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Abstract

The present work uses a novel data source, real-time strategy video game play in StarCraft
2, to study complex skill learning. Chapter One discusses some important desiderata of a
large dataset. Chapter Two discusses domain specifics about StarCraft 2, and introduces
the process by which survey respondents donate digital archives which are parsed to re-
veal second-by-second information about in-game performance of players. Chapter Three
asks how experience should be defined in a complex domain. I find that the common-sense
definition, that experience should be measured soley in terms ot task-specific experience,
misleads researchers by being both overly permissive and restrictive. A better definition
can be achieved by focusing on other forms of experience, such as experience with different
game modes. Chapter Four extends a previous study of age-related declines in a StarCraft
2 cross-sectional dataset. Segmented regression models are used to estimate the onset of
age-related differences. Secondly, I examine the theory that large swaths of age-related dif-
ferences, across a wide array of variables, are attributable to a single general cognitive, but
not psychomotor, factor. I find support for this theory, as a simplified measure of redun-
dant click-speed accounts for about 19% of the shared age-related variance in established
measures of StarCraft 2 speed. In Chapter Five I examine some of the common responses
to the idea that Big Data, and the emerging data sources they employ, could effectively
replace the role of theory in science. I argue, instead, that emerging data sources are a
threat to overzealous generalizations from laboratory grown theories to complex behaviour.
If emerging data sources fulfill their potential as tools for evaluating theory generality, then
scientific standards for making claims about generality could change in pronounced ways.
This would create a bigger gap between empirically grounded generalizations from the lab-
oratory to life and careless generalizations which Frankfurt would call “bullshit.” Finally,
I examine two very different research strategies for going about the evaluation of theory

using Big Data, and point to the virtues and limitations of both.
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Chapter 1

Introduction

With the Big Data revolution there have been a wide array of datasets made available
to researchers, many of which are particularly valuable for the evaluation of psychological
theory. These are sometimes called naturally occurring datasets (Goldstone & Lupyan, 2016)
or, where the researcher is employing data which is automatically recorded by the machines
used by participants outside of the laboratory, naturalistic telemetry (Thompson et al.,
2013). The present work will discuss two independent empirical projects utilizing these
data sources to study skill learning. It will also address the broader question of whether
the Big Data revolution is a boon for psychology. However, given that the use of these
data sources is still relatively new to psychology (Goldstone & Lupyan, 2016; Markowetz,
Blaszkiewicz, Montag, Switala, & Schlaepfer, 2014; Thompson et al., 2013), I postpone the
question of Big Data’s relevance to psychology until after a presentation of the empirical
work.

While the present work begins with two empirical studies before turning to broader
theoretical and methodological issues, a brief discussion of the importance of theoretical
considerations in the evaluation of method is necessary. This is largely because there have
been provocative claims about the capacity of Big Data to replace theory (C. Anderson,
2008). I examine these provocative claims in more detail in Chapter Five but, for the present

purposes, I begin with a discussion of three key desiderata of a naturally occurring dataset:

1. Size
2. Indicators of sample representativeness

3. Longitudinal data

Rather than propose a more exhaustive list, as has been attempted elsewhere (Gold-
stone & Lupyan, 2016), I focus on the importance of theory at the level of method. I will
then outline the specific objectives of the present work, taking for granted that even the

exploratory aspects of the present work is at least somewhat theory-laden.



1.0.1 Size

Large samples are usually an advantage regardless of whether we are thinking about dataset
size in terms of the number of observations per variable (i.e., rows) or the number of variables
(i.e., columns). While there are cases where sample sizes cause methodological challenges,
these challenges can be addressed. For example, one common concern is that Big Data
has a capacity to detect extremely small effects, which means that many non-directional
hypothesis tests will be statistically significant even if the effect sizes are too small to be
important (Lin & Lucas, 2013). Even here, one is free to report effect sizes or, if appropriate,
choose a hypothesis test for which the detection of small effects is actually of interest.
However, data collection can be expensive, and consequently theoretical motivations quickly
become relevant to whether dataset size is worth pursuing. This is most obvious in variable
selection, where we have much more patience for the collection of data on covariates of
direct theoretical relevance. Patience quickly wanes when collecting extraneous variables
which can be ignored without any obvious repercussion, even if they are potentially useful
for followup exploratory analyses. Consequently, size is usually advantageous but expensive,

so researchers must draw on theory to determine whether this investment is worthwhile.

1.0.2 Indicators of Sample representativeness

Sampling bias can be troublesome in telemetry because (a) researchers do not collect data
in their own labs using their own machines and (b) the Application-Programming-Interfaces
(APIs) made available by companies which provide access to data may not be understood
by the researcher. Some APIs used for collecting Twitter data, for example, leave large
amounts of data out and, more importantly, the basis of exclusion may not be random
(Boyd & Crawford, 2012). Furthermore, datasets scraped off the web will lack data on basic
demographics, making it even more difficult to understand whether sampling has been
biased.

If one is willing to put in additional effort, one can secure variables that can help ascertain
whether sampling was biased. The dataset from Thompson et al. (2013), and indeed all data
presented in this work, are based on a hybrid of online surveys and telemetry. This allows
participants to voluntarily donate their data while also allowing researchers the opportunity
to collect demographic information (see Chapter Two for details). This information can be
used to ask whether the sample is representative (e.g., it may be that certain genders were
more likely to go to the website where the survey was posted). The source of sampling bias
in these hybrid methods are of the more traditional sort. The participants sampled are those
that (a) researchers can reach, and in this case reach online, and which (b) are willing to
participate.

What is most important for the present purposes is that the choice of method will

once again be shaped by theoretical considerations. The preference for random sampling



might appear theory-neutral insofar as it follows from basic research methodology and its
underlying philosophy of science. However, random sampling is often impossible to achieve
in practice. In these cases, researchers also need to weigh costs and benefits of collecting

data through different methods. I distinguish four for the present purposes:
1. Traditional sampling methods (e.g., advertised surveys)
2. Data downloaded using tools provided by companies and third parties

3. Scraped data (e.g., using a program to extract web data)

=

. Hybrid approaches

True random sampling may or may no be possible in the above cases. Identifying the
method which produces the least vicious bias is, at least in part, theory-laden. I will use
the example of StarCraft 2 throughout the discussion, but the lesson would hold for any
domain.

One important theoretical decision is whether the data-collection tools offered by com-
panies will lead to greater or lesser sampling bias than the use of online surveys. Online
surveys which advertise to participant video gamers are likely to have more highly com-
mitted respondents (Khazaal et al., 2014), which may explain the large number of skilled
individuals in earlier datasets on skilled StarCraft 2 play (Thompson et al., 2013). An-
other option would be to ‘scrape’ digital StarCraft 2 records off the web using a program
designed to find and download these files. Scraping has two disadvantages in the case of
studying StarCraft 2, however. First, theory might suggest that scraped sampling is likely
to be even more biased in the context of StarCraft 2 research, as this would only sample
individuals willing to post their records publicly. More serious players are presumably more
likely to upload only their best performance. Secondly, the lack of demographic data makes
the understanding of sample bias more difficult. For example, while it appears that women
make up a substantial proportion of video games (Essential facts about the computer and
video game industry, 2017; Video games in europe: Consumer study, 2012), Thompson et
al. (2013) were nevertheless surprised to find that their sample of 3,395 StarCraft 2 players
only contained 29 women, and this knowledge allowed them to restrict any generalizations to
male participants. Scraping methods would have left them blind to these sorts of obstacles
to generalization.

In other cases, there may be clear advantages to relying on industry data sources. For
example, Whitehead and Perry (2017) wanted to understand how pornography consumption
varied by religious background, a question that may be difficult to address using traditional
methods given how the impact of social desirability bias is likely to vary with religious
factors. They used aggregated data on pornography searches by state, which were made
available by Google, to sidestep the plausible influence of social desirability bias on re-

sponses.



1.0.3 Longitudinal data

Naturalistic telemetry allows for the collection of longitudinal datasets that are impossible
to acquire by other means, and the emergence of these data is likely to be more important
for some purposes and less important for others. In the domain of skill research, theoret-
ical issues will likely determine the importance of longitudinal data. For example, classic
research on expertise is dominated by expert-novice comparisons which are the most in-
sightful when expertise is characterized as the simultaneous automatization of subskills. If
subskills develop simultaneously and develop at similar rates, then we can simply look at
the end points of skill learning and reasonably interpolate a developmental story. But it is
not clear that expertise behaves this way outside of very simple tasks. Experts differ from
novices in the provision of educational and cultural resources (Ericsson, Krampe, & Tesch-
roemer, 1993). Consequently, to look at cross-sectional comparisons of experts and novices,
while certainly insightful for certain purposes, is to sample time slices from qualitatively
different developmental stories. From a different theoretical perspective, interpolation of

learning trajectories would be much less contentious.

1.0.4 Goals of the present work

While the abundance of naturalistic telemetry brings new opportunities for science, it has
only been utilized in a handful of skill learning studies (Huang, Yan, Cheung, Nagappan, &
Zimmermann, 2017; Lewis, Trinh, & Kirsh, 2011; Stafford & Haasnoot, 2017; Thompson et
al., 2013, 2014; Thompson, McColeman, Stepanova, & Blair, 2017). The present study aims
to extend prior work by using datasets that have the previously mentioned desiderata. In
Chapter Two, I will describe the methods used to collect the required data. All the studies
presented here will enjoy large sample sizes and at least some access to basic demographic
information. In Chapter Three, I will utilize longitudinal data in studying expertise and, in
Chapter Four, I will employ cross-sectional data which are particularly valuable for testing
the generalizability of theories about age-related change. In Chapter Five I will return to the

broader methodological issue of Big Data’s value to the cognitive sciences of skill learning.

What is experience?

Chapter Three deals with the question of how one might define experience in a longitudinal
study of skill. A brief review of the literature will reveal that this question is important and
that its answer is not necessarily trivial. This is best seen by looking at an example of a
study using naturalistic telemetry to address foundational questions in the psychology of
skilled performance.

Longitudinal studies of skill learning are, of course, not new (Ericsson et al., 1993;
Thorndike, 1908). However, the application of Big Data to the study of skill learning is
still in its very early stages. One attempt has been made by Huang et al. (2017), who had



access to 3.2 million matches of the first-person shooter action video game Halo Reach. More
impressive still, the dataset was a complete census of this game’s first seven months. Such
data are of clear theoretical value to psychology. For example, the nature of discontinuities
in skill learning is a literature spanning 120 years (Bryan & Harter, 1897, 1899; Gray &
Lindstedt, 2016; Keller, 1958). Bryan and Harter (1897, 1899) described discontinuities in
telegraphy skill where listeners struggled to decode incoming messages as fast as they could

be received.

For many weeks there is an improvement which the student can feel sure of
and which is proved by objective tests. Then follows a long period when the
student can feel no improvement, and when objective tests show little or none.
At the last end of the plateau the messages on the main line are, according to the
unanimous testimony of all who have experience in the matter, a senseless clatter
to the student-practically as unintelligible as the same messages were months
before. Suddenly, within a few days, the change comes, and the sense-less clatter
becomes intelligible speech (Bryan & Harter, 1897, p. 52-53).

Such discontinuities in skill learning, if they exist, have deep theoretical significance.
They are predicted, for example, by the view that expertise requires a hierarchy of habits

whereby lower-level skills must be mastered before moving onto higher-level skills.

A hypothesis set forth to explain the plateau in learning is that there is a hi-
erarchy of habits to be mastered by the individual when he attempts to learn
a complex task. After succeeding in the first order, he may be fixated at that
level for some time before becoming able to integrate the patterns needed in the
second-order habits. Information is consolidated and reorganized. An example of
this situation is found in tennis. First-order habits such as learning to stroke the
ball when in a stationary position. Second-order habits could include hitting the
ball while on the move, and a third-order category might include the integration
of effective movement patterns in the game situation. Theoretically, depending
on the manner in which the sport is taught and the performer involved, a plateau

could occur at any one of these transitional periods (Singer, 1975, p.129-130).

In other words, a hierarchy of habits could produce discontinuities in skill learning curves
because, once the prerequisite skill in lower-level habits are reached, or once higher level skills
start being trained, new learning effects associated with higher-level habits come into being.
The existence and timing of plateaus might then provide crucial clues as to how researchers
understand complex tasks. Positing of transitional periods or low-level subskills should be
accompanied by the presence of plateaus (at least for some individuals). Unfortunately it

is difficult to acquire datasets which confirm their existence, but see Gray and Lindstedt



(2016) and Donner and Hardy (2015) for a discussion of some examples. Crucially, Huang
et al. (2017) do find plateaus for some individuals and not others.

Ideally, future work can focus in on frequently occurring plateaus and clarify their nature.
Gray and Lindstedt (2016), for example, argue that many peaks in performance actually
reflect the limitations of a method for accomplishing the task. These have been called ‘spu-
rious plateaus’ (Gray & Lindstedt, 2016; Thorndike, 1913). Consequently, probing plateaus
(or transient dips in performance) could provide hints as to the methods being used by
participants, the motivational factors which allow individuals to practice through difficult
times, and perhaps even the process by which individuals discover entirely new methods of
accomplishing a task.

It is clear that the research of Huang et al. (2017) is of great potential value to psychol-
ogy, but it is important to note that this work requires assumptions about how to define
experience in Halo Reach. Huang and colleagues do not simply define experience as the
number of Halo Reach matches played. They recognize that there are multiple game modes
in Halo Reach such as ‘Slayer’ and ‘capture the flag,” each with different objectives. The au-
thors feared that skill might not transfer from one game mode to another, so they restricted
their analysis to ‘Slayer’ as this was the most common game mode. This choice betrays an
implicit assumption that there will be little or no transfer between game modes.

The implicit assumption that expertise exhibits extreme domain-specificity, by which
I mean that skill in one domain will not transfer to others, is entirely warranted. Indeed,
extreme domain-specificity is considered common wisdom in expertise research. As Fel-
tovich, Prietula, and Ericsson (2006) point out, the oldest empirical evidence of the extreme
domain-specificity of skill is probably Ebbinghaus (1885), who found substantial differences
in memory performance when using nonsense words. Taking individuals out of their do-
main of proficiency (i.e., language) eliminated a domain-specific memory advantage. Today
expertise is seen as an optimization of the cognitive system to the task at hand (Ericsson
& Lehmann, 1996), so one should not assume transfer when task demands change even
slightly. Keetch, Lee, and Schmidt (2008), for example, have found that shots from the
free-throw line in basketball are more accurate than one would predict from the accuracy
of closer and farther shots. Basketball players have spent so much time practicing this par-
ticular kind of shot that they have developed a foul-line shot expertise which is embedded
in the more general domain of basketball (Keetch et al., 2008). This embedded experience
clearly does not perfectly transfer to shots from other distances or angles, or even to jump
shots from the same location (Keetch et al., 2008). If I can find failures of transfer between
similar behaviours (i.e., basketball throws) within the same domain, then it makes sense to
be skeptical that skill will transfer between loosely similar modes of video game play.

Huang et al. (2017), therefore made a sensible decision to restrict their analysis to
one game mode within Halo Reach. What remains problematic, however, is that skills do

sometimes transfer, often in ways that are difficult to foresee. Basketball players exhibit



better than average accuracy in dart throwing, but lack attentional indicators of expertise
found in skilled basketball and skilled dart throwing performance (Rienhoff et al., 2013).
An even more dramatic example comes from the literature growing around the question of
whether video game practice transfers to basic cognitive abilities (Green & Bavelier, 2003;
Green et al., 2017; Redick, Unsworth, Kane, & Hambrick, 2017; Unsworth et al., 2015). A
review of the literature about the relationship between basic cognitive abilities and video
game performance is beyond my present scope. However, the fact that these transfer effects
are still debated after almost fifteen years of research is further evidence that transfer-effects
can be counter-intuitive, and therefore questions of transfer should be resolved empirically
on a case-by-case basis.

A major challenge that the existence of transfer brings to expertise research is that
otherwise sensible definitions of experience may be inadequate in light of unintuitive facts
about skill transfer. Huang et al. (2017) have good reason to think that different game modes
of Halo Reach will not transfer perfectly as the players are likely optimizing their cognitive
systems to entirely different objectives. But it remains possible that there are important
sources of imperfect transfer across game modes. More problematic still is the possibility
that some players have different play-styles, such as ‘run around shooting everything that
moves’. Some play-styles might transfer across game modes better than others.

Consequently, future work using Big Longitudinal Data will undoubtedly rely on in-
creasingly careful operationalizations of experience, as how experience is defined obviously
impacts the learning curves which are typically of interest. In the case of examining plateaus
of skill learning, including irrelevant experience in the operationalization could produce
discontinuities in learning curves. Players who intersperse game modes ignored by the re-
searcher into their play, and learn from this experience, will exhibit transient speedups in
learning. Researchers might incorrectly assume that these speedups reflect moving beyond
a ‘spurious plateau’ (Gray & Lindstedt, 2016; Thorndike, 1913), or a limitation on perfor-
mance that individuals can surpass with more motivation and effort or a better method.
Since examining the learning curves of skill acquisition assumes an adequate operational-
ization of experience, and since the shape of learning curves has been such a prolific area
of research, it makes sense that early longitudinal explorations of naturalistic telemetry
should focus explicitly on the question of how experience should be defined in the context
of StarCraft 2 research on skill. Chapter Three will be focused on selecting an empirically

informed operationalization of experience and reporting some preliminary findings.

Finger tapping in StarCraft 2

While there is a prima facie case to be made that naturalistic telemetry can be a useful tool
for examining the generalizability of psychological theory, there are still only a handful of
examples. One useful example is J. R. Anderson and Schooler (1991) research using New

York Times headlines, existing databases of children and parents talking, and a collection of



emails. They showed that classic effects of frequency, recency, and spacing which typically
explain memory performance (Ebbinghaus, 1885) also predict the probability that a word
will appear on the 101st day of study. This invites the speculation that our memory system
has the learning and retention curves that it does because our memory system is adapted
to remember items that we are most likely to need. Rather than reflexively viewing the
properties of forgetfulness as a limitation of the cognitive system, such work could help
reorient our thinking about findings in the memory literature. This work could contribute
to theory in a number of indirect ways, but one specific impact is that it could alleviate
the need for a theory of why the memory system has the limitations it does. Chapter
Four attempts to provide a similar contribution to the study of age-related change using
naturalistic telemetry from StarCraft 2 data.

Not surprisingly, some theories will generalize better than others when examined from
the purview of StarCraft 2 data. For example, Thompson et al. (2014) examined whether
the cross-sectional findings of age-related decline (Salthouse, 2009; Schroeder & Salthouse,
2004; Tsang & Shaner, 1998) would be found in the context of StarCraft 2 response speeds.
Some of the predicted effects, such as the predicted slowings in response times across age,
were found. Other expected effects, such as age-related slowing in dual-task performance
(Verhaeghen, Steitz, Sliwinski, & Cerella, 2003), or the capacity of expertise to prevent age-
related slowing in response speeds (Bosman, 1993; Salthouse, 1984), were not found. The
failure of expertise to ameliorate slowing was especially surprising as older typists appear
to overcome the effect of age by reading farther ahead (Bosman, 1993), and StarCraft 2
contains a rich interface that presumably provides many more avenues of compensation than
a type-writer. The failure to find declines in dual-task performance was similarly puzzling.
One possibility was that some unknown factor was bolstering the dual-task performance of
older individuals, obfuscating declines.!

Chapter Four extends the previous analysis of age-related differences in StarCraft 2
(Thompson et al., 2014). While the previous work presented compelling evidence that Star-
Craft 2 players slow with age, this finding had relatively narrow theoretical relevance. It is
useful to know that the cross-sectional laboratory declines (Salthouse, 2009; Schroeder &
Salthouse, 2004; Tsang & Shaner, 1998) occurring in people’s 20s may be impacting perfor-
mance in much more complex task domains, but these results do not speak in favour of any
particular explanation for these declines. Chapter Four targets the processing speed theory
from Salthouse (1996), which implies that many of the observed age-related declines are due
to a single underlying construct that Salthouse called ‘processing speed.’ I develop a speed
measure in StarCraft 2, Right-Click Latency, which is potentially influenced by processing

speed yet presumably imposes far fewer cognitive demands on the participant. I then probe

LOf course, it is logically possible that our best theories of aging simply do not generalize as well as we
had hoped.



it for possible age-related decline, and consider whether it might explain the relationships
observed in Thompson et al. (2014).



Chapter 2

Methods

2.1 StarCraft 2

StarCraft 2 is a real-time strategy game where players manage a civilization and try to

destroy an opponent’s civilization. This requires balancing the needs of collecting resources

with the creation and maintenance of an army. There are a few features of the game which

are especially relevant to cognitive scientists. While I postpone the details of how StarCraft

2 data are collected until later in this chapter, readers can assume that comprehensive data

are available at the level of second-by-second performance (one observation per action) and

at the level of the game-level (one observation per game).

2.1.1 Features of StarCraft 2

1.

StarCraft 2 occurs in real time (making speed advantageous).

. Most army commands in StarCraft 2 are reversible (the accuracy of clicks is very

important only rarely).

. Games begin with the same starting conditions for all players, which includes a base

(Figure 2.1 D) and a handful of workers (Figure 2.1 E).

To command pieces, players must select the units with their mouse. The player in
Figure 2.1 has selected the unit at location E, and the game confirms this selection in
panel B. The available commands for this unit are displayed in Figure 2.1 C. Managing
units becomes more demanding as civilizations grow, and strong players can assign

units to hotkeys which allows them to select these units with a keystroke.

. Balancing military and economic considerations requires frequent task switching (three

kinds of task involve ordering the production of workers (Figure 2.1 E), expansion of
the civilization to new bases (Figure 2.1 D), and movement of the army (Figure 2.1
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Figure 2.1: An example StarCraft 2 play as the ‘Protoss’ race. A: a miniature map that
contains gross information about the entire play area. Gross information becomes available
as players move their units across the map. B: information about the currently selected
unit (a probe). C: possible commands for the selected unit (Commands can be issued by
mouse or by keystroke). D: the command structure for Protoss. This command structure
can be used to produce Probes. E: a selected probe, which is used to collect resources and
operationalization new buildings. F: a military unit.

6. Players only receive gross information about the current game-state from the minimap
(Figure 2.1 A), and must therefore shift the viewscreen (the area occupied by Figure
2.1 D,E, and F) to allocate their attention to a new portion of the game map. The
interface allows for more and less efficient ways of moving the view screen. Methods

include:

(a) placing the mouse in the corner of the viewscreen to drag the screen gradually.

(b) clicking on a portion of the minimap with the mouse to place the viewscreen over

that location.

(c) double-tapping a hotkey associated with a unit to place the screen over top of

the unit.
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7. Regardless of how a player moves their screen, they have imperfect information about
the game-state (see black area in Figure 2.1 A). Only when units move around the

map can players receive detailed information about their opponent’s actions.

8. StarCraft 2 players can play as one of three unique ‘races’, which differ slightly in

terms of game-play mechanics.

APM

Action latency

Gap between PACs
Number of PACs
Workers made

Select by hotkeys
Assign to hotkeys
Actions in PAC
Minimap attacks
Minimap right-clicks
Complex abilities used
Unique units made
Complex units made
Unique hotkeys

Total map explored

Control

Figure 2.2: A depiction of predictive importance of fifteen performance variables from
Thompson et al. (2013). Skill is defined in terms of eight increasingly prestigious leagues
(‘Bronze’, ‘Silver’, ‘Gold’, ‘Platinum, ‘Diamond’, ‘Master’, ‘Grandmaster’, and ‘Profes-
sional’). For more information on skill, see Section 2.2. Each column depicts 25 conditional
inference forest binary classifications of skill using fifteen performance variables and a ran-
dom noise control. Within-cell numbers reflect the ranking predictive power, based on the
median permutation importance index of 25 runs of the classifier. White numbers depict
significantly predictive variables based on the criteria found in Linkletter et al. (2006). Vari-
ables are significantly predictive iff their median permutation importance score is above the
95th percentile of the control.

