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Abstract

In this thesis, we study the family of uniquely trigonal genus 4 curves via their connection to del

Pezzo surfaces of degree 1. We consider two different aspects of these curves. First, we show how

to construct any uniquely trigonal genus 4 curve whose Jacobian variety has fully rational 2-torsion

and whose trigonal morphism has a prescribed totally ramified fibre. Using this construction, we find

an infinite family of cubic number fields whose class group has 2-rank at least 8. We also consider

genus 4 curves that are superelliptic of degree 3, and prove sharp results on the size of the 2-torsion

subgroup of their Jacobian varieties over the rationals.

Our second result is a contribution to arithmetic invariant theory. We consider the moduli space

of uniquely trigonal genus 4 curves whose trigonal morphism has a marked ramification point,

originally studied by Coble, from a modern perspective. We then show under a technical hypothesis

how to construct an assignment from the rational points on the Jacobian variety of such a curve to a

fixed orbit space that is independent of the curve. The assignment is compatible with base extensions

of the field, and over an algebraically closed field our assignment reduces to the assignment of a

marked (in the aforementioned sense) uniquely trigonal genus 4 curve to its moduli point. The orbit

space is constructed from the split algebraic group of type E8.

Keywords: trigonal curve; genus 4; del Pezzo surface; arithmetic invariant theory; E8;
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Chapter 1

Introduction

In this thesis, we study the family of uniquely trigonal genus 4 curves from two different perspec-

tives via their connection to del Pezzo surfaces of degree 1. Loosely, a uniquely trigonal curve is a

smooth curve that has an essentially unique, branched covering map of degree 3 of the projective

line P1 (for the precise definition, see Section 2.8). Our first result is an application of the classical

theory. We construct an infinite family of cubic number fields whose class group has a subgroup

isomorphic to (Z/2)8 from a particular uniquely trigonal genus 4 curve. More specifically, we show

how to construct a uniquely trigonal genus 4 curve that has two technical properties required to ap-

ply a specialization technique; the technique in question is originally due to Mestre [Mes83] and a

more general form is due to Bilu and Gillibert [BG18]. We follow the ideas of [BG18] while keeping

track of explicit details in our calculations to obtain our result. Our second result is a contribution

to arithmetic invariant theory. We show how to construct an assignment from the rational points of

the Jacobian varieties of certain uniquely trigonal genus 4 curves to an orbit space constructed from

the split algebraic group of type E8. This thesis is based on the articles [Kul18a] and [Kul17], with

the nexus between the family of uniquely trigonal genus 4 curves, del Pezzo surfaces of degree 1,

and the algebraic group of type E8 as the unifying theme.

We describe our results in separate sections below, since they fit into two substantially different

directions of research. To focus on context, we provide simplified statements of our results in the

introduction.

1.1 Class groups of cubic number fields

The task of finding number fields with exotic class groups is an old problem. The origins of the

problem go back to Disquisitiones Arithmeticae, where Gauss developed the subject of genus theory

and showed that the class group of a quadratic number field can be arbitrarily large [Gau66]. In

1922, Nagell proved that there are infinitely many quadratic number fields whose class groups have

a subgroup isomorphic to (Z/n) [Nag22]. The special case of class groups of quadratic number

fields has been an active research topic since then [AC55, Hon68, Yam70, Wei73]. Class groups for

non-quadratic number fields have also been considered [Nak86], including a construction for cubic
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number fields whose class groups have 2-rank at least 6 [Nak86]. A modern trend is to establish

quantitative estimates for the number of number fields of a fixed degree and bounded discriminant

whose class group has a special subgroup [Mur99, BL05]. Number fields of degree indivisible by

p whose class group has a subgroup isomorphic to (Z/p)r for r > 2 are difficult to exhibit in

practice; even though it is conjectured by Cohen and Lenstra that these number fields have positive

asymptotic density (when ordered by discriminant) [CL84].

The Jacobian variety of an algebraic curve serves as a geometric analogue of the class group of

a number field. A relatively recent idea to construct infinite families of number fields of degree d

whose class group contains a large subgroup of exponent p is to construct an algebraic d-gonal curve

whose Jacobian variety has either µrp or (Z/p)r as a subgroup (depending on the method) and then

to choose fibres over points satisfying certain local conditions. See for example [Mes83, GL12]. So

far, the examples with the best yield of class group p-rank from Jacobian variety p-rank have been

from curves fibred over P1
Q with a totally ramified fibre. We construct a uniquely trigonal curve of

genus 4 where the trigonal morphism has a totally ramified fibre and whose Jacobian has a fully

rational 2-torsion subgroup over Q. In fact, any such curve arises from our construction. We prove

Theorem 3.3.9, a simplified version of which is:

Theorem A. There are infinitely many cubic number fields whose class group contains (Z/2)8.

1.2 Arithmetic invariant theory

A common theme in arithmetic invariant theory is to study a representation of an algebraic group,

and in particular, study the arithmetic of the varieties parameterized by the invariants of the alge-

braic group action. Since the beginnings of arithmetic invariant theory in the early 2000’s, there

have been several results regarding the average number of k-rational points on certain curves and

abelian varieties [BG13, BGW17, BS15, BS17, RS17, RT17, Wan13]. A landmark result in this sub-

ject regards the method of 2-decent applied to hyperelliptic curves. Given a smooth projective curve

C over a field k, the method of 2-descent allows us to compute the 2-Selmer group Sel(2)(JC/k) of

JC . The 2-Selmer group of JC contains the group JC(k)/2JC(k), so in particular, the method of

2-descent allows us to compute an explicit bound for the rank of JC(k) [HS00]. IfC has a k-rational

point, then the Abel-Jacobi map j embeds C into JC . In this situation, we may use the method of

two-cover descent, described in [BS09], to identify a subset of the 2-Selmer group of JC which

contains those classes in the image of C(k) j→ JC(k) δ→ H1(k, JC [2]).

For a hyperelliptic curve C/k with a marked rational Weierstrass point, whose model is given

by

C : y2 = x2n+1 + a2n−1x
2n−1 + . . .+ a1x+ a0

it was shown by Bhargava and Gross in [BG13] that there is a natural inclusion of the Selmer group

of its Jacobian variety into an orbit space

Sel(2)(JC/k) ↪−→ SO2n+1(q)(k)\{A ∈ sl2n+1(k) : A = r(A)}

2



where the special orthogonal group SO2n+1(q)(k) acts on sl2n+1(k) on the left by conjugation, r is

the reflection in the anti-diagonal, and q is the quadratic form defined by the matrix whose non-zero

entries are ones on the anti-diagonal [BG13], [Tho13, Section 2.2, Example]. This result was a key

step in [BG13] for calculating the average rank of the Jacobian variety of a hyperelliptic curve of

genus g with a marked Weierstrass point.

The construction in [BG13] extends to a connection between the adjoint representations of

groups of type A,D,E and specifically identified families of curves [Tho13, RT17] which are con-

structed from the invariants of these representations. In this thesis, we show how to construct a

similar assignment for certain uniquely trigonal genus 4 curves. A simplified description of our

main result in this direction, Theorem 4.1.4, is described as follows. We say that a uniquely trigonal

genus 4 curve C/k is of split type if there is a morphism φ : C → P2 defined over k such that the

image of C is a curve with exactly eight singularities, each of order 3, and the degree 3 divisor of C

defined by any singularity is an odd theta characteristic of C. We prove:

Theorem B. Let q be the quadratic form on k16 defined by the symmetric matrix whose only non-

zero entries are 1’s on the anti-diagonal. There is an action of SO(q) on an explicitly determined

variety X of dimension 128 such that for every number field k and every uniquely trigonal genus 4
curve of split type C/k with a k-rational simply ramified point of the trigonal morphism, there is an

inclusion
JC(k)
2JC(k) ↪−→ SO(q)(k)\X(k).

There is a similar assignment for the uniquely trigonal genus 4 curves of split type C/k with a

k-rational totally ramified point of the trigonal morphism; in this case, there is an inclusion

JC(k)
2JC(k) ↪−→ SO(q)(k)\V (k)

where V is a projective space of dimension 127.

The varieties X,V and the action by SO(q) arise out of a construction using a particular alge-

braic group of type E8. In Section 4.1, we will comment on the new features of our results.

1.3 Structure of the thesis

We now discuss the outline of our thesis, and in particular where the full technical statements of the

results appear.

In Chapter 2 we review some background content required to prove our results in the later

chapters. The aim of the chapter is to provide a helpful reference for a reader familiar with the

content of Hartshorne’s book [Har77] and the basics of Galois cohomology – which can be found

in Serre’s book [Ser02]. We believe this is useful for the reader as the proofs of our results draw on

a broad range of subjects. Each section of Chapter 2 is devoted to a different subject, where we give

a terse overview of the concepts and results that we need. At the end of Chapter 2, in Section 2.8,

3



we give the definition of a uniquely trigonal genus 4 curve and discuss the connections to del Pezzo

surfaces of degree 1 and the root system of type E8.

In Chapter 3 we prove our results regarding class groups of cubic number fields by constructing

a particular uniquely trigonal genus 4 curve. The main result of this chapter is Theorem 3.3.9. We

also discuss some limitations of applying this method to construct infinite families of cubic number

fields of the form Q( 3
√
n) whose class group contains a large subgroup of exponent 2.

In Chapter 4 we prove our results in arithmetic invariant theory. We first show how the moduli

space of uniquely trigonal genus 4 curves with some additional technical data can be described in

terms of Vinberg theory [Vin76]. Following that, we apply a general strategy introduced by Thorne

in [Tho16] to prove our main result, Theorem 4.1.4. Chapter 4 can be read independently of Chap-

ter 3.

Our thesis contains a single appendix. Appendix A contains a detailed proof of one of the results

regarding theta groups. We chose to move these details to an appendix since the result is well-known

(though we could not find the statement in the literature), the proof is somewhat technical, and the

proof does not contain ideas which are important to the rest of the thesis.

4



Chapter 2

Background

2.1 General background

2.1.1 Notation and conventions

We denote by k a subfield of the complex numbers. We denote a separable closure by ksep. Since

k has characteristic 0, we may identify1 ksep with an algebraic closure kal. We denote the absolute

Galois group of ksep/k by Gal(ksep/k). If K/k is a finite Galois extension, then we denote the

Galois group of this extension by Gal(K/k). If k is a number field, we denote the ring of integers

of k by Ok. If S is a finite set of primes in Ok, then we denote by Ok,S the ring of S-integers.

For a discussion of Galois cohomology we refer the reader to [Ser02]. If G is a Gal(ksep/k)-

module (resp. Gal(ksep/k)-set), then we denote the first cohomology group (resp. pointed cohomol-

ogy set) of Gal(ksep/k) with coefficients in G by H1(k,G). We assume the terminology of [Har77]

and [HS00] regarding algebraic geometry and cohomology of sheaves. We use the notation X/k to

indicate that X is a scheme defined over k, and we let Xksep := X ×k ksep. If R is a k-algebra,

we denote the set of R-points of X/k by X(R). We mean k-rational whenever the term rational is

used.

We let Set be the category of sets and let k-alg be the category of k-algebras. For a description

of functors to Set representable by a scheme, see [SP, Tag 01JF]. If f1, . . . , fm ∈ k[x1, . . . , xn] are

(weighted homogeneous) polynomials, we denote the subscheme of Ank (resp. Proj k[x1, . . . , xn])
that is the common zero-locus of f1, . . . , fn by Z(f1, . . . , fn). For a discussion of moduli problems,

moduli functors, and moduli spaces, we refer the reader to [HM98, Chapter 1A].

For a finitely generated abelian group M , we denote the free rank as a Z-module by rkM .

Additionally, we denote the 2-torsion of M by M [2] and denote rk2M [2] to be the rank of M [2] as

a (Z/2)-module.

In general, we allow a variety to be reducible, though we assume curves and surfaces are irre-

ducible. If X is a smooth variety defined over a field k then we denote the class of the canonical

1We make an effort to distinguish ksep and kal in our exposition anyway. It is potentially interesting to consider if the
results of this thesis can be adapted to when k = Fq(t).
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divisor by κX and call−κX the anti-canonical class. By abuse of notation we often denote a canon-

ical divisor of X by κX as well.

If C/k is a smooth algebraic curve, then we denote by Div(C/k) the group of divisors of C

defined over k and we denote the subgroup of divisors of degree 0 defined over k by Div0(C/k). We

denote the Picard variety of C/k by Pic0(C) and the group of k-rational points of the Picard variety

is denoted by Pic0(C)(k). Since we insist that Pic0(C) has the structure of a variety over k, there is

generally only an inclusion Div0(C/k)/Princ(C/k) ↪−→ Pic0(C)(k) rather than an isomorphism

[Mil86b, Remark 1.6]. Our main results concern curves over k which have a k-rational point, so the

aforementioned technicality does not play a significant role in this thesis. For simplicity, we identify

the Jacobian variety of C and the Picard variety of C. We denote the Jacobian variety of C by JC .

By a k-group, we mean a group variety G/k. If G/k is an abelian k-group, then the group

G(ksep) has the structure of a Galois module. In general, G(ksep) has the structure of a pointed

Gal(ksep/k)-set. If G/k is a finite abelian k-group then we abbreviate H1(k,G(ksep)) to H1(k,G).

If G/k is a group variety acting on a scheme X/k on the left, we denote the set of G(k)-orbits of

X(k) by G(k)\X(k). It will be clear from context that we do not mean a set difference.

2.2 Surfaces

Definition 2.2.1. A surface over k is an irreducible projective k-variety of dimension 2.

Note that we allow singular surfaces for the purposes of giving a more standard treatment of

elliptic surfaces. However, we focus our exposition on smooth surfaces since these are what our

arguments in Chapter 3 and Chapter 4 require.

Theorem 2.2.2. Let X/k be a smooth projective surface. There is a unique bilinear pairing

〈C,D〉 : Div(X)×Div(X)→ Z

such that the following hold:

• If C,D are smooth curves on X meeting transversally, then 〈C,D〉 = #(C ∩D)(kal).

• For all C,D ∈ Div(X), we have 〈C,D〉 = 〈D,C〉.

• If C1 is linearly equivalent to C2, then 〈C1, D〉 = 〈C2, D〉.

Moreover, the pairing 〈·, ·〉 descends to a well-defined symmetric bilinear pairing

〈·, ·〉 : Pic(X)× Pic(X)→ Z.

Proof. See [Har77, Theorem V.1.1].

Definition 2.2.3. For a smooth projective surface X , we call the unique pairing identified in Theo-

rem 2.2.2, on either Div(X) or Pic(X), the intersection pairing.
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In light of Definition 2.2.3, we say that a set of (possibly reducible) curves {C1, . . . , Cn} on

a smooth surface X are pairwise orthogonal if they are pairwise orthogonal with respect to the

intersection pairing.

Definition 2.2.4. Let X/k be a smooth surface and let e ⊆ X be an irreducible curve on X such

that 〈e, e〉 = −1. Then we call e an exceptional curve of X .

The exceptional curves of a smooth surface X are related to certain birational morphisms with

domain X . In the following sections, we describe this connection more precisely as it is critical in

Chapter 3.

2.2.1 Blow-ups: generalities

Theorem 2.2.5. Let X be a variety over k, let Y ⊆ X be a zero-dimensional subscheme, and let

IY be the ideal sheaf associated to Y as a closed subscheme of X . There exists a scheme BlYX
and a proper morphism π : BlYX → X such that π−1IY ·OBlY X is invertible and such that BlYX
satisfies the following universal property:

For any morphism f : Z → X such that f−1IY · OZ is an invertible sheaf, there exists a

morphism g such that the diagram

Z
g //

f ""

BlYX
π
��
X

commutes. By the universal property, BlYX is unique up to isomorphism.

Proof. See [Har77, Proposition II.7.14]. Note that [Har77] generally assumes an algebraically closed

base field, but the proof for general k is identical.

Definition 2.2.6. With the notation of Theorem 2.2.6, we define BlYX to be the blow-up of X at

Y , and we call π the blow-down morphism. The invertible sheaf π−1IY ·OBlY X viewed as a Cartier

divisor, or as a Weil divisor, is called the exceptional divisor of the blow-up.

Note that Definition 2.2.6 can be made in a more general setting. A particularly important ex-

ample of Definition 2.2.6 is when Y is a single reduced point p. In our specific setting, we enjoy the

following properties.

Proposition 2.2.7. Let X/k be a variety and let Y ⊆ X be a zero-dimensional subscheme. Then:

(a) BlYX is a variety over k.

(b) π : BlYX → X is birational, proper, and surjective.

(c) if X is quasi-projective (resp. projective), then so is BlYX , and π is a projective morphism.

Proof. See [Har77, Proposition II.7.16]. Note that [Har77] generally assumes an algebraically closed

base field, but the proof for general k is identical.
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Proposition 2.2.7 allows us to make the following definition.

Definition 2.2.8. Let Y ⊆ X be a zero-dimensional subscheme of X and let π : BlYX → X be

the blow-down morphism. The birational inverse to π is called the blow-up map.

Definition 2.2.9. LetX be a variety, let Y ⊆ X be a zero-dimensional subscheme, and let i : Z ↪−→
X be any subvariety of X . Let U := Z\i−1Y , let iU be the restriction of i to U , and observe that

i−1
U OY is invertible. By the universal property of blowing up, we have that there is an inclusion

j : U ↪−→ BlYX . We define the strict transform of Z to be the closure of j(U) in BlYX .

There is an important corollary of the universal property for blow-ups that allows us to resolve

the indeterminacy locus of certain rational maps.

Proposition 2.2.10. Let X/k be a projective variety, let d be a linear system on X whose scheme

of base points Y is zero-dimensional, and let f : X 99K Pn be the rational map on X defined by d.

Then there exists a morphism g : BlYX → Pn such that the diagram

BlYX
π
��

g

##
X

f
// Pn

commutes.

Proof. See [Har77, Example 3.17.3].

Proposition 2.2.11. Let X be a variety, let p be a point on X such that the associated scheme

has codimension at least 2 and such that every divisor class has a representative whose support

avoids p, and let ep be the exceptional divisor of the blow-up π : BlpX → X . Then the pull-back

π∗ : Pic(X)→ Pic(BlpX) is injective and

Pic(BlpX) = Z[ep]⊕ π∗ Pic(X).

Proof. See [Har77, Exercise II.8.5].

2.2.2 Blow-ups of surfaces

The operation of blowing up a surface at a single point is useful in Section 2.8, and it is helpful for

us to have a specific name for this operation.
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Definition 2.2.12. If f : X̃ → X is a morphism over k such that there exists a point p ∈ X(kal)
and an isomorphism g : X̃ → BlpX making

X̃

f !!

g // BlpX

��
X

commute, then f is said to be a monoidal transformation.

Proposition 2.2.13. Let X/k be a smooth surface and let p ∈ X(k) be a point. Then BlpX is a

smooth surface over k. The exceptional divisor of the blow-up is a curve e isomorphic to P1 and

satisfies 〈e, e〉 = −1.

Proof. See [Har77, Proposition V.3.1].

Proposition 2.2.14. Let f : Y → X be a morphism of smooth surfaces over kal with a birational

inverse g. Then f can be factored into finitely many monoidal transformations.

Proof. See [Har77, Corollary V.5.4].

2.2.3 Elliptic surfaces

For our exposition on elliptic surfaces, we largely draw from [Sil94].

Definition 2.2.15. Let C/k be a smooth curve. An elliptic surface over C defined over k consists

of the following data:

• a (possibly singular) surface E .

• a morphism π : E → C defined over k such that for all but finitely many t ∈ C(kal), the fibre

Et = π−1(t)

is a smooth curve of genus 1.

• a section σ0 : C → E to π.

To abbreviate the defining data for an elliptic surface, we use the phrase “Let π : E → C be

an elliptic surface”. If C/k is a curve over k, then E is a k-variety as well; we use the phrase “Let

π : E → C be an elliptic surface over k” in place of “Let C/k be a curve and let π : E → C be an

elliptic surface over C”.

Definition 2.2.16. Let π : E → C be an elliptic surface over k, and let t ∈ C(kal). Then Et = π−1(t)
is called a special fibre of the elliptic surface. If Spec k(C) is the generic point of C, then we call

Ek(C) := E ×C Spec k(C) the generic fibre of the elliptic surface.

Definition 2.2.17. Let π : E → C be an elliptic surface. A multi-section of E is a curve M ⊆ E
such that the morphism π : M → C is finite.
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Minimal models

At this point, we would like to define what it means for an elliptic surface π : E → C to have

“ reduction at t ∈ C(kal)”. The naive approach would be to classify the reduction type in terms

of the isomorphism class of Et. The standard classification (as in [Sil94, Chapter IV.9]) requires that

a well-behaved model for E be chosen first. For simplicity, we only make these definitions for

smooth minimal elliptic surfaces.

Definition 2.2.18. An elliptic surface π : E → C is minimal (over C) if for any commutative

diagram

S
φ //

f ��

E
π
��
C,

where f : S → C is an elliptic surface and φ is a birational map, we have that φ extends to a

morphism over C.

We need a slightly more general definition of minimality since we momentarily wish to consider

varieties over Dedekind domains; we do this in order to follow [Sil94]. In particular, we define what

it means to be minimal for certain subschemes of an elliptic surface.

Definition 2.2.19. Let C/k be a smooth curve over k, let R ⊆ k(C) be a local Dedekind domain

containing k whose field of fractions is k(C). Let ER := E ×C SpecR. We say that ER is minimal

(over SpecR) if for any commutative diagram

S
φ //

f ##

ER
π

��
SpecR,

where S is an integral scheme of dimension 2 over k, f : S → SpecR is proper, and φ is a birational

map over SpecR, we have that φ extends to a morphism over SpecR.

Note that the S appearing in Definition 2.2.19 is not necessarily a variety as S may not be of

finite type over k. We apply the “Spreading out theorem” [Poo17, Theorem 3.2.1, Remark 3.2.2] to

replace the base SpecR by an open subscheme of C.

Lemma 2.2.20. Let R, and ER be as in Definition 2.2.19. Let

S
φ //

f ##

ER
π

��
SpecR,
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be a commutative diagram with S an integral scheme of dimension 2 over k, f : S → SpecR a

proper morphism, and φ a birational map over SpecR. Then there is a commutative diagram

S ϕ //

f ��

EB
π

��
B,

where S is an open subscheme of a surface, B is an open subscheme of C, and ϕ a birational map

over B.

Proof. Applying [Poo17, Theorem 3.2.1, Remark 3.2.2], we obtain a commutative diagram

S ϕ //

f ��

EB
π

��
B,

where B is an open subscheme of C containing SpecR, f is proper, and ϕ a morphism over B. It

remains to check that ϕ is birational. Let K := k(C), and note that K is also the fraction field of

SpecR by definition. We have that φK : SK → EK is an isomorphism over SpecK, and admits an

inverse φ−1
K : EK → SK . Applying [Poo17, Theorem 3.2.1, Remark 3.2.2] to φ−1

K gives a birational

inverse to ϕ over B.

