancestral gene orders of the given species tree while minimizing the overall genome rear-
rangement distance along the branches of the tree. The simplest instance of this problem
is the median problem, where the given phylogeny contains a single ancestral node whose
gene order is to be reconstructed.

As seen in chapter 3, the median problem is NP-hard for most evolutionary models. The
exception to this rule is the Single-Cut-or-Join (SCJ) rearrangement model under which,
both the SCJ median problem and the SCJ SPP are tractable [28]. In the presence of

duplications as possible evolutionary events, even the distance problem is NP-hard for most
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rearrangement models. The only exception is an evolutionary model involving Single-Cut-
or-Join events with whole genome duplications [88].

Here, we focus on two versions of the median problem, namely the directed median
problem and the rooted median problem. We prove that, under the SCJ-TD-FD model,
both versions of the median problem lead to different tractability results. In the first variant,
we consider k descendant genomes D1, ..., Dg. The median M minimizing the sum of the
directed SCJ-TD-FD distances from M to each D; can be computed in polynomial time.
Interestingly, the other variant in which an ancestral genome A is provided in addition to
given descendant genomes, is found to be intractable. In this variant, it is required to find
M that minimizes the sum of the directed SCJ-TD-FD distances from M to each D; and
from A to M. In both cases, we are provided with the gene content of M and the orthology
relations along each branch. The rest of the chapter is outlined as follows. In section 4.3, we
prove that the median problem under the SCJ-TD-FD distance is tractable. In Section 5.4,
we prove that the rooted median problem is NP-hard even when k£ = 2. In Section 5.5, we
describe a simple Integer Linear Program (ILP) for this problem, based on a reduction to a

colored MWM problem. We provide in Section 5.6 experimental results on simulated data.

5.2 Problem Statements

Recall that the directed SCJ-TD-FD (d-SCJ-TD-FD) distance problem, introduced
in chapter 4 asks to compute the minimum number of SCJ, TD and FD operations needed to
transform A into D, denoted by dpgcy(A, D). The problem has been shown to be tractable
and the distance can be computed using a simple set-theoretical formula, extending natu-
rally the distance formula for the SCJ with no duplication model.

The directed median problem is the natural extension of the pairwise directed distance

problem towards the Small Parsimony Problem.

The directed SCJ-TD-FD (d-SCJ-TD-FD) median problem. Let £ > 2 and Dy, ..., Dy
(possibly) non-trivial genomes, such that no gene family is absent from any D;. Compute a
trivial genome A on the same set of gene families as the non-trivial genomes, that minimizes
P dpscy(4, Dy).
We also introduce the a variation of this problem as follows:

The rooted SCJ-TD-FD (r-SCJ-TD-FD) median problem. We are given k+ 1 > 3
genomes, A, D1,..., Dy such that A is a trivial genome, ancestor to the D,’s. The goal
of the rooted median problem is to find a genome M which is a descendant of A and an
ancestor of D1,..., Dy, minimizing the sum of its distance to A and to the D/s. Following
the approach introduced in the previous chapter, we assume we are given the gene content
I of M and the orthology relations between A and M, as well as between M and the D;s.
This implies that every gene of M (resp. Dq,..., D) has a unique ancestor in A (resp. in

M), so M is a trivial genome compared to the D/s but might not be compared to A (see
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Figure 5.1: In part (a), each color represents a gene family from A. Notice that each gene in
D1 and Ds can be traced to a unique gene in M whereas a gene from A might have multiple
daughters in M. Part (b) displays the gene tree of the gene family in blue (indicated by
arrows in part (a)). Since the gene as undergoes duplication (dark squares) to form ¢g; and
g3 in M, M is not trivial w.r.t A.

Fig. 5.1 for an illustration). To formally handle this difference, we assume that all copies of
a gene g of A in M (i.e. the genes of M whose ancestor in A is gene g) are distinguishable
(e.g. labeled, say g1, ...,gx) and, for a given gene g; of M, we denote its ancestor in A by
a(g;). Then for a given genome M on I', we denote by M, the genome where every gene
g is relabeled by a(g). The goal of the rooted median problem is to find a genome M that

minimizes the following function:

k

dpsci(A, Ma) + Y dpsci(M, D;). (5.1)
i=1

5.3 The Directed Median Problem

Let us remind that under the SCJ-TD-FD evolutionary model, the directed median problem
asks, given k non-trivial genomes D1, ..., Dy, k > 2, with the same gene families, to find a
trivial common ancestor A, such that Zi-“:l dpscy(A, D;) is minimized.

We first assume that the genomes D;, ..., Dy are reduced. We define the score s(A) of

a genome A as
k

k
s(A) = dpsci(A, D;) =Y (JA— Dyl +|D; — Al + 2ng,)
i=1 i=1
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where ng; is the number of extra gene copies in D; compared to A, for ¢ = 1,...,k. Using
the fact that |A — D| +|D — A| = |A| + |D| — 2|A N D| we derive

s(A) = Ny — <2i |AND;| - k:A|>

i=1

where Ny = S°F | (2ng4, + | D;|), and does not depend from A. Therefore, minimizing s(A)
is equivalent to maximizing 2% | |A N D;| — k| A|.

For a given adjacency a, let §;(a) be 1 if a € D;, and 0 otherwise. The score of a genome
with a single adjacency a is s({a}) = Ng— (2 Sk di(a) — k:) This motivates the following
approach, similar to the breakpoint median algorithm of [83]. Build a graph G where the
vertices are defined as the extremities (head and tail) of a unique copy for each gene family
in the considered genomes D; (so a gene family a induces two vertices aj and a;), and
weighted edges are defined as follows: for any edge e = (x,y) such that x and y form an
adjacency in at least one of the genomes D;, the weight of e is w(e) = 23°%_, §;(e) — k. Any
matching M on G defines a trivial genome Ajs, having the adjacencies corresponding to
the edges in the matching M. Also, if W (M) denotes the weight of the matching M, that
is the sum of the weights of the edges in M we have that

k
S(AM) =Ny — <22 |AM N Dl| — k‘|AM|>

i=1
k
= Nd — Z (2251(6) — k)
eeM =1
= Ng— W (M)

Therefore, solving a maximum weight matching problem on G solves the directed me-
dian problem. To handle the case when some D; is not reduced, we can rely on Lemma 1
that implies that the genomes can be reduced first without impacting the optimality of a
trivial genome obtained by a maximum weight matching. Combined with the tractability

of computing a maximum weight matching [65], this proves our last theorem.

Theorem 3. Let kK > 2 and D1,..., Dy be k genomes on the same set of n gene families,
having respectively ni,...,n; adjacencies. The directed SCJ-TD-FD median problem for

these genomes can be solved in time and space O(n(ny + - -+ + ng) log(ni + - - - + ng)).

Remark 2. In the case of the median of two genomes D, and D5, note that the only edges
with strictly positive weight in the graph are defined by adjacencies that appear in both Dy
and Dy, while edges appearing just once have weight 0. So a median genome can be defined

as a maximum matching over the unweighted graph defined only by adjacencies that appear
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Figure 5.2: An example of the reduced genome r(X), of the genome X . Note that an instance
of hphy is retained so that r(X) contains at least one representative of gene family h. All
observed duplications are removed in r(X). Here, ¢(X) = | X — r(X)| = 5.

in both genomes, and given such a median, it can be augmented by any subset of edges

appearing just once that do not re-use a gene extremity already used in the matching.

Remark 3. It is interesting to observe that if we assume there is no duplication from A to
M, i.e. both have the same gene content. Consequently, the MWM algorithm discussed above
for the directed median problem applies to the rooted median problem and the problem
is thus tractable. So the difficulty in solving the rooted median problem is to account for

duplications from A to M.

Modifying the pairwise distance formula. Given a gene g € I', we call a g-tandem ar-
ray a sequence of consecutive adjacencies gpgy; if this sequence forms a circular chromosome,
it is called a g-chromosome. Given a genome X, we call an adjacency gpg: an observed dupli-
cation if g has more than one copy in X. Observed duplications are part of a g-tandem array
or a g-chromosome. Let r(X) be the genome obtained from X by successively deleting an
observed adjacency from X, chosen arbitrarily, until there remains no observed adjacency.
Note that this corresponds to deleting every gpg: adjacency, except that we keep one in the
special case that all copies of g are organized in g-chromosomes, as shown in Fig. 5.2. We
call (X)) the reduced genome of X. We define ¢(X) = |X —r(X)|, the number of adjacencies
to delete to transform X into 7(X). Formally, the multi-set difference X — Y between two
multi-sets X and Y of adjacencies is the multi-set obtained as follows: it contains k copies
of a given adjacency if and only if X contains exactly £ more occurrences of this adjacency
than Y (with k£ = 0 being possible).

