
Domain Decomposition Solvers and
Preconditioners for the Implicit Closest

Point Method
by

Ian May

B.Sc., Colorado State University, 2016

Thesis Submitted in Partial Fulfillment o f the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Ian May 2018
SIMON FRASER UNIVERSITY

Summer 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Ian May

Degree: Master of Science (Mathematics)

Title: Domain Decomposition Solvers and
Preconditioners for the Implicit Closest Point
Method

Examining Committee: Chair: Ralf Wittenberg
Associate Professor

Steven Ruuth
Senior Supervisor
Professor

Ronald Haynes
Supervisor
Professor
Department of Mathematics and Statistics
Memorial University of Newfoundland

Benjamin Adcock
Internal Examiner
Assistant Professor

Date Defended: July 17th, 2018

ii

Abstract

The numerical treatment of surface intrinsic elliptic PDE presents several interesting chal-
lenges over those posed on flat space. The implicit closest point method, (iCPM) is an
embedding method well suited to these problems, and allows the treatment of general sur-
faces, S. An extension operator brings surface bound information into the embedding space,
to be constant in the surface normal direction, and allows the solution of the problem by
standard methods. The positive Helmholtz equation, (c−∆S)u = f , is considered with ten-
sor product barycentric Lagrange interpolation defining the extension operator and stan-
dard second-order centered differences for the ambient Laplacian. Under this scheme, a
non-symmetric system with poor sparsity is obtained, which reduces the performance of
iterative solvers and motivates the development of specialized solvers. Optimized restricted
additive Schwarz (ORAS) methods are well suited to this task and are formulated for these
problems. The interesting geometry of the problem presents challenges for the construction
of subdomains as well as the enforcement of Robin boundary conditions. The developed
solvers perform well over a range of test problems with the optimized methods providing a
distinct advantage. With Krylov acceleration, convergence is obtained rapidly with dimin-
ished difference between the optimized and non-optimized methods.

Keywords: Closest point method, domain decomposition, parallel numerical linear algebra

iii

Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Numerical approaches to surface PDEs . 2
1.2 Domain decomposition methods . 2
1.3 Outline . 3

2 The implicit closest point method 5
2.1 Direct closest point method and notation 5

2.1.1 The extension operator . 5
2.1.2 Discretization of the direct CPM . 6

2.2 The implicit formulation . 8

3 Domain Decomposition 10
3.1 Continuous formulation . 10

3.1.1 Contraction factor analysis . 13
3.2 Restricted additive Schwarz and generalizations 16

3.2.1 Use as a preconditioner . 18
3.3 Example: Poisson equation in the plane . 19

4 Subdomain Construction 23
4.1 Graph partitioning problem . 23

4.1.1 Nearest neighbor coupling . 25
4.1.2 Full coupling . 25
4.1.3 Interface alignment . 26

iv

4.2 Construction of overlaps . 27
4.2.1 Construction of effective boundaries 27
4.2.2 Boundary conormal directions . 29

5 Transmission conditions 32
5.1 Overlap requirements . 33
5.2 Dirichlet Transmission . 33
5.3 First-order accurate Robin . 34

5.3.1 Convergence study . 35

6 Results 37
6.1 Introduced parameters . 37
6.2 Domain decomposition parameter studies 38

6.2.1 Parameter study: Circular surfaces 38
6.2.2 Parameter study: Spherical surfaces 42
6.2.3 Parameter study: Toroidal surfaces 46
6.2.4 Parameter study: Triangulated surfaces 49

6.3 Computational scaling . 53
6.3.1 Strong scaling . 53
6.3.2 Weak scaling . 55

7 Concluding remarks 57
7.1 Picking a method . 59
7.2 Future directions . 59

Bibliography 60

Appendix A Implementation errata 63
A.1 CPMesh . 64
A.2 Problem . 65
A.3 Sample run . 66

A.3.1 Sample input file . 66
A.3.2 Sample calls to the executable . 67

v

List of Tables

Table 6.1 Introduced parameters . 38
Table 6.2 Circle parameter sweep . 39
Table 6.3 Circle parameter sweep, higher resolution 39
Table 6.4 Sphere parameter sweep . 43
Table 6.5 Sphere parameter sweep, high resolution 43
Table 6.6 Torus parameter sweep, low resolution 46
Table 6.7 Torus parameter sweep . 46
Table 6.8 Triangulated surface parameter sweep, low resolution 50
Table 6.9 Triangulated surface parameter sweep, high resolution 50
Table 6.10 Strong scaling, circle . 54
Table 6.11 Strong scaling, torus . 54
Table 6.12 Weak scaling, circle . 55
Table 6.13 Weak scaling, torus . 56

vi

List of Figures

Figure 2.1 Closest point discretization . 7

Figure 3.1 Schematic for domain decomposition 11
Figure 3.2 Splitting of R2 . 14
Figure 3.3 Oblique Robin contraction factor 17
Figure 3.4 DD in the plane, effect of subdomain count 20
Figure 3.5 DD in the plane, effect of overlap width 21
Figure 3.6 DD in the plane, effect of Robin weight 22

Figure 4.1 Graph connectivity options . 24
Figure 4.2 Comparison of disjoint partition interfaces 26
Figure 4.3 Disjoint interface alignment . 26
Figure 4.4 Subdomain construction . 28
Figure 4.5 Conormal smoothing . 30

Figure 5.1 Robin condition convergence study 36

Figure 6.1 (O)RAS Relative performance, circle 40
Figure 6.2 (O)RAS Relative performance, high resolution circle 41
Figure 6.3 Subdomain count influence, circle 41
Figure 6.4 Overlap influence, circle . 42
Figure 6.5 (O)RAS Relative performance, sphere 44
Figure 6.6 (O)RAS Relative performance, high resolution sphere 44
Figure 6.7 Subdomain count influence, sphere 45
Figure 6.8 Overlap width influence, sphere . 45
Figure 6.9 (O)RAS Relative performance, low resolution torus 47
Figure 6.10 (O)RAS Relative performance, high resolution torus 47
Figure 6.11 Subdomain count influence, torus 48
Figure 6.12 Overlap width influence, torus . 48
Figure 6.13 Stanford bunny triangulation . 49
Figure 6.14 (O)RAS Relative performance, low resolution Stanford Bunny . . . 51
Figure 6.15 (O)RAS Relative performance, high resolution Bunny 51
Figure 6.16 Subdomain count influence, Stanford Bunny 52

vii

Figure 6.17 Overlap width influence, Stanford Bunny 52

viii

Chapter 1

Introduction

Elliptic partial differential equations form a fundamental class of partial differential equa-
tions. Due to their inherently global nature, discretizations of these problems generally lead
to large coupled systems of equations whose effective computational treatment requires
care. The canonical example of an elliptic PDEs, and arguably the most prevalent and rec-
ognizable PDE of any sort, is Laplace’s equation which arises naturally in a diverse range of
applications. The Laplace operator generalizes away from flat space to (smooth enough) sur-
faces quite readily but the numerical treatment of such problems remains an active pursuit.
We take as an indicative model problem the surface intrinsic positive Helmholtz equation

(c−∆S)u = f on S , (1.1)

where ∆S is the Laplace-Beltrami operator defined with respect to a smooth surface S,
taken without boundary for the moment, and c ∈ R+ is some positive constant. The
Laplace-Beltrami operator acts within the surface, accounting for its geometric properties
intrinsically. The standard Laplacian enjoys a massive amount of computational support
with no shortage of relevant and well studied discretizations. Elliptic PDEs posed over sur-
faces, as in the model equation (1.1), present interesting challenges not found in the flat case
and have not seen as much development. In what follows, several numerical schemes for this
problem are presented with their relative merits and faults. Though we select the closest
point method specifically for the work here, all schemes yield a linear system of equations
that must be solved in some reasonable fashion.

Generally, as the discretization becomes finer and the systems grow in size they will also
see rising condition numbers and the convergence behavior of standard iterative methods
on their own will diminish. Preconditioning can address these faults and return the con-
vergence behavior. Furthermore, the advent of parallel preconditioners and solvers address
the issue of system size by allowing a splitting of the system into separate parts that may
be treated by distinct computers linked through a network interface (distributed memory

1

computing). Herein, we focus on the use of domain decomposition methods for the solution
or preconditioning of these problems while opening opportunities for parallel computation.

1.1 Numerical approaches to surface PDEs

Several schemes exist for the discretization of equation (1.1) with a few important and in-
dicative methods described here. A first class of methods seek to parameterize the surface
and utilize standard numerical techniques for flat space equations with respect to this pa-
rameterization. This is highly effective as it allows one to use their experience with standard
numerical methods for flat problems. However it is quite problem specific and inhibits explo-
ration of solution behavior over a collection of surfaces. Many surfaces can only be globally
parametrized with the introduction of a coordinate singularity, like the poles of a sphere,
requiring special treatment. Multiple charts could be used to avoid coordinate singularities,
such as the cubed sphere [17], but this again inhibits exploration of other surfaces.

Another class of methods avoids the parameterization problem by finding a triangulation
of the surface and discretizing the equation via finite elements. This approach preserves the
dimensionality as before and further gives rise to highly sparse and symmetric matrices.
Beyond the truncation error present in the scheme there is an additional source of error
coming now from the approximation of the surface by the triangulation. This is sensitive
to mesh quality and often requires re-meshing for triangulations coming from computer
graphics scenarios. The relative ease of h-adaptivity is nullified here as any subdivision
scheme now needs to produce finer triangles whose vertices still lie on the surface to faithfully
capture the underlying geometry.

The level set methods strike a nice middle-ground between the parametric approach
and the direct discretization of the surface. Here, the surface is only considered implicitly
as the level set of some auxiliary function over a higher dimensional space where the surface
may be embedded. These embedding methods avoid discretizing the entire ambient space
and instead pose the problem only on a narrow band, as the closest point method does
(cf. Section 2.1.2), but have the key drawback of introducing degenerate equations [18] that
require special care to solve and do not generalize easily to higher order surface operators.

1.2 Domain decomposition methods

The linear systems eventually arising from this discretization are somewhat sparse, non-
symmetric, and most conveniently cast in an unassembled form (cf. equation (2.11) where
the individual factors may not be stored). The first and last properties motivate the use of
iterative linear solvers while the second reduces the list of appropriate solvers somewhat. The
standard Laplacian exhibits the same sparsity under many discretizations and its widespread
applicability has resulted in a great number of solution techniques. These equations are well
suited to the solution by domain decomposition methods. These methods originate from the

2

analytic treatment of such equations, but have found new utility in reducing the solution
cost of associated numerical schemes. Indeed, the theoretical performance of these solution
schemes has mostly been established in the context of Laplacian equations.

Though the discrete form of (1.1) lacks some of the nice properties of the standard
Laplacian, its treatment by these methods seems most promising. Several factors reduce
the performance of black-box solvers. Ideally these operators are left unassembled, yet most
black box solvers and preconditioners require access to the assembled matrix. For instance,
algebraic multigrid and domain decomposition methods typically infer the coupling of the
unknowns by examining the non-zero structure of the matrix. Improved transmission condi-
tions within the schemes are most cleanly treated from the continuous perspective. Indeed,
as shall be seen, these conditions are imposed by modifying one factor of the global operator
with no simple approach being available from the final matrix form. Finally the closest-point
operators are weakly non-local, requiring special care.

1.3 Outline

In what follows, the discretization of the model equation is discussed in Chapter 2 where
a few schemes are considered. The closest point schemes are recalled in some detail, with
some important properties highlighted along the way, in Sections 2.1 and 2.2.

Following this, the Schwarz type domain decomposition schemes are defined in Chapter
3 with their continuous formulations detailed in 3.1. Section 3.2 therein moves these con-
tinuous formulations into the discrete, exposing their utility for the numerical treatment of
problems such as equation (1.1) and casts the whole scheme in a way amenable to Krylov
acceleration.

With this prerequisite information in hand the application of domain decomposition to
closest point problems proceeds in Chapter 4 where the meshes constructed for the closest
point problem are partitioned and useful subdomains are constructed. Section 4.2 highlights
some challenges in this construction, seemingly unique to these discretizations, but whose
resolution may well be of use outside of this application.

Chapter 5 continues by formulating transmission operators well suited to these problems
and considers their implementation. Here again lie interesting and unique challenges, though
again the solutions presented here may find use in other contexts.

With these thoughts developed, the full scheme is developed and tested in Chapter
6 where all of the introduced parameters are swept over and the convergence results are
catalogued. The behavior of the developed methods is compared to what we would expect
from experience with similar methods in flat space.

Finally, the thesis is concluded with some thoughts on how and when to select a solver
from these definitions as well as some possible directions for future work. An appendix is also

3

given which comments on some implementation details and points to a public repository of
all code developed for this project.

4

Chapter 2

The implicit closest point method

The closest point schemes [18, 13, 11] share many of the guiding principles of the level set
formulation over unfitted bulk meshes mentioned in Section 1.1. The surface is only treated
implicitly, thus avoiding the need for parameterizations. The construction of more resolved
solutions is simple, as compared to the triangulated schemes requiring a new mesh. In con-
trast to the level set formulation, this method does not lead to a degenerate form of the
governing PDE. To ease the exposition of the implicit closest point method, a direct formu-
lation of the closest point method is reviewed first to establish notation and demonstrate
some important properties.

2.1 Direct closest point method and notation

The direct version of the scheme, introduced in [18], is reproduced specifically for equation
(1.1) over a smooth surface S, taken without boundary initially, and embedded in Rd. The
treatment of surfaces with boundaries are addressed below in Chapter 5. Since the closest
point method is an embedding scheme, moving between the surface and the embedding
space is critical to its definition. The central construct here is the extension operator E,
which will be defined in the following section along with a some of its useful properties.

2.1.1 The extension operator

The schemes hinge on the definition of the closest point function

CPS : Rd → S , (2.1)

which identifies each point in Rd with the point nearest to it on the surface. The closest
point function is defined almost everywhere with the exceptions arising from those few
points whose closest points are not unique, for instance the center of a sphere, or the axis of
revolution defining a torus. With the closest point function, surface intrinsic quantities and
functions can be extended naturally into the embedding space by composition. The action

5

of this composition induces the extension operator

Ef := f ◦ CPS , (2.2)

for functions f : S → Rn defined intrinsic to the surface. The extended function now takes
values on the embedding space that are constant along the surface normal directions, as
all points in this direction share the same closest point, and recovers the original function
when restricted back to the surface. These surface normals will be of use throughout and
are denoted n̂, customarily pointing away from the surface. Though the surface normal
vectors are only defined on the surface, they can be extended to the embedding space by
the same closest point identification and will often be used there. We use no special notation
identifying this extension as the use is unambiguous.

For sufficiently smooth surfaces, S, and functions, f : S → R, the gradient of their
extension lies tangential to the surface, ∇ (Ef) ⊥ n̂. This arises from the extended function
being constant in the surface normal direction. This identification leads to the first important
equivalence: the surface intrinsic gradient of a function is the restriction of the gradient of
the extended function back to the surface [18, 13]

∇Sf = (∇ (Ef))|S . (2.3)

Consider a smooth vector field, v, over a region of the embedding space containing the
surface. If this vector field is tangential to all constant distance displacements of the surface,
then the surface intrinsic divergence of this field restricted to the surface is equivalent to
the restriction of the ambient divergence. This second important equivalence presents itself
as [18, 13]

∇S · (v|S) = (∇ · v)|S . (2.4)

Finally, the action of Laplace-Beltrami operator over S can be now formulated in terms
of the standard Laplacian on Rd

∆Su = (∆ (Eu))|S , (2.5)

which arises through the combination of the prior two principles [18]. This connection from
the surface to the embedding space through the extension operator and the closest point
function forms the foundation of the closest point method.

