
1. John Godfrey Saxe, “The Blind Men and the Elephant.” http://www.wordinfo.info/
words/index/info/view_unit/1/?letter=B&spage=3.

Abstract

This essay offers a sympathetic interrogation of the move within 
new media studies toward “software studies.” Arguing against theo-
retical conceptions of programming languages as the ultimate per-
formative utterance, it contends that source code is never simply the 
source of any action; rather, source code is only source code after the 
fact: its effectiveness depends on a whole imagined network of ma-
chines and humans. This does not mean that source code does noth-
ing, but rather that it serves as a kind of fetish, and that the notion 
of the user as super agent, buttressed by real-time computation, is 
the obverse, not the opposite of this “sourcery.”

Debates over new media often resonate with the story of the six 
blind men and the elephant. Each man seizes a portion of the ani-
mal and offers a different analogy: the elephant is like a wall, a spear, 
a snake, a tree, a palm, a rope. Refusing to back down from their 
positions—based as they are on personal experiences—the wise men 
then engage in an unending dispute with each “in his own opinion / 
Exceeding stiff and strong / Though each was partly in the right, / And 
all were in the wrong!” The moral, according to John Godfrey Saxe’s 
version of this tale, is: “So oft in theologic wars, / The disputants, I 
ween, / Rail on in utter ignorance / Of what each other mean, / And 
prate about an Elephant / Not one of them has seen!”1 It is perhaps 

On “Sourcery,” or Code as Fetish

Wendy Hui Kyong Chun 
Brown University

Final version published in Configurations, Volume 16, Number 3, Fall 
2008, pp. 299-324. DOI: 10.1353/con.0.0064



profane to compare a poem on the incomprehensibility of the divine 
to arguments over new media, but the invisibility, ubiquity, and alleged 
power of new media (and technology more generally) lend themselves 
nicely to this analogy. It seems impossible to know the extent, content, 
and effects of new media. Who knows the entire contents of the WWW 
or the real extent of the Internet or of mobile networks? How can one 
see and know all time-based, online interactions? Who can expertly 
move from analyzing social-networking sites to Japanese cell-phone 
novels to World or Warcraft to hardware algorithms to ephemeral art 
installations? Is a global picture of new media possible?

In response to these difficulties, an important strain of new media 
has moved away from content and from specific technologies to 
what seems to be common to all new media objects and moments: 
software. All new media allegedly rely on—or, most strongly, can be 
reduced to—software, a “visibly invisible” essence. Software seems to 
allow one to grasp the entire elephant because it is the invisible 
whole that generates the sensuous parts. Based on and yet exceeding 
our sense of touch—based on our ability to manipulate virtual ob-
jects we cannot entirely see—it is a magical source that promises to 
bring together the fractured field of new media studies and to encap-
sulate the difference this field makes.

But, what is software? What does it mean to know software and, 
most importantly, what does positing software as the essence of new 
media do? This essay responds to these questions, arguing that soft-
ware as source relies on a profound logic of “sourcery”—a fetishism 
that obfuscates the vicissitudes of execution and makes our machines 
demonic. Further, this sourcery is the obverse rather than the oppo-
site of the other dominant trend in new media studies: the valoriza-
tion of the user as agent. These sourceries create a causal relationship 
among one’s actions, one’s code, and one’s interface. The relation-
ship among code and interface, action and result, however, is always 
contingent and always to some extent imagined. The reduction of 
computer to source code, combined with the belief that users run 
our computers, makes us vulnerable to fantastic tales of the power of 
computing. To break free of this sourcery, we need to interrogate, 
rather than venerate or even accept, the grounding or logic of soft-
ware. Crucially, though, closely engaging software will not let us es-
cape fictions and arrive at a true understanding of our machines, but 
rather make our interfaces more productively spectral. As a fetish, 
source code can provide surprising “deviant” pleasures that do not 
end where they should. Framed as a re-source, it can help us think 
through the machinic and human rituals that help us imagine our 
technologies and their executions.

2



The Logos of Software

To exaggerate slightly, software has recently been posited as the es-
sence of new media, and knowing software as a form of enlighten-
ment. Software is allegedly the truth, the base layer, the logic of new 
media. Lev Manovich in his groundbreaking The Language of New 
Media for instance asserts that

new media may look like old media, but this is only the surface . . . to under-
stand the logic of new media, we need to turn to computer science. It is there 
that we may expect to find the new terms, categories, and operations that char-
acterize media that become programmable. From media studies we move to some-
thing that can be called “software studies”—from media theory to software theory.2 

his turn to software—to the logic of what lies beneath—has offered 
a solid ground to new media studies, allowing it, as Manovich ar-
gues, to engage presently existing technologies and to banish so-
called “vapor theory,” theory that fails to distinguish between demo 
and product, fiction and reality, to the margins.3 This call to banish 
vapor theory, made by Geert Lovink and Alexander Galloway 
amongst others, has been crucial to the rigorous study of new media, 
but, this rush away from what is vapory—undefined, set in motion—
is also troubling because vaporiness is not accidental, but rather es-
sential to, new media and, more broadly, to software. Software, after 
all, is ephemeral, information ghostly, and new media projects that 
have never, or barely, materialized are among the most valorized and 
cited. (Also, if you take the technical definition of information seri-
ously, information increases with vapor, with entropy). This turn to 
computer science also threatens to reify knowing software as truth, 
an experience that is arguably impossible: we all know some soft-
ware, some programming languages, but does anyone really “know” 
software? What could this knowing even mean? Regardless, from 
myths of all-powerful hackers who “speak the language of computers 
as one does a mother tongue”4 or who produce abstractions that re-

2. Lev Manovich, The Language of New Media (Cambridge, MA: MIT Press, 2001), p. 48,
emphasis in original.

3. Vapor theory is a term coined by Peter Lunenfeld and used by Geert Lovink to des-
ignate theory so removed from actual engagement with digital media that it treats
fiction as fact. This term, however, can take on a more positive resonance, if on takes
the non-materiality of software seriously. (Geert Lovink, “Enemy of Nostalgia, Victim
of the Present, Critic of the Future Interview with Peter Lunenfeld,” 31 Jul 2000 <http://
www.nettime.org/Lists-Archives/nettime-l-0008/msg00008.html> accessed 2/1/2007).

