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Abstract

In this thesis we present a method to obtain an efficient algorithm to perform parame-
ter estimation with uncertainty quantification of mathematical models that are complex
and computationally expensive. We achieve this with a combination of emulation of the
mathematical model using Gaussian processes and Bayesian statistics and inversion for the
parameter estimation and uncertainty quantification. In particular we apply these ideas to
a source inversion problem in atmospheric dispersion.

We explain the theory and ideas behind each relevant part of the process in the emulation
and parameter estimation. The concepts and methodology presented in this work are general
and can be applied to a wide range of problems where it is necessary to estimate parameters
but the underlying mathematical model is expensive, rendering more classical approaches
unfeasible.

To validate the concepts used, we perform a parameter estimation study in a model that
is relatively cheap to compute and whose parameter values are known in advance. Finally
we perform a parameter estimation with uncertainty quantification of a much more ex-
pensive atmospheric dispersion model using real data from a lead-zinc smelter in Trail,
British Columbia. The parameter estimation includes approximating high-dimensional in-
tegrals with Markov chain Monte Carlo methods and solving the source inversion problem
in atmospheric dispersion using the Bayesian framework.

Keywords: Bayesian Statistics, Gaussian Processes, Parameter Estimation, Experimental
Design, Model Emulation, Bayesian Inversion, Atmospheric Dispersion, Source Inversion.
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Chapter 1

Introduction

With raising concerns over climate change and anthropogenic impact on the environment,
such as airborne emissions of pollutants from industrial sites, the importance of atmospheric
dispersion models has grown over the years. Unfortunately, atmospheric dispersion models
are imprecise [6, 20]. Although the precision of a model can be improved at the expense of
adding more parameters that explain the missing physics in the model, even in this case
there is a limit to how accurate a model can be due to uncertainties in measurement of the
relevant parameters. The reason for this comes from the fact that sources of uncertainty are
diverse and different in nature, following [32] we have

• Model uncertainty: the model does not explain all of the physical processes of interest.

• Data uncertainty: experimental measurements or parameter estimates are inaccurate.

• Stochastic uncertainty: physical processes in the atmosphere are inherently unpre-
dictable, e.g. turbulence.

Despite this difficulty in obtaining accurate predictions there is a growing necessity to de-
velop more accurate and computationally efficient atmospheric dispersion models in practice
[18]. The need for computational efficiency derives mainly from the fact that atmospheric
models are usually expressed as systems of partial differential equations, whose simulation
is computationally expensive. This situation may hinder the model’s ability to be used in
real situations. One of the goals of this work is to show how to approximate computationally
demanding models with cheap surrogates.

The mathematical model for atmospheric dispersion that we are interested is the advection-
diffusion equation for the concentration C of particulate matter (particulate zinc is our main
focus in this work). The behavior of C as a function of space and time is governed by the
following partial differential equation

∂C(x, t)
∂t

+∇ · (v̄C(x, t) + D∇C(x, t)) =
N∑
j=1

qjδ(x− xj) (1.1)
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Here x = (x, y, z) ∈ R3, t is the time variable, v̄ is the wind velocity field,D is the diffusivity
tensor and the right hand side of the equation is the emission rate. In the scenario we are
interested in modeling, we have N zinc sources at known locations {xj}Nj=1 with strengths
{qj}Nj=1 respectively. The values of the wind velocity field v̄ and the diffusivity tensor D
depend upon certain number of parameters. These parameters will be explained in detail
in Chapter 4. For the moment it is enough to consider these parameters to be represented
by a k-dimensional vector denoted by Θ. By replacing the linear operator ∇ · (v+D∇) on
the left hand side by L(Θ), to make the dependence on Θ explicit, we can write equation
(1.1) more compactly as

∂C(x, t)
∂t

+ L(Θ)C(x, t) =
N∑
j=1

qjδ(x− xj). (1.2)

In practice, the concentration of particulate matter is not measured directly, but what
is measured instead is the deposition in some region after some interval of time. Given the
concentration C we can calculate the deposition in a region R ⊂ R2 after T units of time as

∫
R

∫ T

0
C(x, y, 0, t)vsetdt dx dy,

where vset is the vertical settling velocity of zinc particles. In this work we are mainly
concerned in estimating the source strengths given a finite set of deposition measurement
at different locations, which is known as source inversion. More precisely, in this work, we
want to estimate the source strength vector (or just sources for short), with four sources

q := (q1, q2, q3, q4)T ,

given measurements of the deposition. This problem is ill-posed[8] in the sense of Hadamard.
Uncertainty in a model’s prediction capabilities gets worse if the problem is ill-posed. For
example in an ill-posed model, small uncertainties in the experimental data or parameters
of the model translate into significant variations in the output.

Despite the ill-posed nature of the source inversion problem, different approaches have
been proposed in the literature. Lin and Chang [23] used a statistical approach to estimate
air trajectory and the strength of different sources of volatile organic compounds from
anthropogenic origin. Stockie and Lushi [25] used a Gaussian plume approach to calculate
zinc deposition in a lead-zinc smelter and used least-squares to perform the source inversion.
Skiba [39] solved the adjoint equation for the advection-diffusion equation and used least-
squares with Tikhonov regularization to invert the sources. What these approaches have in
common is that they provide a point estimate for the strength of the sources of interest but
no measure of uncertainty for the estimate.
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The Bayesian framework has been applied to solving the source inversion problem, to
obtain point estimates and the uncertainties associated with them. Sohn et al. [41] de-
veloped an algorithm to obtain estimates and uncertainties for the location and strength
of pollutant sources in buildings. They combined Bayes’ rule with data obtained from a
COMIS simulation. Hosseini and Stockie [9] used a Gaussian plume model coupled with
experimental data to estimate and quantify the uncertainty of airborne fugitive emissions.
Using experimental data from the transport and dispersion experiment “The Muck Urban
Setting Test” and Keats et al. [15] obtained, using the Bayesian framework, probability
distributions for source strengths and locations.

In this work we apply the Bayesian framework to estimate the source strength vector
q given a set of field measurements denoted by y. Unlike the previous work mentioned
above, we will also estimate and quantify the uncertainties in the estimates for the set
of model parameters Θ. This will be achieved by obtaining a joint probability density for
the parameters and sources. More precisely, we use Bayes’ rule to obtain the posterior
distribution for parameters and sources. Getting ahead of the explanation of Bayes’ rule in
Chapter 2, we formally write the posterior distribution as

Ppost(Θ,q|y) = Plike(y|Θ,q)Pprior(Θ,q)
Z(y) ,

where Plike is called the likelihood distribution, Pprior the prior distribution and Z(y) is a
normalization constant such that the integral of the posterior over the whole space is one,
that is ∫

Ppost(Θ,q|y)dΘdq = 1.

Traditionally, the process of tuning the parameters in atmospheric dispersion models
has been done empirically using Pasquill stability classes [38, 42]. Instead, we propose
an approach to estimate the parameters using the information contained in the posterior
probability distribution. The advantage of this method is that we are taking into account the
experimental data available and we let the data determine the most likely value, given the
observations. Furthermore we use a method to deal with computationally expensive models.
To simulate equation (1.1) we use a finite volume code, whose computational overhead is
high because of the grid resolution in three dimensions, therefore using it several times to
obtain an approximation for the likelihood Plike(y|Θ,q) is not feasible. Instead we run the
code for a small number of different combinations of parameters and sources and construct
an emulator using Gaussian process regression to extrapolate the results of the simulation
to other combinations of parameters and sources. We then use a Markov Chain Monte Carlo
Method to sample the posterior distribution. We use the samples to obtain point estimates
and uncertainties for the parameters and emission rates.

3



To conclude this chapter, we will explain how this work is organized: in Chapter 2 we
explain the theory and computations behind the Bayesian framework, sensitivity analysis
and Gaussian process regression for emulation. In Chapter 3 we introduce more theory
and combine it with the topics developed in the previous chapter to show how parameter
estimation works on a toy problem. Finally in Chapter 4 we apply everything from Chapters
2 and 3 to an industrial case study and obtain estimates for the parameters and the sources
through sampling the posterior distribution Ppost(Θ,q|y).
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Chapter 2

Theoretical and Computational
Framework

The framework of Bayesian statistics is the foundation of our approach to estimate param-
eters and solve inverse problems. Unlike frequentist statistics, in the Bayesian approach,
randomness is a measure of uncertainty or lack of information, not a matter of frequency.
Consider a statement such as: the probability of having life in the universe is 0.01. In the
frequentist perspective, this number can be interpreted as: in all multiverses similar to ours,
on average, one universe out of a hundred, shelters life. In the Bayesian perspective the
number 0.01 is interpreted as a measure of how certain we are about life in our universe
given the current state of knowledge about the outer space. Clearly there is a philosophical
difference between these two approaches that has a direct impact in how far reaching is
each point of view in terms of theoretical foundations and applications [12].

When we mention uncertainty we are talking about every possible source of randomness
or lack of information. That is, the use of the word uncertainty in this work is related to
either [16]

• Epistemic: a phenomenon might not be random but the complete lack of understand-
ing of it makes us see it as random.

• Aleatory: Uncertainty inherent to the nature of the phenomenon. For example, this is
the kind of randomness physicists believe is happening in quantum mechanics.

In real life the uncertainty associated with a measurement or quantity of interest is usu-
ally connected with the uncertainty of other variables involved in the problem under study.
The Bayesian framework provides a rigorous framework to study these uncertainties, us-
ing whatever information is available for the underlying problem. The cornerstone of this
framework in the mathematical sense is known as Bayes’ formula. Before we present it, let
us introduce some important definitions taken from [7].
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2.1 Definitions and Notation

Definition 1. A probability space is a triple (Ω,F ,P), where Ω is a set called the sample
space and F is a collection of subsets of Ω that satisfies

1. ∅,Ω ∈ F .

2. If A ∈ F then Ac ∈ F .

3. If A1, A2, . . . ∈ F then
⋃
i∈NAi ∈ F .

A collection of sets that satisfies properties 1 to 3 is called a σ-algebra and its elements are
called events.
The map P : F → [0, 1] is called a probability measure and satisfies

1. P(Ω) = 1.

2. If A1, A2, . . . ∈ F are pairwise disjoint, then

P

⋃
i∈N

Ai

 =
∑
i∈N

P(Ai).

Definition 2. Given a probability space (Ω,F ,P) and two events A,B ∈ F , with P(B) 6= 0,
we define the conditional probability of A given B by

P(A|B) = P(A ∩B)
P(B) .

With the definitions above, we are now in a position to state Bayes’ fomula as

Ppost(A|B) = 1
Z
Plike(B|A)Pprior(A). (2.1)

The sets A and B are subsets of the sample space Ω and are elements of the associated
σ−algebra F . The notation Plike(·|·) or Ppost(·|·), denotes conditional probability. Let us
introduce some terminology: the term Plike(B|A) is called the likelihood of B given A. The
term Pprior(A) is called the prior probability for A. The prior probability expresses how
much we believe the event A to happen without assuming anything about B. The reciprocal
of Z is a normalization constant defined as

Z =
∫

Ω
Plike(B|A)dPprior. (2.2)

The integral is understood in the Lebesgue sense as the integral with respect to the measure
Pprior [19]. The term Ppost(A|B) is the posterior probability of A given B. The posterior
contains the information that we gained by comparing our beliefs (encoded in the prior
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probability) with experimental data (encoded in the likelihood).

