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Abstract 

Vanadium pentoxide thin films have been deposited on quartz substrates via sol-gel synthesis and dip 

coating. The process was developed to establish a reliable and inexpensive method to produce thin films 

with a high temperature coefficient of resistance (TCR) for sensing applications. Sol-gel precursor 

concentration and post-deposition annealing conditions were varied to address their effects on film 

composition, morphology, structure, resistivity, and TCR response. The resulting thin films were 

structurally characterized by thin film profilometry, x-ray diffraction, scanning electron microscopy, and 

Raman spectroscopy. Resistivity and TCR measurements were carried out to determine their efficacy as 

sensor materials. Both low and high concentration alkoxide sol-gel precursors led to films of pure α-

V2O5 composition but with characteristically different structural and electrical properties. Low 

concentration films showed a modest decrease in resistivity and TCR with increasing annealing 

temperature, consistent with the formation of increasing grain size and the coalescence of largely planar 

grains with common crystalline orientation. In contrast, films fabricated from higher alkoxide precursor 
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concentration are characterized by a higher density of grains with a larger dispersion in orientation and 

better-developed grain boundaries, leading to a general increase in resistivity and TCR with annealing 

temperature. The TCR of the films lied in the range of -3%°C-1 to -4%°C-1, comparing favorably with 

films produced through conventional techniques such as DC magnetron sputtering, chemical vapor 

deposition, or pulsed laser deposition. Further, their TCR and resistivity characteristics can be controlled 

through sol-gel precursor concentration and post-deposition annealing temperature, indicating that sol-

gel deposited vanadium pentoxide films are promising candidates for infrared sensor applications. 

1 Introduction 

Vanadium oxide has been the focus of widespread interest in industry and academia for its outstanding 

physical properties which include an insulator-to-metal phase transition [1], [2], reversible or 

irreversible crystalline lattice changes during thermal annealing [3]–[5], and a high temperature 

coefficient of resistance (TCR) [2], [6]. The high TCR of vanadium oxide has resulted in its use in 

room-temperature infrared sensing applications [7]–[10]. A broad review of the common deposition 

techniques distinguishes between traditional vacuum methods that require a cleanroom setup for 

accomplishing the task versus room temperature methods whereby the deposition occurs through 

chemical processes that are carried at the ambient temperature. Variations of physical deposition 

techniques such as reactive ion beam sputtering, RF sputtering and e-beam evaporation are some of the 

most commonly employed methods to deposit vanadium oxide thin films [11]–[14]. The majority of 

these techniques produce films with TCR values in the range of -2%°C-1 to -3%°C-1. Recent works in 

the field such as [15], [16] have reported -3.5%°C-1 and -2.8%°C-1 TCR respectively. Amid the high 

uniformity of the deposited thin films, these methods bear high fabrication costs which are associated 

with cleanroom usage while offering limited increase in the TCR of the deposited thin films beyond the 

reported values.  Concurrently, vacuum deposition methods cannot achieve stoichiometric compositions 
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of vanadium oxide layers due to the existence of multiple phases in the vanadium oxygen phase 

diagram, therefore crystalline systems resulting from vacuum deposition methods result in sub-

stoichiometric vanadium-oxygen crystalline structures that may result in less stable materials [5], [17]. 

These techniques, also, yield little control over the oxidation state of the deposited films and often create 

mixed oxide phases which can undergo physical phase transitions as the device heats up when irradiated 

by incident IR radiation [18]–[20]. Physical phase transitions, aside from introducing mechanical stress 

in the thin film, affect the charge transport characteristics of the thin film vanadium oxide [5]. Other 

phenomena such as the insulator-to-metal transition in VO2 can also introduce abrupt changes in the 

deposited materials electrical properties over a narrow temperature range which can be undesirable for 

sensing applications above room temperature [5].  

Both recently and in the past, researchers have investigated room temperature deposition methods such 

as spray pyrolysis, spin coating, drop casting and dip coating [21]–[24]. Due to the nature of the 

deposition techniques, these methods use a precursor that is synthesized prior to the thin film deposition. 