4. Alexander R. Galloway, Protocol: How Power Exists after Decentralization (Cambridge,
MA: MIT Press, 2004), p. 164.

3



lease the virtual5 to perhaps more mundane claims made about the 
radicality of open source, knowing (or using) the right software has 
been made analogous to man’s release from his self-incurred tute-
lage.6 As advocates of free and open source software make clear, this 
critique aims at political, as well as epistemological, emancipation: 
as a form of enlightenment, it is a stance of how not to be governed 
like that—an assertion of an essential freedom that can only be cur-
tailed at great cost.7

To be clear, I am not dismissing the political potential of free or 
open source software, or the importance of studying or engaging 
software; rather, I am arguing that we need to interrogate how 
knowing (or using free or open source) software does not simply 
enable us to fight domination or rescue software from evil-doers 
such as Microsoft, but rather is embedded in—mediates between, 
is part of—structures of knowledge-power. For instance, using free 
software does not mean escaping from power, but rather engaging it 
differently, for free and open source software profoundly privatizes 
the public domain: GNU copyleft does not seek to reform copyright, 
but rather to spread it everywhere.8 It is thus symptomatic of the 
move in contemporary society away from the public/private 

5. McKenzie Wark, “A Hacker Manifesto.” version 4.0 (n.d.). http://subsol.c3.hu/
subsol_2/contributors0/warktext.html.

6. See Richard Stallman, “The Free Software Movement and the Future of Freedom;
March 9th 2006.” http://fsfeurope.org/documents/rms-fs-2006-03-09.en.html.
Immanuel Kant famously described enlightenment as “mankind’s exit from its self-
incurred immaturity” (“An Answer to the Question: What Is Enlightenment,” What Is
Enlightenment? Eighteenth-Century Answers and Twentieth-Century Questions, Ed. James
Schmidt (Berkeley: California UP, 1996), 58).

7. For more on enlightenment as a stance of how not to be governed like that, see
Michel Foucault, “What Is Critique?” in What Is Enlightenment?, ed. James Schmidt
(Berkeley: University of California Press, 1996), pp. 382–398.

8. As Niva Elkin-Koren notes in “Creative Commons: A Skeptical View of a Worthy
Project,” the Creative Commons strategy “does not aim at creating a public domain, at
least not in the strict legal sense of a regime that is free of any exclusive proprietary
rights. The strategy is entirely dependent upon a proprietary regime and drives its legal
force from its existence. The normative framework assumes that it is possible to replace
existing practices of producing and distributing informational works by relying on the
existing proprietary regime. The underlying assumption is that if intellectual-property
rights remain the same, but rights are exercised differently by their owners, free culture
would emerge” (http://www.hewlett.org/NR/rdonlyres/6D4BFD1E-09BB-4F89-9208-
7C1E4B141F2A/0/Creative_Commons_Amsterdam_final2006.pdf). Although Elkin-
Koren is writing about Creative Commons in this passage, she makes it clear that this
strategy of extending and revising intellectual-property rights is drawn from the Free
Software Movement’s GPL.

4



dichotomy to that of open/closed.9 More subtly, the free software 
movement, in insisting that freedom stems from free software—from 
freely accessible source code—amplifies the power of source code, 
erasing the vicissitudes of execution and the structures that ensure 
the coincidence of code and its execution. It buttresses the logic of 
software—that is, software as logos.

Software as we now know it (importantly, software was not always 
software) conflates word with result, logos with action. The goal of 
software is to conflate an event with a written command. Software 
blurs the difference among human-readable code (readable because 
of another program), its machine-readable interpretation, and its 
execution by turning the word “program” from a verb to a noun, by 
turning process in time into process in space, by turning execution 
into inscription—or at least attempting to do so. An example I’ve 
used elsewhere, Edsger Dijkstra’s famous condemnation of “go 
to” statements, encapsulates this nicely.10 In “Go to Statement 
Considered Harmful,” Dijkstra argues, “the quality of programmers 
is a decreasing function of the density of go to statements in the 
programs they produce,” because go to statements work against 
the fundamental tenant of what Dijkstra considered to be good 
programming: namely, the necessity to “shorten the conceptual 
gap between static program and dynamic process, to make the 
correspondence between the program (spread out in text space) and 
the process (spread out in time) as trivial as possible.”11 

This is important, since if a program suddenly halts because of 
a bug, go tos make it difficult to find the place in the program that 
corresponds to the buggy code. Go tos make difficult the conflation of 
instruction with its product—the reduction of process to command—
that grounds the emergence of software as a concrete entity and 
commodity; that is, go tos make it difficult for the source program to 
act as a legible source.12 As I’ve argued elsewhere, this conflation of 

5

9. For more on this, see Wendy Hui Kyong Chun, Control and Freedom: Power and
Paranoia in the Age of Fiber Optics (Cambridge, MA: MIT Press, 2006).

10. See Wendy Hui Kyong Chun, “On Software, or the Persistence of Visual Knowledge,”
grey room 18 (winter 2005): 27–52.

11. Edsger Dijkstra, “Go to Statement Considered Harmful,” in Software Pioneers:
Contributions to Software Engineering, ed. Manfred Broy and Ernst Denert (Berlin:
Springer, 2002), p. 342.

12. Structured programming was introduced as a way to make programs, rather than
“programmer priest,” the source, although the term programmer priest complicates the
notion of source: Is the source the programmer, or is it some mythic power she
mediates?



instruction or command with its product is also linked to software’s 
gendered, military history: in the military, there is supposed be no 
difference between a command given and a command completed, 
especially to a “girl.”13 The implication here is: execution does not 
matter—as in conceptual art, execution is a perfunctory affair; what 
really matters is the source.14 

This drive to forget or trivialize execution is not limited to 
programmers confounded with the task of debugging errant 
programs; it also extends to many critical analyses of code. These 
theorizations, which importantly question the reduction of new 
media with screen, emphasize code as performative or executable. 
For instance, Alexander Galloway, in Protocol: How Control Exists 
after Decentralization, claims: “code draws a line between what is 
material and what is active, in essence saying that writing (hardware) 
cannot do anything, but must be transformed into code (software) 
to be effective. . . . Code is language, but a very special kind of 
language. Code is the only language that is executable.”15 Drawing 
in part from Galloway, N. Katherine Hayles, in My Mother Was a 
Computer: Digital Subjects and Literary Texts, distinguishes between 
the linguistic performative and the machinic performative by 
arguing that

[c]ode that runs on a machine is performative in a much stronger sense than
that attributed to language. When language is said to be performative, the
kinds of actions it “performs” happen in the minds of humans, as when some-
one says, “I declare this legislative session open” or “I pronounce you husband
and wife.” Granted, these changes in minds can and do reach in behavioral
effects, but the performative force of language is nonetheless tied to external
changes through complex chains of mediation. Code running in a digital
computer causes changes in machine behavior and, through networked ports
and other interfaces, may initiate other changes, all implemented through
transmission and execution of code.16

6

13. See Chun, “On Software” (above, n. 11).

14. For more on software art as conceptual art, see Florian Cramer, “Concepts,
Notations, Software, Art.” 2002. http://userpage.fu-berlin.de/~cantsin/homepage/
writings/software_art/concept_notations/concepts_notations_software_art.html.

15. Galloway, Protocol (above, n. 5), p. 165, emphasis in original.

16. N. Katherine Hayles, My Mother Was a Computer: Digital Subjects and Literary Texts
(Chicago: University of Chicago Press, 2005), p. 50. Hayles’s argument immediately
poses the question: What counts as internal versus external to the machine, especially
given that, in John von Neumann’s foundational description of stored program
computing, the input and output (the outside world to the machine) was a form of
memory?