Even this abbreviated description of StarCraft 2 reveals much of psychological interest in
the game. Features 1 and 2 suggest that StarCraft 2 is a good domain for testing cognitive-
motor speed as the importance of accuracy is relatively less. This makes speed-accuracy
trade-offs less likely. Feature 4 implies that players must make good use of the game interface
to manage the complexity of a larger civilization. Indeed, Thompson et al. (2013) found
that the use of hotkeys to select units was predictive of skill in StarCraft 2 (also see Figure
2.2). Feature 5 betrays the dual-task nature of the game, and this feature colours the

interpretation of any StarCraft 2 meta-data. For example, Thompson et al. (2013) found
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that the number of workers produced was an important predictor of StarCraft 2 skill when
distinguishing novices. They hypothesized that these differences in the number of workers
trained was due to overwhelmed cognitive load (Thompson et al., 2014). Weaker players
were unable to keep up the periodic production of workers without being distracted by other
aspects of the game.

Features 6 and 7 are foundational for the present work. Screen movements in StarCraft
2 can be very chaotic (especially when the screen is moved using Feature 6a). Consequently,
screen movement data in StarCraft 2 present some of the same methodological problems
as raw gaze data in eye-tracking research (see Figure 2.3). To deal with this problem I
use an dispersion-threshold algorithm (Salvucci & Goldberg, 2000) which aggregates raw
attentional data into screen fizations, periods of time where player screens are falling within
a relatively small area. The algorithm proceeds by taking tentatively placing screen move-
ments within a fixation and calculating the smallest rectangle which would encompass all
of the screen movements in the fixation. If the sum of the length and width of the rect-
angle is greater than 6 game coordinates, then the screen movement is removed from the
list of movements associated with that fixation. Finally, if the final collection of screen
movements occupies more than twenty game timestamps (about 226 milliseconds), I posit a
fixation. The fixations duration is determined by the time span taken up by the component
screen movements, and its location is determined by averaging the coordinates of the screen
movements.

The definition of fixations is foundational to the present work. The time from the onset
of a fixation to the first action within the fixation (assuming there is such an action) is
called the screen fixations First Action Latency (or FAL). There are many fixations per
game, and aggregations of First Action Latencies have been used to predict skill (Thomp-
son et al., 2013), examine age-related differences (Thompson et al., 2014), and examine
whether motor control theories generalize well to StarCraft 2 (Thompson, McColeman, et
al., 2017). However, while previous work has been content to use mean First Action La-
tencies, the present work will rely on median FALs, as within-game distributions of First
Action Latencies are usually strongly skewed.

Feature 8 has been a nuisance variable in previous work on StarCraft 2 (Thompson,
McColeman, et al., 2017), as researchers have been interested in more general claims about
StarCraft 2 performance, rather than subtle race differences. In StarCraft 2, players must
play as one of three different ‘races,” each with subtle gameplay differences. For example,
the ‘Terran’ pieces are trained from flying production structures, the ‘Zerg’ pieces are grown
from larva that appear at the command structure, and a portion of the ‘Protoss’ pieces can
emerge from any location the player chooses (as long as this location is close to certain Pro-
toss buildings). The races also have different units with different strengths and weaknesses.
These differences appear to come with some performance differences, with Zerg players typi-

cally appearing faster. On the other hand, all races have command structures which produce
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Raw gaze co-ordinate Gaze fixations

Fixation Algorithm

Raw screen co-ordinate Screen fixations

Fixation Algorithm

Figure 2.3: Illustration of screen fixations: The same algorithms (Salvucci & Goldberg, 2000)
used for aggregating gaze movements into fixations (e.g., top), is employed to aggregate
screen movements into screen fixations (bottom).

workers that mine and build military structures. The mechanics for controlling pieces and
moving the screen is also the same across all races, so it is possible to compare races quanti-
tatively. Nevertheless, differences between the races makes perfect transfer of learning from
one race to another seem rather unlikely. Consequently, race will be an important variable

when I consider how to define experience in Chapter Three.

2.2 Skill and the StarCraft 2 Community

The best StarCraft 2 players can safely be called experts. Players compete professionally for
prize pools of as much as 1,000,000 dollars (Esports world championships at Blizzcon 2016,
n.d.), and receive sponsorships from major corporations (Team Liquid: Personal Sponsor-
ship, n.d.).

StarCraft 2 professionals often practice full time in ‘gaming houses’, were players train
with other professional players. One of the few peer-reviewed studies on the practice habits

of professional e-sport players reports that, contrary to media reports of professional players
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training 10-14 hours a day, they practice ab average of 5.28 hours a day, which typically
includes about an hour of exercise (Kari & Karhulahti, 2016). One difficulty of this study
was that it had a relatively small sample (115 individuals) spanning multiple e-sports, and
only 13% of the participants in this study were StarCraft 2 players. A second issue is that it
did not report data on top-tier professional players, suggesting that these extreme experts
might practice even more. However, these results do fit with data on hundreds of high
level amateur players from Thompson et al. (2013), who reported around 3.8 hours a day.
Finally, 4 hours of practice per day fits well with classic studies on deliberate practice in
violin experts (Ericsson et al., 1993).

Further evidence that StarCraft 2 is a game of skill is that its developer needs to take
care matching players against others of similar skill. All those playing competitively online
are organized into seven leagues (Bronze, Silver, Gold, Platinum, Diamond, Master, and
GrandMaster). Underlying these placements are, at the time of data collection, players’
hidden match making ratings (MMR). The primary goal of this system is that players of
equal ratings should have an equal chance to win. The algorithm underlying MMR is kept
hidden by the game developer, but it has been reported that the algorithm is similar to
match-making systems in other video games (Battle.net Leagues, n.d.). If so, I can assume
that, at the very least, winning matches against better opponents raises or lowers MMR
based in part upon the skill of the opponent (Herbrich, Minka, & Graepel, 2007). If StarCraft
2 were not a game of skill, there would be no need to implement such a ranking system.

StarCraft 2 can be played with other formats. Players can compete online in 2v2, 3v3,
and 4v4 games, where a team-based MMR allows for matchmaking. However, while Star-
Craft 2 allows for many game-types, 1v1 performance is the standard of StarCraft 2 exper-
tise. Professional StarCraft 2 is almost exclusively 1v1. It is less clear whether other game

formats constitute a domain of expertise in the same way that 1v1 performance does.

2.3 Data Collection

All of the data presented in this work were collected using online surveys and replay file
donations. A call for participants was sent out on various websites frequented by StarCraft 2
players, including TeamLiquid.com and Reddit.com/StarCraft. Participants gave informed
consent, filled out an online survey, and donated a recent replay file.

The present work relies on two datasets. The first dataset, which I will call the cross-
Sectional dataset, was used in previous work (Thompson et al., 2013). It includes 3,307!

individuals from seven levels of skill. Each participant completed a survey and donated a re-

1The sample size differs slightly from the original study because of parsing differences and the recognition
that a few individuals were able to submit two replays. These individuals have been dropped.
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cent 1v1 replay. The dataset also only contains 29 female participants, so no generalizations
will be made to female populations based on these data.

My longitudinal dataset was collected later on. Despite a few minor changes to the
survey questions, the big difference between the two studies was that, in the longitudinal
study, I was only interested in participants who could donate at least 300 replays. Collecting
this many replays is easier than it might sound as StarCraft 2 allows players to save all of
their replays by enabling a feature in the game options. Importantly, the survey respondents
contained two Female participants and 101 males. One player preferred not to answer, and
one player listed their gender as ’Other.” Consequently both datasets lack information on

non-male players, so I will restrict any generalizations to males.

2.4 Flow of Data Processing

When a StarCraft 2 game is played, users are allowed to save their game in a ‘replay file’
The main purpose of these files is to allow users to watch their previous games and improve.
However, replay information is not stored as a collection of pixels like a video might be.
Instead, replay files contain records of every action performed by a player within a game.
This allows entire games to be reconstructed by using the StarCraft 2 engine and a small
log file.

I used the software SC2Gears (Belicza, 2014) to unparse replay files into three text
files. One file a series of actions within the game, a second included metadata about the
game (including information such as the date of the game), and a third contained data about
player chat. These data were then uploaded to MySQL tables. A series of Python and Matlab
scripts aggregated these data into higher levels of analysis. This includes aggregating the
screen movements of individuals into screen fixations, and calculating key variables.

Finally, a series of Matlab scripts checked the database for consistency and rooted out
games which needed to be excluded. Out of the original 164,001 games that reached the
game level, I excluded 44,589 meaningless games whose data I cannot interpret. These are
games which failed a test of data integrity (0 games), could not be paired with a survey
respondent (16,801 games), were associated with multiple survey respondents (9,619 games),
appeared to possess impossible game versions (29 games), appeared to be duplicates based
on a file size identifier (1 game), or appeared to be played by the same players, on the same
date, and time (8 games). An additional 35,835 were dropped because the survey player’s
character name could not be identified in the game, and 5,240 were dropped for having
fewer than 100 rows of raw data (typical games contain many thousands of rows).

Secondly, an additional 35,982 games were judged as meaningful but were not in the
format that is indicative of StarCraft 2 expertise. Across the entire 164,001 games of the
dataset (which includes meaningless games), 53,261 had the wrong format (games which

were not played on ‘faster’ speed, were not 1vl games, or were not matched against an
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opponent online using Blizzards match making system). Furthermore, 8,834 were dropped
for involving at least one computer player, 32,570 were dropped for having the wrong number
of clients associated with the game?, and 9,874 were dropped because they appeared to
contain a third-party observer. Finally, one game, which passed all the required tests, was
missing from the final dataset due to human error, and one player was dropped for having
only five games contribute an observation to the dependent variable.?

I do not attempt to explain performance within these games (i.e., they do not constitute
an observation on the DV), but they are reflected in a player’s history (e.g., in the number
of 2 versus 2 games played). This resulted in a dataset of 83,429 games (about 20,850 hours
of performance) across 107 individuals. An additional game was dropped because the survey

player did not register any screen fixations.

2.4.1 Lag and Resolution

StarCraft 2 is a multiplayer game, so the current game state must be updated across all
players. Over the course of a second of play time, the StarCraft 2 engine ensures synchrony
a number of times. At these transition periods the actions of individuals receive a times-
tamp based on when the game state is synchronized. While the details of this system are
not given by the game manufacturer and likely change over time, it is clear that they lead
to somewhat discontinuous latency data. For example, in the skillcraft database of 996,163
fixations (Thompson, McColeman, et al., 2017) with at least one action, the smallest laten-
cies are noticeably bunched up. There are 54,534 first actions with a latency of zero (which
are either extremely fast or brought about by a lagged network connection and delayed
synchronization), 21,853 games with a latency of 90 milliseconds, 98,371 first actions of
135 milliseconds, and 47,124 have a latency of 226 milliseconds. Given that these discrete
jumps can come close to 100 milliseconds, I need to be careful about interpretation of an
individual speed measurement. It also means that there will be disadvantages of both the
mean and median when aggregating across a single games performance data. The means are
potentially problematic because latencies will exhibit a floor effect, leading to values that
might be heavily impacted by outliers. Medians are problematic because they will greatly

reduce the number of unique values for any given measure (e.g., 10% of the games may

2In the replay file, a game client could be a player or an observer who watches the game without partic-
ipating. A 1v1l game which is set up using Blizzards match making system will have exactly two clients.

31 take the one missing game to be completely missing at random because every game appears to have
had an equal chance of being missed in this way. I do not bother with imputation because it is only one
game.

Tt is important to note that it is possible that I have not sampled all the games from each player,
especially older games from early in the player’s career. I need to acknowledge that individuals will likely
start with different intercepts, perhaps because of prior experience with other real-time strategy games or
perhaps even prior experience with StarCraft 2.
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end up taking on the same value). Here I generally give preference to medians despite its

disadvantages because there are still many unique values of FAL.
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Chapter 3

What is Experience?

In laboratory studies, a workable operationalization of experience is usually freely available
and obvious. For example, if one is running a learning study with exactly one exposure to
a stimulus per trial, then it usually makes sense to measure experience by the number of
trials.

In cases where the dependent variable is sampled throughout the entire experiment (such
as measures derived from eye tracking), there may be a choice as to whether to measure
experience in terms of trial number or time. The choice matters somewhat, for example, in
tasks where trial duration decreases with experience. One definition may be more convenient
than another, or yield easier interpretation. But as Chapter Two makes clear, StarCraft 2
contains a number of game modes and races which may or may not transfer. One might
argue that similar difficulties arise for any complex skill.

It is worth the effort to contemplate the distinction between transfer and learning, given
that both imply a change in behavioural capacities based on experience. One might be able
to keep questions of transfer and learning separate if there were clear boundaries for what
constituted domain performance. In this case, learning would refer to skills acquired from
intra-domain experience, while transfer would refer to skills acquired from extra-domain
experience.! For example, the present work can sidestep the question of how basketball skill
transfers to StarCraft 2. Basketball is so far outside of the domain of StarCraft 2 that one
can sensibly study learning in StarCraft 2 while acknowledging that an understanding of
transfer will eventually be needed in any complete theory of StarCraft 2 performance. The
problem is that in complex environments, the boundaries of what constitutes StarCraft 2 are
somewhat fuzzy. Games with four StarCraft 2 players are almost never seen in professional
StarCraft 2 (and it is not possible to be full-time professional 2v2 StarCraft 2 player), but

the close relationships between the game modes are obvious to anyone experienced in the

!This idea is owed to helpful conversations with Kathleen Slaney.
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game.? It is also unclear whether I can say that a professional Terran player who, for the
sake of a charity event, plays as the Zerg race, is still playing the same game. Given the
remarkable consistency in which professionals select their races, there is an argument to
be made that expertise should be restricted to a chosen game race. It is not obvious, for
example, that a ‘Terran’ professional who switches to ‘Zerg’ overnight is still an expert in
StarCraft 2.

Since the boundaries of what constitutes competitive StarCraft 2 are so fuzzy, I do not
make any effort to distinguish between the intra-domain learning effects and extra-domain
transfer effects3. What is important is that the resemblance between the different kinds of
StarCraft 2 are so strong that I must address the question of whether to include or exclude
these sorts of data in an analysis of performance. Unlike the question of whether basketball
transfers to StarCraft 2 performance, which is understandably put aside for future work,
decisions about what to include in the operationalization of StarCraft 2 experience could
impact results substantially.

Operationalizations of experience can be too broad or narrow, and either mistake could
undermine an analysis of performance. If they are overly broad, learning curves can form
discontinuities as participants pile up heaps of experience that are not relevant to perfor-
mance. If the definition is too narrow, then I might expect inexplicable leaps in performance
as participants draw on experiences which researchers have overlooked. Both problems could
obfuscate the effect of experience on performance. Furthermore, since the shapes of learn-
ing curves are of theoretical relevance in themselves (Bryan & Harter, 1897, 1899; Gray
& Lindstedt, 2016; Keller, 1958), the presence of potentially artifactual discontinuities is a
serious methodological problem.

In the next sections I will address an approach for dealing with this methodological
problem. For now, it is important to be clear that evaluating claims about transfer will
need to be, at least in part, an exploratory analysis. This is because facts about which skills
will transfer in a new domain are poorly understood and often counter-intuitive. This makes

it difficult to formulate predictions about when transfer will be observed.

2Tt is worth emphasizing that the game rules are consistent across these game modes. The only difference
is the number of players on each team. This difference, however, can have pronounced consequences for what
constitutes an adaptive strategy. For example, the combined forces of two players will usually be able to
overwhelm a single opponent early in the game, making it important for team mates who are positioned
far apart to be ready to support each other on short notice. Websites offering advice to players who want
to play 2v2 competitively often acknowledge that this sort of ‘early pressure’ is more effective in 2v2 games
(Andress, n.d.). At least one such site (Andress, n.d.) points out that the success of early pressure may
change the nature of the StarCraft 2 information access problem. It is often useful to scout the opponent’s
base to ascertain their strategies. In 2v2 games, they argue that scouting is more important because it allows
a team to station both of their armies in locations that will receive early pressure.

3Recall that Wittgenstein (1953) used games as an example of classes for which membership needs to be
thought of in terms of resemblance rather than necessary and sufficient conditions. If he was right, providing
necessary and sufficient conditions for what constitutes StarCraft 2 may be similarly futile, even though all
the game modes of StarCraft 2 are played within the official ‘StarCraft 2’ game software.
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3.1 Variables

Because the vast majority of professional StarCraft 2 games are 1v1, it makes sense to treat
1v1l performance as the primary explanandum for a theory of skill learning. My data will

contain one observation for each meaningful 1v1l game a player has.

e First Action Latency Medians (medianF AL): A First Action Latency is the time
between the onset of a screen fixation and an action (also see Chapter 2.1.1). I take
the median First Action Latency for every 1vl competitive StarCraft 2 game. It is
useful to note that, because of issues with lag and resolution discussed in Chapter

Two, median FAL will have fewer distinct values than I would like (see Table 3.1).

e lvly,: Since I am trying to explain 1vl performance, it makes sense to begin from
the assumption that the best measure of skill is the number of competitive 1v1 games

played.

e Race: a nuisance factor indicating whether the player chooses to play the Terran, Zerg,
or Protoss race. Some races tend to be faster than others (Thompson, McColeman, et
al., 2017).

® Pryy, Tryy, Zeyy: indicators of the number of 1v1 competitive games (games where
teams are matched online using the developer’s skill-based match making system)
played as a particular race. These variables allow for more narrow definitions of ex-

perience as being specific to a particular race.

e 2v2,,: indicators of the number of competitive games (games where teams are matched
online) played with exactly two opponents on each team. This is the second most

common format for a game, with 1vl games as the most common.

e N —202,,: the number of competitive games (games where teams are matched online)
that are neither of the 1v1 or 2v2 format. This includes 3v3 games, 4v4 games, custom
games (which include other formats), and Free-for-all games. From Table 3.2 it is
clear that the most common formats in this category are 3v3 and 4v4 games. The
lone custom game was listed by my system as having five players, which may have
occurred because a player left the game before having actions logged into the replay
file.

3.2 The Distribution of Skills in the Longitudinal Sample

It is sensible to get a sense of the distribution of skill levels in my longitudinal data before
addressing my research questions. It would be useful to know, for example, if my participants

were predominantly skilled players.
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median FAL (raw timestamp) Frequency
A\

0 2
10 1
12 207
16 133
18 7
20 1156
22 54
24 4018
26 49
28 1734
30 59
32 6461
34 276
36 9085
38 109
40 2476
42 120
44 22586
46 653
48 8011
other 26232

Table 3.1: Unique median FAL values.

Unique game formats

count

102,549 (83,429)
9,031 (8,452)
3,882 (3,706)
2,955 (2,115)
201 (1)

791 (632

)
3 (0) Unknown

format
1vl
2v2
3v3
4v4

Custom

FFA

Table 3.2: Counts of meaningful StarCraft 2 games by format. Note that only a subset of 1v1
games satisfy my definition of true competitive starcraft and thus contribute an observation
to the dependent variable (see 2.4 for details). Also note that games with more than two
players only will count as experience if the game was confirmed to be a competitive game
(see 2.4 for details). The number of games that count towards an individuals potential

experience is listed in parentheses.
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Although I have access to some MMR, data, it is not ideal for this purpose as this data
only covers a small number of participants, and it only estimates their skill after the release
of ‘StarCraft 2: Heart of the Swarm’. Instead, I compare participant mean FALs* against
the mean FALs typically observed in the cross-sectional dataset. Note that I use mean FALs
rather than median FALs for this purpose as I only use performance measures to get a rough
indication of player skill. The mean FALs are more appropriate for this purpose given their
appearance in previous work (Thompson et al., 2013), while median FALs appear more
appropriate as a non-biased indicator of the central-tendency of a player’s performance
latencies.

I employed a sample of 82,534 out of the total 83,429 possible games for this sample
because of the unavailability of both median and mean FALs.> Mean FALs tended to be
about 141.5 milliseconds longer than median FAL due to the presence of outliers in the
distribution of First Action Latencies (see Figure 3.1).

Figure 3.2 shows how the mean FALs of players in the longitudinal study stack up
against the mean FALSs of players from the cross-sectional dataset. It initially appears that
bronze and silver players may be somewhat underrepresented in the dataset here. However,
a look at Figure 3.3, which shows the first fifty games from each player, suggests a more
balanced sample of skills. The apparent underrepresentation of novices in Figure 3.2 may

therefore be partially due to early learning effects.

3.3 Analytic Strategy

I want to explain 1vl performance, so my initial approach will be to assume that the
best operationalization of experience is direct experience with the target domain. So my
presumptive definition of experience is the ‘number of 1v1 games played.’ Since the presump-
tive definition could be misleading, I then look for evidence in favour of more restrictive
definitions (such as Pryp, Trap, and Zeyy). Finally I will examine whether the definition
also needs broadening (perhaps by including experience from other game formats such as

202, and N — 2v2,,). The analytic strategy will be as follows.

1. Begin with a prior operationalization of experience which directly matches the target

domain (1vlgy).

“Recall that Thompson et al. (2013) identified mean FAL as a robust predictor of skill in StarCraft 2.

®Missing games were missing due to human error in the parallel processing of mean FALs, so I treat them
as completely at random and drop them from the dataset for this analysis.

51t is worth noting that Figure 3.1 compares mean mean FALs from a cross-sectional dataset to median
mean FALs from the longitudinal dataset (These correspond to the bars at the centres of each box).
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Figure 3.1: Histogram of the differences between mean and median FAL. It is important
to note that 95 extreme differences are dropped for the purposes of visualization, and that
data are not independent (there are multiple observations per player). These plots are based
on a subsample of the dataset with only 82,534 games out of the total 83,429.

2. Construct a presumptive model relying on this definition of experience. Modify exclu-
sion criteria as necessary.

3. Test the presumptive model against more complex models which include multiple
measures of experience, including experience in particular roles (i.e., models with
Pryp, Trap, and Zegy,). This will be done with a series of likelihood ratio tests on

nested models.
4. Revise the presumptive model in light of evidence

5. Test the presumptive model against more complex models that include extra-domain

experience, such as 2v2;, and N — 2v2,.
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Figure 3.2: Boxplots of mean FAL for each player in the dataset, with outliers removed
(data points greater than 1.5 times the interquantile range from the third quantile or less
than 1.5 times the interquantile range from the first quantile). See Figure A.1 to see this
figure with outliers included. Transparent bars are centered around the median mean FALs
from Thompson et al. (2013). The width of the bar reflect 2 times the standard error
of the median for the league in question (acquired from the standard deviation of 1,000
bootstrapped subsamples, Mangiafico, 2016; Ripley, 2017). The reader should assume that
the eight distributions of mean FAL in Thompson et al. (2013) overlap considerably. Finally,
these plots are based on a subsample of the dataset with only 82,534 games out of the total
83,429.

3.4 Selecting a Presumptive Model
3.4.1 Raw Data

Figure ?? highlights the importance of considering race differences, outliers, and small
samples. The starkest differences in slope here are seen within player and across race. These
radical differences are presumably brought on because certain players avoid certain races,
leading to small sample sizes and highly variable regression lines. Also note that there are
some extreme outliers in median First Action Latency which might impact regression lines.
Indeed some values are more than 10 standard deviations from the mean. Finally, it should

be noted that I simply lack data for some players (e.g., player 119), making interpretation
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Figure 3.3: Boxplots of mean FAL of the first fifty games for each player in the dataset.
Transparent bars are centered around the median mean FALs from Thompson et al. (2013).
The width of the bar reflect 2 times the standard error of the median for the league in ques-
tion (acquired from the standard deviation of 1,000 bootstrapped subsamples, Mangiafico,
2016; Ripley, 2017). The reader should assume that the eight distributions of mean FAL in
Thompson et al. (2013) overlap considerably. Finally, these plots are based on a subsample
of the dataset with only 82,534 games out of the total 83,429.

difficult. Before specifying the presumptive model, therefore, I address the following three
tasks:

1. investigate and remove of problematic outliers
2. deal with methodological issues associated with race data

3. consider removing players from the analysis who only have a small number of games,

and consider removing games from players who play some races very infrequently

3.4.2 Race

The sample contains a respectable number of games from each race, with about 39 percent

of games played by Protoss, 28 percent Zerg, and 33 percent Terran games (see Figure 3.6).
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Figure 3.4: Initial Lattice Plot for data. Each players median FALs are normalized indi-
vidually. Researchers should note that this transformation makes it easier to observe rela-
tionships between experience and median FAL, but impossible to gauge differences in the
intercepts among players.

This distribution is only slightly off from what is typically observed in websites authored
by StarCraft 2 fans which keep track of the number of players by race. Rankedftw.com,
for example, typically reports around 30 percent of games being played by Protoss players
(Ranked For Teh Win, n.d.).”

