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Abstract

This project analyses mental health related emergency department visits from children and
adolescents in Alberta, Canada to understand the spatio-temporal patterns and identify
risk factors. The data are extracted for the period 2002-2011 from the provincial health
administrative data systems of Alberta. A descriptive data analysis is presented and then
generalized linear models are explored to model the spatio-temporal pattern of the emer-
gency department visit counts. The seasonal effect is examined using seasonal factors, sine
and cosine functions and cyclic cubic smoothing splines. The spatial and temporal cor-
relation structures are modelled using autoregressive model of order 1 and conditionally
autoregressive model random effects. Demographic risk factors and their association with
the frequency of mental health related emergency department visits is examined. Estimates
of the model parameters are obtained and model diagnostics are performed to assess the fit
of the model. Age, gender and proxy for socio-economic status are found to be important
risk factors. The proposed model can be used as a predictive model to help identify regions
and groups at a higher risk for mental health related emergency department visits.

Keywords: generalized linear model; mixed effects; regression analysis; seasonal effect
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Chapter 1

Introduction

1.1 Background

Mental health is a relatively understudied subject matter, yet it is estimated that 10-20%
of Canadian children and youth are affected by a mental illness or disorder. Unfortunately,
only 20% of those who need mental health services currently receive them (Leitch, 2007).
In an annual report by the Alberta Health Services for the years 2016-2017, it is reported
that there are well over 2 million visits paid to Alberta emergency departments every year.
In Alberta, there is a lack of community-based supports for mental health services, and
inpatient and outpatient treatment options. This often leads to families seeking help in
emergency departments (ED) during crises (Newton et al., 2011). Mental health related
emergency department (MHED) visits can be avoidable if treatment is sought out before
the crisis point is reached. Learning more about where EDs are experiencing high amounts
of MHED visits and their trend can help the province of Alberta understand where more
resources are needed and reduce overcrowding in EDs.

This project uses the pediatric mental health care (PMHC) dataset that was extracted
from four population-based administrative databases in Alberta. Previous work using the
PMHC dataset has found evidence that the MHED visits for subsets of the Alberta popu-
lation cluster over space and time. For each of the following citations, a cluster was defined
as a geographic area and time period that had a statistically higher number of cases of
a disease than expected. Mariathas and Rosychuk (2015) studied three different spatial
cluster detection methods that differed in their choice of distributional assumption. ED
presentations by children and youth aged less than 18 years old for substance use during
April 1, 2007 to March 31, 2008 were used. Statistically significant clusters were found in
northern Alberta, parts of the Edmonton region, and southwestern Alberta for all three
detection methods. Rosychuk et al. (2015) used ED presentations due to a mood disorder
for Albertans aged 10-17. The Kulldorff-Nagarwalla (KN) spatial scan test (Kulldorff and
Nagarwalla, 1995) found three potential clusters over space and time in the majority of
northern Alberta between 2007 and 2011, in a single sub-regional health authority (sRHA)
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in the southwest part of the Central Zone between 2005 and 2009, and another in the Cen-
tral Zone between 2008 and 2011. Newton et al. (2016) identified clusters over space and
time for Alberta adolescents aged 15-17 years during 2002-2011 with an ED presentation for
a mental or behavioral disorder secondary to alcohol or drug use. Using the KN spatial scan
test, they found a cluster in the North, Edmonton and northwest Central zones between
2004 and 2008, in the western South and southern Calgary zones between 2007 to 2011, and
in the northern South zone between 2006 and 2007. Rosychuk et al. (2016) used the KN
spatial scan on Albertans aged 15-17 years during 2002-2011 who presented to an ED for
self-harm and had no physician follow-up visit within 14 days post-ED visit. They found
a cluster in northern Alberta from 2002-2006 and in southern Alberta between 2003-2007.
These results motivate this project’s objective of exploring the spatio-temporal pattern of
the MHED data and to explore what impact demographic information has on the data.

There are some limitations with the PMHC dataset. Firstly, the records of the MHED
visits are from individuals age 0 to 17 at the time of their visit between the dates April 1,
2002 and March 31, 2011. This is an issue since the data is both left and right truncated.
We do not have information on whether the subjects in the data have had multiple visits
before April 1, 2002, and whether they continued to have visits after March 31, 2011. We
are restricted to the April 1, 2002 to March 31, 2011 observation window. Secondly, due
to Alberta Health’s privacy protocol, individual’s birth dates are prevented from being
released. Therefore we have incomplete information for the subjects’ ages. Thirdly, the
spatial information regarding the subject’s place of residence and the emergency department
visited is only available at the sub-Regional Health Authority (sRHA) level. The spatial
information is not available as point data, but rather polygon data, so there is a loss of
information. Lastly, the PMHC dataset does not have information regarding what location
the subject came from to reach the ED. The point of origin may not necessarily be the
subject’s place of residence.

1.2 Objectives

In this project, the target population for statistical inference is the population of Alberta
aged 0-18 at the fiscal year end. The sRHA population sizes, recorded at the fiscal year end,
are incorporated in the modelling to account for the differences in population sizes between
regions. A fiscal year for this data starts on April 1st and ends at the following March
31st. This project’s goal is to see whether there is any significant spatio-temporal effect or
pattern among the sub-Regional Health Authorities (sRHAs) of Alberta’s total number of
mental health related emergency department visits. In addition, we explore whether certain
demographic groups (gender, age, and socio-economic status) are more susceptible to having
MHED visits and whether this susceptibility varies over time and space.
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1.3 Outline

The organization of the project is as follows. Chapter 2 starts by introducing the dataset
and showcasing some descriptive analysis. The motivation for studying the spatio-temporal
pattern of the MHED visits made by Albertans aged less than 18 is presented with de-
scriptive plots and spatial and temporal autocorrelation findings. Chapter 3 introduces the
notation, formulation, and proposed methodology. To capture the seasonality and trend of
the data, a seasonal factors model, a trigonometric model and a generalized additive model
are proposed. To observe the differences between regions and over time, the coefficients are
allowed to vary over time and space. Lastly, to capture any remaining temporal and spatial
correlation, random effects are proposed. Chapter 4 presents the results from the analysis
using the proposed methodology. A generalized linear mixed model is the proposed final
model given the analysis results. Final remarks and future work is given in Chapter 5.
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Chapter 2

Alberta Pediatric Mental Health
Care (PMHC) Dataset

Mental health is an issue that affects 1 in 5 Canadian youth and children (Leitch, 2007).
The analysis of the Alberta Pediatric Mental Health Care (PMHC) dataset is motivated by
this statistic. Section 2.1 begins by describing the PMHC dataset and the region descriptors
used in the dataset. Section 2.2 conducts a descriptive analysis of the important risk factors
associated with MHED visits and looks at how the MHED visit rates vary over time and
space. Tests for spatial autocorrelation are examined and applied to the dataset in Section
2.3. Section 2.4 concludes by studying the temporal autocorrelation and seasonal pattern
of the MHED visits.

2.1 Overview of PMHC Dataset

The pediatric mental health care (PMHC) dataset was taken from four population-based
administrative databases in Alberta. The Ambulatory Care Classification System (ACCS),
the Population Registry File (PRF), the Physicians Claims File (PCF), and the Hospital-
izations Discharge Database (HDD). In this project, we focus on the data taken from the
ACCS and PRF databases.

The individuals of interest for this project are Alberta residents who had at least one
MHED visit during the observation window, April 1, 2002 to March 31, 2011. They are
individuals who were younger than 18 years of age at the time of their MHED visit. Pop-
ulation data is used to account for the differences in population size between regions. The
population-level individual is an Alberta resident aged 0 to 18 at the fiscal year end (March
31, 20XX). An Alberta resident is defined as an individual who is registered in the Alberta
Health Care Insurance Plan (AHCIP).

The PMHC dataset has the following demographic information collected on the indi-
viduals. The individual’s age at the time of the MHED visit and at fiscal year end, their
proxy for socio-economic status (pSES), and their sex. The information collected on the
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individual’s place of residence is their residential region at the regional health authority
(RHA) level and sub-regional health authority (sRHA) level, and the first three digits of
their place of residence’s postal code (FSA). The residential region categorization of being
rural or urban is determined using the first two digits of the individuals postal code. This
project focuses on data at the RHA and sRHA level and not the FSA level in order to match
the population data format. Hospitalization information collected on the individuals is their
diagnosis, triage level, triage date, discharge disposition, time and date of the MHED visit,
amount of time to triage, amount of time from triage to physician assessment, total amount
of time spent in ED, and the date of follow-up visits to physicians after the hospitalization.
In addition, the sRHA of the ED the patient visited is known, but not the actual ED visited.
There are 70 sRHAs and approximately 100 EDs in Alberta (Newton et al., 2016).

Individuals in this data can have multiple MHED visits which makes the data recurrent
event data. In other words, the MHED visits made by the same individual are correlated.
Newton et al. (2016) found that from April 1, 2002 to March 31, 2008, most children and
youth (75.2%) had only one mental health related visit during the six-year period, while
24.8% of children and youth had multiple mental health-realted visits.

Alberta is divided into nine RHAs, which was further divided into 70 sRHAs. The
motivation for the RHA boundaries was based on the delivery of health services in the
region. Due to the RHAs varying dramatically in area and population size, comparisons
between RHAs were difficult to make. This motivated the province of Alberta to divide the
province into smaller regions. Postal codes were not ideal since the population size varied
too much and many postal codes had very small population sizes which caused concerns
over data confidentiality. Latitude and longitude blocks were an attractive option, however
they would not mesh with the RHA boundaries. This motivated the use of sRHAs where
the province could target certain regions within RHAs for specific programs, especially since
some RHAs had already begun creating their own sub-regions. The criteria for the sRHAs
was that they had to have a minimum total population size of 20,000. The final sRHAs were
based on municipal boundaries in some RHAs and in others they were based on hospital
catchment areas. The northern region of Alberta, RHA 9, is the only RHA whose sRHAs did
not satisfy the minimum population size. This was due to the province not wanting the RHA
to be limited to only 2 sRHAs, Fort McMurray and the rest of the RHA. The formation and
discussion of the sRHAs began in 2003. The discussion summarized above can be found in
the report: Calculating Small Area Analysis: Definition of Sub-region Geographic Units in
Alberta, 2003.

2.2 Descriptive Analysis

A fiscal year is a one-year period starting from April 1, until the following year’s March
31. For example, April 1, 2002, until March 31, 2003, is the first fiscal year of the PMHC
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dataset. The age used in the following tables, plots, and analysis is the age at the fiscal year
end. This means that some individuals who were aged 17 at the time of their MHED visits
might have turned 18 by the end of the fiscal year. This unit of time for age is chosen to
match the population data which also records age at fiscal year end.

Tables A.1 and A.2 summarize the demographic information and RHA counts by num-
ber of MHED visits and subjects, respectively, with data taken from the PRF and ACCS
databases. From Table A.1, it can be seen that females, teenagers aged 13-18, and the proxy
for socio-economic status (pSES) regular plan participant (RPP) comprise of the majority
of MHED visits for all of the 9 fiscal years. Due to the low counts of MHED visits for indi-
viduals aged less than 13, the age groups 0-5 and 6-12 years old may have to be combined.
The pSES categories government sponsored and welfare are similar groups by definition.
These categories could be combined into a category referred to by income supported to
account for the small number of MHED visits in the welfare group. Since the RHA regions
R3 and R6 are the major urban areas of the Calgary and Edmonton area, respectively, they
have the largest amount of MHED visits compared to the other regions, as seen in Table
A.2. The proportion of repeat MHED visits is relatively small but has some variation over
time and across the RHAs. The northern regions of Alberta, R8 and R9, tend to have a
higher proportion of repeat MHED visits.