Lemma 2.2.21. Let π : E → C be a minimal elliptic surface and assume that E is smooth. If R is a

local Dedekind domain containing k such that i : SpecR→ C is an inclusion and k(C) is the field

of fractions of R, then

πR : E ×C SpecR→ SpecR

is proper, E ×C SpecR is regular, and E ×C SpecR is minimal.

Proof. By Lemma 2.2.19, we may replace SpecR by an open subscheme B of C containing

SpecR. Denote EB := E ×C B. Note that properness is preserved by base change. Smoothness

is preserved under base change by an open immersion, and if EB is smooth then it is certainly

regular. To prove minimality, let

S
φ //

f   

EB
π
��
B

11



be as in Definition 2.2.19. By Nagata’s compactification theorem [Con07], there exists a proper

morphism g : Ŝ → C and an open inclusion j : S ↪−→ Ŝ such that the diagram

S
j //

f

��

Ŝ

g

��
B

i // C

commutes. We now have that φ ◦ j−1 : Ŝ → E is a birational map of surfaces that is proper over C,

so it extends to a morphism φ̂ by minimality of E . The composition φ̂ ◦ j is a morphism. As φ̂ ◦ j
restricts to a morphism over SpecR and we are done.

Remark 2.2.22. We have shown in Lemma 2.2.21 that a smooth minimal elliptic surface is its

own minimal proper regular model for all of the special fibres [Sil94, Theorem 4.5]. For further

information on this topic, we direct the reader to [Sil94, Chapter IV].

We use [Sil94, Theorem 8.2] to make the following definition.

Definition 2.2.23. Let π : E → C be an elliptic surface over k such that E is smooth and minimal.

If Et is a special fibre, we say that it is good if it is a smooth k-variety and say that it is a bad fibre

otherwise. Similarly we say that E has good reduction at t ∈ C(kal) if Et is smooth and we say that

it has bad reduction at t if not.

Let t ∈ C(kal) be a point such that Et is a bad fibre. We say that E has multiplicative reduction

at t if Et is isomorphic to either a rational curve with a node, or consists of n non-singular rational

curves that can be labelled F1, . . . , Fn such that

〈Fi, Fj〉 =


1 if i− j ≡ ±1 (mod n)

−2 if i = j

0 otherwise

,

and we say that E has additive reduction at t otherwise.

2.3 Places, unramified extensions, and class groups

In this section we review the description of ramification of number fields in terms of discrete val-

uations and absolute values. At the end of this section we state an important result from algebraic

number theory. We generally follow [BG06, Chapter 1].

Definition 2.3.1. Let |·|1 , |·|2 be two absolute values on a field K. We say they are equivalent if

they define the same topology.
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If K is a field, there is always an equivalence class of trivial absolute values defined by

|x| =

1 if x 6= 0

0 otherwise
.

We exclude trivial absolute values from our considerations.

Proposition 2.3.2. Two absolute values |·|1 , |·|2 on a field K are equivalent if and only if there is a

positive real number s such that

|x|1 = |x|s2

for all x ∈ K.

Proof. See [BG06, Proposition 1.2.3].

Definition 2.3.3. A place of K is an equivalence class of non-trivial absolute values. For a place ν

of K, we denote by |·|ν an absolute value in the equivalence class ν.

Definition 2.3.4. Let L/K be an extension of fields. We say that a place w of L extends a place ν

of K if the restriction of any representative of w is a representative of ν.

Proposition 2.3.5. Let K be a field complete with respect to an absolute value |·|ν and let L/K be

a finite extension. Then there is a unique extension of |·|ν to an absolute value |·|w of L. For any

x ∈ L the equation

|x|w =
∣∣∣NL/K(x)

∣∣∣ 1
[L:K]

ν

holds, where NL/K is the relative norm. Moreover, the field L is complete with respect to |·|w.

Proof. See [BG06, Proposition 1.2.7].

Definition 2.3.6. A non-trivial absolute value |·| on a field K is non-archimedean if for any x, y ∈
K we have that |x+ y| ≤ max{|x| , |y|}. Otherwise, we say that |·| is archimedean. A place ν is

non-archimedean if some (equivalently, any) representative is non-archimedean. Otherwise, we say

ν is archimedean.

We state the following theorem mainly for ease of terminology.

Theorem 2.3.7 (Ostrowski). The p-adic absolute values are a set of distinct representatives for

the non-archimedean places of Q. Furthermore, there is a unique archimedean place of Q, and the

classical absolute value is a representative of this place.

Proof. See [BG06, Example 1.2.5].

If K/Q is a number field and ν is a place of K, we say that ν is an infinite place if ν restricts to

an archimedean place of Q and we say it is a finite place if ν restricts to a non-archimedean place

of Q. In analogy with the case of K = Q, we refer to the archimedean places of K as the infinite

primes and refer to the non-archimedean places as the finite primes.
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Definition 2.3.8. Let L/K be a finite extension and let |·|w be an absolute value extending a non-

archimedean absolute value |·|ν . The value group of ν is the group |K×|ν . The index of |K×|ν in

|L×|w is called the ramification index ew/ν of w in ν. We say that ν is discrete if the value group

|K×|ν is cyclic.

Let L/K be a finite extension and let ν be a non-archimedean place of K. There is a canonical

dense inclusion i : K ↪−→ Kν , where Kν denotes the completion of the field K with respect to the

topology induced by ν. If w is a place of L extending ν, then there is a canonical dense inclusion

j : L ↪−→ Lw. The restriction of w to K is ν, so w and ν induce the same topology on K. In

particular, the topological closure of j(K) in Lw is canonically isomorphic to Kν . Moreover, the

degree of the extension Lw/Kν is at most [L : K], and the diagram

L
j // Lw

K
i //

⊆

Kν

⊆
commutes. See [BG06, Proposition 1.3.1] for further details.

Proposition 2.3.9. Let L/K be a finite extension and let w be a place extending a non-archimedean

place ν of K. Then:

(a) The ramification index is independent of the choice of representatives for w and ν.

(b) The ramification index does not change if we pass to completions.

(c) The ramification index is at most [L : K].

Proof. See [BG06, Proposition 1.2.11].

Definition 2.3.10. Let L/K be a finite extension of number fields and let w be a non-archimedean

place of L extending a place ν of K. We say that the extension L/K is ramified at w if ew/ν > 1
and say it is unramified otherwise. We say that the extension is ramified over ν if there is a place w

extending ν which is ramified and say it is unramified over ν otherwise.

At this point, we turn our attention to ramification for the archimedean places. There are multiple

conventions regarding this topic [Neu99, Section III.3]. We adopt the convention present in [BG18].

Definition 2.3.11. Let L/K be a finite extension of number fields and let w be an archimedean

place of L extending a place ν of K. We say that the extension L/K is ramified at w if Lw = C
and Kν = R, and we say the extension is unramified at w otherwise. We say that the extension is

ramified over ν if there is a place w extending ν which is ramified and say it is unramified over ν

otherwise.
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Definition 2.3.12. We say that an extension L/K is unramified if it is unramified over ν for each

place ν of K. If S is a finite set of places ofK, we say that the extension L/K is unramified outside

S if for each ν 6∈ S we have that the extension is unramified over ν.

A convenient tool for calculating whether a place is ramified in an extension is the inertia group.

Note that if L/K is Galois and w is a place of L, then Lw/Kν is also Galois and there is a natural

inclusion Gal(Lw/Kν) ↪−→ Gal(L/K) whose image contains any σ ∈ Gal(L/K) continuous

with respect to w.

Definition 2.3.13. LetL/K be a Galois extension and letw be a place extending a non-archimedean

place ν. We define the decomposition group of w over ν to be

Dw|ν = {σ ∈ Gal(L/K) : |σ(x)|w = |x|w for all x ∈ Lw}.

The subgroup of Dw|ν defined by

Iw|ν = {σ ∈ Dw|ν : |σ(x)− x|w < 1 for all x ∈ OL}.

is called the inertia group of w over ν. If ν is clear from context, we write Dw and Iw instead.

Note by Proposition 2.3.2 that the decomposition and inertia groups are independent of the

choice of absolute value |·|w in w. It is helpful to have a notion of the inertia group for an extension

of archimedean places as well.

Definition 2.3.14. Let L/K be a Galois extension and let w be a place extending an archimedean

place ν. We define the inertia group of w over ν to be the image of Gal(Lw/Kν) in Gal(L/K). We

denote the inertia group by Iw|ν , or simply by Iw.

If L/K is a Galois extension and w is archimedean, then Lw/Kν is one of three possible ex-

tensions: either R/R, C/R, or C/C. Moreover, we have that Iw ∼= Gal(Lw/Kν) is either trivial or

generated by complex conjugation.

Proposition 2.3.15. Let L/K be a Galois extension and let w be a place extending a place ν. Then

L/K is unramified at w if and only if Iw is trivial.

Proof. If w is non-archimedean, the result can be found at [Neu99, Proposition II.9.11]. The result

in the archimedean case is a consequence of Definition 2.3.11.

The following theorem is a central result of class field theory, and it allows us to generate classes

in the class group of a number field by exhibiting a specific type of field extension.

Theorem 2.3.16. Let L/K be an unramified abelian Galois extension of number fields. Then

Gal(L/K) is isomorphic to a subgroup of Cl(K).

Proof. See [Neu99, p. 399], and in particular [Neu99, Proposition VI.6.9].
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2.4 The Chevalley-Weil theorem

In this section we discuss some versions of the Chevalley-Weil theorem. The description of results

in Section 2.4.1 are particularly useful to us in Chapter 3. A morphism f : A → B of local rings

is unramified if mB = B · f(mA) and the induced extension of residue fields (B/mB)/(A/mA) is

finite and separable – here mA,mB denote the maximal ideals of A,B respectively. A morphism

of varieties f : Y → X over k is unramified if for every y ∈ Y (kal) we have that the induced

morphism of local rings f∗ : OX,f(y) → OY,y is unramified.

Theorem 2.4.1. Let k be a number field and let f : Y → X be an unramified finite morphism of

k-varieties. If X is complete, then there is a non-zero α ∈ Ok such that for any P ∈ Y (kal) and

Q := f(P ) the discriminant dP/Q of Ok(P ) over Ok(Q) contains α.

Proof. See [BG06, Theorem 10.3.7].

We obtain the immediate corollary:

Corollary 2.4.2. Let k be a number field and let f : Y → X be an unramified finite morphism of

k-varieties, where X is complete. Then there is a finite set of places S of k, dependent only on f ,

such that for any P ∈ Y (kal) with f(P ) ∈ X(k), the set of places of k(P ) where the extension

k(P )/k is ramified is contained in the set of places of k(P ) extending the places in S.

Proof. In the set-up of Theorem 2.4.1, the only primes over which k(P )/k can ramify are either

archimedean or contain α.

2.4.1 Chevalley-Weil for Jacobian varieties

We state an explicit version of Corollary 2.4.2 for the Jacobian variety of a curve that allows us to

both compute the finite set of places over which there is possibly ramification, as well as provide

explicit conditions to tell when the extension k(P )/k is unramified. In this section, we let k be a

number field and we let C/k be a smooth projective curve of genus g and let JC be its Jacobian.

Note that the multiplication-by-2 morphism on JC is separable [Mil86a, Theorem 8.2]. Finally, we

let S̃ denote the finite set of places of k which are either places of bad reduction for C, places

dividing 2, or are archimedean places.

Proposition 2.4.3. For any y ∈ JC(ksep) such that [2]y ∈ JC(k) we have that k(y)/k is unramified

outside of S̃.

Proof. See [HS00, Proposition C.1.5].

Following [Sch98, Section 2.2], we state an analogue for Proposition 2.4.3 for the primes in S̃.
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Theorem 2.4.4. Define

〈·, ·〉 : JC(k)
2JC(k) ×Gal(ksep/k)→ JC [2](ksep)

by 〈x, σ〉 7→ [yσ − y], where y ∈ JC(ksep) is any element such that [2]y = x. We have that 〈·, ·〉
is linear in the first factor and that the left kernel is trivial. Additionally, we have that 〈x, στ〉 =
〈x, σ〉τ 〈x, τ〉 for all x ∈ JC(k)

2JC(k) and σ, τ ∈ Gal(ksep/k). In particular, if JC [2](k) = JC [2](ksep),

then 〈·, ·〉 is a bilinear pairing.

Proof. See [HS00, Proposition C.1.2].

The mapping in Theorem 2.4.4 is called the Kummer pairing. We see for any x ∈ JC(k)
2JC(k) that

〈x, ·〉 defines an element of H1(k, JC [2]), so the Kummer pairing induces a morphism of abelian

groups

δ : JC(k)
2JC(k) → H1(k, JC [2]).

If rk2 JC [2](k) = 2g, or equivalently, if JC [2](ksep) is a trivial Galois module, then we may use δ

to modify the Kummer pairing to be more amenable to computation.

Let T ∈ JC [2](k) and let w : JC [2] × JC [2] → µ2 be the Weil-pairing. Both JC [2](ksep) and

µ2 are trivial Gal(ksep/k)-modules, and we have a morphism of abelian groups

b : HomGal(ksep/k)(JC [2](ksep), µ2)→ Hom
(
H1(k, JC [2]),H1(k, µ2)

)
by functoriality of H1(k,−). The Weil pairing determines a morphism of Galois modules

λ : JC [2](k)→ HomGal(ksep/k)(JC [2](ksep), µ2). The composition ψ := b(λ(−)) gives us the pair-

ing
w′(·, ·) : H1(k, JC [2])× JC [2](k) → k×/k×2

(ξ, T ) 7→ ψ(T )(ξ)
.

By [Sch98, Section 2.2], the pairing w′ has trivial right kernel.

Definition 2.4.5. We refer to the pairing

w′′ : JC(k)
2JC(k) × JC [2](k) → k×/k×2

(x, T ) 7→ ψ(T )(δ(x))

as the (modified) Kummer pairing.

This pairing is explicitly computable given representatives T1, . . . , T2g for a basis of JC [2] as

follows. As each [Ti] is a 2-torsion class, we have that there is a rational function hi of C such that

div hi = 2Ti.
If D =

∑
P∈C(kal) nPP ∈ Div0(C/k) is a divisor representing a class [D] ∈ Pic0(C)(k) such

that nP is zero for points of C which occur in the support of Ti (i.e the zeros and poles of hi), we
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can define 〈 ∑
P∈C(kal)

nPP

 , [Ti]
〉

:=
∏

P∈C(kal)
hi(P )nP .

Note that while the value of each hi(P ) lies in kal the product lies in k× for any D as chosen above.

We also note that every divisor class [D] has a representative of the form
∑
P∈C(kal) nPP where nP

is zero for points of C which occur in the support of Ti [HS00, Lemma A.2.3.1]. Furthermore, if

C(k) 6= ∅ then every class [D] ∈ Pic0(C)(k) has a representative in Div0(C/k) [Sch98, Proposi-

tion 2.7]. The value of
∏
P∈C(kal) hi(P )nP depends on the chosen representatives for the 2-torsion

and the representative of [D] in JC(k)
2JC(k) . However, the square class of this value is independent of

these choices so the pairing is well-defined [Sch98, Lemma 2.1].

Remark 2.4.6. We point out a feature of the description above that is essential to our computations.

Once we fix a particular choice for h1, . . . , h2g, we may consider them as functions

hi : D → k×

where D denotes the subset of divisors in Div(C/k) with support avoiding the zeros and poles of

the h1, . . . , h2g. If D ∈ D has degree 0, then we have that (λhi)(D) = hi(D) for all λ ∈ k× and

all i ∈ {1, . . . , 2g}.

We are ready to state the well-known companion result to Proposition 2.4.3 for the bad places.

We provide a proof lacking an immediate reference.

Proposition 2.4.7. Let C/k be a curve of genus g ≥ 1 such that C(k) 6= ∅ and such that

rk2 JC [2](k) = 2g. Let {T1, . . . , T2g} be a basis for JC [2](k), and let h1, . . . , h2g be the maps

hi : JC(k)
2JC(k) → k×/k×2 defined from the modified Kummer pairing. Let x ∈ JC(k) and choose

y ∈ JC(ksep) such that [2]y = x. Then k(y)/k is unramified if both of the following hold:

(a) ordν hi(x) ≡ 0 (mod 2) for each i and each finite place ν of k, where ordν is normalized so

that ordν(Ok) = Z.

(b) Each hi(x) has a positive representative modulo k×2 at all real places.

Proof. Proposition 2.4.3 shows that it suffices to consider only those places contained in S̃. Let

ν ∈ S̃ be a finite place and let σ ∈ Iν be an element in the inertia subgroup of Gal(ksep/k). Then

we need to show that [σy − y] = [0]. By Proposition 2.3.5, we may extend ordν to a valuation on

Ok(y) which restricts to ordν on Ok. Observe that by definition of y we have [σy − y] ∈ JC [2](k).

Now

〈[σy − y], Ti〉 = hi(y)σ

hi(y)

Note again since [2]y = x that hi(y)2 = hi(x) (mod k×2). Thus ordν hi(y) ∈ Z so the inertia

group acts trivially on hi(y). In particular each 〈[σy − y], Ti〉 is trivial.
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For archimedean places ν of S̃, we have that the inertia group Iν is trivial if ν is a complex

place. If ν is a real place then we have assumed each hi(x) has a positive representative at ν, so

〈[σy − y], Ti〉 = hi(y)σ

hi(y)

is always trivial for σ ∈ Iν . Since the Kummer pairing has trivial left kernel we see that Iν acts

trivially.

2.5 Affine algebraic groups and categorical quotients

In this section we follow [MFK94, Chapters 0-1].

Definition 2.5.1. An algebraic group is a group object in the category of varieties over k. An affine

algebraic group is a group object in the category of affine varieties over k.

Remark 2.5.2. Note that in some literature, particularly [MFK94], the term linear algebraic group

is used instead (cf. [Con02]).

The prototypical example of an affine algebraic group is GLn/k. By a subgroup of an affine

algebraic group G/k, we mean a subgroup object of G/k in the category of algebraic varieties over

k.

Definition 2.5.3. An affine algebraic group is said to be reductive if the maximal normal connected

solvable algebraic subgroup is a (possibly trivial) multiplicative torus.

Note that we allow disconnected reductive groups; in particular, finite groups are reductive.

Definition 2.5.4. Let C be a category, let X be an object of C, and let σ : G ×X → X be a group

action on X . We say that Y ∈ C is a categorical quotient of X by G if there exists a morphism

π : X → Y such that

• π is G-invariant. That is, we have that

G×X σ //

π◦p2
##

X

π~~
Y

commutes, where p2 : G×X → X is the natural projection.

• If φ : X → Z is a G-invariant morphism, then φ factors through π uniquely.

If Y exists, we denote it by X//G.

Note in Definition 2.5.4 that if the categorical X//G exists, then the universal property implies

that it is unique up to unique isomorphism.
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Remark 2.5.5. If D is a subcategory of C, and X ∈ D is an object with a G-action, then the

categorical quotient X//CG in C is not necessarily the same as the categorical quotient X//DG in

D. If X/k is a scheme with an action by a group G/k, we always denote by X//G the categorical

quotient in the category of schemes over k, provided the quotient exists. However, it is important

for us to also view X/k and X//G as functors from k-alg to Set; in Chapter 4 we use them to

construct functors from k-alg to Set not necessarily representable by a scheme.

Example 2.5.6. We give a simple example of the dependence of a categorical quotient on the cat-

egory. Let G := Z/2, and let G act on the polynomial ring R := Q[r1, r2] by permutation of the

variables. The ring of invariants RG is given by Q[r1r2, r1 + r2], so in particular we have that the

categorical quotient of SpecR by G exists in the category of schemes and is isomorphic to A2
Q. The

quotient morphism is given by π : (α1, α2) 7→ (α1α2, α1 + α2), which we can view as the map

sending (α1, α2) to the monic quadratic polynomial whose roots are {α1, α2}.
We may view any scheme over Q as a functor from Q-alg to Set. In the category of functors

from Q-algebras to sets, we have that the functor

F : A 7→ { G-orbits of (SpecR)(A) }

satisfies the universal property of categorical quotients. The natural map

F(Q) = G\(Spec(R)(Q)) ↪−→ Spec(RG)(Q)

is not a bijection, so in particular SpecRG is not the categorical quotient of SpecR by G in the

category of functors from Q-alg to Set.

Definition 2.5.7. Let X/k be a scheme with an action by a reductive algebraic group G/k. A

geometric point x ∈ X(kal) is G-pre-stable if there exists a G-invariant affine open neighbourhood

U of x such that the action morphism G× U → U is closed.

The set of pre-stable points of a scheme X is the set of geometric points of an open subscheme

of X [MFK94, Section 1.4]. Thus, we may refer to the subscheme of pre-stable points of X .

Definition 2.5.8. Let X/k be a scheme with an action by a reductive algebraic group G/k. We say

that G has a prestable action on X if the subscheme of prestable points of X is equal to X .

We require the notion of pre-stability of a point in order to express the technical condition

Proposition 2.5.9. We only consider categorical quotients where this technical condition is satisfied.

Proposition 2.5.9. LetX/k be a scheme and letG/k andH/k be reductive algebraic groups acting

on X/k such that the actions of G and H commute. Then the following statements hold.

(a) If the action of G on X is pre-stable, then X//G exists in the category of schemes,

πG : X → X//G is a surjective affine morphism, and the action of H on X induces an action

of H on X//G.
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(b) If the condition of part (a) holds and if the action of H on (X//G) is pre-stable, then we have

that the action of G×H on X is pre-stable, the action of H on X is prestable, and the action

of G on X//H is pre-stable.

(c) If the condition of part (b) holds, then

(X//G)//H, X//(G×H), (X//H)//G

all exist in the category of schemes and they are isomorphic.

Remark 2.5.10. A morphism f : X → Y is submersive if for every set U ⊆ Y , we have that U is

open if and only if f−1U is open. As it turns out, categorical quotients by reductive groups, when

they exist, are submersive [MFK94, Chapter 0].

Proof. (a) The existence of X//G and the fact that πG : X → X//G is surjective and affine fol-

low immediately from [MFK94, Proposition 1.9]. To construct the H-action, we consider the

morphisms

H ×X σ //

id×π
��

πσ

''

X

π
��

H × (X//G) (X//G).

Let σG : G×X → X be the givenG-action. We define aG-action σ′G : G×H×X → H×X by

σ′G(g, h, x) := (h, σG(g, x)), i.e, letting G act trivially on the first factor and acting in the usual

way on the second factor. The categorical quotient of H × X by G exists and the morphism

(id×π) : H × X → H × (X//G) satisfies the universal property. Since the actions of H and

G commute, we have that πσ is constant on G-orbits. By the universal property, we have an

H-action σ : H × (X//G)→ (X//G).

(b) By our hypothesis, we can find an H-invariant affine open cover {Ui} of X//G such that theH-

action is closed. Since πG is affine, the pullback {π−1
G Ui} is aG×H-invariant affine open cover

of X . Of course, {π−1
G Ui} is in particular a covering by H-invariant open affine subschemes.