2.1.2 Discretization of the direct CPM

The discussion leading to equation (2.5) indicates that we may apply the Laplace-Beltrami
operator to a function defined on a surface through the standard Laplacian on the embedding
space. This concept induces a companion equation to (1.1), now posed on the embedding

6

space (c−∆E)u = Ef in Ωγ (S)
∂u
∂n̂ = 0 on ∂Ωγ (S)

(2.6)

where Ωγ (S) ⊂ Rd is delimited by two displacements of the surface with a total separation
of width γ as illustrated in Figure 2.1. The solution to equation (1.1) is then recovered from
(2.6) by restriction to S.

Figure 2.1: The stencil for the centered difference Laplacian is visible for one active node,
marked as a large filled circle. Two of the neighboring nodes are ghost nodes that only
appear indirectly. From here, the stencils for extension of all nodes needed for this centered
difference are gathered into the three overlapping blue squares, sized for bi-cubic interpola-
tion. In the direct closest point method, the node marked by the large filled circle depends
on all nodes in the blue region.

The closest point method provides the connection to the embedding space, and leaves
open the option to use a multitude of discretizations once there. A fairly standard formu-
lation places a structured, uniform, grid over Rd with all nodes lying within Ωγ (S) being
identified as active nodes and collected into the set NA, with cardinality NA. Ghost nodes
layered over the active nodes will be needed momentarily for the completion of differential
operator stencils, and are gathered into the set NG, with cardinality NG.

The discrete extension operator, E ∈ R(NA+NG)×NA , identifies the active and ghost
nodes with their closest points and propagates information from the active nodes out to all
nodes by constructing a local interpolant from the active node information. More concretely,
consider a node xi ∈ NA ∪NG with closest point CPS(xi) and a vector u ∈ RNA containing
the function values over the active nodes. Tensor product barycentric Lagrange interpolation
[4] is used to construct a polynomial interpolant, of degree p in each spatial variable, from
the (p + 1)d cube of active nodes surrounding CPS(xi). The evaluation of this interpolant
at the closest point then extends the sampled function out onto the active and ghost nodes.

7

The extension operator inherits linearity from the polynomial interpolation problem and is
written as a matrix with (p+ 1)d non-zeros per row, as the interpolation weights associated
with that node’s stencil. With this notion established the role of the bandwidth γ becomes
apparent, the cube of active nodes forming the interpolation stencil must all lie within the
band and be characterized as active. For interpolation with degree p polynomials one finds
that a bandwidth of

γ = (p+ 2)h
√
d , (2.7)

with h as the grid spacing, suffices (in contrast to the band in [18] which must include ghost
nodes as well for the explicit formulation).

The Laplacian on the embedding space is treated herein by the standard second order
accurate centered difference formula. With the values over the ghost nodes being populated
by the extension operator, and thus constant along surface normals, the homogeneous Neu-
mann conditions in (2.6) arise naturally. The discrete Laplacian, ∆h ∈ RNA×(NA+NG), has
its image only over the active nodes. The composition ∆h

S,dir = ∆hE ∈ RNA×NA then acts
only over the active nodes with the ghost nodes appearing implicitly. The discrete form of
(2.6) then becomes (

cI−∆h
S,dir

)
u = f , (2.8)

with u, f ∈ RNA . The right hand side is evaluated over the active nodes by use of the closest
point function. This formulation discretizes equation (1.1) using the direct formulation of
the closest point method for the Laplace-Beltrami operator. Finally, Figure 2.1 displays the
total effect of this discretization by considering one active node in particular and tracing
all dependencies that it has.

2.2 The implicit formulation

The direct form of the discrete Laplace-Beltrami operator defined in Section 2.1.2, given
by ∆h

S,dir = ∆hE, is unsuitable for use in the discretization of elliptic equations like (1.1)
arising from implicit time integrations. The spectrum of this operator has a few small
positive eigenvalues [13] that lead to instability when used within implicit time integration
schemes. The implicit closest point method (iCPM) introduced in [13] resolves these issues
with a modified form of the discrete Laplace-Beltrami operator.

Looking at a semi-discrete form of the closest point Laplace-Beltrami operator (embed-
ded in two dimensions for clarity of exposition)

∆h
S,diru = 1

h2 (−4u (CPS(x, y)) + u (CPS(x+ h, y)) + u (CPS(x, y + h))

+ u (CPS(x− h, y)) + u (CPS(x, y − h))) , (2.9)

8

one recognizes that the diagonal term u (CPS(x, y)) is redundantly extended since u(x, y) =
u (CPS(x, y)) already holds. Returning to the general case in d−dimensions, the diagonal
of the ambient discrete Laplacian may be removed before composition with the extension

∆h
S,imp = −2d

h2 I +
(2d
h2 I + ∆h

)
E , (2.10)

which avoids these self-interpolation effects and produces the essential operator within the
implicit closest point method [13]. Once again considering Figure 2.1, the implicit form
would give a similar picture with the selected node (solid circle) no longer being extended
from its interpolation stencil. From this the implicit form of the discrete model equation is
given by ((

c+ 2d
h2

)
I−

(2d
h2 I + ∆h

)
E
)

u = f . (2.11)

Interestingly, taking c = 0 here yields the same discrete operator formed in [11] for treating
Laplace-Beltrami eigenvalue problems. Directly discretizing this operator to find the direct
form in Section 2.1.2 gives a matrix with a great number of false eigenvalues clustered near
0. Regularization of that operator was achieved by equation (2.10) with c = 0, removing
the issues surrounding the near-null eigenfunctions.

The remainder of this thesis will use the implicit formulation of equation (2.10), and as
such the subscript imp will be dropped. This maintains the applicability of the developed
schemes to transient problems and will keep the behavior reasonable in the limit of small
c. Additionally, we may hope that the regularization of the spectrum will improve the
performance of the iterative solvers explored herein.

9

Chapter 3

Domain Decomposition

Domain decomposition seeks to solve a single large problem by splitting it into a collection
of smaller subproblems. Decoupling these smaller problems from each other exposes paral-
lelism [21] and allows one to deal with much smaller matrices. These schemes are generally
formulated in one of two ways. First, the continuous domain is split and appropriate bound-
ary conditions are imposed on the newly introduced interfaces [6]. These local problems are
then discretized in a way that respects the global discretization. Or second, the discrete
subproblems may be defined directly through restrictions [21] and modifications [22] of the
linear system defining the global system. The first approach is more intuitive, and as shall
become apparent in Chapter 5, is more natural for the application of these ideas to closest
point problems. Here the continuous and algebraic formulations are detailed independent
of the closest point method to simplify the presentation. A number of great treatises on
domain decomposition exist, including [21, 25, 16] and [6]. The notation and style is similar
to that used within [6].

3.1 Continuous formulation

The domain decomposition schemes treated herein will be developed for a generic equation
posed on Ω ⊂ Rn Lu = f in Ω

Bu = g on ∂Ω
, (3.1)

with L a linear elliptic operator and B a linear boundary operator. This global domain is
partitioned into NS disjoint subdomains, Ω̃j . These partitions are then contained inside a set
of overlapped subdomains, Ω̃j ⊂ Ωj , possibly chosen to introduce some convenient geometry.
Further, denote the portion of the artificial interface introduced by ∂Ωj lying in the kth

disjoint subdomain by Γjk =
(
∂Ωj ∩ Ω̃k

)
\ ∂Ω (note that Γjk 6= Γkj). A representation of

the classic keyhole domain (used in Schwarz’s original work [20]) can be seen in Figure 3.1.

10

Figure 3.1: A keyhole domain, in the style of Schwarz’s motivating example, is sketched
here and shows the two subdomains as well as the separate interfaces.

The additive Schwarz method begins with an approximate solution, u(0)
j , on each over-

lapped subdomain (or really just over the interfaces) and solves the subproblems
Lu(n+1)

j = f in Ωj

Bu(n+1)
j = g on ∂Ω ∩ ∂Ωj

Tjku
(n+1)
j = Tjku

(n)
k on Γjk, ∀ k

, (3.2)

over all subdomains j = 1, 2, . . . , NS to produce improved approximations to the solutions.
An important addition here is the appearance of linear boundary operators Tjk linking the
subsolutions together. Due to this role, the operators Tjk are usually called transmission
operators. Two forms of transmission operator are of interest here

Tjk = identity or (3.3)

Tjk =
(
∂

∂n̂ jk
+ α

)
, (3.4)

with the first enforcing Dirichlet conditions over the artificial boundaries and the second
enforcing Robin conditions with n̂jk as the outward normal direction on Γjk. The weight α
present in the Robin condition is free and may be optimized to provide the fastest conver-
gence. The boundary locations and normal directions do not coincide, so Tjk 6= Tkj .

These subproblems are solved in a decoupled fashion, with the right-hand sides of the
transmission conditions being updated only after all subproblems have updated solutions.
Importantly, all operators present are linear, and hence from these subproblems we may
subtract the exact solution restricted to each overlapping subdomain to form the local error

11

e
(n)
j = u

(n)
j − u|Ωj

. In the interior of Ωj one finds

Le(n)
j = Lu(n)

j − Lu (3.5)

= f |Ωj
− f (3.6)

= 0, (in Ωj) , (3.7)

where the global boundary conditions also homogenize to yield the equivalent subproblems
Le(n+1)

j = 0 in Ωj

Be(n+1)
j = 0 on ∂Ω ∩ ∂Ωj

Tjke
(n+1)
j = Tjke

(n)
k on Γjk, ∀ k

, (3.8)

which show how the error evolves.
Following [6], a second reformulation of this scheme will be useful in the remaining

discussion. Take χj ∈ C∞(Ω) as a partition of unity,
∑
j
χj(x) = 1 for all x ∈ Ω, where

the supports respect the overlapping subdomains, supp (χj) ⊂ Ωj . These induce extension
operators, Ej , bringing functions defined on Ωj to those on Ω through extension by zero.
The extension operators satisfy the relation

w =
∑
j

Ej
(
χj w|Ωj

)
, (3.9)

for functions w supported on the global domain. This allows the construction of a global
solution from the local solutions of the problems in equation (3.2) through this partition of
unity

u(n) =
∑
j

Ej
(
χju

(n)
j

)
, (3.10)

which allows the formation of the global residual at the nth iteration as r(n) := f − Lu(n).
In the residual formulation (3.2) is equivalent to solving the problems

Lv(n)
j = r(n) in Ωj

Bv(n)
j = 0 on ∂Ω ∩ ∂Ωj

Tjkv
(n)
j = 0 on Γjk, ∀ j

, (3.11)

with the global solution update

u(n+1) = u(n) +
∑
j

Ej
(
χjv

(n)
j

)
. (3.12)

12

To see this equivalence consider the local update given as u(n+1) = u(n)
∣∣∣
Ωj

+ v
(n)
j . Inside

the jth overlapped subdomain

L
(
u(n)

∣∣∣
Ωj

+ v
(n)
j

)
= L u(n)

∣∣∣
Ωj

+ Lv(n)
j (3.13)

=
(
Lu(n) + r(n)

)∣∣∣
Ωj

(3.14)

= f |Ωj
, (3.15)

which is consistent with (3.2) inside Ωj . The recognition that on the global domain bound-
ary the subsolutions are never updated, since Bu(n+1)

j = g = Bu(n)
j , directly yields the

homogeneous condition on v(n)
j over ∂Ω ∩ ∂Ωj . Finally the transmission condition homoge-

nizes since Tjku
(n+1)
j = Tjku(n) holds over the boundary and Tjk is linear. This arises from

(3.12) as a consequence of χj being zero over all of ∂Ωj \ ∂Ω.
Here the same iteration has been cast in three forms. The first in (3.2) is intuitive

and lays out the governing idea behind the scheme. The second form in (3.8) shows how
the error evolves through the iteration and will be of use for showing convergence of the
iteration and estimating the rate. The final iteration defined by (3.11) homogenizes the
transmission conditions and casts the update in terms of the residual. The former property
greatly simplifies the implementation of the scheme as the transmission operator does not
need to be evaluated over the other subsolutions. The latter ultimately allows the whole
iteration to be embedded within a Krylov accelerator as in Section 3.2.1.

3.1.1 Contraction factor analysis

Results regarding the convergence rates of the presented domain decomposition methods are
available only in special cases. An indicative case where specific results can be obtained is to
consider R2 split into two semi-infinite half-planes, Ω1 = (−∞, δ)×R and Ω2 = (0,∞)×R.
The target problem is still the positive Helmholtz model problem (c−∆)u = f, c > 0 now
paired with a decay condition at infinity. Here the convergence analysis of [6] is generalized
slightly to treat the typical Robin conditions as well as oblique Robin conditions where
some tangential information is also incorporated. This does not improve the convergence
rate, and in fact hinders it, but will be useful when considering the approximations made
in Section 4.2.2. The additive optimized Schwarz method solves the problems

(c−∆)u(n+1)
1 = f in Ω1

u
(n+1)
1 → 0 as x→ −∞

T +
θ u

(n+1)
1 = T +

θ u
(n)
2 on x = δ

, (3.16)

13

Figure 3.2: The splitting of R2 used in the contraction factor analysis can be seen here.
In particular, the direction along which the oblique Robin condition is enforced is shown
relative to the outward pointing normal vectors for each subdomain.

and
(c−∆)u(n+1)

2 = f in Ω2

u
(n+1)
2 → 0 as x→∞

T −θ u
(n+1)
2 = T −θ u

(n)
1 on x = 0

, (3.17)

where the boundary operator T ±θ =
(
± cos θ ∂

∂x + sin θ ∂
∂y + α

)
enforces an oblique Robin

condition with θ as the angle between the normal and the direction that the derivative is
enforced. Figure 3.2 shows this splitting and the oblique directions used in the transmission
condition.