The SCJ-TD-FD distance between an ancestral genome A and a descendant genome D

is given by (from chapter 4:
dpscy(A, D) = [A—r(D)| +|r(D) — Al +26(A,r(D)) + ¢(D) (5.2)

where 0(A,r(D)) is the difference between the number of genes of r(D) and the number
of genes of A (i.e. the number of duplications from A to r(D)). We introduce a slightly
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different formulation of dpgcy that will be useful in our hardness proof:
dpsci(4, D) = |[A =r(D)| + |r(D) — Al + 26(A, D) — (D) (5-3)
Proof. The original pairwise distance formula (eq. (5.2)) is
dpscs(A, D) = |4 r(D)| + [r(D) — A| + 20(A,1(D)) +#(D)
and we want to prove it is equivalent to
dpsci(A,D) =|A—r(D)|+|r(D) — A| +20(A, D) — t(D).

Notice that the 2§( A, r(D)) term from the original formula was switched for the 26(A, D)
term. Consider the difference in the number of genes from D to (D). Each time we remove
a gng: observed duplication from D while reducing it, it corresponds to removing a copy of
g from D. Thus D has t(D) more genes than (D), so that 26(A, D) = 26(A,r(D))+2t(D).
This implies 26(A, D) — t(D) = 26(A,r(D)) + t(D). O

Remark 4. For dpgcy(M, D;), the value of ¢(D;) does not depend on our choice of M, for
i =1,...,k. We will therefore assume that the D]s are reduced (hence we may refer to
r(D;) as simply D; instead). However ¢(M,) has an impact on dpscy(A4, M), and so we will

not assume that M is reduced.

5.4 The rooted median problem is NP-hard

We show that finding the optimal gene order for M is NP-hard even for k = 2, by reduction
from the 2P2N-3SAT problem [8]*.

In 2P2N-3SAT, we are given n variables x1,...,x, and m clauses C1,...,C,,, each
containing exactly 3 literals. Each x; variable appears as a positive literal in exactly 2
clauses, and as a negative literal in exactly 2 clauses. Note that since each variable occurs
in exactly 4 clauses and each clause has 3 literals, m = 4n/3. An example of a 2P2N-3SAT
instance is shown in Figure 5.3.

We now describe how we transform the x; variables and C; clauses into an instance of

the rooted median. The genes of M are
I'= {QT;’Yfagfa’Yf7~-79;{77;797;7%;;017-~-7Cm7a17-~-7a2n—m}

!This problem is sometimes called the (3,B2)-SAT problem, where B2 indicates that the literals are
balanced with two occurrences each.
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The genes gi+ , 'yl-+ ,9; ,7; correspond to the z; variable, and c; to the clause C;. The purpose
of the 2n — m = 2n/3 special «; genes will become apparent later.

To simplify matters, every adjacency in our reduction is between the tails of two genes.
Hence, the heads of each gene of A, D; and Dy are telomeres (linear chromosomes extremi-
ties), so that all chromosomes are linear and have at most 2 genes. From now, we will omit
the ¢ subscript from the extremities for these adjacencies, with the understanding that every
adjacency is between tails; for instance, we may write gf fyf for the adjacency g:tfy;ﬁ.

We can now describe A, D; and Dy. The genes of A are g1, , s Ghs Vs Chs ey Cony
.oy &y, The genes g and g; (resp. 7;” and 7; ) are duplicates of g/ (resp. 7/), and
there are no other duplications in M compared to A. Formally, for each i € [n], put a(g;") =
alg;) = i, a(7;") = a(y;) = 7} and for each j € [m], put a(c;) = ¢}. Finally, for each
i € [2n — m], put a(a;) = o). The adjacencies of A are {g}v} : i € [n]}.

The genomes D1 and Dy are identical, i.e. they contain the same set of genes and of
adjacencies. We simply describe the set of adjacencies of D; and Dy with the understanding
that if an extremity, say x, appears in two adjacencies ry and xz, then the two x are the
tails of two distinct copies of the same gene on two distinct chromosomes.

The adjacencies of D1 and Dy are described as follows.
e For each i € [n], add to Dy and Dy the adjacencies g;7v;" and g; ;.

e For each i € [n], let Cj,,C}, be the two clauses in which x; occurs positively and
let Cy,, Ck, be the two clauses in which x; occurs negatively. Add to D; and D the
adjacencies g;r c;, and ’y;r cj,. Similarly, add to Dy and Ds the adjacencies g; ¢, and

- 2
’Yi Ckz .

e Finally, for each i € [n] and each j € [2n — m|, add to D; and D3 the adjacencies

+ - + —
g; o, g; o,y oy and vy, a.

This completes our construction. The intuition behind our hardness proof is that for
+

each i € [n], we need to pick one of g; ’y;r or g; v; in M, as we will show. Simultaneously,
we would like to include as many adjacencies that are in both D; and Ds. It will possible
to choose the positive and negative adjacencies and match all the ¢; and «; if and only if
the 2P2N-3SAT instance is satisfiable.

It will be useful to think of Dy (and D) as the set of adjacencies that are allowed to

belong to M, as stated in the following.

Lemma 3. Let a be an adjacency in M, such that a ¢ D; (equivalently, a ¢ Ds). Then
M — a achieves a smaller total distance to A, D1 and Dy than M.

Intuitively, these adjacencies represent using a literal to satisfy a specific clause. For instance, the adja-
cency g;Fle represents “setting x; to true and satisfying Cj, "
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Variables x1, x2, T3

Clauses o (e} a3
Cl = V TZ V T3 m m m m
Co=x1VaVT3

C3=71V22V7T3

Cy=T1VT2Vuas

N o P

Figure 5.3: An example of a 2P2N-3SAT instance, with an illustration of the genes of M
(only the gene tails are shown) and the adjacencies that are allowed by D; and Dj. The
fat edges represent pairs of adjacencies of which at least one must be present according to
Proposition 3. Among the ¢; extremities, only the adjacencies for ¢y are shown.

oSN

Proof. By cutting a, we increase the distance to A by at most 1, but decrease the distance to
Dy and Dj by 1 each. This is because |(M —a)—D1|+|D1—(M —a)| = |M —D;|-1+|D;— M|,
the value of §(M, Dy) is unchanged and ¢(D7) = 0 by assumption (and the same holds for

Dy). Therefore removing a from M yields a better median genome. O

Therefore, we may assume that every adjacency of a median M belongs to D and Ds.
Note that this implies that M contains no observed duplications (with respect to A), as no
such adjacency is in D and Dy. Thus we will ignore the ¢(M,) = 0 term in dpgcs(A4, My)
(eq. (5.3)), and we will not make a distinction between M, and r(M,), as these are equal.

Another property of M is that it must contain at least one “positive” or one “negative”

adjacency for each i € [n].
Lemma 4. For i € [n], M contains at least one of g + and 9; Vi -

Proof. Suppose that for some 4, M contains none of g;- fyl or g; 7; - Note that M does not
contain gi 7; nor g, %- , by Lemma 3. This implies that g}y, ¢ M,, as we have excluded all
the four possibilities of having this adjacency in M,.

Consider the median M’ obtained from M by adding gZ % , cutting the adjacencies
that gi and 'yi were contained in, if needed. If gZ and ’yZ are both telomeres in M, then
it is easy to check that M’ = M + 9@ 7" (M augmented by the adjacency g; 7;") attains
a better distance than M since g y;" € Dy, D2 and a(g; )a(v;") = glv} € A (this decreases
the distance by 3).

Suppose that g;r x € M for some x, and that ’y;r is a telomere in M. By Lemma 3, g;" T
is in both D and Dy, which implies that = ¢; or x = «; for some j. This implies in turn
that a(g; )a(x) ¢ A. We can argue that M’ = M —g;"z+g; ;" is better. To see this, observe
that |M'—D;| = |M — D;| and |D; — M'| = |D; — M| (and the same with Ds). On the other
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hand, recalling that gy, ¢ M,, we have |M, — A| = |[M, — A| — 1 (because a(g; )a(z) ¢ A
and a(g; )a(y;") € A) and |A — M| = |A — M,| — 1 (because a(g; )a(v;") € A). We have
thus decreased the distance by 2. The same argument applies if g;r is a telomere but fyj is
not.

Finally, suppose that g;" = and ~;"y are adjacencies of M. As we argued above, a(g;")a(x) ¢
A and a(y;N)a(y) ¢ A. Letting M’ = M — gz — v;"y + g 7", we find that |M' — Dy| =
|M — D] and |D; — M'| = |Dy — M| + 1. As the same holds with Ds, we have increased
the distance to Dy and Ds by 2. On the other hand, |A — M}| = |A — M,| — 1 and

|M! — A| = |M, — A| — 2. To sum up, the total distance decreases by 1. O
We now formally prove the hardness of computing the SCJ-TD-FD median.
Theorem 4. The rooted SCJ-TD-FD median problem is NP-hard.

Proof. Let x1,...,z, and C4,...,C,, be a 2P2N-instance, and let A, D1, Dy and the genes
I' of M be the corresponding instance of the SCJ-TD-FD median genome problem. We
will show that the given 2P2N-3SAT instance is satisfiable if and only there exists a me-
dian genome M satisfying dpscy(A, My) + dpscy(M, D1) + dpscy(M, Dy) < 2|Dq| — 2n +
46(M, Dy).

(=) Suppose that the 2P2N-3SAT can be satisfied by an assignment of the z; variables

to true or false. Construct a median genome using the following steps.