The TCR values for as-deposited thin films this way are not comparable to those from the vacuum 

techniques hence high temperature annealing is needed to increase the TCR values of the deposited 

films. Some of the recent works in the field are reported by [25], [26] with TCR values of -1.4%°C-1 and 

-2%°C-1 for the as-deposited films. Annealing however increases the TCR values significantly. Of the

two most studied cases, vanadium dioxide (VO2) offers relatively higher TCR (~ -4%°C-1) yet is less 

stable whereas vanadium pentoxide (V2O5) offers slightly lower TCR (~ -3.5%°C-1) but is chemically 

stable [17], [25], [26]. Higher density of vanadium oxygen bonds in V2O5 results in broader IR 

absorption spectra hence make the material a more suitable choice for RT IR sensing applications [27]–

[29]. It is therefore important to investigate methods to deposit vanadium pentoxide thin films with high 

purity that are not hampered by the mix oxide phase composition and Vanadium oxide has been the 
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focus of widespread interest in industry and academia for its outstanding physical properties which 

include an insulator-to-metal phase transition [1], [2], reversible or irreversible crystalline lattice 

changes during thermal annealing [3]–[5], and a high temperature coefficient of resistance (TCR) [2], 

[6]. The high TCR of vanadium oxide has resulted in its use in room-temperature infrared sensing 

applications [7]–[10]. A broad review of the common deposition techniques distinguishes between 

traditional vacuum methods that require a cleanroom setup for accomplishing the task versus room 

temperature methods whereby the deposition occurs through chemical processes that are carried at the 

ambient temperature. Variations of physical deposition techniques such as reactive ion beam sputtering, 

RF sputtering and e-beam evaporation are some of the most commonly employed methods to deposit 

vanadium oxide thin films [11]–[14]. The majority of these techniques produce films with TCR values 

in the range of -2%°C-1 to -3%°C-1. Recent works in the field such as [15], [16] have reported -3.5%°C-1 

and -2.8%°C-1 TCR respectively. Amid the high uniformity of the deposited thin films, these methods 

bear high fabrication costs which are associated with cleanroom usage while offering limited increase in 

the TCR of the deposited thin films beyond the reported values.  Concurrently, vacuum deposition 

methods cannot achieve stoichiometric compositions of vanadium oxide layers due to the existence of 

multiple phases in the vanadium oxygen phase diagram, therefore crystalline systems resulting from 

vacuum deposition methods result in sub-stoichiometric vanadium-oxygen crystalline structures that 

may result in less stable materials [5], [17]. These techniques, also, yield little control over the oxidation 

state of the deposited films and often create mixed oxide phases which can undergo physical phase 

transitions as the device heats up when irradiated by incident IR radiation [18]–[20]. Physical phase 

transitions, aside from introducing mechanical stress in the thin film, affect the charge transport 

characteristics of the thin film vanadium oxide [5]. Other phenomena such as the insulator-to-metal 

transition in VO2 can also introduce abrupt changes in the deposited materials electrical properties over 
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a narrow temperature range which can be undesirable for sensing applications above room temperature 

[5].  

Both recently and in the past, researchers have investigated room temperature deposition methods such 

as spray pyrolysis, spin coating, drop casting and dip coating [21]–[24]. Due to the nature of the 

deposition techniques, these methods use a precursor that is synthesized prior to the thin film deposition. 

The TCR values for as-deposited thin films this way are not comparable to those from the vacuum 

techniques hence high temperature annealing is needed to increase the TCR values of the deposited 

films. Some of the recent works in the field are reported by [25], [26] with TCR values of -1.4%°C-1 and 

-2%°C-1 for the as-deposited films. Annealing, however, can increase the TCR values significantly to

about -4% [26]. Of the two most studied cases, vanadium dioxide (VO2) offers relatively higher TCR (~ 