Writing these equations in terms of the solution error (cf. equation (3.8)) and taking
the Fourier transform in the infinite y−direction we find the equations

(
c+ k2 − ∂2

∂x2

)
ê

(n+1)
1 = 0 on Ω1

ê
(n+1)
1 → 0 as x→ −∞

T̂θ
+
ê

(n+1)
1 = T̂θ

+
ê

(n)
2 on x = δ

, (3.18)

and

(
c+ k2 − ∂2

∂x2

)
ê

(n+1)
2 = 0 on Ω2

ê
(n+1)
2 → 0 as x→∞

T̂θ
−
ê

(n+1)
2 = T̂θ

−
ê

(n)
1 on x = 0

, (3.19)

where k is the Fourier conjugate variable to y. The wavenumbers k decouple entirely and
this is now simply a system of second-order ordinary boundary value problems. Taking

14

λ =
√
c+ k2, the solutions to these equations can be written as

ê
(n+1)
1 (x; k, c, α, δ, θ) = γ

(n+1)
1,+ eλ(x−δ) + γ

(n+1)
1,− e−λ(x−δ) (3.20)

ê
(n+1)
2 (x; k, c, α, δ, θ) = γ

(n+1)
2,+ eλx + γ

(n+1)
2,− e−λx , (3.21)

with γ
(n+1)
1,− = γ

(n+1)
2,+ = 0 due to the conditions at infinity. Inserting these forms for the

error modes into the transmission conditions yields

γ
(n+1)
1,+ (α− ik sin θ + λ cos θ) = γ

(n)
2,− (α− ik sin θ − λ cos θ) e−λδ (3.22)

γ
(n+1)
2,− (α− ik sin θ + λ cos θ) = γ

(n)
1,+ (α− ik sin θ − λ cos θ) e−λδ . (3.23)

These two coefficients depend on each other at different iterations. This dependency can be
removed by moving back an additional iteration, so that γ(n+1)

1,+ depends on γ(n−1)
1,+ instead

of γ(n)
2,− (and similarly for γ(n+1)

2,−). Upon doing so one finds

γ
(n+1)
1,+ = γ

(n−1)
1,+

(
α− ik sin θ − λ cos θ
α− ik sin θ + λ cos θ

)2
e−2λδ (3.24)

γ
(n+1)
1,+ = γ

(n−1)
1,+

(
α− ik sin θ − λ cos θ
α− ik sin θ + λ cos θ

)2
e−2λδ . (3.25)

The contraction factor (convergence factor in [6]) is defined as the amplitude ratio of
each error mode between iterations

γ
(n+1)
1,+

γ
(n−1)
1,+

:= ρ2
OR (k; c, α, δ, θ) , (3.26)

where the square arises from there being two iterations within the relationship. The evolu-

tion of ê2 reveals the same contraction factor, that is γ
(n+1)
1,+

γ
(n−1)
1,+

= γ
(n+1)
2,−

γ
(n−1)
2,−

holds. For the method

to be convergent the contraction factor must be strictly smaller than 1 for all k, since this
assures that every mode in the error decays as the scheme is iterated forward.

Finally, we extract a factor of

ρOR (k; c, α, δ, θ) =
∣∣∣∣∣α− ik sin θ −

√
c+ k2 cos θ

α− ik sin θ +
√
c+ k2 cos θ

∣∣∣∣∣ e−δ√c+k2
, (3.27)

for the oblique Robin conditions, where the definition of λ has been reinserted. When θ = 0
is taken, this form reduces precisely to the one given in [6] for Robin conditions. There are
a few interesting observations to be made:

• Increasing the overlap damps the high frequency error modes very effectively

• Increasing the model parameter c leads to faster decay of the lower modes

15

• For θ = 0 there is always a mode satisfying α =
√
c+ k2 which contracts immediately

• As θ → π/2 Dirichlet conditions are recovered

• For θ 6= 0 the contraction factor is never zero for finite k

Figure 3.3 shows the behavior of the contraction factor through various parameter sweeps
and compares it against the Dirichlet and pure Robin cases.

3.2 Restricted additive Schwarz and generalizations

Discretizing the prior scheme, equations 3.11 and 3.12, yields the restricted additive Schwarz
(RAS) family of solvers [?, 5, 23]. The (sub)domains Ω, Ω̃j , and Ωj are replaced by Σ, Σ̃j and
Σj upon discretization. As before, the disjoint partitions satisfy Σ = ∪Σ̃j and Σ̃j ∩ Σ̃k = ∅
for j 6= k. Additionally, Σ̃j ⊂ Σj .

The partition of unity and extension operators used previously now correspond to the
restriction and extension operators

R̃j : Σ→ Σ̃j R̃T
j : Σ̃j → Σ (3.28)

Rj : Σ→ Σj RT
j : Σj → Σ , (3.29)

where the restrictions truncate solutions to the domain of interest and extensions pad vectors
by zeros to match the full set of degrees of freedom. The relation given by (3.9) has a discrete
counterpart given by

w =
∑
j

RT
j R̃jw , (3.30)

for vectors supported on Σ. More compactly, this asserts that
∑
j

RT
j R̃j = I over Σ (cf. [6]

for discrete partitions of unity in the non-RAS case).
Now suppose that equation (3.1) is discretized over Σ to give Au = f . The discrete

subproblems in (3.11) become

Ajv(n)

j = Rj

(
f −Au(n)

)
u(n+1) = u(n) +

∑
j

R̃T
j ṽ(n)

j ,
, (3.31)

where Aj is the discretization of the differential operator on Ωj including the transmis-
sion and boundary conditions. The local correction supported on Σj is v(n)

j , while ṽ(n)
j :=

R̃jRT
j v(n)

j contains its contribution limited to the jth disjoint partition. The approximation
to the global solution at the nth iteration is denoted u(n), which is updated through the
disjoint corrections extended by R̃T

j . These linear problems may be solved in parallel with
the only dependency between them now held in the global matrix-vector multiply needed to

16

0 5 10 15 20

0.2

0.4

0.6

0.8 c = 0.1, =5, = 0.1
c = 10, =5, = 0.1

0 5 10 15 20
0

0.2

0.4

0.6

0.8 c = 1, =1, = 0.1
c = 1, =10, = 0.1

0 5 10 15 20

0.2

0.4

0.6

0.8 c = 1, =5, = 0
c = 1, =5, = 0.5

0 5 10 15 20

0.2

0.4

0.6

0.8 = 0
 = /6
 = /3
 = /2

Figure 3.3: The contraction factor given by equation (3.27) is plotted with various parameter
values. In the top three plots the solid lines correspond to the pure Robin case, dashed lines
correspond to the oblique case with θ = π/12 and dotted lines give the Dirichlet behavior.
In the first plot, the model parameter c is varied by two orders of magnitude showing an
appreciable difference in the convergence rate of the lowest modes under the Robin type
conditions. The second plot varies the Robin weight α, showing how the the performance
may be improved by tuning this parameter. The third plot varies the overlap size with no
overlap in red and a large overlap in blue. Without overlap, the Robin conditions yield
contractive schemes with reduced performance on the higher modes while the Dirichlet
conditions fail. With large overlap (blue) the convergence rates are fast for all modes.
Finally, in the last panel the angle θ is swept from 0 to π/2 transitioning from pure Robin
on the bottom to Dirichlet above.

17

form the residual. Inverting the above systems and inserting them into the update formula
yields

v(n)
j = A−1

j Rj

(
f −Au(n)

)
(3.32)

∑
j

R̃T
j ṽ(n)

j =

∑
j

R̃T
j R̃jRT

j A−1
j Rj

(f −Au(n)
)
, (3.33)

where the restrictions are all taken with respect to the overlapped degrees of freedom but
the subsequent extension to the global solution vector is done with respect to the disjoint
degrees of freedom.

3.2.1 Use as a preconditioner

In the case where Dirichlet transmission conditions are imposed in (3.11) the local discrete
operators can be obtained via restrictions and extensions of the global matrix by Aj =
RjART

j since these conditions simply impose zeros outside of Σj anyway. In this case the
solver is termed Restricted Additive Schwarz (RAS) [6, 5], and the preconditioner matrix
defined in (3.33) is denoted

M−1
RAS =

∑
j

R̃T
j R̃jRT

j

(
RjART

j

)−1
Rj . (3.34)

For the Robin transmission conditions, defined in (3.4), the local operators Aj are not
obtained by simple restrictions of the global matrix. The preconditioner matrix can still be
formed

M−1
ORAS =

∑
j

R̃T
j R̃jRT

j A−1
j Rj , (3.35)

and the scheme is referred to as Optimized Restricted Additive Schwarz (ORAS) [23]. The
weight α present in the Robin conditions may be chosen to optimize the convergence rate.
In either case, the net effect of this iteration is to create a sequence of solution estimates
via

u(n+1) = u(n) + M−1
(
f −Au(n)

)
, (3.36)

from some initial guess u(0). However, by linearity of the problem, the exact solution could
be subtracted from both sides of this to obtain

u(n+1) − u = u(n) − u + M−1
(
f −Au(n)

)
(3.37)

e(n+1) = e(n) + M−1
(
f −A

(
u + e(n)

))
(3.38)

=
(
I−M−1A

)
e(n) , (3.39)

18

giving the error propagation matrix
(
I−M−1A

)
. The spectral radius of this matrix being

less than 1 is necessary and sufficient for the iteration to converge [6, 16]. Additionally, the
solution iteration in (3.36) and error propagation in (3.39) can be seen to be the simple
Richardson iteration relaxation scheme [26] applied to the system

M−1Au = M−1f . (3.40)

For this reason, the matrix M−1, or more accurately the collective action of solves in (3.33),
is called a preconditioner for A. Furthermore, since Krylov solvers need only apply matrix-
vector products, the modified system in (3.40) can be treated by simply applying the action
of M−1 to the result of all matrix-vector products involved.

3.3 Example: Poisson equation in the plane

As a simple first example we consider Poisson’s equation on the unit square Ω = (0, 1)2

∆u = exy sin(2πx) sin(2πy) (x, y) ∈ Ω

u = 0 (x, y) ∈ ∂Ω
, (3.41)

with homogeneous Dirichlet conditions posed globally and a simple, but non-trivial forcing
in the interior. The global problem is discretized by the standard second-order accurate
five-point centered difference Laplacian

∆ui,j ≈
1

∆x2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) , (3.42)

which gives a discrete equation Au = f . We treat this equation by the domain decomposition
methods described above. This problem is posed over two different grids, a coarse one with
642 unknowns, and a finer one with 2562 unknowns.

The disjoint subdomains, Σ̃j , are formed by dividing these grids into 6 equal sized strips
in the y−direction and a varied number of strips in the x−direction to achieve different
total subdomain counts NS . The overlapping subdomains, Σj , are then formed by adding
NO layers of grid points around each disjoint subdomain making the overall overlap width
2NO∆x. The residual framework introduced in equation (3.31) is used here so the local
problems use restrictions of the global residual as forcing functions. The Robin boundary
conditions, ∂v

∂n̂ + αv = 0, are formed using centered differences along the boundaries. A
ghost node lying outside the subdomain is used whose value is determined through the use
of the Laplacian difference operator at the boundary [9]. At x = 1 for instance

(4 + 2α∆x) vM,j − 2vM−1,j − vM,j+1 − vM,j−1 = −rM,j , (3.43)

19

20 30 40 50 60

200

400

600

800

It
e

ra
ti
o

n
s

20 30 40 50 60

20

30

40

50

It
e

ra
ti
o

n
s

Figure 3.4: The effect of subdomain count on these methods is shown here with the solvers
in the left panel, and preconditioned GMRES in the right panel. Solid lines denote the low
resolution case with 642 unknowns while the dashed lines show the higher resolution case
with 2562 unknowns. For both resolutions, the circles correspond to the RAS methods and
the triangles correspond the the ORAS methods with a Robin weight of α = 10. As would be
expected the iterations required to converge increase as the number of subdomains increases.
The high resolution case is more affected than the low resolution case and similarly the RAS
methods are more sensitive than the ORAS methods.

is enforced as the equation for vM,j .M denotes the final grid point, taking the valueM = 64
or M = 256 herein. Finally, at the corners of the subdomain the normal vectors are taken
to be diagonal and two differences with two ghost points are used.

The treatment of the global problem by the (O)RAS solver is summarized in Algorithm
1. Therein the local operators are built and factored, after which equation (3.36) successively
applied. Convergence is declared when the relative norm of the residual,

∣∣∣∣∣∣r(n)
∣∣∣∣∣∣

2
/
∣∣∣∣∣∣r(0)

∣∣∣∣∣∣
2
,

decays to some predetermined tolerance. Here, a tolerance of 10−6 is used, though the results
are not significantly impacted by tightening it.

Figure 3.4 shows that the required number of iterations increases as the number of
subdomains is increased. This is expected from the global nature of the Poisson equation
and the delay in iterations for separated subproblems to influence each other [16, 6]. In-
terestingly, the ORAS methods using the Robin transmission conditions are only weakly
affected. Additionally, the preconditioned GMRES results are not quite monotone with the
NS = 36 case behaving unusually well. As the overlap width is increased in Figure 3.5 the
RAS methods see diminished iterations to convergence at the cost of more expensive local
solves. The ORAS methods operate nearly independently of the overlap width. Finally, the
effect of the Robin weight is measured not in terms of iteration counts but rather the ratio
of the RAS iterations to the ORAS iterations, as shown in Figure 3.6. This allows the effect
of the Robin weight to be viewed as the advantage that ORAS provides over RAS as the
solution cost is the same when NS and NO are kept fixed.

20

3 4 5 6 7 8

100

200

300

400

500

600

700
It
e
ra

ti
o
n
s

3 4 5 6 7 8

15

20

25

30

35

40

It
e
ra

ti
o
n
s

Figure 3.5: The effect of the overlap width on these methods is shown here with the same
pattern as in Figure 3.4. The solvers (left panel) and the preconditioners (right panel) are
similarly effected in all cases. As before, the high resolution cases (dashed lines) are effected
more strongly than the low resolution cases. The ORAS cases seem nearly independent of
the overlap width as may be expected from the convergence behavior from Section 3.1.1.

Algorithm 1 (O)RAS Solver and preconditioner
for all Σj do

Pre-factor Aj = LjUj

end for
u(0) = 0
r(0) = f
n← 0
while ||r(n)||/||r(0)|| > tol do

v(n) ← 0
for all Σj do

Solve Ajvj = Rjr(n)

v(n) ← v(n) + R̃T
j vj

end for
u(n+1) ← u(n) + v(n)

r(n+1) ← f −Au(n+1)

end while

21

The ORAS solvers provide the greatest speed up when the weight is kept small, but
destabilize as they tend towards the singular Neumann case. Indeed, with α = 5 and 2562

unknowns the ORAS solvers diverge after a few iterations, seen as missing data points in the
left panel of Figure 3.6. The improvement available to the preconditioned GMRES methods
is smaller but still significant, particularly for the high resolution case. This same style of
presentation is used in Chapter 6.

10 20 30 40

2

4

6

8

F
a
c
to

r

10 20 30 40

1

1.5

2

F
a
c
to

r

Figure 3.6: The Robin weight α is varied and the effects on the convergence behavior for the
solvers (left panel) and preconditioners (right panel) are plotted. Instead of raw iteration
counts the ratio of RAS iterations to ORAS iterations is plotted to capture the relative
effect of introducing the improved transmission conditions. The low resolution cases, 642

unknowns, are shown as solid lines while the high resolution cases, 2562 unknowns, are
shown as dot-dashed lines. The large overlap cases show diminished factors of improvement
since the RAS methods behave better at these overlaps while the ORAS methods are nearly
independent of overlap width (c.f. Figure 3.5). There is no significant difference between
the 24 and 36 subdomain cases.

22

Chapter 4

Subdomain Construction

To treat the relevant discrete form for the model problem given in (2.11) by domain de-
composition methods, we need to first find a partitioning of the space. To keep the scheme
general, the strategy for partitioning must be able to split arbitrary surfaces into any num-
ber of subdomains. To achieve this, the method cannot rely on information specific to the
surface beyond what the closest point method already needs. Ideally, the generated subdo-
mains would respect the surface normals to simplify the description of the local problems.
Two heuristic approaches are given for this, though the transmission conditions that we
propose in Chapter 5 and use throughout this work are robust to misalignment with the
surface normals.

To obtain this desired generality we do not partition the surface but rather the set of
active nodes. Within the domain decomposition community, it is popular to find partitions
by building a graph over the mesh and using a graph partitioner such as METIS [8] or
SCOTCH [15]. Here, we follow this idea and extend it to our case where the preservation of
the underlying geometry is of interest. Several possible connectivity schemes are commented
on, and ties are made back to some other preconditioning strategies.