The independence of machine action—this autonomy, or auto-
matic executability of code—is, according to Galloway, its material 
essence: 

the material substrate of code, which must always exist as an amalgam of 
electrical signals and logical operations in silicon, however large or small, 
demonstrates that code exists first and foremost as commands issued to a ma-
chine. Code essentially has no other reason for being that instructing some 
machine in how to act. One cannot say the same for the natural languages.17 

Galloway thus strongly states, in “Language Wants to Be Overlooked: 
Software and Ideology,” that “to see code as subjectively performa-
tive or enunciative is to anthropomorphize it, to project it onto the 
rubric of psychology, rather than to understand it through its own 
logic of ‘calculation’ or ‘command.’”18 

To what extent, however, can source code be understood outside 
of anthropomorphization? Does understanding voltages stored 
in memory as commands/code not already anthropomorphize 
the machine? (The inevitability of this anthropormorphization is 
arguably evident in the title of Galloway’s article: “Language Wants 
to Be Overlooked” [emphasis added].) How is it that code “causes” 
changes in machine behavior? What mediations sustain the notion 
of code as inherently executable?

To make the argument that code is automatically executable, the 
process of execution itself must not only be erased, but source code 
also must be conflated with its executable version. This is possible 
because, it is argued, the two “layers” of code can be reduced to each 
other. Indeed, in Protocol, Galloway argues that

uncompiled source code is logically equivalent to the same code compiled into 
assembly language and/or linked into machine code. For example, it is absurd 
to claim that a certain value expressed as a hexadecimal (base 16) number is 
more or less fundamental than that same value expressed as [a] binary (base 2) 
number. They are simply two expressions of the same value.19 

He later elaborates on this point by drawing an analogy between 
quadratic equations and logical layers:

One should never understand this “higher” symbolic machine as anything 
empirically different from the “lower” symbolic interactions of voltages 

7

17. Alexander R. Galloway, “Language Wants to Be Overlooked: Software and Ideology,”
Journal of Visual Culture 5:3 (2006): 315–331.

18. Ibid., 321.

19. Galloway, Protocol (above, n. 5), p. 167, emphasis in original.



through logic gates. They are complex aggregates yes, but it is foolish to think 
that writing an “if/then” control structure in eight lines of assembly code is 
any more or less machinic than doing it in one line of C, just as the same 
quadratic equation may swell with any number of multipliers and still remain 
balanced. The relationship between the two is technical.20

According to Galloway’s quadratic equation analogy, the differ-
ence between a compact line of higher-level programming code and 
eight lines of assembler equals the difference between two equations, 
in which one contains coefficients that are multiples of the other. 
The solution to both equations is the same: one equation can be re-
duced to the other. This reduction, however, does not capture the 
difference between the various instantiations of code, let alone the 
empirical difference between the higher symbolic machine and the 
lower interactions of voltages (the question here is: Where does one 
make the empirical observation?); that is, to push Galloway’s con-
ception further, a technical relation is far more complex than a nu-
merical one.

Significantly, a technical relation engages art or craft. According 
to the Oxford English Dictionary (OED), a technical person is one 
“skilled in or practically conversant with some particular art or 
subject.” Code does not always nor automatically do what it says, 
but does so in a crafty manner. To state the obvious, one cannot run 
source code: it must be compiled or interpreted. This compilation or 
interpretation—this making code executable—is not a trivial action; 
the compilation of code is not the same as translating a decimal 
number into a binary one; rather, it involves instruction explosion 
and the translation of symbolic into real addresses. Consider, for 
example, the instructions needed for adding two numbers in 
PowerPC assembly language, which is one level higher than machine 
language:

li r3,1 *load the number 1 into register 3
li r4,2 *load the number 2 into register 4
add r5,r4,r3 *add r3 to r4 and store the result in r5
stw r5,sum(rtoc) *store the contents of r5 (i.e. 3)into the

memory location
*called “sum”s (where sum is defined elsewhere)

blr *end of this snippet of code21

8 

20. Galloway, “Language Wants to Be Overlooked” (above, n. 18), p. 321, emphasis in
original.

21. This example draws from the PowerPC Assembly Language Beginners Guide. http://
www.lightsoft.co.uk/Fantasm/Beginners/Chapt1.html.



This explosion is not equivalent to multiplying both sides of 
a quadratic equation by the same coefficient or to the difference 
between E and 15. It is, rather, a breakdown of the steps needed to 
perform what seems a simple arithmetic calculation. It is the difference 
between a mathematical identity and a logical equivalence, which 
depends on a leap of faith. This is most clear in the use of numerical 
methods to turn integration—a function performed fluidly in 
analog computers—into a series of simpler, repetitive arithmetical 
steps. This translation from source code to executable is arguably 
as involved as the execution of any command. More importantly, 
it depends on the action (human or otherwise) of compiling/
interpreting and executing. Also, some programs may be executable, 
but not all compiled code within that program is executed; rather, 
lines are read in as necessary. So, source code thus only becomes source 
after the fact. Source code is more accurately a re-source, rather than 
a source. Source code becomes a source when it becomes integrated 
with logic gates (and at an even lower level, with the transistors that 
comprise these gates); when it expands to include software libraries, 
when it merges with code burned into silicon chips; and when all 
these signals are carefully monitored, timed, and rectified.

Code is also not always the source, because hardware does not 
need software to “do something.” One can build algorithms using 
hardware, for all hardware cannot be reduced to stored program 
memory. Figure 1, for instance, is the logical statement: “if notB and 
notA, do CMD1 (state P); if notB and notA and notZ OR B and A 
(state Q) then command 2.” To be clear, this is not a valorization 
of hardware over software, as though hardware necessarily escapes 
this drive to conflate space with time. Crucially, this schematic 
is itself an abstraction. Logic gates can only operate “logically” if 
they are carefully timed. As Philip Agre has emphasized, the digital 
abstraction erases the fact that gates have “directionality in both 
space (listening to its inputs, driving its outputs) and in time (always 
moving toward a logically consistent relation between these inputs 
and outputs).”22 When a value suddenly changes, there is a brief 
period in which a gate will give a false value. In addition, because 
signals propagate in time over space, they produce a magnetic field 
that can corrupt other signals nearby (“crosstalk”). This schematic 
erases all these various time-based effects. Thus hardware schematics, 
rather than escaping from the logic of sourcery, are also embedded 
within this structure. Indeed, John von Neumann, the alleged 

9

22. Philip E. Agre, Computation and Human Experience (Cambridge: Cambridge
University Press, 1997), p. 92.



architect of the stored-memory digital computer, drew from Warren 
McCulloch and Walter Pitts’s conflation of neuronal activity with 
its inscription in order to conceptualize our modern computers. 
According to McCulloch and Pitts (who themselves drew from Alan 
Turing’s work), “the response of any neuron [is] factually equivalent 
to a proposition which proposed its adequate stimulus.”23 That is, 
the response of a neuron can be reduced to the circumstances that 
make it possible: instruction can substitute for result. It is perhaps 
appropriate then that von Neumann spent the last days of his 
life—dying from a cancer most probably stemming from his work 
at Los Alamos—reciting from memory Faust, Part 1.24 At the heart 

10 

23. Warren McCulloch and Walter Pitts, “A Logical Calculus of the Ideas Immanent in
Nervous Activity,” in Embodiments of Mind (Cambridge, MA: MIT Press, 1965), p. 21.