"Thanks goes to Tim Racine for pointing out that, despite a number of arguments in the community about
which race is superior overall, no race appears to be preferred by an overwhelming majority of participants.
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Figure 3.5: Boxplot for median FAL by player.

A look at Figure 3.7 confirms that many of the frequently playing participants play
Protoss almost exclusively (with four participants playing over 3,000 games each). It is also
clear that players who play as Terran are unrepresented at the highest levels of experience
(3,000 games and up), so I will be especially cautious in making interpretations about players
of this sort. Another concern is that a large proportion of the Terran games come from a
single, exceptional participant who appears to have played over 7,000 games of StarCraft
2. I will need to be cautious when interpreting models to ensure that such individuals are
not given undue influence.

It is clear that vast majority of players in the sample choose a dominant-race and spend

the majority of their time playing the same race. I refer to these participants as sticking to
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Figure 3.6: The number of games for each Race. Data are not independent (each player
contributes multiple observations).

a ‘dominant-race’, which I simply define as the most common race played by a participant.
I describe a player as playing ‘off-race’ when they play StarCraft 2 without using their
dominant-race.

It is important to recognize that race could impact performance in two different ways,
both of which require investigation. First, some races might allow for faster game-play than
others. I address this question in the construction of a presumptive model, as it only requires
thinking about race as a simple between-subject that influences a player’s overall speed in
a fixed manner. The second possibility is that learning is race-specific (e.g., dominant-

race experience might only contribute to performance in dominant-race games). The latter
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Figure 3.7: Distribution of Race data by player.

question is one of transfer, and it therefore is a challenge to the presumptive definition of
experience which views all standard 1vl StarCraft games as being, on average, of equal
relevance to learning. I consequently address it only after having established a presumptive

model.

3.4.3 Dropping Participants with Very Small Quantities of Data

I will ultimately want to compare the presumptive model to ones which have effects asso-
ciated with race-specific experience, and even interactions between experience with a race,

and a variable indicating the current race being played (e.g., a history of Zerg experience
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may only benefit a player who happens to be playing Zerg in a given game). Consequently,
players with very few off-race games will be problematic in constructing such models.

I dropped off-race data for a player if they have fewer than 30 games of that race. As a
result of this criterion, I dropped an additional 656 games from 61 different players. Four

players were dropped entirely, for failing to have more than 30 games from any race.?

3.4.4 Dealing with Outliers

Figure 3.4 reveals a large number of outliers that are likely to have undue influence on
models and visualizations. Some of these outliers are so extreme that I begin to doubt they
are representative of actual gameplay. Players might be playing under additional distractions
(e.g., watching television), carrying on conversations, or frequently leaving the keyboard for
a walk to the fridge. Figure 3.5 gives a clearer depiction of some of the most extreme outliers.
I exclude 53 games with a median FAL that is more than 3 interquartile ranges from that
player’s interquartile range. I suspect that players in these cases are likely playing under
such unusual circumstances (e.g., extreme distraction) that I do not attempt to account for

them here.

3.4.5 Summary of Data Exclusion

After dropping data 103 players and 82,768 games remain. Figure 3.8 shows the resulting
dataset (scaled after exclusion). To make visualization possible, 73 extreme data points
more than five standard deviations from the mean have been ignored (but not dropped
from eventual analysis?). This finally allows one to observe the impact of experience on
response latencies.'V If I disregard race, the first four rows of 44 players certainly appear to
gradually speed up over experience, while only a handful (perhaps the bottom 7) seem to

slow down with experience.

3.4.6 Specification of the Presumptive Model

So far I have only stated that the presumptive model should accept the tacit assumption that
1vl,, is a workable operational definition of experience. The structure of the presumptive
model still requires a full specification.

Figure 3.5 makes it clear that players do vary substantially, and since I think of partic-

ipant ID reflects a random sample from a population of possible participants, rather than

8Note that if a game is dropped, we will not attempt to explain performance within that game (i-e., it
does not contribute an observation to the dv). However, our measures of experience will still log the games
existence (i.e., future behaviour may be explainable based on these experiences).

9Plots of the entire dataset will be presented elsewhere.

10But the reader should take care given that these are standardized data, obfuscating differences in inter-
cepts (which may be related to slopes in learning data).
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Figure 3.8: Median FALs by 1v1,,, representing data from Figure 3.4 after exclusion of 680
games from 59 players. In order to the for visualization of the bulk of the data, the y axis
still excludes 71 extreme data points that remain in the analysis (plots containing the entire
dataset will be shown after the construction of the best model). Players are ordered by the
slope coeflicients resulting from simple linear regressions of median FAL on 1v1g,.

a exhaustive list of possible factor levels, it makes good theoretical and practical sense to
construe participant ID as a random effect rather than a fixed effect (D. M. Bates, 2010).

The simplest structure I consider is:
Modely : FAL ~ 1vly, + (1| Participantrp)

Which contains a fixed effect for direct experience and includes a random intercept

allowing participants to vary in their starting median First Action Latency.
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To complete the presumptive model, I need to make decisions about:

1. Does a player’s race have a direct impact on their speed within a game (i.e., is there

something about the domain allowing some races to play faster than others)?

2. Should I include a random slope for 1v1,, (i.e., should I think of different participants

have having different learning rates)?
I make the first decision by comparing Model 1 to,
Modely : FAL ~ 1vl,y, + Race + (1| Participantp)

Since Model 1 is nested within model 2, a likelihood ratio test is appropriate. I will
follow a similar strategy throughout this chapter.

Decision 2 requires comparing Model; to Models:
Models : FAL ~ 1vly,, + Race + (1 + 1vlyy,|Participantp)

FErrors approximated a normal distribution, and residual plots did not reveal heteroscedas-
ticity or non-linearity. For example, residual plots for all models of the models were very
similar to Figure 3.9. I have few concerns about heteroscedasticity here, and take the thicker
portions of the plot to reflect predicted values which are associated with more observations.!!
There is a small gap in the residual plot where the model avoids making predictions (i.e.,
the 950 millisecond region), though it is important to recognize that 0.6% of the data comes
from games with a median FAL of more than 950 milliseconds. It is worth having a healthy
distrust of model predictions at these extremes. Boxplots of residuals by 1v1,, and race
reveal no heteroscedasticity.

The likelihood ratio test'? suggested that the superiority of Models over Modely
(Model _14=4, Model 24 =6, x*(2)=1166.26, p < 0.0001).

This confirms that race actually impacts performance measures, a finding that is also sup-
ported by prior research (Thompson, McColeman, et al., 2017), and by a qualitative look
at how the game mechanics vary by race.

Models which adds a random slope to the model, yielded a better model still.

(Model_14=6, Model 24 =8, x*(2)=14521.55, p < 0.0001)

" There was also no indication of heteroscedasticity in plots of residuals against participant ID and other
predictors.

2for the purposes of likelihood ratio tests models are refit with maximum likelihood estimation and for
parameter estimates restricted maximum likelihood is used. Full output from likelihood ratio tests can be
found in Appendix ii.1. This follows D. M. Bates (2010).
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Figure 3.9: Residual plot for Model 3 using the method described in the R package ‘Lme4’
(Douglas et al., 2017).

It seems increasingly likely that some individuals learn more than others. While the best
model does not appear to violate any assumptions of the likelihood ratio test, I explore the
workings of this model before turning to my primary goal of comparing this presumptive
model to those introducing more nuanced definitions of experience.

Figures 3.4.6 shows how model performance falls when altering parameter values (D. M. Bates,
2010).'3 For a complete summary of the presumptive model, see Appendix ii.1. The depen-
dent variable, ¢, is the signed root of the likelihood ratio statistic (D. M. Bates, 2010),
allowing for comparisons of the optimal model with non-optimal parameter settings. The
out-most vertical lines in 3.4.6 can be interpreted as 99% percent confidence intervals on
parameters (D. M. Bates, 2010). According to this model, StarCraft 2 Protoss players are
expected to begin their career with First Action Latencies of about 570 milliseconds (95%
CI [540,610]). Terran players tend to be roughly 22 milliseconds slower while Zerg players

tend to be about 44 milliseconds faster. When a player continues playing with the same

3Following D. M. Bates (2010), I also looked at profile pair plots to rule out the possibility that the model
performance changes across one parameter change sharply at slightly different values of a second parameter.
I do not include them as Figure 3.4.6 appears representative.
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race, the presumptive model predicts an improvement of about 20 milliseconds every one
hundred games.

One might also note the moderate negative correlation between the random slopes and
intercepts of -0.38. Players who start off slow tend to have more negative slopes. This is not
entirely surprising as there are likely to be human limits on how fast one can play StarCraft
2, even with extreme expertise. Strong players have less of an opportunity to shave more
time off of their already impressive speed.

The first finding of note is that there is great variation in the learning rates of partici-
pants (see Figure 3.4.6). Consideration of the standard deviation of random intercept (o)
reveals that it should not be uncommon to find individuals starting off 160 milliseconds
faster or slower than others. Perhaps more startlingly, the expectation of a 20 millisecond
improvement every 100 games will not be manifested for many players, as revealed by the
large standard deviation of random slopes, o3. While the model does predict that players
will generally improve over time, it also predicts that it will not be uncommon to find
players who don’t improve at all. This is confirmed by Figure 3.8.

This analysis also confirms that a player’s chosen race is relevant to their performance
within a specific game. What remains to be seen is whether one can understand an individ-

ual’s learning in StarCraft 2 without paying attention to their history of race selection.

3.5 Is the Presumptive Model Overly Inclusive?

An important question about the presumptive model is whether it is wrong to aggregate
experience with different races into a uni-dimensional definition of experience. To evaluate
whether this aggregation results in the loss of information that can be used to predict and
explain learning, I consider three additional models which contain race-specific experience

measures.
1. Modelgpr = FAL ~ 1vl,, + Race + Pry, + (1 + 1vlgy|Participantrp)
2. Model?],)T’TT = FAL ~ 1vlgy, + Race + Pry, + Try, + (1 + 1vlgy| Participantp)

3. M odel:];T’TT’Imemcmn = FAL ~ 1vly, + Race + Pry, + Try, + Race : Pryy, + Race :
Tryp, + Race : 1vlyy, + (1 4 1vlgy|Participant p)

The advantage of this procedure is that the presumptive model is nested within all of the

race specific models. This allows the use of strait-forward likelihood ratio tests to evaluate
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Figure 3.10:
Profile plot of the presumptive model. Boundaries reflect (from outside to inside) 99%,
95%,90%, 80%, and 50% confidence intervals respectively. o refers to the standard deviation
of residuals, o1 to the standard deviation of the random intercept, o3 to the standard
deviation of the random slope, and o9 , to the correlation between the random slope and
intercept.
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whether adding race specific experience variables, specifically Pr,, and TrxpM, improves
overall model performance.'®

The disadvantage of this procedure is that the experience measures, 1vly,, Prgp, and
Tryp will be correlated, making parameter estimates of the fixed effects misleading, and
the models more difficult to interpret. I sidestep these disadvantages here by using these
race-specific experience models only to evaluate whether the intuitive uni-dimensional def-
inition of experience glosses over useful predictive information in race-specific experience.
Depending on the success of these race-specific models, I may decide that a uni-dimensional
operationalization of experience is problematic. If I do, then it may make sense, given that
only a tiny proportion of the dataset contains off-race games, to restrict my analysis goals
to the prediction and explanation of dominant-race performance.

I found that Model{” was superior to the presumptive model
(Model _14=8, Model 24 =9, x*(1)=23.37, p < 0.0001), and Modelgr’Tr was superior to
Modelf™ (Model 14=9, Model 24 =10, x*(1)=14.41, p = 0.0001). Race specific experi-
ence therefore seemed to generally improve model performance, at the cost of high correla-
tions between predictors. Perhaps more troublesome was M odel3P m I Interaction which beat
out Model:fT’TT (Model 14=10, Model 24 =16, x*(6)=122.92, p < 0.0001) despite being
penalized for containing many additional parameters. This interaction makes sense, as my
history of Terran experience will be most relevant to games where I am playing as Terran.

In summary, it appears that the presumptive definition of experience is problematic
in StarCraft 2.1 Models are improved by ascribing individuals with race-specific learning
slopes. This suggests that different races learn at different rates.

It may also suggest that experience with specific races does not transfer perfectly, at least
insofar as perfect transfer implies that experience in one race should have the same effect
as experience in another race. According to M odel:fr’TT, for example, a Terran player with
only 100 games of experience in Terran would have a different median FAL from a first-time
Terran player with only 100 games of experience in Protoss. The presumptive model, on the
other hand, would not have different predictions in these two cases. The success of mod-
elling interactions between race-specific experience and current race in M odel?T’TT’I”teMCtion
suggest that races not only learn at different rates (e.g., 100 games worth of Zerg may be
associated with a larger speed increase than 100 games of Terran), but also that the rele-

vance of my Zerg experience to a given model prediction will vary depending on the race

141 will not add Zegp to the model will as 1vlyp = Pryp + Trap + Zeap.

: : Pr,Tr,Interacti . . . . .

5For brevity, I include only Modely """ "which contains three terms for various interactions

between race and race-specific experience, though the results are not changed if one decides to test one
interaction term at a time.

'8Given that calculating influential points is computationally demanding with this dataset, a more careful
consideration of possible influential points will be delayed until the next section where I produce more
interpretable models which also allow for the same conclusions.

37



played within the game. If complexities of skill transfer were not in play, prior experience
with Protoss would not have a reduced weight if one happened to be playing Terran.
Finally, the success of these models is the first hint that researchers need to think of
experience as multi-dimensional in StarCraft 2. Aggregating race experience (T'egp, Zegp,
and Pr,y,) into a single measure of experience into a single variable (1v1,y,), appears to have

resulted in a loss of predictive utility.

3.6 Restricting Analysis to Dominant-Race: Probing Trans-
fer Effects

The previous section has shown that race-specific experience does not exhibit perfect trans-
fer to other races (because if transfer was perfect then 1vl,, would be a perfectly re-
spectable operationalization of experience). Unfortunately, the models in the previous sec-
tion are poor tools for judging whether cross-race skill transfer for three reasons. First,
M odelgr’TT’Intemcm" contains highly correlated experience predictors (1vl,, and Ty, ex-
hibited a Pearson’s r of .8 and 1v1,, and Pr,), had a Pearson’s r of .4), making interpretation
of coefficients highly problematic. Secondly, the model is highly complex, making interpre-
tation awkward even if the parameter estimates could be trusted. For a summary of this
model, and for a clearer understanding of its complexity, see the Appendix ii.1.

Finally, it remains possible that the success of M odel§ rTr Inferaction s due to a total
lack of transfer. The importance of race-specific experience measures might have been due to
the fact that about 4.6% of the games were off-race (games where a participant is not playing
as their dominant-race). If one is explaining the performance of someone who usually plays
Terran and sometimes plays Protoss, for example, then indicators of Protoss experience
might be especially valuable when explaining Protoss performance.

If one’s goal is also to evaluate whether cross-race transfer exists, and ideally estimate
its impact on performance, then one will need an analysis which is targeted at specific kinds
of transfer. For example, the data contain very few off-race games and so I will probably be
unable to evaluate the extent to off-race Terran and Protoss experience transfer between one
another in a participant who uses Terran as a dominant-race. A more realistic strategy is to
restrict the analysis to the explanation of performance in Dominant-race games. I can then
use experience with the dominant-race (Domy,;,) as my primary indicator of experience, and
any effect of off-race experience (Of fz) would be seen as a source of transfer. The order

of nested models I consider remains the same.

1. ModelP°™ : FAL ~ Domg, + (1|Participantp)

2. Model?™ : FAL ~ Domgy, + Race + (1| Participant;p)
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3. Model?’?"m : FAL ~ Domgy, + Race + (1 + Dommp]Particz’pcmt]D)17

4. Model?°™ : FAL ~ Domgy, + Race + Of fap + (1 + Domgy| Participantp)

Dropping games that were played off-race resulted in a dataset of 78,936 games and 103
players. Importantly, Figure 3.12 reveals that only 18 players have off-race games, and most
of these belong to the most extreme players. I therefore need to be especially wary about
generalizing any of the findings about cross-race transfer to future datasets.
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Figure 3.11: Lattice plot of Dominant Experience against median FALs, ordered by a sim-
ple regression line for the individuals data. The number of off-race games are reported in
parentheses). The black average regression line reflects the fixed intercept and slope from
the best model, Modelé)om.

Model°™ was the most successful of the analysis of nested models (all likelihood ra-
tio tests are described in Appendix ii.2). ModelZ™ beat model ModelP™ (Model 1,=4,
Model_ 24 =6, x?(2)=10.43, p = 0.0054), M odell°™ beat model Model5°™ (Model _14=6,
Model 245 =8, x*(2)=13906.12, p < 0.0001), and M odel?°™ beat Model}*™ (Model 14=8,
Model 24 =9, x*(1)=4.46, p = 0.0348).

"For a summary of the presumptive model using dominant-race data, see Appendix ii.2.
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Figure 3.12: Barplot of the number of off-race games by player. the red line corresponds to
30 games.

3.7 Is the New Presumptive Model Overly Restrictive?

I have decided that the original operationalization of experience is overly broad in the sense
that it glosses over race-specific experience. I can now ask whether the focus on race-specific
experience is also overly restrictive in the sense that it ignores experience in other StarCraft
2 game types, such as 2v2, 3v3, and 4v4 games.

I have a relatively small number of games with more than two players in the sample,
so the analysis will necessarily be simplified by focusing on 2v2 games (there are 7,729
meaningful 2v2 games in the database) and competitive games which are neither 1v1 nor
2v2 games (of which 2,239 remain in the sample). As explained in Chapter Two, my primary
interest is in explaining 1vl median FALs, so I do not add these games to the dataset.
Instead, I use the presence of these games to keep track of the prior experience of players
when they are participating in 1vl games. My research question will be whether I can

improve the models of median FAL by adding these other forms of experience to the model.
ModelP°™: FAL ~ Domyp+Race+O f fop+2024p+ (14 Domyy| Participantp)

Model?om beats Model o™ (Model _14=9, Model_24 =10, x2(1)=231.17, p < 0.0001),

suggesting that 2v2 xp does transfer into 1v1 performance speeds.
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Figure 3.13: Boxplot of 2v2 xp by participant ID.

Finally, I consider whether other kinds of games (which I call N-2v2 games) also transfer.
Model)™: FAL ~ Domgp+Race+O f frp4+2025,+N =202+ (14+Domy, | Participantp)

ModelP°™ fails to beat out Model?™ (Model 14=10, Model 24 =11, x?(1)=1.32,
p = 0.2510). However, it is worth noting that the order in which I add terms to the model
does matter here. Model?*™ would beat Model??°™ given the opportunity. Dropping points
resulting in a very high leverage in any model of median FAL in dominant-race performance
will not impact model performance. If one drops the 4,917 games with a leverage value more
than six times the mean leverage value, they will retain the same pattern of results and
similar parameters.'®

I use Leverage rather than Cook’s Distance here to identify influential points because of
run-time issues in calculating Cook’s Distance over the entire dataset. I can, however, employ

Cook’s Distance to calculate whether some players are unduly influential. If T calculate

!81f one applies more stringent criteria, such as the criterion that a game has three times the mean leverage
(Pardoe, n.d.), one drops 19,406 data points (about 25% of the dataset) and, not surprisingly, gets quite
different results. The factors Race and Of f;, do not yield better models in these cases, while N — 21}25;’"
does. Obviously parameter values shift considerably. I don’t take those results too seriously here, however,
as this requires dropping almost a quarter of the data as having undue influence on the model.
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Figure 3.14: Boxplot of N-2v2 xp by participant ID.

Cook’s Distance based on the exclusion of individuals players, then five influential players
stand out as having a Cook’s Distance greater than three times the mean (Cook’s Distance,
n.d.). Following conventional rule of thumb, I consider dropping these individuals (Lane,
n.d.). Rerunning the analysis with the remaining nine players and 69,470 games result in
the same pattern of results, with M odelé)om winning out.!?

In either case, it seems clear that 2v2 experience does impact single player speed. I probe

the nature of this impact in the next section.

3.8 Evaluating the Final Model

Residuals for Model?°™ are reasonable and shown in Figure 3.15 (for a summary of the
model, see Appendix ii.2). As before, I need to be careful about making claims regarding
median FALs that are over one second, as I lack much data on these slow entities.
Broader learning patterns can be examined using the best model in Figure 3.11. I do
not use standardized data here, as examining learning carefully requires contemplating both

the slope and intercept of individuals. For example, it is common in longitudinal data to

Tmportantly, this drop does impact parameter estimates as I will discuss in later sections.
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Figure 3.15: Model?°™ Residual plot.

find that negative slopes have high intercepts and that positive slopes have relatively low
intercepts. This can be explained by regression to the mean because (Barnett, Pols, &
Dobson, 2005), even if no player is learning, some will have more extreme intercepts than
others (simply because they happened to start out with a few strong or weak games). This
can result in artifactual slopes. This might be somewhat at play in Figure 3.11, as there
seem to be a lot of higher intercepts associated with the most negative individual slopes (see
top row, red regression lines), and lots of low intercepts associated with the most positive
slopes (bottom row, red regression lines).

A second possible issue is that starting strong leaves a player with less room to improve,
so faster intercepts result in less impressive learning curves. Figure 3.11 does show that there
are a number of players with faster than average intercepts who nevertheless show learning
(e.g., see rows five and six). However, these players do tend to exhibit weaker learning effects
than the players with slow intercepts (e.g., first two rows).

Despite these methodological cautions, Figure 3.11 is suggestive of learning effects. De-
spite a wide variety of intercepts for individuals (see red regression lines), I see negative
relationships as far as the seventh row (e.g., player 17). To get a clearer sense of the learning
reflected in the data I turn to profile plots examining how model quality falls off with the

manipulation of fixed effects parameters. Figure 3.16 shows that dominant-race experience,
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Figure 3.16: Profile plot of the best model, Model?°™. Boundaries reflect (from outside
to inside) 99%, 95%, 90%, 80%, and 50% confidence intervals respectively. o refers to the
standard deviation of residuals, o1 to the standard deviation of the random intercept, o3 to
the standard deviation of the random slope, and o5 , to the correlation between the random
slope and intercept.

on average, is associated with a 14.6 millisecond decrease every one hundred games (95%
CI [ 8, 22 milliseconds]).

One hundred games of off-Race experience appear to yield a slight slowing of 3.5 millisec-
onds positive to median FALs (95% CI [0.5,7], see Figure 3.16). I also examine the impact of

off-race experience in comparison to dominant-race experience using what I call a transfer
420 Of f—Racezp

coefficient™ 5o — Racens

= —0.23. It appears, therefore, that off-race experience disrupts
Dominant-race performance by about 23% of the extent to which a Dominant-race game
improves performance. This is not surprising given that players with many off-race games
exhibit some of the most slowing in Figure 3.11 (The number of off-race games are shown in
parentheses). It also fits with the general finding that expertise is extremely domain specific.

It is worth noting, however, that these parameter estimates are sensitive to a small

set of influential players. If I drop influential players with a Cook’s Distance of more than

20Thanks goes to Jack Davis for providing me with the idea of using a transfer coefficient.
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three times the mean (Cook’s Distance, n.d.), parameters for off-race shift somewhat. For
example, excluding 9 influential players whose Cook’s Distance was more than three times
the mean resulted in the same optimal model structure Model£°™. This model had similar
parameter estimates except off-race experience dropped to -9. Across these 9 players and
69,470 games, off-race experience seemed to be a positive influence, worth about 66% of
the speed gains associated with a 1v1 match. I do not take this model too seriously given
that it requires dropping such a large portion of the dataset, but it does seem likely that
individuals differ in terms of how off-race experience impacts their performance.?’ I now
turn to a more careful interpretation of the 2v2,, parameter, which requires contemplating

the existence of third factors which could impact my results.

3.8.1 Interpreting the Magnitude of Team-Game Transfer Effects: Rul-
ing out Dedicated Practice as the Potential Source of a Simpson’s
paradox

In the best model, 2v2,, is surprisingly associated with declines of 24 milliseconds per 100
games (95% CI [21,27]; Transfer coefficient=1.65, see Figure 3.16). It is plausible that 2v2
games would sometimes lead to improvement, as they allow players to observe another’s
performance directly, opening up the possibility of observational learning effects. However,
I need to be very cautious about inferring that 2v2 games have 1.65 times the value of a 1v1
game. One reason is the relatively small number of these games in the dataset. However,
there is a deeper reason I should be cautious about making this interpretation.