4.1 Graph partitioning problem

The graph partitioning problem is closely related to the subdomain generation problem for
domain decomposition schemes. Many discretization schemes introduce some mesh over the
domain, over which a graph can be constructed with edges connecting the constituents.
Finite difference schemes would generally take the connections of this graph as those in-
duced by the stencil of the discrete operator. Finite element and finite volume schemes are
partitioned element by element (or cell by cell) with the graph connections running between
those elements sharing a face or edge.

The ideal partitioning would create the desired number of local meshes with the minimal
number of edge cuts. This minimizes the number of nodes in the overlap region, to be
constructed in Section 4.2, for a given overlap width. This keeps size of the local problems

23

Figure 4.1: The two graph connectivities discussed in Sections 4.1.1 and 4.1.2 can be seen
here with the simple centered difference scheme on top and the full stencil approach below.
In each, all of the connections for the node indicated by the solid diamond are drawn,
though for the construction of the entire graph all connections for each node would need to
be added.

small. Additionally, for an implementation built with distributed memory parallelism this
will reduce the message sizes for overlap regions that need to be populated from another
process. The partitioning software introduced in [8] is used to generate all partitionings,
with an objective function satisfying precisely these desires. The METIS documentation
defines additional partitioning objectives and discusses their use in more detail. This choice
mirrors much of the domain decomposition community at large [6].

The discretization of the iCPM relies on two stencils, one for the centered difference
Laplacian on the embedding space, and another for the interpolation within the extension
operator (2.10). These stencils can be used to produce different graphs that capture different
features of the problem. Two contrasting possibilities are highlighted here. The simplest
considers only the finite difference operator and requires minimal input while the second
mimics the behavior of some algebraic multigrid black box preconditioners [28]. Figure 4.1
illustrates these two schemes with the simple nearest neighbor coupling of Section 4.1.1
shown above and the full stencil coupling of Section 4.1.2 below.

To guide the discussion in the remainder of this chapter it will be useful to define several
node sets and types of nodes:

• Disjoint partition Σ̃j : The same node set as in Section 3.2, obtained here from the
graph partitioner or by exploiting some underlying symmetry.

• Overlapping partition Σj : The disjoint partition is grown outwards to build overlapping
subdomains.

24

• Boundary nodes ΣBC
j : These nodes are necessary for the imposition of the boundary

conditions on the local problem. They are active nodes but are not contained in Σj .

• Local ghost nodes ΣG
j : The nodes layered on Σj to complete the stencil of the ambient

Laplacian and the boundary operator, layered on ΣBC
j , if needed. Those around Σj

are also ghosts in the global problem but those surrounding ΣBC
j may not be.

• Neighboring nodes: The nodes adjacent to a given node along the principal axes of the
mesh that lie within the computational tube or local mesh.

• Interfacial node: A node in Σ̃j or Σj whose local list of neighbors does not correspond
with its global list of neighbors.

The node sets Σ̃j , Σj , and ΣBC
j are all active and share the following properties, Σ̃j ⊂ Σj ⊂

NA, ΣBC
j ⊂ NA, and importantly Σj ∩ΣBC

j = ∅. The creation of these sets is treated each
in turn in the following subsections.

4.1.1 Nearest neighbor coupling

Using the stencil of the centered difference Laplacian yields a sparse graph of maximal degree
2d, twice the dimension of the embedding space, which is simple to create and partition, but
in turn ignores nearly all of the underlying geometry. The generated partitions generally
will not follow the surface normals, with the utility of the partitions coming only from the
narrowness of the mesh and the relatively small number of edge cuts induced by partitions
aligned to the surface normals. This graph connectivity can be seen in the upper portion
of Figure 4.1 with an indicative interface between partitions visible in the second panel of
Figure 4.2.

4.1.2 Full coupling

Another option is to augment the graph obtained from the nearest neighbor scheme by
now including the entire interpolation stencil of each node in its connected vertices. This
gives a much denser graph, whose maximal degree now depends on the interpolation order
2d + (p + 1)d, but includes a great deal of additional information. An exemplary set of
connections can be seen in the lower portion of Figure 4.1 with the interface between
partitions visible in the third panel of Figure 4.2. In fact, from Figure 4.2 we see that the
non-locality present in the problem has produced a partition that is disconnected in the
embedding space which does not readily serve our purposes. This can be mitigated by the
addition of overlaps as in Section 4.2 but shall not be pursued any further. Though this
fails to be a useful strategy for partitioning it does hint at the poor performance of some
algebraic multigrid black box preconditioners for this problem. The methods generally rely
on building a graph based on the nonzero pattern of the matrix and subsequently pruning
the induced adjacency matrix [28].

25

Figure 4.2: Several interfaces between disjoint partitions are gathered here for a closest
point mesh over a circular surface. The first panel shows the ideal situation as a manually
obtained partition exploiting the circular symmetry. The second panel shows the result
of the nearest neighbor graph partitioning, which fails to follow the surface normals but
remains connected. The third panel uses the full coupling scheme to define its graph which
gives rise to a disconnected partition, though is does otherwise follow the surface normal
very well. Finally, the last panel gives the result of applying the interface corrector defined
in Section 4.1.3 to the second panel and now respects the surface normal.

Figure 4.3: A typical disjoint partitioning from the nearest neighbor coupling scheme is
shown in the first panel with diamonds denoting one subdomain and circles the other. From
here all interface nodes have the closest points generated, shown as solid black lines in
the middle panel, and if the lattice point closest to this point on the surface belongs to a
different subdomain they are marked for migration. The third panel shows a surface normal
near the interface to illustrate the quality of the reassignment.

4.1.3 Interface alignment

The partitions visible in the second panel of Figure 4.2 were generated by the nearest neigh-
bor coupling scheme and are used as the foundation for the rest of this thesis. Notably,
these do not follow the surface normals. The formulation of the overlaps and construction
of boundary information as described in the remainder of this chapter, as well as the trans-
mission conditions posed in Chapter 5, are robust enough to deal with this misalignment.
Regardless, we now describe a simple scheme for the alignment of these interfaces.

The METIS [8] partitioning obtained from the nearest neighbor scheme defined above
can be aligned to the surface normals by visiting each node and querying its closest point.
Projecting this point on the surface to the nearest lattice point identifies this node with
the one most closely aligned to it in the surface normal direction. If this node’s assigned
partition differs from this projected closest point then it is marked for reassignment. After

26

marking all nodes, they may be moved from their current subdomain to the subdomain
of their projected point, then all subdomains are re-indexed to keep them associated with
contiguous sets of unknowns. Figure 4.3 illustrates this process for an indicative interface
from the nearest neighbor scheme defined in Section 4.1.1. In the last panel of Figure 4.2
the action of this process on a real partitioning can be seen.

4.2 Construction of overlaps

After the disjoint partitions Σ̃j are found from METIS, a set of overlapped partitions and all
associated interface information needs to be created. A simple and effective method for the
overlap construction visits all interfacial nodes in each partition and adds their neighbors
into the new overlapped version, Σj . This process is then repeated a suitable number of
times over the new interface of Σj to achieve larger overlap widths. If n passes of this
process are applied to all subdomains, then an overlap width on the order of 2n∆x will be
achieved. From these overlapping partitions two pieces of subdomain information need to be
extracted before the transmission operators proposed in Chapter 5 can be constructed. The
boundary of the subsurface induced by this collection of nodes must be found, and because
of the indirect route to obtain this partitioning, will need to be approximated. Further, if
Robin conditions are to be used then the boundary conormals will be needed. These are
unit vectors anchored at each boundary location that simultaneously lie tangential to the
surface and normal to the constructed subsurface boundary. The nodes in each of these sets
are illustrated Figure 4.4.

4.2.1 Construction of effective boundaries

After the overlapping partitions Σj are found, boundary points on the surface must be
constructed to identify this collection of nodes with a patch of the surface. Additionally,
there needs to be enough nodes present to actually impose the boundary conditions. First,
all of the interfacial nodes in each Σj are visited and their closest points collected into the
set Xint

j as a tentative effective boundary. The interpolation stencil of each xi ∈ Xint
j is

found and any nodes missing from Σj are placed in the set ΣBC
j . Any incomplete stencils

for the centered difference Laplacian are now completed by adding those points to ΣBC
j as

well. The active nodes for the definition of the local problem is the union Σj ∪ΣBC
j but the

boundary nodes are kept separate to aid in the imposition of transmission conditions.
To complete the construction of the mesh for the local problem, ghost nodes must be

added as in the global case. For RAS solvers with Dirichlet transmission conditions, ghost
nodes are only needed around Σj , to complete the stencil of the ambient Laplacian and
agree with the ghost nodes defined on the global problem. The ORAS solvers using Robin
transmission conditions require additional ghost nodes layered over the boundary nodes
ΣBC
j which are not ghost nodes in the global problem. Either way, the set of ghost nodes

27

Figure 4.4: Here, the node sets used in the construction of one subproblem are built up
successively. First the disjoint nodes Σ̃j that arise from the graph partitioning stage are
identified in blue. Four layers of overlap nodes are added to create the grown partition
Σj , which includes all of the blue nodes as well as those shown in green. From the inter-
facial nodes of Σj the effective boundary locations are generated, and visible as the black
diamonds. The nodes from incomplete stencils are gathered to form ΣBC

j seen in yellow.
Finally, the ghost node set ΣG

j is formed as a layer around all nodes, shown in red where
those bordering Σj also lie in the set of global ghost nodes while those bordering ΣBC

j are
active nodes in the global classification. The boundary conormal vectors as constructed in
Section 4.2.2 are shown in grey.

is identified as ΣG
j . Finally, these three node sets, the overlapped active nodes in Σj , the

boundary (transmission) nodes in ΣBC
j , and the ghost nodes in ΣG

j , specify all members of
the local discrete problem.

The boundary construction is finalized by associating all nodes in ΣBC
j and members

of ΣG
j with points on the effective boundary Xint

j . This association is made by a method
similar to that proposed in [12] for handling point clouds. Each effective boundary point
xi ∈ Xint

j is considered and all nodes within a distance of p+2
p+1γ are visited. If the visited

node is unassociated, or closer to this boundary point, it is associated with xi. This reduces
the cost of constructing the boundary considerably over the naive approach of visiting each
node in ΣBC

j and searching for the nearest boundary point in Xint
j without introducing

much additional complication. With this identification made, the local problem now has its
own closest point function

CPSj (yi) =

CPS(yi), yi ∈ Σj

CPS(yi), yi ∈ ΣG
j and globally a ghost

arg min
x∈X(int)

j

|yi − x|, otherwise
. (4.1)

28

This agrees with the global closest point function over Σj , but points to the appropriate
member of Xint

j for nodes in ΣBC
j .

4.2.2 Boundary conormal directions

The imposition of Robin conditions in Section 5.3 will need information about the bound-
ary conormal direction, the direction tangential to the surface and normal to the boundary.
Much like the boundary locations in the prior section these will need to be approximated.
Next, tentative conormal vectors are constructed in the simplest way possible and subse-
quently smoothed to yield useful and consistent vectors for the construction of the Robin
boundary operators in Section 5.3.

Tentative conormal vectors

Take xi ∈ ΣBC
j (or the appropriate part of ΣG

j) as a boundary node and define di =
xi −CPSj (xi) as the vector pointing from the nearest boundary location to this particular
boundary node. A naive approach to define the conormal directions would simply project
the surface normal component out of di to obtain

qi = di − (di · ni) ni
|di − (di · ni) ni|

, (4.2)

as an approximation to the conormal anchored at CPSj (xi). These vectors are quite sensitive
to the layout of the boundary nodes and the shape of the local subdomain, giving wildly
varying conormal directions. The left panel of Figure 4.5 shows these tentative conormals for
a typical subdomain obtained on a sphere. To be useful for the transmission conditions in
the following chapter they will need to be smoothed to capture the shape of the subsurface
boundary more appropriately.

Least squares smoothing

A fairly robust means of smoothing these conormal directions for two dimensional sur-
faces embedded in three dimensions is by representing the component directions of the
conormal vectors by a polynomial over the embedding space. Low degree multivariate poly-
nomials are capable of resolving the subsurface boundary and can be found by solving a
least squares problem over the effective boundary locations. The tensor product monomials
xηyµzν , η, µ, ν ≤ p for degrees p = 2, 3 are considered and their evaluations over all of
the effective boundary points are collected into a Vandermonde matrix V. For three dimen-
sional problems there are many more boundary points than the dimension of this polynomial
space and thus the matrix V has many more rows than columns. The coefficients of this
polynomial expansion are found by solving, in the least squares sense, the overdetermined
system

Va(n) = c(n) , (4.3)

29

Figure 4.5: Here one partition from a mesh over a unit sphere is shown. The left panel shows
the conormals constructed through the naive scheme, which cross each other a great deal.
In the right panel, 5 passes of the smoother have been applied yielding noticeably cleaner
conormal vectors.

where c(n) holds the nth component of the tentative conormal vectors respecting the ordering
of the Vandermonde matrix. The total number of boundary points is considerably smaller
than the number of active points defining the local problem and the least squares solution
needed here adds negligible time and memory requirements to the initialization of the solver.

From the solutions of these systems the nth component of the smoothed conormal vectors
are found by evaluating

q̃n(x, y, z) =
∑

η,µ,ν≤p
a(n)
ηµνx

ηyµzν , (4.4)

at CPSj (xi) for each boundary node and component n. The new conormal vectors are
generally not tangential to the surface or of unit magnitude so they must be re-projected
according to equation (4.2). These vectors are considerably more regular in their orientation
and capture the boundary behavior much better than the tentative ones do. This proce-
dure can be repeated several times to continue relaxing the conormal vectors for improved
regularity.

Neighborhood smoothing

The least squares approach does not work well for one dimensional surfaces embedded in two
dimensions. The number of boundary points is quite small and the subsurface boundaries
are (nearly) zero dimensional making the rows of the Vandermonde matrix nearly identical.
Instead, a simpler smoothing operation can be done by locally averaging the tentative
conormal vectors with each other.

The neighborhoods considered here are collections of boundary nodes whose effective
surface boundary locations are near to each other. Each boundary node xi ∈ ΣG

j can be
associated not only with its effective closest point but also the lattice point closest to that
point. All indices of boundary nodes sharing their closest lattice point with CPSj (xi) can

30

be collected in the set Li ⊂ ΣBC
j ∪ ΣG

j so that the weighted average can be written as

q̃i = qk + 1
2
∑
k∈Li

qk , (4.5)

to form a smoothed representative vector. The factor of 1/2 weights the original vector over
its neighbors, but is arbitrary in value. This vector will in general not lie tangential to the
surface, as in the least squares case above, and will need to be re-projected and normalized
as in equation (4.2). It is for this reason that the average in equation (4.5) is not properly
normalized to begin with.

31

Chapter 5

Transmission conditions

With the global mesh successfully partitioned into disjoint and overlapping subdomains,
Σ̃j and Σj respectively, the local operators consistent with equation (2.11) can be defined.
The interfaces introduced by this splitting are completely artificial and their treatment will
affect the performance of the schemes greatly. Critically, the boundary conditions posed on
these interfaces to complete the local problems need to be posed in a way that is consistent
with the global problem. First the conditions for this algebraic consistency are discussed
and related back to conditions on the stencil of the boundary operator. Following this,
Dirichlet and Robin conditions are considered along with some observations on their required
accuracy.