24. Norman McRae, John von Neumann (New York: Pantheon, 1992), p. 378.

Figure 1. If notB and notA, do CMD1 (state P); if notB and notA and notZ OR B and A 
(state Q) then command.



of stored-program computing lies the Faustian substitution of word 
for action.

Not surprisingly, this notion of source code as source coincides with 
the introduction of alpha-numeric languages. With them, human-
written, nonexecutable code becomes source code and the compiled 
code, the object code. Source code thus is arguably symptomatic of 
human language’s tendency to attribute a sovereign source to an 
action, a subject to a verb.25 By converting action into language, 
source code emerges. Thus Galloway’s statement “to see code as 
subjectively performative or enunciative is to anthropomorphize it, 
to project it onto the rubric of psychology, rather than to understand 
it through its own logic of ‘calculation’ or ‘command’” overlooks the 
fact that to use higher-level alphanumeric languages is already to 
anthropomorphize the machine, and to reduce all machinic actions 
to the commands that supposedly drive them. In other words, the 
fact that “code is law”—something Lawrence Lessig pronounces with 
great aplomb—is hardly profound.26 After all, code is, according to 
the OED, “a systematic collection or digest of the laws of a country, 
or of those relating to a particular subject.” What is surprising is 
the fact that software is code, that code is—has been made to be—
executable, and that this executability makes code not law, but 
rather every lawyer’s dream of what law should be, automatically 
enabling and disabling certain actions and functioning at the level 
of everyday practice.

Source Code as Fetish

Source code as source means that software functions as an axiom, 
as “a self-evident proposition requiring no formal demonstration 
to prove its truth, but received and assented to as soon as it is 
mentioned.”27 In other words, whether or not source code is only 
source code after the fact or whether or not software can be physically 
separated from hardware,28 software is always posited as already 
existing, as the self-evident ground or source of our interfaces. 
Software is axiomatic. As a first principle, it fastens in place a certain 

11

25. According to Friedrich Nietzsche in The Genealogy of Morals, “there is no ‘being’
behind the doing, effecting, becoming: ‘the doer’ is merely a fiction added to the
deed—the deed is everything”; see Nietzsche, The Birth of Tragedy & Genealogy of Morals,
trans. Francis Golffing (New York: Doubleday, 1956), pp. 178–179.

26. Lawrence Lessig, Code and Other Laws of Cyberspace (New York: Basic Books, 1999).

27. Oxford English Dictionary Online. http://www.oed.com.

28. See Friedrich Kittler, “There Is No Software,” Ctheory. 1995. http://www.ctheory.net/
articles.aspx?id=74.



logic of cause and effect, based on the erasure of execution and the 
privileging of programming that bleeds elsewhere and stems from 
elsewhere as well.29 As an axiomatic, it, as Gilles Deleuze and Félix 
Guattari argue, artificially limits decodings.30 It temporarily limits 
what can be decoded, put into motion, by setting up an artificial 
limit—the artificial limit of programmability—that seeks to separate 
information from entropy by designating some entropy information 
and other “nonintentional” entropy noise. Programmability, discrete 
computation, depends on the disciplining of hardware and the desire 
for a programmable axiomatic. Code is a medium in the full sense 
of the word. As a medium, it channels the ghost that we imagine 
runs the machine—that we see as we don’t see—when we gaze at our 
screen’s ghostly images. 

Understood this way, source code is a fetish. According to the 
OED, a fetish was originally an ornament or charm worshipped by 
“primitive peoples . . . on account of its supposed inherent magical 
powers.”31 The term fetisso stemmed from the trade of small wares and 
magic charms between the Portuguese merchants and West Africans; 
Charles de Brosses, in 1757, coined the term fetishism to describe 
“primitive religions.” According to William Pietz, Enlightenment 
thinkers viewed fetishism as a

false causal reasoning about physical nature [that became] the definitive mis-
take of the pre-enlightened mind: it superstitiously attributed intentional pur-
pose and desire to material entities of the natural world, while allowing social 
action to be determined by the . . . wills of contingently personified things, 
which were, in truth, merely the externalized material sites fixing people’s 
own capricious libidinal imaginings.32

That is, fetishism, as “primitive causal thinking,” derived causality 
from desire rather than reason:

Failing to distinguish the intentionless natural world known to scientific rea-
son and motivated by practical material concerns, the savage (so it was argued) 
superstitiously assumed the existence of a unified causal field for personal ac-
tions and physical events, thereby positing reality as subject to animate pow-
ers whose purposes could be divined and influenced. Specifically, humanity’s 

12 

29. Namely, twentieth-century genetics.

30. Gilles Deleuze and Félix Guattari, “Capitalism: A Very Special Delirium.” 1995.
http://www.generation-online.org/p/fpdeleuze7.htm.

31. Oxford English Dictionary Online (above, n. 28).

32. William Pietz, “Fetishism and Materialism,” in Fetishism as Cultural Discourse, ed. Emily
Apter and William Pietz (Ithaca, NY: Cornell University Press, 1993), pp. 138, 139.



belief in gods and supernatural powers (that is, humanity’s unenlightenment) 
was theorized in terms of prescientific peoples’ substitution of imaginary per-
sonifications for the unknown physical causes of future events over which 
people had no control and which they regarded with fear and anxiety.33

Fetishes thus allow the human mind too much and not enough con-
trol by establishing a “unified causal field” that encompasses both 
personal actions and physical events. Fetishes enable a semblance of 
control over future events—a possibility of influence, if not an air-
tight programmability—that itself relies on distorting real social rela-
tions into material givens.

This notion of fetish as false causality has been most important to 
Karl Marx’s diagnosis of capital as fetish. He famously argued that

the commodity-form . . . is nothing but the determined social relation be-
tween humans themselves which assumes here, for them, the phantasmagoric 
form of a relation between things. In order, therefore, to find an analogy we 
must take a flight into the misty realm of religion. There the products of the 
human head appear as autonomous figures endowed with a life of their own, 
which enter into relations both with each other and with the human race. So 
it is in the world of commodities with the products of men’s hands. This I call 
. . . fetishism.34

The capitalist thus confuses social relations and the labor activities 
of real individuals with capital and its seeming magical ability to 
reproduce, for “it is in interest-bearing capital . . . that capital finds 
its most objectified form, its pure fetish form. . . . Capital—as an 
entity—appears here as an independent source of value; a something 
that creates value in the same way as land [produces] rent, and labor 
wages.”35 

The parallel to source code seems obvious: we “primitive folk” 
worship source code as a magical entity—as a source of causality—
when in truth the power lies elsewhere, most importantly in social 
and machinic relations. If code is performative, its effectiveness 
relies on human and machinic rituals. Intriguingly though, in this 
parallel, Enlightenment thinking—a belief that knowing leads to 
control and freedom, a release from tutelage—is not the “solution” 
to the fetish, but rather what grounds it, for source code historically 
has been portrayed as the solution to wizards and other myths of 

13

33. Ibid., p. 137.

34. Karl Marx, Capital: A Critique of Political Economy, vol. 1, trans. Ben Foskes (New
York: Penguin, 1976), p. 165.

35. Marx, as quoted by Pietz, “Fetishism and Materialism” (above, n. 33), p. 149.



programming. According to this popular narrative, machine code 
provokes mystery and submission; source code enables understanding 
and thus institutes rational thought and freedom, enabling us to 
move from being blind to sighted.