Since πG is submersive [MFK94, Proposition 1.9] and the H-action is closed on Ui, we have

that the H-action is closed on π−1
G Ui. Similarly, we have that the G ×H-action on each open

patch is closed.

We now show that the natural action of G on X//H from part (a) is prestable. Let πH : X →
X//H be the quotient morphism. We have that πH restricts to the natural quotient

πH : π−1
G Ui → (π−1

G Ui)//H

on each invariant affine open patch. Let Ri be the ring such that SpecRi = π−1
G Ui. We have

that πH is induced by the inclusion

RHi ↪−→ Ri
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where RHi denotes the ring of H-invariants. The action of G on Ri restricts to an action on RHi ,

and {SpecRHi } is an open affine G-invariant cover of X//H . We check that the action of G

on each SpecRHi is closed. Let Z ⊆ G × SpecRHi be a closed subscheme, and consider the

diagram

G× SpecRi
σG //

id×πH
��

SpecRi
πH

��
G× SpecRHi

σ′G // SpecRi

where the σG, σ′G are the G-actions. Since σG is closed, we have that

π−1
H σ′G(Z) = σG

(
(id×πH)−1Z

)
is closed. Since πH is submersive by [MFK94, Proposition 1.9], we have that σ′G(Z) is closed.

We now see that the action of G on X//H is prestable.

(c) The existence of these schemes follows from part (b) and [MFK94, Proposition 1.9]. We have

the various surjective quotient maps

X → X//G→ (X//G)//H

X → X//H → (X//H)//G

X → X//(G×H).

The result now follows from multiple applications of the universal property of categorical quo-

tients.

2.6 Lie groups and Lie algebras

The main objective of this section is to give the definition of “the split group of type E8 over k”

as well as give some helpful preliminaries for understanding the modified construction of Lurie,

described in Section 2.6.10.

Our exposition for Lie algebras, affine algebraic groups, and Lie groups draws from a number

of different sources. We are primarily interested in Lie algebras and affine algebraic groups over a

general field of characteristic 0, so we often refer to [Mil13] and [Bou68, Bou75]. We also require

some facts regarding the complex geometry of Lie groups, for which we often refer to the book of

Fulton and Harris [FH91].
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2.6.1 Lie algebras

Definition 2.6.1. A Lie algebra over k is a k-vector space g endowed with a bilinear map

[·, ·] : g× g→ g satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [y, x]] = 0 for all x, y, z ∈ g.

The bilinear map is called the Lie bracket. A Lie sub-algebra of g is a sub-vector space h such that

[·, ·] restricts to a Lie bracket on h.

We only consider Lie algebras that are finite dimensional as k-vector spaces.

Definition 2.6.2. A morphism of Lie algebras f : g → h is a morphism of the underlying vector

spaces such that

f([x, y]) = [f(x), f(y)] for all x, y ∈ g.

Definition 2.6.3. Let V be a finite dimensional k-vector space. We define the Lie algebra glV to be

the vector space of endomorphisms of V with the Lie bracket

[A,B] := A ◦B −B ◦A for A,B ∈ glV .

Definition 2.6.4. A representation of a Lie algebra g is a morphism ρ : g→ glV of Lie algebras. If

V is a one-dimensional vector space, then we call ρ a character.

If g is a Lie algebra and x ∈ g, then [x, ·] : g → g is an endomorphism of the underlying

vector space. One easily sees by the Jacobi identity that the morphism x 7→ [x, ·] ∈ glg respects Lie

brackets, so it is in fact a morphism of Lie algebras.

Definition 2.6.5. Let g be a finite dimensional Lie algebra. The adjoint representation of g is the

morphism of Lie algebras
ad: g → glg

x 7→ [x, ·].

Definition 2.6.6. An ideal of a Lie algebra g is a Lie algebra h ⊆ g such that [g, h] ⊆ h. An ideal is

trivial if it is equal to either 0 or g. A Lie algebra is simple if it has no non-trivial ideals.

Definition 2.6.7. A Lie algebra g is abelian if [x, y] = 0 for all x, y ∈ g.

Remark 2.6.8. If g is abelian and V is a one-dimensional vector space, then any morphism of vector

spaces ρ : g→ glV is a character.

Of critical importance to us is the relationship between Lie algebras over k and affine algebraic

groups defined over k.

Lemma 2.6.9. Let g be a Lie algebra over k. Then Aut(g) has the structure of an affine algebraic

group over k.
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Proof. Since the Lie bracket is a k-bilinear map, we have that

Aut(g) := {g ∈ GL(g) : g[X,Y ] = [gX, gY ] for all X,Y ∈ g}

is defined by algebraic conditions.

Example 2.6.10. Let V = Cn be the n-dimensional complex vector space. Let glV be the Lie

algebra of endomorphisms as in Definition 2.6.3. We may of course identify glV with the lie algebra

of n× n complex matrices, which we denote by gln. The first sub-Lie algebra we shall look at is

dn :=

A ∈ gln : A =


∗ 0

. . .

0 ∗


 ,

the sub-algebra of diagonal matrices. It is easy to see that dn is abelian.

The sub-algebra we look at more closely is

sln := {A ∈ gln : Tr(A) = 0}.

Since Tr(AB) = Tr(BA) for any matrices A,B ∈ gln, we have that sln is an ideal of gln.

2.6.2 Simple lie algebras

In this subsection we discuss some of the additional structure of simple Lie algebras. Note that many

of the definitions and results in this section can be made for more general Lie algebras. We avoid

doing so for the sake of brevity.

The following definition is from basic linear algebra, but allows us to clarify Definition 2.6.14.

Theorem 2.6.11. For any X ∈ End(VC), there exist a unique pair of elements Xs, Xn ∈ End(VC)
such that Xs is diagonalizable, Xn is nilpotent, [Xs, Xn] = 0, and X = Xs +Xn.

Definition 2.6.12. For X ∈ End(VC), the decomposition X = Xs + Xn from Theorem 2.6.11 is

called the Jordan decomposition of X . We call Xs the semi-simple part and Xn the nilpotent part.

Theorem 2.6.13. Let g be a simple Lie algebra. For allX ∈ g, there exist a unique pair of elements

Xs, Xn ∈ g such that X = Xs +Xn and for any representation ρ of g we have

ρ(Xs) = ρ(X)s, ρ(Xn) = ρ(X)n.

That is, there is an intrinsic Jordan decomposition for every element of a simple Lie algebra.

Definition 2.6.14. Let gC be a simple complex Lie algebra. For X ∈ gC, the decomposition X =
Xs+Xn from Theorem 2.6.13 is called the Jordan decomposition ofX . We callXs the semi-simple

part and Xn the nilpotent part.
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Proof. See [FH91, Theorem 9.20].

Definition 2.6.15. An element X ∈ g of a simple Lie algebra is semi-simple if it is equal to its

semi-simple part.

Definition 2.6.16. Let g be a simple Lie algebra and let X ∈ g. The centralizer of X is the Lie

sub-algebra defined by

cg(x) := {y ∈ g : [x, y] = 0}.

An element X ∈ g is regular if its centralizer is of minimal dimension. That is, if

dim cg(X) = min
y∈g

dim cg(y).

Definition 2.6.17. An element X ∈ g of a simple Lie algebra is regular semi-simple if it is both

regular and semi-simple. We denote the open subset of regular semi-simple elements of g by grss.

We caution that the following definition of a Cartan subalgebra from [FH91] is valid for simple

Lie algebras, but not in general.

Definition 2.6.18. A Cartan subalgebra t of a simple Lie algebra g is an abelian Lie sub-algebra

such that every X ∈ t is semi-simple and such that t is not contained in a larger abelian subalgebra

of g with this property.

Theorem 2.6.19. Every simple Lie algebra contains a Cartan subalgebra.

Proof. See [Mil13, Corollary I.8.10].

Definition 2.6.20. A Cartan subalgebra of g is splitting over k if for every element x ∈ t we have

that adx is diagonalizable over k. We say that g is split over k if it has at least one splitting Cartan

subalgebra.

Note that if k is algebraically closed, then every Cartan subalgebra of g is splitting.

Definition 2.6.21. Let g be a simple Lie algebra over k and let t be a splitting Cartan subalgebra of

g. Let t∨ := Homk(t, k) denote the linear dual to t. For any α ∈ t∨, we let

gα := {x ∈ g : (adg t)x = α(t)x for all t ∈ t}.

If gα 6= 0 and α 6= 0, we call α a root of (g, t) [Bou75, Chapter 8, Section 2].

As g is a finite dimensional simple Lie algebra over k, there are only finitely many roots of (g, t)
for any splitting Cartan subalgebra t since gα ∩ gβ = {0} for any two roots α, β.

Remark 2.6.22. We can extend Definition 2.6.21 to non-split Lie algebras by defining the roots of

(g, t) to be the roots of (g⊗k k′, g⊗k k′), where k′/k is the minimal extension such that t⊗k k′ is

a splitting Cartan subalgebra of g⊗k k′. It is not strictly necessary for us to do this.
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Theorem 2.6.23. Let Λ ⊆ t∨ denote the Z-linear combinations of the roots. Then Λ is a free Z-

module of rank equal to dimk t
∨. For any embedding i : k ↪−→ C, the R-linear combinations of the

roots Λ⊗Z R ⊆ t∨ ⊗k C is a real vector space of dimension dimk t
∨.

Proof. See [FH91, pp. 198-199].

Note that the real vector space in Theorem 2.6.23 is not necessarily fixed by complex conjuga-

tion.

Example 2.6.24. Recall from Example 2.6.10 that sln, the Lie algebra of traceless n× n complex

matrices, is simple. We also recall the Lie sub-algebra of gln of diagonal matrices dn. We see that

t := sln ∩ dn is a Lie sub-algebra of sln which is abelian. By definition every element of t is

diagonalizable, and elementary linear algebra shows that any y ∈ sln which is diagonalizable and

satisfies [y, t] = 0 for all t ∈ t (i.e, commutes with all elements in t) must already lie in t.

To give an example of the roots of sln, we will restrict to n = 3. Let Ei,j be the 3× 3 complex

matrix whose only non-zero entry is a 1 in the (i, j) position. We see for any diagonal matrix

A := diag(a1, a2, a3) ∈ t that

[A,Ei,j ] = (ai − aj)Ei,j .

In particular, the Ei,j with i 6= j are eigenvectors for the adjoint action of sln on itself, where the

associated eigenvalue (eigenfunctional) in t∨ is

Li,j



a1

a2

a3


 = ai − aj .

The six Ei,j together with two matrices that span t are a basis for sl3 as an 8-dimensional vector

space. The Li,j as elements of t∨ are the 6 roots of sl3.

Example 2.6.25. Consider the following sub-Lie-algebras of sl2R:

t1 :=
{[
λ 0
0 −λ

]
: λ ∈ R

}
, t2 :=

{[
0 λ

−λ 0

]
: λ ∈ R

}
.

Similar to Example 2.6.24, we have that t1 is a splitting Cartan subalgebra and the functionals

α±2

([
λ 0
0 −λ

])
= ±2λ

are the roots. We have that t2 is a Cartan subalgebra, but that it is not splitting. The Cartan subal-

gebra becomes splitting after making a finite extension C/R, and we can calculate that the roots of

(sl2C, t2 ⊗R C) are

α±2i

([
0 λ

−λ 0

])
= ±2iλ, or equivalently, α±2i

([
0 −iλ
iλ 0

])
= ±2λ.
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As expected, we see that the R-linear combinations of α±2i span a real space of dimension 1. We

see that complex conjugation acts on this subspace non-trivially. Over the complex numbers, the

two Cartan subalgebras t1, t2 are conjugate, and the associated roots are similarly identified. It is

possible to abstractly recover the Lie algebra sl2R, and hence the roots of (sl2R, t1) embedded in

R1, from sl2C, t2, and [Mil13, Theorem I.8.59].

Definition 2.6.26. Let B := {e1, . . . , en} be a basis for a real vector space V of dimension n.

We may define a lexicographic ordering ≺B on the points of V by lexicographically ordering the

B-coordinates. Let R be the roots of a split simple Lie algebra (g, t), and choose a basis B for the

real subspace of t∨ ⊗ C containing the roots. Any α ∈ R such that 0 ≺ α is called a positive root.

Any positive root which is not the sum of two other positive roots is a simple root with respect to B.

Theorem 2.6.27. Let R be the roots of (g, t), let B be a basis for the real subspace V of t∨ ⊗ C
containing the roots, and let ∆ be the set of simple roots. Then ∆ is a basis for V and every positive

root can be expressed as a sum ∑
α∈∆

aαα

where each aα ≥ 0.

Proof. See [TY05, Theorem 18.7.4].

Let B be as in Definition 2.6.26 and let ∆ be the associated set of simple roots. It is clear by

Theorem 2.6.27 that ∆ is a basis of the real subspace of t∨⊗C containing the roots. By definition of

∆, we see that it is the set of simple roots with respect to the lexicographic ordering induced by≺∆,

as any positive root is a sum of roots from ∆ with positive coefficients. From now on, we dispense

with the formality of first choosing a basis for t∨ ⊗ C, and choose a basis of simple roots directly.

Definition 2.6.28. Let ∆ be a basis of simple roots. We define the highest root α∆ with respect to

∆ as the maximal root with respect to the total ordering ≺∆.

Definition 2.6.29. Let Φ denote the set of roots of a split simple Lie algebra (g, t). The Z-linear

combinations of elements of Φ, which we denote by ZΦ, form a lattice called the root lattice of

(g, t). The root lattice spans t∨ as a k-vector space, so we may declare it to be the character lattice

of t.

Definition 2.6.30. Let g be a simple Lie algebra, let t be a Cartan subalgebra, and letG := Aut(g)◦.
Then the group

W (g, t) := NG(t)/CG(t)

is called the Weyl group of g with respect to t. If g is clear from context, we denote this group by

Wt.

Remark 2.6.31. If k is algebraically closed, then Aut(g)◦ acts transitively on the set of Cartan

subalgebras of g [Mil13, Theorem I.8.17]. Let t, t′ be Cartan subalgebras of g and let Ψ ∈ Aut(g)◦
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be an automorphism such that Ψ(t) = t′. Conjugation by Ψ sends NAut(g)◦(t) (i.e, the subgroup of

Aut(g)◦ fixing the subspace t) to NAut(g)◦(t′). Similarly, conjugation by Ψ sends CAut(g)◦(t) (i.e,

the element-wise stablizer of t) to CAut(g)◦(t′). In particular, the isomorphism class of the group

W (g, t) and the root lattice of (g, t) are independent of the choice of t.

2.6.3 Affine algebraic groups and Lie algebras

Definition 2.6.32. A (real/complex) Lie group is a group object in the category of (real/complex)

manifolds.

We are not particularly concerned with Lie groups over real or complex fields, but rather with

groups defined over an arbitrary base field k that behave like Lie groups. The objects that we are

actually interested in are affine algebraic groups.

We mention Lie groups for the following two reasons. First, we require some methods from

the theory of complex Lie groups in Section 2.6.7. Secondly, the proof of many facts about affine

algebraic groups over a field k of characteristic 0 and cardinality at most that of C often reduces to

the proof of a similar statement for complex Lie groups.

There is a close connection between affine algebraic groups and Lie groups. Recall that the

natural inclusion GLnR ↪−→ Rn×n (resp. GLnC ↪−→ Cn×n) imbues GLnR (resp. GLnC) with

the structure of a real (resp. complex) manifold. The group law morphisms for GLnR and GLnC
are smooth with respect to the manifold structure, so GLnR and GLnC naturally have the structure

of a Lie group.

Theorem 2.6.33. There is a canonical functor from the category of (real/complex) affine algebraic

groups to (real/complex) Lie groups, which respects the tangent spaces at the identity; it takes GLn
to GLnR in the real case and takes GLn to GLnC in the complex case. It is faithful on connected

algebraic groups (all algebraic groups in the complex case).

Proof. See [Mil13, Theorem III.2.1].

Let G be an affine algebraic group. For every g ∈ G, we obtain an inner automorphism of G

defined by Ψg(x) := g−1xg. As Ψg fixes the identity, we have that the differential of Ψg is an

automorphism of TeG. Consequently, there is a natural morphism of affine algebraic groups

Ad: G → Aut(TeG)
g 7→ dΨg.

The differential of Ad at the origin, which we denote by ad, defines a morphism of vector spaces

ad: TeG→ End(TeG).
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Proposition 2.6.34. Let G be an affine algebraic group with identity element e. Then the tangent

space at the identity TeG with the Lie bracket

[X,Y ] := ad(X)(Y )

is a Lie algebra.

Proof. See [Mil13, Section II.3, p118].

Note that if TeG is a finite dimensional k-vector space, then End(TeG) = glTeG and the adjoint

map is exactly the map from Definition 2.6.5.

Definition 2.6.35. Let G be a simple connected affine algebraic group. A maximal subtorus is a

diagonalizable, connected, abelian algebraic subgroup T ⊆ G not contained in any larger such

group.

Theorem 2.6.36. Let G be a connected simple affine algebraic group and let g be its Lie alge-

bra. Then an algebraic subgroup of G is a maximal subtorus if and only if its corresponding Lie

subalgebra is a Cartan subalgebra of g.

Proof. See [Mil13, Lemma II.4.27].

Example 2.6.37. Let G := SLnC. The Lie algebra of G turns out to be the Lie algebra sln from

Example 2.6.24, and the adjoint action of SLnC on sln is given by (g,X) 7→ g−1Xg, where we

view g and X as n× n complex matrices. We have that G is connected and simple. The subgroup

T :=



a1 0

. . .

0 an

 : a1 . . . an = 1, ai ∈ C


is isomorphic to Gn

m, and is a maximal connected diagonalizable abelian Lie subgroup. Its Lie

algebra is

t :=



a1 0

. . .

0 an

 : a1 + . . .+ an = 0, ai ∈ C


which we recognize as the Cartan subalgebra from Example 2.6.24.
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2.6.4 Classification

Theorem 2.6.38. Let g be a simple complex Lie algebra. Then g is determined up to isomorphism

by its root lattice. Furthermore, g is isomorphic to one of the following:

sln+1 (type An)

so2n+1 (type Bn)

sp2n (type Cn)

so2n (type Dn)

e6, e7, e8 (type E6, E7, E8, resp.)

g2, f4 (other).

For an explicit description of the root systems of the Lie algebras appearing above, see [Bou68,

Planche I-IX].

Proof. See [Mil13, Theorem I.8.60, Theorem I.8.61] and [Bou68, Planche I-IX].

If g is a simple Lie algebra over k, then the Dynkin type of g is the type of g ⊗k C specified in

Theorem 2.6.38.

Definition 2.6.39. Let g be a simple Lie algebra over k. The algebraic group Aut(g)◦ is the adjoint

group of type g over k.

Theorem 2.6.40. Let g be a simple Lie algebra over k and let G be the adjoint group of type g over

k. Then the Lie algebra of G is g and the centre of G is trivial.

Proof. Note that we can canonically identify the Lie algebra of Aut(g)◦ with

Der g := {df ∈ End(g) : df([x, y]) = [df(x), y] + [x, df(y)]}

and that ad: g → Der(g) is a morphism of Lie algebras [FH91, Exercise 8.27, 8.28]. To prove

that ad: g → Der(g) is an isomorphism and that Aut(g)◦ has trivial centre, it suffices to prove the

result when k = C. The result for k = C can be found in [FH91, Proposition D.40]. Note that the

definition for adjoint form appearing in [FH91, page 101] is different than the definition we use, but

they are equivalent by [FH91, Proposition D.40].

Example 2.6.41. Let sln be as in Example 2.6.24. Then SLnC is a connected Lie group of type

An. However, we notice that SLnC has a non-trivial centre given by

Z(SLnC) =



λ 0

. . .

0 λ

 : λ ∈ µn


so it is not the adjoint group of type An. However, the quotient SLnC/Z(SLnC) =: PSLnC is

indeed the adjoint group of type An. For further details see [FH91, Section 7.3].
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Definition 2.6.42. Let G be a simple affine algebraic group over k. We say that an element x ∈
G(kal) is semi-simple if x acts diagonalizably on gkal . We say that x is regular if its centralizer

in G has minimal dimension, and say that x is regular semi-simple if it is both regular and semi-

simple. We denote the open subscheme of regular semi-simple elements of G by Grss. If T ⊆ G is

a maximal subtorus of G, then we denote T rss := T ∩Grss.

Note that the containment T ⊆ G is essential in Definition 2.6.42; every element x ∈ T (ksep)
acts diagonalizably on t and has centralizer equal to T .

2.6.5 The split Lie algebra of type E8

In this section we define the root lattice Λ of type E8. We use the following description which is

from [Dol12, Section 8.2.2].

Definition 2.6.43. Let {l, e1, . . . , e8} be the free generators for a 9-dimensional lattice I1,8 where

the generators are pairwise orthogonal, 〈ei, ei〉 = −1 for each i, and 〈l, l〉 = 1. We define

ΛE8 := Span{α ∈ I1,8 : 〈α, α〉 = −2}.

A root lattice of type E8 is an abstract lattice isomorphic to ΛE8 . The roots of ΛE8 are the elements

α such that 〈α, α〉 = −2.

When discussing the root lattice of type E8, it is helpful to refer to the explicit presentation used

in Definition 2.6.43. Over a field k, we can non-canonically construct a Lie algebra of type e8 by

using the root lattice of type E8. Later in this chapter, we review a construction of Lurie that allows

us to canonically construct a Lie algebra of type E8 over k from ΛE8 and some additional data.

Definition-Theorem 2.6.44. Up to isomorphism, there exists a unique split Lie algebra over k

whose root lattice ΛE8 is a root lattice of type E8. We denote this Lie algebra by e8 and refer to it

as the split Lie algebra of type E8. The roots of e8 are exactly the roots of ΛE8 .

Proof. See [Mil13, Theorems I.8.57 and Theorem I.8.61].

Proposition 2.6.45. Let t be a splitting Cartan subalgebra of e8 and let Λ be the associated root

lattice. Then the Weyl group Wt is the group of isometries of Λ.

Proof. See [Bou68, Planche VII].

One particularly nice fact about the presentation in Definition 2.6.43 is the following.

Proposition 2.6.46. With the notation of Definition 2.6.43, we have that

ΛE8 = {v ∈ I1,8 : 〈v, κ〉 = 0}

where κ := e1 + e2 + . . .+ e8 − 3l.
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Proof. The roots of ΛE8 can be identified in [Bou68, Planche VII]. One can simply check that

〈α, κ〉 = 0 for each root α.

By Remark 2.6.31, if k is algebraically closed then every Cartan subalgebra of e8 gives rise to

the same Weyl group. For this reason, and Proposition 2.6.45, we denote byWE8 the isometry group

of ΛE8 and refer to it as the Weyl group of E8.