In the closest point method the application of boundary conditions is done through a
modification of the extension operator [18, 11]

Aj =
(
c+ 2d

h2

)
I−

(2d
h2 + ∆h

)(E
Tj

)
, (5.1)

over the boundary nodes ΣBC
j . These extensions are found by discretizing the boundary

operator and isolating each individual node’s role within it, which is simplified by only
needing to consider homogeneous boundary conditions. With this modified extension con-
structed and placed into Tj , the ambient Laplacian may be applied to the whole of the local
problem. The second index in the continuous transmission operators, Tjk in equation (3.2),
is suppressed as this block contains all discrete operators belonging to the jth subproblem.
This process can be seen as a generalization of the standard method for imposing boundary
conditions with derivative information on finite difference problems, as was seen in equation
(3.43). This modification will be made concrete for Dirichlet conditions in Section 5.2, and
Robin conditions in Section 5.3, but first the critical conditions for algebraic consistency
are considered.

32

5.1 Overlap requirements

In the continuous setting, there are few restrictions on the splitting and the boundary con-
ditions posed on the subdomains; in fact the homogenization of the boundary conditions in
(3.11) relied only on an overlap being present. Upon discretization however, the consistency
of the preconditioner defined in (3.35) with the global system (2.11) is not trivial. In [23]
these consistency requirements were derived in a fairly general setting for both multiplica-
tive and additive optimized Schwarz methods. Consider first the generic local system of
(3.2) and its direct discretization

Ãju(n+1)
j = fj +

∑
k 6=j

Tjku
(n)
k , (5.2)

where uj is the local solution, fj = Rjf is the local forcing, and the effect of the transmission
operators Tij has been moved to the right hand side. The splitting with respect to the
restrictions Rj and modified local operators Aj is defined to be consistent [23] if the global
exact solution satisfies (5.2). For any pair u and f solving the global system the expression

ÃjRju = Rjf +
∑
k 6=j

TjkRku , (5.3)

must also hold. Applying a restriction operator to the global system and inserting the
consistency definition (5.3) connects the global system to the modified local operators

RjAu = Rjf (5.4)

= ÃjRju−
∑
k 6=j

TjkRku . (5.5)

After rearranging, one finds

0 =

ÃjRj −
∑
k 6=j

TjkRk −RjA

u (5.6)

RjA = ÃjRj −
∑
k 6=j

TjkRk , (5.7)

where the final line follows as a consequence of the solution u being arbitrary.

5.2 Dirichlet Transmission

Dirichlet boundary conditions make for the simplest transmission conditions possible. In
the initial formulation of the closest point method, first-order accurate conditions were
considered by simply propagating the desired value out to all of the boundary nodes. In
our problem, the conditions are homogeneous and only zeros need to be pushed out. As

33

such, the transmission block of the extension operator is simply a zero matrix adjoined to
an identity matrix

Tj =
(
0|ΣBC

j |×|Σj | I|ΣBC
j |×|ΣBC

j |

)
. (5.8)

The local right hand side, fj , has its entries over the active boundary nodes overwritten by
zeros. Notably, this formulation is identical to what one would obtain by constructing the
preconditioner in a purely algebraic fashion, since zeros are written out and their contri-
butions vanish. The benefit in building the local operators this way lies in paving the way
towards the later transmission operators.

Using the effective boundary locations defined in Section 4.2.1, one could also im-
pose second-order accurate Dirichlet conditions. Take xi ∈ ΣBC

j as a boundary node and
CPSj (xi) as its effective boundary location. A homogeneous Dirichlet boundary condi-
tion can be imposed by identifying this boundary node with its mirror point through
the boundary instead of its closest point. Extending this against the mirror point yi =(
2CPSj (xi)− xi

)
we have that

u (xi) + u
(
CPSj (yi)

)
= 0, (5.9)

enforces that the solution over the boundary nodes is equal and opposite that of their mirror
points. Passing from the active nodes to the ghost nodes, the solution will pass through zero
to satisfy the condition (to second-order accuracy) [11]. Each row of the transmission block
within the extension operator is then populated by this condition, where the second term
is expanded as the interpolation stencil of the mirror point yi.

In the discretization of the second-order method one sees that solution values inside the
subdomain, those participating in the interpolation stencil of the mirror point, are effected
in a way that is inconsistent with the global system. Indeed, if the interpolation stencil of
yi contains any of the points from the disjoint partition Σ̃j underlying this local problem on
Σj then their updates will violate the overlap condition. The first-order Dirichlet conditions
defined prior do not suffer this deficiency as they do not rely on any interior information,
and will satisfy the requirement on the overlap automatically. It is for this reason that
primarily the first-order Dirichlet conditions are considered herein.

5.3 First-order accurate Robin

Robin transmission conditions can dramatically increase the convergence rate of Schwarz
solvers [23, 22, 24, ?] by passing derivative information between the subdomains. For the
surface problems considered here the Robin boundary condition over the jth subdomain
becomes (

∂

∂q + α

)
u = 0 on ∂Sj . (5.10)

34

As in Section 4.2.2, q is the boundary conormal lying normal to the subsurface boundary
∂Sj but tangential to the surface. To cast this into a form more easily discretized within the
closest point method it is beneficial to consider a boundary node xi ∈ ΣBC

j . Taking this as
simply a point of interest in the embedding space the discussion can remain in the continuous
setting. Take qi as the conormal direction at the closest boundary point CPSj (xi) and recall
the vector di = xi−CPSj (xi) from above. The derivative in the conormal direction may be
recast to one in the direction di

∂u

∂di
= ∂u

∂qi
cos θi + ∂u

∂qi
cos θi (5.11)

= ∂u

∂qi
cos θi , (5.12)

where θi is the angle between the conormal qi and the node’s displacement di. The derivative
in the normal direction vanishes since the solution is constant in that direction. From this
identification, the discretization of the condition in (5.10) becomes quite accessible. As
we saw in the previous section the order of accuracy of the boundary condition is not so
critical, and instead a condition with a minimal stencil size should be sought. Replacing the
derivative with a forward difference and the Dirichlet component with an identity extension
yields (

∂

∂q + α

)
u ≈

u (xi)− u
(
CPSj (xi)

)
di · qi

+ αu (xi) , (5.13)

at each boundary point. This discretization induces the modified extension

u (xi)−
(1

1 + αdi · qi

)
u
(
CPSj (xi)

)
= 0 , (5.14)

such that each row of the transmission block, Tj , contains a diagonal term and the interpo-
lation stencil for the boundary node. We discretize condition (5.10) to first-order accuracy
as will be shown momentarily.

Before verifying the truncation error in this approximation to the boundary operator, it
is worth making a few observations. Due to the location of the boundary nodes the included
angle between the displacement and the conormal will always be acute, and thus the dot
product di ·qi ≥ 0 will always be positive. The construction of the approximate boundaries
and conormals from above preserves this property. Furthermore, in the case of orthogonality
between these, the extension recovers the typical active node extension.

5.3.1 Convergence study

To the knowledge of the author, the specific discretization of the Robin condition given in
equation (5.14) has not appeared before. To validate the expectation that this enforces the

35

Robin boundary condition to first-order we solve
(1−∆S)u = 1− θ2 on S

u(0) = 0(
∂
∂θ + 1

)
u
∣∣∣
θ=2

= 0

, (5.15)

where S is an arc of the unit circle centered on the origin in R2 delimited by 0 < θ < 2
measured in radians. This has the exact solution uex(θ) = 2

(
e−θ−1 + eθ−1 − e−θ−3

)
−

θ2 − 1. This choice of domain ensures that the place where the Robin condition occurs is
not aligned with the grid, while keeping the comparison to an exact solution simple. The
Dirichlet condition at θ = 0 is enforced to second-order through equation (5.9) and the
interior is treated by bi-cubic interpolation and second-order centered differences so that
the experiment can focus on the Robin condition.

The grid spacing is successively halved in size from ∆x = 1/32 to ∆x = 1/1024 and the
obtained solution is compared against the true solution extended exactly out to the active
nodes in the embedding space. The errors measured in the infinity norm over this range of
grids are shown in Figure 5.1. We observe that the slope of fitted line is 1.00638 which is
consistent with first-order accuracy.

-10 -9 -8 -7 -6 -5

-8

-7

-6

-5

-4

Order: 1.01

Figure 5.1: The infinity norm errors of the computed solutions compared to the exact
solutions of equation (5.15) are shown over a range of grid resolutions here. The circles
mark the infinity norms of the experimental errors and the line is fit through them. First-
order accuracy is observed.

36

Chapter 6

Results

The development of the (O)RAS methods throughout this thesis has relied on a generic
partitioning scheme as given in Chapter 4, the development of appropriate transmission
conditions in Chapter 5, and in the case of Robin conditions some key approximations to
the subsurface boundary locations and conormal directions in Sections 4.2.1 and 4.2.2 re-
spectively. In everything that follows, the choice of method for Krylov subspace acceleration
is GMRES [19], since the systems arising from the closest point method are not symmetric
and GMRES has been found to work well with Schwarz domain decomposition precondi-
tioners [16, 6]. First, a parameter study will show experimentally the convergence behavior
of these methods, and build some intuition towards the selection of parameters for larger
or more complicated problems. Additionally, several key approximations have been made
for the imposition of the Robin conditions and this will serve to validate the consistency of
these approximations. Following this, a sequence of large problems will be solved with just
a few realizations of the developed solver over different numbers of processors. The profiling
information from this will then give a sense of the scalability of the method. All tests have
been run on the TornGat compute cluster hosted at Memorial University of Newfoundland.

6.1 Introduced parameters

The full definition of the developed RAS and ORAS methods has seen the introduction of
several parameters. In the first series of tests, the effects of these parameters are considered
and compared to expectation. Table 6.1 recalls all of these parameters as well as their
anticipated influence over the solver. Most of these parameters are fairly intuitive and
selecting values for them is reasonably simple given the context of a target problem. As
such, most will only be swept over limited ranges in the parameter studies of Section 6.2
with the Robin weight α from equation (5.10) being a notable exception. A great deal of
effort has gone into determining these weights analytically with an emphasis on positive
Helmholtz problems [7]. A surface PDE case has even been considered in [10]. However, the
non-locality present in the closest point method, the unpredictable shape of the subdomains,

37

and the approximations made in constructing the transmission operators all indicate the
need for an exhaustive search. After this, one weight that performed well is selected and
sweeps are performed over the subdomain counts and overlap widths in isolation.

Parameter Expectation

Model weight, c Convergence will slow as c decreases.

Overlap width, NO
Larger overlaps require fewer iterations to

converge. Preconditioner is more costly to apply.

Subdomain count, NS
More subdomains will require more
iterations but increase parallelism.

Transmission Condition
Robin conditions will converge faster when the
overlap condition is met. Dirichlet conditions

will be more robust (cf. Section 3.3).

Robin Weight, α An optimal value will exist but is unknown a priori.

Table 6.1: All relevant parameters are recalled here along with a brief description of their
expected effects.

6.2 Domain decomposition parameter studies

The parameter studies compiled in this section will all follow the same format. For each
surface, two grid resolutions will be considered with two overlap widths and three subdomain
counts. Both Dirichlet and Robin conditions are considered with the Robin weight being
swept over a wide range of values. Additionally, the subdomain counts and overlap widths
are swept independently of all other parameter choices to verify their expected behaviors.
Every parameter combination yields both an iterative solver as in equation (3.36) and a
preconditioner for GMRES as in equation (3.40) with both formulations considered.

In all cases, the forcing is set to zero with the initial solution set as a random vector.
In this way the solvers and preconditioners are directly evaluated on their ability to handle
arbitrary error modes. Convergence is declared when the relative residual norm ||rn||/||r0||
reaches 10−6 for both the domain decomposition solvers and preconditioners. When possible,
the problems are also solved with GMRES with no restarts and no preconditioning to
provide a reference. As the number of unknowns increases, the memory costs of GMRES
becomes prohibitively expensive making this comparison unavailable for the larger problems.

6.2.1 Parameter study: Circular surfaces

The (unit) circle is the simplest curved surface possible and forms an important test case
for these methods. It is one dimensional, smooth, and has no boundary. First, a resolution
of ∆x = 1/200 is considered with bi-cubic interpolation used for the extension operator,

38

yielding 8864 active nodes globally and requiring 3347 iterations of non-preconditioned
GMRES. The two dimensionality of the embedding space makes the linear system sparse,
particularly if the constituent matrices in equation (2.11) are kept separate. The extension
operator has 16 non-zeros per row and the ambient Laplacian (with the diagonal removed)
only has 4. Table 6.2 gathers the relevant iteration counts together and Figure 6.1 displays
the relative performance of the RAS and ORAS methods by plotting the ratio of their
iteration counts. The (O)RAS methods diminish the solution cost greatly in terms of the
iteration count and the time to solution.

Solver Preconditioner

NS NO RAS α = 4 8 16 32 64 RAS α = 4 8 16 32 64
12 4 820 85 158 276 442 636 26 16 21 25 26 27
24 4 1508 167 308 537 858 1226 58 36 28 38 48 54
36 4 2068 465 713 1141 1558 1948 93 84 53 42 66 70
12 8 446 75 131 210 302 389 25 16 20 24 26 26
24 8 914 157 275 443 634 809 50 36 30 38 49 45
36 8 1309 205 357 574 826 1060 69 88 58 52 57 65

Table 6.2: The iteration counts for a unit circle surface discretized with bi-cubic interpolation
and grid spacing ∆x = 1/200 (a total of 8864 unknowns). GMRES with no restarts and no
preconditioning requires 3347 iterations to meet the tolerance.

The resolution of the grid is doubled to ∆x = 1/400 for a total of 17728 active nodes.
This discretization requires 1359 iterations of GMRES without preconditioning to converge.
Table 6.3 gathers the iteration counts for the whole of the parameter study with Figure 6.2
showing the ratio of the RAS iteration counts to the ORAS iteration counts.

Solver Preconditioner

NS NO RAS α = 4 8 16 32 64 RAS α = 4 8 16 32 64
12 4 1671 96 182 334 580 922 27 15 21 23 24 26
24 4 2615 155 294 541 944 1517 59 37 28 39 44 49
36 4 4405 158 301 615 1129 1901 106 79 55 54 80 82
12 8 781 79 145 253 406 582 25 16 21 23 26 26
24 8 2045 179 332 583 939 1355 56 40 27 45 53 56
36 8 2829 241 445 779 1252 1805 104 87 56 39 60 93

Table 6.3: The same sweep as in Table 6.2 is considered but now with ∆x = 1/400 with
a total of 17728 unknowns requiring 1359 iterations of non-preconditioned GMRES. Again
the new solvers are seen to perform quite well with the ORAS formulation providing a
significant advantage.

The overall behavior of the methods are similar for these two resolutions, as one would
hope. In both cases the reduction in iterations to convergence over the non-preconditioned
case is quite large and makes these iterative methods quite competitive. The subdomain

39

20 40 60

2

4

6

8

F
ac

to
r

20 40 60

1

1.5

2

F
ac

to
r

Figure 6.1: The ratio of the ORAS to RAS iteration counts from Table 6.2 for the lower
resolution case, ∆x = 1/200, are shown here and give a good indication of their relative
performance. The left panel shows the ratio of the iteration counts when the methods are
used as solvers and the right panel shows the same when the methods are embedded within
GMRES as preconditioners. Importantly, the cost of initializing these methods are all very
nearly the same making these curves quantitatively meaningful.

count has the expected effect on the convergence behavior: the iteration count increases
with the number of subdomains, as is visible in Figure 6.3. The overlap width also has the
expected effect with the RAS methods speeding up as the width is increased and the ORAS
methods improving somewhat before plateauing, which can be seen in Figure 6.4. Further-
more, we observe that the use of the Robin transmission conditions defined in equation
(5.14) can provide a significant speed up over the RAS methods when the Robin weight
is chosen appropriately. For all cases the required iterations increase when the grid is re-
fined. However, the ORAS solvers and all of the preconditioners require only slightly more
iterations while the RAS solvers require around twice as many interations.