John Backus, writing about programming in the 1950s, contends 
that “programming in the early 1950s was a black art, a private arcane 
matter.”36 These programmers formed a “priesthood guarding skills 
and mysteries far too complex for ordinary mortals.”37 Opposing 
even the use of decimal numbers, these machine programmers were 
sometimes deliberate purveyors of their own fetishes or “snake oil,” 
systems that allegedly had “mysterious, almost human abilities to 
understand the language and needs of the user; closer inspection was 
likely to reveal a complex, exception-ridden performer of tedious 
clerical tasks that substituted its own idiosyncrasies for those of the 
computer.”38 Automatic programming languages such as FORTRAN, 
developed by Backus, allegedly exorcised the profession of the 
priesthood by making programs more readable and thus making it 
easier to discern the difference between snake oil and the real thing. 

Similarly, Richard Stallman, in his critique of nonfree software, 
has argued that machine-executable programs create mystery rather 
than enlightenment. Stallman contends that an executable “is a 
mysterious bunch of numbers. What it does is secret.”39 As I argue 
below, this notion of executables and executing code as magic is 
buttressed by real-time operating systems that posit the user as the 
source. Against this magical execution, source code supposedly 
enables pure understanding and freedom—the ability to map and 
understand the workings of the machine, but again only through a 
magical erasure of the gap between source and execution, an erasure 
of execution itself. Tellingly, this move to source code has hardly 
deprived programmers of their priest-like/wizard status. If anything, 
the notion of programmers as super-human has been disseminated 
ever more, and the history of computing—from direct manipulation 
to hypertext—has been marked by various “liberations.”

But clearly, source code can do things: it can be interpreted or 
compiled, and it can be rendered into machine-readable commands 

14 

36. John Backus, “Programming in America in the 1950s—Some Personal Impressions,”
in A History of Computing in the Twentieth Century, ed. N. Metropolis et al. (New York:
Academic Press, 1980), p. 126.

37. Ibid., p. 127.

38. Ibid.

39. Richard Stallman, “Copyright and Globalization in the Age of Computer Networks.”
2001. http://www.gnu.org/philosophy/copyright-and-globalization.html.



that are then executed. Source code is also read by humans and 
is written by humans for humans: it is thus the source of some 
understanding. Although Ellen Ullman and many others have 
argued that “a computer program has only one meaning: what it 
does. It isn’t a text for an academic to read. Its entire meaning is 
its function,” source code must be able to function, even if it does 
not function—that is, even if it is never executed.40 Source code’s 
readability is not simply due to comments that are embedded in the 
code, but also due to English-based commands and programming 
styles designed for comprehensibility. This readability is not just 
for “other programmers”; when programming, one must be able to 
read one’s own program—to follow its logic and predict its outcome, 
whether or not this outcome coincides with one’s prediction. 

This notion of source code as readable—as creating some outcome 
regardless of its machinic execution—underlies “codework” and 
other creative projects. The Internet artist Mez, for instance, has 
created a language, “mezangelle,” that incorporates formal code and 
informal speech. Mez’s poetry deliberately plays with programming 
syntax, producing language that cannot be executed but nonetheless 
draws on the conventions of programming language to signify.41 
Codework, however, can also work entirely within an existing 
programming language. Graham Harwood’s perl poem, for example, 
translates William Blake’s late-eighteenth-century poem “London” 
into London.pl, a script that contains within it an algorithm to “find 
and calculate the gross lung-capacity of the children screaming from 
1792 to the present.”42 Regardless of whether or not it can execute, 
code can be, must be, worked into something meaningful. Source 
code, in other words, may be sources of things other than the 
machine execution it is “supposed” to engender.

Source code as fetish, understood psychoanalytically, embraces 
this nonteleological potential of source code, for the fetish is a 
genital substitute that gives the fetishist nonreproductive pleasure. It 
is a deviation that does not “end” where it should, a deviation taken 
on so that the child may combat castration for both himself and 
his mother, while at the same time accommodating to his world’s 
larger Oedipal structure. It both represses and acknowledges paternal 
symbolic authority. According to Freud, “the fetish is a substitute for 
the woman’s (mother’s) phallus which the little boy once believed in 

15

40. Ellen Ullman, interviewed by Scott Rosenberg, “21st: Elegance and Entropy.” 1997.
http://dir.salon.com/story/tech/feature/1997/10/09/interview/print.html.

41. See mez’s site at http://www.hotkey.net.au/~netwurker/.

42. See http://www.scotoma.org/notes/index.cgi?LondonPL.



and does not wish to forego,”43 but the fetish, formed the moment 
the little boy sees his mother’s phallus, also transforms the phallus:

It is not true that the child emerges from his experience of seeing the female 
parts with an unchanged belief in the woman having a phallus. He retains this 
belief but he also gives it up; during the conflict between the deadweight of 
the unwelcome perception and the force of the opposite wish, a compromise 
is constructed such as is only possible in the realm of unconscious thought—
by the primary processes. In the world of psychical reality the woman still has 
a penis in spite of it all, but this penis is no longer the same as it once was. Some-
thing else has taken its place, has been appointed as its successor, so to speak, and 
now absorbs all the interest which formerly belonged to the penis.44 

The fetish is a transformation of the mother’s phallus, whose 
magical power “remains a token of triumph over the threat of 
castration and a safeguard against it.”45 As such, it both fixes a 
singular event—turning time into space—and enables a logic of 
repetition that constantly enables this safeguarding. As Pietz argues

the fetish is always a meaningful fixation of a singular event; it is above all a 
“historical” object, the enduring material form and force of an unrepeatable 
event. This object is “territorialized” in material space (an earthly matrix), 
whether in the form of a geographical locality, a marked site on the surface of 
the human body, or a medium of inscription or configuration defined by some 
portable or wearable thing.46 

Although it fixes a singular event, the fetish works only because it 
can be repeated, but again, what is repeated is both denial and ac-
knowledgment, since the fetish can be “the vehicle both of denying 
and asseverating the fact of castration.”47 

Slavoj Zizek draws on this insight to explain the persistence of the 
Marxist fetish:

When individuals use money, they know very well that there is nothing mag-
ical about it—that money, in its materiality, is simply an expression of social 
relations. . . . on an everyday level, the individuals know very well that there 
are relations between people behind the relations between things. The prob-
lem is that in their social activity itself, in what they are doing, they are acting 

16 

43. Sigmund Freud, “Fetishism,” in Sexuality and the Psychology of Love (New York:
Macmillan, 1963), p. 205.

44. Ibid., p. 206.

45. Ibid.

46. William Pietz, “The Problem of the Fetish,” pt. 1. Res 9 (spring 1985): 12.

47. Freud, “Fetishism” (above, n. 44), p. 208.



as if money, in its material reality is the immediate embodiment of wealth as 
such. They are fetishists in practice, not in theory. What they “do not know,” 
what they misrecognize, is the fact that in their social reality itself—in the act 
of commodity exchange—they are guided by the fetishistic illusion.48

Fetishists importantly know what they are doing—knowledge is not 
an answer to fetishism. The knowledge that source code offers is 
therefore no cure for source-code fetishism: if anything, this knowl-
edge sustains it.