In order to get the average percentage of children and youth that have MHED visits
per RHA, a weighted average is used because the RHA specific percentages are based on
different population sizes. Let ni denote the number of individuals with an MHED visit
in RHA i and let wi denote the population size of RHA i, i = 1, ..., 9. Let xi denote the
proportion of individuals in RHA i with an MHED visit, in other words xi = ni

wi
. The

formula for the average rate of MHED visits is x̄ =
∑9
i=1

xi
9 . The formula for the weighted

average rate is

x̄w =
∑9
i=1wixi∑9
i=1wi

=
∑9
i=1 ni∑9
i=1wi

. (2.1)

For the weighted average rates divided by demographic information, such as gender, the
formula becomes x̄(j)w =

∑9
i=1 ni(j)∑9
i=1 wi

, where j is the index of the demographic variable, e.g.
j =Male.

The weighted averages for the overall MHED visits and separated by demographic groups
is shown in Table A.3. The weighted average was found to be smaller than the average due
to RHAs with smaller populations having higher rates of MHED visits and RHAs with
larger populations having lower rates. The increase in the weighted average percentage
of individuals with an MHED visit in Alberta in fiscal year 04/05, as seen in Table A.3,
is most likely due to rural RHAs such as R7 which have an increasing trend in the rate
of subjects with MHED visits. This is seen in Figure B.1. Looking at the demographic
weighted averages in Table A.3, females and youth aged 13-18 have the largest percentage
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of subjects with MHED visits when their RHA population size is taken into account. The
pSES category RPP, regular plan participant, have the highest proportion of MHED visits.
Those in the welfare category have the smallest proportion. Interestingly, the percentage of
MHED visits in the pSES category government sponsored decreases from 0.10% to 0.05% in
fiscal year 2009/2010. This is due to the number of Albertans aged 0-18 in the pSES category
government sponsored decreasing from 113,628 in 2008/2009 to 23,263 in 2010/2011.

Figure B.1 shows the trend over yearly time of the number of MHED visits per 1000
RHA population and the trend of the number of subjects with an MHED visit per 1000
RHA population. Both rates follow similar trends over time. RHA zone R7 has an increasing
trend whereas zones such as R3, the zone representing the Calgary region, show a fairly
constant rate over time. The zones with the largest populations, R3 and R6, which contain
Alberta’s major urban areas, Calgary and Edmonton, have some of the lowest proportion
of MHED visits which could be due to accessibility to options other than EDs or less severe
mental illness.

Figure B.2 shows at what times the most and least amount ED visits occur and how
they vary for the different RHAs. For monthly time, the RHAs appear to follow a similar
trend. They all have a decrease in MHED visits in the summer months, July and August,
and increases in the winter months, October and November, as well as March and May.
This motivates exploring a cyclic seasonal effect for the MHED visits. For daily time, the
RHA trends appear to vary, with some seeing increases in MHED visits on Saturday and
others seeing decreases on Saturday. For time of day, all the RHAs see a decrease in MHED
visits in the early hours of the morning, 1am to 6am, and then an increase in MHED visits
with some fluctuations around the evening hours. Figure B.3 shows the choropleth maps
of the number of MHED visits per 1000 sRHA population over 9 fiscal years. Here we can
see that sRHAs in RHA 7, the center area of the province, is consistently in the higher
range of MHED visits per 1000 sRHA population. Interestingly, the sRHAs in RHA 9, the
northern area of the province, is in the lower range of MHED visits in the early 2000s but
has an increase in visit rates and is now in the higher range bracket for 2010/2011. These
choropleth maps show that the rate of MHED visits is not only different across sRHAs, but
over time as well.

The intervals in Figure B.3 were chosen based on Fisher-Jenks natural breaks algo-
rithm (Jenks, 1977) that is based on minimizing the within-class variance. This method
was chosen over three other methods: the quantile breaks, equal breaks, and k-means clus-
tering. The equal breaks method divides the data into equally spaced intervals. The quantile
breaks method divides the data into intervals such that each interval has the same num-
ber of observations. The k-means clustering method uses the algorithm of the same name
to cluster the observations based on their similarities to find intervals. To find the best
method, or generalizing technique as referred to by Jenks, Jenks developed two techniques,
the tabular accuracy index (TAI) and goodness of variance fit measure (GVF) (Jenks and
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Caspall, 1971; Jenks, 1977). The TAI is given by

TAI = 1−
∑k
j=1

∑Nj
i=1 |zij − z̄j |∑N

i=1 |zi − z̄|
(2.2)

and the GVF is given by

GV F = 1−
∑k
j=1

∑Nj
i=1(zij − z̄j)2∑N

i=1(zi − z̄)2
. (2.3)

Here zij is the observed value, i = 1, . . . , Nj , j = 1, . . . , k, k is the number of classes, z̄j is
the class mean for class j and Nj is the number of observations in class j. The GVF and
TAI range from 0 to 1, where a value of 0 indicates the worst possible fit and a value of 1
indicates the best possible fit (Jenks and Caspall, 1971; Jenks, 1977). For this data, zij is
the number of MHED visits per 1000 sRHA population and the number of classes chosen
is 5. The TAI and GVF are shown for the four different generalizing techniques in Table
A.4. The Fisher-Jenks natural breaks algorithm has both the highest GVF and TAI thus
the intervals in Figure B.3 were chosen based on this algorithm.

2.3 Spatial Autocorrelation

Spatial autocorrelation measures the association between the same variable in “near-by”
areas. Cliff and Ord (1973) define spatial autocorrelation as the phenomenon where the
presense of some quantity in a region makes its presence in neighbouring regions more or
less likely. There are different techniques to measure “nearness” between regions, such as
using adjacency or distance between regions. Global spatial autocorrelation measures the
overall association of the data. One of the most common global spatial autocorrelation
indexes is Moran’s I (Moran, 1950), which measures the similarity of rates of contiguous
areas. Moran’s I is given by,

I =
N
∑
ij wij(xi − x̄)(xj − x̄)

(
∑
ij wij)

∑
i(xi − x̄)2 , (2.4)

where N is the total number of observations, xi and xj is the quantity of interest at location
i and j, respectively, and wij is the weight assigned to areas i and j. The permutation test
approach that uses Monte-Carlo simulation tests the null hypothesis H0: There is no spatial
association in the data. Moran’s I assumes that all the observations are independently and
identically distributed (i.i.d) with a Gaussian distribution. It assumes that the mean and
variance are constant across the regions. However, when the risk population is not constant
across regions, this assumption is not met and the permutation test based on Moran’s I
loses power (Assunçao and Reis, 1999).
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The Empirical Bayes Index (EBI) was proposed by Assunçao and Reis (1999) to adjust
Moran’s I for the variation in population size, but it still assumes constant mean. It has
been shown to have a higher power than Moran’s I and a stable type I error probability
that remained within the nominal significance level in simulated situations (Assunçao and
Reis, 1999). The EBI is defined as

EBI =
N
∑
ij wijzizj∑

ij wij
∑
i(zi − z̄)2 , (2.5)

where N is the total number of observations, wij is the weight assigned to areas i and j

and zi = pi−b√
vi

. Let mi denote the population size of region i, m =
∑
imi, and xi denote

the observation at region i, x =
∑
i xi. Here pi = xi/mi, the rate in region i, b = x/m

and vi = s2 − b/(m/N) . The sample variance, s2, is weighted by the population sizes,
s2 =

∑
imi(pi − b)2/m. According to Xiong (2015), the violation of the constant variance

assumption is not as serious as the violation of the constant mean assumption. It was found
that the violation of the constant mean assumption led Moran’s I to incorrectly reject the
null hypothesis more often compared to the violation of constant variance. This means the
EBI may still lead to an incorrectly rejected null hypothesis and the conclusions must be
regarded with caution.

For the PMHC dataset, the maximum and minimum of the sRHA population sizes
ranged from 2,236-27,449 and the median was 10,236 in the 2002/2003 fiscal year. There is
a large amount of variation between the sRHA population size of Albertans aged 0-17 so
permutation tests of the EBI and Moran’s I is explored to test for spatial autocorrelation on
the global scale. The spatial weights matrix is based on spatial contiguity. In other words,
cell (i, j) is equal to 1 if areas i and j are adjacent and i 6= j, and 0 otherwise. The spatial
weights matrix is row standardized to sum to 1. The results in Table A.5 show that the
null hypothesis, no spatial association, is rejected for the fiscal years 2005/2006, 2007/2008,
and 2008/2009 at α = 0.05. In other words, there is statistical evidence that some positive
spatial autocorrelation exists for these fiscal years. Though their statistics and p-values are
different, the conclusions are the same for the global Moran’s I and EBI.

To study the contribution of each observation to the global Moran’s I, Anselin (1995)
developed local indicators of spatial association, abbreviated to LISA. The formula for the
local Moran’s I is

Ii =
(xi − x̄)

∑n
j=1wij(xj − x̄)∑n

i=1(xi − x̄)2/(n− 1) , (2.6)

where the sum of the local Moran’s I’s for all observations is proportional to the global
Moran’s I. These indicators serve two main purposes. The first is to identify local spatial
clusters, or “hot spots”, and the second is to assess the influence of individual locations on
the magnitude of the global index and to identify potential outliers (Anselin, 1995). The
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null hypothesis is that there is no association between the value observed at location i and
the values observed at nearby sites, determined through wij . LISAs using the number of
MHED visits in sRHA i over the population size of sRHA i are calculated for each of the
nine fiscal years. The results found significant LISAs for sRHAs in every RHA aside from
R2. For an sRHA in R1, it was found to be significant for the fiscal years 2007/08 to 2008/09
and sRHAs in R3 were significant for fiscal years 2002/03 to 2005/06 and 2009/10. Some
sRHAs in R4 had significant LISAs for four of the fiscal years, R6 had some sRHAs with
significant LISAs for three fiscal years and R7 had sRHAs with significant LISAs the most
frequently. The sRHAs in R7 had significant LISAs for every fiscal year aside from 2002/03
and 2003/04. In RHA R8, it had significant LISAs for six of the fiscal years. There was one
influential sRHA in R9 that had a significant LISA in 2008/09.

The final spatial autocorrelation analysis examined is the spatial autocorrelation of the
sRHAs within their respective RHAs. To do this, a global Moran’s I is calculated for each
RHA for the nine fiscal years. The results found that R1 rejected the null hypothesis of no
spatial autocorrelation for all but fiscal year 2007/08. In addition, R4 and R7 rejected the
null hypothesis for fiscal year 2010/11 and R6 rejected the null hypothesis in 2007/08.

The results indicate that there may be some presence of spatial autocorrelation at the
global level and some indication of clustering at the local level. Globally there is a presence
of spatial autocorrelation for three of the nine fiscal years and locally we found the sRHAs
in R7 to have potential clusters the most frequently. The results also indicate that there is
a presence of global spatial autocorrelation for the sRHAs within RHAs R1, R4, R6 and
R7. When the model is being constructed, a component for the spatial correlation should
be considered.