Ignoring possible third factors can lead to a variety of misleading results in the aggregate
level (Simpson, 2017). As a simple example, consider if two variables are positively correlated
on one level of a factor but negatively correlated on another. The variables may appear to
be unrelated at the aggregate level (Kendall, 1945 as cited in Simpson, 2017). Similarly,
there are cases where one can find entirely different correlations depending on whether data
are aggregated together or separated by group.

One factor that might impact the results is that people who play 2v2 games might
choose to do so because they become bored with typical StarCraft 2, while players who
stick to 1v1l games might be more dedicated. Since dedicated individuals are more likely to
practice with the intention to improve, and since this sort of deliberate practice is thought
to be crucial to expertise (Ericsson et al., 1993), it is plausible that players with more 2v2
games have more to learn. Since novices (with slow median FAL intercepts) are likely to
have more impressive slopes than experienced individuals, the apparent utility of 2v2,
may be an artifact of including both dedicated and non-dedicated players in the analysis.

Previously, this possibility seemed somewhat unlikely given Figure 3.17, which suggests that

210ne gets similar results if one instead uses other rules of thumb for dropping influential points, such as
excluding players with a Cook’s Distance greater than 1 (Lane, n.d.).
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while there is a general lack of 2v2,, in this dataset, there do seem to be a collection of

relatively fast and slow games played by players with over 50 2v2 games.
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Figure 3.17: Plot of median FAL against 2v2 experience. Colours reflect data frequency. Note
that data are not independent (i.e., each participant contributes multiple observations).

Rather than attempt to measure player dedication directly, I began by simply restricting
the analysis to players with 30 or more 2v2 games. Highly dedicated players who restrict
themselves to 1v1 games will therefore not impact this analysis. This required dropping 74
players, resulting in a dataset of 29 players and 23,451 games. The best model emerging from
this analysis was medianF AL ~ Dom,p+ Race+2v2,,+ (14 Domgp|Participantp). The
coefficients for Dom,, and 2v2,, were -14.7 and -23.15 respectively. In other words, even

in a model of players who have a history of 2v2,,, dominant-race experience is associated

with smaller reductions in action latency than multiplayer experience.??

It seems unlikely that the seemingly exaggerated value of 2v2,, games is due to better

players avoiding this mode of gameplay. Restricting the dataset to players who do sometimes

22Notice that this particular problem could conceivably apply to the consideration of off-race experience
as well. If players who play off-race are less dedicated, then I would expect them to have more impressive
learning effects than those who stick to their dominant-race. In order to rule out the possibility that my
estimates of off-race experience underestimated the disruption caused by playing off-race, I reran the analysis
after dropping 85 players for having less than 30 off-race games, resulting in a dataset of 12,848 games
across 18 players. The best model emerging from this analysis was medianF AL Domgp + Of fup + (1 +
Domgp|Participant;p), the coefficients for Domg, and Of fz, were -8.8 and 3.3 respectively, implying that
an off-race game disrupted learning by about 40% of what a Dominant game contributes to learning. This
suggests that the original model, with a transfer coefficient of 23% may have been influenced somewhat by
players with a few off-race games. Further, 2v2;, did not improve model performance in accounting for these
data, even though these 18 players shared 1,560 2v2 games between them.
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play 2v2 games did not eliminate the result. Furthermore, Figure 3.17 suggests that there
are some relatively fast players with more than 50 games of 2v2,,.

One limitation of my previous attempts to resolve the puzzle is that I did not measure
the dedication of players directly. Instead I only assumed a relationship between dedication
and the number of 2v2 games played. In order to attempt a direct measure at dedication, I
turned to six Likert-scale survey questions (never, rarely, sometimes, often, and very-often)

about player training schedules.

Do you use any of the following training strategies?

1. Play on special skills/practice maps
2. Look up strategies online

3. Watch your own replays
4

. How often do you play ladder games with the intent to improve a skill

rather than solely for the purpose of winning the game?
5. Watch professionally narrated streamed games

6. Participate in online communities to talk about SC2

Question 1 to 4 are intended to gauge a player’s interest in practicing to improve (Er-
icsson et al., 1993) rather than to simply play for leisure. The maps discussed in question
1 are usually intended for improvement rather than enjoyment, question 2 probes whether
participants pursue background knowledge related to the game, question 3 could reflect
deliberate practice insofar as players watch their old games in order to improve, and four
directly inquires about deliberate practice. Question 5 and 6 speak to indirect experience
with 1v1l StarCraft 2, although they do not necessarily imply deliberate practice. Players
who watch professional StarCraft 2, or discuss StarCraft 2 online presumably have addi-
tional knowledge about 1v1l gameplay. This is because professional StarCraft 2 is almost
exclusively made up of 1vl games, and discussions around skill in StarCraft 2 are usually
discussions of 1v1 performance.

I scored individuals by taking the number of training strategies they employ ‘often’ or
‘very-often’. However, I take this as a gross measure and do not provide evidence that it is a
reliable or valid measure of motivation to improve.?3 Indeed, a look at Figure 3.18 and Figure

3.19 do not even suggest that more motivated players are necessarily better (Spearman’s

230f course, the survey does have other limitations which are worth considering. First, the survey questions
may be susceptible to bias. Given that the purpose of the study was transparent, and given that the training
strategies discussed in the questions are familiar to StarCraft 2 players, it may be that some weaker players
were impacted by a social desirability bias and exaggerated their use of training methods.

Secondly, the scoring of responses to survey questions emphasized convenient interpretation (i.e., the
number of training strategies that players use often) despite the potential loss of information that comes
with effectively dichotomizing six Likert responses into ‘Often’ versus ‘Not-Often’.
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Figure 3.18: The number of times a participant responded to a training strategy question
with an option containing the word ‘often’.
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Figure 3.19: Mean median FAL by the number of times a participant responded to a training

strategy question with an option containing the word ‘often’. Blue fields represent a kernel
density estimate.
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r= -.08). This might initially seem somewhat surprising given the central importance of
deliberate practice to our understanding of expertise (Ericsson et al., 1993).

Importantly, results described in Figure 3.19 do not cast doubt on whether First Action
Latency is a marker of player skill. Furthermore, it does not cast doubt on the use of
median FAL to characterize player skill in the present sample (e.g., Figure 3.3). Instead, I
will argue that these results should be taken to mean that what was initially intended to
measure ‘dedication’ should be thought of as an indicator of general motivation and not
necessarily skill or motivation to improve at 1vl gameplay specifically. Since motivation to
improve is a possible factor which could conceivably impact the value of 2v2 experience to

1v1 performance, we still use these data here.

Thinking about dedication as a measure of motivation

There are two reasons that we should not be anxious about the failure to find a strong
relationship between dedication and skill.

First, it is important to recall that the survey questions that are the foundation for
my measure of dedication are quite gross. While deliberate practice theory (Ericsson et al.,
1993) does predict that skill should be related to the number of hours of deliberate practice,
it is unclear whether the fact that a player reports using deliberate practice is enough
for us to make predictions about their skill. Furthermore, the longitudinal data described
here samples from only 103 players while Thompson et al. (2013) studied the relationship
between mean FAL and skill in a sample of 3,395 players.

Secondly, recall that only a small number of participants are anywhere close to the
speeds expected of professional level players (see Figure 3.2). Based on my familiarity with
the task domain, I would not find it surprising if players could reach the Platinum level
with a mediocre motivation to improve and little or no deliberate practice.

I will argue that we should consider thinking of dedication as a measure of motivation
rather than skill. Motivation to improve, while a necessary condition for the highest levels
of performance, is likely to change with experience as casual players become bored. If so,
it would not be surprising to find highly motivated Bronze-level players and unmotivated
Diamond-level players. We would only expect relations between motivation and skill after
carefully controlling for experience.?*

There is also reason to think that my measure of dedication does not track ‘dedication
to 1vl gameplay’ There was no evidence that dedicated players played fewer 2v2 games

(Spearman’s r=0.025). One possible explanation for this is that players prefer 2v2 games

24Quch analyses are worth considering but are beyond our present scope given that dedication is only used
the basis for a follow-up exploratory analysis.
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because it allows them to socialize with friends online.?”> According to this explanation, the
motivation to improve at 1v1 gameplay is not enough to overwhelm the desire to occasionally
play with friends. Another possible explanation is that the survey is a better indicator of
a players overall motivation to improve, not their foveal dedication to 1v1 gameplay.?6 On
either explanation, dedication does not entail a focus on 1vl gameplay. Instead, it only

tracks an overall motivation to improve.

Results of the dedication followup analysis

I proceed with the intended analyses of dedication with the caveat that the measure of
dedication is more likely to measure motivation than dedication to 1v1 play. My objective
is to better understand the exaggerated value of 2v2,,, and my hypothesis is that 2v2 play
means something very different to non-dedicated players. I specify players as non-dedicated
if they answered ‘often’ or very-often’ to fewer than three of the six questions. On this
restriction, I am left with 33 players and 28,660 games for the dominant-race analysis.
The best model, according to my series of likelihood ratio tests, was Model?™: FAL ~
Domgp+Race+Of frop+2025,+ N —2024,+ (14 Domy, | Participant;p). The transfer coeffi-
cients for 2v2,, persisted among non-dedicated players (Domg, = —14.24, 2v2,, = —24.12,
Transfer Coefficient=1.7). What was surprising, however, was that of frace,, appeared ben-
eficial for these players (of fracey, = —25.46, Transfer coefficient=1.91). Rather than dis-
rupting learning, off-race experience appears to carry about 180% of the value of dominant-
race experience for non-dedicated players.?” Unfortunately, I lack the sample size to analyze
2v2;p in dedicated players, as only two dedicated players have more than 30 2v2 games.
In short, followup analyses have revealed that off-race may be more valuable to less ded-
icated players who are not pursuing deliberate practice, perhaps because dedicated players

learn about the other game species from other sources. I interpret this result with some

25In competitive StarCraft 2, the game manufacturer is responsible for finding opponents. The only way
to play competitively with a friend is to play team games such as 2v2 StarCraft 2.

26While professional players play 1vl StarCraft 2 exclusively, there are still ranked team matches. This
makes it possible that some players have an interest in improving at both 1v1 and 2v2 gameplay while others
do not.

27 An alternative procedure would be to avoid dropping data based on dedication and instead use dedication
as a variable in the analysis. I do not report this analysis here because my primary interest is in model
coefficients, which become more difficult to interpret if I add necessary interaction terms between dedication
and hypothesized 2v2,,. Nevertheless, adopting such an approach leads to the same effects discussed here. I
produced a more complex model, ‘medianF AL ~ Domgp + Race + O f fop + 2024p + dedication + Of fzp :
dedication + (1 + Domg,|Participantrp)’, which was superior to the best dominant-race model (given the
likelihood ratio test). This complex model involved dedication and interaction terms between dedication
and off-Race experience. Interaction terms for 2v2;, and dedication did not significantly improve model
performance, and the coefficients for 2v2,, remained similar. As expected given the previous analysis of
non-dedicated players, parameter estimates of interaction terms suggested that off-race experience was more
beneficial for non-dedicated players.
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caution, however, as the goal of this ad hoc analysis was to explain the surprisingly strong
impact of 2v2,, on model predictions, not off-race experience.

Unfortunately, I still lack any explanation for the extreme impact of 2v2;, to 1vl game-
play on performance. The result appears surprising in light of the extreme domain specificity
of expertise (see Chapter 1.05). More work needs to do be done to consider extraneous vari-
ables which might rule out possible artifacts. This work must, unfortunately, be ad hoc
and exploratory, as our understanding of any complex skill is too underdeveloped for me
to be sure that this strong learning effect of 2v2;, is not brought about by ignoring some
third factor. It is worth emphasizing that this result is not inconsistent with the domain
specificity of expertise. My models may actually provide reasonable fixed effects estimates
of the value of 2v2 experience in light of the fact that the players who choose to play 2v2
games are just the sort of people who benefit from the experience. These results do not
compel me to believe that 2v2 experience would have similar benefits for players who focus

on 1vl gameplay.

3.8.2 Conclusion

It is obvious from the present work that longitudinal studies of the development of complex
skills in situ should take a multidimensional approach. First, domain performance may be
impacted by nuisance factors, much as how StarCraft 2 is impacted by race. Secondly,
and perhaps more importantly, extraneous factors need to be considered when aggregating
across a number of learning curves in order to avoid paradoxical results. While future work
should provide a more careful validation of the survey data, there is some reason to think
that off-race experience is more valuable to players who are less motivated. There is even
reason for thinking that the present work did not consider a sufficient number of extraneous
variables, as I am currently are unable to explain the value of 2v2 experience to overall
performance, even if I restrict the analysis to players who occasionally play 2v2 games, or
to players who appear less motivated to improve.

There is also a second, and potentially more important, respect in which this study
encourages a multidimensional approach towards longitudinal studies of complex skill. The
present results support the view that experience itself should be thought of as multidimen-
sional. Intuitive definitions of experience (such as 1v1l performance regardless of race) can
easily aggregate different forms of experience that contribute to performance differently. In
the case of StarCraft 2, off-race experience appears to disrupt learning, at least for some
classes of players. Furthermore, while the magnitude of effect estimates for 2v2 experience
deserve scrutiny, it is true that model performance is enhanced by including 2v2 experi-
ence. Just as basketball players appear to have nested expertise for foul-line shots within
their more general expertise for basketball play (Keetch et al., 2008), very different sorts of

experience seem to play into overall StarCraft 2 performance. Where multidimensional def-
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initions of experience are possible, as in digital archives of performance, researchers should
consider thinking of learning curves as learning hyper-planes.

Finally, it is worth considering whether the entire expertise continuum should be rep-
resented in a single linear mixed effects model as has been attempted here. These results
provide good evidence that extra-domain experience (e.g., off-race play or 2v2 experience)
can have unexpected transfer effects to domain performance, and so I have made progress
towards the goal of identifying a better operationalization of experience in StarCraft 2. How-
ever, it seems that the only way I can believe the parameter estimates in the best models
is if I postulate that the more serious players sometimes avoid certain kinds of experiences
(e.g., off-race play or 2v2 experience), making it hard to judge whether these experiences
are of value to this class of player. This leads me to the notion that segments of the ex-
pertise continuum might be best understood separately, as when Thompson et al. (2013)
asked whether the variables which are relevant to expertise vary with the levels of expertise
being considered. Such considerations lead me to suggest that, at least in the short term,
researchers should define experience on a case-by-case basis where the definition is relative
both to the skill level and practice habits of the sample.

While the present chapter has implications for how we should think about and opera-
tionalize experience in a complex domain, it does not constitute a test of any specific theory
advanced by the literature. Unidimensional operationalizations of experience are common,
but they do not seem theoretically motivated. The following Chapter will present a case
where naturalistic telemetry is used to examine predictions from a specific psychological

theory about age-related differences.
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Chapter 4

Finger Tapping in StarCraft 2

While age related decline in expertise is relatively well studied, particularly in typing
(Bosman, 1993; Salthouse, 1984), aviation (Morrow, Leirer, & Altieri, 1992), and Chess
(Moxley & Charness, 2013), researchers have only recently begun studying age-related dif-
ferences in situ using digital records of performance. One attempt comes from Thompson et
al. (2014), who found age-related declines in mean First Action Latencies after 24 years of
age. Another attempt comes from Tekofsky, Spronck, Goudbeek, Plaat, and Van Den Herik
(2015), who studied aging in the first-person shooting action game Battlefield 2. They ob-
tained similar results, with optimal performance around 20 years of age, which is in keeping
with Salthouse’s (2009) conclusion that aging begins in early adulthood. One difficulty with
integrating these sorts of studies is that they rely on very different measures. Thompson et
al. (2014) focused on performance speed while Tekofsky et al. (2015) focused on high-level
meta-data such as the number of kills to deaths ratio. To help better understand these
effects I will conduct followup analyses on the original 2014 study from Thompson, Blair,
& Henrey.

One explanation for a host of age-related differences has been the postulation of a
single underlying ability which declines with age. This entity could consequently lead to
observations of age-related differences in many different measures of performance. Salthouse,
for example, has argued in favour of processing speed theory, the view that the single
construct of processing speed is responsible for many of the observed relationships with age
(Salthouse, 1996).

In the present work I will attempt to apply processing speed theory to the explanation
of age-related differences in StarCraft 2. I do so by creating a novel measure of performance
speed, Right-Click Latency (RCLatency), which is meant as an analogue of finger tapping
speed, another measure which appears to decline with age (Lezak, 2004). I then conduct a
series of analyses designed to test whether RCLatency can explain the age-related differences
in mean FAL observed in Thompson et al. (2014). The direct contribution of this work
will be a judgment about whether the age-related differences observed in Thompson et al.

(2014) should be explained as a decline in clicking speed or in terms of cognitively more
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complex abilities (such as decision making). It will also speak to theories about the source
of laboratory age-related differences, as the choice in RCLatency is inspired by Salthouse’s
work (Salthouse, 2000).*

There are a few complications which need to be addressed before I can proceed with my
analyses. First, I take the present chapter to be an honest attempt to apply the ideas in
processing speed theory, and this requires some careful discussion of what processing speed
actually means. This will also ensure that my results will speak to the theoretical utility of
processing speed theory.

Secondly, the present work will employ a slightly different statistical method than pre-
vious work. Thompson et al. (2014) used segmented regression models to estimate when
the effect of aging begins, while I will follow the recommendations of Muggeo (2008), who
has developed an R package that is specifically designed to overcome common pitfalls in
segmented analyses. Thompson et al. (2014) used likelihood ratio test statistics to test
whether adding two additional parameters, one estimating the onset of a new-age related
change and one estimating the strength of this new aging effect, results in a better model.
Unfortunately, the null distribution corresponding to these Likelihood Ratio Statistics is
not obvious in segmented models (Muggeo, 2016). Consequently, I will rerun the original
analysis using the R package ‘segmented’ (Muggeo, 2008), and consider whether the results
are consistent with previous work (Thompson et al., 2014).

Thirdly, I need to develop the measure of RCLatency. A considered definition requires a
number of exploratory analyses to ensure I understand my own measure. One such analysis,
for example, involves considering whether players vary the distance between their right-
clicks on the screen. If so, RCLatency might not measure tapping speed as much as it
measures the distance between clicks. After dealing with these three issues, I will create
an analysis strategy which addresses the question of whether RCLatency can explain age-

related differences in mean FAL.

4.0.1 What is Meant by Processing Speed

Salthouse has held onto the same basic account over the years. In 2000, Salthouse rephrased
this account in terms of general and specific influences on age-related declines in speed.
Processing speed theory, of course, predicts that these declines have a shared (or general)
source. The best evidence for processing speed theory comes from patterns of correlations
observed in studies of age-related change. For example, addressing the source of laboratory
cross-sectional and longitudinal differences in performance with aging (Fozard, Vercruyssen,
Reynolds, Hancock, & Quilter, 1994; Salthouse, 1998) requires a careful consideration not

only of relations between aging and performance measures, but also consideration of the

!Thanks should be given, however, to an unknown commentator at the 2014 Association for Psychological
Science annual convention, who directed me to processing speed theory.
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correlations between the performance measures themselves. The various relata of age are
typically correlated with one another (Salthouse, 1996, 2017), making it hard for researchers
to rule out the existence of a single source of age-related declines.

In order to clarify what is meant by processing speed, I begin by considering the op-
erationalizations and methods employed by Salthouse. This will provide hints as to what
is meant by a general processing decline. I will sidestep philosophical debates as much as
possible, except where I think some philosophy allows for a clearer and more charitable
description of processing speed theory.

Processing speed measures must, on the one hand, be suitably general that they are not
tracking specialized processes such as skill in basketball or even language. On the other
hand, there is some reason to think that a processing speed measure should be a measure of
cognitive processing. ‘[...The] speed measure should not merely represent input and output
processes or sensory and motor processes, or else it may not reflect the duration of relevant
cognitive operations’ (Salthouse, 1996, p. 407). One commonly used measure is the digit
symbol substitution test, a task where participants must translate digits into symbols as
fast as possible using a key provided by the experimenter (Salthouse, 1996, 2017). However,
there is also reason to think that Salthouse would still be interested in measures of low-level
motor speed. Salthouse (2000), for example, classifies finger tapping speed as an indicator
of psychomotor speed, and proposes that such measures might exhibit age-related decline
alongside a host of measures because of a postulated common cause.

Importantly, Salthouse does not believe that age-related differences observed in labora-
tory measures can be fully explained by differences in psychomotor speed (Salthouse, 1996).
He bases this conclusion on findings of relationships between age and more cognitively in-
teresting variables even after statistical control of motor speed. Consequently, if we develop
a measure of psychomotor speed in StarCraft 2, in the form of a RCLatency, Salthouse
would likely predict relationships between RCLatency and mean FALs. However, insofar
as RCLatency is a measure of psychomotor speed, Salthouse would most likely predict that
RCLatency would not fully explain the age-related differences observed in mean FAL.

Of course, this only goes some way towards clarifying what is meant by processing speed.
One possible start is a computational theory of mind, where processes are operations over
mental representations — which themselves need to be structured in such a way as to make
these operations possible (e.g., see Fodor, 2008).

I would argue here that it is wrongheaded to think of processing speed theory as requiring
a traditional notion of information processing in terms of operations being performed over
structured mental representations (Fodor, 2008). When Salthouse is given opportunity to
speculate about the cause of age-related changes across many variables, only some of the

hypothesized causes are in the idiom of information processing.

Ultimately, of course, I would like to know why increased age during the adult

years is associated with decreased levels of speed, and this is another area where
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psychophysiological and neurobiological research can be expected to make im-
portant contributions. Among the speculations proposed to account for age-
related slowing are that because of diffuse cell loss the transmission of neural
impulses must traverse lengthier and more circuitous pathways to reach the same
end state (Cerella, 1990; Salthouse, 1985), that a slower propagation of neural
impulses with increased age is attributable to a reduction of dendritic branching,
a decrease in the number of active synapses, or a loss of myelin (Miller, 1994),
and that age-related slowing may be a consequence of a loss of synchronization
of neural impulses, possibly due to a reduction of particular neurotransmitters
such as dopamine. It seems unlikely that these possibilities can be distinguished
with only behavioral research, and thus research with various types of psy-
chophysiological or neurobiological variables may be necessary to help resolve
the fundamental issue of the causes of age-related slowing (Salthouse, 2000, p.
25).

Importantly, there is no attempt here to spell out how cell death, a loss of myelin, or a
loss of specific neurotransmitters relate to processing speed. Instead, it seems that Salthouse
views processing speed theory as potentially fitting any of these explanations. Salthouse
intends to let science settle the big questions about how processing speed is implemented

in the brain.

Among the important issues to be investigated are the neurophysiological basis
for age-related slowing and what the processing-speed construct actually reflects
(Salthouse, 1996, p. 425).

I take it that Salthouse may be under the impression that we have an imperfect under-
standing of what processing speed actually is, or what the concept means. For researchers
such as Cronbach and Meehl (1955), for example, clarification of the meaning of constructs
is an empirical issue. If this is the sort of view that Salthouse adopts, then he would likely
not claim that the Digit-Symbol Substitution Test, or any test for that matter, could be a
perfect measure of processing speed. Instead, Salthouse would think of processing speed as

a construct that is imperfectly accessed through a variety of measures.

Finally, as with the assessment of any theoretical construct, it is generally de-
sirable that the construct be evaluated with several measures to minimize the
specific variance associated with single measures and to emphasize the common,

construct-relevant variance (Salthouse, 1996, p. 407).

Salthouse seems to be thinking of processing speed, therefore, as a construct that is both
imperfectly understood and imperfectly measured. This vagueness in definition is expected

as, according the classic account of construct validity theory (Cronbach & Meehl, 1955), the
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meaning of constructs is actually clarified by the nomological network, an interconnected
set of laws describing how theoretical entities relate to observables and to each other. This
would explain any vagueness in the ‘processing speed’ construct, ‘[since] the meaning of
theoretical constructs is set forth by stating the laws in which they occur, our incomplete
knowledge of the laws of nature produces a vagueness in our constructs’ (Cronbach & Meehl,
1955, p. 294). I will call this view the empirical approach to the clarification of constructs.?

