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Abstract 

The technique of support vector regression is applied to the 
problem of estimating the chromaticity of the light 
illuminating a scene from a color histogram of an image of 
the scene. Illumination estimation is fundamental to white 
balancing digital color images and to understanding human 
color constancy.  Under controlled experimental conditions, 
the support vector method is shown to perform better than 
the neural network and color by correlation methods. 

Introduction 

Accurate estimation of the spectral properties of the light 
illuminating an imaged scene by automatic means is an 
important problem. It could help explain human color 
constancy and it would be useful for automatic white 
balancing in digital cameras. Many papers have been 
published on the topic. Some aim to recover the full 
spectrum of the illumination, while others aim to recover 
either a 2-parameter (eg., xy or rg) estimate of its 
chromaticity18,22 or a 3-parameter description of its color 
(e.g., XYZ or RGB).10,12  

The new method we propose here is similar to previous 
work by Funt et. al.18,19 and Finlayson et. al.22 in that it aims 
to recover the chromaticity of the scene illumination based 
on the statistical properties of binarized chromaticity 
histograms; however, the proposed method replaces the 
neural networks and Bayesian statistics of these previous 
methods with powerful support vector machine regression. 

Vapnik’s1,2 Support Vector Machine theory has been 
applied successfully to a wide variety of classification 
problems.3-6 Support vector machines have been extended as 
well to regression problems including financial market 
forecasts, travel time prediction, power consumption 
estimation, and highway traffic flow prediction.7-9 

Depending on the problem domain support vector 
machine based regression (SVR) can be superior to 
traditional statistical methods in many ways. SVR enables 
inclusion of a minimization criterion into the regression, 
training can be easier, and it achieves a global rather than 
local optimum. It also facilitates explicit control of the 
tradeoff between regression complexity and error. We show 

how the illumination estimation problem can be formulated 
in SVR terms and find that, overall, SVR leads to slightly 
better illumination estimates than the neural net and color by 
correlation methods. 

1. Support Vector Regression 

SVR estimates a continuous-valued function that encodes 
the fundamental interrelation between a given input and its 
corresponding output in the training data. This function then 
can be used to predict outputs for given inputs that were not 
included in the training set. This is similar to a neural 
network. However, a neural network’s solution is based on 
empirical risk minimization. In contrast, SVR introduces 
structural risk minimization into the regression and thereby 
achieves a global optimization while a neural network 
achieves only a local minimum.26   

Most classical regression algorithms require knowledge 
of the expected probability distribution of the data. 
Unfortunately, in many cases, this distribution is not known 
accurately. Furthermore, many problems involve 
uncertainties such that it is insufficient to base a decision on 
the event probability alone. Consequently, it is important to 
take into account the potential cost of errors in the 
approximation. SVR minimizes the risk without prior 
knowledge of the probabilities.  This paper explores the 
extent to which the relatively new tool of SVR can improve 
upon the performance of related likelihood estimation 
illumination estimation algorithms. 

Smola and Schölkopf1 provide an introduction to SVR. 
Some simple intuition about it can be gained by comparison 
to least-squares regression in fitting a line in 2-dimensions.  
Least squares regression minimizes the sum of squares 
distance between the data points and the line.  SVR 
maximizes the space containing the data points subject to 
minimization of the distance of the points to the resulting 
line. The width of the space is called the ‘margin’. Points 
within an ‘insensitivity’ region are ignored. The technique 
represents the region defined by the margin by a subset of 
the initial data points. These data points are called the 
support vectors. SVR is extended to the fitting of a non-
linear function by employing the kernel trick1 which allows 
the original non-linear problem to be reformulated in terms 
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of a kernel function. The reformulated problem is linear and 
can be solved using linear SVR. We used the Chang and 
Lin25 SVR implementation.  

2. SVR for Illumination Chromaticity 
Estimation  

In this section, we discuss how the SVR technique can be 
applied to analyze the relationship between the image of a 
scene and the chromaticity of the illumination chromaticity 
incident upon it.  

As introduced in the neural network method,19 we will 
first use binarized 2D chromaticity space histograms to 
represent the input image data. Later, we extend these 
histograms to 3D to include intensity as well as 
chromaticity. Chromaticity histograms have the potential 
advantage that they discard intensity shading which varies 
with the surface geometry and viewing direction, but is most 
likely unrelated to the illumination’s spectral properties.  