2.4 Temporal Autocorrelation

Temporal autocorrelation is the correlation of a variable with itself over time. In Figure
B.4, there appears to be a cyclical pattern to the autocorrelation for the majority of the
RHA ACFs, with strong positive autocorrelation at intervals of 12 months and multiples
thereof, and matching negative correlation at 6 months, 18 months, etc. For RHA 9, there is
no pattern in the autocorrelations and no strong presence of temporal autocorrelation. The
cyclical pattern is most prominent for RHAs 3 and 6, the Calgary and Edmonton areas,
respectively. These plots strengthen the argument to include a cyclic seasonal effect in the
model. In Figure B.5, the majority of the RHAs aside from R7, R8 and R9 have some
significant lag effects up to lag 20 months and no significant lags afterwards. The figure
shows that the autocorrelation is not as severe after approximately lag 20.
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Chapter 3

Generalized Linear Mixed Models
(GLMM)

Chapter 2 found that when the spatio-temporal effects are analyzed separately there is a
presence of spatial autocorrelation, temporal autocorrelation and a cyclic seasonal effect.
Chapter 3 introduces the proposed models to explore these spatio-temporal patterns. Section
3.1 begins by introducing some notation. Then Section 3.2 presents the proposed models
divided into two modelling stages: temporal and spatio-temporal. The models explore three
different specifications for the seasonal and time trend effect and random effects to model
the spatio-temporal correlation structure of the data.

3.1 Notation

Let Y (t; r;p) denote the primary response where t is the time index, r is region index and
p is the covariate vector index. Y (t; r;p) can be the number of MHED visits, the number
of subjects who had an MHED visit, a ratio of the number of MHED visits over population
sizes or a ratio of the number of subjects with an MHED visit over the population sizes.
This project focuses on the response Y (t; r;p) seen as the number of MHED visits at time
t and region r with covariate information p. An MHED visit constitutes those made by
Albertans aged 0-17 at the time of their MHED visit.

For the region index, r, of this project, it is treated as a discrete index such that r =
1, . . . , 70 for the 70 sRHAs. The sRHAs correspond to the smallest regional index of this
data. The region index can also be treated as centroids with latitude and longitude values.
The calendar time of April 1, 2002 to March 31, 2011, t, can be in yearly, monthly, weekly or
daily time. For this project, we instead look at time as 28 day blocks starting at April 1, 2002,
giving us 13 blocks each year. The index t then goes from t = 1 to T = 9× 13 = 117. The
advantage of using 13 blocks over monthly time is that each time unit has an equal amount
of days. This ensures the variations in counts between blocks will not be due to differences
in amount of days. The covariate vector index, p = (j, k, l), is a vector of indices for age,
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gender, and pSES, respectively. Here, j = 1, 2 for age groups 0−12 and 13−18, k = 1, 2 for
genders female and male and l = 1, 2, 3 for pSES categories regular plan participant (RPP),
treaty status, and government sponsored and welfare combined. We refer to the combined
grouping of government sponsored and welfare as income supported.

Let S(t; r) denote the population count at time t and sRHA r of Albertans aged 0-
18. The true population count at time t and region r is unknown for most time points
as it is only recorded for the sRHA level at the fiscal year end. For the purposes of this
project, we assume the population remains constant throughout the fiscal year. The goal
is to explore different methods to specify and estimate the conditional expectation of the
response Y (t; r;p) given the population:

E{Y (t; r;p)|S(t; r)} = µ(t; r;p|S(t; r)). (3.1)

We denote the conditional covariance as

Cov{Y (t1; r1;p1), Y (t2; r2;p2)|S(t1; r1), S(t2; r2)} = c(t1, t2; r1, r2;p1,p2|S1, S2). (3.2)

3.2 Modelling

To model µ(t; r;p|S(t; r)), the problem is separated into two modelling stages: temporal
and spatio-temporal. This is to explore the spatio-temporal patterns separately and build
the final model appropriately. The temporal modelling considers three different settings, a
log-linear, non-linear, and semi-parametric setting, for the seasonal and time trend effect.
The spatio-temporal modelling considers random effects to describe the nested structure of
the regions followed by CAR and AR(1) random effects.

We decompose the model into three components: the risk factors/exposure, the seasonal
effect and time trend, and the random effects. The exposure refers to the population size
S(t; r). Since the response variable is in the form of counts, the Poisson distribution is
assumed. We denote the Poisson regression model as

log(µ(t; r;p|ε)) = Xθrisk/exposure
p (t; r) + β(t; r) + ε(t; r), (3.3)

where θrisk/exposure
p (t; r) denotes the risk factors/exposure fixed effects, β(t; r) denotes the

seasonal and time trend fixed effects and ε(t; r) denotes the random effects component.
The specification of (t; r) denotes whether the components vary by t and/or r. We denote
θ

risk/exposure
p (t; r) = (γ(t; r), θ0(t; r), αage

j (t; r), αgender
k (t; r), αpSES

l (t; r)) and X as the design
matrix of θrisk/exposure

p (t; r). The first column of the design matrix is logS(t; r), the second
column is a column of ones for the intercept and the remaining four columns correspond to
the categorical risk factors. Let αage

1 (t; r) = 0, αgender
1 (t; r) = 0 and αpSES

1 (t; r) = 0. In other
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words, individuals aged 0-12 years old, females and pSES category RPP are the reference
groups of the risk factors.

3.2.1 Modelling temporal patterns

We begin by considering three methods to describe the seasonal and time trend effect,
β(t; r). This effect is considered under fixed regions, r∗, such that β(t; r∗). In other words,
the seasonal effects are estimated for each r∗ region. To see whether this specification is
appropriate, the seasonal effects varying across regions, β(t; r∗), are compared to seasonal
effects that are constant across all regions. When the seasonal effects are considered under
fixed regions, the risk factors/exposure is θrisk/exposure

p (t; r∗). For this section we assume
there are no random effects, ε(t; r∗) = 0.

Model T1 assumes a linear time trend and assigns a coefficient for each of the 12=13-1
blocks of size 28 days such that

β(t; r∗) = φ(t; r∗)xtr∗p + βseason
i(t) (t; r∗). (3.4)

Let xtr∗p denote the time at t and region r∗ for risk groups p. Let i = 1, . . . , 13 for the 13
blocks of size 28 days in a year and let block 1 be the reference group, β1(t) = 0.

Model T2 assumes a linear time trend and a seasonal pattern that is described by sine
and cosine functions such that

β(t; r∗) = φ(t; r∗)xtr∗p +A0(t; r∗)cos
(2πt

13

)
+B0(t; r∗)sin

(2πt
13

)
. (3.5)

Let xtr∗p denote the time at t and region r∗ for risk groups p.
Model T3 assumes a non-linear time trend and a cyclic seasonal pattern using non-

parametric smoothing functions such that

β(t; r∗) = ftrend,t(t; r∗) + fseasonal,i(t)(t; r∗), (3.6)

where i and t are covariates that describe the within-year and between year times, respec-
tively. In other words, i = 1, . . . , 13 for the 13 blocks of size 28 days in a fiscal year and
t = 1, . . . , 117 for the 13 × 9 total time points. The smoothing functions fseasonal,i(t) and
ftrend,t use a cyclic smoothing spline and thin plate smoothing spline, respectively. The cyclic
cubic spline is defined as fseasonal,i(t) =

∑13−1
i=1 b̃i(t)(i)βi(t), where b̃i(t) are the basis functions.

A characteristic of the cyclic cubic spline is that fseasonal,1(t) must match fseasonal,13(t), up
to a second derivative (Wood, 2006). The cyclic cubic smoothing spline can be seen as an
extension of Model T1 with 13-1 seasonal factors where the spline is applied to smooth over
the seasonal effect. The thin plate spline provides intuition on whether a linear time trend
is adequate or whether a polynomial time trend is required.

13



3.2.2 Modelling spatial-temporal patterns

This section begins by attempting to use the risk factors and seasonal effect chosen through
the temporal modelling stage to describe the spatial patterns. Recall that the notation t∗

and r∗ refers to estimated for fixed time t∗ and estimated for fixed region r∗. Here βseasonal

refers to the seasonal component of β.
Model ST1 assumes the fixed effects are constant across time and space, the time trend

component of β is zero and there are no random effects. This gives us the following model
specification,

θrisk/exposure
p ; β = βseasonal; ε = 0. (3.7)

Model ST2 assumes the fixed effects vary across time but are constant across space.
We assume the time trend component of β(t∗; r) is zero and there are no random effects.
In other words, it extends model ST1 to let the coefficients vary across time by estimating
the fixed effects for each time unit. To investigate how the seasonal effect varies over time,
the fixed effects vary across the nine fiscal years rather than all t = 1, . . . , 117 time points.
This gives us the following model specification,

θrisk/exposure
p (t∗year; r); β(t∗year; r) = βseasonal(t∗year; r); ε(t∗year; r) = 0, (3.8)

where t∗year = 1, . . . , 9 for the nine fiscal years.
Model ST3 is a generalized linear mixed model, GLMM, with independent random

intercepts for the RHA and sRHAs. This is to describe the hierarchical structure of the
data, where the sRHAs are nested within their respective RHAs. This structure assumes
the sRHAs in the same RHA to be correlated and the sRHAs not within the same RHA
are assumed to be independent. The random effects specification is denoted as

ε(t; r) = uR + vr, (3.9)

where R = 1, . . . , 9 for the nine RHAs, r = 1 . . . , 70 for the 70 sRHAs, uR
iid∼ N(0, σ2

u) and
vr

iid∼ N(0, σ2
v). The random effects uR and vr are assumed to be independent. The temporal

fixed effects component of the model will be chosen through the temporal analysis and the
risk factors/exposure component will vary by time and/or regions depending on the analysis
results.

Model ST4 assumes a temporal and spatial random effect. The goal of this final model
is to incorporate the findings from the previous models and to describe the correlation
structure. The seasonal and time trend, β(t; r), and risk factors/exposure, θrisk/exposure

p (t; r),
fixed effects specification of varying by time and/or regions will be based on the analysis
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results in Chapter 4. The random effect specification is

ε(t; r) = ψt + ηr, (3.10)

where ψ follows an autoregressive model of order 1, AR(1), and ηr follows a conditionally
autoregressive, CAR, model. Let ψ = (ψ1, . . . , ψT ) ∼ N(0,Σψ) where Σψ = σ2

ψ/(1 −
ρ2){ρ|t1−t2|}Tt1,t2=1. The parameter σ2

ψ is the temporal variance and ρ is the lag-1 temporal
autocorrelation. Let η = (η1, . . . , η70) ∼ N(0,Ση) where

Ση =σ2
η(I70 − ληW)−1. (3.11)

Here σ2
η is the spatial dispersion, the scalar parameter λη describes the strength of spatial

dependence among the observations (LeSage and Pace, 2009), 0 ≤ λη < 1, and W is the
spatial weights matrix. The spatial weights matrix is defined as the adjacency matrix where
if two different regions are adjacent, the corresponding matrix element will be 1 and 0
otherwise. This model allows for correlation amongst sRHAs who share a common border,
whereas the sRHA and RHA random effects in model ST3 allowed the sRHAs within the
same RHA to be correlated. The CAR model focuses on spatial correlation based on the
geographic location and the nested random effects in model ST3 focuses on correlation
based on the geographic hierarchical structure created by the government. Model ST4 uses
an AR(1) and CAR model similar to the one described in Torabi and Rosychuk (2010) and
the CAR model described in LeSage and Pace (2009).
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Chapter 4

Regression Analysis Under GLMM

In this chapter, we begin by outlining the analysis procedure in Section 4.1. Sections 4.2 and
4.3 summarize the analysis for the temporal and spatio-temporal modelling stages detailed
in Chapter 3. The final proposed model is chosen based on the results. For clarification,
Table A.6 shows the level of aggregation at the sRHA level used for the analysis. There are
70 sRHAs, 117 (9 fiscal years × 13 blocks of size 28 days) time points, 2 levels of gender
(Male and Female), 3 levels of pSES (Regular Plan Participant (RPP), Treaty Status, and
Income Supported), and 2 age groups (less than 13 years old and greater than 12 years old).
The distribution of the MHED counts following this data aggregation and the distribution
of the population counts at the sRHA level are shown in Figure B.6.