Now we look at the connection between Bayesian statistics and the field of inverse
problems. Inverse problems are often concerned with finding the cause of an effect, whereas a
forward problem is concerned with finding the effect of a cause. If we have information about
the forward problem, then we can use it to obtain information about the inverse problem.
Bayes’ rule puts in a mathematical language the connection between the inverse and forward
problems. If we consider the cause to be the event A and the effect the event B, then the
information about the forward problem is represented by Plike(B|A). The information about
the inverse problem is encoded in Ppost(A|B). That is why in the Bayesian framework, the
posterior probability is the solution to an inverse problem.

Often, inverse problems are ill-posed, which means that these problems might not satisfy
one or more of the following properties [17]:

• Existence: There exists a solution for the problem.

• Uniqueness: The problem has a unique solution.

• Stability: Small changes in inputs result in small changes in outputs.

Any such lack of well-posedness is a serious issue. For example, if the problem under study
has at least one solution but is unstable to small perturbations, how can we assess the accu-
racy of the solution to the problem? Therefore an statistical or non-deterministic approach
is called for. As explained before, the Bayesian framework is useful in this context. Bayes’
rule connects the inverse problem of finding the cause of an effect through the posterior
with the forward problem of finding the effect of a cause through the likelihood in a way
that is possible to quantify the uncertainty about the solution of the problem. Let us clarify
with an example of how the Bayesian framework can be used to solve inverse problems.

Consider the problem of finding the launch location of a rock that impacts (and cracks)
a window. We can start by considering the following events

A = Coordinates of the launching location.

B = Coordinates of the impact location on the window.

Here we assume we know B, but A is unknown. We can use Bayes’ rule to estimate A
through the posterior Ppost(A|B). In this case we need to find the connection between A

and B via the forward problem, that is, given the launch coordinates find the impact loca-
tion. This connection is encoded in the likelihood Plike(B|A). In addition we also need to
set the prior probability for A.

7



Let us explain how we could estimate the different probabilities mentioned in the previ-
ous paragraph. First, to find the likelihood we need to know how the rock’s impact position
in the window is related to the launch location. We can use the kinematic equations for
parabolic trajectories to get [2]

r = r0 + v0t+ 1
2gt

2, (2.3)

where r and r0 are the final and initial position of the rock, v0 is the initial velocity,
and g is a vector that points to the center of the earth and has a magnitude equal to the
acceleration of gravity. The scalar t represents time. In a more physical language, to compute
the likelihood it is necessary to estimate r (where the rock hit the window) assuming we
know r0 (where it was thrown), and the initial velocity of the rock v0. Once all the other
variables are identified the value of t can be computed in a straightforward manner.

Equations in physics are just models of reality and as such are just an approximation
to it. For example, equation (2.3) does not consider air resistance or the Coriolis force. To
take this into account we add an extra layer to the model by adding a random parameter
that accounts for the discrepancy of our model with reality. We propose

r = r0 + v0t+ 1
2gt

2 + ε, (2.4)

where ε is a random vector distributed as multivariate Gaussian. Before we define what a
multivariate Gaussian distribution it is necessary to define more terminology and mathe-
matical objects that are going to be used throughout the rest of the text.

Definition 3. Given a set Ω, for any subset T ⊂ Ω, we define the σ−algebra generated by
T as the smallest σ−algebra in Ω that contains T .

Definition 4. Let O be the set of all open sets in Rn. The σ−algebra generated by O is
called the Borel σ−algebra and is denoted by Bn. If n = 1 we denote B1 := B.

Definition 5. Given a probability space (Ω,F ,P), a function X : Ω→ R is called a random
variable if X−1(C) ∈ F for all C ∈ B.

Definition 6. An n-dimensional random vector X = (X1, . . . , Xn) in (Ω,F ,P) is a func-
tion X : Ω → Rn such that each component is Xi is a random variable. Note that a single
random variable can be considered as a one dimensional random vector.

Definition 7. Given a probability space (Ω,F ,P) and an n-dimensional random vector
X : Ω→ Rn, the distribution of X is the probability measure

µ : Bn → [0, 1],

where µ is defined by
µ := P ◦X−1.

8



Definition 8. Given a random vector X : Ω → Rn with probability distribution µ, we say
that X is absolutely continuous with respect to the Lebesgue measure if there exists a real
valued, integrable function ρ such that for all C ∈ Bn we have

µ(C) =
∫
C
ρ(x)dx.

We say that ρ is the density function for X.

Definition 9. Given an n dimensional random vector X such that for any C ∈ Bn we have

µ(C) =
∫
C

1
2πdet(Σ)−

1
2

exp
[
(x− x∗)TΣ−1(x− x∗)

]
dx, (2.5)

then we say that X has a multivariate Gaussian distribution (or just Gaussian distribution)
with mean x∗ ∈ Rn and covariance matrix Σ. The matrix Σ is symmetric and positive
definite. We shall write

X ∼ N (x∗,Σ). (2.6)

In this case the components of X are said to be jointly Gaussian.

We now return to equation (2.4) and assume ε ∼ N (0, σ2I). Here I represents the 3× 3
identity matrix and σ > 0 parametrizes one’s belief in quantifying the accuracy of equation
(2.3). By introducing a random variable into the model we cause all variables involved in
equation (2.3) to be random variables; that is, we now look at the associated stochastic
equation. With this notation we can recast equation (2.1) as

Ppost(r0|r,v0) = Plike(r|r0,v0)Pprior(r0)
Z

, (2.7)

where we assumed independence between r0 and v0. Since ε is Gaussian we can readily
obtain [14]

r|r0,v0 ∼ N (r0 + v0t+ 1
2gt

2, σ2I).

This last equation gives an explicit density for the likelihood.
We now turn our attention to the prior. Suppose that we suspect the rock was thrown

from the bedroom of a neighbor. One way to model this suspicion is to assume a prior
distribution on r0 as

r0 ∼ N (w, λ2I),

where w is the coordinate vector of the center of the neighbor’s bedroom and λ represents
one’s belief the launch location is at the point w. We note that this is only one way to model
prior knowledge and other forms of the prior are also possible. Finally the normalization
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constant can be found as

Z =
∫
R3

Plike(r|r0,v0)Pprior(r0)dr0

= 1
(2π)6(σλ)3

∫
R3

exp
[
− 1

2σ2λ2

(
‖r− (r0 + v0t+ 1

2gt
2)‖2 + ‖r0 −w‖2

)]
dr0.

Having the likelihood, prior, and normalization constant allows us to compute the pos-
terior using Bayes’ rule. With these probabilities calculated we can obtain several different
estimates for the value r0. Common choices of pointwise estimates include

rMAP = argmax
r0

Ppost(r0|r,v0) (Maximum a posteriori), (2.8)

rCM =
∫
R3
r0Ppost(r0|r,v0)dr0 (Conditional mean), (2.9)

rML = argmax
r0

Plike(r|r0,v0) (Maximum likelihood). (2.10)

Each of these estimates has its own strengths and weaknesses. If the posterior is bimodal,
then the conditional mean might point at a value with very low probability, whereas the
maximum a posteriori estimate might be more reliable. If the posterior has no critical points
then the mean might be used as a point estimate. We can also assess how confident we are
about the point estimate. For example, if r∗ is our point estimate we can calculate a number
α > 0 such that

∫
B(r∗,α)

Ppost(r0|r,v0)dr0 = 0.95, (2.11)

where B(r∗, α) is the ball centered at r∗ with radius α. This value of α can be thought of as
the Bayesian version of the frequentist’s 95% confidence interval. Another way to estimate
uncertainty is by calculating the covariance matrix of r around r0 as∫

R3
(r0 − r∗)⊗ (r0 − r∗)dPpost.

The diagonal of this matrix contains the variance of each coordinate of r∗.
Note that the posterior is a probability density and does not necessarily have a closed

form, which can make it difficult to calculate the uncertainties we mentioned above. Hence
we need a way of extracting information from Ppost. One approach is to generate indepen-
dent samples from Ppost and do a Monte Carlo integration to obtain the different uncertainty
estimates. How to sample from a probability density and do a Monte Carlo integration will
be explained in Chapter 3. For the moment, we assume it is possible to evaluate any of
the point estimates and the uncertainty measures. With this, we can use a point estimate
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from equation (2.8) to obtain a method to infer the launch location of the rock and with
equation (2.11) we can estimate how confident we are about that estimate.

Practical problems are often substantially more challenging than in the above example.
Often times we have to deal with further issues such as

1. Uncertainties in experimental measurements.

2. Lack of sufficient information about the physics of the problem and experimental data.

3. Computational complexity of physical models that are too expensive to evaluate.

4. Parameters that might belong to high dimensional spaces so the associated probability
density is hard to sample from.

5. Evaluating any of the possible point estimates for the quantity of interest might be
computationally difficult.

In the problem that we outlined in Chapter 1, we have to deal with all of the above mentioned
issues. In this chapter we are going to discuss our approach for dealling with issues 3, 4 and
5 above. We omit 1 and 2, since these are intrinsic to the physics of the problem and the
methodology used to obtain the experimental data, and so, they are outside of our control.

2.2 Dealing with the Computational Complexity of the Phys-
ical Model

Models of physical processes can be represented in different ways. Following O’Hagan [28],
we represent the mathematical model of the physical process as a function M(·) so that
y = M(x) where x ∈ Rn and y ∈ R. Mathematical models are approximations to complex
physical processes. Often times these mathematical models are expensive to compute. It is
of great advantage if the complexity of the model can be reduced. One way to do this is
by performing a sensitivity analysis on the parameters the model depends on. Roughly, we
choose a combination of different values of the parameters and then we assess the importance
of each parameter in the output. This means that we need to run the model M(·) for a
large set of different combination of its parameters. Since realistic mathematical models are
typically expensive, this implies that the use of classical methods such as correlation ratios,
FAST method, Method of Sobol’, etc. are not feasible (see [37] for details).

Here the concept of emulator as defined in [28] comes into play. We approximate the
function M(·), which is expensive to evaluate, with a function M̂(·) that is cheap to evalu-
ate. To construct such an approximation, we associate a probability distribution with each
possible value of M(x) and for example take M̂(x) to be the mean of this distribution.
We will refer to M̂(·) as an emulator. Following [28] we expect the emulator to satisfy the
conditions in the following definition
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Definition 10. An emulator M̂(·) of a function M(·), is a map that:

• At points {x}Nk=1 where we know the output of the mathematical model (i.e. we know
M(xk) for k = 1, 2, . . . , N) the emulator should satisfy M̂(xk) = M(xk).

• For points {x∗k}Tk=1 where we don’t know the output M(x∗k), the emulator should return
an estimate M̂(x∗k) based on the distribution for M(x∗k). That estimate should reflect
the uncertainty associated with the interpolation/extrapolation done at that point.