1. For each i € [n], if x; is set to true, then add g; v; to M, and if instead z; is set to
false, add gf%* to M.

2. Then, add to M these adjacencies in an algorithmic fashion: for each j =1,2,...,m,

consider clause C; and let x; be any variable satisfying C);.

o If x; is set to true, then note that gf and vf have not been matched in Step 1.
Add gf c; to M if gi+ is not part of an adjacency of M yet, or add ’y;r c; to M

otherwise.

o If instead z; is set to false, then g;” and 7, have not been matched in Step 1. Add

g; ¢; if g; is not part of an adjacency in M yet, or add 7, ¢; to M otherwise.

Note that since each z; can satisfy at most two clauses, it will always be possible to

find an extremity to match c¢; with.

3. Finally, observe that so far each of the gi+ v 9 s ’yi+ and vy; extremities are in an adja-
cency M, except 4n —2n—m = 2n —m of them. Associate each such extremity g with
a distinct o extremity arbitrarily, and add each ga; to M, noting that there are just

enough «a; genes to do so.
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Note that M contains n + m + 2n — m = 3n adjacencies in total, exactly n of which
correspond to an adjacency of A (those included in Step 1). Also, every adjacency of M
occurs in both Dy and Dy. We have

dpsci(A, M) = |A— M|+ | M, — A| + 20(A, M,) — t(M,)
=04+2n+2n—0=4n

As for Dy and Do,

dpsci(M, D1) = dpscy(M, Da) = | D1 — M|+ |M — D1| +25(M, Dy)
— |Dy1| - 30+ 0+ 26(M, Dy)

Therefore the total distance is 4n + 2(|D1| — 3n +26(M, D1)) = 2|D1| — 2n+46(M, Dy), as
we predicted.

(<) Suppose that there exists a median genome M of total distance at most 2|D;| —
2n+46(M, D1). By Lemma 3, we may assume that every adjacency of M is present in both
D; and Ds.

With the next two claims, we will prove that M has exactly 3n adjacencies, of which

exactly n are adjacencies corresponding to those in A.

Claim 1. |M| < 3n, and |M| = 3n only if every ¢; and o extremity is in some adjacency
of M.

Proof. Call an extremity e of a gene in I' matchable if there exists an adjacency of D; that
contains e. By Lemma 3, the adjacencies of M only contain matchable extremities. The
g;r ' 9; ’yi+ and 7, extremities account for 4n matchable extremities. The c¢; genes account
for m matchable extremities and the «; genes for 2n — m matchable extremities . Thus
there are 4n + m + 2n — m = 6n matchable extremities. Because an adjacency contains
2 extremities, there can be at most 3n adjacencies in M. The second part of the claim
follows from the fact that we have to assume that every ¢; and o is matched to attain this
bound. O

For the rest of the proof, denote by ¢ the number of distinct adjacencies ab € A for
which there exists zy € M such that a(x)a(y) = ab.

Claim 2. |M|=3n and ¢ =n.
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Proof. By the definition of ¢, we have |A — M,| =n —q and |M, — A| = |M| — q. It follows
that

dDSCJ(Aa Ma) = |A_Ma| + |Ma _A| +25(A> Ma) _t(Ma)
=n—q+|M|—q¢+2n-0
=|M|+3n—2q

Using Lemma 3, we also have dpscj(M,Dy) = |[M — Di| + |D1 — M| + 26(M,Dy) =
0+ |D1| — | M|+ 25(M, Dy). Thus the sum of the 3 distances is

|M| + 3n — 2q + 2|D1| — 2|M| + 46(M, D) < 2|Dy| — 2n + 48(M, D)

(this inequality is due to our initial assumption on the total distance of M). After simpli-
fying, this gives 5n < |M| + 2¢. By Claim 1, |[M| < 3n and because A has n adjacencies,
g < n. Hence, this inequality is only possible if |M| = 3n and ¢ = n. O

Because ¢ = n, Claim 2 implies that for each i € [n], (at least) one of g;"v;" and g; v;

is in M. This lets us define as assignment for our 2P2N-3SAT instance: for each i € [n], set
x; to true if g; v, is in M, and otherwise set x; to false. We claim this this assignment
satisfies every clause.

To see this, let C; be a clause and let ¢; be its corresponding extremity in M. By Claim 2,
every extremity that is part of some adjacency in D must be part of an adjacency in M,
including ¢;. Thus there is some e such that cje € M. By Lemma 3, the adjacency cje must

also be in Dy, and by construction either (1) e € {g;", ;"

} for some x; that occurs positively
in Cj, or (2) e € {g; ,7,; } for some x; that occurs negatively in C;. Suppose that case (1)
applies. Then c; g;' or cj’yi+ being in M means that gi+ ’yj' ¢ M, implying in turn that g; ;
is in M. In this situation, we have set x; to true and we satisfy C;. Suppose instead that
case (2) applies. Then g; v, ¢ M, in which case we have set z; to false and satisfy C;. As
the argument applies to any clause C;, this concludes the proof.

O]

Remark 5. In the reduction above, none of the considered genomes contain a g-tandem
array or a g-chromosome. So our result also implies the hardness of the rooted median
problem where the distance between two genomes A and D, where A is an ancestor of D,
is defined in a simpler way as |[A — D| + |D — A| + 26(A, D), i.e. does not contain a term

related to reducing the descendant genome.

5.5 An Integer Linear Program

We now describe a simple Integer Linear Program (ILP) to solve the rooted median prob-

lem. The key idea, already used in previous median problems [83], including the directed
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median problem discussed above, is to convert the rooted median problem into an instance
of a MWM problem, albeit with certain additional constraints. More precisely, in this ap-
proach we define a complete graph G on the extremities g, and g; of every gene g in I". A
pair of distinct extremities defines an edge and thus a potential adjacency in M, which is
thus defined by a matching in G. Each edge is assigned a weight that reflects the number
of descendant genomes that contain the corresponding adjacency. Further, each edge is as-
signed a color that reflects its corresponding adjacency in the ancestral genome, if any, and
the number of colors of the selected edges also contributes to the weight of the matching

defining the median M.

An alternative formulation for the distance. We first introduce an alternative for-
mula to compute the directed distance, denoted by dpscy(u,v), from an ancestor u to a
descendant v. For the rooted median problem, the pair (u,v) can represent either the pair
(A, M,) or any pair (M, D;). The new formulation is easier to handle in an ILP framework
than Eq. (5.3). We denote by n,(g) the number of copies of gene g in v, by n,(gng:) the
number of occurrences of adjacency gpg; in v, and by ¢,(g) the number of observed duplica-
tions of gene g in v. Note that t,(g) € {n,(grg:t) — 1, nv(gnge)}, the case t,(g) = ny(gnge) — 1
occurring when adjacencies gng: form only g-chromosomes. Further, let t(v) = > o tu(9)
denote the total number of observed duplications in v, where I';, is the set of genes of u and
also the alphabet of genes of v.

To rewrite dpscy(u, v), we introduce an indicator variable ayg ., where ag . = 1 if gpg:
is common to both u and v, but all occurrences were removed while reducing v. Formally,
gy = 1 if grgr € unNwv and ghge ¢ r(v); otherwise oy = 0. It is then relatively
straightforward to show that

dpscy(u,v) = |u —v| + v — u| + 20(u,v) — 2t(v) + 2 Z Qg (5.4)
gely

Proof. From eq. (5.3), we have dpscy(u,v) = |u — r(v)| + |r(v) — u| + 26(u,v) — t(v).
However, it is easier to express the distance without the reduced genome terms. Hence, we
eliminate the need for computing the reduced genomes by replacing |u—r(v)| and |r(v) — u|
by suitable expressions as follows. We show that (1) |u — r(v)| = |u — v| + > cp, @y, and
(2) |r(v) —u| = |[v—u| = t(v) + 3 jer, @g- Substituting the terms in eq. (5.3) yield eq. (5.4).

(1) Consider first the difference between v — r(v) and u — v. Suppose that zy € u — v
but zy ¢ u — r(v). Then zy € r(v) but zy ¢ v, which is not possible. Thus the difference
can only be due to some zy € u—r(v) such that zy ¢ w— v. This means that xy ¢ r(v) and
xy € v, which only happens when zy = gpg; for some gene g. As we have xy = gpgr € unv
and gng: ¢ r(v), we also have ay = 1, by definition. Since only one such adjacency is possible
for each gene g (because w is trivial), u — r(v) and v — v differ only by adjacencies on genes

for which oy = 1. We have shown that |u —r(v)| = |u — v[ + > cp, @y
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(2) Now consider the difference between r(v) — u and v — u. Note that there are t(v)
adjacencies in v not in r(v), all observed duplications of the type gng:. Let g € T, If
9gngt ¢ u, then all of the t(g) observed duplications in g are counted in v — u but not in
r(v) — u. This is also true when gxg; € v and gpg: € 7(v). In these cases, ay = 0. However
when gng: € uNwv but gpg; € r(v), there are t(g) — 1 of the g g; adjacencies counted in v —u
not counted in r(v) —u (this is because exactly one gpg; adjacency of v can be matched with
the gng: adjacency in u, and r(v) has no such adjacency). This case occurs precisely when
ag = 1. This shows that |r(v) —u| = [v—u| =3 cp, (t(9) —y) = [v—u|=t(v)+>cr, ag. O

This formulation is interesting due to the fact it does not rely on the notion of reduced
genome. We will discuss later how variables oy, and t,(g) can be handled simply in an
ILP framework.