The empirical approach towards the clarification of concepts makes it especially dif-
ficult to test Salthouse’s theories in novel domains. It implies that there will necessarily
be uncertainty as to whether my measures track theoretical constructs of interest. If we
find, for example, that age-related variance in mean FALSs can be completely explained by
RCLatency, Salthouse could avoid disconfirmation of processing speed theory by insisting
that RCLatency must measure more than just motor speed.?

I have two responses to the possibility of such ad hoc responses. First, it is useful to
acknowledge that the ability of objectors to formulate ad hoc responses is not unique to
naturalistic telemetry. Since construct validation, according to Cronbach and Meehl (1955),
is never complete, such responses are always possible. Secondly, even if we cannot strictly
confirm or disconfirm Salthouse’s theory here?, the present investigation can still be used to
test whether processing speed theory is a useful tool for explaining age-related differences in a
particular complex domain. Insofar as Salthouse’s theory helps me understand observations
in StarCraft 2 research, we can at least attest to its utility in explaining complex behaviour.

I begin by rerunning the original analyses with a slightly revised analysis using the seg-
mented package in R (Muggeo, 2017; R Core Team, 2013). The original analysis compared
piecewise models using a likelihood ratio test and a Chi-squared distribution. Instead, I fol-
low the recomendations of Muggeo (2016), which are implemented in the segmented package.

After rerunning the Thompson et al. (2014) analysis, I will define a new measure of speed

%It is important to point out that this reading of constructs is not the only account one could adopt. For
the philosophical complications surrounding this understanding of ‘construct’ see the discussion of Slaney
and Racine (2013) and Slaney (2017). Thanks goes to Kathleen Slaney for pointing out that one might prefer
to treat definitional issues surrounding the concept of processing speed by appeal to conceptual analysis alone.
Questions about the neural underpinnings of processing speed would remain empirical questions. I have no
objection to such a view here, and I do not believe it would substantially change the interpretation of my
results. I only give special credence to the aforementioned understanding of construct as it is a popular
reading of Cronbach and Meehl (1955) which, as the reader will see, could be used as the basis for an
objection to the present work.

31t is important to acknowledge, of course, that such responses, while ad hoc, may turn out to be useful
if they at least offer up new empirical predictions.

4Note that, construct validity issues aside, we cannot strictly disconfirm Salthouse’s theory here as this
view is explicitly about a general factor which explains age-related differences in a variety of variables.
Salthouse (1996) is not proposing that every measure of speed will show age-related decline because of a
single common cause.
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in StarCraft 2, right-click speed, which appears to track speed but which puts less emphasis

on decision making.

4.0.2 Rerunning Thompson et al. (2014)

Thompson et al. (2014) used piecewise linear regression to estimate the onset of aging. These
piecewise models contained a split point parameter which represents the year at which the
effect of aging changes. Consequently, they also contain two aging variables, one reflecting
aging and one reflecting the number of years above the split point. Various split points were
then compared with likelihood ratio tests using a Chi-Squared distribution. I rerun this
analysis with two changes.

First, I begin by rerunning the original initial analysis using the R package ‘Seg-
mented’ (Muggeo, 2017). After building these models, I compare the segmented model,

Modelse9mented  against a simpler model that is not segmented.

Model ™" : meanF AL ~ (league * age)

Model*e9me™ed . meanF AL ~ (league * age) + agesegmented

The models are nested, so I will compare them with a likelihood ratio test.

Secondly, I rerun the analysis using the revised parsing of the skillcraft data from Thomp-
son, McColeman, et al. (2017), which has some minor differences from the original study
(Thompson et al., 2013). This will allow me to compare the performance variables defined
in the next section to First Action Latencies using the same dataset and parsing procedure.
The largest difference between the two datasets is a slight difference in sample size (23
games are dropped from the newer dataset due to parsing errors).

Importantly, Thompson et al. (2014) rely on mean First Action Latencies rather than
the medians used in the previous chapters. Since the present chapter is meant to build off
of the original study, I will continue to use mean First Action Latencies in order to make
direct comparison between the studies possible.

Results were in keeping with Thompson et al. (2014) (for further details of this anal-
ysis, see Appendix ii.4). The simple linear regression model Model"™" is nested within
Modelse9mented which has two additional parameters: one for the breakpoint at which the
impact of aging changes, and one for how the effect of aging changes after the breakpoint.
I retain both league and age as variables in the base model on theoretical grounds, as a
common finding is that the impact of aging on performance is ameliorated by skill (Bosman,
1993; Salthouse, 1984). Since the model is nested, I compared the segmented model to the
simpler linear regression using a likelihood ratio test, with the segmented model winning

out (Modellear=13, Modelgjﬂmmed:w, x2(2)=11.07, p = 0.004).
The optimal breakpoint, which represents my best guess of when age-related decline

begins, remains 24 years of age. The confidence interval (based on two times the standard

58



error of the segmented model) is 21-27, which is somewhat tighter from the 20-29 years of age
reported by the original study. As recommended by the R package ‘Segmented’ (Muggeo,
2008), a Davies test was used to test whether the effect of age differed before and after 24
(number of possible splits=27; p=0.012).

Impact of Aging on PAC Latency, by League
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Figure 4.1: Segmented model of mean FAL on age and league. Estimates of interactions
between mean FAL and league are not reported as no interaction was significant at a
familywise error rate of 0.1. The differences in the intercept between Silver and Bronze,
while depicted in the figure, are not statistically significant. Coloured lines (from top to
bottom), represent ‘Bronze’, ‘Silver’, ‘Gold’, ‘Platinum’, ‘Diamond’, and ‘Master’ leagues.
Dot colours correspond to the player’s league.

Effect sizes of the best model remain similar to the original study. Players over 34 years
of age tend to be slower by the equivalent of about one league (see Figure 4.1). For actual
players, this is a small effect in the sense that it is unlikely that an individual player would
notice these changes in their own play, and in the sense that simply practicing more is likely
to overwhelm any impact of age. For scientists, this can be seen as a large effect insofar as
a league of skill might correspond to hundreds of hours of practice.

As can be seen in Figure 4.1, there is no evidence here that skill in StarCraft 2 reduces
the impact of aging. No statistically significant interaction between league and age is found

after using a Bonferonni correction to hold the type I family-wise error rate to 0.1. Finally,
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adding race to the model results in a better fitting model, but does not change the pattern

of results or the estimates of age-related change.

4.1 Developing a Domain-Specific Approximation of Finger
Tapping

In this section I will define RCLatency, which is based on the median inter-key interval of
actions within a screen fixation (see Chapter Two) that contains only right-clicks. There are
many screen fixations per game. Therefore, a game’s RCLatency is defined as the median
of median inter-key intervals described above.

Right-clicks are contextual keys in StarCraft 2 that have a different meaning depending
on how they are used. When issued to an empty location on the game map or to a friendly
unit, a right-click moves a selected unit. When used on an opponent’s unit, a right-click
commands selected units to focus their attack on that unit. Finally, selecting a worker and
right-clicking on natural resources issues a command to begin mining. In the vast majority
of these cases, a second right-click overrides the previous command, making repeated right-
clicks redundant (in rare cases the second right-click can be a queued command which will
be completed after the previous right-click). 3,326 games have usuable right-click latencies.
Repeated strings of right-clicks over very short timespans, which are relatively common
(each player has an average of 41.1 screen-fixations containing only right-clicks), do not
appear to be cognitively demanding. They consist of clicking on locations to walk, attack,
or mine, and they are very rarely the sort of action that requires careful accuracy. I would
speculate that the costs of strategizing, decision making, and task switching would occur
prior to the first right-click or even prior to the selection of relevant units. Regardless,
anyone experienced with StarCraft 2 gameplay would recognize that these clicks can be
remarkably fast. The distribution of RCLatency scores (which is noticeably skewed) can be
seen in Figure 4.2.

I am treating RCLatency as a prima facie analogue of the finger tapping test, which
does show age-related declines (Lezak, 2004) and has diagnostic value in neuropsychological
assessment (Lezak, 2004; Schmitt, 2013). It is sometimes assumed that finger-tapping does
not track higher level cognitive processes (e.g., Colcombe and Kramer, 2003). One piece of
evidence in favour of this view is that people with cognitive deficits, such as in mild dementia,
can perform relatively well (Goldman, Baty, Buckles, Sahrmann, & Morris, 1999). Declines
in finger tapping resemble changes in the proportion of white matter and, at least on some

accounts, peaks around 39 years of age (Batzokis et al., 2011). It makes sense, therefore, to
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Figure 4.2: Histogram of RC Latency;, which is defined as

(in milliseconds)
i )

median(median(RC Latency , where i refers to single game and j refers to a

single fixation of more than two actions containing only right-clicks.

distinguish the kind of speed present in finger tapping and the speeds that stem from more
cognitively complex tasks.?

There have also been attempts to construct analogues of the finger tapping test using
the inter-key intervals in everyday performance. Austin et al. (2011), for example, measured
finger tapping performance using keystroke data from people logging into their computers.
In some ways, accessing finger tapping speed in StarCraft 2 is methodologically simpler
than in keyboard typing tasks. This is because the atoms in a sequence of keystrokes are
not independent, and can be influenced by biomechanical constraints on finger transitions
(Loehr & Palmer, 2007), effects associated with transitions between left and right hand

0f course, it is methodologically, and perhaps even philosophically, difficult to judge whether RCLatency
measures something cognitive in a complex domain. Even the most redundant aspects of StarCraft 2 motor
performance, including the unnecessary production of continuous right-clicks, is potentially cognitive when
embedded in a task that has relatively clear standards for cognitive assessment. Furthermore, skilled players
are choosing to perform these redundant actions without instruction, so one might argue that the timings
of this performance may still reflect the duration or scope of a cognitive process. All T will argue here is
that redundant right-clicks are, at least on the face of things, cognitively simpler than the other behaviours
under examination.
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(Rumelhart & Norman, 1982), and chunking (Povel & Collard, 1982). RCLatency sidesteps
the first two of these methodological concerns by (presumably) focusing on repetitions on
the same finger. It deals with the latter concern by focusing on the inter-key interval rather
than including the First Action Latency of right-click sequences, as first actions of chunked
sequences can be slowed (Povel & Collard, 1982; Rosenbaum, Kenny, & Derr, 1983).

Importantly, RCLatency obviously differs from finger tapping in a number of ways.
Note that I will make no attempt to compare RCLatency values to the typical number of
taps in the finger tapping test as, even in these tasks, the apparatus can lead to variable
results (Lezak, 2004). Furthermore, the finger tapping test usually relies on the index finger
(Schmitt, 2013) rather than the middle finger typically used with the the right-click button
on a mouse. Also, unlike the finger tapping test, I cannot control for handedness, and this
might influence click-speeds for a small number of participants.® I can do little to speak to
such issues in the present work, and so I simply acknowledge that RCLatency is, at best, a
useful analogue of finger tapping.

If RCLatency is a measure of processing speed, then processing speed theory would
predict that it would likely explain a moderate or large portion of the age-related differences
in mean FAL.” However, recall that Salthouse (2000) includes finger tapping as a measure of
psychomotor speed that might nevertheless decline alongside other speed measures due to
some postulated common cause which impacts aging. Consequently, the present work does
not require the assumption that RCLatency is a valid measure of cognitive processing speed
in order for it to directly test processing speed theory. If RCLatency is instead a measure
of psychomotor speed and not processing speed, as seems plausible for an analogue of finger
tapping, then one might still expect that it will likely account for age-related declines in
other variables. The major consequence of this concession, from the purview of processing
speed theory, would appear to be that psychomotor speed should not fully explain age-
related differences in more complex psychological abilities (Salthouse, 1996), such as mean
FAL®

SThere is some reason to think that left-handed players might exhibit slightly atypical latency values. If
they use the mouse with their non-dominant hand, their performance could be impacted. If, on the other
hand, they use their mouse with their left hand, they will probably use their index finger, rather than their
middle finger, to right-click. In either case, their latencies might be somewhat atypical.

"Note, however, that Salthouse (1996) does not insist that every measure of speed will necessarily show
age-related decline due to a common cause.

8 Also recall from Section 4.0.1 that, despite these complications of interpretation, we can still evaluate
Salthouse’s theory as a tool for explaining performance in a complex task. An earnest effort has been made
to use extant theory to explain age-related differences in StarCraft 2 performance and, regardless of the
interpretive complications, theories which aid in such an explanation would seem to deserve credit.
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Although there is little I can do to settle the issue of whether RCLatency reflects a

9 some exploratory analyses can help me better understand the source

cognitive process,
of these latencies. The first will consider the dispersion of right-clicks in StarCraft 2 in
case that RCLatency reflects not differences in player speed, but in how spatially disperse
players make their right-clicks. The second analysis considers whether there are systematic
differences between the RCLatencies of fixations with different numbers of right-clicks. Once
these possible artifacts influences are removed, I can conduct formal tests of the relations

between RCLatency, skill, and aging.

4.1.1 Is RCLatency Biased by the Distance Between Clicks?
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Figure 4.3: Histogram of RC Speed;, which is defined as
mean(click—distance;)
<in seconds)
J
fixation of more than two actions containing only right-clicks.

median( ), where i refers to single game and j refers to a single

median(RC Latency

I consider the possibility that RCLatency could be biased by the distance between clicks.
Fitts’ Law, for example, entails that the speed of a right-click is determined in part by the
ratio of the distance and width of a target (Fitts, 1954). It would be problematic if players

°T take it that settling this issue would likely require a great deal of philosophical or empirical work that
is beyond the scope of the present work.
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happen to vary the distance between their clicks from fixation to fixation, and even more
problematic if certain groups of players preferred less dispersed right-clicks.

I examine how right-click speed varies by Euclidean distance between clicks in individual
fixations. I define distance as the mean FEuclidean distance of each successive right-click in a
fixation. I do not average over all the possible Euclidean distances in a fixation, as I expect
right-clicks to get progressively farther from the first right-click (as these are often used to
move an army further across the map). Also note that the right-clicks in this analysis only
reflect right-clicks with available coordinate information (only 421 right-clicks in the raw

dataset lack this information out of 5,167,148 right-clicks in total).
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Figure 4.4: RCLatency by Distance. Caution is required here given that each game con-
tributes more than one datapoint (i.e., data are not independent).

Distance values were relatively small (mean=2.81 coordinates, sd=1.4). Thompson et al.
(2014) estimate of the view screen size was 40 coordinates by 21.5 coordinates, so distances
are relatively small. However, graphical inspection revealed a weak to moderate relationship
between RCLatency and Distance (see Figure 4.4). One issue with this approach is that
some individuals contribute more fixations, and therefore more data points, to the figure.
Comparing each player’s median distance to RCLatency reveals a moderate relationship
(rpearson=-43, 95% CI [.4,.46]; See Figure 4.5). Furthermore, visual inspection (Figure

4.6) suggested differences in right-click distance by league. Bronze players, in particular,
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Figure 4.5: Median RCLatency by Median distance between right-clicks.

appear to have larger and more variable right-click distance than other leagues. These
results suggest that distance is a potentially serious confound impacting the interpretation of
RCLatency. Bronze players might have slower RCLatencies because they are slower generally
or because they prefer to click farther apart.

Rather than stick to raw measures of latency, therefore, I also define RCSpeed (see Figure
4.3), the median distance in game coordinates between a player’s right-clicks divided by the
latency of those clicks in seconds (data from 1,427 out of 134,642 had to be dropped from this
variable due to having a RCLatency of zero). While this shift from RCLatency to RCSpeed
makes a direct comparison with finger tapping speed more difficult, it highlights the fact
that, unlike finger tapping, StarCraft 2 right-clicks are usually punctuated by (small) mouse
movements. [ will retain RCLatency for future analyses as a more direct measure of speed,

but will remember the caveat that RCLatency is correlated with the distance between clicks.

4.1.2 Does RCLatency Vary across Different Types of PACs?

RCLatency is an aggregation across fixations with different numbers of right-clicks. This
aggregation potentially obscures differences between fixations with a small number of right-
clicks and those with many. For example, while fixations containing twenty-five right-clicks

almost certainly contains unnecessary actions, a fixation of only two or three right-clicks
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Figure 4.6: Median RCLatency by league.

might reflect a genuine error-correction process. A player might intend, for example, to
order their probe to gather minerals but initially misclick and only command their probe to
move to a location near minerals. A second right-click, in this case, might reflect the time
taken to detect an error and begin its correction. Since aggregating across these two very
different tasks would be a mistake, I want to compare RCLatency against the number of
actions within a fixation (called FixActionCount).

One difficulty with directly comparing of right-click speed against FixActionCount, and
redefining RCLatency over the fastest sort of right-clicks, is that it could lead to a sort of p-
hacking, especially if I perform this analysis by player league. It is too easy to simply select
whatever definition of RCLatency that exhibits the most impressive or least impressive
changes with skill. I instead confine the analysis of FixActionCount to a random subsample
(without replacement) of 100 Gold games and 100 Master Games. The results are shown
in Figure 4.7. While there may be differences between RCLatency among fixations with
three or more actions, fixations with only two right-clicks appear to be unrepresentative.
I therefore restrict RCLatency to fixations of at least three right-clicks (Players have, on

average, 24.7 such screen fixations per game).
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Figure 4.7: RCLatency by PAC actioncount. Each game (n=200) contributes at most one
data observation to each level of PAC actioncount. As reported in figure titles, the Y axis
is constrained to visualize the bulk of the data and ignore extreme values.

4.1.3 Does RCLatency Differ by Skill Cross-Sectionally?

RCLatency is extremely skewed (see Figure 4.8), and the mean RCLatency is a particularly
bad measure of central tendency in Bronze players. Nevertheless, there appear to be differ-
ences in the distribution of RCLatencies with skill. A Kruskal-Wallis test over the first six
leagues is significant (x?(5)=274.07, p<=2.2e-16, n?=0.0826)'°. I drop Grandmaster level
players here because of low sample size.

I should also note that RCLatency shows a striking floor effect around 100 milliseconds
(see Figure 4.8). One should be cautious about inferring that one hundred milliseconds
has some special significance here given the issues of resolution discussed in Chapter Two
(see table 3.1). Given that latency recordings are tied to the synchronization required by
the online portion of StarCraft 2, latency data tends to pile up at zero milliseconds, 90

milliseconds, and 135 milliseconds.

1092 for all Kruskal-Wallis tests reported here are calculated using guidelines from Tomeczak and Tomeczak
(2014) For comparison, an eta® based on a Kruskal Wallis test of mean FAL for the first six leagues is 0.432.
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Figure 4.8: Violin plot of RCLatency by league. Black dots represent the mean and whiskers
represent two standard errors of the mean. Red dots represent medians.

Figure 4.9 shows the differences in RCSpeed with skill (y%(5)=153.29, p<=2.2¢-16,
n?=0.045). The distribution is slightly skewed, with the tail of the distribution extending to
RCSpeeds of 25 and over, while most leagues have a floor of zero. Interestingly, this floor is
elevated to RCSpeeds of two or three coordinates per click latency in Diamond, Master, and
Grandmaster leagues. It is worth remembering that, since a game coordinate is extremely
small given the 40 by 21.5 coordinate viewscreen on a player’s monitor, the RCSpeeds of
StarCraft 2 players are not large distances. In short, expert StarCraft 2 players are faster
both in terms of the latencies between right-clicks and in terms of how much distance in

game coordinates can be covered in the time taken to right-click.

4.2 Does RCLatency Account for Declines in Mean FAL?

4.2.1 Analytic Strategy

I begin by examining whether RCLatency exhibits age-related differences. I will use likeli-

hood ratio tests to evaluate the following models of increasing complexity.

Modelfcmtency : RC Latency ~ (league * age)
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Figure 4.9: Violin plot of RCSpeed by league. Black dots represent the mean and whiskers
represent two standard errors of the mean.

Modelfegmte"cy : RCLatency ~ (league * age) + agesecgmented

As in the previous analysis, I evaluate these models using a likelihood ratio test.

Further analysis is needed to establish whether RCLatency can explain previously ob-
served relations with mean FAL. I follow Salthouse’s (1996) formalization of this question in
terms of the proportion of age-related variance in mean FAL that is shared with RCSpeed.
I am interested in whether RCLatency (or RCSpeed) can explain the variation represented
in AU B from Figure 4.10. Note that I am not intending to explain all of the variability in
mean FAL. I acknowledge that a lot of the variation in mean FAL! will not be explained
in the present work. The primary concern here is the extent to which the variability asso-
ciated with region B (which represents variability that is shared between age, mean FAL,
and RCLatency) takes up a large proportion of the variability associated with AU B (which
represents shared variability between age and mean FAL).

One of Salthouse’s (1996) statistical approaches to this problem is to compute squared

Pearson correlations to represent the AUB region and squared semi-partial correlations to

"This variability might be due to a wide variety of factors such as differences in motivation or decision
making habits.
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Figure 4.10: Venn diagram representing variance and shared variance between mean FAL,
RCLatency, and age. The region of A U B corresponds to the variability we would like
to explain. I take processing speed theory to predict that region B will occupy a large
proportion of AU B.

represent the A region. This allows one to calculate the proportion of age-related variance
in mean FAL that is shared with RCSpeed (which represents the A region).

2 2
B _ Tpearson T‘semifpa,'rtial

2
Tpearson

I expect this proportion to be large if RCSpeed accounts for the age-related declines in
mean FALs.

Given that the relationship between aging and mean FAL appears linear after the age
of 24, T consequently restrict the analysis to ages 24 and older. After this restriction, re-
lationships between age, mean FAL, and RCSpeed are approximately linear without clear
breakpoints. I therefore proceed to calculate semi-partial correlations based on the residuals

of a simple linear regression and Pearson product moment correlations.
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4.2.2 Results
Aging in RCLatency
To probe RCLatency for aging effects, I began by comparing the base model

Model"™e@ - log( RC Latency) ~ age * league

against its segmented counterpart. Issues with heteroscedasticity required log-transforming
the dependent variable. However, the likelihood ratio test revealed no evidence that the seg-
mented model was an improvement over the base model (Model"™® =13, Model®¢9meted =15,
X2(2) = 1.59, p = .45).

Given that the relationship between Log RCLatency and age appears approximately
linear (and a linear regression of log RCLatency on age has sensible looking residuals), I
computed a Pearson correlation to describe the strength of the relationship. The relationship
appears to exist, though it is very weak (r = .11,95%C1[0.08,0.14],¢(3000) = 6,p = 4 %
10710,

The strength of the relationship between age and log mean FAL after 24 was 7pecarson=
.35 (95% CI[0.29 0.41], n=888), and the partial correlation between age and log mean FAL,
controlling for the effect of RCLatency on age, was Tpartir=0.31 (95% CI [0.25 0.37]).12
This suggests that the proportion of age-related variance in mean FAL that is shared with
RCLatency (T’Q’e””"_rfe"’“p””“l) is about 19%. In order to test that this percentage of

2
rpea'rson

shared variance is non-zero, I used the Pearson and Filon (1898) test against equality
of correlations with dependent and overlapping groups, implemented in the R package
Cocor (Birk Diedenhofen, 2016). The null hypothesis is rejected, and I accept that the full
correlations (between age and median FAL) and partial pearson correlations (between mean
FAL and the residuals of age ~ RC Latency) are distinct (z=10.94, p<= 0.0001, n=888).
The picture does not change substantially if T instead consider the proportion of age-
related variance in mean FAL that is shared with RCSpeed (13.5%, z=10.74, p<= 0.0001,
n=_888), suggesting that these results are not due to differences in how older and younger

individuals space their clicks.

4.2.3 Rerunning Analysis Using Median FALs

In order to ensure these results were not due to the selection of mean FALs as opposed to
median FALs, I reran the analysis using median FALs. The medians simplified the modelling
process somewhat as log-transformation of the dependent variable was not required in order
to address issues of homoscedasticity. The resulting model had a a slightly older onset
of aging, at 27 years (with a confidence interval of 24-30 based on two standard errors).

This segmented model outperformed the nested model medianF AL ~ age * league model

12The Pearson correlation between log mean FAL and RCLatency was .4
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(Modell™ear =13, Model*¢9mented =15 x2(2)=11.14, p=0.004). For a fuller descrption of
these results see Appendix ii.4. These differences are interesting and, given the sensitivity of
the mean to extreme values, presumably due to differences in how the distribution of FAL
scores differ across age which are independent of central-tendency. While it is beyond my
scope here, future work should consider analyses that which would explain why the analysis
of means and medians give different results.!