From now on in this work we will to refer to the mathematical model or the computa-
tionally expensive function to calculate as M(·), and the emulator that approximates this
function by M̂(·).

A popular method to construct an emulator with the desired extrapolation/interpolation
properties is known as a Gaussian process regression.

2.2.1 Gaussian Processes

The conditions on the emulator M̂(·) imply that we need specify a probability distribution
for each point x in the domain of the model M(·). This means that we need to work with a
set of random variables with high cardinality. When dealing with several random variables
there is one probability density that is computationally tractable and easy to work with:
the multivariate Gaussian distribution (see Definition 9). The computational tractability of
integrals involving the multivariate Gaussian distribution can be used as a justification to
define a Gaussian process.

Definition 11. A Gaussian process (GP) is a collection of random variables {g(x)}x∈A for
some set A, possibly uncountable, such that any finite subset {g(xk)}Nk=1 ⊂ {g(x)}x∈A for
{xk}Nk=1 ⊂ A is jointly Gaussian [33].

A GP is specified by a mean function and a covariance operator or covariance kernel.
Following Rasmussen [33] we define

m(x) := E(g(x)), (Mean)

k(x,x′) := E((g(x)−m(x))(g(x′)−m(x′))) (Kernel).

If {g(x)}x∈A is a GP with mean m(·) and covariance k(·, ·) we will write

g(x) ∼ GP(m(x), k(x,x′)).

To understand why the notion of a GP is useful for us, recall that our goal is to create
an emulator M̂(·) that approximates a function M(·). For a fixed x ∈ A, a realization of
the random variable g(x) represents a possible value of M(x). The mean function at that
point x, that is, m(x) represents the best prediction of the true value of M(x), so we may
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set M̂(x) = m(x). Later we will show that one way to measure the uncertainty associated
with that prediction is given by the quantity k(x,x).

We will use GPs to fit functions in high dimensional Euclidean spaces, so that we may
think of the index set A of Definition 11 as a subset of Rn for some n ≥ 1.

The reason why Gaussian processes are useful in practice is that they are completely
characterized by the mean m(·) and choosing a covariance kernel k(·, ·)[21]. For example a
common covariance or kernel is the squared exponential (SE) function given by

k(x,x′) = e−
1
2‖x−x′‖2

2 . (2.12)

We choose to use the name “squared exponential" instead of Gaussian to avoid confusion
with the probability distribution. This covariance function tells us that if x and x′ are close
in the Euclidean metric then they are highly correlated, whereas far away points have a
correlation that decays exponentially. How to choose the covariance function depends on
the kind of regularity we want for the realizations of the GP. We will discuss this topic in
more detail later in this chapter. For reference purposes, we list some of the most common
kernels used in practice [33], setting r = ‖x− x′‖2:

• Squared-Exponential: k(r; θ) = exp
[
−1

2( rθ )2
]

• Exponential: k(r; θ) = exp
[
− r
θ

]

• Matérn 3
2 : k(r; θ) = (1 +

√
3r
θ )exp

[
−
√

3r
θ

]
.

• Matérn 5
2 : k(r; θ) = (1 +

√
5r
θ + 5

3( rθ )2) exp
[
−
√

5r
θ

]
.

• Power-Exponential: k(r; θ, p) = exp
[
−( rθ )p

]
.

Gaussian Processes as Distributions Over Function Spaces

Alternatively GPs can be viewed as measures on function spaces, and so we now discuss
them in this context following the approach of [21]. Relevant function spaces (e.g. Lp spaces,
Sobolev spaces, etc.) are normed vector spaces with a topology inherited from the metric
induced by the norm. So the function spaces of interest here are topological vector spaces
(TVS).

Let T be a TVS and let T ∗ be its topological dual. We will denote the action of an
element h ∈ T ∗ over an element z ∈ T by 〈h, z〉. Moreover we define a random variable
taking values in T as a map

X : (Ω,F , P ) −→ T ,
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that is measurable with respect to the σ-algebra generated by the open sets of T . This
σ-algebra is known as the Borel σ-algebra for T . The triple (Ω,F , P ) is a probability space
as in Definition 1. We use the shorthand notation X ∈ T whenever the random variable
X takes values in T . For example if T = L2(R), then X ∈ L2(R) means that X is a
measurable map from the probability space (Ω,F , P ) into L2(R).

We say that a random variable X ∈ T is called Gaussian if 〈h,X〉 is a Gaussian random
variable on the real line for all h ∈ T ∗. An element a ∈ T is the expectation of X ∈ T if

E(f,X) = 〈f, x〉, for all f ∈ T ∗.

Also a linear and positive definite operator K : T ∗ −→ T is called the covariance operator
(the covariance matrix in the finite dimensional case) if

cov(〈f1, X〉, 〈f2, X〉) = 〈f1,Kf2〉,

for all f1, f2 ∈ T ∗. Then we say that X is distributed as N (a,K). It is worth mentioning
that given a covariance operator L and an element b ∈ T the distribution N (b, L) does not
always exist[22]. But if it does exist, the Gaussian measure N (a,K) is completely identified
by a and K.

As an example consider T = C(T ), the set of continuous real valued functions on T ,
where T is compact subset of Rn. This is the space of real valued continuous functions on
T , which is a Banach space with the norm [4]

‖h‖ = max
x∈T
|h(x)|.

The dual space of T is given by T ∗ = M(T ) which is the set of signed measures defined
on the Borel σ-algebra of T . In this case the duality pairing is given by

〈µ, g〉 =
∫
T
gdµ.

A GP, {g(t)}t∈T (see Definition 11) with mean function m(t) and covariance kernel k(t, t′),
can be thought of as a Gaussian measure N (m,K) where [21]

E(g) = m ∈ C(T ),

(Kν)(t) =
∫
T
k(t, t′)dν(t′), for ν ∈M(T ).

The above example illustrates the connection between GPs and distributions over func-
tion spaces, and more precisely how is connected to Gaussian measures on function spaces.
Next we will explain how to use GPs in practice.
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Assume we have data {(xi, yi)}mi=1 ⊂ Rn × R from an expensive function M(·), where
M(xi) = yi. The set {(xi, yi)}mi=1 is called the training set. For simplicity we do not presume
any trend in the training outputs {yi}mi=1. Given the training set we would like to infer
possible values of M(·) on another set of points {x∗j}kj=1. This set of points is known as the
test set. For this purpose we construct an emulator M̂(·) (see introduction to section 2.1)
by considering the GP denoted by {f(x)}x∈dom(M) where dom(M) is the domain of M(·).
By Definition 11, the random vectors

f =
[
f(x1) . . . f(xm)

]T
,

f∗ =
[
f(x∗1) . . . f(x∗l )

]T
,

are jointly Gaussian with[
f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (2.13)

where the zero mean reflects the assumption of no trend in the training output {yi}mi=1. The
element of the submatrices in the covariance matrix are given by

(K(X,X))ij = cov(f(xi), f(xj)),

(K(X,X∗))ij = cov(f(xi), f(x∗j )),

and so on. By the requirements of Defintion 10, the realization of the random vector f
is known and is equal to [y1, . . . , ym]T . Given this vector, we want to infer the vector f∗.
This can be achieved by obtaining the distribution of f∗|f. By well known properties of the
multivariate Gaussian distribution we obtain [22]

f∗|f ∼ N (〈f〉,Σ), (2.14)

where

〈f〉 = K(X∗, X)K(X,X)−1f,

Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗).

Note that if in the above equations we only consider one test point x∗, and we take the
limit as x∗ approaches the training input xj , the matrix K(x∗, X) reduces to a vector and
converges to K(xj , X). In this case, it is not hard to see that the mean would be given by

K(xj , X)K(X,X)−1f = yj , (2.15)
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and the covariance matrix would reduce to an scalar that tends to zero as x∗ → x. The
interpretation is that at a training input xj the prediction is exactly equal to the corre-
sponding training output yj . For a point x∗ that is not part of the training set, with 95%
confidence we have

M(x∗) ∈ [〈f〉(x∗)− 2σ, 〈f〉(x∗) + 2σ], (2.16)

where

〈f〉(x∗) = K(x∗, X)K(X,X)−1f (Mean at point x∗)

σ2 = K(x∗,x∗)−K(x∗, X)K(X,X)−1K(X,x∗) (Variance at point x∗).

Equations (2.15) and (2.16) show that if we define

M̂(x∗) := 〈f〉(x∗), (2.17)

then M̂(·) satisfies the conditions for an emulator laid out in Definition 10.
In Figure 2.1 is shown an example that summarizes the discussion above. We consider

the problem of emulating the model M(x) = cos(2πx) having five training points. The 95%
confidence region shows that in the training input xj the variance is zero and M̂(xj) = yj ,
as predicted by equation (2.15).

The covariance kernel is the quantity that defines the mean and covariance for the Gaus-
sian distribution obtained when we look at finitely many random variables in a Gaussian
Process. Therefore choosing it is a crucial step in the fitting process. We next discuss the
properties of kernels and how to choose them depending on the data and the smoothness
properties we are looking for in the emulation process.

Covariance Kernels

The covariance kernel cannot be any arbitrary function k(x,x∗). To see why, consider the
matrix in equation (2.13) given by

C :=
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]
.
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Figure 2.1: Comparison between the approximation quality of the emulator M̂ (solid line) for
for the model M(x) := cos(2πx) (dashed-dotted line) in the interval [0, 1] for two different
partitions. On the left, the emulation is performed on the partition {0, 0.25, 0.5, 0.75, 1}. On
the right on the partition {0, 0.1, 0.2, 0.3, 1}. The dashed line represents the 95% confidence
region. The black points are the training set.

This is the covariance matrix of a multivariate Gaussian distribution and is obtained by
evaluating the covariance kernel at different points. The matrix C must be symmetric and
positive definite for any set of training and test inputs. This implies that the covariance
kernel has to be symmetric, or in other words, for all x and x′ in the domain of k(·, ·) we
must have

k(x,x′) = k(x′,x).

We also need that for any set of inputs {xi}ni=1 the Gram matrix defined by Kjk :=
k(xj ,xk), must be positive definite. If k is just a function of x − x′, which is common for
many kernels of practical interest, then k(·, ·) is said to be stationary.

To understand the role of the covariance kernel in the continuity and differentiability of
the mean function, let us define some concepts first.

Definition 12. Let y,x1,x2, . . . be a sequence of points in Rn, such that

‖xn − y‖2 → 0 as n→∞.
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Then the collection of real valued random variables {f(x)} defined in a probability space
(Ω,F ,P) are said to be continuous at y in the mean-squared sense if [33]

E(|f(xn)− f(y)|2)→ 0 as n→∞,

where
E(f(x)) :=

∫
Ω
f(x)dP.

We also have a definition for differentiability.