2.6.6 The split (adjoint simple) group of type E8 over k

Definition 2.6.47. The split (adjoint simple) group of type E8 over k is the adjoint group of e8,

where e8 is the split Lie algebra of type E8 over k.

We see by Lemma 2.6.50 that the split adjoint simple group of type E8 is simply connected.

In particular, any affine algebraic group over k whose Lie algebra is e8 is isomorphic to the adjoint

group of type e8 [FH91, Section 7.3]. After the proof of Lemma 2.6.50, we simply refer to the group

in Definition 2.6.47 as the split group of type E8 over k.

2.6.7 Connected components of centralizers

In this section, we review a result of [Ree10] which allows us to calculate the component group

of the centralizer of an element of a simple complex Lie group. Of particular interest to us is the

application of this technique to the split adjoint simple group of type E8. In this subsection, we let

h be a simple complex Lie algebra, let H be the adjoint group of type h, and let T be a maximal

subtorus of H . The main result of this section is Corollary 2.6.51.

Let Λ be the character lattice of T and let Y = Hom(Λ,Z) be the co-character lattice of T . Let

V := Y ⊗Z R. We may regard V as the Lie algebra of the maximal (analytically) compact subtorus

S ⊆ T via the exponential map (see [FH91, Section 8.3])

exp: V → S,

which is a surjective group homomorphism. The kernel of exp is exactly Y , so in particular we have

an isomorphism

exp: V/Y ∼−→ S.

The action of the Weyl group WT on Λ gives rise to a dual action on Y and hence on V .

The coroot lattice is the lattice ZΦ∨ ⊆ Y . The action of the Weyl group on Φ defines a dual

action of the Weyl group on Φ∨. There is a representation ρ : WT ↪−→ GLV such that for any

g ∈ WT and v ∈ Φ∨, we have that gv = ρ(g)v; that is, the dual action of WT on Φ is represented

by linear transformations of V [FH91, Appendix D.4].

Note that in general ZΦ∨ 6= Y , though we do have equality when Λ is a root lattice of type E8.

Lemma 2.6.48. The root lattice of type E8 is unimodular. In particular, the cocharacter lattice and

coroot lattice coincide.
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Proof. The explicit description of ΛE8 from Definition 2.6.43 allows us to compute a Gram matrix

for a basis of ΛE8 . For explicit details, see [Dol12, Lemma 8.2.6].

We now recall some facts stated in [Ree10, Section 2.2]. Any element of H which acts on

LieH diagonalizably (over C) is H-conjugate to an element of T . Additionally, we have that two

elements of T are H-conjugate if and only if they are conjugate by WT . Any torsion element of

H acts diagonalizably over C and is conjugate to an element of S. The elements s = exp(x) and

s′ = exp(x′) of S are conjugate if and only if x, x′ are in the same orbit under action of the extended

affine Weyl group

W̃T := WT n Y

where Y acts on V by translations.

Let ∆ := {α1, . . . , α`} be a basis of simple roots of Λ and let {ω̌1, . . . , ω̌`} be the basis of the

co-character lattice dual to ∆. This means that under the natural pairing we have that 〈αi, ω̌j〉 = δij ,

where δij denotes the Kronecker delta. Let α0 =
∑`
i=1 aiαi be the highest root of Λ with respect to

∆ (here the ai are positive integers). Let vi := a−1
i ω̌i for 1 ≤ i ≤ ` and let v0 := 0.

The set

C =
{∑̀
i=0

xivi ∈ V : 0 < xi < 1 and
∑̀
i=0

xi = 1
}

is the alcove determined by ∆ (for a proper definition of alcove see [Ree10, Section 2.2]). For each

g ∈ W̃T we may write g · C := {x ∈ V : g−1(x) ∈ C}. Note that the closure of C is the simplex

of dimension ` given by the convex hull of {v0, . . . , v`}. It is a fact that g ·C ∩C 6= ∅ if and only if

g · C = C. An important group related to H is the alcove stabilizer, which is defined as

Ω := {g ∈ W̃T : g · C = C}.

For x ∈ V , we further define Ωx to be the subgroup of Ω stabilizing x. It is computationally useful

to note that Ωb = Ω if b is the barycentre of C. One has that Ω ∼= Y/ZΦ∨ and that Ω is isomorphic

to the fundamental group of H (see [Ree10, Section 2.2]). The following useful result appears as

[Ree10, Proposition 2.1].

Proposition 2.6.49 (Reeder). Let C̄ denote the closure of C in V . Denote by CH(s) the centralizer

of s in H . For s = exp(x) with x ∈ C̄, the component group of CH(s) is isomorphic to Ωx.

With the description of Ω above, we can now prove some important technical facts about the split

adjoint simple group of type E8.

Lemma 2.6.50. Let H be the split adjoint simple group of type E8 over C and let h denote its Lie

algebra (i.e, e8). Then:

(a) H is simply connected.

(b) Aut(h) is connected.
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(c) For h ∈ H(C), let Ψh denote the inner automorphism g 7→ h−1gh. Then the differential

d : Aut(H)→ Aut(h) is an isomorphism and the diagram

Aut(H) d // Aut(h)

H

h7→Ψh

OO

Ad // Aut(h)◦

commutes.

(d) H is isomorphic to its group of automorphisms, and every automorphism is inner.

Proof. (a) By Lemma 2.6.48 and the preceding discussion, we have that H is simply connected.

(b) The result follows immediately from [Bou68, Planche VII] and [FH91, Proposition D.40].

(c) That the differential is an isomorphism follows from (b) and [FH91, Exercise 8.28]. That the

diagram commutes follows from the definition of Ad and part (a).

(d) By Theorem 2.6.40 we have that h 7→ Ψh is injective. The result is immediate from part (c) and

the fact that H := Aut(h) by definition.

We now prove the main result of this section.

Corollary 2.6.51. Let H be the split group of type E8 over k and let HC denote the base extension

ofH to C. Let θ : HC → HC be an involution. ThenHθ
C(C) has a single connected component in the

euclidian topology. In particular, Hθ has a single Zariski connected component and Hθ = (Hθ)◦.

Proof. We may assume by base change thatH is a complex Lie group. Recall that Ω ∼= Y/ZΦ∨ and

that Y = ZΦ∨ for root lattices of type E8. By Lemma 2.6.50 we may choose an element s ∈ H(C)
such that s = s−1 and θ(h) = shs−1 for all h ∈ H . But Ω is trivial, so by Proposition 2.6.49 the

centralizer of any 2-torsion element has a single connected component. Since Hθ = CH(s) we are

done.

2.6.8 Background regarding groups of type A,D,E

We make use of some classical results of Vinberg theory, which can be found in [Tho16, Section

1D], [Ric82], or [Vin76]. Let H be a simple affine algebraic group over k and let θ : H → H be

an involution over k. Then θ induces an involution dθ : h → h on the Lie algebra of H , and the

eigenspaces of dθ define a (Z/2)-grading of h

h = h0 ⊕ h1
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such that [hi, hj ] ⊆ hi+j . We define the varieties

Hθ(h)=h−1 := {h ∈ H : θ(h) = h−1}

hdθ=−1 := {X ∈ h : dθ(X) = −X}.

The main result from Vinberg theory that we are interested in is a version of the Chevalley

restriction theorem for (Z/2)-graded Lie algebras. We begin with some technical details of the

quotients of a rank 8 torus by WE8 and Gm.

Proposition 2.6.52. Let T be a torus over k of rank 8 with the standard action by the Weyl group

WE8 . Then the categorical quotient T//WT exists in the category of schemes, and T//WT
∼= Ank .

Proof. See [Ric82, Theorem 14.3].

Lemma 2.6.53. Let t be a splitting Cartan subalgebra of the split group of type E8 over k and

let t0 := t\{0}. Then t0//Wt can be covered by affine open subsets which are Gm-invariant. Con-

sequently, t0 is covered by affine open subschemes invariant under Wt × Gm, and the action of

Wt ×Gm on these subschemes is closed.

Proof. The ring of invariants of Wt acting on t is a polynomial ring where Gm acts by scaling each

variable by its weighted degree [RT17]. The principal open subsets with respect to the monomials

give the invariant open cover.

We now state some results of [Vin76] and [Ric82], as summarized in [Tho16]. Our Theo-

rem 2.6.55 below is a slightly enhanced version of [Tho16, Theorem 1.10]; our enhancement is

the addition of part (d). The change allows us to state our results in Chapter 4 for the e8 case without

the extra data of a tangent vector required at various points for the e6, e7 cases of Thorne’s results.

Theorem 2.6.54. (a) Let H be a split adjoint simple group of type A,D, or E. Let Y :=
(Hθ(h)=h−1)◦ and let G := (Hθ)◦. Let T be a maximal subtorus of Y and let WT be the

Weyl group of this torus. Then the inclusion T ⊆ Y induces an isomorphism

T//WT
∼= Y//G.

(b) Suppose that k = ksep and let x, y be regular semisimple elements. Then x is G(k)-conjugate

to y if and only if x, y have the same image in Y//G.

(c) There exists a discriminant polynomial ∆ ∈ k[Y ] such that for all x ∈ Y , x is regular semisim-

ple if and only if ∆(x) 6= 0. Furthermore, we have that x is regular semi-simple if and only if

the G-orbit of x is closed in Y and StabG(x) is finite.

Proof. See [Tho16, Theorem 1.11].
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Theorem 2.6.55.

(a) Let H be a split adjoint simple group of type A,D, or E and let h be its Lie algebra. Let

V := hdθ=−1 and let G := (Hθ)◦. Let t be a Cartan subalgebra of V and let Wt be the Weyl

group. Then the inclusion t ⊆ V induces an isomorphism of k-varieties

t//Wt
∼= V//G.

Additionally, V//G is isomorphic to affine space.

(b) Suppose that k = ksep and let x, y be regular semisimple elements. Then x is G(k)-conjugate

to y if and only if x, y have the same image in V//G.

(c) There exists a discriminant polynomial ∆ ∈ k[V ] such that for all x ∈ Y , x is regular semisim-

ple if and only if ∆(x) 6= 0. Furthermore, we have that x is regular semisimple if and only if

the G-orbit of x is closed in V and StabG(x) is finite.

(d) Moreover, we have that the isomorphism from part (a) induces isomorphisms

Pt//Wt
∼=

∼= PV//G

∼=

(t\{0})//(Wt ×Gm) ∼= (V \{0})//(G×Gm).

Proof. The statements of parts (a-c) are directly from [Tho16, Theorem 1.10], so we need only

prove the last claim.

By definition, we have that PV := (V \{0})//Gm, where Gm acts on V via λg 7→ (λ · idV )(g).

In particular, λ acts on V through the centre of GL(V ), so we ascertain that G × Gm acts on V .

Moreover, we have thatG×Gm acts on t via the inclusion i : t ↪−→ V . The action ofG× idGm on t

factors throughWt by the first part of the theorem, and the action of idG×Gm on t factors faithfully

through the centre of GL(t) since i is a morphism of Lie algebras. Thus, we see that Wt ×Gm acts

on t and that this action is compatible with the action of G×Gm on V .

From part (a), we have that i induces an isomorphism i : t//Wt
∼= V//G. Since this induced

isomorphism is also Gm-equivariant, we have

((t\{0})//Gm)//Wt
∼= (t\{0})//(Wt ×Gm)

∼= ((t\{0})//Wt)//Gm

i∼= ((V \{0})//G)//Gm

∼= (V \{0})//(G×Gm) ∼= ((V \{0})//Gm)//G

which gives the result.

We apply the results above to a particular type of involution, which we shall now describe.

An involution θ : H → H over k is split if the affine algebraic group (Hθ)◦ is split. The specific
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involutions we are interested in are the stable involutions (in the sense of [Tho13, Section 2]) which

are also split.

Proposition 2.6.56. Let H be a split adjoint simple group of type A, D, or E over k. There exists a

unique H(k)-conjugacy class of split involutions θ of H such that Tr(dθ : h→ h) = − rkH .

Proof. See [Tho16, Proposition 1.9].

It is convenient to name the involutions satisfying the conditions of Proposition 2.6.56. We adopt

the name used in [RLYG12] and [Tho13].

Definition 2.6.57. Let H be a split adjoint simple group of type A, D, or E over k. We call an

involution θ : H → H satisfying the conditions of Proposition 2.6.56 a split stable involution .

2.6.9 A representation of dimension 16

Let V16 be a 16-dimensional k-vector space and let q be a quadratic form on V16 with an isotropic

k-subspace of dimension 8. Note that q is unique up to isometry by the Witt index theorem [Tit66].

It is straightforward to check by choosing an explicit representative for q that so(q) is the split Lie

algebra of type D8.

Lemma 2.6.58. Let H be a split group of type E8 defined over k and let θ : H → H be a split

stable involution. Then

(a) The Lie algebra LieHθ is split and of Dynkin type D8. In particular, there is an isomorphism

LieHθ ∼= so(q) over k.

(b) The Standard representation of LieHθ is a 16-dimensional representation.

Proof. One need only determine the Dynkin type of Hθ as the remaining statements are standard

facts. By functoriality of Lie, we have that LieHθ = hdθ=1, where hdθ=1 denotes the +1-eigenspace

of the involution dθ acting on h. Additionally, we have that H ∼= Aut(h)◦ since H is a split group

of type E8.

By Proposition 2.6.56 it suffices to demonstrate the claim for a particular split stable involution.

Let t be a maximal splitting Cartan subalgebra of h and write

h = t⊕
⊕

α∈Φ(h,t)
hα

with Φ(h, t) denoting the roots of h with respect to t. We fix an identification of Φ(h, t) with the

E8 root system in R8 (as in [Bou68, Planche 7]) and let ΦZ(h, t) ⊆ Φ(h, t) be the roots whose

coordinates have integer entries. Define dθ by linearly extending

dθ(x) :=


x if x ∈ hα, α ∈ ΦZ(h, t)

x if x ∈ t

−x if x ∈ hα, α ∈ Φ(h, t)\ΦZ(h, t)

.
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We note that for α, β ∈ Φ(h, t), we have that α+ β has non-integer coordinates precisely when ex-

actly one of α, β has non-integer coordinates. Using [FH91, Excercise D.5] it is a simple calculation

to check that dθ preserves the Lie bracket. Thus dθ is a split involution of h, which corresponds to

a split involution θ ∈ H . Moreover, we see that Tr(dθ) = − rkH , so θ is a split stable involution.

It is a standard fact that the Dynkin type of the root system ΦZ(h, t) is D8.

2.6.10 The refined construction of Lurie

We give a short summary of [Tho16, Section 2] as this is helpful to state the main result we rely on.

For details the reader is encouraged to consult the original article.

We say that a root lattice Λ is simply-laced if the isometry group of the lattice acts transitively

on the roots. The Weyl group of Λ, denoted by WΛ, is the subgroup of the isometries of Λ generated

by reflections through root hyperplanes. Consider the following collection of abstract data:

Data I:
1. An irreducible simply laced root lattice (Λ, 〈·, ·〉) together with a continuous homomorphism

Gal(ksep/k)→WΛ ⊆ Aut(Λ).

2. A central extension Ṽ of V := Λ/2Λ, where Ṽ satisfies

0 // {±1} // Ṽ // V // 0

and for any ṽ ∈ Ṽ we have that ṽ2 = (−1)
〈v,v〉

2 .

3. A continuous homomorphism Gal(ksep/k) → Aut(Ṽ ) leaving {±1} invariant, compatible

with Gal(ksep/k)→ Aut(Λ)→ Aut(V ).

4. A finite dimensional k-vector space W and a homomorphism ρ : Ṽ → GL(W ) of k-groups.

We denote the ensemble of such data by a quadruplet (Λ, Ṽ ,W, ρ). We may form the category

C(k) of quadruplets satisfying conditions (1)-(4), whose morphisms are the obvious morphisms.

Thorne [Tho16, Section 2] presents a modified construction of Lurie [Lur01], which given a

quadruplet (Λ, Ṽ ,W, ρ) produces:

Data II:
(a) A simple Lie algebra h over k of type equal to the Dynkin type of Λ.

(b) An affine algebraic group H , which is the adjoint group over k whose Lie algebra is h, and a

maximal torus T of H . The torus T is canonically isomorphic to Hom(Λ,Gm).

(c) An involution θ : H → H which acts on T by θ(t) = t−1.

(d) An isomorphism T [2](ksep) ∼= V ∨ of Galois modules.

(e) A Lie algebra homomorphism ρ : hdθ=1 → gl(W ) defined over k.
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We denote the ensemble of such data by a tuple (H, θ, T, ρ), and we may form a category D(k)
whose objects are tuples satisfying conditions (a)-(e) and whose morphisms are morphisms of the

underlying affine algebraic groups ϕ : H1 → H2 over k such that ϕ intertwines the involutions θ

(i.e, θ2ϕ = ϕθ1), satisfies ρ2 ◦ dϕe = ρ1, and such that ϕ(T1) ⊆ T2. Note that while we require

ϕ(T1) ⊆ T2, this inclusion is not necessarily canonically defined. We point out that in Lemma

4.4.3, we construct morphisms in D(k) where the tori are canonically identified. We phrase the

construction of Lurie as modified by Thorne in the following way:

Theorem 2.6.59. For each field k of characteristic 0, there is a functor fk : C(k)→ D(k) which is

injective on objects.

Remark 2.6.60. One can infer that this functor is injective on objects from the appendix of [Tho16],

due to Kaletha.

2.7 Theta groups of curves

We follow [Tho16, Section 1C] for an exposition on theta groups and Heisenberg groups, with some

extra details provided from [Mil86b].

Let C/k be a curve of genus g, let r be a positive integer, and denote

Cr := C × . . .× C︸ ︷︷ ︸
r times

.

There is a natural morphism given by

jr : Cr → Picr(C)
(P1, . . . , Pr) 7→ [P1 + . . .+ Pr]

where the square brackets indicate taking the divisor class. The image of jg−1 is an irreducible

subvariety of Picg−1(C) of codimension 1, and we let Wg−1 denote the corresponding divisor of

Picg−1(C). If P0 ∈ C(ksep) is any point, then there is a morphism τ(g−1)P0 : Pic0(C)ksep →
Picg−1(C)ksep given by translation by (g − 1)P0. The divisor Ξ := τ∗(g−1)P0

Wg−1 of Pic0(C)ksep

is a theta divisor of Pic0(C)ksep . See [Mil86b, Theorem 6.6] for further details.

Definition 2.7.1. Let C/k be a smooth projective curve of genus g and let κC denote the canonical

divisor class of C. A theta characteristic is a divisor class ϑ ∈ Picg−1(C)(ksep) such that 2ϑ = κC .

We say that ϑ is odd if the integer h0(C, ϑ) is odd and say it is even otherwise.

Recall that we may identify JC and Pic0(C), and let Lϑ := OJC
(2τ∗ϑWg−1), where

τϑ : Pic0(C) → Picg−1(C) denotes the translation by ϑ. Then the isomorphism class of Lϑ is in-

dependent of the choice of ϑ, and there is a line bundle L0 defined over k such that (L0 ⊗k ksep) ∼=
(Lϑ ⊗k ksep). Note that if ω ∈ JC [2], then τ∗ωLϑ ∼= Lϑ and in particular we have that τ∗ωL0 ∼= L0

over ksep. We direct the reader to [Tho16, Section 1C] for verification of these details.
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Let A ∈ JC(k) and choose a B ∈ JC(ksep) such that [2]B = A. The isomorphism class of

the line bundle τ∗BL0 is independent of the choice of B, and there is a line bundle LB defined over

k such that over ksep there is an isomorphism LB ∼= τ∗BL0. Furthermore, note that L0 and LB
are isomorphic over k(B), but in general are not isomorphic over k. If A = B = 0 ∈ JC(k),

then τ∗BL0 = L0. We refer to [Tho16, Section 1C] again for details. We make use of the following

well-known fact about L0 in Section 4.4.

Lemma 2.7.2. Let B/ksep be a genus g curve with theta characteristic ϑ. Then

h0(Pic0(B),L0) = 2g.

Proof. See [BL04, Chapter IV, Section 8].

We may construct an important group from each of the line bundles considered above, which

turns out to capture important information about the arithmetic of C.

Definition 2.7.3. Let L be a line bundle on JC defined over k such that τ∗ωL ∼= L for each ω ∈
JC [2](ksep). The Heisenberg group H̃L associated to L is the k-group of pairs (φ, ω) such that

ω ∈ JC [2](ksep) and φ : L → τ∗ωL is an isomorphism of line bundles of JC .

To clarify Definition 2.7.3, we think of JC [2] as a k-group in this context. We have the exact

sequence of k-groups

0 // Gm
// H̃L // JC [2] // 0

with the last map given by the natural projection. If B ∈ JC(ksep) such that [2]B ∈ JC(k) then we

have that, over k(B), the diagram

0 // Gm
// H̃L0

//

τ∗B
��

JC [2] // 0

0 // Gm
// H̃LB

// JC [2] // 0

commutes. Heisenberg groups are explicit examples of theta groups.

Definition 2.7.4. Let C/k be a curve. A theta group of JC [2] is a central extension of k-groups

0 // Gm
// Θ // JC [2] // 0

such that the commutator pairing on Θ descends to the Weil pairing on JC [2]. A morphism of theta

groups is a morphism such that the following diagram commutes:

0 // Gm
// Θ1 //

ψ

��

JC [2] // 0

0 // Gm
// Θ2 // JC [2] // 0.
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We use the following well-known facts about theta groups of JC [2].

Proposition 2.7.5. Let C/k be a curve of genus g.

(a) Then there is a canonical identification between k-isomorphism classes of theta groups of C

and elements of H1(k, JC [2]) such that the isomorphism class of the Heisenberg group H̃L0 is

identified with the trivial cocycle.

(b) If Θ is a theta group of JC [2] and C(k) 6= ∅, there is an injective morphism of k-groups

ρ : Θ→ GL2g .

(c) Let A ∈ JC(k), and let B ∈ JC(ksep) such that [2]B = A. Let τB : JC → JC be the

translation-by-B morphism and let LB = τ∗BL. Then the cocycle class

(σ 7→ [Bσ − B]) ∈ H1(k, JC [2]) corresponds to the isomorphism class of H̃LB
, and the

isomorphism class of H̃LB
is independent of the choice of B.

Proof. Statements (a) and (b) are well-known facts about theta groups. The result for elliptic curves

can be found in [CFO+08, Section 1], and the results generalize with minimal modifications to the

proofs. We provide a summary of the details we require in Appendix A. Statement (c) can be found

in [Tho16, Section 1C].

If H̃LB
is a Heisenberg group, we can describe the morphism H̃LB

→ GL2g from Proposi-

tion 2.7.5(b) more explicitly; the natural action of H̃LB
on H0(Pic0(C),LB) induces a morphism

H̃LB
→ GL2g . Additionally, the cocycle class (σ 7→ [Bσ − B]) in the statement of Proposi-

tion 2.7.5(c) is exactly the image of A ∈ JC(k)
2JC(k) under the connecting homomorphism of the long

exact sequence in cohomology arising from the Kummer sequence

0 // JC [2] // JC
[2] // JC // 0 .