The training set consists of histograms of many images 
along with the measured chromaticities of the corresponding 
scene illuminants.  Each image’s binarized chromaticity 
histogram forms an SVR binary input vector in which each 
component corresponds to a histogram bin. A ‘1’  or ‘0’ 
indicates that the presence or absence of the corresponding 
chromaticity in the input image. Partitioning the 
chromaticity space equally along each component into N 
equal parts yields N × N bins. The resulting SVR binary 
input vector is of size N2. We experimented with various 
alternative choices for N and eventually settled on N=50.  
All the results reported below are based on this choice. With 
N = 50 the chromaticity step size is 0.02. With 

1gr,0 ≤≤ only half these bins can ever be filled, so a 
sparse matrix representation was used. Support vector 
regression then finds the function mapping from image 
histograms to illuminant chromaticities.  

Since some other illumination estimation methods12,15 
(gamut mapping and color by correlation) benefit from the 
inclusion of intensity data, it is natural to consider it in the 
SVR case as well. The neural network method has thus far 
not been applied to 3D data (chromaticity plus intensity) 
because the number of input nodes becomes too large and 
the space too sparse for successful training, given the 
relatively small size of the available training sets.  

Support vector regression handles sparse data 
reasonably well, so we experimented with 3D binarized 
histograms in the training set. Intensity, defined as L = R + G 
+ B, becomes the third histogram dimension along with the r 
and g chromaticity. We quantized L into 25 equal steps, so 
the 3D histograms consist of 62,500 (25x50x50) bins. 

2.1 Histogram Construction  
To increase the reliability of the histograms, the images 

are preprocessed to reduce the effects of noise and pixels 
straddling color boundaries. We have chosen to follow the 
region-growing segmentation approach described by Barnard 
et. al.15 This also facilitates comparison of the SVR method 
to the other color constancy methods he tested. The region-

growing method is good because the borders it finds are 
perfectly thin and connected. Membership in a region is 
based on chromaticity and intensity. A region is only 
considered to be meaningful if it has a significant area. For 
the sake of easy comparison we used the same thresholds as 
Ref. [15]; namely, to be in the same region, the r and g 
chromaticities at a pixel must not differ from their respective 
averages for the region containing the pixel by more than 
0.5% or its intensity by 10%. Also, regions that result in an 
area of fewer than 5 pixels are discarded. The RGB’s of all 
pixels within each separate region are then averaged, 
converted to L, r, g and then histogrammed. 

2.2 K-Fold Cross Validation for SVR Parameters 
The performance of SVR is known to depend on its 

insensitivity parameter ε, the choice of kernel function 
associated parameters. Different kernel functions work better 
on some problem domains than others. Four of the 
commonly used kernel functions are listed in Table 1. From 
a practical and empirical standpoint, the bigger the 
insensitivity parameter ε, the fewer the support vectors, and 
the higher the error in estimating the illumination. After 
much experimentation with different ε, we fixed its value to 
be 0.0001.  

In the case of SVR for illumination estimation, the best 
choice of kernel function and its parameters may depend on 
the training set. We eliminated the Sigmoid kernel function 
from further consideration since it is invalid for some values 
of the parameter r and focus instead on the RBF and 
polynomial kernel functions. 

Table 1. Admissible Kernel Functions 
Name Definition Param. 
Linear K(xi,xj) = (xi) 

Txj --- 

Polynomial K(xi,xj) = [(xi) 
Txj+1]d d 

Radial Basis 
Function (RBF) K(x

i
,x

j
) =

2
ji xx

e
−−γ

 
γ 

Sigmoid* K(xi,xj)=tanh[(xi) 
Txj+r] r 

(*: For some r values, the kernel function is invalid) 
  
 

This leaves the choice of either the RBF or polynomial 
kernel functions and for each of these kernels the parameters: 
penalty C and width γ for the RBF kernel function; or 
penalty C and exponential degree d for polynomial kernel 
function. The parameters γ and d control the corresponding 
kernel function’s shape. The kernel choice and parameter 
settings are made during the training phase by k-fold cross 
validation, which involves running the training using several 
different parameter choices and then selecting the choice that 
works best for that particular training set. This is described 
in more detail below. 