Definition 13. The mean square derivative of the collection {f(x)} in the i-th direction at
a point y is

∂f(y)
∂xi

= lim
h→0

E
(∣∣∣∣f(y + hei)− f(y)

h

∣∣∣∣2
)
,

whenever the limit exists. Here ei is the i-th canonical vector of the standard basis in Rn.
The mean square n-th derivative is given by

∂nf(y)
∂xni

= lim
h→0

E


∣∣∣∣∣∣∣
∂n−1f(y+hei)

∂xn−1
i

− ∂n−1f(y)
∂xn−1
i

h

∣∣∣∣∣∣∣
2 ,

whenever the limit exists.

In the definitions above if we take {f(x)} to be a Gaussian process with stationary
covariance kernel k then, it can be shown that the process is continuous in the mean at
a point y if and only if k is continuous at (y,y). Also the kernel function for the n-th
derivative is given by [1]

∂2nk(x,x′)
∂2x1 . . . ∂2x′m

.

Therefore the continuity and differentiability properties of the mean function in a Gaussian
process depends exclusively in the continuity and differentiability properties of the covari-
ance kernel.

Another important aspect of covariance kernels is that they are defined in terms of pa-
rameters. The way we choose the values of these parameters in practice is based on the data
we are analyzing. To see how this works, let us return to the problem of of approximating
M(·) by M̂(·) using Gaussian processes. Let k(x, x′; θ) be the covariance kernel for the GP
that depends on the parameter θ, where θ could be a scalar, vector, etc. In this case to
predict the output y∗ = {M(x∗1), . . .M(x∗m)} given the training set {(xi, yi)}mi=1, we can try
different approaches. One of the most common is maximum likelihood optimization (MLE),
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where we pick a parameter θ̂ such that

θ̂ = argmax
θ

P(y∗|{(xi, yi)}mi=1, θ).

By Definition 11 we know that the conditional probability for y∗ has to be distributed as a
multivariate Gaussian distribution. More precisely

p(y∗|{(xi, yi)}mi=1, θ) = 1
(2π)

m
2 det(Ky∗(θ))

1
2

exp
[
−1

2(y∗TKy∗(θ)−1y∗)
]
, (2.18)

where Ky∗(θ) is the matrix K(X,X) in equation (2.13). To find the value of θ̂ we have to
maximize (2.18) with respect to θ. This goal is unchanged if we take the logarithm of both
sides and minimize the following function instead1

L(θ) = − log(p(y∗|{(xi,yi)}mi=1, θ)) = 1
2y
∗TKy∗(θ)−1y∗ + 1

2 log |Ky∗(θ)|. (2.19)

A minimizer of L(θ) gives a possible value for θ̂ that explains the best the data y∗ given
the training set {xi, yi}mi=1. Another common way to tune the parameters, is using K-fold
cross validation, but will not use this approach here (the interested reader is referred to [27]
for details).

So far we have not discussed how to choose the training inputs {xi}mi=1. Clearly this
choice has a profound impact on the accuracy of the emulator. To see this, let us assume that
the functionM(·) is supported in [0, 1] and we have computational resources to calculate the
output of only five training points. If we pick the points {0, 0.1, 0.2, 0.3, 1} the interpolation
error of the emulator M̂(·) for points between 0.3 and 1, will be large, compared to the
error associated with the partition {0, 0.25, 0.5, 0.75, 1} as shown in Figure 2.1.

Ideally we would like to pick as many training points as possible to improve the fit, but
picking too many points to create the training set can result in a very high computational
cost. On the other hand, if we pick just few points to create the training set, then it is
possible to end up with unreliable predictions. Thus we need a systematic way to choose
the number and distribution of the training points. One strategy is to fill as much of the
space as possible given a fixed number (possibly small) of training points. This can be ac-
complished through space-filling designs which we discuss next.

1The reason for taking the logarithm is because most software packages for optimization search for the
minimum, not the maximum.

19



2.2.2 Design of Experiments

We assume there is a fixed computational budget. In this case, we need to decide how to
choose the training inputs {xj}mj=1 to obtain reliable predictions of the emulator for points
different than the training points. As shown in Figure 2.1, the quality of the emulation
depends heavily on the distribution of the training inputs. Intuitively we want to spread
the training inputs as much as possible in the parameter space while covering as much space
as possible. Distributions of points that achieve this are called space filling designs.

Given an set T ⊂ Rn, there are several ways to create space filling designs. In this work
we focus on maximin designs [13]. We note that there are other ways to obtain space filling
designs and we refer to the reader to [30]. Consider a metric space (T, d) (e.g. T ⊂ Rn,
compact and d the Euclidean distance) and a subset S of T , with finite (fixed) cardinality,
say |S| = n. A maximin distance design So is a collection of points of T such that

max
(S⊂T, |S|=n)

min
(s,s′∈S,s6=s′)

d(s, s′) = min
s,s′∈So,s 6=s′

d(s, s′) = do.

That is, we are looking for a set So of cardinality n that maximizes the minimum distance
among its elements. As an example consider T = [0, 1]3, the unit cube in R3 and n = 8. In
this case the design that maximizes the minimum distance among its elements is given by
choosing the 8 vertices of the cube or as shown in Figure 2.1 (right), if T = [0, 1] and n = 5,
the maximin design is given by a uniform partition of the set T .

The problem of finding the optimal maximin design is difficult to solve in general. In
practice we use computational tools to find a design that is close to optimal. Different
algorithms can be used for the optimization of the design, such as genetic algorithms,
simulated annealing, particle swarm, etc. A survey on the subject can be found in [43]. In
Chapter 4 we will see how the particle swarm algorithm can be used to create a maximin
design for a five dimensional parameter space.

To conclude this section, we note that there is a conection between maximin designs
and Gaussian processes. Consider a GP {f(x)}x∈T , fix S = {s1, . . . , sn} ⊂ T , and consider
the random vector

f = [f(s1), . . . , f(sn)],

where f is assumed to be jointly Gaussian. Let Ks be the correlation matrix for the prob-
ability distribution of f. Then it can be shown that the minimax design minimizes the
quantity

D(S) = −det(Ks),

where the matrix Ks is the same as the covariance matrix in equation (2.13). A survey of
the theory behind maximin distance designs can be found in [13].
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2.2.3 Sensitivity Analysis

Having a space filling design for the training input permits us to create an emulator M̂(·)
that closely approximates M(·) over its whole domain. By “closely” we mean within a
tolerable uncertainty in the output of the emulator for all points in the domain (see Figure
2.1). If we have a reliable fitting, then we can confidently assess what parameters in the
model M(·) are relevant and which ones are not. This ultimately allows to approximate the
model with a simpler one. For example, if our model is given by

M(x1, x2, x3) = x1 + x2 + 10−8x3, (x1, x2, x3) ∈ T = [0, 1]3,

then clearly the variable x3 is not as relevant as x1 or x2. We need to formalize in what
sense x3 is irrelevant. One way to achieve this is by doing a sensitivity analysis. In summary,
the goal of a sensitivity analysis is to assess how the output of a function M(·) depends on
variations of its arguments. There is a great number of methods to perform a sensitivity
analysis, such as adjoint methods, local methods, and variance based methods, to name
a few. The primary difference between each of these methods is how they measure the
importance of each variable. For example, in local methods the sensitivity at a point in
a given direction is the slope of the function, whereas in variance based methods what
matters is the magnitude of the area under the curve when fixing all parameters but one.
For a survey of techniques in sensitivity analysis, the reader is referred to [37].

In this work we use variance-based Monte Carlo methods (VBMCM) as described in
[40]. The idea of VBMCMs is to use the variance produced by the inputs of a function as
an indicator of their importance. More precisely we will use the method of Sobol’, which
we outline next

The functions of interest in this work have compact support. This implies that without
loss of generality we may assume that the domain of these functions is the n-dimensional
unit cube Ωn. Let us consider a generic square integrable function

ϕ : Ωn → R,

and start by decomposing ϕ as

ϕ(x1, . . . , xn) = ϕ0 +
n∑
k=1

ϕk(xk) +
∑

1≤k<l≤n
ϕkl(xk, xl) + . . .+ ϕ1,2,...,n(x1, . . . , xn).

This decomposition is not unique, but it can be shown that if each term ϕi1,...,ij in the
expansion satisfies

∫
[0,1]

ϕi1,...,ijdxik = 0 if ik ∈ {i1, . . . , ij}, (2.20)
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then the decomposition is unique and all terms in the expansion are orthogonal in L2(Ωk).
To demonstrate the orthogonality property, we may consider the functions g = ϕi1,...,ij and
h = ϕ`1,...,`k with arbitrary indices (i1, . . . , ij) 6= (`i, . . . , `k). Without loss of generality we
may assume i1 6= `1. In this case we have

〈g, h〉 =
∫

[0,1]
. . .

∫
[0,1]

(∫
[0,1]

ϕi1,...,ijdxi1

)
︸ ︷︷ ︸

= 0 by (2.20)

(∫
[0,1]

ϕl1,...,lkdxl1

)
dx∼i1,l1 = 0,

where we used Fubini’s theorem to split the integrals [19]. The symbols to the right of ∼
represent the variables omitted in the integration. Another consequence of (2.20) is∫

Ωn
ϕdx = ϕ0.

This allows us to find the other functions in the decomposition recursively, given ϕ0. For
example, for i ∈ {1, . . . , n} we have

ϕi(xi) = −ϕ0 +
∫

[0,1]n−1
ϕ(x)dx∼i.

Having ϕi(xi) we can then proceed to find ϕij(xi, xj) using

ϕij(xi, xj) = −ϕ0 − ϕi(xi)− ϕj(xj) +
∫

Ωn−2
ϕ(x)dx∼ij .

By knowing all of the functions in the decomposition of ϕ we are able to assess how each
variable affects the output of ϕ in the following way. The total variance D of ϕ is defined
as

D =
∫

Ωn
ϕ2(x)dx− ϕ2

0,

and similarly we can compute the partial variances as

Di1,...,is =
∫

[0,1]n−1
ϕ2
i1,...,isdxi1 . . . dxis .

With these variances we define the s-th order Sobol’ index

Si1,...,is = Di1,...,is

D
,

which is a measure of the contribution of the variables xi1 , . . . , xis to the total variance D.
If we want to know the separate effect of each variable x1, . . . , xn in the total variance D,
we look at the first order Sobol’ indices S1, . . . , Sn given by

Si = Di

D
, for i = 1, . . . , n.
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Finally if we want to assess the full effect of a variable on the total variance D, we
calculate a quantity known as the total effect index. For example if we want to calculate
the total effect index for the variable xi we would do so by calculating

Si + Si1 + Si2 + . . .+ Si12 + Si13 + . . .+ S12...,i,...,n.