-4%°C-1) yet is less stable whereas vanadium pentoxide (V2O5) offers slightly lower TCR (~ -3.5%°C-1)

but is chemically stable [17], [25], [26]. Higher density of vanadium oxygen bonds in V2O5 results in 

broader IR absorption spectra hence make the material a more suitable choice for RT IR sensing 

applications [27]–[29]. It is therefore important to investigate methods to deposit vanadium pentoxide 

thin films with high purity that are not hampered by the mix oxide phase composition and offer a 

broader IR absorption range for sensing applications [27], [28]. Previous research has demonstrated the 

possibility of solution phase chemistry, such as sol-gel processes, for the synthesis of vanadium oxide 

and deposition methods such as dip coating or spray coating of non-planar surfaces to improve process 

repeatability [30]–[32]. Our work provides a thorough investigation of the development of high purity 

phase crystalline vanadium pentoxide thin films as well as a full structural and electrical characterization 

of the deposited films as a function of precursor concentration and temperature. Table 1 offers a 

comparison between what presented here and the previous work in the field.offer a broader IR 

absorption range for sensing applications [27], [28]. Previous research has demonstrated the possibility 
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of solution phase chemistry, such as sol-gel processes, for the synthesis of vanadium oxide and 

deposition methods such as dip coating or spray coating of non-planar surfaces to improve process 

repeatability [30]–[32]. Our work provides a thorough investigation of the development of high purity 

phase crystalline vanadium pentoxide thin films as well as a full structural and electrical characterization 

of the deposited films as a function of precursor concentration and temperature. Table 1 offers a 

comparison between what presented here and the previous work in the field. 

Table 1 Summary of the previous works in the field and its comparison with the current work 

Reference Material Deposition Method Deposition Temp [°C] Reported TCR [%] Resistivity [Ω-cm] Annealing Conditions 

Current 
Study 

V2O5 Sol-Gel/Dip Coating Room temp -2.5 to -4.4 0.17 – 14 [300,400,500,650]°C for 6 ½  h 

[21] V2O5 Spray Pyrolysis Room temp Not-Reported 1.206 500 ° C for 1h 

[22] VO2 Sputtering Not-Reported Not-Reported 358 400°C for 1h 

[33] V2O5 Atomic Layer Dep. 75 - 250 Not-Reported Not-Reported [250,  450, 700] ° C 

[34] V2O5 Gel Inkjet Printing Room temp Not-Reported Not-Reported Not-Reported 

[35] VO2 / V3O6 mix Reactive Ion Beam 250 - 550 Not-Reported 0.5 Not-Reported 

[15] VO2 e-beam Evaporation 26 - 300 -3.2 1.20 Not-Reported 

[23] V2O5 Spray Pyrolysis Room temp Not-Reported 500,000,000 Not Reported 

[25] VO2/V2O5 Mix Spray Pyrolysis 300 - 500 -4.6 0.2 – 2.8 500°C 

[36] VO2 Sol-Gel/Dip Coat Room temp Not-Reported 2000 [110, 300, 500, 700] ° C for 1h 

[26] VO2/V2O5 mix Sol-Gel/Spin Coat Room temp -0.5 10,000 [530, 580] ° C for 2h 

[37] V2O5 Sol-Gel/Spin Coat Room temp -1.8 to -2.5 0.26 – 2.6 650 ° C for 6 ½ h 

We previously reported typical TCR values of -2.0%°C-1 for thin samples of less than 200nm in 

thickness [37]. We also observed a thickness dependence of the TCR response as well as the resistivity 

of annealed samples to be generally larger than those not subject to annealing. However, our 

observations did not allow us to establish a well-defined link between sample thickness, TCR response, 

and film resistance. In this work, we present the use of sol-gel chemistry to synthesize pure phase 

vanadium pentoxide thin films. We have investigated the effects of alkoxide concentration in the pre-

hydrolysis sol and film thickness as well as post-deposition film annealing on the formation of vanadium 
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oxide thin films. We also present measurements on the thermo-electrical response of the films, which 

exhibit high TCR values needed for RT IR detection. 

2 Experimental 

Thin films of vanadium oxide were deposited onto 0.5mm thick, 25mm×25mm square quartz slides. 

Prior to deposition, the slides were cleaned with powdered soap and coarse brushing, rinsed with 

deionized water, sonicated in acetone and isopropyl alcohol (IPA), each for 30 minutes. The substrates 

were placed in a 120ºC oven and dried over 24 hours prior to deposition to reduce uncontrolled 

hydrolytic condensation of the vanadium sol upon contact with the substrates. 