For further details, see [HS00, Section C.4].

2.8 Uniquely trigonal genus 4 curves, del Pezzo surfaces of degree 1,
and E8

2.8.1 Del Pezzo surfaces

We state some facts regarding the connection between del Pezzo surfaces and certain genus 4 curves.

Definition 2.8.1. We say that eight points P1, . . . , P8 ∈ P2(kal) are in general position if no two

are coincident, no three lie on a line, no six lie on a conic, and any cubic passing through all eight

points is non-singular at each of these points.

Lemma 2.8.2. Let P1, . . . , P8 be eight points of P2 in general position. Then the vector space of

cubic forms vanishing on P1, . . . , P8 is 2-dimensional. Moreover, if f is such a cubic form, then it

is irreducible.
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Proof. Let V be the space of cubic forms vanishing on P1, . . . , P8. Elementary linear algebra shows

that dimV ≥ 2. If u, v, w ∈ V were 3 linearly independent cubics, then with (a : b : c) = P1 and

fx(P1) := ∂f
∂x (a, b, c), we have for some non-zero (λ1, λ2, λ3) ∈ k3 that

λ1


ux(P1)
uy(P1)
uz(P1)

+ λ2


vx(P1)
vy(P1)
vz(P1)

+ λ3


wx(P1)
wy(P1)
wz(P1)

 = 0,

since the tangent vectors of Z(u), Z(v), Z(w) at P1 must be linearly dependent. In particular, the

cubic Z(λ1u + λ2v + λ3w) would pass through all 8 points and be singular at P1, violating the

general position assumption.

A reducible cubic through eight points must either have at least 3 points which lie on a linear

component or have at least 6 points lie on a conic component, neither of which is admissible.

Definition 2.8.3. A del Pezzo surface of degree 1 is a smooth projective surface which is isomorphic

over an algebraically closed field to the blow-up of P2 at 8 points in general position.

Let S/k be a del Pezzo surface of degree 1 and let κS be the canonical divisor of S. We have

that −3κS is very ample, and the model of S given by the associated linear system embeds S as a

smooth sextic hypersurface in the weighted projective space P(1 : 1 : 2 : 3) [Dol12, Section 8.3].

Conversely, any smooth sextic hypersurface in P(1 : 1 : 2 : 3) is a del Pezzo surface of degree 1. If

the characteristic of k is not equal to 2 then we can write

S : z2 = c0w
3 + c2(x, y)w2 + c4(x, y)w + c6(x, y)

with each cm homogeneous in x, y of degree m and c0 6= 0. The linear system associated to the

divisor −2κS determines a rational map S 99K P(1 : 1 : 2) of generic degree 2 which is defined

everywhere aside from the single base-point of |−2κS |. There is an order 2 automorphism of S

which exchanges the branches of this rational map called the Bertini involution. The fixed locus of

the Bertini involution is the union of a smooth irreducible curve and the isolated base-point. We call

the component which is the smooth irreducible curve the branch curve. On the model above the

Bertini involution is given by (x : y : w : z) 7→ (x : y : w : −z), and furthermore, we see that the

fixed locus of the Bertini involution is the union of the point (0 : 0 : c0 : c2
0) and the subvariety of S

where z vanishes. The vanishing locus of z has dimension 1. For details, see [Dol12, Section 8.8.2].

Proposition 2.8.4 ([Vak01, Zar08]). Let S be a del Pezzo surface of degree 1 defined over a char-

acteristic 0 field k and let ι : S → S be the Bertini involution and let C be the irreducible 1-

dimensional subvariety of the fixed locus of ι. Let O be the base point of the linear system |−2κS |.

(a) Let E be the blow-up of S at O. Then there is a morphism π : E → P1 that gives E the structure

of an elliptic surface with identity section O and such that each fibre of π is the strict transform

of a curve D on S whose associated Weil-divisor is an anti-canonical divisor of S.
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(b) We have that C is a smooth non-hyperelliptic irreducible curve of genus 4. The strict transform

of C in E is the multi-section E [2]\ idE . Moreover, the restriction of π to C is a morphism

f : C → P1 of degree 3.

(c) Denote by Sksep the base-change of S to ksep. Each exceptional curve on Sksep corresponds to

a unique class in PicSksep . Moreover, PicSksep is generated by the exceptional curves on S.

Furthermore, PicSksep is generated by a set of 8 pairwise orthogonal exceptional curves and

the canonical class.

(d) Every exceptional curve on Sksep restricts to an odd theta characteristic of C and the anti-

canonical divisor of S restricts to an even theta characteristic of C.

(e) rk Pic(S)(k)− 1 ≤ rk2 JC [2](k)

We require a minor technical lemma to describe the fibres of the elliptic surface in Proposi-

tion 2.8.4.

Lemma 2.8.5. Let S be a del Pezzo surface of degree 1 and let π : E → P1 be the elliptic surface

from Proposition 2.8.4. Then:

(a) E is smooth.

(b) The fibres of π are irreducible. Consequently, the special fibre Et has multiplicative reduction if

and only if it is isomorphic to a nodal rational curve, and it has additive reduction if and only

if it is isomorphic to a cuspidal rational curve.

(c) E is minimal over P1.

Proof. That E is smooth follows from the fact that X is smooth and Proposition 2.2.13.

Note that it suffices to prove claims (b) and (c) over an algebraically closed field. For part (b),

choose a model such that S is isomorphic to the blow-up of P2 at eight points in general position.

Let Z ⊆ P2 denote this set of eight points, let O ∈ P2(kal) be the unique point such that any

cubic passing through Z also passes through O, and let Z ′ := Z ∪ {O}. In particular, we have that

E = BlZ′P2. Since the points of Z are in general position, we have that O 6∈ Z and that any cubic

passing through the points of Z is irreducible. The blow-down of any fibre of π to P2 is a plane

cubic passing through the points of Z, so we are done by Lemma 2.8.2.

We now prove part (c). Let S be a minimal model of E over P1 and let φ : E → S be a morphism

over P1 with birational inverse. By Proposition 2.2.14 we have that φ factors over kal into monoidal

transformations. If E is an exceptional curve of one of these monoidal transformations, then φ(E)
is a single point. But φ is a morphism over P1, so the only way this is possible is if E is contained

in a fibre of π. This is a contradiction, as all of the fibres are irreducible and have self intersection

0.
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2.8.2 Uniquely trigonal genus 4 curves

We now describe the classically understood relation between the E8 lattice, del Pezzo surfaces of

degree 1, and uniquely trigonal genus 4 curves. We point out that [Tho16] relies on the analogous

connections between plane quartic curves, del Pezzo surfaces of degree 2, and the E7 lattice.

Generally, a genus 4 curve is trigonal in two different ways, and the corresponding linear sys-

tems of divisors can be found as follows. A canonical model of a non-hyperelliptic genus 4 curve

is a complete intersection of a quadric and a cubic in P3. A linear system of lines on the quadric

induces a linear system of degree 3 and dimension 1 on the curve. In the general case, the quadric

is nonsingular and has two such linear systems. In the special case where the quadric has a singular

point, there is only one such linear system. In that case the curve is trigonal in only one way.

Definition 2.8.6. Let C/k be a smooth curve of genus g. We say that C is a uniquely trigonal

curve if there is a morphism f : C → P1
k of degree 3 defined over k and if for any two morphisms

f, f ′ : Cksep → P1
ksep of degree 3, there is a τ ∈ Aut(P1

ksep) such that f = τ ◦ f ′.

Remark 2.8.7. It is impossible for a smooth curve of genus greater than 2, defined over a charac-

teristic 0 field, to be both trigonal and hyperelliptic [Vak01, Section 2.8].

Let C be the branch curve of the Bertini involution of a degree 1 del Pezzo surface S. The linear

system associated to the divisor −κS determines a rational map πS : S 99K P1 which restricts to

a degree 3 morphism fC : C −→ P1. The sections of the anti-canonical bundle of S are precisely

the fibres of πS . For details, see [Dol12, Section 8.8.3]. Theorem 2.8.8 is a compilation of classical

facts.

Theorem 2.8.8. Let C/k be a curve of genus 4 which is not hyperelliptic. Then the following are

equivalent:

(a) The curve C/ksep is a uniquely trigonal curve.

(b) The canonical model of C is the intersection of a cubic and a quadric cone in P3.

(c) There is a vanishing even theta characteristic of C. That is, there is an isomorphism class of

line bundles on Cksep such that for any member Lϑ, we have that L⊗2
ϑ is isomorphic to the

canonical bundle and h0(Cksep ,Lϑ) is a positive even integer.

(d) There is a unique vanishing even theta characteristic of C.

Furthermore, C/k is uniquely trigonal if and only if there is a del Pezzo surface S of degree 1
defined over k such that C is the branch curve of the Bertini involution on S. If k = ksep then S is

unique up to isomorphism.

Proof. Parts (a), (b), (c), and the last assertion can be found in [Vak01, Section 2.8] and [Vak01,

Proposition 3.2]. Part (c) follows trivially from part (d). To show (c) implies (d), if Lϑ1 and Lϑ2 are

two line bundles corresponding to vanishing theta characteristics, then h0(Cksep ,Lϑ1 ⊗ Lϑ2) ≥ 4.

44



The Riemann-Roch theorem shows thatLϑ1⊗Lϑ2 is equivalent to the canonical bundle, so it follows

after a simple calculation that Lϑ1
∼= Lϑ2 .

Let S/k be a del Pezzo surface of degree 1. It is a classical fact that PicSksep ∼= Z9 as a group,

and that the intersection pairing 〈·, ·〉 on S imbues PicSksep with the structure of a lattice. As the

canonical class κS is always defined over k, the sublattice

(PicSksep)⊥ := {x ∈ PicSksep : 〈x, κS〉 = 0}

is also defined over k. Moreover, it is a classical fact that (PicSksep)⊥ is isomorphic to a simply

laced lattice of Dynkin type E8. Note that the Weyl group WE8 is also the isometry group for

this lattice. Additionally, the Bertini involution of S acts on (PicSksep)⊥ via the unique nontrivial

element of the centre of WE8 . We label the elements of the centre of WE8 by ±1 and we let W+ :=
WE8/〈±1〉. For details, see [Zar08, Section 2.2].

Definition 2.8.9. A marked del Pezzo surface of degree 1 is a pair (S/k,B) with S/k a del Pezzo

surface of degree 1 and B = {e1, . . . , e8} a subset of Pic(Sksep) such that 〈ei, ei〉 = −1 for each i

and 〈ei, ej〉 = 0 for all i 6= j. We refer to the choice of subset B as a marking. A marking is Galois

invariant if the set B is Galois invariant.

If (S/k,B) is a del Pezzo surface of degree 1 with a Galois invariant marking, then there is a

Galois invariant set Z of 8 points in P2(ksep) and an isomorphism ψ : BlZP2 → S/k defined over k.

Additionally, if {e′1, . . . , e′8} are the eight exceptional curves of the blow-up, then ψ(e′1), . . . , ψ(e′8)
are effective representatives for the elements of B. We make use of the following two classical

results regarding degree 1 del Pezzo surfaces. These are analogous to the results used in [Tho16]

for degree 2 del Pezzo surfaces.

Proposition 2.8.10. Let C be the branch curve of the Bertini involution of a degree 1 del Pezzo

surface S/k and let Λ := (PicSksep)⊥. Then there is a commutative diagram of finite k-groups

Λ∨/2Λ∨
∼= // (Pic(C)/ZϑC)[2]

NC
?�

OO

∼= // Pic0(C)[2]
?�

OO

where NC is the image of
γ : Λ/2Λ → Λ∨/2Λ∨

v 7→ 〈v, ·〉

and ϑC is the divisor class of the vanishing even theta characteristic of C. In particular, there is a

canonical surjection Λ/2Λ→ Pic0(C)[2].
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Proposition 2.8.11. Let φ : Λ/2Λ→ Pic0(C)[2] be the surjection of Proposition 2.8.10. Let 〈·, ·〉2
be the natural symplectic form on Λ/2Λ induced by the form 〈·, ·〉 on the even lattice Λ and let

e2(·, ·) be the Weil pairing on Pic0(C)[2]. Then for all v1, v2 ∈ Λ/2Λ we have

〈v1, v2〉2 = e2(φv1, φv2).

For the proofs of Proposition 2.8.10 and Proposition 2.8.11, see [Zar08, Lemma 2.4], [Zar08,

Lemma 2.7], and [Zar08, Theorem 2.10]. From these propositions we see that a marking of a degree

1 del Pezzo surface determines a marking of the 2-torsion of its branch curve. Additionally, two

markings B,B′ of a del Pezzo surface S of degree 1 determine the same marking of the branch

curve if and only if ι(B) = B′, where ι is the Bertini involution. For additional details, see [Çel18,

Section 1.2.3]. Finally, we define a technical condition on uniquely trigonal genus 4 curves useful

in Chapter 4 to identify the uniquely trigonal genus 4 curves arising from del Pezzo surfaces that

are birational to P2 over k.

Definition 2.8.12. A uniquely trigonal genus 4 curve is of split type if it is the branch curve of a del

Pezzo surface of degree 1 with a Galois invariant marking.
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Chapter 3

Class groups of cubic fields

3.1 Introduction

We explicitly construct an infinite family of cubic number fields and prove in Theorem 3.3.9 that the

class group of “most” members of this family has 2-rank at least 8. To do this, we use a construction

of trigonal genus 4 curves described in Section 3.2 that allows us good control over both the 2-

torsion in the Jacobian and the ramification of the trigonal map. Finally, in Section 3.4 we consider

the situation where C is a trigonal genus 4 curve, f : C → P1
Q is a degree 3 morphism to P1

Q, and

AutQal(C/P1
Q) ∼= µ3. In this set-up, the cubic number fields defined by the fibres of f become

Galois extensions of Q(µ3) after tensoring with Q(µ3). We comment on the application of the

method in Section 3.3 to this specific case.

3.2 Del Pezzo surfaces, elliptic surfaces, and curves of genus 4: Appli-
cations

In this section, we apply the results of Section 2.8 to construct a genus 4 curve essential to the proof

of Theorem 3.3.9. We begin by providing some corollaries of Proposition 2.8.4.

Proposition 3.2.1. Let X be a degree 1 del Pezzo surface defined over a number field k, let E be the

associated elliptic surface from Proposition 2.8.4, and let f : C → P1
k be the degree 3 morphism

from Proposition 2.8.4(b). Then the ramification of f over p ∈ P1
k is classified by the reduction type

of the fibre Ep. In particular, if one of the special fibres of π : E → P1
k has additive reduction then f

has a totally ramified fibre.

Proof. Since f is defined over a number field and deg f = 3 we can determine the set of ramification

indices of points in the fibre over p by counting the number of kal-points in the fibre over p on a

smooth model of C. We can also determine the reduction type of Ep by counting the number of

kal-points in (E [2]\ idE)p. Since C is isomorphic to E [2]\ idE as a subvariety of E over P1
k and C is

smooth, these two quantities are equal for every p ∈ P1(kal).
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By using curves arising from del Pezzo surfaces we can control JC(Q)[2] via rk Pic(X)(Q); the

latter group is easier to control. To be specific, if X is the blow-up of eight (rational) points on P2 in

general position then Pic(X) is generated by the (rational) exceptional curves of the blow-up and

the canonical divisor. Proposition 2.8.4 implies that rk2 JC [2](Q) = 8, where C is the branch curve

of the Bertini involution of X . Among the curves constructed in this way, we can easily identify

those whose trigonal morphism has a totally ramified fibre.

Proposition 3.2.2. Let X be a del Pezzo surface such that rk Pic(X)(Q) = 9 and let C be the

branch curve of the Bertini involution with trigonal morphism f : C → P1. Write X := BlZP2

where Z is a collection of 8 rational points in general position. Then there is a one-to-one corre-

spondence between totally ramified points of f and cuspidal cubic plane curves through Z.

Proof. Let Y be a cuspidal cubic passing through Z, let u be a cubic form defining Y , and let

P ∈ Y be the cusp. Note the criterion that Z be in general position forces P 6∈ Z (points of Z being

in general position, there is no cubic passing through the points of Z with a singularity at one of

them).

The eight points of Z determine a pencil of cubic forms
{
λu+ µv : (µ : λ) ∈ P1}. Such a

pencil has a base locus which consists of 9 points, these being the points ofZ as well as an additional

point O. Intersection multiplicities ensure that O is not a cusp or node of any of the curves in the

pencil.

It follows that the rational map g(x, y, z) 7→ (u(x, y, z) : v(x, y, z)) is defined outside of Z∪O,

so by the universal property of blowing up there is a morphism π such that the diagram

BlZ∪OP2

π
��

φ

zz
P2 g // P1

commutes, where φ is the blow-down morphism. We have that E := BlZ∪OP2 is an elliptic sur-

face over P1 whose identity section is the exceptional curve lying over O. Note by Lemma 2.8.5

that the fibres of π : E → P1 are irreducible. Because Y is precisely the closure of the locus{
Q ∈ P2 : g(Q) = (0 : 1)

}
, the strict transform of Y is in fact a fibre of π. Since P 6∈ Z ∪ O we

have that the strict transform of Y remains singular (with a cusp) in E . Thus the fibre over (0 : 1) is

a special fibre of π : E → P1. We see that E has additive reduction at (0 : 1), so by Proposition 3.2.1

corresponds to a totally ramified point of f : C → P1.

Conversely, if Q is a totally ramified point of f : C → P1 then Proposition 3.2.1 shows it is the

cusp of a special fibre Ep whose reduction type is additive. In particularQ does not lie on φ−1(Z∪O)
so the blow-down of Ep is a cuspidal plane curve. That it is cubic follows from the fact that every

fibre of E blows down to a cubic curve.

We present here for the convenience of the reader the procedure given in [Zar08] to get explicit

equations for the branch curve. Note that in our example P2 and the del Pezzo surface X are bira-
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tional over Q, so we may identify their function fields. We have that κX = E1 + . . .+ E8 − 3H is

a canonical divisor for X , where H is the pullback of the hyperplane class on P2 and the Ei are the

8 pairwise orthogonal exceptional curves lying over the blown up points of P2. Thus,

L(−κX) = 〈u, v〉

where u, v ∈ Q[x, y, z] are cubic forms passing through the 8 base-points of the blow-up. Similarly,

we have

L(−2κX) = 〈u2, uv, v2, w〉

with w a function on X not in the k-span of
{
u2, uv, v2}. We have that L(−2κX) defines a 2-to-1

rational map ϕ : P2 → P(1 : 1 : 2) via

ϕ : (x : y : z) 7→ (u(x, y, z) : v(x, y, z) : w(x, y, z))

with a unique base-point that is O. In fact, if

X : z2 = c0w
3 + c2(u, v)w2 + c4(u, v)w + c6(u, v)

is the model of X in P(1 : 1 : 2 : 3) provided by L(−3κX) and φ : X → P(1 : 1 : 2) is the

projection onto (u : v : w), then φ and ϕ agree on X\ {O}. Since φ, and therefore ϕ, is branched

along C we can recover a model of the branch curve from a Jacobi criterion. That is,

C = Z(F ) ⊆ P2 where F := det


ux vx wx

uy vy wy

uz vz wz

 .
In general we have that C is a degree 9 plane curve with order 3 singularities at each of the eight

base-points of the blow-up (see [Zar08, Section 5]).

Remark 3.2.3. Another way to see that the eight base-points of the blow-up correspond to singular

points of Z(F ) is as follows. Let P1, . . . , P8 be the base-points of the blow-up and let E1, . . . , E8

be the corresponding exceptional curves lying over these points. For clarity, we denote by C the

model of the branch curve on P2 (i.e, C = Z(F )) and denote by C ′ the model of the branch curve

on X . The strict transform of the blow-up of C at the 8 base-points is C ′. Each exceptional curve

Ei of X corresponds to a class of PicX that restricts to an odd theta characteristic on C ′ (by

Proposition 2.8.4). As a divisor, Ei is effective, so it will restrict to an effective (degree 3) divisor

of C ′. However, each Ei intersects C ′ in three points (counting multiplicity) which lie over a single

point Pi of C. We see that C has a singularity of order 3 at Pi.

In other words, once we have computed a model of the branch curve on P2 we can immediately

identify effective representatives of 8 odd theta characteristics ofC ′. Additionally, the anti-canonical

divisor of X provides us with an even theta characteristic of C by Proposition 2.8.4.
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Example 3.2.4. Let X be the del Pezzo surface defined by blowing up P2 at the points

(0 : −2 : 1), (3 : −9 : 1), (3 : 7 : 1), (8 : 26 : 1),

(15 : 63 : 1), (24 : 124 : 1), (48 : 342 : 1), (0 : 0 : 1).

We choose u, v ∈ Q[x, y, z] to be two independent cubic forms vanishing at all 8 points. For con-

venience, we choose u to be the form (x+ z)3 − (y + z)2z and we choose

v := 79846x3 − 41034x2y − 431517x2z + 6971xy2 + 145213xyz

+ 384942xz2 − 389y3 − 12596y2z − 23636yz2.

We let1 w be a sextic form with double roots at each of the points listed above; we further require

that w is not in the span of
{
u2, uv, v2}. Note that L(−2κX) is spanned by u2, uv, v2, w. Thus the

zero-locus of

F := det


ux vx wx

uy vy wy

uz vz wz


is a (singular) model of the branch curve of X . With ϕ(x, y, z) := (u : v : w) as before, we let

t := u/v and W := w. Using the MAGMA [BCP97] computer algebra package we can compute

the image of C under ϕ and write the defining equation in terms of t,W [Kul16]. We have that

C : 0 = 23200074887895098984232713028 t6 − 2457892462046662336694429 t5+

1338378986926042827721/16 t4 − 9000960055643209/8 t3+

158059424789/16 t2 + 11025 t

+W (24403582287284966245 t4 − 13786310912398097/8 t3+

234505995159/8 t2 − 316801/4 t)

+W 2(136902207241/16 t2 − 1208223/4 t)

+W 3

is an affine model for the branch curve of X . The morphism induced by the projection (t,W ) 7→ t

is the degree 3 morphism f : C → P1
k from Proposition 2.8.4(b). Our choice of u, via Proposi-

tion 3.2.2, ensures that there is a totally ramified fibre at t = 0. We may view the fibres of f as

effective degree 3 divisors of C. By the discussion above and Proposition 2.8.4(d), we see that the

divisor class of the fibre at t = 0 (and hence any fibre of f ) is an even theta characteristic. We use

the representatives of the theta characteristics to compute data presented in Example 3.3.4.

1To compute the explicit model of the branch curve C, we also make an explicit choice of w in [Kul16]. However, the
expression for w is too cumbersome to print.
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3.3 Recovering large class groups from curves with large rational 2-
torsion

We fix some notation to be used for the remainder of this section. Using the procedure in the pre-

vious section we may choose a trigonal morphism f : C → P1
Q with C a genus 4 curve such that

rk2 JC [2](Q) = 8 and let P0 be a rational totally ramified point of f . Denote p0 := f(P0). Let S be

the places of bad reduction for C/Q as well as the archimedean places and places extending |·|2.