4.1 Overall Analysis Procedure

For each of the proposed models, the data are based on the number of MHED visits in
the subgroup (t; r;p). The analysis begins with the temporal modelling and assumes the
coefficients are constant across all regions. To implement the three proposed models, models
T1 and T2 uses the standard glm function in R. The final model, T3, is fit using the gam

function in the mgcv R package where the smoothing functions are specified to be the cyclic
cubic spline with basis dimension k = 13− 1 and the thin plate spline for the seasonal and
trend functions, respectively. The default smoothing parameter estimation method in the R

package is used, generalized cross validation (GCV). Next, the coefficients are assumed to
vary by RHA and sRHA for models T1, T2 and T3. The estimation by region is done by
subsetting the data for each RHA and sRHA and running a separate model on each subset
of the data. Another option is to include an interaction term of the regions, treated as a
categorical variable, and the fixed effects model components. The intercept must be removed
for this option so it can be replaced by the means of the regions. To determine whether
the coefficients should vary by region, the confidence intervals (CIs) of the estimates are
compared to their constant across regions CI counterpart. If they fall within the constant
estimate CI, the constant estimate is used. Otherwise, some form of grouping of the regions
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has to be explored. In addition, if the γ coefficient for population size includes one in its
95% CI, it is fixed at one and treated as an offset term.

The analysis for the spatio-temporal modelling starts by implementing models ST1 and
ST2, the constant and time-varying Poisson GLM, respectively. For model ST2, the model is
fit with the data divided by fiscal year. If the estimated coefficients fall inside their respective
constant coefficient estimate CI from model ST1, the variable is assumed to be constant
across time. The mixed effects model, ST3, with a nested random effect structure is fit
with glmer in the R package lme4. Like in the temporal modelling stage, if the coefficient
for population size, γ, includes one in its CI, it is fixed at one and treated as an offset.
Lastly, the final model ST4 will use the information gained from the previous models. If one
method outperforms the others in its respective stage, that method is the focus for this final
model. To implement the CAR and AR(1) random effects, the integrated nested Laplace
approximation using the R package INLA is used (Rue et al., 2009).

4.2 Temporal Analysis

Recall that three different models were proposed to capture the seasonality and time trend:
Model T1 that estimates a coefficient for 13-1 blocks of size 28 days and a linear time trend,
Model T2 that uses trigonometric functions and a linear time trend and Model T3 that
uses a cyclic cubic spline for the seasonality and a thin plate spline for the time trend. The
demographic, seasonal and time trend coefficients are proposed to be estimated under three
different settings for each of the three models. The first setting fixes the coefficients to be
constant for every region. The second setting allows the coefficients to vary by RHA and
the third allows the coefficients to vary by sRHA. To achieve this, subsets of the data by
RHA and sRHA for settings 2 and 3, respectively, are fit to the models. These settings help
see whether there is a difference between regions and if there is a loss of information by
ignoring these differences.

4.2.1 Risk factors/exposures effects

To begin, we compare the coefficient estimates for the risk factors and exposures across the
three different settings, constant across regions and varying by RHA and sRHA. In Figure
B.7, we see the coefficients for the intercept, population, and gender estimated by sRHA,
RHA and constant across all regions. The x-axis is the sRHA index and the y-axis is the
coefficient’s estimated value. The intercept and population coefficient have similar results
for which sRHAs estimates fall inside the RHA or constant estimate’s confidence interval
(CI). Aside from R303, R313, R505, R611, R620, R901 and R902, all of the sRHAs fall inside
the constant and RHA coefficient estimate CIs for the intercept and population variable.
The gender coefficient estimates by sRHA fall inside the constant estimate CI aside from
sRHA R202 and sRHAs in RHAs R3 and R9. The estimates by sRHA all fall inside the
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RHA estimates’ CI. This motivates estimating the gender coefficient by RHA or groups of
RHAs.

In Figure B.8, we see the teenage age group coefficient estimates varying by sRHA all
fall inside the RHA estimate CI aside from R902. A large portion of the teenage coefficient
estimates by sRHA in RHAs R3, R6 and R9 do not fall inside the constant estimate CI.
Like the gender coefficient, the age group coefficient may be more informative if estimated
by some grouping of the RHAs. Figure B.8 shows that none of the treaty status coefficient
estimates varying by sRHA, compared to RPP, fall within the constant estimate’s CI. The
sRHA coefficient estimates in RHA R5 fall inside the RHA estimate CI. For the income
supported coefficient estimates varying by sRHA, compared to RPP, the estimates for the
Calgary area and Edmonton area RHAs R3 and R6, respectively, do not fall inside either
the constant or RHA estimate CI. The majority of the estimates by sRHA in RHA R9 fall
inside the constant and RHA estimates’ CI. The remaining estimates by sRHA fall inside
their respective RHA estimate CI.

The results indicate that the sRHAs belonging to the same RHA do not always follow
the same pattern, particularly when looking at pSES. Treating them as such may cause us to
lose information. The sRHAs that tend to follow a different pattern from the overall average
are from RHAs R3, R6 and R9. This intuitively makes sense since R9, the northern region
of Alberta, has sparse population and may be influenced by R904, Fort McMurray, which
accounts for over 57% of the RHAs population. In addition, R3 and R6, the Calgary and
Edmonton area, respectively, have the largest amount of sRHAs, 19 and 18, respectively.
There is a large amount of variability between the population sizes of the sRHAs in R3
and R6. For R3, in 2003 the standard deviation of the sRHAs population sizes was 5,612.3,
and in 2011 that increased to 8,223.5. For R6, in 2003 the standard deviation of the sRHAs
population sizes was 7,567.2, and in 2011 that increased to 9,022.2. Given these results,
it is recommended the coefficients be estimated under four groups: RHA 3, 6, 9 and the
remaining RHAs grouped into one category “Other”.

4.2.2 Estimates of average counts

All three temporal models estimated the average MHED counts for individuals aged less
than 13 to be less than one regardless of the time, sRHA, pSES and gender since over
92% of this age group has no MHED visits. In addition, of those in that age group who
had an MHED visit, 85% had a count of one visit. For the estimated means of those aged
greater than 12 and in pSES group treaty status, the constant, varying by RHA and sRHA
settings only differed for a few sRHAs in RHA R1, R4, R6 and R7 for a total of nine
sRHAs. This means that for teenagers with treaty status, only nine sRHAs have different
behaviour compared to their RHAs and Alberta as a whole. For those aged greater than
12 and in pSES group income supported, the estimated means are similar aside for some
sRHAs in R6 (Edmonton area). For individuals aged greater than 12 and in pSES category
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RPP, the waves have a larger magnitude when the coefficients vary by sRHA. Overall,
the estimated means varying by RHA and sRHA have a similar time trend and estimated
means. Based on these results, the model may benefit from allowing the pSES variable, time
trend and seasonal effect to vary by RHA. Figure B.9 shows the estimated means by 1000
sRHA population for the three different pSES categories for females and individuals aged
greater than 13. Notice how the coefficients estimated by RHA and sRHA are similar and
capture which sRHAs display a different behaviour from the other sRHAs better than the
coefficients held constant.

When the estimates are compared across models T1, T2 and T3, the seasonal factors
model, T1, closely resembles the smoothing splines model, T3. Model T3 estimates have
a non-linear time trend and the seasonality is smoother compared to the seasonal factors
model. The magnitude of the seasonal waves in the estimated means is smaller for the
trigonometric model, T2, compared to models T1 and T3. This is seen in Figure B.10. The
difference between the models is less severe when the coefficients are estimated by sRHA.
Note the spikes some of the curves have at the beginning of the fiscal years in Figure B.9,
particularly for the coefficients estimated by sRHA. This is most prominent in the third
column and second row plot, the trigonometric model for treaty status female teenagers in
sRHA R703. This is due to the estimate for the log of the population size having a larger
range when it was estimated by sRHA, -16 to 73, compared to the coefficients estimated by
RHA, -0.47 to 1.57. The jagged shape of the curve is also a side effect of the assumption that
the population size remains constant throughout the fiscal year. The change in population
size at the start of the fiscal year compared to the previous year causes a jump in the
estimated means.

4.2.3 Seasonality and time trend

The results have indicated that the trigonometric model, T2, is a good model to capture
the seasonal variation in the estimated mean number of MHED visits. This conclusion
is supported by models T1 and T3, the seasonal factors and smoothing splines models. In
model T1 a seasonal variation similar to the cosine + sine curve was observed. This is shown
in Figure B.11 where we see the seasonal factor follows a cosine + sine curve for all of the
regions. Figure B.12 shows the estimated time trend + the seasonal effect from models T1
and T2 calculated for t = 1, . . . , 117, each RHA and the Alberta average. The magnitude of
the waves in the trigonometric model is smaller than the magnitude in the seasonal factors
model, but the seasonal patterns are similar. In Figure B.13, the spline describing the block
effect shows a curve similar to the one found in the trigonometric model. The figures also
show that the assumption of a linear time trend for time t may not be appropriate for all
RHAs and polynomial terms for time should be considered.
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4.2.4 Model checking

The format of the data is a 5-way contingency table (sRHA by time by gender by age
group by pSES) to ensure a balanced design. Due to the large number of combinations,
98,280, there is a large amount of zeros in the data, approximately 77%. This motivates
the exploration of different distributions aside from the Poisson distribution that are more
suited for zero-inflated data such as the negative binomial or the quasi-Poisson.

In a Poisson GLM, the dispersion parameter is fixed at 1. The quasi-Poisson distribution
leaves the dispersion parameter unrestricted and is estimated using the data. The coefficient
estimates of the quasi-Poisson remain the same as the Poisson GLM but the standard errors
in the quasi-Poisson are adjusted for over-dispersion. For the three proposed models, the
seasonal factors, trigonometric and generalized additive models, the dispersion parameter
is less than 2 under all three settings where the coefficients varied by sRHA, RHA and were
constant across all regions. The results for the dispersion parameter are displayed in Table
A.7. Given the estimated dispersion parameter is less than 2 and approximately greater than
1 for all models, aside from two sRHAs, over-dispersion does not appear to be a concern
for our Poisson regression models.

Another method of handling over-dispersed, or zero-inflated data, is to use the nega-
tive binomial distribution. In Table A.8, the estimates and standard errors are very similar
for the negative binomial distribution and the Poisson distribution for models T1, T2 and
T3 when the variables are fixed over time and regions. Their distribution of residuals vs
fitted values were approximately the same under the negative binomial and Poisson distri-
bution. A measure of the model’s fit is the deviance explained. It is a measure of how well
the explanatory variables in the model explain the variation in the response and is calcu-
lated as 1-residual deviance/null deviance. The deviance explained of the three proposed
models is slightly higher under the negative binomial distribution compared to the Poisson
distribution. For the Poisson and negative binomial distribution, the deviance explained
is approximately 40% under the constant coefficients setting. Under the varying by RHA
coefficient setting the deviance explained is on average 43% (± 8%) and under the sRHA
coefficient setting the deviance explained is on average 44% (±10%). These results indicate
the negative binomial regression models do not provide a significantly better fit over the
Poisson regression models.