For the KBF kernel function, we allow the penalty 
parameter to be chosen from 4 different values C ∈{0.01, 
0.1, 1, 10} and the width value from γ ∈{0.025, 0.05, 0.1, 
0.2}. For the polynomial kernel function, we used the same 4 
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penalty candidates and selected the best degree d from the 
set {2 3 4 5}. Thus for each training data set, 32 test cases (2 
kernel choices with 16 pairs of parameter settings each) will 
be tested to find the best choice. 

Among the algorithms generally used to find the best 
parameters for support vector regression, we chose k-fold 
cross validation because it does not depend on a priori 
knowledge or user expertise and it handles the possibility of 
outliers in the training data. The disadvantage of the k-fold 
method is that it is computationally intensive.  

In k-fold cross validation, the whole training set is 
divided evenly into k distinct subsets. Every kernel function 
and each of its related parameters forms a candidate 
parameter setting. For any candidate parameter setting, we 
conduct the same process k times during which (k-1) of the 
subsets are used to form a training set and the remaining 
subset is taken as the test set. The RMS chromaticity 
distance errors (see section 3.1 for definition) from k trials 
are averaged to represent the error for that candidate 
parameter setting. The parameter setting leading to the 
minimum error is then chosen and the final SVR training is 
done using the entire training set based on the chosen 
parameter setting.  

3. Experiments 

We tested the proposed SVR-based illumination estimation 
method on both synthetic and real images. The 
implementation is based on the SVR implementation by 
Chang and Lin.25 To this we added a Matlab interface which 
reads data files representing the image histograms and 
associated illumination chromaticities. Each row in the 
training data file represents one training image and consists 
of two parts: the true illumination chromaticity followed by 
the bin number for each non-zero histogram bin. 

Barnard et. al.14,15 reported tests of several illumination 
estimation methods, including  neural-network based and 
color by correlation. We have tried to follow their 
experimental procedure as closely as possible and used the 
same image data so that SVR can be compared fairly to these 
other methods.  

3.1 Error Measures 
There are two basic error measures we use. The first is 

the distance between the actual (ra,ga) and estimated 
chromaticity of the illuminant. (re,ge) as: 

 )1()()( 22
eaeadisti ggrrE −+−=−  

We also compute the root mean square (RMS) error over a 
set of N test images as: 
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The second error measure is the angular error between 
the chromaticity 3-vectors when the b-chromaticity 

component is included. Given r and g, b = 1 – r – g. Thus, 
we can view the real illumination and estimated illumination 
as two <r,g,b> vectors in 3D chromaticity space and 
calculate the angle between them. The angular error 
represented in degrees is: 

360
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We also compute the RMS angular error over a set of 
images.   

3.2 Synthetic Data Training, Real Data Testing 
The first tests are based on training with synthesized 

image data constructed using the 102 illuminant spectra and 
1995 reflectances described by Barnard14 along with the 
sensor sensitivity functions of the calibrated SONY DXC-
930 CCD.13 Testing is based on Barnard’s15 321 real images 
taken with the SONY DXC-930 of 30 scenes under 11 
different light sources. These images are linear (a gamma of 
1.0) with respect to scene intensity. This data is available on-
line from the Simon Fraser University color database.24 

The number of distinct synthesized training ‘scenes’ 
was varied from 8 to 1024 in order to study the effect of 
training size on performance. Each synthetic scene was ‘lit’ 
by each of the 102 illuminants in turn to create 102 images 
of each scene. The synthesized camera RGB values, their 
corresponding chromaticities and the illuminant chromaticity 
are mapped to 2D and 3D binary vectors for input to SVR.  

Table 2 shows that the parameters vary with the training 
set as expected. Although the basis function type was 
allowed to vary during the cross-validation, the RBF was 
eventually selected in all cases.  

 

Table 2. Results of k-fold kernel and parameter selection 
as a function of the histogram type and the number of 
training set images.  

Training Set 
Size /102 

Histogram 
Dimension 

Kernel 
Selected 

C γ 

2D RBF 0.01 0.2 8 
3D RBF 0.01 0.2 
2D RBF 1 0.1 16 
3D RBF 1 0.05 
2D RBF 0.1 0.05 32 
3D RBF 0.1 0.025 
2D RBF 1 0.05 64 
3D RBF 0.1 0.1 
2D RBF 0.01 0.025 128 
3D RBF 1 0.2 
2D RBF 0.01 0.1 256 
3D RBF 0.1 0.05 
2D RBF 0.01 0.1 512 
3D RBF 10 0.025 
2D RBF 0.01 0.05 1024 
3D RBF 1 0.2 
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To test on real data, Barnard’s calibrated 321 SONY 
images were first segmented and histogrammed according to 
the ‘generic pre-processing’ strategy.15 Illumination 
estimation by SVR compares favorably to the methods 
Barnard tested15 as shown below in Table 3. The RMS errors 
for Color By Correlation with Binary Histogram (CC01), 
Color By Correlation with Maximum Likelihood (CCMAP), 
Color By Correlation with Mean Likelihood (CCMMSE), 
Color By Correlation (CCMLM) and the Neural 
Network(NN) are from Table II, page 992 of Ref. [15].  