Conveniently, the Abel-Jacobi map with base-point P0 provides an embedding of C into its

Jacobian. This map, which we denote by j, is defined over Q and is given by j(Q) := [Q− P0]. In

particular, j(P0) is the identity point of JC .

Corollary 2.11 of [GL12], with our explicit choice of f : C → P1
Q, gives that for all but O(

√
N)

of the t in {1, . . . , N} that [Q(Pt) : Q] = 3 and

rk2 Cl(Q(Pt)) ≥ 8 + #S − rkO∗Q(Pt),S

where S is the set of bad primes for C together with the archimedean primes and those dividing 2,

Pt := f−1(t), andO∗Q(Pt),S is the group of S-units in the number field Q(Pt). By applying the ideas

of [Mes83] to the curves arising from our construction it is possible to avoid the penalty on the bound

introduced by S-units. The overarching idea of the method we use is to directly exhibit a subfield

of the Hilbert class field of Q(P ), where [Q(P ) : Q] = 3 and f(P ) ∈ P1(Q), for P ∈ C(Qal)
which lie in fibres that satisfy a local condition at finitely many places, thereby demonstrating that

the class groups of the fields associated to these fibres have large 2-rank. Bilu and Gillibert have

provided a generalized description of this framework in [BG18]. Nevertheless, we provide proofs

as our computations closely mirror the arguments.

The main idea introduced by [Mes83] is to use the fact that the fibres of the multiplication-by-2
morphism of the Jacobian of a curve C are precisely described. Specifically:

Lemma 3.3.1. Let K be a number field, let x ∈ JC(K) be a closed point of degree [K : Q] on JC
(i.e, x ∼= SpecK) such that the fibre of [2] : JC → JC over x is irreducible over K. Let L be the

residue field of [2]−1(x). If JC [2](Q) ∼= (Z/2)2g, then L/K is Galois with Galois group (Z/2)2g

and there is a fixed finite set of places S of K, independent of L, such that L/K is unramified

outside of S.

In fact, we can say even more; the ramification at the bad places is explicitly described by Propo-

sition 2.4.7. (To loosely paraphrase Proposition 2.4.7, that we can give a criteria for the extension

k([2]−1x)/k to be unramified over the places in S in terms of the values of 2g explicitly computable

functions h1, . . . , h2g at x.)

In what follows we devote ourselves to ensuring the conditions of Proposition 2.4.7 are met. We

will need to apply Proposition 2.4.7 to points on C defined over different cubic number fields. As

these number fields vary, so too does the set of places S̃ extending the places of Q of bad reduction.

We will use the totally ramified point of f : C → P1 to accommodate for this variation.
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Fix a basis T1, . . . , T8 for JC [2] and rational functions h1, . . . , h8 corresponding to the modified

Kummer pairing – see Section 2.4.1 and Remark 2.4.6. We note that once we find divisors represent-

ing T1, . . . , T8, we can write down each hi explicitly, and up to changing the divisors representing

the Ti we can assume that each hi is regular at P0.

At this point it is helpful to let t ∈ k(C) be the function field element corresponding to f . Note

that if C is the curve from Example 3.2.4 then this assignment agrees with the assignment of t from

that example. Let α be a uniformizing element for OC,P0 . Then the image of P 7→ (t(P ), α(P )) is

an affine plane model of C which is non-singular at P0. In other words:

Lemma 3.3.2. We may compute an affine plane model Caff of C such that:

(A) the morphism
f : Caff → P1

Q
(t,W ) 7→ (t : 1)

extends to the trigonal morphism f : C → P1
Q, and

(B) there is a regular point (0, 0) ∈ Caff(Q) which is identified with P0.

For convenience we will denote

‖(x1, y1)− (x2, y2)‖w := max {|x1 − x2|w , |y1 − y2|w}

for a place w of a number field K and points (x1, y1), (x2, y2) ∈ A2(K). Similarly, for

p0 = (0 : 1) ∈ P1(K) and q = (a : b) ∈ P1(K), we denote

|q − p0|w :=


∣∣a
b

∣∣
w

if q 6= (1, 0)

∞ otherwise
.

Lemma 3.3.3. Fix an affine plane model Caff ⊆ A2
Q of C with properties (A) and (B) from

Lemma 3.3.2. Let ν ∈ S be a finite place. Then there is a constant `ν (dependent on Caff) such

that the following statement holds:

If q ∈ P1(Q) satisfies |q − p0|ν < `ν , then
∣∣∣ hi(Q)
hi(P0) − 1

∣∣∣
w
< 1 for every Q ∈ f−1(q)(Qal), for

every i ∈ {1, . . . , 8}, and for each w a place of Q(Q) extending ν.

Proof. As each hi is a rational function on C with coefficients in Q and regular at P0, we see that

there is a constant λ depending only on the affine plane model of C such that for any place w of a

number field K/Q we have that

Q ∈ C(K) ∩ A2(K) and ‖Q− P0‖w < λ =⇒
∣∣∣∣ hi(Q)
hi(P0) − 1

∣∣∣∣
w

< 1

for each 1 ≤ i ≤ 8. One way to see this is to write hi ∈ OC,P0 as a power series in the uniformizer

α.

52



Let ν ∈ S and let

Caff : 0 = W 3 + a(t)W 2 + b(t)W + c(t)

be the affine plane model which is the image of P 7→ (t(P ), α(P )), where we may assume that P0

maps to the origin and t(P0) = 0. Since the fibre over t(P0) contains a unique point and P0 is a

non-singular point of the model, we may rewrite our model as

Caff : 0 = W 3 + ta(t)W 2 + tb(t)W + tc(t)

with a(t), b(t), c(t) regular at P0. By taking |t1|ν less than λ and sufficiently small in terms of the

coefficients of a(t), b(t), c(t) we see that the slopes of the Newton polygon of

0 = W 3 + t1a(t1)W 2 + t1b(t1)W + t1c(t1)

will all be at least −1
3 logp λ. In particular, all of the roots have ‖βi‖w < λ for every place w of

Q(Q) extending ν. So each ‖(t1, βi)− (0, 0)‖w < λ and we are done.

Example 3.3.4. We provide a MAGMA script, available at [Kul16], which shows how to explicitly

compute an appropriate `ν to apply Lemma 3.3.3 to Example 3.2.4. Note that the defining equation

for Caff has integral coefficients up to powers of 2.

In characteristic greater than 5, the branch curve of any degree 1 del Pezzo surface is smooth

(cf. the proof of [Vak01, Proposition 3.2]). Thus, any prime p for which the reductions of the 8 base

points (considered as points of P2
Fp

) remain in general position is a prime of good reduction for C.

Using MAGMA we can compute that the primes of bad reduction for C are contained in

S′ := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 61, 71,

83, 103, 107, 179, 223, 241, 389, 449, 599, 809, 1019}.

Recall from Example 3.2.4 that the effective degree 3 divisor of Caff given by the places of k(Caff)
over t = ∞ is a representative of an even theta characteristic of C; we call this divisor OE . The

function associated to the divisor [Θ1 − OE ], with Θ1 the divisor corresponding to the places of

k(Caff) over (3 : 7 : 1), is given on the affine model (up to a square constant) by

h(t,W ) := − 484335370397555869540982096 t2 + 21745428828566997697489 t−

184765518741585604 W + 22709411000816400

(recall that Caff is defined via the blow-up of a singular plane curve). One can apply the explicit

method of Lemma 3.3.3 to find the required sufficiently small constants. These are listed below.
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Place − logp `p
2 33
3 21
5 21
7 21
11 5
13 5
17 1
19 5
23 9
29 1
31 5
37 1
41 1
43 5
47 1

Place − logp `p
59 1
61 1
71 1
83 1
103 1
107 1
179 5
223 1
241 1
389 1
449 5
599 5
809 5
1019 1

Lemma 3.3.5. Fix an affine plane model Caff ⊆ A2
Q of C with properties (A) and (B) from

Lemma 3.3.2. Let ν ∈ S be an archimedean place, let q ∈ P1(Q), and let Q ∈ f−1(q)(Qal).

Then there is a constant `ν (dependent on Caff) such that

|q − p0|ν < `ν =⇒
∣∣∣∣ hi(Q)
hi(P0) − 1

∣∣∣∣
w

< 1

for each w a place of Q(Q) extending ν.

Proof. The place w determines an embedding Caff(Q(Q)) ↪−→ Caff(C). On the complex points we

have that the functions

|hi| : Caff(C)→ R

are continuous and positive in a small neighbourhood U around P0. Since P0 is a totally ramified

point of f it follows that the pullback of a small interval B containing p will be contained in U .

Since the embedding of P0 into Caff(C) does not depend on w we see that U andB are independent

of w as well.

We will use the result of Bilu and Gillibert, based on a result of Dvornicich and Zannier [DZ94]

and Hilbert’s Irreducibility Theorem, to ensure that there are infinitely many non-isomorphic cu-

bic number fields in the family we have constructed. Here, we have specialized the statement of

[BG18, Theorem 3.1] to the particular case where the number field in question is Q. We follow the

terminology of [BG18].
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Definition 3.3.6. We call 0 ⊆ Q a basic thin subset of Q if there exists a smooth geometrically

irreducible curve C defined over Q and a non-constant rational function u ∈ K(C) of degree at

least 2 such that 0 ⊆ u(C(Q)). A thin subset of Q is a union of finitely many basic thin subsets.

Remark 3.3.7. Let f : C → P1
Q be a morphism of degree d greater than 1. The set of α ∈ Q such

that Q(Pt) is not a number field of degree d over Q, where Pt = f−1(α : 1), is a thin subset of Q
[BG18, Proposition 3.5].

Theorem 3.3.8 ([BG18, Theorem 3.1]). Let C be a curve over Q and let t : C → P1 be a non-

constant morphism with deg t > 1. Let S be a finite set of places of Q possibly containing the

archimedean place. Further, let 0 < ε ≤ 1/2 and let 0 be a thin subset of Q. Then there exist

positive numbers c = c(Q, C, t, S, ε) and B0 = B0(Q, C, t, S, ε,0) such that for every B ≥ B0 the

following holds. Consider the points P ∈ C(Qal) satisfying

t(P ) ∈ Q\0,

|t(P )|ν < ε (ν ∈ S),

H(t(P )) ≤ B.

Then among the number fields Q(P ), where P satisfies the conditions above, there are at least

cB/ logB distinct fields of degree d over Q.

Theorem 3.3.9. Let C be the curve from Example 3.3.4, let f : C → P1
k be the trigonal mor-

phism from Example 3.2.4, and S′ the finite set of places from Example 3.3.4 together with the

archimedean place. By Lemma 3.3.3 and Lemma 3.3.5 choose constants `ν for each ν ∈ S′. Let

ε = min{{`ν : ν ∈ S′}, 1/2}.

Let T := {t1, . . . , tr} enumerate the points of A1(Q) of height less than B which satisfy

|ti|ν < ε for each ν ∈ S′, and let Pti := f−1(ti) be the corresponding fibres. Then aside from a thin

set of exceptions, we have that Q(Pti) is a cubic extension of Q with rk2 Cl(Q(Pti))[2] ≥ 8. More-

over, letting η(B) be the number of isomorphism classes of number fields in the set {Q(Pt) : t ∈ T},
we have that η(B)� B

logB .

Proof. LetX := [2]−1C be the (irreducible) unramified degree 28 cover ofC obtained from pulling

back C along [2] in JC . By applying Remark 3.3.7 to the composition g : X [2]−→ C
f−→ P1 we see,

aside from a thin set of exceptions 0, that Q(g−1(t)) is a degree 28 · 3 extension of Q. In particular

Q(Pt) := Q(f−1(t)) is a cubic extension of Q and Q([2]−1(Pt))/Q(Pt) is a degree 28 field exten-

sion. Additionally, the number of isomorphism classes of cubic number fields in {Q(Pt) : t ∈ T} is

an immediate consequence of Theorem 3.3.8.

For the remainder of the argument fix such a t ∈ T and denote [2]−1Pt := SpecK. By Proposi-

tion 2.4.3 we see that the extension K/Q(Pt) is unramified outside of places extending those in S′.

Moreover, K/Q(Pt) is Galois with Galois group (Z/2)8 by Lemma 3.3.1.
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By Lemma 3.3.3 we have chosen `ν for each finite ν ∈ S′ such that whenever |t − p0|ν < `ν

we have

|hi([Pt − P0])− 1|w < 1

for every place of Q(Pt) extending ν. But ordw hi([Pt − P0]) = 0, so by Proposition 2.4.7 we

conclude that K/Q(Pt) is unramified at every finite place of Q(Pt). To ensure that these extensions

are unramified at the archimedean places we apply Lemma 3.3.5. By Theorem 2.3.16 we conclude

that rk2 Cl(Q(Pt))[2] ≥ 8.

Remark 3.3.10. We see that we obtain an improvement of the bound presented in [GL12]. The

quantity rkO∗Q(P ),S′ −#S′ which occurs in their estimate is minimized at
[

deg f−1
2

]
= 1, giving a

lower bound of 7 for the 2-rank of the class groups in a family.

3.4 Families of Galois cubic fields from genus 4 curves

In Section 3.3 we obtained families of cubic number fields whose class groups have high 2-rank

from genus 4 curves. It is natural to ask if we can modify our construction to create families of

cubic number fields that have class groups with large 2-rank with additional structural properties.

For instance, we could attempt to construct an infinite family of cubic number fields {Kj : j ∈ N}
such that rk2 Cl(Kj)[2] ≥ r and such that Kj(ζ3)/Q(ζ3) is a Galois extension.

In comparison with Section 3.3, a natural strategy would be to attempt to construct a curve with

an affine plane model of the form w3 = f(t) whose Jacobian variety has r rational 2-torsion points,

thereby giving rise to a family of cubic number fields that become Galois after adjoining a primitive

third root of unity and have a class group with 2-rank at least r. However, the condition that the curve

C of genus 4 admits a µ3-automorphism imposes a non-trivial upper bound on r = rk2 JC [2](Q).

More precisely, we prove Proposition 3.4.2, which shows that it is impossible to find genus 4 curves

which are a µ3-cover of P1
Q with fully rational 2-torsion.

Definition 3.4.1. We say that a curve C is a µ3-cover of P1
Q if there exists a (possibly singular)

affine plane model for C of the form w3 = f(t) with f(t) ∈ Q(t) non-constant. In general, we

say that a morphism of curves π : C → B defined over Q is a µ3-cover if there is a non-constant

f(t) ∈ Q(B) such that Q(C) = (π∗Q(B))( 3√f).

To clarify Definition 3.4.1, we use the term cover to refer to branched coverings as well.

Proposition 3.4.2. Let C/Q be a µ3-cover of P1
Q of genus 4. Then rk2 JC [2](Q) ≤ 6.

Notice that for curves satisfying the hypotheses of Proposition 3.4.2 that Galois acts both on the

[2]-torsion of C and on Aut(C/P1
Q) ∼= µ3. In order to prove the proposition we need to assemble

all of these group actions together in a nice way.
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Lemma 3.4.3. Let π : C → B be a µ3-covering of curves defined over Q and let g(C) be the genus

of C. Let ρ : Gal(Qal/Q)→ Sp(2g(C),F2) be the representation of Galois arising from the action

of Gal(Qal/Q) on JC [2] and define the action of τ ∈ Gal(Qal/Q) on g ∈ Sp(2g(C),F2) by

τg := ρ(τ)gρ(τ)−1.

Then the representation ψ : Aut(C/B) → Sp(2g(C),F2) corresponding to the action of

Aut(C/B) on divisor classes commutes with the action by Galois, meaning that

ψ(τσ) = ρ(τ)ψ(σ)ρ(τ)−1

for all τ ∈ Gal(Qal/Q) and σ ∈ Aut(C/B).

Proof. Since π is a µ3-cover defined over Q, there is an f ∈ Q(B) such that Q(C) = Q(B)( 3√f)
and such that for some σ generating Aut(C/B) we have that σ∗ acts on 3√f by multiplication by

ζ3. Let Γ ⊆ P1 ×B be the possibly singular model of C given by the image of

φ : P 7→ ( 3
√
f(P ), π(P )).

Conveniently, σ is explicitly described on points of Γ as σ : (w, t) 7→ (ζ3w, t). We see that (τσ)P =
(τστ−1)P for every Qal-point P of Γ, so τσ and τστ−1 have the same action on the divisors of

Γ. Let ∆ be the singular locus of Γ. By [HS00, Lemma A.2.3.1] every divisor on C is linearly

equivalent to a divisor D′ =
∑
P∈C(Qal) nPP such that nP = 0 for each P ∈ φ−1(∆)(Qal). It

follows that the actions of τσ and τστ−1 on Pic(C)(Qal), and in particular on Pic(C)(Qal)[2] are

equal.

Lemma 3.4.4. Let π : C → B be a µ3-branched cover of curves defined over Q with g(C) > 1.

Then

(i) rk2 JC [2](Q) < 2g(C).

(ii) If in addition B has genus 0, then rk2 JC [2](Q) ≤ log2
22g(C)+2

3 .

Proof. (i) Let σ be a non-trivial element of Aut(C/B) and let D ∈ JC [2](Q). Note that the

image of π∗ : JB[2] → JC [2] consists of exactly the 2-torsion classes fixed by σ. Indeed if D

is σ-stable then

D = [3]D = D + σD + σ2D ∈ π∗(JB).

Since the genus of C is greater than 1, we have that g(B) < g(C) and hence that π∗ is not

surjective. Thus we either have rk2 JC [2](Q) < 2g(C) or we can find a D ∈ JC [2](Q) which

is not σ-invariant. But now, if τ is complex conjugation and ρ : Gal(Qal/Q) → Sp(8,F2) is

the representation of Galois acting on JC [2], we have

ρ(τ)σ(D) = ρ(τ)σρ(τ)−1(D) = τσ(D) = σ−1(D) 6= σ(D)
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so JC [2] is not fully rational.

(ii) Let D be a non-trivial 2-torsion class of JC [2]. We see from the calculation in part (i) that if

B = P1
Q then D cannot be fixed by σ. Since D is not σ-stable it follows by the argument in

part (i) that at most one of D,σD, σ2D is rational. The quantity 22g(C)+2
3 is the number of

〈σ〉-orbits in JC [2].

Proposition 3.4.2 follows immediately from Lemma 3.4.4. We note that it is possible to construct

a genus 4 curve C/Q which is a µ3-branched cover of another curve B and has rk2 JC [2](Q) = 6
using del Pezzo surfaces. The eight points

(0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (1 : ζ3 : ζ2
3 ),

(1 : ζ2
3 : ζ3), (3 : 4 : 5), (3 : 4ζ3 : 5ζ2

3 ), (3 : 4ζ2
3 : 5ζ3)

are in general position, invariant under a linear µ3 automorphism of P2, and have six distinct Galois

orbits. Consequently, the associated genus 4 curve C is defined over Q and has µ3 ⊆ Aut(C) and

rk2 JC [2](Q) = 6. However, C/µ3 is not isomorphic to P1.

In [Kul18a] the question of whether there exists a curve C/Q that is µ3-cover of P1
Q of genus 4

with rk2 JC [2](Q) = 6 was left open. It turns out that such a curve does not exist.

Proposition 3.4.5. If C is a µ3-cover of P1
Q of genus 4 then rk2 JC [2](R) ≤ 4. Moreover, the curve

C ′ : X3 − t6 + 165
23 t

5 − 14883
26 t4 + 805255

29 t3 − 43923
29 t2 − 118372485

212 t+ 7134076147
217

is a µ3-cover of P1
Q of genus 4 with rk2 JC′ [2](Q) = 4.

Proof. Let C be a µ3-cover of P1
Q , let σ : C → C be a non-trivial element of Aut(C/P1

Q), let

H ⊆ Sp(8,F2) be the subgroup generated by the action of σ on JC [2], and let τ ∈ Sp(8,F2) be the

element determined by the action of complex conjugation on JC [2]. By the proof of Lemma 3.4.4,

we have that JC [2](Qal)H is trivial. By Lemma 3.4.3, we have that τστ−1 = σ−1.

By our computations in the MAGMA script [Kul18b], there is exactly one subgroup

H ⊆ Sp(8,F2) up to conjugation such that #H = 3 and such that JC [2](Qal)H is trivial. Thus,

we may assume that H is some explicit representative of this conjugacy class. By further com-

putations in [Kul18b], if τ ∈ Sp(8,F2) is an element of order 2 such that τστ−1 = σ−1, then

rk2 JC(Qal)〈τ〉 ≤ 4. This completes the first part of the claim.

Consider the del Pezzo surface of degree 1 defined by the zero locus of the weighted sextic

S : Z2 = X3−t6+165
23 t

5s−14883
26 t4s2+805255

29 t3s3−43923
29 t2s4−118372485

212 ts5+7134076147
217 s6
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in P(1 : 1 : 2 : 3). Let si : P1 → X , where

s1 : (s : t) 7→
(
s: t : 32

1323 t
2 − 220

1323 ts+ 5324
1323s

2 : 704
9261 t

2s− 4840
9261 ts

2 + 150403
18522 s

3
)
,

s2 : (s : t) 7→
(
s: t : 176

1323 t
2 + 176

1323 ts−
1210
1323s

2 : 64
1323 t

3 + 704
9261 t

2s− 4840
9261 ts

2 + 1331
18522s

3
)
,

s3 : (s : t) 7→
(
s: t : 176

1323 t
2 − 2596

1323 ts+ 33275
5292 s

2 : 64
1323 t

3 − 9944
9261 t

2s+ 68365
9261 ts

2 − 389983
24696 s

3
)
,

s4 : (s : t) 7→
(
s: t : 32

1323 t
2 − 220

1323 ts+ 968
1323s

2 : − 968
3087 ts

2 + 6655
6174s

3
)
,

and let Di := Im(si) be an effective divisor on S. Our computations in [Kul18b] verify that each si
is a well-defined morphism and that

rank


〈D1, D1〉 . . . 〈D1, D4〉 〈D1, κS〉

...
. . .

... . . .

〈D4, D1〉 . . . 〈D4, D4〉 〈D4, κS〉
〈κS , D1〉 . . . 〈κS , D4〉 〈κS , κS〉

 = 5,

where 〈·, ·〉 denotes the intersection pairing on S. We have that C ′ is the branch curve of the Bertini

involution of S, so by Proposition 2.8.4 we have that rk2 JC′ [2](Q) ≥ 4.

Remark 3.4.6. To construct the curve C ′ and the maps si appearing in the proof of

Proposition 3.4.5, we adapted the script http://www.cecm.sfu.ca/~nbruin/c3xc3/

equations.m accompanying [BFT14]. Since only the explicit equations for C ′ and s1, . . . , s4

are important for the proof of Proposition 3.4.5, we will not elaborate on these details.
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Chapter 4

On the arithmetic of uniquely trigonal
genus 4 curves and stable involutions of
E8

4.1 Introduction

In this chapter, we construct an assignment of the elements of JC(k)/2JC(k) to the orbits of an

algebraic group when C/k is a uniquely trigonal genus 4 curve with some additional data using

techniques from Vinberg theory. The technical statements of our results appear in Section 4.1.2.