The vanadium oxide thin films were deposited through controlled hydrolytic poly-condensation of 

vanadium tri-isopropoxide (VO(OC3H7)3), purchased in liquid form from Sigma-Aldrich. The precursor 

was mixed with IPA to form the sol at room temperature. The prepared sol was then magnetically stirred 

for 30 minutes before dilution with an additional 10ml of IPA. The latter was added to ensure that poly-

condensation would occur more homogeneously throughout the solution. The pH of the solution was 

measured three times during the following 120 minutes of stirring and ranged from 3.9 to 4.7. Thin film 

samples were prepared with two different alkoxide precursor concentrations. A low-concentration batch 

was carried out with an alkoxide concentration of 4.00v/v% whereas the high-concentration batch was 

carried out with a 25.33v/v%. The thin films deposited with the low-concentration and the high-

concentration batches are referred to as low-concentration and high-concentration samples throughout 

the rest of the manuscript. 

The poly-condensation of vanadium tri-isopropoxide occurs through a series of complex chain reactions 

that include the occurrence of both condensation and hydrolysis concurrently. The simplified reactions 

are given through [38–42]: 
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(𝐶3𝐻7𝑂)2𝑂𝑉(𝐶3𝐻7) + 𝐻2𝑂 → (𝑂𝐶3𝐻7)2𝑂𝑉(𝑂𝐻) + 𝐶3𝐻7𝑂𝐻 (1) 

(𝑂𝐶3𝐻7)2𝑂𝑉(𝑂𝐻) + (𝐶3𝐻7𝑂)2𝑉𝑂(𝑂𝐶3𝐻7)2 →= (𝑂𝑉 − 𝑂 − 𝑉𝑂) = +𝐶3𝐻7𝑂𝐻 (2) 

The nature of these reactions and the condensation conditions as determined by the ratio of water to 

alkoxide present in the solution dictates the extent to which a long and condensed oxide network forms. 

This ratio can be utilized as a control measure over the density and complexity of the resulting oxide 

network. An automated dip coater was used to coat the substrates at the constant dip and withdrawal 

rates of 75mm/min. Films were deposited by immersing and withdrawing the substrates into the sol 7 

times, with a 120 second wait time between each substrate dip, in order for the deposited layer to 

hydrolyze before subsequent immersion in the sol. In order to better understand the structural and 

conformational transitions of the vanadium oxide sol-gel films upon annealing, four samples from each 

concentration group were annealed at 4 different annealing temperatures (300°C, 400°C, 500°C, and 

650°C) for 6½ hours in a high temperature furnace (Ney-Vulcan 3-550) while one sample from each 

group was kept “as-deposited” for reference.  

2.1 STRUCTURAL CHARACTERIZATION 

All samples underwent structural characterization to investigate the effects of various degrees of thermal 

annealing as well as the changes in the precursor alkoxide concentration on the microstructure of the 

deposited thin films. Sample surface roughness and film thickness parameters were measured using a 

Bruker Dektak XT profilometer. X-Ray diffraction studies were carried out using a Bruker D-8 Advance 

X-Ray diffractometer equipped with a Cu Kα source (λ=1.5406 Å) for 2θ angles between 10º and 90º at

a scan rate of 0.02 °/s. Raman spectroscopy was carried out using a Renishaw Invia Raman spectrometer 
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and microscope. Surface morphology and grain structure of the deposited films were examined using an 

FEI-Nova NanoSEM scanning electron microscope at ×10k, ×30k and ×100k magnifications. 

2.2 ELECTRICAL CHARACTERIZATION 

Interdigitated comb electrodes (5 nm chromium + 150 nm gold) were deposited above the vanadium 

oxide films using a shadow mask and used for the electrical measurements. Each resistor had 14 fingers 

with 100µm width/gap connected alternatively to two contact pads. The electrical resistance of the 

samples was measured as a function temperature using a vacuum probe station with a heated chuck 

(Janis Research model RT-475K-4), a precise temperature controller (Scientific Instruments model 

9700), and a source meter (Keithley model 2400) (see Figure 1). Sample electrical resistance 

measurements were carried out over the temperature range of 36°C to 72°C with a 0.5°C/min 

temperature ramp. We waited ~10 minutes after each temperature change for the sample to reach 

thermal equilibrium with the chuck.  