To make explicit the parallels, source code, like the fetish, is a 
conversion of event into location—time into space—that does affect 
things, but not necessarily in the manner prescribed. Its effects can 
be both productive and nonexecutable. Also, in terms of denial 
and acknowledgment, we know very well that source code is not 
executable, yet we persist in treating it as so. And it is this glossing 
over that makes possible the ideological belief in programmability. 

Code as fetish means that computer execution deviates from the 
so-called source, as source program does from programmer. Alan 
Turing, in response to the objection that computers cannot think 
because they merely follow human instructions, argued:

Machines take me by surprise with great frequency. . . . The view that ma-
chines cannot give rise to surprises is due, I believe, to a fallacy to which phi-
losophers and mathematicians are particularly subject. This is the assumption 
that as soon as a fact is presented to a mind, all consequences of that fact 
spring into the mind simultaneously with it. It is a very useful assumption 
under many circumstances, but one too easily forgets that it is false. A natural 
consequence of doing so is that one then assumes that there is no virtue in the 
mere working out of consequences from data and general principles.49 

This erasure of the vicissitudes of execution coincides with the 
conflation of data with information, information with knowledge—
the assumption that what’s most difficult is the capture, rather than 
the analysis, of data. This erasure of execution through source code 
as source creates an intentional authorial subject: the computer, 
the program, or the user, and this source is treated as the source of 
meaning. The fact that there is an algorithm, a meaning intended 
by code (and thus in some way knowable), sometimes structures 
our experience with programs. When we play a game, we arguably 
try to reverse-engineer its algorithm, or at the very least to link 

17

48. Slavoj Zizek, The Sublime Object of Ideology (New York: Verso, 1989), p. 31, emphasis
in original.

49. Alan Turing, “Computing Machinery and Intelligence,” Mind 59. 1950. http://www
.loebner.net/Prizef/TuringArticle.html.



its actions to its programming, which is why all design books 
warn against coincidence or random mapping, since it can induce 
paranoia in its users. That is, because an interface is programmed, 
most users treat coincidence as meaningful. To the user, as with the 
paranoid schizophrenic, there is always meaning: whether or not 
the user knows the meaning, she or he knows that it regards her or 
him. Whether or not she or he cares, however, is another matter. 
Regardless, the fact that the code allegedly driving an interface can 
be revealed, the fact that source code exists means that the truth 
is out there. To know the code is to have a form of “X-ray” vision 
that makes the inside and outside coincide, and the act of revealing 
sources or connections becomes a critical act in and of itself.50 

Real Time, This Time

This discussion of the user brings to light an intriguing fact: the 
notion of user as source, introduced though real-time operating sys-
tems, is the obverse, rather than the antidote, to code as source. Ac-
cording to the OED, real time is “the actual time during which a 
process or event occurs, especially one analyzed by a computer, in 
contrast to time subsequent to it when computer processing may be 
done, a recording replayed, or the like.” Crucially, hard and soft real-
time systems are subject to a “real-time constraint”—that is, they 
need to respond, in a forced duration, to actions predefined as events. 
The measure of real time, in computer systems, is its reaction to the 
live—its liveness. 

The notion of real time always points elsewhere—to “real-world” 
events, to user’s actions—thereby introducing indexicality to this 
supposedly nonindexical medium; that is, whether or not digital im-
ages are supposed to be “real,” real time posits the existence of a 
source—coded or not—that renders our computers transparent. Real-
time operating systems create an “abstraction layer” that hides the 
hardware details of the processor from application software; real-
time images portray computers as un-mediated connectivity. As Re-
alplayer reveals, the notion of real time is bleeding into all electronic 
moving images, not because all recordings are live, but because 
grainy moving images have become a marker of the real.51 What is 

18 

50. N. Katherine Hayles develops this theme of revealing codes in My Mother Was a
Computer (above, n. 17), pp. 54–61. Importantly, some software art projects also
complicate and frustrate code as X-ray vision and connection as meaning, such as
Golan Levin’s Axis Aplet.

51. See Thomas Levin, “Rhetoric of the Temporal Index: Surveillant Narration and the
Cinema of ‘Real Time,’” CTRL Space: Rhetorics of Surveillance from Bentham to Big Brother,
ed. Thomas Levin et al. (Cambridge, MA: MIT Press, 2002), pp. 578–593.



authentic or real is what transpires in real time, but real time is real 
not only because of this indexicality—this pointing to elsewhere—
but also because its quick reactions to user’s inputs.

Dynamic changes to webpages in real time, seemingly at the be-
quest of users’ desires or inputs, create what Tara McPherson has 
called “volitional mobility.” Creating “Tara’s phenomenology of 
websurfing,” McPherson argues:

When I explore the web, I follow the cursor, a tangible sign of presence: implying 
movement. This motion structures a sense of liveness, immediacy, of the now . . . 
yet this is not the old liveness of television: this is liveness with a difference. This 
liveness foregrounds volition and mobility, creating a liveness on demand. Thus, 
unlike television which parades its presence before us, the web structures a sense 
of causality in relation to liveness, a liveness we navigate and move through, often 
structuring a feeling that our own desire drives the movement. The web is about 
presence but an unstable presence: it’s in process, in motion.52

This liveness, McPherson carefully notes, is more the illusion—
the feel or sensation—of liveness, rather than the fact of liveness; the 
choice yoked to this liveness is similarly a sensation rather than the 
real thing (although one might ask: What is the difference between 
the feel of choice and choice? Is choice itself not a limitation of 
agency?). The real-time moving cursor and the unfolding of an un-
stable present through our digital (finger) manipulations make us 
crane our necks forward, rather than sit back on our couches, caus-
ing back and neck pain. The extent to which computers turn the 
most boring activities into incredibly time-consuming and even en-
joyable ones is remarkable: one of the most popular computer game 
to date, The Sims, focuses on the mundane; action and adventure 
games reduce adventure to formulaic, motion-restricted activities. 
This volitional mobility, McPherson argues, reveals that the “hype” 
surrounding the Internet does have some phenomenological back-
ing. This does not necessarily make the Internet an empowering me-
dium, but at the very least means that it can provoke a desire for 
something better: true volitional mobility, true change.53 

19

52. Tara McPherson, “Reload: Liveness, Mobility and the Web,” in The Visual Culture
Reader, 2nd ed., ed. Nicholas Mirzoeff (New York: Routledge, 2002), p. 462, emphasis
in original.