Unlike [Tho16], our results Theorem 4.1.2-e8, Theorem 4.1.3-e8, Theorem 4.1.4-e8 are expressed

purely in terms of the pointed genus 4 curve in the hypotheses, and we do not require the extra data

of a tangent vector at the marked point. This is due to the slight modification of [Tho16, Theorem

1.10] given in Section 2.6.8. Having established the results of Section 2.8, we obtain our results by

following the method of [Tho16]. We also reorganize the argument in [Tho16] to emphasize the

generality of the method. Our eventual goal is to obtain a result in the style of [BG13] and [RT17];

namely, to calculate an upper bound for the average1 rank of JC(k) as C varies over the uniquely

trigonal genus 4 curves. We hope that this will be a topic of future study.

Remark 4.1.1. The family of affine plane curves in [RT17, Tho13] given by

y3 = x5 + y(c2x
3 + c8x

2 + c14x+ c20) + c12x
3 + c18x

2 + c24x+ c30 (?)

is in fact a family of uniquely trigonal genus 4 curves. We point out that our construction treats a

more general curve as the trigonal morphism π : (y, x)→ (x : 1) will always have a totally ramified

fibre over the point at infinity for any curve of the form (?). Our procedure identifies how the family

considered in [RT17, Tho13] connects to the general case. Specifically, the family of pairs (C,P )
with C a curve in (?) and P the totally ramified point on C at infinity is treated in the e8 case

1In a natural well-defined sense. c.f. [BG13].
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of our argument. Moreover, if C/k is a uniquely trigonal curve of split type of the form (?), our

results augment [Tho13, Theorem 4.14]2 by constructing an orbit for every class in JC(k)/2JC(k),

as opposed to just those classes in the image of the Abel-Jacobi map, i.e, those classes relevant to a

two-cover descent.

We now describe the layout of this chapter. We fix some further notation in Subsection 4.1.1

specific to this chapter. Our main results are stated in Subsection 4.1.2. In Section 4.2 we give a

brief summary of the techniques introduced in [Tho16]. In Section 4.3 we prove Theorem 4.1.2.

Finally, we prove Theorem 4.1.3 and Theorem 4.1.4 in Section 4.4.

4.1.1 Notation and conventions

We denote the moduli functor for smooth uniquely trigonal genus 4 curves by T4. We denote the

moduli functor for smooth uniquely trigonal genus 4 curves, together with a marked ramification

point, simple ramification point, or totally ramified point by T ram
4 , T s.ram

4 , or T t.ram
4 respectively.

We denote the sub-functor for smooth uniquely trigonal genus 4 curves of split type, together with

a marked ramification point, simple ramification point, or totally ramified point by U ram
4 , U s.ram

4 , or

U t.ram
4 respectively.

We denote the moduli functor for smooth genus 3 curves by M3, and the moduli functor for

pointed smooth genus 3 curves by M1
3. i.e, M1

3 is the moduli functor of smooth genus 3 curves

together with a marked point. If F is one of the aforementioned moduli functors of curves then

we denote by F(2) the moduli functor of curves parametrized by F with marked 2-torsion of their

Jacobian variety.

4.1.2 Statement of our main results

LetC/k be a uniquely trigonal genus 4 curve and let P ∈ C(k) be a ramification point of the unique

(up to PGL2) morphism π : C → P1 of degree 3. We split our analysis into two cases:

Case E8: The ramification index of P with respect to π is 2 (the generic case, where P is a simple

ramification point).

Case e8: The ramification index of P with respect to π is 3 (P is a totally ramified point of π).

As in [Tho16], the names indicate the affine algebraic group or Lie algebra used to construct the

appropriate orbit spaces. We prove the direct analogues of Thorne’s results.

2A restatement of [Tho13, Theorem 4.14] applied specifically to the family (?) appears as [RT17, Theorem 2.10].
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Theorem 4.1.2.

E8 : If k = ksep, then there is a bijection

T s.ram
4 (k)→ (T rss//WT )(k)

with Λ the root lattice of type E8 and T = Hom(Λ,Gm) the split torus of rank 8.

e8 : If k = ksep, then there is a bijection

T t.ram
4 (k)→ (Ptrss//WT )(k)

with t the Lie algebra of the torus T .

Theorem 4.1.2 was actually known in the theory of surface singularities, and was in fact known

to A. Coble (see [DO88, Chapter VII]) and other classical algebraic geometers. We provide a proof

of Theorem 4.1.2 since the argument we use is closely related to the assignment we ultimately

consider.

Theorem 4.1.3.

E8 : LetH be the split group of typeE8 over k, let θ be an involution ofH satisfying the conditions

of Proposition 2.6.56, and let X := (Hθ(h)=h−1)◦ be the theta inverted subvariety. Let G :=
(Hθ)◦. Let Xrss be the open subset of regular semi-simple elements. Then the assignment

(C,P ) 7→ κC of Theorem 4.1.2-E8 determines a map

U s.ram
4 (k)→ G(k)\Xrss(k).

If k = ksep, then this map is a bijection.

e8 : Let H be as above, let X := hdθ=−1 be the Lie algebra of (Hθ(h)=h−1)◦, and let Xrss be the

open subset of regular semi-simple elements. Then the assignment (C,P ) 7→ κC of Theorem

4.1.2-e8 determines a map

U t.ram
4 (k)→ G(k)\PXrss(k).

If k = ksep, then this map is a bijection.

Theorem 4.1.4.

E8 : Fix an x = (C,P ) ∈ U s.ram
4 (k) and by abuse of notation we denote by x the image of (C,P )

in T//WT . Let π : X → X//G denote the natural quotient map, whereX,G are as in Theorem

4.1.3-E8. Note that X//G is canonically isomorphic to T//WT . Let Xx be the fibre of π over

x and let Jx = JC . Then there is a canonical injective map

Jx(k)
2Jx(k) ↪−→ G(k)\Xx(k).
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e8 : Fix an x = (C,P ) ∈ U t.ram
4 (k) and by abuse of notation we denote by x the image of (C,P )

in Pt//WT . Let π : PX → PX//G denote the natural quotient map, where X,G are as in

Theorem 4.1.3-e8. Let PXx be the fibre of π over x and let Jx = JC . Then there is a canonical

injective map
Jx(k)
2Jx(k) ↪−→ G(k)\PXx(k).

Remark 4.1.5. In [Tho13, Theorem 4.14], Thorne shows that the mapping U t.ram
4 (k) ↪−→

G(k)\PXrss(k) of Theorem 4.1.3-e8 extends to a map T t.ram
4 (k) ↪−→ G(k)\PXrss(k). However,

this does not allow us to strengthen Theorem 4.1.4-e8 as our construction of orbits depends on the

“split type” condition.

4.2 A summary of Thorne’s construction of orbits

In this section, we give a summary of Thorne’s construction of orbits since we will ultimately be

following the same overarching strategy. The identification of pointed plane quartic curves (C,P )
to orbits is split into four cases depending on the properties of the tangent line at P to the curve C.

These are:

Case E7: The tangent line to P meets C at exactly 3 points (the generic case).

Case e7: The tangent line to P meets C at exactly 2 points, with contact order 3 at P (i.e P is a

flex).

Case E6: The tangent line to P meets C at exactly 2 points, with contact order 2 at P (i.e P lies

on a bitangent).

Case e6: The tangent line to P meets C at exactly 1 point, with contact order 4 (i.e P is a hyper-

flex)

The name of each case refers to the simple affine algebraic group, or simple Lie algebra used to

construct the orbit space which parametrizes points of the noted type on plane quartic curves.

For simplicity we describe the argument of [Tho16] for the E7 case only, but we note that

the other cases are treated similarly. The argument is guided along three milestone theorems. We

list these as Theorem 4.2.1, Theorem 4.2.2, and Theorem 4.2.3 and outline the arguments used in

proving them. Let S be the subfunctor of M1
3 parameterizing non-hyperelliptic pointed genus 3

curves, whose marked point P in the canonical model is not a flex and does not lie on a bitangent.

Theorem 4.2.1 ([Tho16, Theorem 3.4]). If k = ksep, then there is a bijection

S(k)→ (T rss//WT )(k)

with Λ the root lattice of type E7 and T = Hom(Λ,Gm) the split torus of rank 7.
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Theorem 4.2.1 is a reformulation of some results of [Loo93]. The result is established by using a

connection between non-hyperelliptic genus 4 curves and del Pezzo surfaces of degree 2. Theorem

4.2.1 or [Loo93, Proposition 1.8] shows that S(2) is naturally isomorphic to an open subset of a rank

7 (= dimM1
3) torus. This isomorphism arises from the relationship between smooth plane quartics

and del Pezzo surfaces of degree 2. Namely, every del Pezzo surface of degree 2 is a double cover

of P2 branched along a smooth plane quartic, and every smooth plane quartic arises in this way. The

result in [Loo93, Proposition 1.8] shows that the additional data of an anti-canonical section of a

degree 2 del Pezzo surface corresponds (generically) to the data of a point on the associated plane

quartic.

Thorne then takes advantage of the fact that del Pezzo surfaces of degree 2 have a strong con-

nection to split adjoint simple groups of typeE7 and uses classical results on affine algebraic groups

to strengthen Theorem 4.2.1 to Theorem 4.2.2 below. In particular, [Tho16, Theorem 1.11] gives

an isomorphism T rss//WT
∼= Xrss//G, and [Tho16, Section 2] provides a construction of the larger

algebraic group using a root datum and auxiliary data. The final step of this argument is to show

that this extra abstract data is supplied by the choice of plane quartic and point.

Theorem 4.2.2 ([Tho16, Theorem 3.5]). Let H be the split adjoint simple group of type E7

over k, let θ be an involution of H satisfying the conditions of Proposition 2.6.56, and let

X := (Hθ(h)=h−1)◦ be the theta inverted subvariety. Let G := (Hθ)◦. Let Xrss be the open subset

of regular semi-simple elements. Then the assignment (C,P ) 7→ κC of Theorem 4.2.1 determines a

map

S(k)→ G(k)\Xrss(k).

Finally, Theorem 4.2.2 is twisted to become Theorem 4.2.3. The auxiliary data provided by

a plane quartic and point (C,P ) in the proof of Theorem 4.2.2 depends on a chosen translate of

2Wg−1, where Wg−1 is a theta divisor of JC . In turn, for a fixed curve C, the choices of non-

equivalent translates of 2Wg−1 over a field k are parametrized by the choices of [D] ∈ JC(k)
2JC(k) . In

Theorem 4.2.2 this choice can be made systematically among all pointed plane quartics since JC(k)
2JC(k)

always contains the trivial class3. However, for a fixed pointed curve (C,P ) there are potentially

many choices of a class in JC(k)
2JC(k) , and thus many choices of translates of 2Wg−1. The G(ksep)-

orbit assigned to (C,P ) decomposes into several G(k)-orbits, and there is an assignment of one of

these G(k)-orbits to each choice of translate of 2Wg−1. For the technical details one should consult

[Tho16, Section 1] and the proof of Theorem 4.2.3.

3As one is parameterizing plane quartic curves with a k-rational point, one could also systematically choose the class
[4P −KC ] among all pointed curves, where here KC is the canonical class of C.
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(C,P ) =: x // S(k)� _

��

� � // (T//WT )(k)

Jx(k)
2Jx(k)

� � // G(k)\Xx(k) �
� // G(k)\X(k) ρ // (X//G)(k)

∼

OO

X

π

OO

Figure 4.1: Diagram of functors.

Theorem 4.2.3 ([Tho16, Theorem 3.6]). Fix an x = (C,P ) ∈ S(k) and by abuse of notation we

denote by x the image of (C,P ) in T//WT . Let π : X → X//G denote the natural quotient map.

Note that X//G is canonically isomorphic to T//WT . Let Xx be the fibre of π over x. Then there is

a canonical injection
Jx(k)
2Jx(k) ↪−→ G(k)\Xx(k)

such that the image of x in G(k)\X(k) is the image of [0] ∈ Jx(k)
2Jx(k) .

Figure 4.1 is a diagrammatic description of the relations between the functors noted in the three

theorems above. Note that in general ρ is not a bijection, though it is a bijection when k is separably

closed.

4.3 Points on maximal tori in E8

Theorem 2.8.8 provides a relationship between the uniquely trigonal genus 4 curves and del Pezzo

surfaces of degree 1. Similar to the relationship between plane quartic curves and degree 2 del Pezzo

surfaces in [Loo93], we can ask what the datum of an anti-canonical section of a degree 1 del Pezzo

surface marks on the associated uniquely trigonal genus 4 curve. Corollary 4.3.3 provides the answer

to this question. We will use the presentation of the root lattice Λ of type E8 from Definition 2.6.43.

As in Section 2.8.2, we denote by W+ the quotient of the Weyl group WE8 by its central subgroup

of order 2.

Remark 4.3.1. Let Λ be a root lattice of type E8 and let T = Homk(Λ,Gm) be a torus. Then

χ ∈ T rss if and only if χ does not lie on a root hyperplane, which is equivalent to χ(α) 6= 1 for

every root α [Loo93, Section 1].

We prove an analogue of [Loo93, Proposition 1.8] for degree 1 del Pezzo surfaces. We let D̃P1

denote the moduli space of marked degree 1 del Pezzo surfaces and let D̃P1(node) denote the

moduli space of marked degree 1 del Pezzo surfaces together with a singular nodal anti-canonical

section.
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Proposition 4.3.2. If k = ksep, then there is a W+-equivariant isomorphism

D̃P1(node) ∼= T rss/〈±1〉

with T := Hom(Λ,Gm) and Λ a split root lattice of type E8.

Proof. Let K be an abstract nodal genus 0 curve and let Kreg be its subscheme of regular points.

Then Pic0(K) is isomorphic to Gm in a unique way up to inversion. Fix a choice of P1 ∈ Kreg(ksep)
and corresponding isomorphism τP1 : Pic0(K)→ Pic1(K) ∼= Kreg given by translation by P1.

Let χ ∈ T rss(ksep) be a point of the torus T = Hom(Λ,Gm). For each i ∈ {1, . . . , 7} we

define Pi+1 to be the unique point of Kreg(ksep) such that the divisor Pi+1 is linearly equivalent to

Pi + χ(ei+1 − ei). Notice that for any i, j ∈ {1, . . . , 8} we have that (Pi − Pj) = χ(ei − ej).

The linear system associated to the degree 3 divisor

D := χ(l − e1 − e2 − e3) + P1 + P2 + P3

determines an embedding of K into the projective plane. We claim that under this embedding the

points P1, . . . , P8 are in general position.

We see that two points coincide if and only if χ(ei− ej) = id for some distinct i, j. We see that

Pi1 , Pi2 , Pi3 lie on a line if and only if we have

div h = D − (Pi1 + Pi2 + Pi3)

= χ(l − e1 − e2 − e3) + P1 − Pi1 + P2 − Pi2 + P3 − Pi3
= χ(l − e1 − e2 − e3) + χ(ei1 − e1) + χ(ei2 − e1) + χ(ei3 − e1)

= χ(l − ei1 − ei2 − ei3)

for some h ∈ k(K). Similar calculations show that six of these points lie on a conic if and only if

χ(2l−ei1− . . .−ei6) = id for some distinct ij ∈ {1, . . . , 8} and there is a cubic passing through all

eight of these points with a singularity at one of them if and only if χ(3l−ei1−. . .−ei7−2ei8) = id
for some distinct ij ∈ {1, . . . , 8}. To recapitulate, the points P1, . . . , P8 lie in general position if

and only if χ(α) 6= 1 for each root α of Λ.

The blow-up of P2 at the eight points P1, . . . , P8 is a marked degree 1 del Pezzo surface with

a marked nodal anti-canonical curve (S, {e1, . . . , e8},K ′), where K ′ is the strict transform of K

under the blow-up.

If the construction above sends χ to (S, {e1, . . . , e8},K ′), then it sends −χ to

(S, {ι(e1), . . . , ι(e8)},K ′), where ι is the Bertini involution of S. It is clear that every marked

degree 1 del Pezzo surface with a marked nodal section is obtained by this construction in a unique

way up to inversion on T . (In fact, we describe the explicit inverse in Remark 4.3.6.) Additionally,

this map is WE8-equivariant, so we obtain a W+-equivariant map T/〈±1〉 → D̃P1(node).
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Corollary 4.3.3. There is a W+-equivariant inclusion T rss ↪−→ T s.ram
4 (2).

Proof. Proposition 4.3.2 supplies aW+-equivariant isomorphism T rss ∼= D̃P1(node). There is also

a W+-equivariant inclusion ψ : D̃P1(node) ↪−→ T ram
4 (2). Explicitly, if (S,B, s) is a marked de-

gree 1 del Pezzo surface with a marked nodal section of the anticanonical divisor, we obtain a

uniquely trigonal genus 4 curve C by taking the branch curve of the Bertini involution. By Proposi-

tion 3.2.2, the section s corresponds to a unique ramification point of index 2. Furthermore, Propo-

sition 2.8.10 and Proposition 2.8.11 show that B determines a marking of the 2-level structure of

C.

IfK is an abstract cuspidal genus 0 curve, then we may choose an isomorphism Ga
∼= Pic0(K).

This choice of isomorphism is unique up Aut(Ga) = Gm, and the−1 element of Gm acts on Ga by

inversion. Thus, if Λ is the character lattice of a torus T , then Aut(Ga) acts on t := Hom(Λ,Ga)
and we have (t\{0})//Aut(Ga) = Pt.

Let D̃P1(cusp) denote the moduli space of marked degree 1 del Pezzo surfaces together with

a singular cuspidal anti-canonical section. By replacing the singular nodal cubic in the proof of

Proposition 4.3.2 with a cuspidal plane cubic we can prove using an identical argument:

Proposition 4.3.4. If k = ksep, there is a W+-equivariant isomorphism

D̃P1(cusp) ∼= Ptrss

with t := Hom(Λ,Ga) and Λ a split root lattice of type E8.

In the proposition above, one can think of t as the Lie algebra of a maximal subtorus of a split

group of type E8. As before we also obtain:

Corollary 4.3.5. There is a W+-equivariant inclusion Ptrss ↪−→ T t.ram
4 (2).

Remark 4.3.6. Let Λ be the simply laced lattice of Dynkin type E8. Let C/k be a uniquely trigonal

genus 4 curve, let π : C → P1 be the trigonal morphism (which is unique up to PGL2), and let P

be a ramified point of π. We give the details of the assignment of (C,P ) ∈ T s.ram
4 (k) to a rational

point on the torus T = Hom(Λ,Gm)(k) which is well-defined up to WE8
∼= Aut(Λ).

The canonical model of C lies on a quadric cone in P3. We may identify the quadric cone with

P(1 : 1 : 2) and up to automorphisms of P3 we see that C is given by a model of the form

C : 0 = f0w
3 + f2(s, t)w2 + f4(s, t)w + f6(s, t).

Since C is not hyperelliptic, we have that f0 6= 0. The uniquely trigonal morphism π is induced by

the projection π : (s, t, w) 7→ (s, t). We let S/k be the degree 1 del Pezzo surface defined by the

sextic equation in P(1 : 1 : 2 : 3)

S : z2 = f0w
3 + f2(s, t)w2 + f4(s, t)w + f6(s, t).
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Using the marked point P = (s0, t0, w0) on C we define an anti-canonical section on S. The map

π : S → P1

(s, t, w, z) 7→ (s, t)

is a rational map which is regular outside the base-point of S. The Weil divisor D = π−1(s0, t0)
is an anti-canonical divisor of S. Moreover, by the assumption that P is a simply ramified point of

π, we see that D as a scheme is isomorphic to a nodal genus 0 curve. The restriction Pic(Sksep)→
Pic(D) induces a homomorphism of Galois modules

Pic(Sksep)⊥ → Pic0(D).

Up to Aut(Λ) we may choose an identification Λ ∼= Pic(Sksep)⊥. Such an identification is uniquely

determined by a marking of Sksep ; if {l, e1, . . . , e8} is the standard basis for I1,8 as in Defini-

tion 2.6.43 and B := {e′1, . . . , e′8} is any marking of Pic(Sksep), there is a class l′ ∈ Pic(Sksep)
such that 3l′ = e′1 + . . . + e′8 − κS . Since PicSksep ∼= Z9 is torsion-free, the class l′ is

the unique class satisfying 3l′ = e′1 + . . . + e′8 − κS . An isomorphism is given by restricting

c0l + c1e1 + . . .+ c8e8 7→ c0l
′ + c1e

′
1 + . . .+ c8e

′
8 to Λ.

We may also choose an identification Pic0(D) ∼= Gm, and the choice of this identification

is unique up to inversion. We obtain a Galois action on Λ by inheriting the Galois action on

Pic(Sksep)⊥. Thus, we obtain a point κC ∈ Hom(Λ,Gm)(k) and this point is unambiguously

defined up to Aut(Λ). We produce a similar assignment T t.ram
4 (k) 99K PHom(Λ,Ga)(k) in an

analogous fashion. In the case where C is of split type, we may choose S to have a Galois invariant

marking.

Via Corollary 4.3.3, Corollary 4.3.5, and Remark 4.3.6 we obtain:

Theorem 4.1.2.

E8 : If k = ksep, then the assignment of Remark 4.3.6 induces a bijection

T s.ram
4 (k)→ (T rss//WT )(k)

with Λ the root lattice of type E8 and T = Hom(Λ,Gm) the split torus of rank 8.

e8 : If k = ksep, then the assignment of Remark 4.3.6 induces a bijection

T t.ram
4 (k)→ (Ptrss//WT )(k)

with t the Lie algebra of the torus T .

Remark 4.3.7. An additional advantage of using the space Pt instead of t is pointed out in [Loo93,

Section 1.16]. Namely, that there is a natural way to fit together the isomorphisms from Proposition

4.3.2 and Proposition 4.3.4.
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4.4 Construction of orbits for the E8 case

In this section we prove the main results stated in Section 4.1.2.

4.4.1 Proof of Theorem 4.1.3

Theorem 4.1.3.

E8 : Let H be the split group of type E8 over k, let θ be a split stable involution of H , and let

X := (Hθ(h)=h−1)◦ be the theta inverted subvariety. Let G := (Hθ)◦. Let Xrss be the open

subset of regular semi-simple elements. Then the assignment (C,P ) 7→ κC of Theorem 4.1.2-

E8 determines a map

U s.ram
4 (k)→ G(k)\Xrss(k).

If k = ksep, then this map is a bijection.

e8 : Let H be as above, let X := hdθ=−1 be the Lie algebra of (Hθ(h)=h−1)◦, and let Xrss be the

open subset of regular semi-simple elements. Then the assignment (C,P ) 7→ κC of Theorem

4.1.2-e8 determines a map

U t.ram
4 (k)→ G(k)\PXrss(k).