40

20 40 60

5

10

15

20

25
F

ac
to

r

20 40 60
1

1.5

2

2.5

F
ac

to
r

Figure 6.2: The ratio of the ORAS to the RAS iteration counts from Table 6.3 for the
high resolution circle problem, using ∆x = 1/400 for 17728 unknowns, are shown here. The
relative performance of the ORAS methods against the RAS methods is more dramatic here
for both the solvers (left) and preconditioners (right) than in the low resolution case.

15 20 25 30 35

1000

2000

3000

Ite
ra

tio
ns

15 20 25 30 35

40

60

80

100

120

Ite
ra

tio
ns

Figure 6.3: The iterations to convergence for the circle problems at both resolutions and
for both the (O)RAS solvers (left) and preconditioners (right) are compared against the
number of subdomains. The low resolution runs are shown as solid lines while the high
resolution tests are dashed. The RAS methods with Dirichlet transmission conditions are
marked by circles and the ORAS methods with Robin conditions are denoted by triangles.
All cases use an overlap of NO = 4 and the ORAS methods use α = 16. The overall trend is
for the iterations to convergence to increase as the subdomain count increases, as predicted.

41

4 6 8 10 12

500

1000

1500

2000

2500

Ite
ra

tio
ns

4 6 8 10 12
30

35

40

45

Ite
ra

tio
ns

Figure 6.4: Here the overlap width is swept for the circle problems with the solvers shown on
the left and preconditioners on the right. The lines are denoted in the same way as Figure
6.3. All cases use NS = 24 subdomains with the ORAS methods employing a weight of
α = 16. The RAS solvers decrease in required iteration counts as the overlap is increased
while the ORAS solvers appear totally independent of this amount in accord with Section
3.1.1.

6.2.2 Parameter study: Spherical surfaces

A natural follow-up to the circle is the sphere, embedded in three dimensions. The higher
dimensionality complicates the subsurface boundary construction and tests the approxi-
mations made in Chapter 4. As before, we consider two mesh resolutions, both utilizing
tri-quadratic interpolation: a coarse mesh with ∆x = 1/40 with 139886 total unknowns and
a finer mesh with ∆x = 1/80 with 558806 total unknowns. The system sizes now make
the generation of non-preconditioned GMRES results prohibitively expensive. As for the
circle problems, we benefit from keeping the extension and ambient Laplacian as separate
matrices with the former having 27 non-zeros per row and the latter having just 6. Here,
and in all subsequent parameter studies, solves that failed to converge are denoted by – as
an entry in the table.

The speedup offered by the ORAS methods over the RAS methods is less than for the
circular problems. Figures 6.5 and 6.6 show speedups of the ORAS solvers and precondition-
ers over the RAS solvers and preconditioners. The higher resolution problem behaves more
consistently than the low resolution problem. These marginal improvements match what
was observed for the plane in Section 3.3 suggesting that the resolution of the problem is
too low for the relative performance between the RAS and ORAS methods to be significant.

42

Solver Preconditioner

NS NO RAS α = 4 8 16 32 64 RAS α = 4 8 16 32 64
12 4 109 36 61 87 108 147 24 18 20 22 23 25
24 4 134 51 68 104 130 252 25 23 23 24 25 30
36 4 177 – 97 150 203 249 27 32 27 26 30 34
12 8 52 30 33 37 47 76 19 17 17 18 19 21
24 8 91 45 63 78 97 96 19 21 19 19 20 24
36 8 114 451 78 97 125 161 21 27 22 21 22 25

Table 6.4: The iterations to convergence for the unit sphere with tri-quadratic interpolation
and ∆x = 1/40 (a total of 139886 unknowns) are gathered here. The optimized solvers
provide a significant advantage over the non-optimized solvers for good choices of the Robin
weight. The optimized methods can offer only a slight speed up, as compared to RAS, when
used as a preconditioner. This is expected for a low resolution problem like this, matching
what was observed in Section 3.3.

Solver Preconditioner

NS NO RAS α = 8 16 32 64 128 RAS α = 8 16 32 64 128
24 3 214 – 143 226 311 410 38 36 31 35 39 42
48 3 320 – 155 260 368 – 44 43 38 41 45 62
72 3 539 – 305 445 579 783 47 44 42 45 49 53
24 6 196 85 131 175 217 275 30 27 27 29 31 33
48 6 267 135 180 227 266 – 37 33 33 35 38 44
72 6 367 – 231 316 380 538 37 44 34 36 38 40

Table 6.5: The iterations to convergence for the higher resolution sphere, with ∆x = 1/80
and 558806 unknowns, can be seen here. For α = 8 the ORAS solvers show stability problems
but become reliable for α > 8, where they have a stronger Dirichlet component. As in the
low resolution case, the ORAS solvers demonstrate a greater improvement over the RAS
solvers than the ORAS preconditioners do over the the RAS preconditioners.

43

50 100 150 200 250

0.5

1

1.5

2

2.5

3
F

ac
to

r

50 100 150 200 250

0.8

1

1.2

F
ac

to
r

Figure 6.5: The ratio of the iteration counts from the parameter study from Table 6.4 for
the unit sphere with grid spacing ∆x = 1/40 and 139886 unknowns. The ORAS methods
provide an advantage as solvers (left) for small values of the Robin weight. The ORAS
preconditioners (right) provide an advantage only when the subproblems are sufficiently
large and the overlap is small.

50 100 150 200 250

0.5

1

1.5

2

F
ac

to
r

50 100 150 200 250

0.4

0.6

0.8

1

1.2

F
ac

to
r

Figure 6.6: The iteration ratios for the higher resolution sphere problem, corresponding to
Table 6.5. The solvers (left) have a more predictable behavior than the low resolution case.
Additionally, all of the ORAS preconditioners (right) improve upon the RAS precondition-
ers, but to a lesser extent.

44

40 60 80 100 120

100

200

300

Ite
ra

tio
ns

40 60 80 100 120
20

25

30

35

40

Ite
ra

tio
ns

Figure 6.7: As the subdomain count increases for the sphere problems the iteration count
increases for both the solvers (left) and preconditioners (right). The low resolution cases
are shown as solid lines while the high resolution cases are given by dashed lines with the
RAS methods marked by circles and the ORAS methods denoted by triangles. The overlap
is fixed at NO = 6 for all runs with the ORAS cases using a Robin weight of α = 16.

4 6 8

150

200

250

300

Ite
ra

tio
ns

4 6 8

25

30

35

40

Ite
ra

tio
ns

Figure 6.8: The overlap width is varied on the sphere problems here with the lines denoting
the same problems as in Figure 6.7. In most cases, the iterations required decreases with
larger overlaps, following expectation, except for the high resolution problem treated by the
ORAS solver. Throughout, NS = 48 subdomains are used with the ORAS methods again
using α = 16.

45

6.2.3 Parameter study: Toroidal surfaces

We select a torus to test the solvers and preconditioners on a surface that does not solely
have positive curvature. The selected torus has a major radius of 0.75 and a minor radius
of 0.25 so that its total size is comparable to unit sphere previously considered. The two
considered resolutions use ∆x = 1/50 for a total of 150544 unknowns, and ∆x = 1/100 for
a total of 605208 unknowns. Both utilize tri-quadratic interpolation. Tables 6.6 and 6.7 give
the low and high resolution iteration counts respectively with Figures 6.9 and 6.10 showing
this information as the ratio of the RAS iteration counts to the ORAS iteration counts.

Solver Preconditioner

NS NO RAS α = 8 16 32 64 128 RAS α = 8 16 32 64 128
12 4 157 83 112 168 – 187 25 22 22 23 30 29
24 4 104 70 94 107 262 – 23 24 25 26 31 34
36 4 218 112 153 197 – 344 29 27 27 29 36 35
12 8 101 72 87 99 108 106 19 18 18 19 20 22
24 8 119 82 104 115 129 137 21 20 21 21 23 24
36 8 118 85 99 144 139 – 22 22 21 24 23 31

Table 6.6: The low resolution torus problem uses ∆x = 1/50 with tri-quadratic interpola-
tion yielding 150544 active nodes. The same subdomain counts, overlap widths, and Robin
weights as the sphere problems are used here.

Solver Preconditioner

NS NO RAS α = 8 16 32 64 128 RAS α = 8 16 32 64 128
24 3 566 – – 403 545 – 42 39 40 39 42 48
48 3 684 – – 512 687 1035 49 50 48 44 48 52
72 3 774 – – 453 621 – 54 93 50 51 54 61
24 6 365 124 210 292 358 404 33 26 28 31 33 35
48 6 459 – 284 376 453 511 38 53 34 35 38 40
72 6 397 – 270 341 421 815 43 45 37 39 42 47

Table 6.7: The high resolution torus, using ∆x = 1/100 for 605208 active nodes, behaves
similarly to the high resolution sphere. The ORAS solvers face stability issues for small
values of α, but become reliable and provide speed up after increasing the weight. All ORAS
preconditioners have some value of α providing speed up over their RAS counterparts, but
not to a great extent.

The region of negative curvature on the torus presents more difficulty in the construction
of the effective boundary and conormals for the subsurfaces compared to the sphere. The
ORAS methods are more sensitive to the Robin weight than before, particularly in the low
resolution case. The benefit provided by the ORAS methods over the RAS methods remains
small at the resolutions accessible for testing.

46

50 100 150 200 250

0.5

1

1.5

F
ac

to
r

50 100 150 200 250

0.7

0.8

0.9

1

1.1

F
ac

to
r

Figure 6.9: The low resolution torus test case uses ∆x = 1/50 for a total of 150544 unknowns.
The ORAS solvers provide an advantage over the RAS solvers for small values of α in all
tested cases but become unreliable after that. Similar to our prior observations the ORAS
preconditioners perform best with a small number of subdomains and limited overlap widths.

50 100 150 200 250
0.5

1

1.5

2

2.5

F
ac

to
r

50 100 150 200 250

0.4

0.6

0.8

1

1.2

F
ac

to
r

Figure 6.10: For the high resolution torus we see greater regularity in the performance of
the (O)RAS methods with respect to the value of the Robin parameter. The extent to which
the ORAS methods improve over the RAS methods is better than in the low resolution case
presented in Figure 6.9, but remains small at this resolution.

47

40 60 80 100 120
100

200

300

400

Ite
ra

tio
ns

40 60 80 100 120

25

30

35

40

45

Ite
ra

tio
ns

Figure 6.11: As the subdomain count is increased on the torus the required iterations to
converge generally increase, as would be expected. Both of the resolutions have too few
unknowns for the large subdomain count to form reasonable subproblems and the final
ORAS solver fails. Similarly, the final case for the ORAS preconditioners pass the RAS
preconditioners, requiring more iterations to converge.

4 6 8
100

200

300

400

Ite
ra

tio
ns

4 6 8

25

30

35

40

45

Ite
ra

tio
ns

Figure 6.12: As the overlap width is increased on the torus the (O)RAS solvers and pre-
conditioners require fewer iterations to converge, with the exception of the largest overlap
ORAS solver on the high resolution problem.

48

6.2.4 Parameter study: Triangulated surfaces

To test the applicability of these (O)RAS methods to more general surfaces we use the
famous Stanford Bunny [27], scaled to fit its longest dimension into the interval (−1, 1), with
the five holes in the bottom filled, and the triangulation slightly coarsened. Figure 6.13 shows
the used triangulation and these modifications. We emphasize that these modifications
present no difficulty for the defined methods, but rather keep the run time reasonable for
the large number of tests needed for the parameter study. This keeps the meaning of the
grid spacings consistent with the prior results and continues to avoid the existence of global
boundaries. This constitutes the most complicated application of the (O)RAS solvers and
preconditioners. The closest point function is no longer given in an exact form and we now
need to see how the approximations made in constructing it compound with those made
during the subdomain formation.

Figure 6.13: The left shows the used triangulation for the Stanford bunny surface with the
noted coarsening. The right shows the filled holes from below, visible as the highly skewed
triangles.

Following the parameter studies before, two mesh resolutions are considered with the
gathered iteration counts presented in Tables 6.8 and 6.9 for spacings of ∆x = 1/75 and
∆x = 1/100 respectively. The resulting systems have 371659 and 661958 unknowns re-
spectively. Furthermore, Figures 6.14 and 6.15 visualize the relative performance of the
optimized and non-optimized methods. Finally, Figures 6.16 and 6.17 vary the subdomain
count and overlap width independent from any other parameters.

Throughout these parameter sweeps one can see that the (O)RAS methods perform
well on triangulated surfaces, despite the approximations present. The speed up of the
optimized methods over the non-optimized methods is particularly impressive considering
the difficulty in resolving the subdomain boundary geometry. Similar to all of the prior

49

Solver Preconditioner

NS NO RAS α = 8 16 32 64 128 RAS α = 8 16 32 64 128
24 3 489 249 353 453 536 596 41 34 36 38 41 44
48 3 758 372 528 682 813 907 51 42 46 50 53 56
72 3 941 446 634 821 974 1084 57 49 51 56 59 62
24 6 309 174 226 273 308 330 32 28 29 30 32 33
48 6 472 266 350 422 474 506 40 34 36 38 40 41
72 6 592 320 420 507 572 617 44 40 41 43 45 46

Table 6.8: The scaled and patched Stanford Bunny is discretized with ∆x = 1/75 and
tri-quadratic interpolation, giving 371659 total unknowns. The ORAS methods remain ro-
bust in all cases and provide a significant advantage when run as a solver over the RAS
methods. The ORAS preconditioners continue to show little improvement over the RAS
preconditioners at these low resolutions.

Solver Preconditioner

NS NO RAS α = 8 16 32 64 128 RAS α = 8 16 32 64 128
24 3 657 262 385 516 640 734 48 37 40 44 47 50
48 3 929 – 564 743 917 1051 58 68 50 54 58 62
72 3 1142 – – 922 1138 1303 66 55 57 63 69 72
24 6 406 185 257 325 379 416 38 29 32 35 37 39
48 6 577 288 395 491 566 616 45 37 39 41 44 46
72 6 718 – 460 577 668 732 52 53 46 49 52 54

Table 6.9: The Stanford Bunny surface with ∆x = 1/100 yields 661958 unknowns. Compared
to the low resolution bunny problem before, this test shows stability issues for the small
values of α, similar to the high resolution torus and sphere. All ORAS cases provide a speed
up over their RAS counterparts with the gap remaining wider for the solvers.

50

parameter sweeps, the ORAS solvers converge the fastest for small values of the Robin
weight α but face stability issues when it is chosen too small. The ORAS preconditioners
see their best performance for the same or slightly larger values of α.

50 100 150 200 250

1

1.5

2

2.5
F

ac
to

r

50 100 150 200 250

0.7

0.8

0.9

1

1.1

1.2

F
ac

to
r

Figure 6.14: The low resolution grid over the scaled Stanford Bunny surface, with ∆x =
1/75, paired with tri-quadratic interpolation yields 371659 active nodes. The ORAS solvers
(left) provide a significant advantage for small α for all subdomain choices. The ORAS
preconditioners (right) also perform well, although the improvement is less pronounced
than for the solver case.