Reformulating the objective function. We now use Eq. (5.4) to reformulate the ob-

jective function of the rooted median problem.

Claim 3. Minimizing the function eq. (5.1) defining the evolutionary cost of a median M

is equivalent to maximizing the following expression:

k
S 2IMNDi| =2 > agup, | +2/ANM|+2t(My) =2 > aganm, — (k+1)[M| (5.5)
i=1 IS Y, gel s

where 'y and I'j; are the set of genes of A and M, respectively, and so also the gene

alphabets for M and the D;s, and variables oy Ay, and oy ap, are defined as oy ., above.

Proof. By eq. (5.4), we know that

dpsci(A, Ma) = |A — My| + | My — A| + 26(A, M) — 26(Ma) +2 Y g an,
gel'a

dpscy(M, D) = [M — Dj| + |D; — M| +25(M, D;) — 2t(D;) +2 Y g up,
g€l
where 'y and I'j; are the set of genes in the gene orders of A and M, respectively, and so
also the genes alphabets for M and the D;s. Variables ay an, and ag yp, are defined as
Qg above.
For any two adjacency sets X and Y, we use the identity |X — Y|+ |Y — X| = | X| +
Y| — 2|X NY] to obtain

dpscy(A, Ma) = |A| + [Mg| — 2|/A N Ma| 4 26(A, M) — 2¢(Mg) +2 > ag am,,
gela

dpscy(M, D;) = [M| + |D| — 2|M N D;| + 26(M, D;) — 2t(D;) +2 > agmp;-
g€l'y
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This eliminates the need to count the actual number of cut and join events along every

branch. Instead, it suffices to compute the common adjacencies in the parent and child

genomes (using the terms |A N M,| and |M N D;|) for each branch (A, M,) and (M, D;).
For a median M, let s(M) = dpscy(A4, M) + Zle dpscy(M, D;) be the score of M. It

follows easily from above that

k
S(M) = [|A] + 26(A. M) + 3" (IDi] + 250, D»)]

i=1

k

S (2iM N Dy +2t(Ds) =2 > agmp,

i=1 9€l'm

+ 2[AN M| +2¢(Ma) —2 Y g am, — (k+1)[M]
gel'a
Let N = |A| +26(A, M,) + X7y (|Dil +26(M, D;) + 2t(D;)). Given that N depends

only on A and D; and not on M, it is constant (note that 0(A, M,) and 6(M, D;) are
constant as the gene content of M is an input to the problem). Thus in order to minimize

the score s(M), we only need to maximize the term:

k
S 2IMNDil =2 > agup, | +2/AN M|+ 26(Ma) —2 > agan, — (k+1)|M|
i=1 g€l g€el'y

which is negated in s(M), as required in eq. (5.5). O

Such a reformulation of the objective function enables us to translate the problem as an

instance of a colored MWM problem, as will be made clear in the subsequent paragraphs.

An interpretation as a colored MWM problem. The terms g, and t(M,) in
Eq. (5.5) account for the presence of observed duplications. In the absence of observed
duplications however, solving the rooted median problem requires to find a matching in G
that maximizes the sum of the weight of the selected edges and of the number of colors
represented by the matching edges. The matching edges weight is partly accounted for by
the term |M N D;|, while on the other hand, |AN M,| determines the number of colors used
in the matching. Using the intersection terms in the objective function, we now interpret
the notion of weight and color of an edge in terms of decision variables of an ILP.

In order to compute |M N D;|, we introduce the variable +;(e) denoting the existence of
a potential adjacency e of M in a genome D;: we put v;(e) = |eN D], i.e. v;(e) = 1ife € D;

and 0, otherwise. For each adjacency e in the graph G, the weight w(e) of e is determined
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using the weight function w : E(G) — N:

k
w(e) =2 (Z %(6)) —(k+1)
i=1

Since M is trivial w.r.t. every D;, the weights for edges e € M will account for the term

¥ 12|M N Dy| — (k+1)|M| in Eq. (5.5). However, this principle does not work with A.

Indeed, it is possible that z1y; € M and z2y2 € M such that a(z1)a(y1) = a(z2)a(yz) € A.

In this situation, only one of z1y; or zays can contribute to |A N M,|, but both |z1y; N A|

and |xaya N A| equal to 1. In other words, we cannot simply sum the adjacencies of M, that
are in A.

To address this issue, we introduce the notion of a color family. Let m 4 be the number
of adjacencies in A. Each number from the set {1,2,...,m4} represents a distinct color.
We arbitrarily assign a distinct color from this set to each adjacency in A. If E(G) is the
edge set of G, representing all possible adjacencies in M, then every adjacency in FE(G)
is assigned a color from {1,2,...,ma} U {0}, consistent with the orthology relations: the
adjacency xy € M receives color i # 0 if the adjacency a(z)a(y) is present in A and was
assigned color 7, and color 0 if a(x)a(y) is not present in A. The set of adjacencies having the
same color ¢ form a color family, represented by E;. We denote by C' the coloring function
E(G) —{0,1,...,ma} defined as described above. Notice that a color i contributes exactly
once to the term |A N M,| if there exists at least one adjacency in M that belongs to the

color family 1.

Reducing the size of the ILP. The size of the ILP we are about to describe is polyno-
mial in the sum of the considered genomes. As the total number of adjacencies is quadratic
in the number of genes in M, it can reach large values when dealing with large genomes,
thus making the ILP challenging to solve in practice. We show that the set of decision
variables can be restricted to specific adjacencies, that we call candidate adjacencies.An
adjacency xy is a candidate adjacency for the median if at least {%J + 1 genomes from
the set {A, D1, Da, ..., Dy} contain zy (where here A contains zy if a(z)a(y) € A). Lemma 5
shows that the number of adjacencies to consider in an ILP is linear in the sum of the sizes

of the input genomes.

Lemma 5. There exists an optimal median consisting of only candidate adjacencies. Fur-
thermore, when £ is even, an adjacency which is not a candidate adjacency can not be a

part of any optimal median.

Proof. To prove this lemma, we start with a median containing a non-candidate adjacency.
For odd values of k, we prove that removing the non-candidate adjacency results in another

median of the same cost whereas for even k, it is shown that the resultant median (on
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removing the non-candidate adjacency) is better. We temporarily ignore the influence of
reduced genomes for this proof.

Consider an adjacency xy that is not a candidate. Recall that since xy is not a candidate
it is present in at most {%J genomes from {A, Dy, ..., Di}. Assume that M is a median
genome and xy is present in M. Further, assume that M is optimal. Thus, the sum of the
distances dpscy(A, M,) + Zle dpscy(M, D;) should be the least over all medians. Let M’
be the genome obtained by removing zy from M.

Let Dyy C {Dx, ..., Dy} be the set of descendant genomes that contain zy, and let Dy,
be the set of those that do not. For any D; € D,,, the adjacency need not be cut along
(M, D;), however it has to be added along (M’, D;), introducing an extra cost of 1 to the
total distance. Thus, dpgcy(M, D;) = dpscy(M', D;) — 1, for all D; € D,,. On the other
hand, if D; ¢ D,,, then it does not contain zy. Consequently, for all such D;, the adjacency
has to be cut along (M, D;) but not along (M’, D;) (since M’ does not contain it in the
first place). Thus, for all D; ¢ Dy, dpscy(M, D;) = dpscs(M', D;) + 1.

Further if A contains a(x)a(y), it need not be cut along (A, M,) but may need to be cut
along (A, M) thereby introducing a possible extra cost of 1 (note here the possibility that
some z*y* € M distinct from xy such that a(z*)a(y*) = a(x)a(y)). Thus, dpsci(A, M,) >
dpscy(A, M) — 1. If instead, A does not contain zy then it has to be joined along (A, M,)
and not along (A, M]). Unlike the previous case, the cost of the join is unavoidable. Hence,

dpsci(4, Ma) = dpsci(4, Mg) + 1.
Case 1: A contains zy. Then |Dg,| < VL?HJ -1

dpsci(A, My) > dpscy(4, M) — 1

a
dpscy(M, D;) = dpscs(M', D;) — 1 VD; € Dy
dpscy(M, D;) = dpscy(M', D;) + 1 VD; ¢ Dy

Summing over all the input genomes, we get

dpscy(A, M)+ Y dpscy(M, D;) > dpscs(A, M)+ Y dpsci(M', D;)
D; €Dy D; €Dy

+ |Day| — (| Doy +1)

We know that |Dgy| 4+ 1 < {%J If k is even, |Dyy| > |Dyy| + 1. Hence,

dpscy(A, Ma)+ > dpscy(M, D;) > dpscy(A, M)+ > dpscs(M’, D)
Di€Dy, D;€Ds,

Thus, the cost of M’ is better than that of the optimal median M and we have a
contradiction. If k is odd, then |Dyy| = |Dyy|+ 1 and hence both M and M’ incur the
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same overall cost. In other words, the removal of a non-candidate adjacency does not
increase the cost of the optimal median. Thus, iteratively removing all such adjacencies

will yield an optimal median that consists solely of candidate adjacencies.