4.2.5 Analysis of residuals

Figure B.14 shows the residual versus fitted value plots for (a) the constant coefficients
across regions, (b) the coefficients varying by RHA, and (c) the coefficients varying by
sRHA settings for Model T2. From the plots, the coefficients varying by sRHA appears to
provide a slightly better fit compared to the coefficients varying by RHA due to there being
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fewer outliers for the fitted values close to zero. The constant coefficients across regions
setting has a smaller range for the fitted values and is more overwhelmed by the zeroes.

The residuals can be used to check if there is any remaining temporal autocorrelation
not described by the model. If we have described the temporal pattern sufficiently, there
should be no presence of temporal autocorrelation. The results described in the following
paragraph are the same for models T1, T2 and T3. They are also true for the coefficients
estimated under the three settings of remaining constant across all regions, varying across
RHAs and varying across sRHAs.

If we treat each combination of sRHA, gender, pSES and age group as a time series
with 13 blocks × 9 fiscal years = 117 time points, we have 70 × 2 × 3 × 2 = 840 time
series. There was one sRHA, R614, for females and the age group 0-12 years old that had a
presence of autocorrelation for pSES category RPP. Aside from that one time series in pSES
category RPP, there was no presence of autocorrelation for all combinations of gender, age
group and pSES category RPP. For the pSES category treaty status, there is still a presence
of autocorrelation for the majority of sRHAs. The presence of autocorrelation is less severe
for treaty status females aged 13-18 years old. For the pSES category income supported,
individuals aged less than 13 still have a presence of autocorrelation for several sRHAs.
For individuals aged greater than 12, only females in R620 have a presence of temporal
autocorrelation. These results indicate that an interaction between pSES and time should
be included to try and capture that remaining temporal autocorrelation.

4.2.6 Proposed model given temporal analysis

To capture the seasonality in the MHED counts, the trigonometric model T2 with a cosine
and sine function is recommended over the cyclic cubic spline and the 13-1 factors for the
blocks of size 28 days. This is due to the trigonometric model having fewer parameters com-
pared to the seasonal factors model and the trigonometric model being more interpretable
compared to the smoothing splines. In addition, we continue to assume the data follows a
Poisson distribution due to the estimated over-dispersion being relatively small. For the risk
factors, we allow them to vary based on 4 groupings of the RHAs: R3, R6, R9 and Other.
Due to the pSES categories still experiencing some temporal autocorrelation, an interaction
term of pSES and time t is recommended. The smoothing splines revealed a linear trend
may not be appropriate. Given these results, a quadratic term for t is recommended.

4.3 Spatio-Temporal Analysis

For the spatio-temporal modelling in Section 3.2.2, recall that four models were proposed:
model ST1 is a GLM with coefficients constant over time, model ST2 is a GLM with coeffi-
cients varying over yearly time, model ST3 is a mixed effects model with a nested random
effect for the sRHA nested within the RHAs and model ST4 is a mixed effects model with
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AR(1) and CAR model random effects. For models ST1 and ST2, the trigonometric seasonal
effect is used and the coefficients are estimated by fiscal year. The results are summarized
in Table A.9. Aside from fiscal year 2003/04, all of the estimates for the seasonal effect, A0

and B0, fall inside the constant estimate’s CI. For the coefficients for male and teenagers,
all of the estimates fall within the constant estimate’s CI. This means the coefficients for
the trigonometric seasonal effect, gender and age do not experience significant variation
over yearly time. For the intercept coefficient, fiscal years 2003/04, 2006/07 and 2008/09 do
not fall within the constant estimate’s CI. For the log of the population coefficient, fiscal
years 2003/04 and 2008/09 don’t fall within the constant estimate’s CI. Since the deviation
from the constant estimate’s CI is small, less than 0.08, for all but the intercept estimate
in fiscal year 2003/04, the constant estimate is recommended for the intercept and log of
the population in favour of a sparser model. For the pSES categories treaty status and
income supported, fiscal years 2002/03, 2007/08, 2009/10 and 2010/11 do not fall within
the constant estimate’s CI. This provides further motivation for including an interaction
term of time and pSES.

The third model for the spatio-temporal modelling stage, ST3, is a mixed effects model
that incorporates the nested structure of the regions. To formulate this model, information
from all previous models is used and the structure from Equation 3.3 holds. The fixed effects
for the risk factors/exposure are

θrisk/exp
p (t;R∗,group) = (γ, θ0, α

age
j (t;R∗,group), αgender

k (t;R∗,group), αpSES
l (t;R∗,group)), (4.1)

where the intercept and population coefficient, θ0 and γ are constant across time and space,
the risk factors age, gender and pSES vary by regions R∗,group = R3, R6, R9 and the other
RHAs. The temporal fixed effects coefficients are estimated to be constant across time and
regions such that

β = A0cos
(2πt

13

)
+B0sin

(2πt
13

)
+ φ0xtrp + φpSES

0l xtrp + φ2x
2
trp, (4.2)

where a quadratic term is included for time through φ2. The term φpSES
0l is the interaction of

time and pSES. The random effects are ε(t; r) = uR + vr where R = 1, . . . , 9 for the RHAs,
r = 1, . . . , 70 for the sRHAs, uR ∼ N(0, σ2

u), vr ∼ N(0, σ2
v) and uR and vr are independent.

Recall that in Figure B.12 the seasonality and time trend varied across the RHAs. To
explore this seasonal and time trend effect further, consider the above model under three
settings for the seasonal and time trend effect.

1. Assume the coefficients are constant: β from Equation 4.2.

2. Assume the coefficients vary by RHA: A0(t;R∗), B0(t;R∗) and φ0(t;R∗).
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3. Assume a mixed effects model where the seasonal and time trend coefficients are
assumed to vary randomly by RHA: β and ε(t; r) = uR + vr + A1Rcos

(
2πt
13

)
+

B1Rsin
(

2πt
13

)
+ φ1Rxtrp such that A1R ∼ N(0, σ2

A), B1R ∼ N(0, σ2
B) and φ1R ∼

N(0, σ2
φ). Assume A1R, B1R and φ1R are correlated random effects.

The AICs and BICs for these models are displayed in Table A.10. Based on the AICs and
BICs, the model with the random seasonal and time trend effect offers the best fit compared
to the models that left these effects fixed. Figure B.15 shows the residual versus fitted value
plots for the generalized linear mixed models under the three settings. Plot (a) assumes
the seasonal and trend coefficients are constant, plot (b) assumes the coefficients vary by
RHA and plot (c) assumes the coefficients are random based on the RHA groups. There is
no discernible difference between these plots. Given these results, the model should include
random effects for the seasonal and time trend slopes. The variance estimate for σ2

u, the
variance of the RHAs, is small, < 0.01. This means the correlation between sRHAs in the
same RHA may be insignificant. This will be explored further in the analysis of model ST4.

Current results have indicated that the number of MHED visits varies over time and
space. Currently the suggested model is a random slope for the trigonometric seasonal effect
and time trend varying by RHA, a nested random effect of the sRHA nested within the
RHA and risk factors/exposures that vary according to four groups, RHA 3, RHA 6, RHA
9 and the remaining RHAs. The risk factors/exposure and temporal fixed effects remain
the same as in Equation 4.1 and 4.2, respectively. The random effects structure is now
ε(t; r) = uR + vr + A1R + B1R + φ1R. Here R = 1, . . . , 9 for the nine RHAs, r = 1, . . . , 70
for the 70 sRHAs, uR ∼ N(0, σ2

u), vr ∼ N(0, σ2
v), A1R ∼ N(0, σ2

A), B1R ∼ N(0, σ2
B) and

φ1R ∼ N(0, σ2
φ). A final model to consider, model ST4, is one that includes a spatial

and temporal correlation structure, such as the CAR and AR(1) model, respectively. To
implement this model we use the R package INLA that performs approximate Bayesian
inference.

4.3.1 Motivation for Integrated Nested Laplace Approximation (INLA)

The R package INLA uses an integrated nested Laplace approximation approach to approxi-
mate Bayesian GLMs. It uses nested approximations for the posterior marginals of interest
and applies a Laplace approximation to the nested approximations (Rue et al., 2009). A
Bayesian GLM is commonly denoted as

g(µi) = ηi = α+
n∑
k=1

βkzki +
nf∑
j=1

f j(uji), (4.3)

where g is the link function, µi is the mean, f js are unknown functions of the covariates
u and βks are the fixed effects of the covariates z. Latent Gaussian models are a subset of
these Bayesian models which assign a Gaussian prior to α, f j and βk. The latent field x is
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a vector of the latent Gaussian variables ηi, α, f j and βk. The latent field x has conditional
independence properties that makes it a Gaussian Markov Random Field (GMRF) (Rue
et al., 2009). If we have x = (x1, . . . , xn)′ ∼ N , then xi ⊥ xj |x−ij , in other words, xi and
xj are conditionally independent. This key property leads to a sparse precision matrix Q,
the inverse of the covariance matrix, leading to fast computation speed (Rue et al., 2009).

This method is chosen due to the ability to specify different models for the latent
Gaussian models such as the AR(1) model, CAR model and independent random vari-
ables. Another method would be to use the R function glmmPQL that uses penalized quasi-
likelihood (Wolfinger and O’Connell, 1993). However according to Bolker (2015), the esti-
mates of the random-effects variances are biased, particularly for binary data or count data
with means less than 5. Our response has a mean of 0.42 so this method is not ideal. In
addition, since the quasi-likelihood is computed, the inference is limited. The second option
is to use the relatively new R function glmmTMB. The function has the option of including
an AR(1) model for the correlation structure. However, it is not used due to the documen-
tation on how this AR(1) structure is implemented being unclear and due to a CAR model
correlation structure not currently being available.

4.3.2 Model exploration

Currently the model includes interaction terms for the demographic covariates with time
and space. There could exist an interaction between the demographic variables themselves.
Newton and Rosychuk (2011) found that the rate of MHED visits was approximately equal
for males and females in the younger age groups. They found that for the older age groups
of 15-17, females were nearly twice as likely to visit an ED for mental health reasons com-
pared to males. This motivates the inclusion of an interaction term for age and gender. An
interaction term for age and pSES is included since it is found to be significantly different
from zero. The interaction term for gender and pSES was not found to be significant so it
is excluded from the proposed models. The temporal fixed effects remain the same as in
Equation 4.2 and for the risk factors/exposure with the two-way interactions we have

θrisk/exp
p (t;R∗,group) =

(
γ, θ0, α

age
j (t;R∗,group), αgender

k (t;R∗,group), αpSES
l (t;R∗,group),

αage×gender
jk , αage×pSES

jk

)
. (4.4)

The population coefficient, intercept and two-way interactions of gender×age and pSES×age
are assumed to be constant across time and space.

The random effects explored have been a random slope for the seasonal and time trend
effect grouped by RHA and a nested random effect of sRHA within RHA. Figure B.8 shows
that the coefficient estimates for pSES from the temporal analysis have a large amount of
variation between regions. This motivates the inclusion of a random slope for pSES that
varies by region. To capture the correlation of regions that are adjacent, a CAR model can
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be included. The CAR model is compared to the nested random effects of sRHA within
RHA. To capture the temporal correlation an AR(1) model is included. The random effect
structures are as follows:

1. An AR(1) model and CAR model random effects: ε(t; r) = ψt + ηr.

2. An AR(1) model and nested random effects: ε(t; r) = ψt + uR + vr.

3. An AR(1) model, CAR model and seasonal and time trend slope random effects:
ε(t; r) = ψt + ηr +A1Rcos

(
2πt
13

)
+B1Rsin

(
2πt
13

)
+ φ1Rxtrp.