50 100 150 200 250

1

1.5

2

2.5

3

F
ac

to
r

50 100 150 200 250

0.8

0.9

1

1.1

1.2

1.3

F
ac

to
r

Figure 6.15: The high resolution Stanford Bunny problem takes ∆x = 1/100 with tri-
quadratic interpolation for a total of 661958 unknowns. The speed up attained by the
ORAS over RAS is greater for this high resolution test compared to the low resolution
problem considered in Figure 6.14.

51

40 60 80 100 120
400

600

800

1000

1200

1400
Ite

ra
tio

ns

40 60 80 100 120

40

50

60

70

Ite
ra

tio
ns

Figure 6.16: As the number of subdomains used for the Stanford Bunny problems is increased
the number of iterations to converge increases, regardless of method and resolution. The
iteration count for the solvers is shown on the left and the count for preconditioned GMRES
on the right. Low resolution problems are given by solid lines and high resolution problems
given by dashed lines, with circles denoting RAS methods and triangles marking the ORAS
methods. Finally, for all ORAS results the Robin parameter has been fixed at α = 16 with
an overlap of NO = 3.

4 6 8 10
200

400

600

800

Ite
ra

tio
ns

4 6 8 10

30

40

50

Ite
ra

tio
ns

Figure 6.17: The overlap for the Stanford Bunny is varied here with the lines marked in
the same way as in Figure 6.16. All methods see diminished iteration counts as the overlap
width is increased, with the RAS methods relying more heavily on the width than the ORAS
methods. The Robin parameter was fixed at α = 16 with subdomain counts of NS = 24
and NS = 48 for the low and high resolution problems respectively.

52

6.3 Computational scaling

Parallel scalability measures how well a parallel algorithm is able to take advantage of
increasingly larger machines. Herein we are concerned with two types of parallel scaling,
strong scaling which measures the speedup attained by using more processes on a fixed
problem size, and weak scaling which increases the problem size with the process count in
an effort to keep the number of unknowns per process fixed, and ideally displays constant
run time. These metrics can build intuition about how to partition future problems, but
face two mitigating factors in their present usefulness. First, as the problem size increases
the conditioning of the global system degrades and the overall convergence behavior of the
method changes independent of the parallelism. Second, there is no clear way to choose the
number of subdomains per process. The larger processor counts allow greater parallelism
and an ability to take advantage of more subdomains, but of course increasing the number of
subdomains also increases the iterations to convergence. Two level methods [6] are designed
to avoid these issues with scalability but lie beyond the scope of this thesis.

The strong scaling results are generated not only with a fixed problem size but also
a fixed total number of subdomains, which effectively removes these problems. The weak
scaling results are found with a fixed number of subdomains per process so that the total
number of subdomains scale with the problem size. Unfortunately, this means that in the
weak scaling study the strength of the preconditioner will degrade as conditioning of the
system worsens. All results in the following have been averaged over 5 runs to mitigate the
effect fluctuations in the cluster and differing node hardware.

6.3.1 Strong scaling

Strong scaling results are gathered in Tables 6.10 and 6.11 for the circle and torus respec-
tively. In each case the resolution of the problem and the number of subdomains used to
partition the mesh and generate the local problems is fixed independent of the number of
processes. In both cases, we keep approximately 20000 nodes in each disjoint partition. Fi-
nally, the cluster we have access to has demonstrated poor communication latency so only
the preconditioner performance will be tested here.

Following the parameter study above, we begin with the circle as a simple problem.
The lower dimensionality reduces the number of nodes in the overlap regions significantly
compared to two dimensional surfaces embedded in three dimensions, and as such, should
demonstrate less communication overhead. The circle is discretized with ∆x = 1/20000 and
tri-cubic interpolation yielding 888344 total unknowns. The subdomain count is NS = 48
so that each contains approximately 20000 nodes. Table 6.10 gathers the scaling results for
this problem over 1, 2, and 4 nodes, using 12, 24, and 48 processes respectively. The setup
time consisting of the local mesh and operator construction as well as its factorization, and

53

the time to convergence of GMRES are pulled out from the total time so that one may see
how each phase scales as well as the total time.

Nodes (Processes) 1 (12) 2 (24) 4 (48)

Setup Time [s] 193 100 53
GMRES Time [s] 2.5 2.1 3.3

GMRES Iterations 42 43 41
Time to solution [s] 223 122 71

Table 6.10: The unit circle is discretized with bi-cubic interpolation and ∆x = 1/20000 for
a total of 888344 unknowns. The number of subdomains used is fixed at NS = 48 to place
approximately 20000 nodes in each disjoint subdomain. We can see here that the setup
cost scales almost perfectly since the communication is minimal in this phase. The time for
GMRES to converge is negligible in this simple example and doesn’t show any meaningful
scaling.

As a follow up to the unit circle, the torus, as described in Section 6.2.3, is again
discretized with ∆x = 1/100 and tri-quadratic interpolation giving a system with 605208
unknowns. Once again the total subdomain count is fixed at NS = 48 with each disjoint
subdomain now containing approximately 12000 nodes. Table 6.11 holds the scaling results
on 1, 2, and 4 nodes, totalling 12, 24, and 48 processes respectively. Compared to the
circle problem shown in Table 6.10, the setup cost here is higher even though the number of
nodes in each subdomain is larger. The only significant difference between this problem and
the former is the reduced sparsity of the extension and Laplacian operators. The cost of the
matrix-matrix multiplication and the factoring of the resulting operator is significant and
hints at the benefit in keeping the global operator in its unassembled form. Additionally,
the cost of each global matrix-vector multiply is significantly higher as can be seen by the
large amount of time spent in GMRES even though the total iteration counts are nearly
the same.

Nodes (Processes) 1 (12) 2 (24) 4 (48)

Setup Time [s] 887 449 300
GMRES Time [s] 32 16 10

GMRES Iterations 48 46 49
Time to solution [s] 911 475 318

Table 6.11: The torus discretized by a grid with spacing ∆x = 1/100 and tri-quadratic
interpolation yields a problem with 605208 unknowns. Again 48 subdomains are used in
total with the number per process decreasing as more processes are introduced. The results
moving from 1 to 2 nodes show the expected speed up. The 4 node results do not show
the expected improvement over the 2 node results in the setup phase where communication
should provide little impediment. The GMRES solve scales well throughout.

54

There are two main contributors to the time to solution: the time to build and factor
all of the local systems, and the time for GMRES to converge. The first scales well since
the total number of local problems and their size is fixed. With more processes each is
responsible for handling fewer local problems and throughout this phase the communication
is minimal. The effect of processor count on the time to convergence of GMRES is more
complicated. In each iteration there is a global matrix vector multiply, the application of
the preconditioner, and calculation of the residual norm. The global matrix vector multiply
requires some communication since the matrix is split by rows across processes and not all
components of the vector, required to compute a process’ contribution, are stored locally.
The application of the preconditioner is made cheaper with more processes since each is
responsible for fewer forward and back solves, however the residual in the overlap regions has
to be populated through communication resulting in some overhead. The (O)RAS family
of methods require no communication for the solution update. Finally, the computation of
the residual norm requires a small amount of communication to share the local sums with
each other, but this mostly impedes progress by forcing all processes to synchronize after
every iteration.

6.3.2 Weak scaling

Achieving good weak scalability with a PDE solver is difficult since as the problem grows
the conditioning of the arising system generally degrades, and simultaneously, the strength
of the preconditioner diminishes as a sacrifice for increased parallelism. Here we consider
the circle and torus as in the prior section. Now, the number of subdomains will be set
equal to the number of processes and the resolution varied to keep the number of unknowns
per process close to 10000. First the circle is considered in Table 6.12 with grid spacings of
{1/2750, 1/5500, and 1/11000} for {122152, 244288, and 488800} total unknowns to be
solved on {12, 24, and 48} processes respectively. Following this, the weak scaling results
for the torus are gathered in Table 6.13 for grid spacings of {1/45, 1/65, and 1/90} yielding
{122544, 255760, and 489704} total unknowns.

Nodes (Processes) 1 (12) 2 (24) 4 (48)

NA (∆x) 122152 (1/2750) 244288 (1/5500) 488800 (1/11000)
Setup Time [s] 16 16 16

GMRES Time [s] 0.19 0.55 1.2
GMRES Iterations 22 30 43
Time to solution [s] 18 20 25

Table 6.12: The circle is considered again, but here with the number of subdomains set
equal to the number of processes and with the resolution varied to keep approximately
10000 unknowns per process. The setup phase scales perfectly, and again the GMRES solve
is too small to make any meaningful claims. The problems are small enough that the serial
portions of code show in the total time results.

55

Both surfaces exhibit excellent weak scalability in the setup phase. The communication
here is minimal and the parallelism is nearly trivial making the achievement of scaling here
quite simple. The GMRES solve for the circle is too brief to provide any meaningful scaling
information, while the torus shows the expected behavior. The iteration count climbs as the
problems grow and the preconditioner weakens. The total time to solution scales well since
the setup cost is dominant for both surfaces.

Nodes (Processes) 1 (12) 2 (24) 4 (48)

NA (∆x) 255760 (1/65) 489704 (1/90) 945900 (1/125)
Setup Time [s] 336 312 276

GMRES Time [s] 10 10 15
GMRES Iterations 35 42 61
Time to solution [s] 351 330 305

Table 6.13: Weak scaling for the torus. The grid size is varied to place approximately 10000
unknowns in each subdomain while the number of subdomains is taken to be double the
number of processes. The setup phase and total time exhibit excellent weak scaling, even
diminishing in time as the process count is increased. The time spent in GMRES climbs as
the required number of iterations increases due to the simultaneously harder problem and
weaker preconditioner.

56

Chapter 7

Concluding remarks

We have sought to solve linear systems of equations from the discretization of elliptic PDEs
posed intrinsic to surfaces, Poisson equations in particular, in a parallel and performant
manner. We started by selecting the closest point method for the discretization of these
problems. In Chapter 2 the closest point function and the associated extension operator were
defined and their role in moving the problem off the surface and into an embedding space was
shown. Once in the embedding space, standard discretizations can be utilized, with centered
second-order differences being selected for simplicity. Additionally, we saw that the direct
form of the discrete operator is ill suited for eigenvalue problems and implicit time stepping
of diffusive phenomena. As such, the implicit closest point method was introduced so that
the remaining work could be applied in these contexts.

With a discretization for the target problem in hand we moved to parallel solvers. Do-
main decomposition was chosen for this goal, with Chapter 3 being dedicated to its formu-
lation. First we considered continuous problems and Schwarz’s original intentions. To bring
this from a technique in analysis to a parallel numerical method we considered an addi-
tive variant that allows all subproblems to decouple and be solved simultaneously, exposing
parallelism. Further we considered additional transmission conditions on the artificially im-
posed boundaries to accelerate the convergence. Importantly, we pulled this iterative scheme
from the continuous into the discrete to obtain a linear system solver. After some manipu-
lation this solver was written to provide solution corrections instead of entire new solutions
and finally placed into a form which could be embedded within a Krylov subspace solver
like GMRES. As a preliminary example we considered these methods applied to a standard
Poisson problem on the square discretized by centered finite differences, and found impor-
tantly that the improved convergence rate afforded by the optimized methods depended on
the mesh resolution.

To apply these domain decomposition schemes to the closest point method we first need
a way to decompose the domain. Chapter 4 was dedicated to the formation of subdomains
from the global meshes used in the closest point method. For generality, a graph partition-
ing tool, already widely in use in the domain decomposition community, was discussed as

57

a means for splitting the global mesh into smaller regions. We saw that even though there
are many ways to form a graph over the closest point grid, the naive approach yielded the
best results. The disjoint partitions generated by METIS could be further tweaked to give
subdomains aligned with the surface normals. An overlapping partitioning was easily gener-
ated over this disjoint partitioning, giving enough to apply the RAS methods. However, to
utilize the ORAS methods with Robin conditions imposed on the subproblems we needed
to also generate the boundary geometry. Boundary nodes were applied around the over-
lapping partitions and identified with their closest point on the subdomain boundary and
the conormal direction along which they should enforce the derivative condition. Within
this boundary geometry construction the arising conormal vectors could vary significantly
between neighbors and some smoothing strategies were discussed.

The final component in the definition of the domain decomposition solvers and precon-
ditioners is to extend the earlier discussion on the closest point method to include surfaces
with boundaries. In Chapter 5 we considered first and second order accurate discretiza-
tions of Dirichlet boundary conditions and saw that incorporating them into the closest
point method required modifying the extension operator. The first order accurate Dirichlet
conditions were found to correspond precisely to the algebraic form of the RAS method
and selected for further use. First order accurate Robin boundary operators were formed
similarly by combining the first order accurate Dirichlet condition with a forward differ-
ence along the conormal direction generated in the prior chapter. Finally, the new Robin
conditions were verified as being first order accurate with a simple convergence study.

From the parameter sweeps from the first half of Chapter 6 we saw that the ORAS
methods always provide a speed up relative to the RAS methods. The performance gap is
substantial when they are used as solvers but somewhat diminished when used as precondi-
tioners for GMRES. The ORAS methods are also sensitive to the subdomain geometry for
small values of α, which unfortunately is also the most performant regime. Both RAS and
ORAS make the use of iterative solvers for these systems competitive, particularly when
used as a preconditioner for GMRES. The iteration count has been reduced in every case
to a number that can be treated without needing restarts, which is a huge improvement
over non-preconditioned GMRES. Similarly, when used as solvers these methods require
no history of solutions making memory bound problems accessible at the cost of extra run
time.

The parallel scalability of these methods was demonstrated in the latter half of Chapter
6. Throughout, we found that the methods exhibited good strong and weak parallel scaling
over the problem sizes available. The setup cost was dominant in all examined problems
indicating that the developed solvers would provide the greatest benefit in a setting where
the same system needs to be solved many times over.

58

7.1 Picking a method

Through this thesis we have seen a large number of options and picking a particular solver
from this whole family to treat a specific problem is not trivial. ORAS is generally a better
choice than RAS and should be used unless the implementation proves difficult in a given
setting or no robust splitting can be found. The Robin weight will need some experimenta-
tion but should be chosen as small as possible without introducing instability. Regardless
of choosing RAS or ORAS, the subdomain count should be chosen to place 10000− 20000
active nodes in each disjoint partition and the overlap width should be kept minimal. An
overlap equal to the size of the interpolation stencil, NO = p + 1, has been found to work
well.

7.2 Future directions

The methods developed and tested herein motivate many further investigations. Several
interesting options are laid out here, roughly ordered from building directly on this work to
more substantial departures. The framework introduced here could be used for (optimized)
multiplicative Schwarz schemes. Paired with a suitable subdomain coloring scheme one could
retain parallelism and hopefully find a more robust method over all. The main foreseeable
obstacle would be coloring in a way that respects not just the disjoint partitioning but also
the overlapping one without requiring a substantial and costly amount of communication.
Another option would be to generalize the Robin transmission conditions developed here to
the treatment of non-overlapping grids. Maintaining consistency of the conormal directions
used by neighboring subdomains will require some effort but the reward would be smaller
local problems and the elimination of the overlap condition. Any cost reduction in the
construction of the local operators and application of the preconditioner each iteration
would provide significant time savings. One approach to achieve this would be to increase
the sparsity of the local operators, perhaps by mismatching the polynomial degree used
for the extension operators. The use of two level Schwarz schemes could provide better
parallel scaling and improve the performance of the methods for large subdomain counts.
The construction of consistent and stable coarse spaces is in general difficult and may require
substantial work. A final possibility would be the application of these solvers to an existing
problem currently limited to direct solvers.