FIGURE_01 

3 Results and Discussion 

Structural and electrical characterization of the resulting films provides a strong connection between 

vanadium oxide film quality and their resulting TCR and resistivity characteristics.  

3.1 MORPHOLOGY AND STRUCTURE 

Analysis of the average profile heights of the as-deposited and annealed films indicated a significant 

reduction in film thickness after the annealing step. The thickness of the as-deposited high-concentration 

FIGURE_02 
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film is approximately twice the thickness of the as-deposited low-concentration film and both groups 

display a significant decrease in film thickness upon annealing, suggesting that the as-deposited films 

are relatively porous and undergo significant densification when annealed (Figure 2). 

This difference in thickness can be associated with the difference in the precursor alkoxide 

concentration, as predicted by (1) and (2), since increasing the alkoxide concentration leads to a higher 

density of the hydrolyzed oxide network. Profilometry reveals that the average film thickness of the high 

and low-concentration films are approximately 400nm and 50nm after annealing, respectively. 

Figure 3 shows scanning electron micrographs of the low and high-concentration films with the different 

annealing conditions. The as-deposited morphologies in both groups are characterized by continuous 

films with an amorphous structure, whereas both groups show a similar progression from smooth 

connective surface from as-deposited films to densely connected crystallites in the annealed ones. At 

temperatures 400°C and higher, the grain structures become prominent. 

FIGURE_03 

Despite the similarities in structure growth between the two groups, the 650°C annealed samples from 

the high-concentration group, show development of larger and more well-defined crystallites with well-

developed grain boundaries. Additionally, there is an apparently larger number of crystallites and 

orientations in films from the high-concentration group than the low-concentration counterparts. 

Comparable in size and shape, the low-concentration group’s 650°C annealed samples contain less 

densely packed crystallites which have coalesced to form preferentially grown connected networks in 

the (001) direction parallel to the substrate. These observations are in corroboration with the emergence 

of additional less intense peaks in the XRD patterns of the 650°C annealed samples from the high-

concentration group. The XRD patterns for both the high and low-concentration 650°C annealed films 
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are shown in Figure 4. Also shown is a reference powder X-ray diffraction pattern of vanadium 

pentoxide (α-V2O5). The diffraction patterns of both the high and low-concentration samples are 

dominated by a single (001) diffraction peak at ~20.4º in 2Ө, indicating that the sol-gel deposition and 

annealing protocol leads to the deposition of single phase α-V2O5 material that is highly oriented. Our 

data for films annealed at other temperatures reveal that the as-deposited films are nominally X-ray 

amorphous and increase their degree of crystallinity with annealing temperature, as indicated by an 

increasing (001) diffraction intensity in the XRD traces.  

FIGURE_04 

No indication of the formation of other structural forms or oxidation states of vanadium oxide is evident 

from the XRD data. The strong intensity in the (001) diffraction peak is an indicator of (ab) plane 

growth parallel to the substrate (Figure 4-right).  

Notably, there are additional low-intensity diffraction peaks in the XRD pattern of the high-

concentration samples which are not evident in the low-concentration group. These peaks are more 

prominent in samples that were annealed at 650°C than those annealed at lower temperatures but are 

nevertheless present in all high-concentration samples. The presence of a dominant (001) diffraction 

peak and, albeit weak, α-V2O5 diffraction peaks in the high-concentration samples indicates that the 

resulting high-concentration films, while highly oriented, are not quite as well oriented as the low-

concentration films. This reaffirms that the high-concentration samples possess a larger range of 

crystallite orientations than do the low-concentration samples which are otherwise similar in crystallite 

composition.  

FIGURE_05 

FIGURE_06 
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Raman spectroscopy was employed to help identify the phase purity and degree of crystallinity of the 

deposited films and to investigate any effects as the result of the change in concentration of the alkoxide 

in the precursor sol. Well-defined Raman vibrational features begin to appear and grow in intensity for 

films annealed at higher temperatures which is an indicator of formation of larger and denser crystalline 

grain boundaries (see Figure 5). Consistent with the XRD observations, the high-concentration sample 

group shows stronger Raman signals than the corresponding low-concentration films but do not differ in 

other respects, indicating that the alkoxide precursor concentration has no effect on the resulting sol-gel 

chemistry or bonding structure in the final vanadium oxide films, but only results in an effective 

thickness or concentration effect on the final annealed films. The Raman modes appearing at 144, 196, 

(283, 303), 404, (480, 525), 699, and 993 wavenumbers, are consistent with previous observations of the 

lattice phonon mode structure of α-V2O5 [44]–[46] which contrasts the results reported for other 

fabrication methods such as physical vapor deposition (PVD) or pulsed laser deposition where other 

stable oxides of vanadium such as VO2 and V2O3 form upon annealing.  