Note that to calculate each Sobol’ index, it is necessary to perform high dimensional
integrals. Therefore integration using quadratures is not feasible. It is necessary to resort
to other numerical integration techniques. A common tool to perform high dimensional
integrals is known as Monte Carlo integration. We will not go into details of Monte Carlo
integration in this chapter, but rather postpone them for Chapter 3. What is important at
this time is that to apply Monte Carlo integration, it is necessary to evaluate the integrand
a large number of times at different points in its domain. If the integrand is the expensive
model M(·), then the computational cost of estimating the Sobol’ indices is prohibitive.
If instead we calculate the Sobol’ indices of the emulator M̂(·), we can use them as an
approximation for the Sobol’ indices of M(·). In this way we can estimate what arguments
of the model are relevant and what arguments are not. This will allow us to reduce the
complexity of the model.
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Chapter 3

Toy Problem: How Theory Works
in Practice

In the previous chapter we reviewed some of the theoretical and computational tools needed
to solve a Bayesian inverse problem. In this chapter we will to present a toy problem to
illustrate how the theory can be applied in practice. We begin by considering the forward
problem, given by the following partial differential equation (PDE)

{
∆u = e−b‖x‖2 , for x ∈ Ω = [0, 1]× [0, 1] ⊂ R2,

u = 0, for x ∈ ∂Ω,
(3.1)

where b is some real positive parameter. For us, the function u represents the mathematical
approximation of a quantity ũ that has a physical realization. For example we may think
of ũ as the actual difference in electric potential in Ω relative to a reference point and u

as the mathematical approximation to it. Since mathematical models of the physical world
are a simplification of reality, it is convenient to make a clear distinction between physics
(ũ) and mathematics (u).

In Section 2.1, we explained how to build an emulator M̂(·) that approximates the
output y of a computationally expensive function M(·) at a point in its domain. In this
chapter, the function M(·) takes as input a point (x, b) ∈ Ω × (0,∞). The output is the
value of the solution u at that point, that is u(x; b) = M(x, b). Now we proceed to explain
the associated inverse problem and how we will to construct M̂(·).

Assume that we have ten experimental measurements of ũ at the points P := {x1,x2, . . . ,x10} ⊂
Ω. That is, we know the vector of measurements y = (ũ(x1; b), . . . , ũ(x10; b)). We want to
estimate the value of b that explains the experimental data y the best. This is our in-
verse problem. A simple approach to estimate b would be to solve equation (3.1) for a
large number of values b in the interval (0, L] where L is chosen in a manner that there
exists a b∗ ∈ (0, L] such that the vector (u(x1; b∗), . . . , u(x10; b∗)) has ‘small’ discrepancy
with the experimental data y. This approach is not feasible if solving the forward model is
computationally expensive.
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Figure 3.1: Approximation of a model u(x; ·) by the mean of a Gaussian process trained
with six different outputs from the model. The mean of the Gaussian process at a point b̃
is taken as the value û(x; b̃) of the emulator.

Let us assume that solving equation (3.1) is computationally expensive and repeating
the calculation for a big range of different values of b is not feasible. One way to get around
that is by constructing an emulator û(·) that approximates u(·) and is cheap to compute.
The way we will construct û(·) is as follows: for a fixed x ∈ R2 we solve equation (3.1)
for n different values of b. We pick the value of n in a way that the computational cost of
computing (3.1) n times, does not exceed our computational and time budget. Then use
the data {bj , u(x, bj)}nj=1 as a training set to create a Gaussian process, as explained in
Section 2.1.1. Finally for any value b̃ we use the mean of the Gaussian process at that point
as û(x, b̃). An sketch from the result for approximating an arbitrary model u(x; ·) with an
emulator û(x; ·) is shown in Figure 3.1.

For clarity in the exposition, the table below summarizes the notation we will use
throughout the rest of the chapter.
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Symbol Meaning

ũ(x; b)
Value of the physical variable at the point
x with parameter b.

u(x; b)
Numerical solution of equation (3.1) at x
with parameter b.

û(x; b)
Value of the interpolation of the emu-
lator M̂(·) at the point x with parameter b.

P := {x1, . . . ,x10}
Points where the experimental measure-
ments were taken .

y := (ũ(x1; b), . . . , ũ(x10; b))
Values of the experimental measurements
for the variable ũ .

Table 3.1: Summary of symbols used in Chapter 3.

Let us return to our original goal: to estimate the value of b that explains the experi-
mental data y as best as possible. To create the experimental data y we assume that the
true value of b is 0.925. Then, for this value of b, we solve equation (3.1) using a finite differ-
ence five point stencil approximation for the Laplacian. Next we pick ten points at random
in Ω and save the value of the numerical solution u at those locations (see Figure 3.2).
Finally we add noise from a normal distribution with mean zero and standard deviation
0.01 to each of the ten values. The resulting numbers are what we use as the experimental
data y = (ũ(x1; b), . . . , ũ(x10; b)). Note that the noise added to the data obtained from the
numerical solution of equation (3.1) plays the role of possible errors in the experimental
measurements plus inaccuracies of the model to describe the true behavior in the physical
variable ũ.
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Figure 3.2: Numerical solution of the system (3.1) using a five point stencil finite difference
approximation for the Laplacian. The mesh size used in x and y was 0.01 and b = 0.925.
The black dots in the plot represent the points used to generate the experimental data
y = (ũ(x1; b), . . . , ũ(x10; b)).

3.1 Computing the Posterior

With the experimental data y created, we now proceed to obtain a point estimate value
of b that produced that data. To that end we first compute the posterior distribution. To
calculate the posterior we use Bayes’ rule to get

Ppost(b|y) = Plike(y|b)Pprior(b)
Z(y) . (3.2)

Note that finding the posterior enables us to obtain any of point estimate from equation
(2.8) and the uncertainty associated with that estimate. To compute Ppost(b|y) we need to
choose a prior distribution and the likelihood for b.

3.1.1 Choosing the Prior

For the sake of the example assume that the parameter b cannot be greater than 2. In this
case one way to choose a prior distribution for b that does not assume any other knowledge
than b ∈ (0, 2], is the uniform distribution. In this case we have

Pprior(b) = 1
21(0,2](b), for all b ∈ R, (3.3)
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where 1(0,2] is the indicator function of the set (0, 2]. The indicator function for a Borel
measurable set C is defined as

1C(y) =
{

1 if y ∈ C
0 if y ∈ Cc.

3.1.2 Finding the Likelihood

To calculate the likelihood, first we need to know how the set of possible measurements
y = (ũ(x1; b), . . . , ũ(x10; b)) is related to b when b is allowed to vary. Since we don’t know
the experimental values of the physical variable ũ for different values of b, it is necessary to
approximate the relation between ũ and b by the relation between u and b. To obtain such
a relation we need to solve equation (3.1). By solving this equation explicitly we can find
a functional relation between u and b for each one of the ten locations depicted in Figure
3.2. It is possible to solve analytically equation (3.1), however the relation between u and b
is given by an infinite series. Indeed equation (3.1) is Poisson’s equation with homogeneous
boundary conditions. This equation can be solved using an eigenfunction expansion [24].
The eigenfunctions of the Laplacian in the unit square are given by

φmn = sin(nπx) sin(mπy), for m,n ∈ N,

with eigenvalues
λmn = (nπ)2 + (mπ)2.

The eigenfunction expansion for u in equation (3.1) is

u =
∞∑
n=1

∞∑
m=1

amnφmn

where

amnλnm = −
∫

Ω e
−b‖x‖2

φmndx∫
Ω φ

2
mndx

= −〈e
−b‖x‖2

, φmn〉
‖φmn‖2L2(Ω)

. (3.4)

The symbol 〈·, ·〉 represents the standard inner product in L2(Ω).
Having a functional relation given by an infinite series is often not very useful. For

example in equation (3.4) the integral in the numerator does not have a closed form. Hence
we need a different approach to gain insight into the relation between y and b. The approach
we will use is the same as the one that allowed us to obtain Figure 3.1. First we solve equation
(3.1) for n different values of b. For the sake of the example assume n = 10. Then for each
x in P = {x1, . . . ,x10} we use the set {bj , u(xk; bj)}10

j=1 to train a Gaussian process for each
k = 1, 2, . . . , 10. Finally for any b̃ ∈ (0, 2] we use the mean of the Gaussian process at that
point as the value û(xk; b̃). By proceeding in this manner we obtain a cheap method to
approximate the behavior of y = (ũ(x1; b), . . . , ũ(x10; b)) when we allow b to vary.
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The next step is to choose the values of b for which the PDE (3.1) is solved in a way
that the uncertainty associated with the emulator is as small as possible. We shall denote
the points we choose as {b1, . . . , b10}. To choose the points we use a maximin design as
explained in Section 2.2.2. In this case it is straightforward to check that a maximin design
is the set of equidistant points

{b1 = 0.2, b2 = 0.4, . . . , b10 = 2}.

By solving equation (3.1) for these values of b and for each x in P , we know the values in the
set {u(bj ,xk)}10

j,k=1. We use this set to train ten Gaussian Processes. With these processes
we define the functions

Gk : (0, 2]→ R for k = 1, 2, . . . 10,

such that for each k and b, the value of the mean of the k-th GP is given by Gk(b). That
is, Gk(·) is the emulator for u(xk, ·). More precisely

Gk(b) = û(xk; b).

The functions Gk(·) are cheap to evaluate and are a good approximation of ũ(xk, ·).
Now it is possible to approximate the value of b that explains y = (ũ(x1, b), . . . , ũ(x10, b))
by trying a large number of different values of b and then compare with the experimental
data, to see what choice of b gives the smallest discrepancy. To this end, we calculate the
values of Gk(·), for k = 1, . . . , 10 in the set

{0.01, 0.02, . . . , 1.99, 2}.

In Figure 3.3 are plotted the emulator at these points, the true value of b, the experimental
measurement ũ(xk; b) and the training data {u(xk; bj)}10

j=1 for each of the ten sites.
We are now ready to make the mathematical connection between ũ, u and û. Recall

that u is the mathematical approximation of the physical variable ũ and û is an emulator
for u. Hence if û approximates u well, we would expect that û approximates ũ. For any
point xk ∈ P we do not know exactly how û(xk, ·) = Gk(·) differs from ũ(xk, ·). If we define
yk(b) := ũ(xk, b), then a possible relation that connects these quantities is given by the
following Gaussian additive model [14]

yk(b) = Gk(b) + εk, with εk ∼ N (0, λ2), (3.5)

where λ is a positive number that models how much we believe the emulator prediction
differs from ũ. We chose the value λ = 5.4× 10−3 to get a signal to noise ratio of 1:10. By
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defining the vector G(b) = (û(x1; b), . . . , û(x10; b)) and the definition of y (see table 3.1),
equation (3.5) can we written more compactly as

y = G(b) + ε, with ε ∼ N (0, λ2I10×10). (3.6)

Since the random vector ε has a Gaussian distribution, we can use equation (3.6) to
conclude

y|b ∼ N (G(b), λ2I10×10),

that is
Plike(y|b) ∝ e−

1
2λ2 ‖G(b)−y‖2

2 , (3.7)

where the proportionality constant normalizes the distribution on the right hand side to one.

Figure 3.3: Training points, GP regression, true value of b and experimental measures for
each one of the ten sites labeled from 1 to 10 in Figure 3.2
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Now that we have explicit expressions for the prior and likelihood distributions, we
can compute the posterior probability for b. Since the denominator in Bayes’ rule (3.2) is
independent of b, we can use equations (3.3) and (3.7) to write

Ppost(b|y) ∝ Plike(y|b)Pprior(b) ∝ 1(0,2](b)e
− 1

2λ2 ‖G(b)−y‖2
2 . (3.8)

An interpretation of this result is that before taking experimental measurements we only
knew that b ∈ (0, 2]. After weighting this prior belief with the data y, our current state of
knowledge about the parameter b is encoded in the posterior distribution. Figure 3.4 shows
this updated distribution.