Figure 1 shows how the SVR performance initially 
improves as the size of the synthetic training set increases. 

 

Table 3. Comparison of competing illumination 
estimation methods. All methods are trained on synthetic 
images constructed from the same reflectance and 
illuminant spectra and then tested on the same SONY 
DXC93015 camera images with identical pre-processing. 

Method RMS Dist RMS Angle 
2D SVR. 0.080 10.1 
3D SVR 0.067 8.1 

CC01 0.081 10.9 
CCMAP 0.071 9.9 

CCMMSE 0.072 9.9 
CCMLM 0.072 9.9 

Neural Network 0.070 9.5 
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Figure 1. RMS error in illumination chromaticity as a function of 
increasing training set size. 

 

3.3 Real Image Data Training, Real Data Testing 
Training on synthetic image data is convenient because 

large training sets can be calculated from existing databases 
of illuminant and reflectance spectra. The disadvantage of 
synthetic data is that it requires an accurate model of the 
camera and imaging process. On the other hand, creating a 
training set of real images is difficult because for each image 
the scene illumination must be measured.   

Our testing with real data is based on three image data 
sets. To begin, we train and test on Barnard’s15 set of 321 
SONY images and find that training with real data is in fact 

better than training with synthetic data. Then on Cardei’s18 
set of 900 images from assorted cameras we find that SVR 
performs better on this data set than the methods on which 
he reports. Finally, we train using the 11,346 image set that 
Ciurea et. al.20 built using a digital video camera. This very 
large, real data training set improves overall performance. 

The training images are pre-processed, segmented and 
histogrammed in the same way as described above for the 
test images.  The SVR kernel and parameters were selected 
based on the ‘1024’ row of Table 2; namely, for 3-D, radial 
basis function kernel with shape parameter γ = 0.2 and 
penalty value C = 1, while in 2-D, these two parameters are 
set to 0.05 and 0.01 respectively. 

Since it would be biased to train and test on the same set 
of images, we evaluate the illumination error using leave-
one-out cross validation procedure.26 In the leave-one-out 
procedure, one image is selected for testing and the 
remaining 320 images are used for training. This is repeated 
321 times, leaving a different image out of the training set 
each time, and the RMS of the 321 resulting illumination 
estimation errors is calculated. The errors are significantly 
lower than those obtained with synthetic training data. 

 

Table 4. Leave-one-out cross validation evaluation of 
SVR based on real data training and real data testing on 
321 SONY images reported in terms of the RMS 
chromaticity angular and distance error measures. 

Hist. 
Type 

Max 
Angle 

RMS 
Angle 

Max Dist 
(× 102) 

RMS Dist 
(× 102) 

2D 22.99 10.06 16.41 7.5 
3D 24.66 8.069 16.03 6.3 

 
 
We next consider Cardei’s18 set of 900 uncalibrated 

images taken using a variety of different digital cameras 
from Kodak, Olympus, HP, Fuji Polaroid, PDC, Canon, 
Ricoh and Toshiba. A gray card was placed in each scene 
and its RGB value is used as the measure of the scene 
illumination.  

As for the previous image set, histogram subsampling 
was used to create a training set of 45,000 histograms. The 
SVR was based on a polynomial kernel function of degree 3 
and 0.1 penalty. Leave-one-out SVR performance is 
compared in Table 5 with the performance reported by 
Cardei18 for Color by Correlation and the Neural Network.  