4. An AR(1) model, CAR model and pSES slope varying by region random effects:
ε(t; r) = ψt + ηr + αpSES

l1r .

Here αpSES
treaty,1r ∼ N(0, σ2

αtreaty), αpSES
supported,1r ∼ N(0, σ2

αsupported), ψ follows an AR(1) model
and η follows a CAR model. The time trend, seasonal and nested random effects, φ1R, A1R,
B1R, uR and vr, have the same specification used for model ST3. It is assumed that the
random slopes A1R, B1R and φ1R are correlated and that the levels of the αpSES

l1r random
slope, income supported and treaty status, are correlated. We have ψ = (ψ1, . . . , ψT ) ∼
N(0,Σψ) and Σψ = σ2

ψ/(1−ρ2){ρ|t1−t2|}Tt1,t2=1. The parameter σ2
ψ is the temporal variance

and ρ is the lag-1 temporal autocorrelation. We have η = (η1, . . . , η70) ∼ N(0,Ση) and Ση =
σ2
η(I−ληW )−1. Note that in INLA, Ση is estimated as Ση = σ2

η

(
I − λη

max eigenvalue of WW
)−1

to ensure λη is in the range [0, 1).
Since INLA uses Bayesian inference, priors must be assigned to the parameters of the

random effects, the hyperparameters. The parameter estimates can be sensitive to the chosen
priors (Rue et al., 2009). To let the data speak for itself, we set the priors to be highly vague,
but proper. The prior distribution for the AR(1) model parameters are

log
(1 + ρ

1− ρ

)
∼ N(0, 0.15)

−log(σ2
ψ/(1− ρ2)) ∼ log Gamma(1, 0.0001),

and for the CAR model the prior distributions are

−log(σ2
η) ∼ log Gamma(1, 0.0001)

log
(

λη
1− λη

)
∼ N(0, 10).

The prior for ρ is kept at the default in INLA. The prior for λη is set to be a more vague prior
compared to ρ due to the posterior distribution of λη being unstable and multimodal at
the default N(0, 0.1) recommended by INLA. The prior distribution for the random seasonal
slope, time trend slope, pSES slope and nested sRHA within RHA effects is set to be the
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same highly vague distribution. In other words, we have

−log(σ2) ∼ log Gamma(1, 0.0001),

where σ2 corresponds to the random seasonal slope, time trend slope, pSES slope, RHA
intercept or sRHA intercept variance parameter.

To assess whether the model fit improves with the inclusion of different random effects,
the deviance information criteria (DIC) and Watanabe-Akaike information criteria (WAIC)
are used. A lower DIC and WAIC compared to other nested models means the model is
a better fit. The analysis finds that the inclusion of the random effect uR, which specifies
sRHAs in the same RHA are correlated, does not improve the fit of the model when the
random effect vr is included. In addition, the CAR model random effect does not offer a
significantly better fit in the model compared to the model with just a random effect for
the sRHAs, vr. The DIC is 127,694 for the spatio-temporal model with AR(1) model and vr
random effects and 127,693 for the AR(1) and CAR model random effects. This is shown in
Table A.11. This could be due to the estimated covariance between sRHAs in the same RHA
and the estimated covariance between adjacent sRHAs being small, approximately 0.01. The
model could include either a CAR model, nested random effects or a random effect for the
sRHA since there is a negligible difference between their information criterions and number
of effective parameters.

From Table A.11, we see the model fit improves according to the DIC and WAIC mea-
sures when the random slopes for the seasonal and time trend and levels of pSES are
included. Since there is a large amount of variability even at the sRHA level, we explore
whether the model fit improves by having the random slopes grouped by sRHA, rather
than RHA. We see that the model fit sees the most improvement when the pSES slope is
grouped by sRHA even with the increased number of effective parameters. The model DIC
and WAIC sees a small improvement when the seasonal and time trend slopes are group by
sRHA. Overall, the best model is the model with random slopes for pSES and seasonal and
time trend grouped by sRHA and random AR(1) and CAR model effects. However, since
the DIC and WAIC sees no significant improvement with the CAR model compared to the
sRHA random effect, the random effect for the sRHA, vr, is chosen over the CAR model in
favour of a simpler model.

To explore the effect of the prior distribution on the model and parameter estimates,
we assign weakly informative prior distributions to the variance parameters. The prior
distributions for ρ and λη remain the same but the remaining parameters are set such that
−log(σ2) ∼ log Gamma(0.1, 0.1). The parameter estimates with weakly informative prior
distributions are similar aside from the estimate for the RHA random effect and the random
slope for the time trend grouped by region. The highly vague prior distributions estimated
these effects to be very small but the weakly informative prior distributions estimated them
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to be larger due to a stricter distribution setting. Despite the differences in these parameter
estimates, the information criterions remain largely the same. The model with only an
AR(1) random effect has the largest deviation in information criterions. The information
criterions for the models run under weakly informative prior distributions are summarized
in Table A.12.

4.3.3 Proposed model given spatio-temporal analysis

The best model according to the WAIC and DIC measures is found to have AR(1) model,
sRHA, seasonal slope, time trend slope and pSES slope random effects. It has the following
specification,

θrisk/exp
p (t;R*,group) =

(
1, θ0, α

age
j (t;R*,group), αgender

k (t;R*,group), αpSES
l , αage×gender

jk , αage×pSES
jk

)
,

β = A0cos
(2πt

13

)
+B0sin

(2πt
13

)
+ φ0xtrp + φpSES

0l xtrp,

ε(t; r) = ψt + vr + αpSES
l1r +A1rcos

(2πt
13

)
+B1rsin

(2πt
13

)
+ φ1rxtrp. (4.5)

Note that γ = 1 as it is fixed as an offset term. A summary of the model’s parameters
are shown in Table A.13. The summary of this model uses a scaled t, where t = 1, . . . , 117
is scaled to range from (0, 1] by dividing t by its maximum index, 117. This ensures the
parameter estimates are on a similar scale where the categorical risk factors are binary with
value 0 or 1 and the trigonometric functions sine and cosine range from [−1, 1]. All of the
credible intervals do not contain zero aside from A0, B0 and φ0. This means the seasonal
and time trend fixed effects terms are not significant. These fixed effects will remain in
the model as the means of their random effects. Originally the model included a quadratic
term for time. During the model exploration the 95% credible interval for this estimate
included 0 so it was removed from the model. The 95% credible interval for the log of the
population size coefficient, γ, contained 1 so it is treated as an offset term in the model.
The random slopes of the seasonal and time trend effects were assumed to be correlated.
The 95% credible intervals of these correlation estimates all contained 0 and contributed no
improvement to the model fit so the random effects are now assumed to be independent of
each other. This was also true for the correlation estimates of the random slopes for pSES.

After including an interaction term for gender and age group, our model finds that
males aged less than 13 have significantly more MHED visits compared to young females,
but females aged greater than 12 have significantly more MHED visits compared to older
males. When the individual is aged less than 13, the males from RHA 3 and RPP experience
exp(0.584) = 1.793 times more MHED visits compared to females aged less than 13 from
RHA 3 and RPP. For males aged greater than 12 from RHA 3 and RPP, they experience
exp(0.584− 0.977) = 0.675 times less visits compared to females. Note how the males aged
less than 13 from RHA 9 and RPP pSES group have more visits compared to females, but
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on a smaller scale compared to RHA 3, 6 and the other RHAs, exp(0.259) = 1.296. We see
that for teenagers, the coefficient estimated by RHA 3 has a smaller magnitude compared to
RHA 6, 9 and the other RHAs. The interaction between time and pSES show that the treaty
status individuals experience an upward trend in MHED visits, but the income supported
individuals experience a downward trend. The estimates of the random effect parameter
for the temporal variation, σ2

ψ, is small, but the temporal autocorrelation estimate, ρ, is
fairly large at 0.375. The variance estimates for the seasonal and time trend random slopes
are quite small. They could be small due to the AR(1) model random effect capturing the
majority of the variation due to time. The estimates for pSES, particularly treaty status,
are quite large. The slope of pSES varies between regions.

To check the model fit and whether there are any outliers, the conditional predictive
ordinates (CPO) and probability integral transform (PIT) values can be examined. The
CPO and PIT are defined as

CPOi = π(yobs
i |y−i) and PITi = Prob(ynew

i ≤ yi|y−i). (4.6)

Since our response is discrete, the PIT values are modified to: PIT∗i = PITi−0.5CPOi. The
CPO is determined through leave-one-out cross-validation (Rue et al., 2009) and it expresses
the posterior probability of observing yi when the model is fitted to all the data except yi.
Small CPO values suggest that yi is an outlier and higher values implies a better model fit.
A CPO value is considered small when its inverse is greater than 40 and an extreme value
when its inverse is greater than 70 (Ntzoufras, 2009). From Figure B.16 it appears there
are some outliers, however the amount is relatively small. The small CPO values account
for approximately 2% of the data points. The histogram of the CPO values shows that the
majority of the values are large. The PIT values are also determined through leave-one-out
cross-validation (Rue et al., 2009). For the modified PIT values, if their histogram does not
look like a uniform distribution then there may be issues with the model specification. A
U-shaped histogram indicates under-dispersed predictive distributions, an inverse U-shaped
histogram indicates over-dispersion and a skewed histogram indicates the central tendencies
are biased (Czado et al., 2009). In Figure B.16, the histogram of the PIT values shows they
are skewed to the left. This indicates that our model tends to have fitted values smaller
than the true observations. This could be due to a variety of reasons such as unexplained
variation due to variables not included in the model or due to the outliers the CPO values
found. Figures B.17 and B.18 show the fitted MHED visits per 1000 sRHA population of the
subgroup females aged greater than 12. We see from the plots that the model has difficulty
fitting the large MHED rates, like we saw with the PIT values, but the model captures the
overall rate.
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Chapter 5

Final Remarks

5.1 Summary

In this project, we explore the spatio-temporal pattern of MHED visits made by Albertans
aged less than 18. Investigating these patterns could help understand where more resources
are needed. This project studies the spatio-temporal patterns by considering the model
in two stages, temporal and spatio-temporal. To model the spatio-temporal patterns, we
propose a generalized linear mixed effects model. This model identifies important risk factors
associated with MHED visits.

In Chapter 2, the descriptive analysis of the MHED visits provides motivation for ex-
ploring the spatio-temporal patterns. The figures and numerical summaries of the data
show that the rate of MHED visits varies over time and space. The spatial autocorrela-
tion findings show evidence of spatial autocorrelation on the global scale and clustering on
the local scale. The MHED visits have a cyclic seasonal pattern according to the temporal
autocorrelation analysis.

In Chapter 3 we summarize the proposed modelling separated into two stages. First
we consider modelling the temporal patterns using three different models. The first model
assigns factors for each of the 13-1 blocks of size 28 days and assumes a linear time trend. The
second model uses sine and cosine functions to describe the seasonal pattern and assumes a
linear time trend. The third uses a cyclic cubic smoothing spline for the seasonal effect and
a thin plate smoothing spline for the time trend. The second stage considers modelling the
spatio-temporal patterns by incorporating independent random effects for the sRHA and
RHA. The hierarchical structure of the regions is explored by assuming the sRHAs within
the same RHA are correlated. The last model of the spatio-temporal modelling stage uses
AR(1) and CAR model random effects where the CAR model assumes that adjacent sRHAs
are correlated.