3.2 ELECTRICAL PROPERTIES 

Figure 6 summarizes the measured resistivity of the deposited thin films versus annealing conditions. 

The measurements were carried out at 46 ºC as described in order to allow the samples to reach thermal 

equilibrium with the heating chuck hence minimize the readout resistance fluctuations, and are plotted 

versus the sample annealing temperature. Similar plot for the room temperature resistances is added for 

comparison’s sake. The as-deposited low and high-concentration samples display resistivity values of 

5.6 Ω-cm and 8.7 Ω-cm, respectively. Annealing the films led to an increase in resistivity except for the 

low-concentration 650 ºC-annealed sample which exhibited a significant drop to a resistivity of 0.17 Ω-

cm.
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The resistivity of semiconducting transition metal oxides obeys a thermally activated hopping 

mechanism characterized by the following relationship [47], [48]: 

𝜌(𝑇) = 𝜌𝑜𝑒
(

𝐸𝑎
𝑘𝐵𝑇

) (3) 

where 𝜌 is the temperature dependent resistivity, 𝜌𝑜 is the resistivity at infinite temperature, 𝐸𝑎 is the 

charge carrier’s activation energy, 𝑘𝐵 is Boltzmann constant, and 𝑇 is the temperature. Consequently, 

the temperature coefficient of resistance (TCR) of a resistor made from such a material, 𝛼, is calculated 

from [47], [48] : 

𝛼 =
1

𝑅0

𝜕

𝜕𝑇
 𝑅(𝑇) = −

𝐸𝑎

𝑘𝐵
∙

1

𝑇2
(4) 

FIGURE_07 

where 𝑅0 is the resistance at infinite temperature. The TCR values for all the samples (annealed and as-

deposited) in both low-concentration and high-concentration groups were calculated via fitting an 

exponential curve to the resistance measurements across a temperature range of 46–70°C with 𝑅2 values

of better than 0.99 for all fitted curves (see Figure 7). The results consistently demonstrated TCR values 

between -3% °C-1 and -4% °C-1 for different samples, compared to typical value of ~-2.5% °C-1 for films 

deposited through DC magnetron sputtering or pulsed laser deposition [6], [15], [49].  

Evident from the measured electrical resistances (Figure 6) and the calculated TCR values (Figure 7), 

the low and high-concentration samples follow different trends in value as the annealing temperature of 

the samples increases from 300°C to 650°C. With an annealing temperature of 300°C, low-concentration 

samples exhibited higher electrical resistance than the high-concentration ones and their electrical 

resistance dropped significantly as the annealing temperature was increased to 650°C. For high-
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concentration samples, however, the electrical resistance was lower for the samples annealed at 300°C 

against those annealed at 650°C. A similar trend is observed for the TCR values of the films. These 

trends can be explained by considering the structural differences between the two batches in the 

development of finer and more pronounced grain boundaries in the high-concentration samples as 

opposed to less densely packed and more coalesced crystallites with less well-defined grain boundaries 

in the low-concentration group (see Figure 3). Since V2O5 samples were developed in ambient 

conditions, they are sub-stoichiometric which indicates they contain oxygen vacancies that can serve as 

defect states for the proposed thermally activated hopping conduction within a given crystalline domain 

[5], [50]–[53]. In the absence of other barriers to charge migration, the formation of larger crystalline 

domains should favor increased conductivity and lower resistivity. However, the formation of grain 

boundaries and an associated inter-grain activation energy that is larger than the electron hopping barrier 

within single grains can impair charge carrier conduction across the sample and between grain 

boundaries as the samples from both groups become more poly-crystallized as a result of annealing. 