I also asked whether RCLatency could explain effects of age on median FAL, replicating
my previous analysis except with data from 268 individuals who were 27 or older (also see
Appendix ii.4 for additional details). The results were a rpegrson = .36 (95% CI [.25 .46]),
a Tpartial = 0.29 (95% CI [.18 .4]). There was also evidence that the two correlations were
different (z=6.66, p=0.0001). Consequently, about 36% of the age-related variance explained
by median FAL appeared to be shared with RCLatency (i.e., B = T?'w”‘m; semizpartial — 36).

7Npea’r.so’n

r

In summary, the capacity of RCLatency to explain aging effects seems to be somewhat larger
if the analysis is restricted to median FALs, but the overall pattern of results changes little.
RCLatency does appear to explain some small proportion of the age-related differences in

First Action Latencies.

4.3 Discussion

My primary objective was to further probe the effects of age-related differences in mean
FALs found by Thompson et al. (2014). I confirmed those results by rerunning the data
using a more appropriate statistical technique that was specifically designed for the creation
of segmented models, and proposed a simpler measure of response speed, RCLatency, which
tracks the speeds at which players right-click with their mouse. The findings suggest that,
while RCLatency does explain some of the age-related declines in mean FAL, the proportion
of age-related variance in mean FAL that is shared with RCLatency is only about 19%.

The results are not due to age-related differences in the distance between the right-clicks
of players, as the results change are roughly the same if I use median RCSpeed instead of
RCLatency. Indeed, the shared-age related variance in mean FALs that is explained by
RCSpeed is only 13.5%. I also ruled out potentially unrepresentative fixations using a pilot
subsample of Gold and Master players.

It is important to remember that the present work constitutes an application of pro-
cessing speed theory to an entirely new domain. Unlike studies of typing skill, which are
observations upon which processing speed theory offers a hindsight explanation (Bosman,

1993; Salthouse, 1984), there has been no opportunity to create ad hoc adjustments of the

13Thanks goes to Jack Davis for proposing one such an analysis. One could rerun the aforementioned
analyses not only with median FALs but with a variety of percentiles (e.g., the 60th, 80th, and 90th percentile
of FAL scores), to see whether age-related differences in FAL might begin with a fattening of tails rather
than a difference in central-tendency.
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theory in order to account for StarCraft 2 data. Nevertheless, I found, as processing speed
theory would predict, that statistically significant proportions of age-related variance in
one response time measure will be shared with speed measures that appear to tap into
entirely different cognitive capacities. This testifies to the robustness of processing speed
theory predictions. However, I find no evidence that a general factor might explain a large
proportion of the age-related differences in speed. Recall that this is consistent with Salt-
house (1996) insofar as RCLatency is thought of as a measure of raw psychomotor speed.
Salthouse (1996) argued that the age-related differences in speed could not be explained by
psychomotor speed alone.

Finally, I reran the entire analysis using median FAL instead of mean FAL, obtaining
a similar pattern of results. The choice in dependent variable does impact estimates of the
proportion of age-related variance that is shared with RCLatency (Location B from Figure
4.10 corresponds to roughly 19% using mean FAL and 36% using median FAL), but it is
important to remember that these analyses are predicated on segmented models of when
age related declines begin. The onset of aging is slightly later for median FALs (27 years as
opposed to 24), and this impacts the sample sizes contributing to the estimate of section
B in Figure 4.10. Regardless of how the analysis is conducted, the proportion of shared
age-related variance is relatively small but non-zero.

One key limitation of this study still requires attention. I will interpret these results in

light of debates about the use of cross-sectional methods in studies of age-related differences.

4.3.1 Issues with the Use of Cross-Sectional Data

There is an ongoing debate about whether cross-sectional findings can be used to make
claims about cognitive declines, particularly when cross-sectional studies and longitudinal
studies often differ in their estimates of when aging begins (Salthouse, 2009). Schaie (1965,
2009) has argued that cross-sectional differences cannot be used to infer longitudinal change
in these cases, often by pointing to issues of cohort effects. Salthouse (2009) has responded
that such accounts need to do more to specify exactly what features of cohorts could account
for observed differences. ‘Some variables, such as years of education, are easily assessed, but
the prediction that cross-sectional age trends would be eliminated after adjusting for these
other variables cannot be adequately tested until all of the cohort-relevant variables are
identified and measured’ (p. 7). The implicit premise here appears to be that the burden
of proof lies with critics of cross-sectional investigations of aging to specify measurable
nuisance variables which could account for aging effects. A second approach to defending
cross-sectional studies of aging is to point out that longitudinal studies have their own
limitations, including cohort effects (which are potentially confounded with age where one

is unable to sample from multiple cohorts) and retest effects (Salthouse, 2009).
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I do not wade into this debate here. Instead it is taken for granted that cross-sectional
differences in StarCraft 2 performance could be due to any combination of cohort effects

and genuine age-related differences.

4.3.2 Closing Remarks

The primary contribution of this chapter is that, while the timings of age-related difference
in StarCraft 2 map relatively well to the ages associated with peak performance in male
10,000 meter runners, who peak at about 23 years of age (Berthelot et al., 2012), the age-
related declines in mean FAL appear to have more complex underpinnings than a simple
decline in the ability to tap fast: an ability tracked by finger tapping test (Lezak, 2004). If
a clicking speed decline did underlie these results, I would expect RCLatency, a measure of
performance speed in redundant clicks that place fewer cognitive demands on participants
than the typical FAL, to show the clearest declines with age. On the contrary, RCLatency
appears to show only weak age-related decline, and it explains little of the age-related
differences observed in mean FAL. These results are more consistent with age-related slowing
in planning, perceptual speed, or complex motor sequence preparation.

However, there are independent reasons for thinking that differences in mean FAL are
not due to declines in complex motor sequence preparation. If mean FALs were heavily influ-
enced by sequence preparation, then I would expect slower First Action Latencies in screen
fixations which contained many actions. However, Thompson, McColeman, et al. (2017)
found only weak spearman correlations between the number of actions in a fixation and
First Action Latency, and this finding required the ad hoc exclusion of fixations containing
only a single action. My best guess, therefore, is that differences in mean FALs should be

thought of as being likely due to differences in perceptual or planning speeds.
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Chapter 5

The Relevance of Big Data to the
Psychology of Complex Skill
Learning

There is some reason to think that the relationship between Big Data and psychology will
be somewhat different from the relevance of Big Data to other domains. Unlike disciplines
such as business and commerce, which are sometimes forced by their subject matter to deal
with increasingly troublesome datasets, psychology is not compelled to embrace these new
data sources. Psychology has the laboratory, and there are enough questions to be asked
about performance on basic laboratory tasks for psychology to continue using traditional
methods indefinitely. Furthermore, Big Data brings a number of methodological and sta-
tistical challenges. Indeed, Laney (2001) defines Big Data in terms of its unwieldiness. On
this definition, Big Data refers to data which are either too large for traditional processing
(volume), is so heterogeneous with respect to data types that analysis becomes extremely
awkward (variety), or is updated so frequently as to be problematic (velocity).

Understanding the relevance of Big Data to psychology, therefore, requires a discussion
of whether the scientific advancement promised by emerging data sources could offset the
methodological challenges it entails. This means that the ensuing discussion will actually be
about the previously untapped behaviours represented in Big Data, not about the volume,
variety, or velocity of data. Of course, since many of these new data sources can be sampled
from, rather than analyzed in their entirety, many researchers will still be able to exploit
these new data sources without necessarily using Big Data (Goldstone & Lupyan, 2016).
For the remainder of the chapter, therefore, my goal will be to explain how psychology might
exploit emerging data sources for scientific advancement. What I argue will ultimately apply
to Big Data as well, since fully exploiting naturalistic telemetry will likely mean coming into
contact with Big Data.

Chapters Three and Four have prepared me, at least somewhat, to address the question

of Big Data’s potential value for psychology. The longitudinal dataset utilized in Chapter

75



Three was arguably Big Data as it was large enough to be methodologically challenging.
The typical methods that were used for processing data on a single local machine (and
storing them on a small number of MySQL tables) was acceptable for the 32 million row
cross-sectional dataset. The method needed to be rethought for the longitudinal dataset
of about one billion rows, which required parallel processing and the distribution of raw
data over a large number of MySQL tables. The cross-sectional dataset used in Chapter
Four would probably not constitute Big Data for many researchers, but it also deserves
consideration as it nevertheless exploits an emerging data source that has yet to be fully
utilized in psychology.

After reviewing the contributions of Chapter Three and Four, I address an unfortunate
complication in any discussion about the relationship between Big Data and psychology.
Some have argued that Big Data allows researchers to sidestep theory, and even replace
theory (C. Anderson, 2008). At the heart of such arguments is the view that Big Data will
radically transform our fundamental approach to research, with data-driven approaches
essentially replacing hypothesis-driven science. Understanding the relevance of Big Data to
psychology, therefore, also requires addressing these beliefs.

The chapter will continue by tackling common responses to Anderson’s (2008) argument
(Section 5.1). I take these responses to be devastating to the notion that Big Data could
replace theory, and so I will not attempt to levy additional critiques here. Instead, Section
5.2 turns to what I see as the kernel of truth in this argument. I will argue that the variety
of new data sources, while perhaps not a threat to the need for theory, is nevertheless a
threat to the particular theories we presently endorse. That is, while Big Data cannot do
away with the general importance of theory, the variety of new data sources, many of which
capture complex performance outside of the lab, nevertheless threaten to overturn theories
which make overzealous generalizations. In 5.2 T argue that the capacity to identify prob-
lematic generalizations might profoundly change research practices. The increased capacity
to test theory generalizability will afford researchers more opportunity to back up their
generalizations and, insofar as this opportunity is ignored, overzealous generalizations are
likely to constitute bullshit (Frankfurt, 2009).

Having reviewed the contributions of Chapter Three and Four, and having articulated
the utility of Big Data in examining theory generalizability, the rest of the chapter turns
to two specific research strategies that utilize emerging data sources to examine theory
generalizability. Two obvious possibilities present themselves. I will call this the Model-

Organism approach and the Free-For-All (FFA) approach.

5.0.1 A Review of the Contribution of Chapters Three and Four

The contribution of Chapter Three was the identification and addressing of a new source
of complexity in the complex skill StarCraft 2. While most learning in the laboratory can

be sensibly studied by operationally defining ‘experience’ in terms of a single variable (I
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call this the presumptive definition), such an approach is potentially misleading in the case
of StarCraft 2. On the uni-dimensional approach one would probably, like myself, begin
by defining experience in terms of 1v1l competitive experience, as this is the context that
professional players inhabit. However, my results suggest that this presumptive definition
is misleading in two ways.

First, the presumptive definition is misleading because it disregards race-specific learn-
ing. In most contexts, models were improved! by adding additional information about race
experience. In the initial analyses, this additional information took the form of variables de-
scribing the number of Protoss and Terran games played. In the analysis of only dominant-
race play, this additional information took the form of a variable describing how many
off-race games are played.?

Secondly, the presumptive definition is misleading because it ignores other sorts of ex-
perience that do not fall within 1vl gameplay. In all analyses considered here, a variable
describing 2v2 experience seemed to improve model performance (according to the like-
lihood ratio test). Furthermore, examination of the coefficients for our final models (see
Figure 3.16 and Appendix ii.2 for details) suggests that the impact of 2v2 experience, while
perhaps difficult to explain, is not the same as 1v1 experience.

Some of my findings are not surprising given research on skill transfer. Indeed, if ex-
perience in shooting basketballs from the foul line does not transfer to skill in the same
behaviour over slightly larger distances (Keetch et al., 2008), then it should not be a sur-
prise that skill in 2v2 StarCraft would not have the same effects as 1v1 play, as the two game
modes are quite different in terms of how attacks are timed and in terms of what strategies
are effective. These findings are also not irreconcilable with theory, even the classic picture
of skill as a hierarchy of habits (Bryan & Harter, 1897, 1899), as it is plausible that different
game modes require slightly different habits or skills. We would predict that practice which
only trains a subset of the required habits will be less effective.

In addition to showing that a uni-variate approach to defining experience is potentially
misleading, Chapter Three also estimated the extent to which skills transfer. For example,
if we hold all other variables constant and restrict ourselves to a player’s dominant-race, a
game of off-race experience appears to slow speed by about 23% of the value that one game
of dominant-race experience would improve speed. In contrast, one game 2v2 experience

appeared to be suspiciously beneficial, conferring 165% of the speed up predicted by a

'Recall T judge improvement here based on likelihood ratio tests

2The only analysis where off-race experience did not appear to lead to improved model performance was
where the dataset was reduced to the 33 players who had more than 30 2v2 games. I do not take this too
seriously as the goal of this followup analysis was to explain the seemingly large effects of 2v2 experience.
Nevertheless, even if we take this result seriously, it does not cast doubt on the larger point that uni-variate
definitions of experience are misleading because, even in this analysis both 1v1 experience and 2v2 experience
appeared to play an important role.
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single game of 1v1 experience.? Both of these latter results are somewhat surprising, and
presumably could not have been found without a direct inquiry into many hours of StarCraft
2 play.

In short, Chapter Three brings psychology one step closer to Newell’s (1973) goal of a
complete explanation of performance in one complex domain. In doing so it also offers insight
into how researchers might begin inquiries into other complex skills of more direct societal
interest. The most prominent of these insights is that researchers studying a complex skill
should at least consider a multi-dimensional operationalization of experience and, ideally, to
allow data to help inform these decisions. Otherwise, they may wind up relying on common-
sense definitions of experience, such as 1v1l experience,

Chapter Four had two contributions, one empirical and one theoretical, and both of
these contributions stem from extending the work of Thompson et al. (2014). Previously,
cross-sectional studies using simple laboratory tasks had suggested that an effect of aging
on performance could be seen at relatively young ages (Salthouse, 2009; Schroeder & Salt-
house, 2004; Tsang & Shaner, 1998). Thompson et al. (2014) found analogous age-related
differences beginning at 24 in the response speeds of StarCraft 2 players. This suggested
that declines found in the laboratory may manifest themselves in much more complex be-
haviours. These results were surprising as, in complex tasks, experts are able to use the
regularities of their environment in order to circumvent many such low-level changes. Older
typists, for example, appear to be able to avoid age-related declines in typing speed by read-
ing ahead (Bosman, 1993). Chapter Four’s empirical contribution lay in answering whether
the age-related differences in response time could be explained by a much simpler behaviour,
redundant Right-Click Latencies.

Our results suggest that variability in RCLatency can only account for about 19% of the
shared age-related variance in age and mean FAL. This suggests that we probably should
not think about these age-related differences in mean FAL as being due to the ability to
click fast.

A further contribution involves the evaluation of Salthouse’s processing speed theory.
The observed pattern of correlations are consistent with the existence of a common cause
which declines with age and impacts both RCLatency and mean FAL. However the small
size of this effect suggests that, even if a common cause could be identified and directly
measured, the age-related variance in mean FAL would remain largely unexplained. This
is consistent with processing speed theory if we are willing to accept that RCLatency is

a measure of psychomotor speed, which Salthouse (1996) does not think can fully explain

31 can not currently explain why 2v2 games might be so valuable to StarCraft 2 players. The most likely
possibility is that players who play these game modes benefit a lot, perhaps because they are weaker players
with more to learn. The followup analyses considered here only examined player dedication and the number
of 2v2 games played. Future work should consider whether these findings can be explained by independent
estimates of player skill, such as MMR.
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age-related differences in other speed measures. Furthermore, the theory has been of at least
some practical utility in explaining results from studies of complex performance in a novel
domain (Thompson et al., 2014).

5.1 Objections and Responses to Concerns about Big Data

One exaggeration? of Big Data’s importance that has received a lot of attention comes from
Wired magazine (C. Anderson, 2008):

‘In short, the more we learn about biology, the further we find ourselves from a

model that can explain it.

There is now a better way. Petabytes allow us to say: “Correlation is enough.”
We can stop looking for models. We can analyze the data without hypotheses
about what it might show. We can throw the numbers into the biggest computing
clusters the world has ever seen and let statistical algorithms find patterns where

science cannot. (§12-13).

Anderson is careful to distinguish correlation from causation, but denies such under-
standing is necessary for practical purposes. Insofar as my goal is to maximize quarterly
profit, for example, one might do better predicting profit with an opaque deep learning
algorithm than by appealing to my best theory. If Anderson were merely claiming that, for
practical purposes, researchers are sometimes content with identifying correlations in the
absence of understanding causation, then he is in good company and certainly not making
some fundamental attack on theory. However, Anderson seems to go farther and instead
concludes that [... Science] can advance even without coherent models, unified theories, or
really any mechanistic explanation at all’ (C. Anderson, 2008, 919). This claim suggests
that Big Data can allow for scientific advancement even outside of those restricted cases
where predictive validity is sufficient for research purposes.®

Direct rebuttals of Anderson and similarly worded claims from the media are common
place (Bollier, 2010; Boyd & Crawford, 2012; Mazzocchi, 2015). In some cases responses

include obvious points which, in other contexts, might come across as pedantic.

4We mention less contentious interpretations of these claims below, but attention to their contentious
interpretation is of more value to the present argument.

®Interestingly, these comments appear to have touched a nerve even among empirical researchers in
cognitive science as one can even find attempts to highlight foundational importance of theory in otherwise
empirical work.

Rather than supplanting laboratory investigations, research using [Big Data or naturally occur-
ring datasets] can supplement traditional approaches by serving as a proving ground for theories
developed in rigorously controlled experiments (emphasis added, Paxton and Griffiths, 2017,

p. 1).
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Extrapolating from correlations can yield specious results even if large data
sets are used. The classic example may be “My TiVO Thinks I'm Gay.” The
Wall Street Journal once described a TiVO customer who gradually came to
realize that his TiVO recommendation system thought he was gay because it

kept recommending gay-themed films (Bollier, 2010, p. 5).

The critique here is that Anderson underestimates the practical utility of theory. While
some research questions might be answered solely with correlations, there are many practical
cases where a myopic focus on correlation could lead one astray.

Perhaps more interestingly, Anderson’s claims are seen as an opportunity to delve into

foundational issues in the philosophy of science.

At present, whilst it is clear that Big Data is a disruptive innovation, presenting
the possibility of a new approach to science, the form of this approach is not
set, with two potential paths proposed that have divergent epistemologies -
empiricism, wherein the data can speak for themselves free of theory, and data-
driven science that radically modifies the existing scientific method by blending

aspects of abduction, induction and deduction (Kitchin, 2014, p. 10).

I read Anderson as electing a theory-free sort of empiricism® when he claims that ‘[we]
can analyze the data without hypotheses about what it might show’ (C. Anderson, 2008,
€13).” However, insofar as making use of correlations requires knowledge about what mea-
sures mean, Big Data cannot be free from theory. For realists about measurement, interpre-

tation of measures logically requires some consideration of the mind-independent entities

The rapidly increasing availability of high-quality data logging, storage, querying, visualization,
and analysis tools means that the bottleneck for progress in the social sciences increasingly on
the theoretical side. Cognitive science has always been strong on theory, and its practitioners
have unique theoretical vantage points from which to explore real-world data sets. If theory
is indeed the bottleneck, then cognitive science becomes a perspective of increasing societal
relevance because of its ability to widen the constriction (Goldstone & Lupyan, 2016, p. 565).

This salute to theory is surprising in the context of empirical papers, where foundational issues in the
philosophy of science are rarely mentioned. Researchers exploiting novel data sources seem to find themselves
distancing themselves from claims such as Anderson’s (2008).

STheory-free empiricism seems extreme, even for practical purposes. If we intend to use correlations
for industry applications, theory is presumably required to judge whether findings are actionable. If office
productivity is higher in summer months, data scientists are not obligated to increase the office temperature
year-round. I avoid these responses here in order to avoid debates about whether Actionability could be
estimated within a theory-neutral statistical model.

"One possible reading is that Anderson is just advocating data-driven research and induction. If so,
then his claims are not new. Indeed, Mazzocchi (2015), for example, points out that the excision of theory-
driven research resembles Bacon’s proposal of a scientific method relying heavily on induction over deduction
(Standford Encyclopedia of Philosophy, 2003)
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which causally produced their datasets (Standford Encyclopedia of Philosophy: Measure-
ment in Science, 2015, §1). The measurements of non-realists, on the other hand, will at
least need to be accompanied by a theory of what each datum indicates about the world
(Standford Encyclopedia of Philosophy: Measurement in Science, 2015, §8.2). To the ex-
tent that all measurements are theory-laden, the proposal of a theory-free empiricism is a
non-starter.

Unfortunately, the responses to Anderson are too numerous and cutting for me to make
a novel contribution by levying yet another critique. Therefore I will come to his defence in-
stead. I will not argue that previous critiques have been uncharitable or misguided. Instead,
I will argue that there is a kernel of truth to the notion that Big Data is a major threat to
psychological theory. I distinguish between the need for theory generally, which encompasses
the need for at least some interpretation of what numbers mean, and the particular theories
we happen to endorse today. Big Data is no threat to the need for theory generally, but
has the potential to threaten particular theories which are so general in scope as to apply
to a wide array of complex behaviours. Big Data may also inspire some healthy modesty
about our current understanding of the world and in the capacity of our laboratory studies
to generalize.

Importantly, I will not argue that Big Data will dramatically reshape psychological the-
ory in the short term, though it is possible that this is the case. Instead, I first explain how
the emerging variety of data sources, many of which will qualify as Big Data, offer new
opportunities for testing the generality of theory. Later, I will argue that these new oppor-
tunities have the potential to shift community standards surrounding the pronouncements

of theory generalizability.

5.2 Data Source Variety and Generalizability of Specific The-
ories

The threat of Big Data to theory does not come from the size of datasets. As Boyd and
Crawford (2012) note, census data is often larger than the datasets employed by Twitter
researchers. Instead, I will argue that emerging data sources can pose serious questions for
theories whose generalizability was previously unquestionable.

One of the most important emerging sources are Naturally Occurring Datasets (Gold-
stone & Lupyan, 2016). Our lives are increasingly computer mediated, and so complex
human behaviour is increasingly logged in freely available databases.® Consequently, theo-
ries which have previously been free to purport some degree of generality are increasingly

having this generality tested against emerging data sources. Today, a complete theory about

8 Insofar as these data are recorded on company or participant computers rather than by the researcher,
naturalistic telemetry will usually constitute a Naturally Occurring Dataset. I therefore use the terms inter-
changeably here.
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relationships and social networks must extend to the hundreds of million of tweets per day
(Internet Live Stats: Twitter Usage Statistics, n.d.). Those theories which make claims
about how cognitive-motor performance changes with time are increasingly evaluated in
light of video games. For example, Thompson, McColeman, et al. (2017) examined the gen-
eralizability of theories of motor execution and Thompson et al. (2014) examined whether
cross-sectional declines in basic laboratory speeds (Salthouse, 2009) generalized to a much
more complex domain.”

It is crucial to note that, although theories which purport to be relevant to complex
human behaviour are increasingly coming into contact with new data sources, tests of
generalizability are not easy or necessarily definitive. Twitter research has a number of
methodological challenges, such as the difficulty in getting a random sample of tweets when
Twitters API does not give access to the full database, and when some tweets are censored
(Boyd & Crawford, 2012). It also may turn out that traditional theories cannot generalize to
Twitter because interactions on Twitter operate under fundamentally different constraints
(Boyd & Crawford, 2012). Consequently, just because a theory does not appear to generalize
to a novel domain, the failure may be due to domain specific differences or methodological
complications.

Similar challenges were encountered when I investigated cognitive-motor speeds follow-
ing a major shift of attention in video game players (Thompson, McColeman, et al., 2017).
Actions following attentional shifts were delayed, which would be expected if the actions
following attentional shifts were motor-chunks (Povel & Collard, 1982; Rosenbaum et al.,
1983; Yamaguchi & Logan, 2014). However, Thompson, McColeman, et al. (2017) found
only weak evidence for the view that executing longer sequences of actions exacerbate these
delays. This was incompatible with predictions that that there should be a latency cost for
loading additional actions into a a motor buffer prior to execution (Henry & Rogers, 1960;
Sternberg, Monsell, Knoll, & Wright, 1978; Yamaguchi, Logan, & Li, 2013)). This effect was
only found after the exclusion of attentional shifts that were followed by only one action
and, even then, correlations between response time and sequence size were weak. Although
more research is of course required to call this a strict failure of theory to generalize, it
seems clear that data sources from video game players have extended our understanding. If
nothing else, the burden is now on supporters of a general motor buffer theory to provide
guidance about how to explain this aspect of complex behaviour.