59

Bibliography

[1] Silo user’s guide, Jul 2014, https://wci.llnl.gov/simulation/computer-codes/
silo/documentation.

[2] J. Baert, Libmorton. https://github.com/Forceflow/libmorton, 2017.

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc
users manual, Tech. Report ANL-95/11 - Revision 3.7, Argonne National Laboratory,
2016.

[4] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM
Review, 46 (2004), pp. 501–517.

[5] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general
sparse linear systems, SIAM Journal on Scientific Computing, 21 (1999), pp. 792–797.

[6] V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition
Methods: Algorithms, Theory, and Parallel Implementation, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2015.

[7] M. J. Gander, Optimized Schwarz methods, SIAM Journal on Numerical Analysis,
44 (2006), pp. 699–731.

[8] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392.

[9] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics),
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007.

[10] S. Loisel, J. Ct, M. J. Gander, L. Laayouni, and A. Qaddouri, Optimized
domain decomposition methods for the spherical Laplacian, SIAM Journal on Numerical
Analysis, 48 (2010), pp. 524–551.

[11] C. B. Macdonald, J. Brandman, and S. J. Ruuth, Solving eigenvalue problems
on curved surfaces using the closest point method, Journal of Computational Physics,
230 (2011), pp. 7944–7956.

[12] C. B. Macdonald, B. Merriman, and S. J. Ruuth, Simple computation of reaction
diffusion processes on point clouds, Proceedings of the National Academy of Sciences,
110 (2013).

60

https://wci.llnl.gov/simulation/computer-codes/silo/documentation
https://wci.llnl.gov/simulation/computer-codes/silo/documentation
https://github.com/Forceflow/libmorton

[13] C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the nu-
merical solution of partial differential equations on surfaces, SIAM Journal on Scientific
Computing, 31 (2010), pp. 4330–4350.

[14] I. May, DD-CPM. https://bitbucket.org/mayianm/dd-cpm/, 2018.

[15] F. Pellegrini and J. Roman, Scotch: A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs, in High-Performance
Computing and Networking, H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot,
eds., Berlin, Heidelberg, 1996, Springer Berlin Heidelberg, pp. 493–498.

[16] A. Quarteroni, Domain decomposition methods for partial differential equations /
Alfio Quarteroni, Alberto Valli., Numerical mathematics and scientific computation,
1999.

[17] C. Ronchi and R. Iacono, The "cubed sphere": A new method for the solution of
partial differential equations in spherical geometry, Journal of Computational Physics,
124 (1996), pp. 93–114.

[18] S. J. Ruuth and B. Merriman, A simple embedding method for solving partial differ-
ential equations on surfaces, Journal of Computational Physics, 227 (2008), pp. 1943–
1961.

[19] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 7 (1986), pp. 856–869.

[20] H. Schwarz, Ueber einige abbildungsaufgaben., Journal für die reine und angewandte
Mathematik, 70 (1869), pp. 105–120, http://eudml.org/doc/148076.

[21] B. F. Smith, Domain decomposition : parallel multilevel methods for elliptic partial
differential equations / Barry F. Smith, Petter E. Bjorstad, William D. Gropp., 1996.

[22] A. St-Cyr and M. J. Gander, A discovery algorithm for the algebraic con-
struction of optimized Schwarz preconditioners, 18th International Conference on
Domain Decomposition Methods, Springer, Berlin, 2009, pp. 355–362, https://
archive-ouverte.unige.ch/unige:6855.

[23] A. St-Cyr, M. J. Gander, and S. J. Thomas, Optimized multiplicative, additive,
and restricted additive Schwarz preconditioning, SIAM Journal on Scientific Comput-
ing, 29 (2007), pp. 2402–2425.

[24] W. P. Tang,Generalized Schwarz splittings, SIAM Journal on Scientific and Statistical
Computing, 13 (1992), pp. 573–595.

[25] A. Toselli, Domain decomposition methods–algorithms and theory / Andrea Toselli,
Olof Widlund., Springer Series in Computational Mathematics, 34, Springer, Berlin ;
New York, 2005.

[26] L. N. Trefethen and D. Bau, Numerical linear algebra, SIAM, 1997.

61

https://bitbucket.org/mayianm/dd-cpm/
http://eudml.org/doc/148076
https://archive-ouverte.unige.ch/unige:6855
https://archive-ouverte.unige.ch/unige:6855

[27] G. Turk and M. Levoy, Zippered polygon meshes from range images, in Proceed-
ings of the 21st annual conference on computer graphics and interactive techniques,
SIGGRAPH ’94, ACM, July 1994, pp. 311–318.

[28] P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggrega-
tion for second and fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

62

Appendix A

Implementation errata

Through the progression of this work, a code written in C++ was written to implement and
test all ideas. Distributed memory parallelism is supported through the Message Passing
Interface (MPI). PETSc [3] lies at the core of the implementation, providing the iterative
linear solvers and distributed memory data structures for matrices and vectors. METIS [8]
is accessed through PETSc and provides the graph partitioning discussed in Section 4.1.
The classes created are quickly summarized here:

• Struct: ProblemDefinition: This struct holds all needed parameters to define the
surface, closest point discretization, and domain splitting. Consult the sample input
file and command line options in Sections A.3.2 and A.3.1.

• Class ProblemSetup: This class populates the entries of the ProblemDefinition
structure by reading an input file and command line arguements.

• Class TVec: This class defines a simple templated vector class and is used for stor-
ing the integer coordinates of grid points as well as defining the surface normal and
conormal directions. Additionally, these vectors can hold the extension stencil indices
and weights for each point. These vectors are not used in the definition of any linear
systems.

• Class QOTree: This implements a quadtree/octree structure as a hash map with key
values given by the Morton encoding [2]. This allows the storage of the closest point
meshes with minimal overhead while allowing fast queries. The meshes are stored with
respect to a bounding box under a fixed grid spacing. As such each active (or ghost)
node can be identified with an integer tuple giving its position within the box. The
hash map stores only the computational tube by identifiying the useful tuples with the
index of that point within the set of unknowns. This allows the indices of neighboring
nodes and nodes within extension stencils to be found easily when no simple offset
can be used like in a globally rectilinear grid.

• Class CPMesh: This class provides the meshes and all geometric information for
the global and local problems. The extension stencils and weights are all generated
here, along with the boundary information for the Robin transmission conditions on

63

the local problems. The QOTree class is used internally. See Section A.1 for greater
detail.

• Class DiffOps: This acts as a translation from the CPMesh objects into the linear
systems to be solved. Routines are provided to construct the Ambient Laplacian and
extension matrices with respect to a given mesh. This also provides the initial guesses
and right hand sides for the defined problems, as well as the exact solutions when
they are available.

• Class Problem: This class contains all of the PETSc objects defining the linear
systems and the discussed preconditioners. Both global and local problems are created
as instantiations of this class, mimicking the behavior of CPMesh and DiffOps. More
detail is provided in Section A.2.

• Class CPPostProc: Finally, this class writes out all data in the SILO [1] data format
for later visualization. The global solution, residual, forcing, and surface normals are
written out as both point data over the computational band and surface limited values.
Geometric quantities for the first subdomain can also be written out to see the effective
boundary and conormal vectors.

The CPMesh and Problem classes are the most substantial and will be discussed in greater
detail in the following sections. Finally, a simple driver code and sample run are supplied.
All code written to support this thesis, as well as more extensive documentation, can be
found in a public repository [14].

A.1 CPMesh

The global mesh is instantiated as an object of the class CPMesh using the options defined
in the ProblemDefinition structure. Serial meshes, which store a copy of the entire global
mesh on each process, and distributed meshes, which store the locally relevant portion of
the mesh on each process, are both supported. For either mesh type the construction follows
roughly the same steps.

A bounding box surrounding the surface and containing the computational band is tra-
versed, respecting the grid spacing, and all nodes within the bandwidth are added to a
QOTree object. The index for each one is incremented leaving the unknowns in the lex-
icographic ordering. For distributed meshes this is done in slices, and after each process
counts their local number of found nodes the next process increments the stored indices to
produce a complete global set of indices. This QOTree representation of the grid is used to
generate a METIS compatible graph. In the distributed case, this is done on a per-process
basis and the global graph is stitched together on the root process. From the paritioning
the indices are permuted, such that the subdomains each have a continuous set of indices.
For distrubuted meshes the needed coordinates must also be communicated across processes
to complete the permutation. The first index of each partition is stored and later used to
construct the subdomain meshes. Distributed meshes need to store more than just their
subdomain(s) nodes. To simplify the later construction of the individual subdomain meshes
the overlap nodes and their indexing also need to be copied between the processes. Finally,

64

the ghost nodes are layered over the mesh and their indexing resolved between processes if
needed. The global CPMesh object also provides the extension stencils and weights but these
are formed as the global Problem object requests them.

The local meshes are created using the global mesh, the global problem, and the indices in
the global numbering delimiting the target disjoint partition. These do not need to form
QOTree objects to store the grid points as instead they form maps assocating the global
indices to the local indices. Requests for neighboring grid points are fulfilled by querying
the QOTree object in the parent global mesh and translating the indices to match the local
numbering. After reading in the disjoint partition from the global mesh, the overlaps are
added and the boundary geometry is generated as needed.

A.2 Problem

The Problem object defining the global system is created following the generation of the
global CPMesh and DiffOps objects. The extension matrix and ambient Laplacian with
the diagonal removed are created as PETSc Mat objects. The matrices are sparse and
distributed according to which disjoint subdomains are associated to each process. From
these, the shifted surface Laplacian from equation (2.11) is formed as a PETSc shell matrix
whose matrix-vector multiply operation is given by applying each operation in sucession.
The global problem can be used as is for non-preconditioned solves, but otherwise needs
the local problems to be constructed. To keep the PETSc objects limited to one class, the
least squares solvers for the conormal smoothing within the local mesh creation also lie in
this object.

Once the local meshes have been created the local problems may be formed. The extension
operators within these problems are formed with respect to the transmission conditions
while reusing the global stencils and weights when possible. The local operators must be
factored to provide a direct solver and thus the constiuent matrices must be multiplied out
into the final operator in contrast to the global case.

The local problems are given to the global problem to construct the preconditioner. The
maps between global and local indices are formed into PETSc IS (index set) objects to
transfer globally supported vectors into locally supported vectors, and vice versa. These
together are placed into a shell preconditioner, PETSc PC object, whose action applies the
preconditioner to any input vector. The DiffOps object is queried to create the right hand
side and the initial guess. This preconditioner can then be associated to a GMRES solver
or used on its own as a solver.

The problem class also has limited support for transient problems which will likely be
enlarged later. Currently, only the BDF2 [9] scheme is supported for the heat equation and
a few reaction diffusion equations. Limited support is also available for two level ORAS
methods using Petrov-Galerkin coarse operators and smoothed aggregation bases.

65

A.3 Sample run

An annotated sample input file is supplied here followed by some exemplary calls to the ex-
ecutable DDCPSolver, found within the repository upon building it. The full code, including
this input file, can be found in a publically accessible repository [14].

A.3.1 Sample input file

The large number of settings required to specify the problem and the behavior of the code
motivate the use of input files. Shown here is an annotated input file defining a shifted
Poisson equation on a circle.

Solve shifted Poisson equation on a circle
Verbose input file to create others from
Hashes denote comments and are ignored

All capitals inform a block of common purpose values to set
They can be called in any order
MESH
Surface Circle
Resolution 200 # The desired resolution, dx=1/res
Dimension 2 # Embedding dimension
GlobalOrder 3 # Interpolation order, global problem
LocalOrder 3 # Interpolation order, local problems
BoundaryOrder 3 # Interpolation order, boundary operators
BoundingBox 410 410 # Upper corner of bounding box
Overlap 4 # Overlap size, N_O
Partitions 24 # Number of partitions, N_S
AlignBounds True # Align subdomain boundaries
ConormSmooth True # Enable conormal smoothing
MeshType Serial # Storage scheme for mesh
PartitionScheme MetisAmb # Partitioning scheme
Poll 512 # Number of polling points

DOMAINDECOMPOSITION
Coarse False # Use coarse space
RandomInitial False # Random initial solution guess
MaxIterations 2000 # Maximum DD solver iterations
Tolerance 1.e-6 # Tolerance on relative residual
Transmission RobFO # Transmission conditions
OSMAlpha 16.0 # Alpha value for Robin conditions

EQUATION
Equation Poisson # Set equation to solve
Parameters 1.0 # c value

66

TIME
Initial 0.0 # Initial time
Final 1.0 # Final Time
Dt 0.001 # Time step size
MaxSteps 50 # Maximum steps to take

POSTPROCESS
IOLevel All # Point cloud and/or polling surface
PlotFrequency 5 # Frequency of plotting
FileBase data/cpdata # Location to write data files to

OTHER
Verbosity 4 # Control program verbosity
Draw 0 # Draw operators

A.3.2 Sample calls to the executable

Some sample calls to the executable DDCPSolver, found within the repository [14], are
shown.

Run in serial just using the settings in the input file:

./DDCPSolver -infile inputFiles/circlePoisson.icpm \
-ksp_converged_reason

The PETSc flag -ksp_converged_reason ensures that GMRES outputs how many itera-
tions it needed and why it converged (or failed).

Run in parallel with Dirichlet transmission conditions and 12 subdomains instead of 24:

mpiexec -n 4 ./DDCPSolver -infile inputFiles/circlePoisson.icpm \
-ksp_converged_reason -parts 12 -dd_trans_dirfo

Note that the number of processes (4) must divide the number of subdomains (12).

Finally, run with written data files suppressed and show the logging information upon
completion:

mpiexec -n 4 ./DDCPSolver -infile inputFiles/circlePoisson.icpm \
-ksp_converged_reason -parts 12 -dd_trans_dirfo -out_none -log_view

Notably, the behavior of the code can be changed substantially from the command line,
with no modifications to the driver code or input file required. Run with the flag -help to
see all of the possible flags with short descriptions. See the documentation in [14] for more
information.

67

	Approval
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Numerical approaches to surface PDEs
	Domain decomposition methods
	Outline

	The implicit closest point method
	Direct closest point method and notation
	The extension operator
	Discretization of the direct CPM

	The implicit formulation

	Domain Decomposition
	Continuous formulation
	Contraction factor analysis

	Restricted additive Schwarz and generalizations
	Use as a preconditioner

	Example: Poisson equation in the plane

	Subdomain Construction
	Graph partitioning problem
	Nearest neighbor coupling
	Full coupling
	Interface alignment

	Construction of overlaps
	Construction of effective boundaries
	Boundary conormal directions

	Transmission conditions
	Overlap requirements
	Dirichlet Transmission
	First-order accurate Robin
	Convergence study

	Results
	Introduced parameters
	Domain decomposition parameter studies
	Parameter study: Circular surfaces
	Parameter study: Spherical surfaces
	Parameter study: Toroidal surfaces
	Parameter study: Triangulated surfaces

	Computational scaling
	Strong scaling
	Weak scaling

	Concluding remarks
	Picking a method
	Future directions

	Bibliography
	Appendix Implementation errata
	CPMesh
	Problem
	Sample run
	Sample input file
	Sample calls to the executable