Therefore, we can attribute the resistivity in samples from both groups by the competing effects of grain 

size and grain boundary development with annealing. For transition metals, the material's TCR is 

reciprocally related to the electrical conductance and has a direct relationship with the charge carriers' 

activation energy through equation (4). In the case of the polycrystalline materials such as the one 

discussed by this work, the prevalent energy barrier to the charge carrier migration, are the crystalline 

grain boundaries that separate each crystalline domain from the other [54], [55]. 

Although annealing results in an increase in the density and the volume fraction of the crystallites in 

both sample groups, in low concentration samples, the annealing process causes the coalescence of the 

crystalline domains and lowers the density of well-defined grain boundaries, which in turns lowers the 

activation energy that is required for the electrons to overcome the energy barrier. This process results in 
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lowering of the TCR values as a function of annealing temperature. In the case of the high concentration 

samples, the grain boundaries are much more well-defined and spread abundantly across the thin film’s 

surface. As a result, annealing in those samples results in an increase in the thin film’s TCR through 

increasing the activation energy required for conductance [56]–[58].  

The trends observed can attest that the opposing mechanisms at work can yield an optimum ground for a 

choice between the material concentration translated into thickness and the annealing temperature. For 

sensor applications that require CMOS compatibility hence low processing temperatures, low material 

concentration specimens can be used that yield very high TCR in as-deposited form. 

Conclusions 

We have demonstrated that vanadium pentoxide thin films synthesized via the sol-gel method and 

deposited through dip coating exhibit high TCR values, making them suitable for infrared sensing 

applications. We have investigated the effects of the concentration of the alkoxide precursor and post-

deposition annealing temperature on morphology and electrical response of the devices. It was observed 

that the alkoxide concentration during the sol synthesis significantly affected the geometrical and 

crystalline structure of the grown films. In both groups, the crystallites demonstrated a preferential 

layered growth with the crystalline basal layer parallel to the substrate. However, crystallites formed in 

the low concentration films were more oriented than those in the higher concentration films leading to 

the formation of connected crystallites with larger grains for low alkoxide concentration against more 

densely packed crystallites with well-defined facets and grain boundaries for the higher alkoxide 

concentration. Accordingly, the resistivity and TCR properties of the samples prepared with different 

alkoxide concentration displayed opposite trends with annealing temperature, indicating that their 

electrical properties could be tuned by appropriate selection of sol precursor concentration and post-
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deposition annealing conditions. The use of sol-gel deposited V2O5 is a promising approach to the 

development of low-cost IR sensors. 
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Figures 476 

Figure 1 The schematic of the measurement setup that was used to characterize the electrical resistance of 

the samples as a function of temperature 
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Figure 2 Film thickness (derived from the average profile height in profilometry data) versus the annealing 

temperature of the samples 
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Figure 3 The SEM images of a-(i-v) Low concentration samples and b-(i-v) High concentration samples, 

annealed at 300°C, 400°C, 500°C and 650°C, respectively The highest resolution in either group (a-v and b-v) 

depict the sheet structural differences between the low and high concentration groups annealed at 650°C. 

a-v) b-v)
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Figure 4 Left ) The comparison between the XRD traces of low and high concentration samples (top and middle, 

respectively) annealed at different temperatures against powder reference of α-V2O5 (bottom).; Right) the layered 

structure of α-V2O5 
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Figure 5Top) 2D view of the orthorhombic 𝛼 −V2O5 crystal lattice along the (001) direction where line AB 

depicts the crystal packing in the (010) direction. Raman spectra of low-concentration and high-concentration 

samples (middle and bottom, respectively) show identical characteristics with a nearly three-fold increase in the 

peak amplitudes associated with 𝛼 −V2O5 of the high-concentration group compared to the low-concentration 

ones 
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Figure 6 Resistivity of low concentration and high concentration samples at 46ºC as a function of the 

annealing temperature. The high concentration samples follow a general increasing trend whereas the low 

concentration samples electrical resistance drops as a function of the annealing temperature. 
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Figure 7 The TCR of the low-concentration and high-concentration samples at 46°C as a function of the 

sample’s annealing temperature. The inset shows the exponential fit to the measurements for one of the low 

concentration samples annealed at 500°C. 