In Chapter 4 we conduct the analysis based on the proposed modelling in Chapter 3.
The results find that the seasonal effect can be explained by trigonometric functions and
that RHAs 3, 6 and 9 risk factor coefficients differ from the other RHAs. We find the effect
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of pSES varies over time but the seasonal effect and remaining risk factors/exposures do
not. The random effect assuming sRHAs within the same RHA to be correlated is found
to have a small estimated covariance. Random slopes for the temporal effects grouped by
region improve the model fit according to information criterion measures. The CAR model
random effect estimates the covariance between adjacent regions to be small. We find no
discernible difference between a model that assumes sRHAs are correlated and one that
does not. The large amount of variation over regions for the pSES coefficient motivates the
inclusion of a random pSES slope grouped by regions. The model with the best fit according
to information criterion measures is found to be the random pSES, seasonal and time trend
slopes grouped by sRHA and AR(1) model and sRHA random effects.

5.2 Future Investigation

Our models have shown evidence of spatio-temporal patterns and that demographic groups
(gender, age, and socio-economic status) are more susceptible to having MHED visits. There
are a variety of issues that could be addressed to further enhance the value of this research.
For instance, this data is recurrent event data, meaning that MHED visits made by the
same individual are correlated. This project focuses on aggregate-level data but future
investigations could incorporate this correlation structure by considering individual-level
data. The amount of time elapsed between visits can be studied. The correlation of visits
made by the same individual may diminish as the time elapsed between visits increases.

The spatial weights matrix considered in this project is based on the adjacency of two
regions. It would be interesting to see how different weight matrices, such as basing the
spatial contiguity on a distance threshold, would affect the results. In addition, the spatial
and temporal effects are considered separately in our models. A more informative model
might include an interaction term for space and time. This can be implemented through a
random effect that takes the Kroeneker product of a temporal and spatial structure matrix,
such as the AR(1) and CAR structure used in Model ST4.

Our model identified demographic information to be important risk factors. Future
investigations plan on including information such as the patient’s triage level and diagnosis.
This information gives an indication of the severity of the child or youth’s MHED visit.
Currently, the spatio-temporal Bayesian regression models in the analysis do not explore
the residuals of the fitted models. To make the spatio-temporal analysis easily comparable
with the other non-Bayesian regression models, we plan on investigating the inclusion of
some form of residuals. Lastly, knowing which sRHAs are expected to experience large
amounts of MHED visits given their population size, and at what time period to expect
these MHED visits could be helpful to the Albertan government. In the future, we plan on
investigating the predictive abilities of our model.
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Appendix A

List of Tables

Table A.1: Number of MHED visits made by children/youth and number of children/youth with
an MHED visit summarized by demographic information for each fiscal year.

Fiscal Year
02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11

ED Visits Total 4,278 4,258 4,472 4629 4,661 4,584 4,849 4,579 4,849
Gender Female 2,539 2,498 2,612 2,755 2,779 2,667 2,831 2,646 2,833

Male 1,739 1,760 1,860 1,874 1,882 1,917 2,018 1,933 2,016
Age 0-5 56 62 51 43 53 64 58 70 40

6-12 437 365 441 478 494 446 467 411 479
13-18 3,785 3,831 3,980 4,108 4,114 4,074 4,324 4,098 4,330

pSES RPP 2,734 2,681 2,769 2,789 2,761 2,604 2,877 3,034 3,142
Treaty Status 521 531 625 657 684 654 754 699 731
Sponsored 754 795 809 903 929 1,000 858 431 524
Welfare 269 251 269 280 287 326 360 415 452

Subjects Total 3,438 3,443 3,643 3,724 3,715 3,663 3,915 3,684 3,773
Gender Female 2,019 1,981 2,100 2,178 2,153 2,090 2,230 2,100 2,165

Male 1,419 1,462 1,543 1,546 1,562 1,573 1,685 1,584 1,608
Age 0-5 55 57 49 43 52 64 58 69 40

6-12 375 318 384 384 393 377 413 365 412
13-18 3,008 3,068 3,210 3,297 3,270 3,222 3,444 3,250 3,321

pSES RPP 2,247 2,232 2,306 2,319 2,237 2,140 2,373 2,510 2,552
Treaty Status 418 431 496 525 534 527 594 562 541
Sponsored 558 584 620 672 722 739 672 301 338
Welfare 215 196 221 208 222 257 276 311 342
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Table A.2: Number of children/youth, number of MHED visits made by children/youth, number of chil-
dren/youth who had an MHED visit and the ratio of MHED visits over subjects with an MHED visit for
each fiscal year and RHA.

Fiscal Year
RHA Counts 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11
R1 Population 42,713 42,491 42,288 41,956 42,949 43,859 44,486 45,341 46,256

ED visits 221 201 221 201 253 250 225 221 241
Subjects 175 175 192 183 217 194 186 180 194
ED/Subject 1.26 1.15 1.15 1.10 1.17 1.29 1.21 1.23 1.24

R2 Population 25,883 25,975 26,083 26,251 26,871 27,273 27,491 27,998 28,127
ED visits 114 124 157 150 139 164 164 148 170
Subjects 94 103 131 134 128 141 149 124 135
ED/Subject 1.21 1.20 1.20 1.12 1.09 1.16 1.10 1.19 1.26

R3 Population 280,748 283,019 285,594 291,913 299,405 305,330 313,795 321,110 328,886
ED visits 1,143 1,173 1,241 1,251 1,363 1,292 1,364 1,385 1,519
Subjects 933 992 1,042 1,013 1,060 1,040 1,129 1,136 1,215
ED/Subject 1.23 1.18 1.19 1.23 1.29 1.24 1.21 1.22 1.25

R4 Population 80,012 79,929 79,544 79,711 81,100 81,847 82,320 82,830 83,254
ED visits 522 499 526 631 517 533 623 579 558
Subjects 410 404 416 517 430 461 497 474 448
ED/Subject 1.27 1.24 1.26 1.22 1.20 1.16 1.25 1.22 1.25

R5 Population 29,231 28,482 28,666 28,540 29,235 29,573 29,826 29,787 29,785
ED visits 131 180 127 130 143 150 167 148 130
Subjects 105 123 102 108 115 119 123 121 101
ED/Subject 1.25 1.46 1.25 1.20 1.24 1.26 1.36 1.22 1.29

R6 Population 245,407 245,066 244,019 245,840 252,696 256,368 262,195 266,615 270,921
ED visits 1,408 1,416 1,359 1,389 1,289 1,273 1,285 1,217 1,339
Subjects 1,113 1,096 1,091 1,085 1,007 975 1,034 965 1,017
ED/Subject 1.27 1.29 1.25 1.28 1.28 1.31 1.24 1.26 1.32

R7 Population 53,905 52,257 52,119 51,405 51,606 51,760 51,645 51,733 51,374
ED visits 375 321 418 434 483 462 462 442 435
Subjects 306 261 335 331 380 370 373 345 329
ED/Subject 1.23 1.23 1.25 1.31 1.27 1.25 1.24 1.28 1.32

R8 Population 39,469 39,520 39,447 39,946 40,896 41,499 41,988 42,470 43,148
ED visits 251 215 259 297 271 301 372 274 311
Subjects 209 181 206 242 221 244 279 206 226
ED/Subject 1.20 1.19 1.26 1.23 1.23 1.23 1.33 1.33 1.38

R9 Population 23,089 23,479 23,795 23,845 24,588 25,262 25,757 26,815 27,822
ED visits 109 126 160 140 194 154 181 158 140
Subjects 89 105 125 106 151 115 139 127 103
ED/Subject 1.22 1.20 1.28 1.32 1.28 1.34 1.30 1.24 1.36
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Table A.3: Weighted average percentages of children/youth with an MHED visit in Alberta

Fiscal year
02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11

Overall 0.52 0.52 0.54 0.56 0.55 0.53 0.55 0.51 0.53
Gender Females 0.31 0.30 0.32 0.33 0.33 0.31 0.32 0.30 0.31

Males 0.21 0.21 0.23 0.23 0.22 0.22 0.23 0.22 0.22
Age 0-6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

7-12 0.05 0.04 0.05 0.06 0.06 0.05 0.05 0.05 0.05
13-18 0.46 0.47 0.48 0.49 0.48 0.47 0.49 0.46 0.48

pSES RPPa 0.33 0.33 0.34 0.34 0.32 0.30 0.33 0.34 0.34
Treaty Status 0.06 0.06 0.08 0.08 0.08 0.08 0.09 0.08 0.08
Sponsored 0.09 0.10 0.10 0.11 0.11 0.12 0.10 0.05 0.06
Welfare 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.05

aRegular Plan Participant.

Table A.4: Number of classes, goodness of variance fit (GVF) measures, and tabular accu-
racy index (TAI) for different generalizing techniques on the number of MHED visits per
1000 population by sRHA.

Generalizing technique Classes GVF TAI
Equal intervals 5 0.873 0.693
Quantile breaks 5 0.878 0.617
kmeans 5 0.912 0.682
Fisher-Jenks natural breaks 5 0.923 0.724

Table A.5: Global Moran’s I and EBI statistics and their p-values for number of MHED
visits. Results are based on 999 random permutations.

Fiscal year
02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11

Moran’s I 0.063 -0.030 0.044 0.138 0.085 0.129 0.247 0.079 0.028
p-value 0.162 0.554 0.191 0.024 0.085 0.032 0.001 0.120 0.238
EBI 0.079 -0.005 0.063 0.151 0.098 0.145 0.256 0.095 0.036
p-value 0.101 0.418 0.136 0.022 0.054 0.012 0.001 0.071 0.254
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Table A.6: Data format of aggregation at the sRHA-level.

r t Fiscal Year Block Gender pSES Age Group
R101 1 2003 1 Male RPP <13
R101 2 2003 2 Male RPP <13

...
...

...
...

...
...

...
R101 117 2011 13 Male RPP <13
R101 1 2003 1 Female RPP <13

...
...

...
...

...
...

...
R101 1 2003 1 Male Treaty Status <13

...
...

...
...

...
...

...
R101 1 2003 1 Male Income Supported <13

...
...

...
...

...
...

...
R101 1 2003 1 Male Income Supported >12

...
...

...
...

...
...

...
R904 117 2011 13 Female Income Supported >12

Table A.7: Summary of dispersion parameter estimate for the three proposed temporal
models and three coefficient estimation settings.

Model
Coefficients varying by Dispersion parameter Seasonal factors Trigonometric GAM
Constant estimate 1.47 1.47 1.41

RHA mean(sd) 1.37(0.10) 1.37(0.10) 1.29(0.09)
range 1.22 - 1.48 1.20 - 1.50 1.11 - 1.44

sRHA mean(sd) 1.23(0.22) 1.24(0.23) 1.17(0.08)
range 0.69 - 1.90 0.72 - 1.96 1.00 - 1.33

Table A.8: Summary of the constant coefficient estimates for the exposure and risk factors
from models T1 (seasonal factors), T2 (trigonometric functions) and T3 (smoothing splines),
with the standard errors in parentheses.