Since a training set of 900 histograms is not very large, 
we would like to have used the histogram sampling strategy 
proposed by Cardei18 in the context of neural network 
training to increase the training set size.  He observed that 
each a histogram in the original training set could be used to 
generate many new training histograms by random sampling 
of its non-zero bins. Each sampling yields a new histogram 
of an ‘image’ with the same illuminant chromaticity as the 
original. The number of possible subsamplings is large, 
which makes it possible to build a large training set based on 
real data, but extracted from a small number of images.   
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Table 5. Comparison of SVR performance to that of 
Color by Correlation and the Neural Network using 
leave-one-out cross validation on 900 uncalibrated 
images. The entries for C-by-C and NN are from Table 7 
page 238518 

Method Type Mean(× 102) RMS(× 102) 

2D 2.40 3.27 SVR 

3D 2.09 2.94 
C-by-C 2D 2.92 3.89 

NN 2D 2.26 2.76 

 
 
We have used this method to construct a set of 45,000 

training histograms from the original 900 and used it for 
SVR. Unfortunately, the training for this sized set takes 
several hours. Normally, lengthy training time would not 
matter since it is only done once; however, leave-1-out 
testing requires 900 separate trainings. As a result, we have 
not been able to do a leave-1-out based on the enhanced 
training set. Instead, the leave-1-out results in Table 5 are 
based on the raw training set of 900 histograms. This puts 
the SVR method at a disadvantage in comparison to the 
neural network in terms of leave-1-out error, since the 
network was trained on an enhanced training set. 

Our final test with real data is based on the 11,346 real 
images extracted from over 2 hours of digital video acquired 
with a SONY VX-2000. Ciurea et. al.20 built the database by 
partially automating the measurement of the illumination’s 
RGB. Their setup consisted of a matte gray ball connected 
by a rod attached to the camera. In this way, the gray ball 
was made to appear at a fixed location at the edge of each 
video frame. The ball’s pixels were thus easy to locate in 
each frame, and hence the chromaticity of the dominant 
illumination hitting the ball was easily measured as the 
average chromaticity of the pixels located in the ball’s 
brightest region.  The images include a wide variety of 
indoor and outdoor scenes including many with people in 
them.  

Based on some initial experimentation, for all 
subsequent tests with the Ciurea database, SVR was trained 
using the RBF kernel function with 0.1 as the penalty 
parameter and 0.025 as the width parameter.   

The size of the database means that leave-one-out 
validation is not feasible, although leave-N-out for a 
reasonable choice of N would be possible. In any case, it 
would not necessarily be a fair test because of the inherent 
regularities in the database. Since the database was 
constructed from a 3-frame-per-second sampling of video 
clips, neighboring images in the database tend to be similar. 
Hence, to ensure that SVR that the training and testing sets 
would be truly distinct we partitioned the database into two 
sets in two different ways.  

The first partitioning is based on geographical location. 
We take as the test set the 541 indoor and outdoor images 
taken exclusively in Scottsdale Arizona. The training set is 
the 10,805 images in the remainder of the database, none of 

which is from Scottsdale.  The estimation errors are listed in 
Table 6.  

The second partitioning divides the entire database into 
two parts of similar size. Subset A includes 5343 images, 
and subset B includes 6003.  Subset A contains images from 
Apache Trail, Burnaby Mountain, Camelback Mountain, 
CIC 2002 and Deer Lake. Subset B contains images from 
different locations: False Creek, Granville Island Market, 
Marine, Metrotown shopping center, Scottsdale, Simon 
Fraser University and Whiteclyff Park. We then used A for 
training and B testing and vice versa. The results are again 
listed in Table 6. 

Table 6. SVR (3D) illumination estimation errors for 
different training and test sets 

Angular Distance 
(× 102) Training Testing 

Max RMS Max RMS 
All-but- 

Scottsdale 
Scottsdale 11.6 3.4 7.05 2.263 

Subset A Subset B 14.9 3.7 12.24 2.625 
Subset B Subset A 16.8 3.6 15.00 2.611 

 

4. Conclusion 

Many previous methods of estimating the chromaticity of the 
scene illumination have been based in one way or another on 
statistics of the RGB colors arising in an image, independent 
of their spatial location or frequency of occurrence in the 
image.  Support vector regression is a relatively new tool 
developed primarily for machine learning that can be applied 
in a similar way. We have tried it here, with good results, to 
the problem of learning the association between color 
histograms and illumination chromaticity. Under almost the 
same experimentation conditions as those used by 
Barnard14,15 in rigorous testing of the neural network and 
color by correlation methods, SVR performance is as good 
or better. 

Using Cuirea’s20 large image database, SVR 
performance is shown, furthermore, to improve as the 
training set size is increased. 
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