Figure 3.4: Plots of the prior distribution, posterior distribution and true value of the
parameter b.

It is not always possible to visualize a probability density so it is necessary to sample
from it in order to obtain statistics about the parameters of interest. A family of methods
for this purpose is known as Markov Chain Monte Carlo (MCMC). In this work we focus
on a particular algorithm known as Metropolis-Hastings (MH). We now proceed to explain
how MH works in practice using the posterior for b in equation (3.8) as an example.

Consider the posterior density Ppost(b|y). The idea is to construct a Markov chain that
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wanders around the support of the posterior in a way that the chain spends more time in
regions with high probability. One way to achive that is as follows: if we are at a point
q1 and we want to move to a point q2 we will accept that move with probability one if
Ppost(q1|y) ≤ Ppost(q2|y) and with probability Ppost(q2|y)

Ppost(q1|y) otherwise. We choose in what di-
rection to move, randomly, using some probability distribution that is easy to sample from.
For simplicity, in this and the next Chapter we choose the uniform distribution to decide in
what direction to move. The pseudocode for the MH algorithm as described above is given
below [14]

Algorithm 1 Metropolis-Hastings Algorithm
1: pick a point q1 in the support of the distribution
2: for j=2:N do
3: Draw u ∼ U([0, α])
4: qj ← qj−1 + u

5: β ← min(1, Ppost(qj |D)
Ppost(qj−1|y))

6: Draw w ∼ U([0, 1])
7: if w < β then
8: qj−1 = qj (Accept the move)
9: else

10: qj−1 = qj−1 (Reject the move)
11: end if
12: end for

The rule of thumb for choosing the parameter α in the scheme above is that the pro-
portion of times we accept a move is about 0.25 [34]. It can be shown that the sequence
q1, q2, . . . , qN is a realization of a Markov chain that in the limit as N → ∞ is distributed
according to the distribution Ppost(b|y). This convergence result works under mild condi-
tions over the distribution that is being sampled. For more details about the theory behind
MCMC methods we refer the reader to [34]. Since we do not have the computational power
to let N → ∞ we let the chain run for a large number of steps until it converges. Then,
we throw away the burn-in portion of the chain and compute statistics using the remaining
samples. The burn-in portion of the chain consists of samples obtained before the chain is
close to converging. A common choice is to discard the first N

2 samples.

Using Algorithm 1, we sample from the posterior distribution Ppost(b|y) and take the
values α = 0.23 and N = 10000. The burn-in period is set to be the first 5000 samples. A
histogram of the last 5000 is shown in Figure 3.5.
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Figure 3.5: Histogram obtained for the posterior distribution (3.2) from 5000 samples from
MH algorithm with step size α = 0.23. The solid line is the graph for the posterior Ppost(b|y).

With the samples obtained we readily obtain useful statistics for b. For example, we can
estimate the conditional mean using [34]

bcm =
∫

(0,2]
bPpost(b|y)db ≈ 1

5000

5000∑
j=1

bj = 0.9247042, (3.9)

where the summands bj are the samples obtained after the burn-in period of 5000 samples.
We can also estimate the variance of the samples as

∫
(0,2]

(b− bcm)2Ppost(b|y)db ≈ 1
5000

5000∑
j=1

(bj − bcm)2 = 0.01427.

With these values we can compute a 95% confidence interval for b. In this case the interval
is given by

[0.9247042− 2
√

0.01427, 0.92470422 + 2
√

0.01427] = [0.68579, 1.163618].
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Let us make a short digression about the idea behind Monte Carlo integration. Consider
the generic problem of evaluating the n-dimensional integral∫

Rn
h(x)ρ(x)dx, (3.10)

where ρ is the Lebesgue density of some probability measure P. This means that calculating
(3.10) is equivalent to calculating the expected value of h, that is

E[h] =
∫
Rn
h(x)ρ(x)dx.

If X1, . . . , Xn are independent random variables with density ρ, then by the strong law of
large numbers, the sequence of random variables

hn = 1
n

n∑
k=1

h(Xk),

converges to E[h][7]. Furthermore if E[h2] <∞ we can assess the speed of convergence and
the quality of the approximation hn for E[h]. By the central limit theorem the sequence of
random variables hn

hn − E[h]
√
σn

→ N (0, 1),

where
σn = 1

n

n∑
k=1

(h(Xk)− hn)2.

This means that the uncertainty in the approximation hn for E[h] goes to 0 as O( 1√
n

).
Note that the convergence rate is independent of the dimension of the problem. That is the
reason why Monte Carlo integration is used in high dimensional problems, where quadrature
methods are prohibitively expensive to implement. In Chapter 4 we apply this method to
calculate integrals of real valued functions supported in a seven dimensional space.

The estimate for b in equation (3.9) depends on the choice of the prior. At this point it
is unclear how choosing a different prior would give a different estimate for b. To close this
chapter we discuss the role that the prior has in inference in the Bayesian Framework.

3.2 Importance of the Prior

Once again consider problem of estimating the value of the parameter b, whose real value
is, as before, 0.925. This time we assume the parameter b can be any real number (not just
0 < b ≤ 2 as before) and the prior distribution for b to be

b ∼ N (b∗, σ2
b ),

34



where b∗ and σb are parameters to be set later. With this new prior the formula for the
posterior is

Ppost(b|y) ∝ exp
(
−‖y−G(b)‖22

2σ2

)
︸ ︷︷ ︸

Likelihood

exp
(
−(b− b∗)2

2σ2
b

)
︸ ︷︷ ︸

Prior

.

To illustrate the role that the prior has in the inference of the value of the parameter given
the data y, suppose that

b ∼ N (4, 2.5).

This prior assumes that, with 95% confidence, the value of b is in the interval [1.8, 8.2].
Clearly, there is a mismatch between the true value of b and the range of values that the
prior distribution assigns high probability. Let us evaluate how the posterior distribution
for b evolves as we consider more and more experimental data from the measurements of
ũ. Figure 3.6 shows how the posterior evolves when we calculate the likelihood with more
and more data. The first frame shows the result when only the measurement ũ(x1; b) is
taken into account, the second frame when the measurements ũ(x1; b), ũ(x2; b) are taken
into account. In each new frame we proceed by adding one more measurement to calculate
the likelihood.
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Figure 3.6: Evolution of the posterior distribution when more experimental data is taken
into account

The sequence of plots in Figure 3.6 shows that the experimental data creates a new
mode in the posterior distribution that is close to the true value of b. In the end of the
sequence where we consider all 10 experimental measurements, the mode that is close to
the true value of b is bigger than the mode originated by the prior at the point b = 4. The
explanation for this behavior is that the prior has a high value near b = 4, but it is close to
zero for values around b = 0.925. Then, when the experimental data is used, the likelihood
distribution has a higher value for points close to b = 0.925 than points close to b = 4. The
more data are used, the higher the value of the likelihood around b = 0.925 and the closer
to zero away from it. However since the prior distribution gives negligible probability to
values close to the true value of b, when all data are used the product Pprior(y|b)P(b) will
be non-negligible only in regions close to b = 4 or b = 0.925.

The above example is a warning example. If we know how to choose the prior distribution
in a way that is meaningful to the problem, reliable inference can be done even with a small

36



amount of data. On the contrary if the prior distribution is not realistic, inference may not
be reliable even with a large amount of data.
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Chapter 4

Industrial Case Study

In this chapter we study the dispersion of zinc from a lead-zinc smelter in Trail, British
Columbia, Canada, operated by Teck Resources Ltd. We consider four zinc sources. Our
ultimate goal is to estimate the contribution of each source to the total amount of zinc
that is being released by the smelter. We have access to measurements of zinc depositions
(in terms of total mass of zinc that reaches ground-level over a monthly period within a
dust-fall jar) at nine different locations as well as wind field velocity data at a location near
the smelter. We also know prior engineering estimates of the zinc emission provided by the
company. An aerial photograph of the region of interest with the location of the sources and
the measurement devices is shown in Figure 4.1. The sources are represented by the letters
Q1 to Q4. The deposition measurement sites are marked as R1 to R9.

In order to estimate the emission rates, we shall use a similar approach to that of Section
3.1. In Chapter 3 we assumed we had access to a mathematical model that approximates
the physics of processes of interest. Here, it is necessary to develop such a model for the
pollutant dispersion in the atmosphere from scratch.
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Figure 4.1: Aerial photograph taken from [10] of the lead-zinc smelter in Trail, British
Columbia, Canada. The points Q1 to Q4 represent the sources of zinc. The green triangles
R1 to R9 represent the location of the measurement devices.

4.1 A Mathematical Model for Pollutant Dispersion

Our starting point is the conservation of mass for particulate zinc in the atmosphere. Con-
sider a closed region Λ ⊂ R3 with a mass m of zinc within it. Assume that in the interior of
Λ there is a source of zinc and that zinc is flowing throughout the boundary of Λ (denoted
by ∂Λ) due to an advection field (see Figure 4.2). It can be shown that net mass per unit
time of zinc that is flowing through the boundary is given by [38]∫

∂Λ
c(x, t)v(x, t) · n̂dA,

where v(x, t) represents the wind velocity at a point x at time t and c(x, t) in units of mass
per units of volume is the concentration of zinc at a point x at time t. The vector n is the
unit normal vector to ∂Λ and dA is an area element. On the other hand the rate of change
of total mass m at a time t inside Λ can be written as

dm(t)
dt

= d

dt

∫
Λ
c(x, t)dV,
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Figure 4.2: Schematic representation of the region Λ in space containing a source of zinc.

where dV is an element of volume in Λ. Finally, the amount of zinc that comes from the
source at a time t is given by ∫

Λ
s(x, t)dV,

where s(x, t) is the source density with units of mass per unit volume per unit time. Con-
servation of mass states that the total mass inside Λ should be conserved. Therefore for all
times t the rate of change of the mass inside m should equal all sources of its variation.
Thus we can write

d

dt

∫
Λ
c(x, t)dV = −

∮
∂Λ
c(x, t)v · ndA+

∫
Λ
s(x, t)dV.

Since we picked the orientation of ∂Λ with the normal pointing outwards, it is necessary to
put a minus sign in front of the surface integral for consistency. Assuming that the concen-
tration and the velocity field are continuous functions of time and space, a straightforward
application of the divergence theorem and the Leibniz rule for integrals gives∫

Λ

(
∂c(x, t)
∂t

+∇ · (cv)− s(x, t)
)
dV = 0.