If k = ksep, then this map is a bijection.

Remark 4.4.1. We often make use of an assignment (C,P ) 99K Hom(Λ,Gm)(k) which is only

well-defined up to WE8 . However, we are only interested in this assignment insofar as to con-

struct a G(k)-orbit. Via the isomorphisms of Theorem 2.6.55 and Theorem 2.6.54 we resolve the

ambiguity introduced by WE8 when assigning (C,P ) to a point κC ∈ Hom(Λ,Gm)(k) (resp.

PHom(Λ,Ga)(k)).

We prove this theorem by closely following the proof of [Tho16, Theorem 3.5].

Proof. Let (C,P ) ∈ U s.ram
4 (k) and let V = Λ/2Λ. Let 〈·, ·〉 be the pairing defined on Λ and let

〈·, ·〉2 : V → F2 denote the reduction of 〈·, ·〉 modulo 2. Let q : V → F2 be the quadratic form

defined by q(v) := 〈v′,v′〉
2 (mod 2), where v′ is a lift of v ∈ V to Λ. We remark that q is well-

defined since the bilinear form on any lattice of type E is even. Recall from Remark 4.3.6 that

we may view κC as an element of T0 := Hom(Λ,Gm)(k) which is well-defined up to inversion

and the Weyl group of T0. Additionally, we have that Λ is endowed with a Galois action from this

assignment.

We now use the curve C to produce the data needed for Lurie’s construction, as described in

Section 2.6.10. Let L0 be the distinguished line bundle on C from Section 2.7 and let H̃L0 be the

associated Heisenberg group. We have the exact sequence

1 // Gm
// H̃L0

// Pic0(C)[2] // 1
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and by Proposition 2.8.10 an injection Pic0(C)[2] ↪−→ Λ∨/2Λ∨ induced from restriction of divisor

classes. This gives us the diagram with exact rows via duality and pullback

1 // Gm
// H̃L0

// Pic0(C)[2] // 1

1 // Gm
// Ẽ

ψ //

OO

V //

γ

OO

1.

Note that the commutator pairing on H̃L0 descends to the Weil pairing on Pic0(C)[2]. Since by def-

inition the kernel of γ is the radical of 〈·, ·〉2, it follows that the commutator pairing on Ẽ descends

to 〈·, ·〉2 on V .

Define a character of Ẽ by χq(ẽ) = ẽ2(−1)q(ψẽ). Note that χq is well-defined since ẽ2 ∈ Gm.

Letting Ṽ := kerχq gives us the extension

1 // {±1} // Ṽ // V // 1.

We defineW := H0(Pic0(C),L). Note that H̃L0 acts onW by pullback of sections, so we define Ṽ

to act on W via the surjective homomorphism Ṽ → H̃L0 . If k = ksep, then this is a 16-dimensional

irreducible representation of Ṽ (ksep) sending−1 to− idW . It is clear this action is Galois equivari-

ant.

We have now constructed a quadruplet (Λ, Ṽ ,W, ρ) satisfying the conditions of Data I in Section

2.6.10. Thus, by Theorem 2.6.59, we obtain a simple adjoint group H0 of type E8, an involution θ0

leaving the maximal torus T0 ⊆ H0 stable, and a representation of g0 = hdθ=1
0 . We have that θ0 acts

on T0 by t 7→ t−1 and that T0 is canonically identified with Hom(Λ,Gm). From now on we view

κC as a point of T0.

We now show that θ0 is split. Since C is of split type, we may assume by Remark 4.3.6 that

Λ = Pic(S)⊥, where (S/k, {e1, . . . , e8}) is a del Pezzo surface of degree 1 with a Galois invariant

marking. Since S/k is isomorphic to the blow-up of P2 at eight points, we obtain a divisor class

l ∈ Pic(S) from the hyperplane class in P2. The class l satisfies 〈l, l〉 = 1 and 〈l, ei〉 = 0 for all

i ∈ {1 . . . 8}. Setting κS := e1 + . . .+ e8− 3l, we have that the set of roots {e1 +κS , . . . , e8 +κS}
determines a set of positive roots Φ+ of Λ. Because {l, e1, . . . , e8} is Galois invariant, both ∆ and

Φ+ are as well. For each α ∈ Φ+, let Xα be a non-zero element in the corresponding root space.

By a MAGMA calculation [Kul18c], we see that
∑
α∈Φ+ Xα is a regular nilpotent element. By

[Tho13, Lemma 2.14] and [Tho16, proof of Proposition 1.9], we have that θ0 is split.

By Proposition 2.6.56 there is an isomorphism ϕ : H → H0, unique up to Hθ(k)-conjugacy,

satisfying θ0ϕ = ϕθ. By Corollary 2.6.51 this isomorphism is unique up toG(k)-conjugacy as well.

The subtorus T := ϕ−1(T0) of H is maximal and θ acts on T by t 7→ t−1.

It follows that the orbit G(k) · ϕ−1(κC) ∈ G(k)\X(k) is well-defined. By Theorem 4.1.2 and

Theorem 2.6.54 this orbit is stable (regular semi-simple) and the map U s.ram
4 (k) → G(k)\Xrss(k)
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is bijective when k = ksep. We are now finished with the E8 case. The proof of the e8 case is nearly

identical, with the maximal tori of H replaced by Cartan subalgebras of h.

4.4.2 Proof of Theorem 4.1.4

To prove Theorem 4.1.4, one could transplant the proof of [Tho16, Theorem 3.6] as the arguments

almost directly apply to our situation. We have chosen to corral the parts of the argument of [Tho16,

Theorem 3.6] that depend only on Lurie’s construction into Lemma 4.4.2 and Lemma 4.4.3 in the

hopes that it might be of referential convenience.

The data that a curve C provides to the construction of Lurie is functorial in the theta groups of

JC [2]. We express this fact as the following two lemmas. Note that the data of a marked ramification

point on C is not necessary to produce the data needed for Lurie’s construction. Rather, it is needed

at a later point in the argument to mark an orbit in the appropriate orbit space.

Lemma 4.4.2. Let Λ be an irreducible simply laced root lattice and let V = Λ/2Λ. Let C be any

curve such that there exists a surjection γ : V → Pic0(C)[2] such that the natural pairing on V

descends to the Weil pairing. Then the construction of Lurie from Section 2.6.10 defines a map

{theta groups of JC [2]} → D(k).

Moreover, if (H0, θ0, T0, ρ0) is a quadruple in the image of this map, then T0 is canonically identified

with the torus Hom(Λ,Gm).

Proof. The result is established by the first two paragraphs of the proof of [Tho16, Theorem 3.6].

Alternatively, one can consult the proof of Theorem 4.1.3 above and replace the choice of Heisen-

berg group with any theta group of JC [2].

Lemma 4.4.3. Let C/k be a curve satisfying the conditions of the previous lemma, let A ∈ JC(k)
represent a class in JC(k)/2 and let B ∈ JC(ksep) be such that [2]B = A. Let ψB be the morphism

of theta groups

0 // Gm
// H̃L //

ψB

��

JC [2] // 0

0 // Gm
// H̃LB

// JC [2] // 0

defined over ksep induced by translation byB. Then the construction of Lurie gives a corresponding

morphism of tuples ψB : (H0, θ0, T0, ρ0) → (HB, θB, TB, ρB). Moreover, if i0, iB are the canon-

ical identifications of Hom(Λ,Gm) with T0, TB respectively, then ψBi0 = iB . Furthermore, this

morphism is exactly the morphism induced by the image of σ 7→ [Bσ − B] under the inclusion

JC [2] ↪−→ V ∨ via [Tho16, Lemma 2.4].

Proof. Functoriality is established by the comments preceding [Tho16, Lemma 2.4]. The remaining

details can be found in paragraph 5 of the proof of [Tho16, Theorem 3.6].
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We now arrive at the main result of this section.

Theorem 4.1.4.

E8 : Fix an x = (C,P ) ∈ U s.ram
4 (k) and by abuse of notation we denote by x the image of (C,P )

in T//WT . Let π : X → X//G denote the natural quotient map, whereX,G are as in Theorem

4.1.3-E8. Note that X//G is canonically isomorphic to T//WT . Let Xx be the fibre of π over

x and let Jx = JC . Then there is a canonical injective map

Jx(k)
2Jx(k) ↪−→ G(k)\Xx(k).

e8 : Fix an x = (C,P ) ∈ U t.ram
4 (k) and by abuse of notation we denote by x the image of (C,P )

in Pt//WT . Let π : PX → PX//G denote the natural quotient map, where X,G are as in

Theorem 4.1.3-e8. Let PXx be the fibre of π over x and let Jx = JC . Then there is a canonical

injective map
Jx(k)
2Jx(k) ↪−→ G(k)\PXx(k).

Proof. Let Λ be a simply laced lattice of Dynkin type E8 and let V = Λ/2Λ. Let A ∈ Jx(k) be

a rational point and choose B ∈ Jx(ksep) such that [2]B = A. As before, we have by Proposition

2.8.10 that there is an isomorphism V → Jx[2] of k-groups. As before, the natural pairing on Λ
descends to the Weil pairing on Jx[2].

Translation by B induces an isomorphism of theta groups H̃L0
∼= H̃LB

defined over ksep.

By Lemma 4.4.2 we obtain quadruples (H0, θ0, T0, ρ0) and (HB, θB, TB, ρB) from H̃L0 and H̃LB

respectively, and by Lemma 4.4.3 we obtain an isomorphism of these tuples F : (H0, θ0, T0, ρ0) ∼→
(HB, θB, TB, ρB) defined over ksep. From Lemma 4.4.3, we see that the cocycle σ 7→ F−1F σ is

canonically identified with the cocycle σ 7→ [Bσ − B]. Note if A = B = 0 then all of these

isomorphisms are in fact identity maps.

By Remark 4.3.6 we choose a point in Hom(Λ,Gm)rss(k) lying over x ∈ T//WT (k), which we

will denote by κC . We use κC to construct a G(k)-orbit in Xx(k). As in Theorem 4.1.3 we obtain

morphisms

ϕ0 : (H, θ, T, ρ) → (H0, θ0, T0, ρ0)

ϕB : (H, θ, T ′, ρ′)→ (HB, θB, TB, ρB)

defined over k. The morphisms ϕ0, ϕB are unique up to G(k)-conjugacy. Via the canonical identi-

fications of Hom(Λ,Gm) with T0, TB we obtain points κ0
C ∈ T0(k),κBC ∈ TB(k). We have that

ϕ−1
0 (κ0

C) ∈ Xx(k) is the point constructed in Theorem 4.1.3 and we obtain the corresponding

G(k)-orbit G(k) ·ϕ−1
0 (κ0

C). Similarly, we obtain the point ϕ−1
B (κBC ) and the orbit G(k) ·ϕ−1

B (κBC ).

Note by Remark 4.4.1 the G(k)-orbits G(k) ·ϕ−1
0 (κ0

C) and G(k) ·ϕ−1
B (κBC ) are independent of the

choice of κC ∈ Hom(Λ,Gm)rss(k) lying over x.
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Note that Fx := ϕ−1
B Fϕ0 is an automorphism of H which commutes with θ. Additionally, we

see that the image under F of T0 is exactly TB by Lemma 4.4.3, and again by Lemma 4.4.3 we

have that F (κ0
C) = κBC . Thus, both orbits G(k) · ϕ−1

0 (κ0
C) and G(k) · ϕ−1

B (κBC ) lie in the slice Xx

and we have that F induces an automorphism Fx : Xx → Xx defined over ksep sending the orbit of

ϕ−1
0 (κ0

C) to the orbit of ϕ−1
B (κBC ).

As in the proof of [Tho16, Theorem 3.6] we have a canonical bijection from [BG14, Proposi-

tion 1]

G(k)\Xx(k) ∼= ker(H1(k, ZG(ϕ−1
0 (κ0

C)))→ H1(k,G))

under which the orbit G(k) · ϕ−1
0 (κ0

C) is sent to the zero element and under which the orbit G(k) ·
ϕ−1
B (κBC ) is sent to the cocycle σ 7→ F−1

x F σx . We also have the canonical isomorphisms

ZG(ϕ−1
0 (κ0

C)) ∼= ZG0(κ0
C) ∼= Im(V → V ∨)

from [Tho13, Corollary 2.9]. By Proposition 2.8.10 we have that Im(V → V ∨) ∼= Jx[2]. Thus there

is an injection

G(k)\Xx(k) ↪−→ H1(k, ZG(ϕ−1
0 (κ0

C))) ∼= H1(k, Jx[2]).

The map in the statement of Theorem 4.1.4 is defined by sending A ∈ Jx(k)/2 to the orbit

G(k) · ϕ−1
B (κBC ). We have shown that the coboundary map δ : Jx(k)/2 ↪−→ H1(k, Jx[2]) factors

through G(k)\Xx(k), so we see that the mapping A 7→ G(k) · ϕ−1
B (κBC ) is injective. This finishes

the proof in the E8 case. The e8 case is obtained similarly.

4.5 Future directions

We believe that Theorem 4.1.3 and Theorem 4.1.4 can be generalized to consider arbitrary uniquely

trigonal genus 4 curves (C,P ) ∈ T ram
4 (k). To prove analogous statements of Theorem 4.1.3

and Theorem 4.1.4 for (C,P ) ∈ T ram
4 (k) we require a key technical detail; namely, given a

(C,P ) ∈ T ram
4 (k) and a theta group of JC [2], that the involution obtained from Lurie’s construc-

tion in Lemma 4.4.2 is split. In [Tho16, Theorem 3.5 and Theorem 3.6], the affine algebraic group

obtained from Lurie’s construction is always split. In our case, the form of the affine algebraic group

of type E8 possibly depends on the curve C.

Question 4.5.1. Let (C,P ) ∈ T ram
4 (k) and let Θ be a theta group of JC [2]. Is the involution arising

from Lurie’s construction split?

We hope to consider this topic in a future article.
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Appendix A

Some results on theta groups

We provide some commentary on the technical details in the proof of Proposition 2.7.5(a,b). The
results are well-known, but we found it difficult to find a preexisting reference in the literature.
Throughout, we let C/k be a smooth curve of genus g > 1, and JC its Jacobian variety. The results
in this section are true for g = 1 by [CFO+08]. The proofs in the genus 1 case carry over almost
directly.

We recall the definition of an (abstract) theta group from Section 2.7.

Definition A.0.1. A theta group of JC [2] is a central extension of k-groups

0 // Gm
η // Θ π // JC [2] // 0

such that the commutator pairing on Θ descends to the Weil pairing on JC [2]. A morphism of theta
groups is a morphism such that the diagram

0 // Gm
// Θ1 //

ψ

��

JC [2] // 0

0 // Gm
// Θ2 // JC [2] // 0

commutes.

We point out that Mumford [Mum70, Section 23] has also introduced the closely related concept of
the theta group of a line bundle. We will not need this notion and our focus will be on theta groups
as in the definition above.

Lemma A.0.2. Let Θ be a theta group of JC [2] and let x, y ∈ Θ. Then

xyx−1y−1 = η (e2(πx, πy))

where e2 : JC [2]× JC [2]→ Gm is the Weil pairing on JC [2].

Proof. See [Mum70, Section 23].
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A.1 Part (a): k-isomorphism classes of theta groups

We prove that the k-isomorphism classes of theta groups are in bijection with elements of
H1(k, JC [2]). We let

F := Gm(ksep)× 〈a1, . . . , ag, b1, . . . , bg〉

where 〈. . .〉 denotes the free group on the symbols a1, . . . , bg. Note that the centre of F is canoni-
cally identified with Gm(ksep) by definition; we abbreviate the element (λ, x) by λx and we abbre-
viate (−1, x) by−x (note that−x is not necessarily x−1). We letR be the set of relations generated
by

{a2
i = b2i = 1, aibj = −bjai, bibj = bjbi, aiaj = ajai}

and we define H := F/R.

Lemma A.1.1. Let Θ be a theta group of JC [2]. Then as a group Θ(ksep) is isomorphic to H . In
particular, any two abstract theta groups of JC [2] are isomorphic over ksep.

Proof. Let a1, . . . , ag, b1, . . . , bg be a symplectic basis for JC [2](ksep) with respect to the Weil
pairing. Since Gm(ksep) is divisible, we may choose lifts of the ai, bi to Θ such that a2

i = b2i = 1.
Since the commutator of ai, bj is e2(π(ai), π(bj)), we have that the ai, bj satisfy the same relations
as the generators in the definition of H , so by identifying the generators of H with the elements
ai, bj ∈ Θ(ksep) we define a morphism

ρ : H → Θ(ksep)

such that ρ(Gm(ksep)) = Gm(ksep) and such that ρ induces the identity on Gm(ksep). We claim
that ρ is an isomorphism. For injectivity, let x ∈ ker ρ. Up to the defining relations we may assume
that x is of the form

x = λac1
1 . . . acg

g b
cg+1
1 . . . b

c2g
g for ci ∈ {0, 1} and λ ∈ Gm(ksep).

Since ρ(x) is trivial, we have that π(ρ(x)) is also trivial. As the ai, bi were chosen to be a basis for
JC [2](ksep), it follows that each ci = 0. It follows that λ = 1 as well.

For surjectivity, we have for any y ∈ Θ that

π(y) = c1a1 + . . .+ cgag + cg+1b1 + . . .+ c2gbg for some ci ∈ {0, 1}

where we write JC [2](ksep) as an additive group. Set x := ac1
1 . . . a

cg
g b

cg+1
1 . . . b

c2g
g . It follows that

ρ(π(x)) = π(y), so ρ(x) and y differ by an element of Gm(ksep).

Proposition A.1.2. There is a bijection between k-isomorphism classes of theta groups of JC [2]
and elements of H1(k, JC [2]).

Proof. Since Gm(ksep) is exactly the centre of Θ(ksep), we have that the inner automorphism group
of Θ(ksep) is isomorphic to JC [2](ksep), and that every inner automorphism fixes Gm and induces
the identity on Θ/Gm = JC [2]. That is, we have that the automorphism group of the central ex-
tension (Gm(ksep)→ Θ(ksep)→ JC [2](ksep)) is isomorphic to JC [2](ksep). Since any two theta
groups of JC [2] are isomorphic over ksep, the result follows from the twisting principle.
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A.2 Part (b): Representations of theta groups

We prove that every theta group admits a natural embedding into GL2g as k-groups. We will need
to use some terminology from [CFO+08]. If X/k is a variety, a twist of X/k is a variety Y/k such
that Xkal ∼= Ykal .

Definition A.2.1. A Brauer-Severi variety is a variety S/k such that Skal ∼= Pn
kal for some n ≥ 1.

If X/k is a projective variety and the functor R 7→ AutR(X ×k R) from k-alg to Set is repre-
sentable by a scheme, we denote the k-group representing this functor by Aut(X). Note that the
functorR 7→ AutR(Pnk×kR) is representable by the k-group PGLn+1. By definition every Brauer-
Severi variety S of dimension n is a twist of Pn, so we have that the automorphisms of S have the
structure of a k-group. If S(k) 6= ∅, then we have that S ∼= Pn and Aut(S) ∼= Aut(Pn).

Definition A.2.2. Let X/k be a torsor of JC . A diagram [X → S] is a morphism from X to S
defined over k. An isomorphism of diagrams f : [X1 → S1]→ [X1 → S1] is a pair of isomorphisms
(f : X1 → X2, g : S1 → S2) over k such that the square

X1 //

f
��

S1

g

��
X2 // S2

commutes.

If L0 is the distinguished line bundle on JC from Section 2.7, then the global sections of L0 define
a morphism ϕL0 : JC → |L0|∨ ∼= P2g−1. This is the natural analogue of the morphism given by the
linear system |2OE | of an elliptic curve E with identity point OE .

Definition A.2.3. A Brauer-Severi diagram is a twist of the diagram [ϕL0 : JC → P2g−1]. In other
words, a Brauer-Severi diagram is a diagram [X → S] such that there is an isomorphism of diagrams
f : [ϕL0 : JC → P2g−1]→ [X → S] over ksep.

The automorphisms σ of JC such that σ∗L0 ∼= L0 are exactly the translation morphisms τx with
x ∈ JC [2](ksep). In particular, each τx acts on the global sections of L0 and hence defines a linear
automorphism of |L0|∨. We formulate this as a lemma.

Lemma A.2.4. Let x ∈ JC [2](ksep) and let τx : JC → JC be the translation by x. Then τ∗xL0 ∼= L0,
and τ∗x induces a linear action on |L0|∨. There is an injective morphism ρ : JC [2] → PGL2g of k-
groups such that

JC
τx //

��

JC

��
|L0|∨

ρ(x) // |L0|∨

commutes for all x ∈ JC [2](ksep). Furthermore, the mapping above defines a Galois-equivariant
isomorphism JC [2](ksep) ∼= Autksep [JC → P2g−1] of groups.
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By the lemma above, we may view the automorphisms of the diagram [JC → P2g−1] as a k-group
isomorphic to JC [2]. We denote this k-group by Aut[JC → P2g−1]. Let ρ : JC [2]→ PGL2g be the
representation in the lemma above and consider the exact sequence of k-groups

0 // Gm
// GL2g

α // PGL2g // 0 .

We define ΘJC
:= α−1ρ(JC [2]). By definition, we have that there is an injective morphism

ρ0 : ΘJC
→ GL2g of k-groups.

Lemma A.2.5. The group ΘJC
is a theta group of JC [2].

Proof. The definition of ΘJC
is a concrete description of the Heisenberg group H̃L0 . More precisely,

the natural action of H̃L0 on H0(JC ,L0) defines a representation whose image is ΘJC
.

If [X → S] is a Brauer-Severi diagram, then there are isomorphisms of k-groups Aut[X → S] ∼=
Aut[JC → P2g−1] ∼= JC [2]. The action of JC [2] on the torsor X induces an automorphism of the
diagram [X → S], so there is an injective morphism ρX : JC [2]→ Aut(S) of k-groups. Note how-
ever that the images of ρ and ρX in PGL2g are not necessarily conjugate over k. As before, we may
define ΘX := α−1(ρX(JC [2])) and obtain an injective morphism of k-groups ρX : ΘX → GL2g .

We now summarize some results on theta groups from [CFO+08] as adapted to Jacobian varieties.

Proposition A.2.6. Let C/k be a curve of genus g > 0. The mapping

{Brauer-Severi diagrams [X → S] } → {theta groups ΘX of JC [2] }

given by
[X → S] 7→ α−1(ρX(JC [2]))

is a bijection. We have that [X1 → S1] and [X2 → S2] are isomorphic over k if and only if the
corresponding theta groups are isomorphic over k. In particular, if C(k) 6= ∅, then for any Θ a
theta group of JC [2] there is an injective homomorphism of k-groups ρ : Θ ↪−→ GL2g .

Proof. See [CFO+08, Proposition 1.31], as well as the following discussion.
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