53. Coming from film rather than television studies and focusing more on applications
than phenomenology, Galloway in Protocol (above, n. 5) similarly argues that continuity
makes websurfing “a compelling, intuitive experience for the user”: “On the Web, the
browser’s movement is experienced as the user’s movement. The mouse movement is
substituted for the user’s movement. The user looks through the screen into an imaginary
world, and it makes sense. The act of “surfing the web,” which, phenomenologically,



As noted earlier, however, the user is not the only source of change 
in real time. Real-time images, such as those provided by webcams, 
make our computer screen seem, for however brief a moment, alive. 
Refreshing on their own and pointing elsewhere, they make our net-
works seem transparent and thus fulfill the promise of fiber-optic 
networks to connect us to the world, as do real-time stock quotes 
and running news banners.54 As a whole, these moments of “interac-
tivity” buttress the notion of transparency at a larger level. The 
source of a computer’s actions always stems from elsewhere, because 
real time makes it appear as though only outside events—user mouse-
clicks, streaming video—cause the computer actions. These real-time 
interactions, which were initially introduced to make computation 
more efficient, have almost erased computation altogether. Once 
again, the movements within the computer—the constant regenera-
tion, the difference between the textual representation of a program, 
a compiled program, a program stored on the hard drive, and the 
program read-in instruction by instruction into the processor—are 
all erased. These movements create our spectral interface, without 
which our machines (we erroneously believe) could not work, and it 
is these spectral interfaces that allow us to include computers within 
the broader field of “visual-culture” studies, or screen media. Viewed 
as the alpha and omega of our computers, interfaces stand in, more 
often than not, for the computer itself, erasing the medium as it 
proliferates its specters, making our machines transparent producers 
of unreal visions—sometimes terrifying, but usually banal imitations 
or hallucinations of elsewhere.

Demonic Media

Not accidentally, this spectrality of digital media makes our media 
demonic; that is, inhabited by invisible processes that, perhaps like 
Socrates’ daimonion (mystical inner voice), help us in our time of 
need. They make executables magic. UNIX—that operating system 
seemingly behind our happy spectral Macs—runs daemons. Dae-
mons run our e-mail, our webservers. Macs thus not only proudly 
display that symbol of Judeo-Christian man’s seduction and fall from 
grace—that sanitized but nonetheless telling bitten apple—it also 
inhabits its operating systems with daemons that make it a veritable 
“paradise lost” (see Fig. 2). 

20 

should be an unnerving experience of radical dislocation—passing from a server in one 
city to a server in another city—could not be more pleasurable for the user. Legions of 
computer users live and play online with no sense of radical dislocation” (p. 64).

54. For more, see chapter 5 of Chun’s Control and Freedom (above, n. 10).



So why are these daemons called “send mail” and not Satan? Most 
simply, a daemon is a process that runs in the background without 
intervention by the user (usually initiated at boot time). They can 
run continuously, or in response to a particular event or condition 
(for instance, network traffic), or at a scheduled time (e.g., every five 
minutes, or at 05:00 every day). More technically, UNIX daemons 
are parentless—that is, orphaned—processes that run in the root di-
rectory. You can create a UNIX demon by forking a child process and 
then having the parent process exit, so that INIT (the daemons of 
daemons) takes over as the parent process.55 

21

55. The following PERL program, for instance, says hello every five minutes (from
http://www.webreference.com/perl/tutorial/9/3.html):

use POSIX qw(setsid);
#turns the process into a session leader, group leader, and ensures that it doesn’t 
#have a controlling terminal
chdir ‘/’ or die “Can’t chdir to /: $!”;
umask 0;
open STDIN, ‘/dev/null’ or die “Can’t read /dev/null: $!”;
#open STDOUT, ‘>/dev/null’ or die “Can’t write to /dev/null: $!”;
open STDERR, ‘>/dev/null’ or die “Can’t write to /dev/null: $!”;
defined(my $pid = fork) or die “Can’t fork: $!”;
exit if $pid;
setsid or die “Can’t start a new session: $!”;
while(1) {
sleep(5);
print “Hello...\n”;
} 

Figure 2. FreeBSD mascot.



UNIX daemons supposedly stem from the Greek word daemon, 
meaning, according to the OED, “a supernatural being of a nature 
intermediate between that of gods and men; an inferior divinity, 
spirit, genius (including the souls or ghosts of deceased persons, esp. 
deified heroes).” A daemon is thus already a medium, an intermedi-
ate value, albeit one that is not often seen. The most famous daemon 
is perhaps Socrates’ daimonion—that mystical inner voice that as-
sisted Socrates in time of crisis by forbidding him to do something 
rash. The other famous daemon, more directly related to those 
spawning UNIX processes, is Maxwell’s demon. According to Fer-
nando Corbato, one of the original members of the Project MAC 
group in 1963:

Our use of the word daemon was inspired by the Maxwell’s daemon of physics 
and thermodynamics. (My background is Physics.) Maxwell’s daemon was an 
imaginary agent which helped sort molecules of different speeds and worked 
tirelessly in the background. We fancifully began to use the word daemon to 
describe background processes which worked tirelessly to perform system 
chores.56

Daemonic processes are slaves that work tirelessly and, like all slaves, 
define and challenge the position of the master. 

The introduction of multiuser, command line processing—real-
time operating systems—necessitates the mystification of processes 
that seem to operate automatically without user input, breaking the 
interfaces’ “diegesis.” What is not seen becomes daemonic rather 
than what is normal, because the user is supposed to be the cause 
and end of any process. Real-time operating systems, such as UNIX, 
transform the computer from a machine run by human operators in 
batch-mode to “alive” personal machines, which respond to users’ 
commands. Real-time content—stock quotes, breaking news, and 
streaming video—similarly transforms personal computers into per-
sonal media machines. These moments of “interactivity” buttress 
the notion of our computers as transparent. Real-time processes, in 
other words, make the user the “source” of the action, but only by 
orphaning those processes without which there could be no user. By 
making the interface transparent or “rational,” one creates demons.