Since the region Λ was arbitrary, the previous equality holds if and only if [11]

∂c(x, t)
∂t

+∇ · (cv) = s(x, t), almost everywhere in R3 × R. (4.1)

If we apply this equation to estimate the concentration of zinc using real wind data measured
experimentally, we will find that the prediction for the concentration is not completely
accurate, even if the model is believed to be an accurate representation of the underlying
physics and the model parameters are estimated as accurately as possible. One of the reasons
for this is that at small scales, there are random fluctuations in the wind velocity that are
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very difficult to measure. To model this we follow [38] and write the wind velocity field as

v = v̄ + v′, (4.2)

where v̄ is the measured wind velocity and v′ is a random variable with zero mean. If we
replace v in equation (4.1) with the expression for the velocity in equation (4.2) we get

∂c(x, t)
∂t

+∇ · (c(v̄ + v′)) = s(x, t). (4.3)

The presence of the random variable v′ transforms the solution c into a random variable as
well. In this case we describe c as the contribution of two terms as

c(x, t) := E(c)(x, t) + c(x, t)′, (4.4)

where c′ satisfies E(c(x, t)′) = 0. The motivation behind this definition is the following: if
we measure the concentration at a point x and at time t a large number of times under
identical initial and boundary conditions, then we expect the measurements to have an
underlying average behavior E(c)(x, t) plus some noise c(x, t)′. By substituting equation
(4.4) into equation (4.3) we obtain

∂E(c)
∂t

+∇ · (v̄E(c)) +∇ · (E(c′v′)) = s(x, t). (4.5)

This equation includes the extra variable E(c′v′). In this case we have two unknowns and
one equation. One way to overcome this issue is to use the so-called mixing-length theory
[38]. We use the constitutive equation

E(c′v′) = D∇(E(c)). (4.6)

The termD is a rank two tensor called the eddy diffusivity tensor. This tensor is assumed to
be symmetric, hence is always diagonalizable. For simplicity we assume that we are working
on the principal axes of D [38], hence

D =


Dxx 0 0

0 Dyy 0
0 0 Dzz

 .
Substituting equation (4.6) in equation (4.5) gives

∂E(c)
∂t

+∇ · (v̄E(c) + D∇E(c)) = s(x, t). (4.7)
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The variable E(c) is now a deterministic function of space and time. In order to make the
notation simpler, we set C(x, t) := E(c). Note that C has the same units as c. We interpret
C(x, t) as the expected concentration that we would measure at a point x at time t.

We now turn our attention to the source density. We assume point-wise emission sources.
Suppose there are ns sources at the points x1,x2, . . . ,xns , then we assume that s(x, t) has
the following the form

s(x, t) =
ns∑
j=1

qj(t)δ(x− xj). (4.8)

Here qj is the rate of emission of the j-th source and has units of mass per unit time. The
function δ(·) is the Dirac delta function. For the case study of this chapter, we have ns = 4,
where ns is the number of sources (see Figure 4.1). Putting together equations (4.7) and
(4.8) we finally state our mathematical model for zinc dispersion as

∂C(x, t)
∂t

+∇ · (v̄C(x, t) + D∇C(x, t)) =
4∑
j=1

qj(t)δ(x− xj). (4.9)

We still need to discuss models for the diffusivity tensorD and wind velocity distribution
v. These quantities are hard to measure so we use empirical models for them. We will discuss
in detail the assumptions on the diffusivity tensor and the wind velocity field in the next
sections.

4.1.1 Assumptions on the Diffusivity Tensor

Following [26], the vertical diffusion coefficient (in the z direction) Dzz is represented by
the following expression

Dzz = κv∗z

φ(z/L) , (4.10)

where κ is the von Karman constant whose value in practice is set equal to 0.4. The de-
nominator is defined as the piece-wise continuous function

φ

(
z

L

)
=
{

1 + 4.7 zL for z
L ≥ 0,

(1− 15 zL)−
1
2 for z

L < 0,

where L is the Monin-Obukhov length. The parameter v∗ is known as the friction velocity
and represented by

v∗(t) = κvr(t)
ln( zrz0

) ,

where vr(t) is a reference velocity at a reference height hr. The variable z0 is called the
roughness length, that depends on terrain and surface type.
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For the elements Dxx and Dyy, we assume Dxx = Dyy and independence of height [26].
A commonly used equation for these parameters is

Dxx = Dyy ≈
v∗z

3
4
i (−κL)−

1
3

10 .

The variable zi is known as the mixing layer height.

4.1.2 Assumptions on the Wind Velocity Distribution

In practice, the wind velocity measurements are taken using anemometers that measure a
two dimensional projection of the velocity vector field in a horizontal plane. Therefore it
is necessary to model vertical variations of this vector field. Following [10], we consider a
velocity vector field of the form

v = (vx(z, t), vy(z, t), vset). (4.11)

Observe that we are assuming the wind velocity field is independent of x and y. The reason
for this is that the terrain of interest is flat, hence no significant variations of the wind
velocity at a given height are expected. In equation (4.11), vset is a constant given by the
settling velocity of the zinc particles. By Stokes’ law, this velocity for spherical particles is
given by

vset = ρgd2

18µ ,

where ρ is the particle density, g is the acceleration of gravity, d is the diameter of the
particle, and µ is the dynamic viscosity of air. For the x, y components of v we assume a
power law relation of the form

‖(vx(z, t), vy(z, t))‖2 = vr(t)
(
z

zr

)p
, (4.12)

where vr(t) is the wind speed at a reference height zr. The exponent p depends on factors
such as the surface roughness and atmospheric stability class. For more details about the
power law model for the wind velocity the reader is referred to [38].

Now we have all the information necessary to completely specify the model for the zinc
pollutant dispersion. The domain of interest, the boundary and initial conditions in equation
(4.9) are given by

Π := {(x, y, z) ∈ R3|z ≥ 0} (domain of equation (4.9)).

Following [10], the boundary conditions are given by the far-field condition

C(x, t)→ 0 as ‖x‖ → ∞,
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and the Robin boundary condition(
vsetC +Dzz

∂C

∂z

)∣∣∣∣
z=0

= vdepC|z=0 . (4.13)

Observe that the diffusivity in equation (4.10) vanishes at ground level. This is incon-
sistent with the boundary condition in equation (4.13). Hence, following [10] we assume the
diffusivity to be non-zero below a cutting height zcut.

The models for the wind velocity and the diffusivity tensor, introduce new parameters
whose values need to be set. These parameters are listed below:

• p - the fitting parameter for the wind velocity power law,

• z0 - roughness length,

• zi - mixing layer height,

• L - Monin-Obukhov length,

• zcut - cutting height.

In practice we often set a heuristic value for these parameters from a given empirical range
[38, 10]. The caveat with this approach is that there is no good reason to choose one value
over a different one or else years of experience from an expert are necessary to make a sound
choice. In this work we will use the Bayesian framework in order to decide the values of
these parameters and the emission rates using the experimental data available. We will also
quantify the uncertainties that are associated with the values of the parameters.

To estimate the parameters p, z0, zi, L, zcut and the four sources sources, we use the
experimental measurements of the total zinc deposition at the sites R1, . . . , R9 (see Figure
4.1) over a one month period.

The mathematical model described so far, concerns the dispersion of particles and not
the deposition. Thus is necessary to make the connection between the solution C of equation
(4.9) and the deposition of zinc at the ground level. If vset is the settling velocity of zinc
particles, then the deposition per unit area at a point (x, y, 0) ∈ Π during the interval of
time (0, T ] is given by

w(x, y, T ) =
∫ T

0
C(x, y, 0, t)vsetdt. (4.14)

Since the nine measurements R1, . . . , R9 were obtained by the placement of identical
dust-fall jar collectors with small but non-zero, cross-sectional area, we can readily approx-
imate the total deposition during the interval (0, T ] at the i-th site as

W (xi, yi, T ) =
∫
dustfalljar

w(x, y, T )dxdy ≈ w(xi, yi, T )∆A,
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where ∆A is the cross-sectional area of the dust-fall jar. Furthermore we define

Mi = W (xi, yi, T ) for i = 1, . . . , 9. (4.15)

The scalar Mi is a measurement of the zinc deposition at the site Ri. From now on we
assume T to be one month.

From equations (4.14) and (4.15), we infer that the mapping from concentration to
depositions is linear. Also from equation (4.9) it is straightforward to check that the con-
centration C is related to the source s(x, t) by the solution operator of the partial differential
equation (4.9), which is also linear. Since composition of linear maps is linear, we conclude
that the mapping from the emission rates qj to the depositions Mj is linear . Therefore we
can write

Mi =
4∑
j=1

aij(p, z0, zi, L, zcut)qj for i = 1, . . . , 9. (4.16)

The coefficients aij capture the dependence of the deposition on the model parameters
p, z0, zi, L, zcut, which is non-linear in general. Define the vectors

y =
[
M1 . . . M9

]T
,

q =
[
q1 q2 q2 q4

]T
,

and write equation (4.16) more compactly as

y = A (p, z0, zi, L, zcut)q. (4.17)

Here A is a 9× 4 matrix whose coefficients are the aij(p, z0, zi, L, zcut).

Equation (4.17) models the relationship between deposition values and all other pa-
rameters in equation (4.9). However we do not know an expression for the 36 coefficients
aij as functions of (p, z0, zi, L, zcut). To find such an expression, we need to solve equation
(4.9), but the solution does not have a known closed form and a numerical approximation
is needed.
If we had unlimited computational budget we could solve equation (4.9) for as many different
configurations of the parameters (p, z0, zi, L, zcut) as we want and get an approximation to
the coefficients aij . Clearly this is not feasible. A more realistic approach is to solve equation
(4.9) for a number of different values of (p, z0, zi, L, zcut) and construct an approximation to
aij using these limited runs. We shall use the use the Gaussian processes approach of Section
2.2.1 to construct such an approximation. Before we construct the Gaussian processes we
perform a sensitivity analysis as described in Section 2.2.3 to see if it is possible to reduce
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the dimensionality of the parameter space in order to reduce the cost of constructing the
Gaussian processes.

4.2 Sensitivity Analysis

Our starting point is to define the set of maps {ϕx,y}x,y∈R. The input for each map is a
point (p, z0, zi, L, zcut) in the parameter space and the output is the deposition value at
the location (x, y). The domain of each map is the range of allowed values for the set of
parameters as shown in Table 4.1, taken from [38].

Parameter (units) Symbol Range

Velocity exponent p [0.1, 0.4]
Roughness length (m) z0 [10−3, 2]

Height of mixing layer (m) zi [102, 3× 103]
Monin-Obukhov length (m) L [− 500,−1]

Cut-off length (m) zcut [1, 5]

Table 4.1: Parameters of interest to out sensitivity study and their accepted ranges

We perform a sensitivity analysis as explained in Section 2.2.3, on the set of maps
{ϕxi,yi}9i=1 , where (xi, yi) represent the location Ri in Figure 4.1. To make computations
simpler we map bijectively the set of ranges of the parameters into the five-dimensional unit
hypercube. Thus, without loss of generality we may assume the deposition maps are of the
form

ϕxi,yi : [0, 1]5 ⊂ R5 → [0,∞) for i = 1, 2, . . . , 9.