Case 2: A does not contain zy. Then |Dy,| < {%J

dpscy(A, M,) = dpscy(A, M) +1
dpsci(M, D;) = dpscy(M', D;) — 1 VD; € Dyy
dpsci(M, D;) = dpscy(M', D;) + 1 VD; & Dyy

The analysis in this case is similar to Case 1. On adding all the equations and using
| Dyl < L%J, once again we reach a contradiction when k is even. When £ is odd,
both M and M’ yield the same overall distance. Thus, we can still obtain the optimal

median by iteratively removing non-candidate adjacencies.

Thus, when k is odd, there exists at least one optimal median consisting only of candidate
adjacencies. However, when k is even, the optimal median must consist only of candidate

adjacencies. O

Remark 6. The difficulty of the rooted median problem stems from the fact that duplica-
tion from M to the D;s can create conflicting adjacencies, where a median gene extremity
belongs to several candidate adjacencies. It is interesting to observe that this can happen
only due to convergent evolution, i.e. the fact that the same adjacency is created inde-
pendently in several D;s. This suggests that in the practical context of a limited level of

convergent evolution, the rooted median problem is easy to solve.

The ILP for the rooted median problem. We can now provide the complete ILP
formulation to solve the rooted SCJ-TD-FD median problem. Let x(e) be a binary decision
variable denoting the inclusion of edge (candidate adjacency) e € E(G) in M. Also, let ¢;
be a binary decision variable indicating if at least one edge with color 7 belongs to M. From
the previous paragraph, one can write the objective function as

Maximize:

ma k
Z w(e)z(e) +220i+2t(Ma) -2 Z Qg AM, —22 Z Qg M D,
i=1

e€cE(G) g€l a i=1gel'y

We now describe the constraints of the ILP. The first set of constraints concern the
consistency of the set of chosen adjacencies, that ensures that each gene extremity in M
belongs to at most one adjacency, or in other words that M is a matching for the graph

G (these are the first two sets of constraints below). Next, we use an additional set of
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constraints to determine the values of ¢;, i = {1,2,...,m4}. If at least one adjacency of
color i is present in the median, ¢; = 1, otherwise ¢; = 0. The following inequalities define

these color constraints:

Yo oa(e) <1 Vy € Ty (5.6)
e=(yn,z)
Z z(e) <1 Yy € Ty (5.7)
e:(yt,z)
_;z(e
¢ = FC(@(W Vie{1,2,...,ma} (5.8)

Note that for ¢; above, the constraints of the type z = [y] are not linear, but if = is
restricted to be in {0, 1}, it can be replaced by the constraint y < z < y+ ¢, where € is very
close to 1, say 0.999. A similar trick can be used for floor functions.

In order to compute g, for every pair (u,v) — where either v = A, v = M, or
u = M,v = D; for some 7 — and every gene g € I'y,, we use some additional constraints. Let
pu(€e) be the binary variable denoting if the adjacency e exists in v. We use an indicator
variable Ay ., such that Ay, = 1 if and only if all copies of g are involved in g, g; adjacencies.
Consequently, Ay, = 1 ensures the existence of the g,g; adjacency in r(v). Thus, Ag .y, =

{%(gi(hgg)t)J . Further, we use Ay, to indicate if at least one instance of gj,g; has been observed

nv(gngt)
nv(g)
A and each D, the values of p4(e) and pp,(e) are known. Further, pys(e) = z(e). Thus, we

in v. Thus, we can represent Ay, as [ W Since we already know the gene orders of

obtain the following constraints for every gene g and branch (u,v):

Aguv = V;Ejg(’;g)t)J (5.9)
g = [ 220280) (5.10)
Qguv = min(pu(ghgt)7 Ag,uv - )\g,uv) (5.11)
Ut(.g) =T (ghgt) - )\g,uv (5.12)

We use the fact that if gpg; ¢ v for some g then gng; ¢ r(v). Thus, if grg: ¢ v, Aguw =0
thereby ensuring the correctness of constraints to find ag . Again, note that the min
function is not linear, but that a constraint = min(y, z) can be replaced by = > y and

x > z, assuming that z,y, z € {0,1}.

5.6 Experimental results

We ran experiments on simulated data in order to evaluate the ability of the ILP to correctly
predict the gene order of the median genome. The input for the program, including gene

orders for the ancestor genome A and the descendant genomes D;, along with the orthology
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relations, generated using the ZOMBI genome simulator [23]. The ILP was solved using the

Gurobi solver version 7.5.2. The code was written in Python.

Simulations parameters. Our input genomes consisted of one ancestor A and two de-
scendants Dy and Ds. We started with the ancestral genome A as a single circular chro-
mosome consisting of 1000 genes, belonging to different gene families (so without duplicate
genes). The genome A evolved into the median genome M using duplications, inversions
and translocations. The genome M was further evolved along two independent branches to
yield the descendant genomes, Dy and Dj. The total number of rearrangements (inversions
+ translocations) from A to M and from M to D; was varied from 100 to 500, in steps of
100. The parameter for duplication events was kept constant throughout the experiments.
The average number of duplicated genes, over all three branches collectively, was found to be
362.8 with a standard deviation of 82 genes. Considering the number of duplication events,
the mean and standard deviation of segmental duplications over the three branches was 72.6
and 15.8 respectively. The lengths of segmental duplications, inversions and translocations
were controlled using specific extension rates. These extension rates (all between 0 and 1)
are the parameters of a geometric distribution that dictated the respective lengths. Thus,
the length of the segment being acted upon would be 1 if the extension rate parameter is set
to 1 and would increase as the parameter value reduces. In our experiments, the inversion,
translocation and duplication extension rates were 0.05, 0.3 and 0.2 respectively. For each

setting (number of rearrangements) we ran 40 simulations.

Results. For each simulation, we compared the optimal median according to the ILP to
the actual median generated by the simulator. For each group, we measured the average
precision and recall statistics. The ILP predicts the median genome in the form of its
adjacency set. Thus, in this context, precision refers to the ratio of number of correctly
predicted adjacencies to the total number of adjacencies in the computed optimal median.
On the other hand, recall represents the ratio of the correctly predicted adjacencies to
the total number of adjacencies in the actual median. For each instance, we measured the
number of candidate adjacencies used in the ILP. Additionally, to evaluate the effectiveness
of our approach, we also measured the number of adjacencies in the solution that were
common to all genomes (A, D; and D) and those common to only two of the three.

An overview of the results is given in Table 5.1. The ILP rarely predicts an erroneous
adjacency to be a part of the optimal median, with a near-perfect precision. This prop-
erty is observed throughout the experiments irrespective of the number of rearrangement
events. On the other hand, the ILP predicts more than 90% of the median for lower rates of
rearrangement and a decreasing trend is observed as the number of rearrangement events
increase. This can be partly attributed to the decrease in the number of candidate adja-

cencies. In general, the number of candidate adjacencies is lower than the true number of

95



Adj. in Adj. in % Adj. % Adj. No. of | Avg. time
Events true Cand. ILP Precision | Recall | common | common | optimal per run
median | adj. | median to all to two | solutions | (in sec)
genomes | genomes
100 1514 1503 1493 0.9998 0.9859 86.43 13.57 2.3 53
200 1107 1062 1044 0.9991 0.9428 69.49 30.51 15.8 29
300 1312 1192 1155 0.9985 0.8758 52.94 47.06 40.3 38
400 1151 985 961 0.9981 0.8329 49.44 50.56 393.7 51
500 1430 1174 1132 0.9972 0.7897 46.68 53.32 3682.6 84

Table 5.1: Statistics of the ILP median experiment on simulated data.

adjacencies in the median, as including other adjacencies may result in a non-optimal me-
dian. This, however, emphasizes the practicality of Lemma 5, as the number of adjacency
variables is significantly reduced. It can also be observed that the number of adjacencies
common to all genomes decreases with increase in rearrangements. These adjacencies will
be preferred by the ILP on account of higher weight.

Another notable observation is the increase in the number of optimal solutions with
larger rates of rearrangement. This correlates naturally with the decrease in the number of
adjacencies that are common to all genomes. For only 100 rearrangements, the ILP outputs
a unique optimal median in most runs, with an overall average of 2.3 solutions. However, the
average number of optimal solutions exceeded 3000 in case of 500 rearrangements. Despite
a pool of optimal solutions, the SCJ distance between the actual median and an optimal
median does not vary by much. If the SCJ distance between the actual median and a
randomly chosen optimal median is D, then the distance between the actual median and

any other optimal median was observed to stay within the range (D — 2, D + 2).