It is not perhaps surprising then that Nietzsche condemned So-
crates so roundly for his daemon (and similarly language of its at-
tribution of subject to verb). According to Nietzsche, Socrates was 

22 

56. “The Origin of the word Daemon.” http://ei.cs.vt.edu/~history/Daemon.html. This
is why Neal Stephenson, in Snow Crash (New York: Bantam, 1992), describes robots or
servants in the Metaverse as daemons.



himself a daemon because he insisted on the transparency of knowl-
edge, because he insisted that what is most beautiful is also most 
sensible. Crucially, Socrates’ divine inner voice only spoke to dis-
suade. Socrates introduced order and reified conscious perception, 
making instinct the critic and consciousness the creator. Perhaps as 
a sign of the desire for the transparency of knowledge—the reigning 
of rationality—daemon is also a backronym. Since the first daemon 
was apparently a program that automatically made tape backups of 
the file system, it has been assumed that daemon stands for “Disk 
And Executive MONitor.” This first daemon is appropriately about 
memory: an automated process, stored in memory, that transfers 
data between secondary and tertiary forms of memory, and that 
stores the code so that it can be viewed as source. Memory is what 
makes possible daemons, makes our media daemonic.57 The ques-
tions that remain are: How to deal with these daemons and their 
alleged source codes? Should these daemons be exorcised, or is this 
spectral relationship not central to the very ghostly concept of infor-
mation and the commodity itself?58 

Code as Re-Source

To answer these questions, let me return to code as re-source, for 
code as re-source enables us to think in terms of the gap between 
source and execution, and makes an interface a process rather than a 
stable thing. This gap complicates any analysis of user determination 
by software: as Matthew Fuller points out, the “gap between a model 
of a function and its actualities . . . in some cases describes a degree 
of freedom, and . . . in others puts into place a paralyzing incapacity 
to act.”59 Reading Microsoft Word’s mammoth feature mountain, 
Fuller compelling argues that the more features offered in an anxious 
attempt to program the user—the more codes provided—the more 
ways the user can go astray.60 Thinking in terms of this gap also means 
thinking of how information is undead; that is, how it returns over 
and over again.61 Second, code as re-source allows us to take seriously 

23

57. See Wendy Chun, “The Enduring Ephemeral, or the Future Is a Memory,” Critical
Inquiry 35:1 (2008): 148–171.

58. See Thomas Keenan, “The Point Is the (Ex)Change It: Reading Capital, Rhetorically,”
in Fetishism as Cultural Discourse, ed. Emily Apter and William Pietz (Ithaca, NY: Cornell
University Press, 1993), pp. 152–185.

59. Matthew Fuller, Behind the Blip (New York: Autonomedia, 2003), p. 107.

60. See Matthew Fuller, “It looks as though you’re writing a letter,” Telepolis. 2001.
http://www.heise.de/tp/r4/artikel/7/7073/1.html.

61. See Chun, “Enduring Ephemeral” (above, n. 58).



the entropy, noise, and decay that code as source renders invisible. 
By taking decay seriously, we can move away from the conflation of 
storage with memory that grounds current understandings of digital 
media. Finally, understanding code as re-source links its effectiveness 
to history and context. If code is performative, it is because of the 
community (human and otherwise) that enables such utterances to 
be repeated and executed, that one joins through such citation. 

This larger view of the performative has been developed by Judith 
Butler, who argues against that the felicity of a performative utterance 
does not depend on the sovereign subject who speaks it. Instead, 
she argues that what is crucial to a performative utterance’s success 
or failure is its iterability, where iterability is “the operation of that 
metalepsis by which the subject who ‘cites’ the performative is temporarily 
produced as the belated and fictive origin of the performative.”62 In other 
words, when a speaker executes a performative utterance, she or he 
cites an utterance that makes “linguistic community with a history 
of speakers.”63 What is crucial here is: first, code that succeeds must 
be citations—and extremely exact citations at that. There is no room 
for syntax errors; second, that this iterability precedes the so-called 
subject (or machine) that is supposedly the source of the code; and 
third, and most importantly, an entire structure must be in place in 
order for a command to be executed. This structure is as institutional 
and political as it is machinic.

To make this point, I’ll conclude by directly addressing an exam-
ple that has “haunted” this essay: the current struggle between free 
software and open source software. At the material level, this dis-
agreement makes no sense, for what is the difference between free 
and open source software, between linux and gnu linux? Nothing 
and everything—an imagined yet crucial difference. According to 
Richard Stallman, the difference lies in their values:

The fundamental difference between the two movements is in their values, 
their ways of looking at the world. For the Open Source movement, the issue 
of whether software should be open source is a practical question, not an 
ethical one. As one person put it, “Open source is a development methodol-
ogy; free software is a social movement.” For the Open Source movement, 
non-free software is a suboptimal solution. For the Free Software movement, 
non-free software is a social problem and free software is the solution.64

24 

62. Judith Butler, Excitable Speech: A Politics of the Performative (New York: Routledge,
1997), p. 51, emphasis in original.

63. Ibid., p. 52.

64. Richard Stallman, “Why ‘Free Software’ is better than ‘Open Source.’” http://www
.gnu.org/philosophy/free-software-for-freedom.html.



The fact that code automatically does what it says is hardly central. 
The difference between open source and free software lies in the 
network that is imagined when one codes, releases, and uses soft-
ware—the type of community one joins and builds when one codes. 
The community being cited here, worked through, is one committed 
to this notion of freedom, to coding as a form of free speech. Open 
source and free software movements are aligned, however, in their 
validation of “open”: freedom is open access.65 

This emphasis on imagined networks I hope makes it clear that 
I’m not interested in simply exorcising the spectral or the visual, but 
am rather trying to understand how its spectrality lies elsewhere. 
Capturing ghosts often entails looking beyond what we “really” see 
to what we see without seeing, and arguably, digital media’s biggest 
impact on our lives is not through its interface, but through its algo-
rithmic procedures. Agre has emphasized its mode of capture rather 
than surveillance—that is, the ways in which computers capture our 
routine tasks as data to be analyzed and optimized, from shopping 
to driving a car.66 Capture re-works the notion and importance of 
access: one does not need a “personal computer” in order to be cap-
tured—all one needs is a RFID tag or to work in a factory or to simply 
be in debt. Capture also emphasizes tactility and the mundane rather 
than the spectacular—but also the political and theoretical impor-
tance of imagining these invisible networks and technologies that 
envelope us in their dense thicket of passive and active signals, 
which can only be imagined. 

This necessary imagining, this visually spectral other, underscores 
the fact that we do not experience technology directly, although to 
what extent human sensory experience or affect is the end all and be 
all of computation remains to be seen, for emphasizing human per-
ception can be a way of clinging to a retrograde humanism. This 
necessary imagining also means that software can only be under-
stood in media res—in the middle of things. “In media res” is a style 
of narrative that starts in the middle as the action unfolds. Rather 
than offering a smooth chronology, the past is introduced through 
flashbacks—interruptions of memory. To return to the parable of the 
six blind men relayed much earlier, this means that the position of 
the blind men who know without knowing is not one that can be 
superseded, but rather the exact position from which we can inter-

25

65. The question that remains, which is the subject of another paper, is: What does this
meaning of open close down?

66. Philip E. Agre, “Surveillance and Capture: Two Models of Privacy,” Information
Society 10:2 (1994): 101–127.



vene and know. Software in media res also means that we can only 
begin with things—things that we grasp and touch without fully 
grasping, things that unfold in time—things that can only be ren-
dered “sources” or objects (if they can) after the fact. 

26 