Of course, I have only provided a few examples of how naturalistic telemetry can be a
powerful tool for evaluating the capacity of theories to generalize to behaviour outside of the
lab. I don’t intend to specify the extent to which naturalistic telemetry will revolutionize

theory evaluation, but I do want to explain how a qualitative shift in the academic landscape

9For further discussion on the value of Big Data and naturally occurring datasets in testing laboratory
theory, see Paxton and Griffiths (2017).
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would be possible. I am imagining a state of affairs where naturalistic telemetry allows us
to think more critically about the purported generality of theories. That is, we will be
able to distinguish between theories which provide guidance to those studying naturalistic

telemetry and those whose pronouncements of generality should not be taken seriously.

5.3 Naturalistic Telemetry as a Frankfurtian Bullshit Detec-
tor

I argue here that naturalistic telemetry, and naturally occurring datasets in particular,
could serve as a Frankfurtian bullshit detector. According to Frankfurt (2009), bullshit
can be distinguished from lying because the liar is necessarily concerned with the truth
(insofar as their aim is to deceive someone about it). A core feature of bullshit, although it
might be designed to give a specific appearance (e.g., the appearance of legitimacy, wisdom,
strength, etc.), the wielder need not have any concern for the truth of what they say. What
makes bullshit undesirable is not that bullshit is necessarily false, but that bullshit implies a

disregard for the expectation of due care which appears to be implicit in polite conversation.

What bullshit essentially misrepresents is neither the state of affairs to which
it refers nor the beliefs of the speaker concerning that state of affairs. Those
are what lies misrepresent, by virtue of being false. Since bullshit need not be
false, it differs from lies in its misrepresentational intent. The bullshitter may
not deceive us, or even intend to do so, either about the facts or about what
he takes the facts to be. What he does necessarily attempt to deceive us about
is his enterprise. His only indispensably distinctive characteristic is that in a

certain way he misrepresents what he is up to (Frankfurt, 2009, p. 54).

There are two ways of making the argument that naturalistic telemetry could facilitate
bullshit detection, the first of which is problematic. Although I don’t endorse the argument,

it is worth discussing where it goes wrong.

5.3.1 Argument 1

1. Psychologists are obliged to sell the importance of their theories in order to secure

publications and grants.

2. To meet their obligations, psychologists market theories as being general in scope

without any due regard for whether the theories are actually generalizable.
3. To engage in #2 is to bullshit.

The conclusion to Argument 1 is that psychologists are obliged to bullshit. The first
premise is also plausible, as granting agencies and journals do require that researchers

speak to the potential importance of their theories.
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The problem lies with premise #2, which is potentially uncharitable to researchers, and
its defense would no doubt entail a heavy burden of proof. Nevertheless, a starting point
would be to argue that most theorists who intend their theories to generalize cannot know
whether their theories will generalize, as a thorough evaluation of a theory’s generality is,
at the very least, a massive undertaking. Such evidence is unlikely to be present, especially
prior to funding. The obligation to market one’s theory as having a general scope, even
when such claims are impossible to support prior to funding and research, might then be

seen as a breeding ground for bullshit.

Bullshit is unavoidable whenever circumstances require someone to talk without
knowing what he is talking about. Thus the production of bullshit is stimulated
whenever a person’s obligations or opportunities to speak about some topic are
more excessive than his knowledge of the facts that are relevant to that topic
(Frankfurt, 2009, p. 63).

The core of Argument 1, then, is that the challenges inherent in supporting the generality
of some theories is so extreme that requiring researchers to speak to theory generalizability
is (often) to invite speculation. Insofar as researchers are obliged to testify to the generality
of their theory, researchers must bullshit out of necessity and not malice.

The problem with premise # 2 is that researchers can sell the importance of their
theories without bullshit. They only need to speak to the generality of their theory while
acknowledging their speculation for what it is. This would involve no intent to misrepresent
their theory as something it is not, and so it would not constitute bullshit.

What is useful about argument 1 is that it reveals the relationship between bullshitting
and community expectations. If generality becomes easier to evaluate, and consequently if
a reliance on speculation to justify theoretical importance becomes less appropriate, then
baseless professions of theory generality will constitute bullshit where the intention was to

misrepresent the importance of a theory. This leads me to a revision of argument 1.

5.3.2 Argument 2

1. Psychologists are obliged to sell the importance of their theories in order to secure

publications and grants.

2. To meet their obligations, psychologists may market theories as being general in scope,

but community standards require that these claims be backed up by evidence.

3. If a theorist makes claims about their theory’s generality without due regard for

community standards of care or accuracy, their claims of generality are bullshit.
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4. As Big Data provides a myriad of novel data sources'® that allow for examination of
questions about theory generality, researchers with a genuine interest in their theory’s
generality will increasingly seek out useful naturalistic telemetry, provide guidance to
those working with such data sources, or will at least go to lengths to explain why

their theory cannot be extended to available datasets.

Claim #1 remains unchanged, and Claim #3 follows from the present definition of
bullshit. Claim #2 has been modified to refer to community standards of backing up pro-
nouncements of generality with evidence. It is also assumed here that scientific communities
change, and the amount of evidence required to support a claim will change with the sci-
entific communities capacity to actually acquire such evidence.

Claim #4 points to the possibility that naturalistic telemetry might allow the scientific
community to acquire more evidence pertaining to theory generality, which would impact
the quality of evidence required to support claims of generality. It rests, of course, on the
empirical premise that researchers will actually be able to find naturalistic telemetry that
speak to theory generalizability. The premise is plausible given the recent use of naturally
occurring datasets to test theory (Goldstone & Lupyan, 2016; Huang et al., 2017; Stafford
& Haasnoot, 2017; Thompson et al., 2014; Thompson, McColeman, et al., 2017).

In short, if naturalistic telemetry becomes the theory evaluation tool that it could be,
then the availability of data sources to test theory generality could change the expectations
of due care that are placed upon researchers. In this case, professions of theory generality
which are bullshit could be identified by professors explicit attempts to test their theories
generality, to specify data sources where such tests will be feasible, or to clarify what sort
of naturally occurring dataset would be required to examine generalizability.

One can sensibly argue that, at least from the purview of argument 2, naturalistic
telemetry is not a bullshit detector, but that the development of theory evaluation tools
changes community standards. Statements which previously were mutually understood to
be speculative would, after emergence of data sources become bullshit. However, while
argument 2 may not imply that naturalistic telemetry is a bullshit detector, it certainly
implies that emerging data sources could have a civilizing effect on science that makes
bullshit detection possible.

More can be done to clarify how emerging data sources could actually be used to improve
tests of theory evaluation. From previous work using naturally occurring datasets (Goldstone
& Lupyan, 2016; Huang et al., 2017; Stafford & Haasnoot, 2017; Thompson et al., 2013,
2014; Thompson, McColeman, et al., 2017), and from the studies reported in Chapters

OTmportantly, by novel data sources I am not simply referring to larger quantities of data. I take it to
also imply the acquisition of data on an increasing variety of complex human behaviours. The availability
of detailed data on naturally occurring video game performance is one example. On this understanding, we
will have access to an increasing variety of data sources as increasing varieties of human behaviour become
computer mediated.
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Three and Four, it is possible to distinguish between two non-exclusive strategies for using
naturalistic telemetry to test theory generalizability in complex skill learning. I call these

the model-organism approach and the free-for-all (FFA) approach.

5.4 The model-organism approach: A traditional strategy for
using convenient data sources

In 1973, Simon and Chase argued that Chess could serve as the drosophila of cognitive

science.

As genetics needs its model organisms, its Drosophila and Neurospora, so psy-
chology needs standard task environments around which knowledge and under-

standing can cumulate (Simon & Chase, 1973).

‘Cumulation’, here, refers to an integration of research. Choosing a single complex task
in which researchers can pool resources and build up a comprehensive understanding of
performance is supposed to help researchers avert the state of affairs where increasingly
specialized scientific theories cannot be integrated into a comprehensive theory (Newell,
1973). Of course, one major difference between studying drosophila and Chess players is
that the latter are much more expensive to produce and study in quantity. Conveniently, one
of the largest changes of the Big Data era is the appearance of many new task environments
from which data collection is easier and data sources richer.

One might then propose, as Thompson et al. (2013) did, that the study of skill learning
transition to model task environments in which telemetry are available. This constitutes
what I call the model-organism approach to the exploitation of emerging data sources in
psychology. According to this strategy, psychologists ought to survey new data sources for
domains of theoretical interest and methodological value. Some of the reasons for studying
StarCraft 2, for example, are both theoretical and practical (e.g., StarCraft 2 imposes sub-
stantial motor demands which are of theoretical interest) and others methodological (e.g.,
availability of longitudinal data, availability of demographic information; also see Chapter
Two).

Once rich new data sources have been surveyed and a suitable model-organism es-
tablished, researchers should target the domain with every method available. Hypotheses
grounded in quantitative naturalistic telemetry can be tested in the laboratory, laboratory

predictions can be examined against natural performance, and where telemetry allows for
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the reproduction of the performance, important qualitative observations can be much more
easily shared between researchers.!!

Inspiration for the present work draws heavily upon the model-organism approach. In-
deed, the goal of Chapter Three was to lay the ground work for future utilization of Star-
Craft 2 as a model task domain. This is why it is appropriate for grant-funded researchers
to invest effort into modelling the differences between ‘Zerg’ and ‘Protoss’ response times.
Such a foundation would undoubtedly be required for future researchers to understand how
psychological theories generalize to StarCraft 2. One might adopt a variety of methods in
the hopes of studying, for example, how bottom up processes might influence oculomotor
attentional allocation in StarCraft 2. However, results from such work would have to be
interpreted in light of gameplay race, and differences in how gameplay history impacts the
speed of actions following screen shifts.

Chapter Four also draws upon the model-organism approach insofar as it aims to unpack
and clarify the nature of age-related differences found in previous studies (Thompson et al.,
2014). While it would be legitimate to attempt and identify age-related differences in other
performance domains (e.g., Tekofsky et al., 2015), the model-organism approach would
encourage the systematic unpacking of age-related differences in a single domain. Ideally,
such would eventually be fully integrated with laboratory findings on age-related differences.

The model-organism approach is likely to be the least contentious use of telemetry for
the study of skill learning. Despite its methodological advantages, it can be seen as a simple
extension of expertise research into new domains. For a picture of how it fits into cognitive
psychology more broadly, one need only turn to the likes of Newell (1973). The hope is that
laboratory studies of basic processes could eventually be integrated into the explanation of
a complex skill by probing the phenomenon with a wide range of methods. However, while
the model-organism approach to exploiting naturalistic telemetry fits relatively well within

traditional cognitive psychology, one objection deserves mention.

5.5 The Streetlight Effect: an Objection to the Model-Organism
Approach

One objection to the model-organism approach is that it resembles the Drunkard’s search

(Kaplan, n.d., p. 11), a fallacy whereby one conducts inquiry solely where data are freely

" Obviously not all aspects of the performance context are captured in StarCraft 2 Replay files. I do not
know about the distractions in a specific player’s home environment, for example. Nevertheless, there is
methodological value in the capacity to replay performance with as much of the game context as would have
been available to anyone watching the game from home. It should be noted, however, that researchers still
need to take steps to preserve qualitative observations for later researchers. For example, older replay files
can no longer be viewed using the recent versions of StarCraft 2.

87



available (e.g., the streetlight) rather than where theory dictates I should look.'? This strat-
egy can result in obviously silly behaviour (e.g., if T look for my keys under the streetlight
where it is bright rather than the dark places where I remember dropping them). This con-
cern is sometimes leveled against the use of convenient data sources found in the Big Data
era (Raffaelli et al., 2014).13

Of course, one possible response to this objection is to argue that current psychological
theory is a poor guide. Perhaps our theories are too underdeveloped to provide direction
for future work. The analogy between psychological science and the man searching for his
keys breaks down, therefore, because the man with the keys has good reason to think the
keys are not under the streetlight.

However, one need not bite the bullet and insist that psychological theory is a use-
less guide for future work. A much less contentious response to the streetlight problem is
that, in the history of science, model-organisms are selected on theoretical grounds as well
as methodological grounds. In 1973, one of the crucial methodological advantages of us-
ing Caenorhabditis elegans as a model-organism was the capacity to examine the animal’s

nervous system more directly.

One experimental approach to these problems is to investigate the effects of
mutations on nervous systems. In principle, it should be possible to dissect the
genetic specification of a nervous system in much the same way as was done for
biosynthetic pathways in bacteria or for bacteriophage assembly. However, one
surmises that genetical analysis alone would have provided only a very general
picture of the organization of those processes. [...] Behavior is the result of a
complex and ill-understood set of computations performed by nervous systems
and it seems essential to decompose the problem into two: one concerned with
the question of the genetic specification of nervous systems and the other with
the way nervous systems work to produce behavior. Both require that we must

have some way of analyzing the structure of a nervous system (Brenner, 1974)
(p. 72).

A key advantage of the Caenorhabditis elegans, therefore, was the availability of meth-
ods which allowed analysis of both how genetics contributed to the development of the

animal’s nervous system and how the relatively simple nervous system produced behaviour.

12 Thanks goes to Jeremy Carpendale for pointing this out.

13 1t is important to not conflate methodological considerations in choosing a research domains and conve-
nience sampling here. Telemetry research need not use convenience sampling. Indeed, Huang et al. (2017) had
access to census data from the 2010 game Halo Reach and so they chose Halo Reach as their domain of study.
They could have decided, instead, to scrounge up data on the 2001 game Halo: Combat Evolved, though the
age of the game makes it possible that valuable data would be unavailable or lost. Huang and colleagues use
methodological considerations in choosing their research domain, but they did not use convenience sampling
from their domain of interest (a particular game mode of Halo Reach performance).
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A model-organism with a relatively simple nervous system was therefore ideal. This choice
of methodological convenience, of course, risked running into problems with the streetlight
effect. The questions of most central importance about the relationship between genetics
and behaviour might only be answered by turning to animals with more complex nervous
systems.

To forbid any methodological considerations from the selection of a model-organism
would probably have denied biology at least some of its most useful model-organisms.
Consequently, we should allow psychologists to use methodological considerations in the
selection of their task environments, particularly when there are theoretical reasons that
those data are of interest. In the present case, a complete theory of skilled performance
would have to apply as much to StarCraft 2 as it would to chess, so the choice of StarCraft

2 as a model-organism remains defensible.

5.6 The FFA Approach: A more Aggressive Alternative to
the Model-Organism Approach

The model-organism approach does encourage the use of emerging data sources, and in this
sense it would likely bring psychology closer to embracing naturalistic telemetry. However,
it is important to note that it is also a very conservative approach to the utilization of
emerging data sources. The basic tenant of the model-organism approach is for psychology
to colonize a few rich pastures. This might qualify as Big Data today only because many
of these data sources remain suitably unwieldy. But once the move towards the new data
sources has been made, there is no requirement that psychology continue to change with the
times, and no guarantee that such data will always qualify as Big. It is entirely in keeping
with the model-organism approach, for example, that psychology keep its special focus on
Real-Time Strategy Video Games like StarCraft 2 as long as the genre continues to exist. In
other words, the model-organism approach may only exploit emerging data sources when it
is seeking out new model-organisms. Once model-organisms have been found and standard
analysis protocols established, researchers adopting the model-organism approach will need
good methodological reason to tackle new domains or the challenges of larger datasets.
Due to this conservatism, a feature of the model-organism approach is that the list of
well-studied domains will remain somewhat unexplored. This is potentially problematic in
expertise research where, unlike the relative homogeneity in the behavior of genetics across
biological species, different tasks might have entirely different psychological requirements.
Outcomes of simple battles in StarCraft 2, for example, are deterministic and predictable.

Skilled players can recite how many attacks it will take for a ‘Roach’ to kill a ‘Zergling’

14To get a sense of the value of Caenorhabditis elegans to biological research, see Brenner’s Nobel Lecture
entitled ‘Nature’s gift to Science’ (Brenner, 2002).
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(Liquid, n.d.). StarCraft 2 is probably a poor choice, therefore, for studying skill in domains
requiring probabilistic reasoning. Similarly, the standard of skill in StarCraft 2 are 1vl
player games, making it less ideal for studies of team coordination. It is entirely possible
that animal models of human biology will be much more valuable than video-game models
of other forms of expertise. If so, the model-organism approach might just chain psychology
to a few bad models which say little about the domains of skill that we really care about
(e.g., medicine).

An alternative approach, which I will call the Free-For-All (FFA) approach, is to take full
advantage of naturalistic telemetry. It proceeds by simply turning to data on any complex
behaviour that is relevant to the theories under consideration, even when these data sources
come from previously unstudied domains. Given that the understanding of behaviour in
StarCraft 2, which has only been examined in detail in a handful of papers (Huang et al.,
2017; Lewis et al., 2011; Thompson et al., 2013, 2014; Thompson, McColeman, et al., 2017),
is still in its infancy, I could have construed Thompson, Blair, Chen, and Henrey’s (2014)
search for age-related differences in StarCraft 2 play as fitting with the FFA approach.

I mention two caveats of the FFA approach here. First, it is important that, while the
FFA approach relies on the relatively free exploitation of naturalistic telemetry from novel
domains of behaviour, it relies on replication as much as, and perhaps more, than traditional
methods. The lack of domain knowledge of an FFA researcher means that apparent discon-
firmations of theory generalizability could be illusory or artifactual. While I am still unable
to explain the strong learning effects associated with 2v2 performance, attempts to probe
this effect revealed that the value of off-race experience might be substantively different for
non-dedicated and dedicated individuals. The ad hoc removal of dedicated players therefore
leaves one with data that would fit a preexisting hypothesis that off-race experience should
transfer. The fact that this finding was ad hoc makes it unclear whether I should express
any confidence in the hypothesis that off-race experience will transfer to dominant-race ex-
perience. Similarly, Thompson, McColeman, et al. (2017) found that First Action Latencies
are slower in fixations where more actions are being performed, as predicted by the view
that such sequences need to be loaded into a motor-buffer prior to execution (Henry &
Rogers, 1960; Klapp & Jagacinski, 2011), but only after excluding fixations containing one
action, which appeared sufficiently delayed to be unrepresentative. Consequently, the FFA
approach, because it does not target a single domain, is unlikely to lead to clear confirma-
tions and disconfirmations of theory. The availability of data means that theorists will have
ample opportunity to initiate an ad hoc rescue of their theory. So while the FFA approach
involves the free adoption of new domains as needed, replication is nevertheless crucial for
highlighting the inadequacy of a particular theory. Importantly, I do not take this continued
reliance on replication as a weakness of the FFA approach, as replication remains crucial to

all scientific methods.
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The second caveat is that the FFA approach will sometimes be less susceptible to the
streetlight-effect than the model-organism approach because, while the FFA approach does
take advantage of convenient data sources, it is free to choose from a wider array of model-
organisms. If a variety of data sources are available that are both theoretically appropriate
and methodologically convenient, there seems to be little reason to complain that scientists
are only ‘searching where the lights are’.

However, the FFA approach has a problem if it is expected to establish construct validity
of its measures as corresponding to the psychological entities found in the lab. For one,
establishing construct validity of a measure is frought with controversy, especially in a
complex task.!® All complex tasks will draw on a variety of psychological abilities to varying
degrees and in varying fashions. StarCraft 2, for example, is too complex for mean FAL not
to require some contribution of perceptual speed, decision making speed, and psychomotor
speed. The model-organism approach deals with this problem by targeting a single domain
with a variety of methods in hope that we will eventually be able to tease apart the factors
contributing to variables such as median FAL. The model-organism approach can then
speak to laboratory theory by invoking a well established story of how constructs cumulate
in complex behaviour. The model-organism approach eventually overcomes problems with
measurement construct validity by first growing the roots of the nomological network of
scientific laws that, according to Cronbach and Meehl, define our laboratory constructs.
FFA researchers, like other researchers studying a new domain, will have no such recourse,
and so they will have trouble convincing theorists that any of their variables correspond to
laboratory measures, making it difficult, at least in some research circles, to establish that
their work has any theoretical interest.

Braun (2015) recognizes the problem of measurement validity in the context of Big
Data, and propose that Big Data researchers will have to adopt different methods and
standards of validation. For example, Braun and Kuljanin point out that, since naturalistic
telemetry won’t contain any of psychology’s established measures, the standard practice
of demonstrating measurement validity by pointing to correlations involving established
measures will be difficult to follow and, even where this effort is made, there are a number
of statistical complications making standard practice problematic (Braun, 2015).

For my purposes, it is only important to make two points about establishing construct
validity in the context of naturalistic telemetry. First, while revising our framework for

validating measures may allow for better Big Data science, as Braun (2015) propose, nat-

15There is a sense in which demonstrating construct validity is always difficult. In fact, construct validity is
also never complete according ot Cronbach and Meehl (1955). In complex task environments, attempting to
validate a construct is particularily demanding, as the complexity of behaviours under discussion will make
proposals of construct validity highly contentious. For example, the claim that RCSpeed is a valid measure of
psychomotor speed will be especially controversial because it is easy to speculate about higher-level cognitive
factors that could impact the right-clicking behavior of a participant.
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uralistic telelmetry can only fulfill its promise as a tool for examining theory generality if
theorists agree to the change.

Secondly, small revisions to construct validity theory will likely not do. The measures
taken on an FFA approach are doomed to linger at the edges of our nomological network.
That is part of the FFA strategy. Therefore, if one truly believes that the nomological net-
work bestows our measures with meaning, as Cronbach and Meehl (1955) thought, then the
meaningfulness of FFA telemetry data must literally be unclear. Consequently, researchers
should not adopt a reading of construct validity lightly, as such decisions shape methods in

profound ways.

5.7 Conclusion

I have found that, at least in the case of StarCraft 2, the broader research strategy moti-
vating the exploitation of new data sources can shape the methodological and conceptual
difficulties one encounters. Insofar as Chapter Three is motivated by the model-organism
approach (e.g., it is seen as a necessary precursor to longitudinal work in the study of this
task domain), it fits relatively cleanly within extant methods and philosophy of science. A
primary contribution of Chapter Four is an attempt to test the generalizability of process-
ing speed theory through a novel data source, so it seems to fit more cleanly with a FFA
strategy.

Of course, the model-organism approach and the FFA approach are not mutually ex-
haustive or exclusive. Actual research practice is likely to adopt some amalgam of these
research strategies. Chapter Four, for example, was largely framed as taking an FFA ap-
proach insofar as it was a single study introducing possible psychomotor speed measures
that could be used to test a prediction of processing speed theory. It could have also been
framed as taking a model-organism approach if I instead emphasized how these results will
lay the foundation for future work in StarCraft 2. For example, if the goal is to see how
basic cognitive capacities cumulate in a complex task, then Chapter Four reveals something
about how skill is preserved across aging in a few different performance indicators. I found,
for example, evidence that differences in median FAL are not due solely to individual differ-
ences in motor dexterity (which presumably is more closely tracked by finger-tapping), as
median FAL and RCSpeed are only weakly related. Such findings will no doubt be valuable
to future work in this domain.