Seasonal factors (T1) Trigonometric (T2) Splines (T3)
Poisson Neg. Binomial Poisson Neg. Binomial Poisson Neg. Binomial

Intercept -9.256 (0.082) -9.103 (0.097) -9.263 (0.081) -9.106 (0.096) -9.259 (0.081) -9.094 (0.095)
log(pop.) 0.815 (0.008) 0.795 (0.010) 0.815 (0.008) 0.795 (0.010) 0.815 (0.008) 0.795 (0.010)
Male -0.352 (0.010) -0.314 (0.012) -0.352 (0.010) -0.313 (0.012) -0.352 (0.010) -0.314 (0.012)
Teenage 2.093 (0.016) 2.078 (0.017) 2.093 (0.016) 2.078 (0.017) 2.093 (0.016) 2.078 (0.017)
Treaty -1.466 (0.015) -1.432 (0.016) -1.466 (0.015) -1.433 (0.016) -1.466 (0.015) -1.432 (0.016)
Supported -0.940 (0.012) -0.912 (0.014) -0.940 (0.012) -0.913 (0.014) -0.940 (0.012) -0.913 (0.014)
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Table A.9: Summary of the coefficient estimates (± margin of error) for model ST1 and
model ST2 with a trigonometric seasonal effect.

Variable
Estimate Intercept log(S(t;r)) A0 B0 Male Teen Treaty Supported
Constant -9.26(±0.16) 0.82(±0.02) -0.01(±0.01) -0.05(±0.01) -0.35(±0.02) 2.09(±0.03) -1.47(±0.03) -0.94(±0.04)
2002/03 -9.82(±0.53) 0.88(±0.06) 0.02(±0.04) -0.06(±0.04) -0.38(±0.06) 2.04(±0.10) -1.66(±0.10) -0.98(±0.07)
2003/04 -10.32(±0.54) 0.92(±0.06) 0.06(±0.04) -0.08(±0.04) -0.35(±0.06) 2.19(±0.10) -1.62(±0.10) -0.94(±0.07)
2004/05 -9.53(±0.51) 0.85(±0.05) -0.05(±0.04) -0.07(±0.04) -0.34(±0.06) 2.09(±0.10) -1.49(±0.09) -0.94(±0.07)
2005/06 -9.46(±0.49) 0.84(±0.05) -0.02(±0.04) -0.07(±0.04) -0.39(±0.06) 2.07(±0.09) -1.45(±0.09) -0.86(±0.07)
2006/07 -8.58±0.47) 0.75(±0.05) 0.03(±0.04) -0.01(±0.04) -0.39(±0.06) 2.02(±0.09) -1.39(±0.09) -0.82(±0.07)
2007/08 -9.50(±0.48) 0.83(±0.05) 0.02(±0.04) -0.03(±0.04) -0.33(±0.06) 2.08(±0.09) -1.38(±0.09) -0.67(±0.07)
2008/09 -8.57(±0.45) 0.74(±0.05) -0.05(±0.04) -0.06(±0.04) -0.34(±0.06) 2.11(±0.09) -1.34(±0.08) -0.86(±0.07)
2009/10 -8.75(±0.46) 0.76(±0.05) 0.01(±0.04) -0.02(±0.04) -0.31(±0.06) 2.14(±0.10) -1.47(±0.08) -1.27(±0.08)
2010/11 -9.22(±0.45) 0.81(±0.05) 0.04(±0.04) -0.07(±0.04) -0.34(±0.06) 2.12(±0.09) -1.46(±0.08) -1.17(±0.07)

Table A.10: AICs and BICs for three different settings of model ST3, a nested generalized
linear mixed model.

Seasonal and trend effect AIC BIC
Constant: A0, B0 and φ0 129,563 129,838
Fixed by RHA: A0(t;R∗), B0(t;R∗) and φ0(t;R∗) 129,555 129,849
Random by RHA: (A0 +A1R), (B0 +B1R) and (φ0 + φ1R) 129,525 129,829

Table A.11: WAIC and DICs for model ST4, a generalized linear mixed model, with highly
vague priors.

Parameters DIC Eff. parameters WAIC Eff. parameters
ψt 131,197 119 131,244 165
ψt and uR 130,627 126 130,675 174
ψt and vr 127,694 188 127,761 253
ψt, vr and uR 127,693 186 127,760 253
ψt and ηr 127,693 186 127,760 252
ψt, ηr and uR 127,693 186 127,760 252
ψt, ηr, A1R, B1R and φ1R 127,569 201 127,641 272
ψt, ηr, A1r, B1r and φ1r 127,489 293 127,592 393
ψt, ηr, αpSES

l1R 126,515 196 126,582 261
ψt, ηr, αpSES

l1r 119,756 310 119,820 370
ψt, ηr, A1r, B1r, φ1r and αpSES

l1r 119,563 415 119,649 493
ψt, vr, A1r, B1r, φ1r and αpSES

l1r 119,564 415 119,649 493
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Table A.12: WAIC and DICs for model ST4, a generalized linear mixed model, with weakly
informative priors.

Parameters DIC Eff. parameters WAIC Eff. parameters
ψt 131,062 121 131,110 169
ψt and uR 130,627 128 130,676 176
ψt and vr 127,693 188 127,761 255
ψt, vr and uR 127,692 188 127,760 255
ψt and ηr 127,692 188 127,760 254
ψt, ηr and uR 127,692 188 127,760 254
ψt, ηr, A1R, B1R and φ1R 127,573 211 127,649 285
ψt, ηr, A1r, B1r and φ1r 127,493 335 127,598 399
ψt, ηr, αpSES

l1R 126,513 197 126,581 260
ψt, ηr, αpSES

l1r 119,755 312 119,820 371
ψt, ηr, A1r, B1r, φ1r and αpSES

l1r 119,587 469 119,685 557
ψt, vr, A1r, B1r, φ1r and αpSES

l1r 119,588 469 119,685 558
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Table A.13: Summary of model ST4 with scaled t and AR(1), sRHA, pSES, seasonal and
time trend random effects.

Variable Mean 95% CI
Intercept -11.579 (-11.702, -11.457)
A0 0.013 (-0.035, 0.062)
B0 -0.051 (-0.101, -0.001)
t 0.024 (-0.120, 0.167)
Male and RHA 3 0.584 (0.517, 0.650)
Male and RHA 6 0.539 (0.471, 0.608)
Male and RHA 9 0.259 (0.133, 0.383)
Male and Other RHAs 0.467 (0.401, 0.533)
Teenage and RHA 3 2.383 (2.315, 2.451)
Teenage and RHA 6 2.883 (2.807, 2.961)
Teenage and RHA 9 2.683 (2.513, 2.858)
Teenage and Other RHAs 2.712 (2.643, 2.781)
Treaty Status -2.687 (-3.069, -2.310)
Income Supported -0.671 (-0.830, -0.511)
Treaty Status×t 0.307 (0.199, 0.415)
Income Supported×t -0.150 (-0.232, -0.067)
Treaty Status×Teenage 0.274 (0.169, 0.380)
Income Supported×Teenage -0.357 (-0.427, -0.287)
Male×Teenage -0.977 (-1.041, -0.913)
σ2
v 0.108 (0.076, 0.164)
σ2
ψ 0.017 (0.013, 0.025)
ρ 0.375 (0.194, 0.556)
σ2
A 0.001 (0.001, 0.004)
σ2
B 0.003 (0.001, 0.006)
σ2
φ 0.050 (0.031, 0.084)
σ2
αtreaty 2.223 (1.610, 3.270)
σ2
αsupported 0.338 (0.246, 0.505)
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Appendix B

List of Figures

Figure B.1: Plots of MHED visit counts and subject visit counts by RHA over time (yearly).
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Figure B.2: Plots of MHED visits per 1000 RHA population over months (top), days (mid-
dle), and hour of day (bottom) aggregated over all fiscal years.

41



Figure B.3: Choropleth maps of number of MHED visits per 1000 sRHA population over 9
fiscal years.
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Figure B.3: Choropleth maps of number of ED visits per 1000 sRHA population over 9 fiscal
years.
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Figure B.3: Choropleth maps of number of MHED visits per 1000 sRHA population over 9
fiscal years.
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Figure B.4: ACF plots of monthly MHED visits over nine fiscal years for each RHA.
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Figure B.5: PACF plots of monthly MHED visits over nine fiscal years for each RHA.
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Figure B.6: Distribution of the counts for the number of MHED visits (left) and population
counts (right). The MHED visits are stratified by fiscal year, 28 day block, sRHA, gender,
age groups 0-12 and 13-18 and pSES. The population counts are stratified by fiscal year
and sRHA.
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Figure B.7: Part I of the plots of the coefficient estimates for the seasonal factors (left),
trigonometric (middle) and smoothing splines (right) models. The blue dotted lines are the
95% CI of the coefficients estimated by sRHA. The black line is the coefficient estimated
by sRHA. The red points are the coefficient estimates significantly different from zero. The
orange dashed lines are the 95% CI of the coefficients estimated by RHA. The purple line
is the coefficient estimate by RHA. The green dashed lines are the 95% CI of the coefficient
kept constant across regions.
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Figure B.8: Part II of the plots of the coefficient estimates for the seasonal factors (left),
trigonometric (middle) and smoothing splines (right) models. The blue dotted lines are the
95% CI of the coefficients estimated by sRHA. The black line is the coefficient estimated
by sRHA. The red points are the coefficient estimates significantly different from zero. The
orange dashed lines are the 95% CI of the coefficients estimated by RHA. The purple line
is the coefficient estimate by RHA. The green dashed lines are the 95% CI of the coefficient
kept constant across regions.
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Figure B.9: Plots of the estimated average MHED counts per 1000 sRHA population for
select sRHAs for combinations of females, teenagers and the three pSES categories. The plots
are the estimated average counts from the trigonometric model T2 where the coefficients
were constant (left), estimated by RHA (middle) and estimated by sRHA (right).
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Figure B.10: Plots of the estimated average MHED counts per 1000 sRHA population for
select sRHAs for combinations of females, teenagers and the three pSES categories. The
plots are for the seasonal factors model T1 (left), smoothing splines model T3 (middle) and
trigonometric model T2 (right) where the coefficients were estimated by sRHA.
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Figure B.11: Plot of the seasonal coefficients for the seasonal factors model.
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Figure B.12: Plots of the seasonal coefficients and time coefficient over the time unit (28
days) for the seasonal factors and trigonometric models.
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Figure B.13: Plots of the smoothing splines for the blocks and time by RHA from model
T3.
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Figure B.14: Deviance residuals vs fitted values of the trigonometric functions temporal
model under the three estimation settings.
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Figure B.15: Deviance residuals vs fitted values of the generalized linear mixed model with
nested random effects.
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Figure B.16: CPO and PIT values for Model ST4: AR(1), CAR, pSES and seasonal and
time trend random effects.
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Figure B.17: Plots of MHED visits per 1000 sRHA population for females aged greater
than 12 in sRHA R608 who are regular plan participants (RPP), treaty status or income
supported. The black line is the true rates, the blue line is the fitted posterior means from
Model ST4: AR(1), CAR, seasonal and time trend and pSES random effects. The dashed
red lines are the 2.5% and 97.5% quantiles of the fitted posterior mean.
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Figure B.18: Plots of MHED visits per 1000 sRHA population for females aged greater
than 12 in sRHA R804 who are regular plan participants (RPP), treaty status or income
supported. The black line is the true rates, the blue line is the fitted posterior means from
Model ST4: AR(1), CAR, seasonal and time trend and pSES random effects. The dashed
red lines are the 2.5% and 97.5% quantiles of the fitted posterior mean.
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