5.7 Conclusion

In this chapter, we introduced two versions of the median problem, namely the directed
median and the rooted median problem. We studied both the problems under the SCJ-
TD-FD model. We proved that computing the median with the most parsimonious directed
distance for an ancestor A and descendants D;, i = 1 to k is NP-hard by reduction from the
2P2N-3SAT problem. This contrasts with the directed median problem that does not involve
an ancestral genome A. An interesting feature of our hardness proof is that it relies on two
identical descendant genomes, showing a sharp tractability boundary between the directed
pairwise distance problem and the rooted median of three problem. Similarly to other SCJ-
related median problem, our rooted median problem aims at selecting adjacencies among
candidate adjacencies that are seen in a majority of the given input genomes; nevertheless
the possibility of conflicting median adjacencies due to convergent evolution is at the heart
of the intractability of the problem (Remark 6). To address this intractability, we provide

a simple Integer Linear Program that computes an optimal median. Unsurprisingly, we
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observe that our ILP outputs a more reliable estimate of the median in case of lower rates
of rearrangements. Moreover, we observe that despite having many more optimal solutions
for higher rates of rearrangement, the distance of a random solution from the actual median
does not deviate by much.

Our work can be commented with regard to the Small Parsimony Problem under the
directed SCJ-TD-FD model. The hardness result of the rooted median problem likely implies
the corresponding SPP problem is also NP-hard. This motivates our current work about
extending the rooted median ILP toward the SPP. It is worth noting that our median
ILP can also be used to solve the SPP by iterative application from an initial assignment
of ancestral gene orders, similarly to the early SPP solvers for genome rearrangements
such as GRAPPA [57]. Considering the multiplicity of the solutions, it also remains to be
investigated if the sampling and subsequent analysis of co-optimal evolutionary scenarios,

in a similar manner as [46], is possible within this framework.
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Chapter 6

The Small Parsimony Problem
with single-gene duplications

The rooted median problem is motivated by iterative approaches for ancestral reconstruction
[76]. In the previous chapter, we have seen how the adjacency sets of descendant genomes
and the root genome can be used to solve this problem.

In this chapter, we provide another ILP-based approach for reconstructing ancestral
gene orders by solving the Small Parsimony Problem. The problem aims at finding the
most parsimonious assignment of gene orders for the internal nodes of the tree, given a
species tree topology and the gene orders of the extant species. The ILP described in this

chapter was developed in collaboration with Dr. Pedro Feijao.

6.1 Introduction

Approaches designed to address the Small Parsimony Problem can be widely divided into
two types: homology-based and parsimony-based. Homology-based approaches do not con-
sider genome rearrangements directly. Instead, they rely on the use of conserved intervals as
a measure of similarity between two genomes [7]. These structures are a generalized notion
of a conserved adjacency, defining genome segments that may be preserved. Aided by set
theoretic operations on permutations, these approaches provide a set of possible gene orders
(as sets of permutation intervals) for each ancestral species in a given species tree [4]. More-
over, for most homology-based methods, this is achieved in linear time. Other approaches
based on conserved structures (also referred to as Contiguous Ancestral Regions or CARs)
have also been subsequently proposed [49].

On the other hand, parsimony-based approaches are guided by minimizing the evolu-
tionary cost using a set of genome rearrangement events. These methods were inspired by a
multitude of results on the pairwise genome rearrangement distance problem [29]. The aim
of these methods is to reconstruct all ancestral genomes so that the rearrangement scenarios

between successive gene orders along the species tree can be explained using the minimum
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number of evolutionary events. They are specific to the evolutionary model used, as has
been illustrated in [1] and [90] through the use of breakpoint model and the Double-Cut-
or-Join model respectively. A more general version of the problem, known as the Multiple
Genome Rearrangement Problem aims at finding a phylogenetic tree inferring the most
likely rearrangement scenario for a set of species [76]. However, even when restricted to its
simplest instance, which translates to the median problem, the problem has been proved to
be NP-hard for most cases [63, 15, 83]. In case of the Small Parsimony Problem, with the
exception of the Single-Cut-or-Join distance (SCJ)[28], the problem is NP-hard for most
rearrangement distances [83]. To combine the two approaches, Luhmann et al provided
PhySca algorithm, reconstructing gene orders using an optimality criterion that is a lin-
ear combination of conserved synteny blocks and the SCJ distance [46]. The importance
given to the individual criteria was decided using the convexity parameter o € [0,1], « =0
being the case that favored minimizing the SCJ distance. It was proved that considering
both the approaches simultaneously, the Weighted SCJ Labeling problem is NP-hard for
33/34 < a < 1, while the problem is otherwise open [46].

Duplication events play an important role in genome evolution [26]. For instance, mosquito
genomes have been known to exhibit high levels of duplication [2]. Under most rearrange-
ment models, finding the median itself is NP-hard. As a result, the SPP is also intractable.
However, the problem of ancestral genome reconstruction with duplications has been stud-
ied using homology-based approaches that conserve synteny blocks [48, 67]. While a holistic
approach that considers maximizing the weights of selected adjacencies as well as minimiz-
ing the rearrangement cost has been provided under the SCJ distance, a similar method is
yet to be provided in the duplication-aware framework.

The previous chapters discussed the distance and median problems under the SCJ-TD-
FD distance, in the context of directed evolution from ancestral genomes to descendant
genomes. It is assumed that the descendant may contain multiple copies of a gene in the
ancestor. However, the ancestral genome can contain only one parent of a gene in the
descendant. The relations between genes along any branch are obtained through orthology
relations, obtained using reconciled gene trees.

In this chapter, we study the Small Parsimony Problem (SPP) accounting for duplicate
genes in the descendant genomes. This is a natural extension of the idea introduced in [46],
which discussed the problem under the SCJ distance. Research in this direction has been
motivated, among other reasons, by the study of mosquito genome evolution. Consequently,
the methods described in subsequent sections are used on a data set of Anopheles mosquito
genomes [61]. We use the modified the SCJ-TD-FD distance from chapter 5 to accommodate

for the possible discrepancies arising from single-gene duplications.
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6.2 Problem statements

The Small Parsimony is an important problem studied in relation with ancestral reconstruc-
tion. In this problem, we are provided as input, a phylogenetic tree with extant genomes
at its leaves. The gene content of every genome as well as the gene orders for the extant
genomes are also available. Furthermore, the orthology relations between each ancestral
gene and its descendants for every branch can be obtained using reconciled trees. Given
such a setting the general version of the SPP under the SCJ-TD-FD model can be stated
as follows:

Mixed SCJTDFD Small Parsimony Problem: Let a phylogenetic species tree T' and
the extant genomes (at the leaves) be provided. Any pair of genomes u,v, v being the
child of u in T, is allowed to have unequal gene content (with respect to gene families and
copy numbers). Compute the genomes at the ancestral nodes such that the total SCJTDFD
distance over the tree is minimized.

However, we focus on the linear version of the problem, in which the gene orders are a
set of linear chromosomes. We use an Integer Linear Program (ILP) that provides a solution
minimizing the total evolutionary cost over the phylogenetic tree. The number of variables
in this context increases with the number of candidate adjacencies. This presents the pos-
sibility of a substantially large matrix. To avoid this issue, we also provide as input, a list
of candidate adjacencies with their weights, which is significantly shorter than the list of
all possible adjacencies. The list of candidate adjacencies is obtained using the DeCoSTAR
software [25]. Accounting for the aforementioned conditions, we address the following prob-
lem:

Weighted Linear SCJTDFD Small Parsimony Problem: Given the same setting as
the Mixed SCJTDFD SPP and a list of weighted candidate adjacencies for every genome,
compute the genomes at each node such that the total SCJTDFD distance over the tree is

minimized and each chromosome in every genome is linear.

6.3 ILP for Small Parsimony Problem

Consider a phylogenetic tree T'= (V, E). Let v € V be a node in T and u be the parent of
v. For every node v € V| we define an adjacency graph on the extremities of all the genes.
An edge between two extremities represents a possible adjacency. Using the definitions from
[46], py,o = 1 if an adjacency a exists in species v and 0 otherwise. For every adjacency a in
v, weight w, , € [0, 1] represents the confidence measure of the existence of the adjacency a
in the species v.

Given this setting, the Weighted SCJ-TD-FD labeling problem aims at minimizing:
Z (Oé (Z (1 _pv,a)wv,a> =+ (1 - a)dDSCJ(uav)>
veV acv
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Let ext(u) and ext(v) be the sets of extremities of genes in the respective genomes. We

define A, the adjacency set for genome u as

Ay = {a = aylz,y € ext(u),z £ y)

A, is defined in a similar manner as above, replacing u by v.
Consider A (respectively, D) as the set of all adjacencies a in A,, (respectively A,) such

that p,q (respectively p, o) equals 1. Thus, dpsc.j(u,v) can be defined as

|A—D|+|D — A| + 26(u,v) + 2n(u,v) — 2t(v) + 2 Z ag
9€Gu

where 0(u,v) is the number of duplicate genes in v compared to u, n(u,v) is the number of
newly created genes and ¢(v) is the observed number of g-adjacencies in v.

We call the adjacency zy € A, as the parent adjacency of an adjacency z'y’ € A, if 2/
originated from x and 3y’ from y. Conversely, 2’y is the child (adjacency) of zy. Clearly,
when duplications are allowed from w to v, we might have multiple children of the same
parent adjacency. Hence, for every adjacency ap.r = zy € A,, we denote by F, the set of
all adjacencies a = 2y’ € A,.