Furthermore, there have been cases where the two strategies provided the same rec-
ommendations. Frequently studied model-organisms are sometimes convenient to study,
though a proper historical analysis of this issue is beyond my scope. Brenner (1974), in
defending his choice of Caenorhabditis elegans was obliged to acknowledge that prior work
made the study of drosophila very convenient for studying genetics, but defended a place

for Caenorhabditis elegans on the grounds that science required an organism with a simpler
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nervous system. Even today, the study of StarCraft 2 is more convenient thanks to the exis-
tence of at least seven published studies (Huang et al., 2017; Lewis et al., 2011; Thompson
et al., 2013, 2014; Thompson, Leung, Blair, & Taboada, 2017; Thompson, McColeman, et
al., 2017; Yan & Cheung, 2015). However, the availability of emerging data sources, and
otherwise private data sources made available through industry, will probably lead to more
contexts where model-organism approach and the FFA approach differ. In deciding upon
whether to embrace naturalistic telemetry, psychology would do well to consider the advan-
tages and limitations of both strategies, and the deeper conceptual complications that their

adoption entails.
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Appendix

i Supplementary Figures
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Caption:Boxplots of mean FAL for each player in the dataset, with outliers included.
Transparent bars are centered around the median mean FALs from Thompson, Blair,
Chen, & Henrey’s (2013) cross-sectional dataset of 3,385 individuals. The width of the bar
reflect 2 times the standard error of the median for the league in question (acquired from
the standard deviation of 1,000 bootstrapped subsamples, Mangiafico, 2016; Ripley, 2017).
The reader should assume that the eight distributions of mean FAL in Thompson et al.
(2013) overlap considerably. Finally, these plots are based on a subsample of the dataset
with only 82,534 games.
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ii Supplementary Results

Statistical analyses were conducted in R using a variety of packages.(D. Bates, Méchler,
Bolker, & Walker, 2015; Canty & Ripley, 2017; Curran & Chang, 2012; Davison &
Hinkley, 1997; Hojsgaard & Halekoh, 2016; Hope, 2013; Hothorn, Bretz, & Westfall, 2008;
Kim, 2015; Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2017; Navarro, 2015; Ooms,
James, DebRoy, Wickham, & Horner, 2017a, 2017b; Sarkar, 2008; Sarkar & Andrews,
2016; Torchiano, 2017; Wickham, 2009). Unless otherwise specified, the per-test a is 0.05.

ii.1 Models of Experience (Global Analysis)
likelihood ratio tests

Data: data
Models:
Model_1: medianfal ~ OneVOnexp + (1 | playerid)
Model_2: medianfal ~ OneVOnexp + Race + (1 | playerid)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
Model_1 4 958080 958117 -479036 958072

Model_2 6 956918 956974 -478453 956906 1166.3 2 < 2.2e-16 *x*x
Signif. codes: O ‘x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1

Data: data

Models:

Model_2: medianfal ~ OneVOnexp + Race + (1 | playerid)

Model_3: medianfal ~ OneVOnexp + Race + (1 + OneVOnexp | playerid)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Model_2 6 956918 956974 -478453 956906

Model _3 8 942400 942475 -471192 942384 14522 2 < 2.2e-16 *x%*
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1

Data: data

Models:

Model_3: medianfal ~ OneVOnexp + Race + (1 + OneVOnexp | playerid)
Model_3_Pr: medianfal ~ OneVOnexp + Race + Pr_XP + (1 + OneVOnexp | playerid)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)

Model_3 8 942400 942475 -471192 942384

Model 3 Pr 9 942379 942463 -471180 942361 23.371 1 1.336e-06 **x
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1

Data: data

Models:

Model_3_Pr: medianfal ~ OneVOnexp + Race + Pr_XP + (1 + OneVOnexp | playerid)
Model_3_PrTr: medianfal ~ OneVOnexp + Race + Pr_XP + Tr_XP + (1 + OneVOnexp |
Model_3_PrTr: playerid)

Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model_3_Pr 9 942379 942463 -471180 942361
Model_3_PrTr 10 942366 942460 -471173 942346 14.412 1 0.0001468 x*xx

104



Signif. codes: 0 ‘“**x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 ‘.’ 0.1
Data: data
Models:
Model_3_PrTr: medianfal ~ OneVOnexp + Race + Pr_XP + Tr_XP + (1 + OneVOnexp |
Model_3_PrTr: playerid)
model_3_PrTrInteraction: medianfal ~ OneVOnexp + Race + Pr_XP +
Tr_XP + Pr_XP:Race + Tr_XP:Race + model 3 _PrTrInteraction:
OneVOnexp:Race + (1 + OneVOnexp | playerid)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

Model_3_PrTr 10 942366 942460 -471173 942346
model_3_PrTrInteraction 16 942255 942405 -471112 942223 122.92 6 < 2.2e-16 *x*x
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
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The presumptive model, Models

Linear mixed model fit by REML [‘lmerMod’]
Formula: medianfal ~ OneVOnexp + Race + (1 + OneVOnexp | playerid)
Data: data

REML criterion at convergence: 942366.3
Scaled residuals:
Min 1Q Median 3Q Max

-10.1952 -0.6123 -0.0311 0.5144 11.4992

Random effects:

Groups  Name Variance Std.Dev. Corr

playerid (Intercept) 25669 160.21
OneVOnexp 1083 32.92 -0.38

Residual 5076 71.24

Number of obs: 82768, groups: playerid, 103

Fixed effects:
Estimate Std. Error t value

(Intercept) 573.169 15.857  36.15
OneV0Onexp -20.452 3.411 -6.00
RaceTerran 22.061 2.127 10.37
RaceZerg -42.206 2.147 -19.66

Correlation of Fixed Effects:
(Intr) OnVOnx RcTrrn

OneVOnexp -0.366

RaceTerran -0.067 0.003

RaceZerg -0.074 -0.004 0.573
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The best model (according to likelihood ratio tests)

Linear mixed model fit by REML [‘lmerMod’]
Formula: medianfal ~ OneVOnexp + Race + Pr_XP + Tr_XP +
Pr_XP:Race + Tr_XP:Race + 0OneV0Onexp:Race
+ (1 + OneVOnexp | playerid)
Data: data

REML criterion at convergence: 942191.6
Scaled residuals:
Min 1Q Median 3Q Max

-10.2047 -0.6166 -0.0289 0.5178 11.5082

Random effects:

Groups  Name Variance Std.Dev. Corr

playerid (Intercept) 25155 158.60
OneVOnexp 1097 33.12 -0.40

Residual 5067 71.18

Number of obs: 82768, groups: playerid, 103

Fixed effects:
Estimate Std. Error t value

(Intercept) 587.8801 156.7851  37.24
OneVOnexp -20.4279 3.8452 -5.31
RaceTerran 5.8036 3.5786 1.62
RaceZerg -67.8899 3.4660 -19.59
Pr_XP 5.8771 3.4595 1.70
Tr_XP -10.1650 2.8279  -3.59
RaceTerran:Pr_XP 4.5445 0.9227 4.93
RaceZerg:Pr_XP 4.4374 1.0321 4.30
RaceTerran:Tr_XP 1.7813 1.2637 1.41
RaceZerg:Tr_XP 4.3249 1.2331 3.51
OneVOnexp:RaceTerran -0.3254 0.7056 -0.46
OneVOnexp:RaceZerg 0.4384 0.6468 0.68

Correlation of Fixed Effects:
[Omitted due to space considerations.]
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ii.2 Models of Experience (Dominant-Race Analysis)

Likelihood ratio tests (dominant-race analysis)

Kok ok KoK ok K Kok o K oK ok KoK ok KoK ok K o
Data: Dom_data
Models:
Model_Dom_1: medianfal ~ Dom_xp + (1 | playerid)
Model_Dom_2: medianfal ~ Dom_xp + Race + (1 | playerid)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model Dom_1 4 911170 911207 -455581 911162
Model Dom_2 6 911163 911219 -455576 911151 10.432 2 0.005429 *x*
Signif. codes: O ‘x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.05 .’ 0.1
skok ok of sk ok ok ok sk ok o ok sk ok sk ok ok ok sk ok ok ok sk ok
Data: Dom_data
Models:
Model_Dom_2: medianfal ~ Dom_xp + Race + (1 | playerid)
Model_Dom_3: medianfal ~ Dom_xp + Race + (1 + Dom_xp | playerid)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model Dom_2 6 911163 911219 -455576 911151
Model_Dom_3 8 897261 897335 -448623 897245 13906 2 < 2.2e-16 **x*

Signif. codes: O ‘x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
stk ok o ok ok sk ok ok ok o ok sk sk ok ok ok sk sk ok ok ok
Data: Dom_data
Models:
Model _Dom_3: medianfal ~ Dom_xp + Race + (1 + Dom_xp | playerid)
Model Dom_4: medianfal ~ Dom_xp + Race + 0ff_xp + (1 + Dom_xp | playerid)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model_Dom_3 8 897261 897335 -448623 897245
Model_Dom_4 9 897259 897342 -448620 897241 4.4554 1 0.03479 *
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
sk sksk ok o ok ok sksk ok ok ok ksk sk ok ok ok sk sk sk ok ok
Data: Dom_data
Models:
Model_Dom_4: medianfal ~ Dom_xp + Race + 0ff_xp + (1 + Dom_xp | playerid)
Model Dom_5: medianfal ~ Dom_xp + Race + 0ff_xp + TwoVIwoXP + (1 + Dom_xp |
Model_Dom_5: playerid)
Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model_Dom_4 9 897259 897342 -448620 897241
Model_Dom_5 10 897030 897122 -448505 897010 231.17 1 < 2.2e-16 **x
Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
sk sksk ok o ok ok sksk ok ok ok sk sk ok ok ke ksk sk sk ok ok
Data: Dom_data
Models:
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Model _Dom_5: medianfal ~ Dom_xp + Race + 0ff_xp + TwoVIwoXP + (1 + Dom_xp |

Model_Dom_5: playerid)
Model_Dom_6: medianfal ~ Dom_xp + Race + 0ff_xp + TwoVTwoXP + N_TwoXP + (1 +
Model_Dom_6: Dom_xp | playerid)

Df AIC BIC 1logLik deviance Chisq Chi Df Pr(>Chisq)
Model_Dom_5 10 897030 897122 -448505 897010
Model_Dom_6 11 897030 897132 -448504 897008 1.3177 1 0.251
sk skskok o ok ok sksk ok ok ok ok sk sk sk ok ok sk sk sk ok ok
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The best model according to likelihood ratio tests, Model?°™ (dominant-race

analysis)

Linear mixed model fit by REML [‘lmerMod’]

Formula: medianfal ~ Dom_xp + Race + 0ff_xp + TwoVTwoXP + (1 + Dom_xp |

Data: Dom_data
REML criterion at convergence: 896975.3
Scaled residuals:
Min 1Q Median 3Q Max

-10.4097 -0.6117 -0.0252 0.5160 11.6393

Random effects:

Groups  Name Variance Std.Dev. Corr
playerid (Intercept) 25583.2 159.95

Dom_xp 752.4 27.43 -0.39
Residual 4964.5 70.46

Number of obs: 78936, groups: playerid, 103

Fixed effects:
Estimate Std. Error t value

(Intercept) 616.731 26.161 23.574
Dom_xp -14.626 2.899 -5.046
RaceTerran -48.495 38.773 -1.251
RaceZerg -102.834 34.101 -3.016
0ff_xp 3.416 1.486 2.298
TwoVTwoXP -24.146 1.582 -15.266

Correlation of Fixed Effects:

(Intr) Dom_xp RcTrrn RacZrg 0ff_xp
Dom_xp -0.222
RaceTerran -0.642 0.003
RaceZerg -0.728 -0.003 0.492
0ff_xp 0.001 -0.033 -0.001 -0.002
TwoVTwoXP -0.007 -0.092 0.007 0.000 -0.011
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The presumptive model, M odel?’?‘”n (dominant-race analysis)

Linear mixed model fit by REML [‘lmerMod’]
Formula: medianfal ~ Dom_xp + Race + (1 + Dom_xp | playerid)
Data: Dom_data

REML criterion at convergence: 897216.1
Scaled residuals:

Min 1Q Median 3Q Max
-10.2952 -0.6130 -0.0253 0.5113 11.6122

Random effects:

Groups  Name Variance Std.Dev. Corr
playerid (Intercept) 24852.7 157.65

Dom_xp 984.7 31.38 -0.37
Residual 4977.9  70.55

Number of obs: 78936, groups: playerid, 103

Fixed effects:
Estimate Std. Error t value

(Intercept) 614.915 25.842 23.795
Dom_xp -19.288 3.277 -5.885
RaceTerran -45.096 38.344 -1.176
RaceZerg -104.480 33.730 -3.098

Correlation of Fixed Effects:
(Intr) Dom_xp RcTrrn

Dom_xp -0.219

RaceTerran -0.642 0.004

RaceZerg -0.729 -0.002 0.492
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ii.3 Models of Experience (where All Players have Greater than 30 2v2
Games)

ModelPo™

Linear mixed model fit by REML [‘lmerMod’]
Formula: medianfal ~ Dom_xp + Race + TwoVIwoXP + (1 + Dom_xp | playerid)
Data: Dom_data

REML criterion at convergence: 267970.3
Scaled residuals:

Min 1Q Median 3Q Max
-10.0752 -0.6643 0.0347 0.5427 9.3516

Random effects:

Groups  Name Variance Std.Dev. Corr
playerid (Intercept) 23538 153.42

Dom_xp 1266 35.58 -0.33
Residual 5295 72.77

Number of obs: 23451, groups: playerid, 29

Fixed effects:
Estimate Std. Error t value

(Intercept) 676.717 42.905 15.773
Dom_xp -14.765 6.884 -2.145
RaceTerran -146.995 84.071 -1.748
RaceZerg -132.307 57.974 -2.282
TwoVTwoXP -23.122 1.674 -13.813

Correlation of Fixed Effects:

(Intr) Dom_xp RcTrrn RacZrg
Dom_xp -0.224
RaceTerran -0.488 0.019
RaceZerg -0.703 0.003 0.358
TwoVTwoXP -0.005 -0.117 -0.007 -0.004
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ii.4 Analysis of Age-Related Differences

All of the analyses below contain (1) summary of a linear, non-segmented model, (2) a
summary of the segmented model, (3) the result of the Davies test examining whether the
effect of age differs between the model segments, and (4) a likelihood ratio test comparing
the models described in (1) and (2).

Segmented analysis with log mean FAL as response

ook ok ok ok sk ok sk ok sk ok ok ok ok ok ok ok

*okkkokkk LogFALMean sskkkokokk
sk sk sk ok ok ok sk sk ok ok ok ok s ok ok ok ok sk ok ok okok ok

*kkkSummary of linear modelx***x*

Call:
lm(formula = ResponseVar ~ age * Leagueldx, data = DATA)

Residuals:
Min 1Q Median 3Q Max
-0.75339 -0.13919 -0.00027 0.13861 0.78879

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.7374682 0.0703331 95.794 < 2e-16 **x*
age 0.0086715 0.0030080 2.883 0.003967 *x*
LeagueIdx2 -0.1861560 0.0870972 -2.137 0.032645 *
LeagueIdx3 -0.3158868 0.0820089 -3.852 0.000119 ***
Leagueldx4 -0.4412528 0.0813510 -5.424 6.25e-08 *x*x*
LeagueIdxb -0.5259846 0.0833776 -6.308 3.20e-10 *x*x
Leagueldx6 -0.8011112 0.0921146 -8.697 < 2e-16 **x*
age:Leagueldx2 0.00156824 0.0037624 0.421 0.674095
age:LeagueIdx3 0.0029437 0.0035393 0.832 0.405622
age:Leagueldx4 0.0028786 0.0035205 0.818 0.413608
age:LeagueIdx5 0.0001439 0.0036497 0.039 0.968546
age:Leagueldx6 0.0066820 0.0041406 1.614 0.106673

Signif. codes: O ‘%%’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
Residual standard error: 0.214 on 3263 degrees of freedom
Multiple R-squared: 0.4615,Adjusted R-squared: 0.4597
F-statistic: 254.2 on 11 and 3263 DF, p-value: < 2.2e-16
*fkkSummary of Segmented modelx**x

x*x*Regression Model with Segmented Relationship(s)*xx*

Call:
segmented.lm(obj = 1lm_seg, seg.Z = ~age)
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Estimated Break-Point(s):
Est. St.Err
24,007 1.483

Meaningful coefficients of the linear terms:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 6.849884 0.078602 87.146 < 2e-16 **x
age 0.002952  0.003513 0.840  0.4007
LeagueIdx2 -0.196342 0.087036 -2.256 0.0241 *
LeagueIdx3 -0.324987 0.081952 -3.966 7.48e-05 *xx*
LeagueIdx4 -0.463292 0.081731 -5.669 1.57e-08 **x*
Leagueldxb -0.573241 0.084849 -6.756 1.67e-11 *xx
LeagueIdx6 -0.874381 0.094793 -9.224 < 2e-16 **x
Ul.age 0.010261  0.003201  3.205 NA
age:LeagueIdx2 0.002081 0.003760 0.553 0.5800
age:LeagueIdx3 0.003418 0.003538 0.966 0.3341
age:Leagueldx4 0.004061 0.003543 1.146  0.2519
age:Leagueldxb 0.002534 0.003733 0.679 0.4973
age:Leagueldx6 0.010374 0.004289 2.419 0.0156 =*
Signif. codes: 0 “**x’ 0.001 ‘*x’> 0.01 ‘x’ 0.05 ‘.’ 0.1

Residual standard error: 0.2137 on 3261 degrees of freedom
Multiple R-Squared: 0.4633, Adjusted R-squared: 0.4612

Convergence attained in 2 iterations with relative change 5.831384e-05
*kxxSummary of Davies testkkkx

Davies’ test for a change in the slope

data: formula = ResponseVar ~ age * Leagueldx , method = 1m
model = gaussian , link = identity

segmented variable = age

’best’ at = 24, n.points = 27, p-value = 0.0122

alternative hypothesis: two.sided

*kkkSummary of Liklihood Ratio testkk*x*
comparing models for LogFALMean
Likelihood ratio test

Model 1: ResponseVar ~ age * Leagueldx

Model 2: ResponseVar ~ age + Leagueldx + Ul.age + psil.age + age:Leagueldx
#Df LogLik Df Chisq Pr(>Chisq)

1 13 407.71

2 15 413.25 2 11.073 0.00394 *x*
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Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
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Segmented analysis with RCLatency as response

3k 3k >k 5k >k 5k 3k >k 5k >k 3k >k %k 5k >k 3k >k %k 5k %k >k %k

*kxxxkk RCLatencySegment
sk ok sk ok ok sk sk sk ok ok ok ok ok sk sk sk sk ok o o o ok ok

*kxxSummary of linear mo

Call:

ed kkkkkkkk

delxx*x

lm(formula = ResponseVar ~ age * Leagueldx, data = DATA)

Residuals:
Min 1Q Medi

an 3Q

Max

-0.91071 -0.20311 -0.05316 0.12070 2.28706

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.1576155
age 0.0244549
Leagueldx 0.0215579
age:Leagueldx -0.0050366

Signif. codes: 0O 7%’

Residual standard error: 0.3411 on 3232 degrees of freedom

0.0873693 59.
6.
0.

-5.

0.0039194
0.0218259
0.0009995

0.001 ’xx’

0.01

032 < 2e-16 **x*
239 4.96e-10 **x*
988 0.323

039 4.93e-07 **x*

’x? 0.05 ’.” 0.1’

Multiple R-squared: 0.1319,Adjusted R-squared: 0.1311

F-statistic: 163.7 on 3 and 3232 DF,

*f*kxSummary of Segmented

model kkk*

p-value: < 2.2e-16

x*x*Regression Model with Segmented Relationship(s)*xx*

Call:

segmented.1lm(obj = 1lm_seg, seg.Z = ~age)

Estimated Break-Point(s)
Est. St.Err
41.166 9.012

Meaningful coefficients of the linear terms:
Estimate Std. Error t value Pr(>|tl)
58.509 < 2e-16 *x*x*
6.287 3.67e-10 *x*x*
1.025 0.305
-0.265 NA
-5.054 4.56e-07 **x

(Intercept) 5.149342

age 0.024847
Leagueldx 0.022488
Ul.age -0.128474

age:Leagueldx -0.005080

Signif. codes: 0O ‘*¥x’

0.088010
0.003952
0.021938
0.484531
0.001005

0.001 “*x%°

0.01
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Residual standard error: 0.3412 on 3230 degrees of freedom
Multiple R-Squared: 0.1323, Adjusted R-squared: 0.131

Convergence attained in 2 iterations with relative change 0
*kkkSummary of Davies testkkxx

Davies’ test for a change in the slope

data: formula = ResponseVar ~ age * Leagueldx , method = 1m
model = gaussian , link = identity

segmented variable = age

’best’ at = 41, n.points = 27, p-value =1

alternative hypothesis: two.sided

*kkxSummary of Liklihood Ratio testkk*x*
comparing models for RCLatencySegmented
Likelihood ratio test

Model 1: ResponseVar ~ age * Leagueldx

Model 2: ResponseVar ~ age + Leagueldx + Ul.age + psil.age + age:Leagueldx
#Df LogLik Df Chisq Pr(>Chisq)

1 5 -1109.5

2 7 -1108.7 2 1.5889 0.4518
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Segmented analysis with median FAL as response

ok ok ok ok ok ok ok Kk K K ok ok ok ok ok K K ok
skkkkkkx FALMedian sk
ok ok ok ok ok ok ok KKK K ok ok ok ok ok K K KK

*kxxSummary of linear modelxkxx*

Call:
lm(formula = ResponseVar ~ age * Leagueldx, data = DATA)

Residuals:
Min 1Q Median 3Q Max
-429.90 -79.62 -4.46 73.99 764.16

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 690.1490 41.3900 16.674 < 2e-16 **x*
age 5.1508 1.7702  2.910 0.00364 x*x*
LeagueIdx2 -128.0362 51.25564 -2.498 0.01254 *
Leagueldx3 -200.7727 48.2610 -4.160 3.26e-05 *x*x*
LeagueIdx4 -267.8826 47.8738 -5.596 2.38e-08 x*x*x
Leagueldxb -321.0412 49.0664 -6.543 6.98e-11 *x*x*
LeagueIdx6 -423.5798 54.2080 -7.814 7.42e-15 *xx
age:Leagueldx2 1.7979 2.2141  0.812 0.41685
age:Leagueldx3 2.2416 2.0828 1.076 0.28190
age:Leagueldx4 1.6959 2.0717 0.819 0.41309
age:Leagueldxb 0.7137 2.1478 0.332 0.73970
age:Leagueldx6 2.6800 2.4367 1.100 0.27147

Signif. codes: O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
Residual standard error: 126 on 3263 degrees of freedom
Multiple R-squared: 0.4356,Adjusted R-squared: 0.4337
F-statistic: 228.9 on 11 and 3263 DF, p-value: < 2.2e-16
*fkkSummary of Segmented modelx**x

xx*Regression Model with Segmented Relationship(s)*xx*

Call:
segmented.lm(obj = 1m_seg, seg.Z = ~age)

Estimated Break-Point(s):
Est. St.Err
26.814 1.476

Meaningful coefficients of the linear terms:
Estimate Std. Error t value Pr(>|tl)
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(Intercept) 743.374 44.862 16.570 < 2e-16 **x*

age 2.509 1.973 1.271 0.20369
LeagueIdx2 -134.841 51.226 -2.632 0.00852 x**
Leagueldx3 -207.203 48.234 -4.296 1.79e-05 *x*x
LeagueIdx4 -286.530 48.195 -5.945 3.05e-09 x*x*x
LeagueIdxb -354.725 50.048 -7.088 1.66e-12 *x*x
Leagueldx6 -470.228 55.915 -8.410 < 2e-16 *x*x*
Ul.age 7.057 2.214  3.187 NA
age:Leagueldx2 2.128 2.213 0.961 0.33646
age:Leagueldx3 2.559 2.082 1.229 0.21924
age:Leagueldx4 2.642 2.091 1.263 0.20654
age:Leagueldxb 2.381 2.203 1.081 0.27989
age:Leagueldx6 4.987 2.530 1.971 0.04881 *
Signif. codes: O ‘%%’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1

Residual standard error: 125.8 on 3261 degrees of freedom
Multiple R-Squared: 0.4375, Adjusted R-squared: 0.4352

Convergence attained in 2 iterations with relative change 0O
*fkkSummary of Davies test**xx FALMedian

Davies’ test for a change in the slope

data: formula = ResponseVar ~ age * Leagueldx , method = 1m
model = gaussian , link = identity

segmented variable = age

’best’ at = 27, n.points = 27, p-value = 0.0107

alternative hypothesis: two.sided

*kkkSummary of Liklihood Ratio testkk*x*
comparing models for FALMedian
Likelihood ratio test

Model 1: ResponseVar ~ age * Leagueldx

Model 2: ResponseVar ~ age + Leagueldx + Ul.age + psil.age + age:Leagueldx
#Df LogLik Df Chisq Pr(>Chisq)

1 13 -20479

2 15 -20473 2 11.143 0.003805 *x*

Signif. codes: O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1
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