Further, using change variables ¢y v a,,, and ¢y y,q,,, the number of rearrangements along

the branch (u,v) can be computed as:

|A - D’ = Z Cuv”aapar

Apar €U
‘D - A’ - z : CU7uaapar
Apar €U
where
C’U«,'U,apa'r = maX{(),pu,apm« - z p’U,(l}
aGFa
and

C'Uvuvapa'r = maX{O, z : p'Uva - puvapar}
a€F,

Let Ky = 7Y ey (1 — Du,a)Wy,q. Since 6(u,v) are constant for a given pair (u,v), mini-
mizing dpsc(u, v) is equivalent to minimizing 37, = . Cuv,apar + 2 aparcu Cotape, — 26(V) +

2> 4eq, @g- Thus, our problem reduces to minimizing:

Z K,+(1-7) Z Cuv,apar + Z Couapar + 20(u,v) — 2t(v) + 2 Z Qg

veV Apar €U Apar €U geGy,
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subject to:

Cuv,apar >0 Vapa,« cu (61)
Cuv,apar > Pu,apar — Z Pva \V/Cbpar cu (62)
aclF,
Co,u,apar >0 Valm cEu (63)
Co,u,apar > Z Pv,a — Pu,apar Vapm cEu (64)
acF,

Z Pv.a < 1 Vx,Vv (65)
a=(z¢,y)

Z Pv.a <1 VJ},VU (66)
a=(zn,y)

The constraints (6.1-6.4) ensure that the values for ¢, q,,, and €y u,q,,, is chosen correctly
according to the p,  values. The constraints (6.5-6.6) ensure the consistency of the genome.

In other words, they ensure that each extremity takes part in at most one adjacency.

6.3.1 Linearization of chromosomes

Using the above formulation, it is possible to obtain the exact optimal solution to the Small
Parsimony Problem under the SCJ-TD-FD model. In general, the ILP solves the mixed
version of the problem, which does not eliminate the possibility of circular chromosomes in
the genomes. However, as mentioned in the problem statement, we require our solution to
consist of linear chromosomes only. This requirement stems from the structure of mosquito
genomes, which is known to be linear. In previously published methods [52], the problem of
linearization of chromosomes has been addressed in a greedy manner. The method involves
the removal of the least weighted adjacency contained in an existing circular chromosome.
However, this approach does not guarantee a globally optimal solution. Moreover, removing
an adjacency might introduce rearrangement events that, in turn can increase the DSCJ

distance. Potentially, this can output a solution that is far from optimal.

Delayed constraint generation method: In a LP framework, the removal of a circular
chromosome corresponds to the addition of a new constraint that prevents the chromosome
in question from being circular. These constraints will be referred to as linearity constraints.
An obvious way to obtain an optimal solution containing no circular chromosomes would be
to introduce a linearity constraint each for all possible circular chromosomes. However, in
doing so, we get an exponential number of constraints. Thus, introducing all the constraints
at once will be too expensive, in terms of both time and space. Furthermore, it is possible
that many of the constraints might be redundant and will never impact the feasibility region.

To overcome this issue, we use the delayed constraint generation method [10]. Typically,

the use of this method involves a given linear programming (LP) instance with a large num-

62



Generate violated constraint
corresponding to circular
chromosome, add to set L

Integer
solution?

Cutput as solution to
weighted linear SPP

Formulate LP with -
. Solve LP relaxation
constraints 6.1-6.6. N )
Initialize L as an with constraints
6.1-6.6 and the set L

empty set

Solve ILP by adding relevant
integrality constraints to LP
(e.g. using cutting planes or

branch-and-bound}

Figure 6.1: Process for solving the weighted linear SPP using constraint generation

ber of constraints. Instead of dealing with all the constraints at once, we initially introduce
only a subset of the constraints. The problem defined only using this subset of constraints
is called the restricted problem. In our case, the restricted problem consists only of the
constraints (6.1-6.6) from the above formulation. Note that we may have a non-integer so-
lution to the restricted problem. It may also contain circular chromosomes. If we add to the
restricted problem, an integrality constraint for each variable, we can obtain the solution
to the mized version of the SPP (one that permits circular chromosomes).

For the weighted linear SPP, we start the initial optimization process with the restricted
problem, using constraints (6.1-6.6) only. We add appropriate integrality constraints if re-
quired. However, the linearity constraints are left out. We initialize an empty set L of
constraints. The set L is meant for linearity constraints to be generated when the corre-
sponding circular chromosomes are chosen to be linearized. Let S be the optimal solution
obtained from solving the restricted problem with the integrality constraints. If the solu-
tion S to the restricted problem consists only of linear chromosomes, then it is feasible for
the original problem, with all the constraints. S is then reported as the optimal solution
for the weighted linear SPP. However, if it does not, then S is infeasible, since it violates
at least one linearity constraint. A circular chromosome from the current solution is then
chosen at random. The corresponding constraint prevents the adjacencies involved to form
the circular chromosome. This is accomplished simply by ensuring that the sum of the ad-
jacency variables (p, ,’s) is less than the length of chromosome itself. The new constraint is
added to the set L. The restricted ILP is then solved along with constraints from the set L.
This process is iterated till all chromosomes in the optimal solution are found to be linear.
The process has been illustrated in Figure 6.1. The introduction of a linearity constraint is
equivalent to the introduction of a hyperplane that possibly separates the optimal solution

of the restricted problem from the feasibility region.
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In the absence of integrality constraints, upon addition of the new constraint, the op-
timization process does not start from scratch. Instead, it uses the last solution (which
violates the newly added constraint) as its starting solution. The corresponding solution for
the dual of the original primal formulation is also feasible for the dual of the modified one.
Thus, it is possible to use dual simplex method to the modified problem. The initial simplex
tableau for the new problem can be constructed immediately constructed from the previous
solution. However, this technique does not work in an ILP framework. First, the solution to
the LP relaxation is found using the primal simplex method. In case of a non-integer optimal
solution, the relevant integrality constraints are added using branch-and-bound or cutting
plane method [42, 31]. The resulting integer solution may contain a circular chromosome. If
so, the violated constraint is added to the LP relaxation and the problem is first optimized
without the integrality constraints. As a result, the simplex tableau of the previous optimal
solution (which contains some of the integrality constraints) can not be used as a starting
point for the new optimization process.

During the process of iteratively removing circular chromosomes, a possible scenario in
this approach is an exponential number of iterations. To avoid this, we make a provision
to bound the number of iterations. Once, this bound is reached, the remaining circular
chromosomes, if any, are handled using a greedy approach [52], in which the least weight
adjacency from each circular chromosome is discarded, thus linearizing each genome.

We use Gurobi Optimizer to solve the ILP, which has the following advantage. Although
the solver has to start the optimization process from scratch, the problem size is reduced
by removing redundant constraints as well as variables, identification and merging of con-
straints that form cliques and appropriate rounding of bounds of integer variables. Such

presolving techniques significantly improve the efficiency of the optimization process.

Remark 7. The prevention of circular chromosomes is similar to the removal of subtours
in the Traveling Salesman Problem (TSP) [22]. Thus, each constraint preventing a circular
chromosome is formed using the same logic as the loop or subtour elimination constraints for
the TSP. There is, however, a slight difference in the two approaches. Consider the TSP on a
set of nodes C. For the subtour elimination constraints, a set ¢’ C C'is identified. The total
number of edges e = ij, i,j € C' is restricted to |C’| — 1, thus preventing the possibility of
any cycle involving all the elements of C’. On the other hand, for the prevention of circular
chromosomes, we find that it suffices to add the constraint that prevents only the specific

order of adjacencies that forms the observed circular chromosome.

6.4 Experimental results

To evaluate the performance of the ILP, we carried out experiments on a data set of Anophe-
les mosquito genomes, used in [2]. The code itself was written in Python and solved using

Gurobi optimization solver, version 7.5.2.
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Most of the data used in this project was produced by the Anopheles 16 Genomes project
[61]. The species tree consists of 18 extant species, the gene orders of which are available
to us through [2]. The phylogeny is based on the X-chromosome genes. The gene content
and weighted adjacencies of ancestral genomes were also obtained through [2]. The weight
Wy € [0,1] assigned to each adjacency indicates the confidence level that an adjacency
a actually occurs in a genome v. The gene trees for each gene family were constructed in
[2] using RaxML and refined using ProfileNJ. In total, this resulted in 14,940 gene trees,
consisting of a total of 394195 genes, 183680 of which belong to extant genomes. Anopheles
gambiae is the only fully assembled genome in the data set while the remaining genomes are
assembled into scaffolds. The extant genomes in our data are highly fragmented with roughly
33500 scaffolds to start with. The mosquito genomes exhibit significant gene loss, with more
than 10% genes over the course of evolution. In total, our ILP consisted of 3187979 integer
variables, 2218787 of which were binary and 5850114 constraints. The matrix was highly
sparse (sparsity of ~5 x 1077) with only 9115423 non-zero entries.

We then toggle the parameter « € [0, 1], starting at 0 and incrementing it by 0.25. Recall
that the objective function of the ILP is a linear combination of the SCJ distance and cost
of unselected adjacencies. Thus, o = 0 corresponds to the case when the cost is measured
purely in terms of the SCJ distance while o = 1 ignores the SCJ distance completely. Our
model does not yet handle gene losses. Hence, the event of gene loss affects the SCJ-TD-FD
distance, which is mainly visible through the number of cuts resulting from gene losses.

Based on our experiments, we report the following observations. The number of adja-
cencies selected shows a increasing trend as « is increased. Thus, for a = 0, the ILP selects
around 290000 adjacencies from the available pool of 461605 adjacencies. This number in-
creases to 350000 as « approaches 1. Our method is also meant to improve the assembly
of extant genomes. Thus, we measured the number of scaffolds in the extant genomes after
implementing the ILP. As « increases, a decreasing trend is observed in the number of scaf-
folds. Thus, the case a = 0 yields the least improvement. However, even in this scenario,
it produces significant improvement (> 65%) with 11235 scaffolds. The cases v = 0.75 and
a = 1 show the least number of scaffolds after the ILP with less than 8200 scaffolds (see
Figure 6.2).

This is not surprising since the case a = 0 prefers parsimony-guided reconstruction.
Thus, it tries to generate the ancestral gene orders resulting in the lowest overall distance.
On the other hand, o = 1 is more likely to conserve adjacencies even if they result in a
higher SCJ-TD-FD distance. Thus, the assembly of extant genomes gains more than 23000
adjacencies (15.78% of the initial number of adjacencies) when o = 1, but while when oo = 0
the gain is less than 16500 (11.21%), as shown in Figure 6.3 (a).

The correlation between number of selected adjacencies and the corresponding SCJ-TD-
FD distance can be observed by the contrasting trends in both parts of Figure 6.3. As «

increases, the SCJ-TD-FD distance also increases. Interestingly, the number of cuts tends
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Figure 6.3: Inversion correlation between (a) total number of adjacencies chosen across all
genomes and (b) the overall SCJ-TD-FD distance

to increase with o whereas the number of joins does not (see Fig. 6.3 (b)). This can be
explained by the high rates of gene loss in the genomes. The ancestral genomes may involve
adjacencies between genes that are lost in the descendant, leading to a higher ratio of cuts
to joins.

Additionally, the ILP iteratively linearizes the circular chromosomes in all the genomes.
We record the randomly selected circular chromosome for each iteration. We then add the
corresponding constraint to remove the circular chromosome and re-optimize the updated
ILP. Thus, the number of circular chromosomes linearized also gives the number of itera-
tions. Even though the number of possible circular chromosomes may be exponential, our
results clearly suggest that the number of chromosomes actually required to be linearized
is not too large. As a result, an individual run in our experiments could be completed in
under 8 minutes. A clear trend is not visible in the number of iterations required to linearize
all the genomes. However, there is a marked increase in the number of iterations for a =1
which is expected since the case tends to select much more adjacencies in its solution than

other values of a. Surprisingly, the time required for the optimization step in each iteration,
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a | Cuts due to | #Circular | Avg. time (sec)
gene loss chromosomes | per iteration
linearized
0 12088 9 24.11
0.25 24684 15 24.60
0.5 38899 13 23.70
0.75 50683 13 22.50
1 68280 46 6.12

Table 6.1: Statistics for the SPP ILP

when o = 1, was close to 6 seconds whereas for all other cases the time per iteration was

over 20 seconds.

6.5 Conclusion

In this chapter, we studied the Small Parsimony Problem that accounts for duplicate genes
under the SCJ-TD-FD model. Following the results from chapter 5 on the NP-hardness of
the rooted median problem, the SPP is also expected to be NP-hard. Hence, we provide
an integer linear program for solving the problem following a similar approach used in [46],
based on an optimality criterion that uses a linear combination of the SCJ-TD-FD distance
and conserved adjacencies. Our experiments indicate a clear correlation between the number
of conserved adjacencies and the associated SCJ-TD-FD distance. They also show significant
improvements in the scaffolding of extant genomes with over 11% improvement even when
the objective function is adjusted to focus solely on minimizing the SCJ-TD-FD distance. It
is further observed that the number of circular chromosomes in the initial optimal solution
is small enough and can be easily managed by the ILP through additional constraints.
Future research on the SCJ-TD-FD model could proceed in several directions. Mosquito
genomes tend to display high rates of gene loss. The gene loss also has a substantial impact
on the estimation of the SCJ-TD-FD distance. The handling of gene losses in the SCJ-TD-
FD model is not immediate and thus, needs to be investigated further. Another potential line
of inquiry is the weighting of ancestral adjacencies using the candidate adjacency selection
technique from chapter 5. This approach may be used to choose candidate adjacencies in
order to decrease the effect of gene loss on the overall objective function. Whereas this
strategy may lead to fragmented assemblies for ancestral genomes, it is expected to provide
a more reliable estimate of the distance. Finally, the multiplicity of co-optimal solutions

and the dissimilarity between the various solutions is another avenue worth investigating.
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Concluding remarks

In this thesis, we have discussed computational techniques to address some important
genome rearrangement problems used for analyzing the evolution of genomes, in a duplication-
aware framework.

The evolution of genomes through genome rearrangements was discovered in the 1930s.
However, genome rearrangements problems were first presented as combinatorial prob-
lems by Sankoff in the early 1990s. This pioneered the research on genome rearrangements
through various rearrangement models and techniques. The problem of computing the dis-
tance between two genomes is tractable under most models. However, in most cases, these
tractability results are not extended to the median problem. The introduction of the SCJ
model, a mechanistic counterpart of the breakpoint model, provided some positive results.
Both the median problem and the SPP could be solved in polynomial time under the SCJ
model.

The only downside of this model was that it works only when genome content is equal for
both genomes. In chapter 4, we saw a solution to this problem. We introduced a model known
as the SCJ-TD-FD model handling single gene duplications, cuts and joins. Each copy in
the ancestor genome was assumed to be unique. Further the descendant contained at least
one and possibly more copies from each gene in the ancestor. Secondly, we assumed that the
duplication events take place only through specific mechanisms namely, tandem duplications
and floating duplications (single-gene circular chromosomes). Given this setting, we proved
that in the context of directed evolution from a trivial ancestor to a possibly non-trivial
descendant, the SCJ-TD-FD can be computed in linear time.

This work is motivated by increasing availability of ancestral gene orders along a given
species tree through algorithms that use reconciled gene trees to obtain the orthology rela-
tions for each gene family. This problem also acts an important stepping stone in the bigger
picture of ancestral reconstruction techniques. The SCJ-TD-FD model allows the extension
of the median and SPP problems to a duplication-aware framework.

In chapter 5, we discussed two variations of the median problem under the SCJ-TD-FD
model. The directed median problems aims to compute the median of a set of k& descendant
genomes. It is proved that this can be achieved in polynomial time by redefining the problem
as a maximum weight matching problem. On the other hand, the rooted median problem,

which aims to find the median of an ancestor and k£ descendants is NP-hard. This has been
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proved by reduction from the 2P2N-3SAT problem. We provided an Integer Linear Program
to solve the rooted median problem. The problem can be viewed as a colored maximum
weight matching problem, wherein adjacencies are assigned colors in addition to weights. It
is intended to compute a matching that maximizes the number of colors chosen in addition
to the total weight of chosen edges.

Our experiments also indicated that the impact of convergent evolution, leading to
conflicting adjacencies in the median, may be the main reason behind the hardness of the
problem. It is also the reason behind multiple co-optimal solutions for the median. Our
experiments on simulated data showed that the ILP outputs a reliable estimate of the
median. The high accuracy of the reconstructed median genomes suggest that the ILP can
also be used in iterative approaches to solve the Small Parsimony Problem.

In chapter 6, we discussed a more direct approach to solve the Small Parsimony Problem.
Considering the NP-hardness of the rooted median problem, the SPP is also implied to be
NP-hard. We provided an ILP to solve the problem, that accounts for duplication events.
The ILP is motivated by the approach used in [46] that optimizes a linear combination
conserved adjacencies and the SCJ-TD-FD distance. We applied our method on a data set
consisting of Anopheles mosquito genomes, which consist of linear chromosomes only. The
linearization is achieved iteratively by adding an extra constraint for a randomly chosen
circular chromosome and re-optimizing. This is motivated by the constraint generation
methods, which use the duality of the linear program and optimize the new ILP (with
the extra constraint). Our results indicate that the assembly of the extant genomes is
considerably improved by the ILP. As expected, the fragmentation of the genomes decreases
when the parameter « is shifted to favor conservation of adjacencies over parsimony of
genome rearrangement events.

The analysis of the three widely studied genome rearrangement problems presents vari-
ous avenues for future research. The mosquito genomes exhibit high rates of gene loss which
may impact the SCJ-TD-FD distance estimate. The incorporation of gene loss events in
the current model remains to be investigated. The multiplicity and sampling of co-optimal
scenarios for the SPP, in a similar manner as in [46], is also a possible future line of research.
Lastly, the iterative use of the rooted median problem to solve the SPP, similar to [57], in

a duplication-aware framework is also worth investigating.
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