Recall from Section 2.2.3 that in order to estimate the Sobol’ indices it is necessary to
perform numerical integrations over the integrands {ϕxi,yi}9i=1. These are five-dimensional
integrals, and so usual quadrature methods are not suitable. It is necessary to use Monte
Carlo integration. But Monte Carlo integration requires us to evaluate {ϕxi,yi}9i=1 at a large
number of points, which can also be expensive. To overcome this issue we use Gaussian
process emulation as described in Section 2.2.1.

Implementing the routines to emulate and estimate Sobol’ indices is a time consuming
task. In order to optimize our time budget, we used the R packages DiceKriging and Sen-
sitivity [36, 31] to construct the emulator and to estimate the total effect Sobol’ indices
for each of the maps {ϕxi,yi}9i=1. The DiceKriging package allows us to use five different
kernels for the emulation. In order to consider the influence of different kernels on the Sobol’
indices, we calculate the indices five times, one for each different kernel and summarize the
results in the box plots in Figure 4.3.
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Figure 4.3: Boxplots containing the result for the total effect Sobol’ index performed on
each of the nine sensors. The dashed line represents a Sobol’ index of zero.

This figure shows that two of the five variables, namely zi and zcut, have very little influence
on the variance in the deposition. Therefore we ignore these and reduce the dimensionality
of the parameter space from five to three. In this case we can write equation (4.17) as

y = A(p, L, z0)q.

From now on we use the convention that the parameters zi and zcut are fixed at the values
100 and 2 respectively (see [10]). We now turn our attention into how to find an approxi-
mation for the matrix A(p, L, z0).
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4.3 Building an Emulator for A (p, L, z0)

To solve equation (4.9) numerically, we use the finite volume solver of [10]. The details are
given in [10]. Running the finite volume code on a 30×30×30 grid takes from 30 minutes up
to a few hours, hence the necessity to use Gaussian process regression to create an emulator
as shown in Section 2.2.1.

To construct the emulator we need a training set. For this purpose we create a space
filling design for the parameter space (p, L, z0) as explained in Section 2.2.2 using a max-
imin design. Finding the optimal maximin design is challenging, hence we use a numerical
approximation. We use the particle swarm algorithm for the optimization. See [3] for details.

Considering our time and computational budget, we chose to perform the experimental
design with n = 64 points. The maximin design obtained by using a particle swarm for the
optimization is shown in Figure 4.4.

With the experimental design in hand, we run the finite volume solver for each of the
64 different configurations of parameters. We repeat this step four times. The first time we
run the 64 simulations by fixing the first source q1 to 1 and the other three sources to zero,
the second time we fix the second source q2 to 1 and the other three sources to zero and so
on. The reason for this implementation is that we need to connect the output of the finite
volume solver, which is the deposition vector y at the nine sites R1, R2, . . . , R9, with the
components of the matrix A (p, L, z0). Recall that the relation between these two quantities
is given by equation (4.17) which we write explicitly as

y = A (p, L, z0)


q1

q2

q3

q4


︸ ︷︷ ︸

q

, (4.18)

For example if we run the finite volume code with the parameters set at the values
p∗, L∗, z∗0 with the i-th source set to one and the other three to zero, then we obtain the
output

y∗ =


y∗1
...
y∗9

 .
Then from equation (4.18) it is easy to see that the following equality holds

y∗1
...
y∗9

 =


a1i(p∗, L∗, z∗0)

...
a9i(p∗, L∗, z∗0)
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where the RHS is the i-th column of A . This result shows why it is necessary to run each
of the 64 simulations four times to obtain the training set for the emulator of A .

The emulator for A will be represented by Â, similarly its components will be repre-
sented by âij . The construction of Â is obtained by using Gaussian processes as explained
in Section 2.2.1, and exemplified in Section 3.1.2. By construction, at the points in the max-
imin design in Figure 4.4, A and Â coincide. To account for the discrepancies outside this
set of points we assume an additive Gaussian noise model between deposition, parameters
and sources, that is (cf. Section 3.1.2)

y = Â(p, L, z0)q + ε, (4.19)

with ε ∼ N (0, λI9×9). The value of the parameter λ will be specified later in this chapter. In
equation (4.19) the vector y could represent either the output of the finite volume code at
the dustfall jars positions or the experimental deposition measures. This interpretation of
y implies that the random variable ε also accounts for the discrepancy between simulation
of equation (4.9), the physics and experimental measurement errors.
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Figure 4.4: Maximin design with 64 points in the parameter space (p, L, z0).
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4.4 Bayesian Framework for the Inverse Problem

With the emulator in hand, we are now in a position to apply the Bayesian framework
to estimate the values of the parameters and the source emission rate. Our goal is to
characterize the posterior distribution for the parameters and emission rates; more precisely
we want to find the posterior of the parameters p, z0, L and sources q given the experimental
data y. Recall by Bayes’ rule in equation (2.1), the posterior distribution is given by

Ppost(p, z0, L,q|y) = Plike(y|p, z0, L,q)Pprior(p, z0, L,q)
Z(y) . (4.20)

Given the Gaussian additive noise model in equation (4.19), a straightforward calculation
yields the likelihood

Plike(y|p, z0, L,q) = 1
(2πλ2)

9
2

exp
(
− 1

2λ2 ‖Âq − y‖2
)
, (4.21)

where the constant of proportionality is given by

Z(y) =
∫

Plike(y|p, z0, L,q)Pprior(p, z0, L,q)dpdz0dLdq. (4.22)

We now discuss the choice of the prior distribution.

4.4.1 Choosing a Prior

The values of the parameters p, z0, L depend on the environmental and meteorological con-
ditions of the region, whereas the values of the emission rates q1, . . . , q4 do not. Thus, it is
reasonable to assume that these variables are independent of each other. This independence
can be captured as

Pprior(p, z0, L,q) = Pprior(p, z0, L)Pprior(q).

By writing the prior distribution as the product of two distributions, we simplify the problem
by working with two different subsets of variables. Let us first introduce the prior for the
parameters p, z0, L. We assume all three parameters are independent of each other, thus

Pprior(p, z0, L) = Pprior(p)Pprior(z0)Pprior(L).

As mentioned in Chapter 1, there is no strong reason to pick a value over the other for these
parameters unless sufficient meteorological details are available. To this end, we assume a
uniform distribution for each parameter. The allowed range for each parameter is given in
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Table 4.1. Explicitly we have the distribution density for each parameter as

Pprior(p) = 1
0.31[0.1,0.4],

Pprior(z0) = 1
2− 10−31[10−3,2], (4.23)

Pprior(L) = 1
4991[−500,−1].

Choosing the prior for the sources q1, . . . , q4 requires more analysis since we are not com-
pletely ignorant about their possible values. Let us summarize our prior knowledge of these
variables.

1. Each source is unrelated to the other three.

2. The qi are positive and finite.

3. Engineering estimates of emission rates are given in Table 4.2 (these values are taken
as a guideline).

Source Estimated Emission Rate [ton/yr]

q1 35
q2 80
q3 5
q4 5

Table 4.2: Engineering estimates of the emission rates.

Mathematically, Condition 1 above can be modelled with an independent prior:

Pprior(q1, q2, q3, q4) = Pprior(q1)Pprior(q2)Pprior(q3)Pprior(q4).

The second condition requires that the probability density for each source has to be sup-
ported in the set [0,∞). The third condition can be interpreted as follows: the mode of the
prior for each source has to be at the engineering estimates, and 99% of the mass should
be contained between 0 and 3 times that value. The reason for this is to give credibility to
engineering estimates but not too much credit. We choose to work with the gamma distri-
bution which is a probability distribution that satisfies the above conditions. We denote the
probability measure of a gamma random variable by G (α, β). The Lebesgue density of the
gamma distribution is given by

g(x;α, β) = βα

Γ(α)x
α−1e−βx1[0,∞),
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where α and β are constants. We assume that each source has a gamma distribution

qi ∼ G (αi, βi) for i = 1, 2, 3, 4. (4.24)

We choose the values of αi and βi in terms of the engineering estimate qeng,i for the i-th
source. More precisely we choose the values of αi and βi as the solution of the following
system of equations

αi − 1
βi

= qeng,i,

qgamma(0.99, αi, βi) = 3qeng,i.

Here qgamma is the quantile function for the gamma distribution. The quantile function is
the inverse of the cumulative distribution function. By choosing the values of the parameters
for the gamma distribution in this manner, we satisfy

max
q∈[0,∞)

g(q;αi, βi) = qeng,i for i = 1, 2, 3, 4.

and 99% of the mass of the density is concentrated between 0 and 3 times the engineering
estimate [7]. Combining the results from equations (4.23) and (4.24) we conclude that the
prior distribution for the emission rates has the form

Pprior(p, z0, L,q) ∝ 1[0.1,0.4](p)1[10−3,2](z0)1[−500,−1](L)
4∏
i=1

qαi−1
i e−βiqi1[0,∞)(qi). (4.25)

With the prior and the likelihood, we can finally obtain an expression for the posterior
by substituting equations (4.21),(4.22) and (4.25) into Bayes’ rule (4.20). The posterior
Ppost(p, z0, L,q|y) is proportional to the Lebesgue density of

exp
(
− 1

2λ2 ‖Âq− y‖2 −
4∑
i=1

βiqi

) 4∏
j=1

qαi−1
i 1[0.1,0.4]×[10−3,2]×[−500,−1](p, z0, L).

To make notation simpler we have chosen to represent the vector [q1, . . . , q4]T as q
or as component-wise in the summation. The indicator function represents the ranges of
the allowed values of the parameters in Table 4.1. These values are widely accepted in
the literature, however there is not a technically sound reason for why these ranges are
acceptable. We will expand the possible values for these parameters in order to test the
validity of the values in Table 4.1. The new set of ranges we picked is shown in Table 4.3.
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Parameter (units) Symbol Range

Velocity exponent p [0, 0.6]
Roughness length (m) z0 [0, 3]

Monin-Obukhov length (m) L [− 600, 0]

Table 4.3: Model parameters under study and their new allowed ranges.

Using these new ranges for the parameters the posterior Ppost(p, z0, L,q|y) is now pro-
portional to

exp
(
− 1

2λ2 ‖Âq− y‖2 −
4∑
i=1

βiqi

) 4∏
j=1

qαi−1
i 1[0,0.6]×[0,3]×[−600,0]. (4.26)

This equation is the solution for the inverse problem. However the formula for the posterior
cannot be used directly. It is necessary to extract the information contained in it. In order
to extract such information we can obtain point estimates of the parameters and the un-
certainty associated with those estimates. Finding these estimates is the topic of the next
section.

4.5 Inferring Parameters and the Sources

Recall that there are different types of point estimates, such as maximum a posteriori, or
conditional mean (see equation (2.8)). To find any of these estimates and its associated
uncertainty, is necessary to perform high dimensional integrals that are not analytically
tractable. Thus, we resort to numerical integration techniques. In particular we use the
Metropolis-Hastings(MH) algorithm (see Chapter 3, Algorithm 1) to sample the posterior
measure and use Monte Carlo integration to approximate the quantities of interest. In order
to use MH, the posterior in equation (4.26) has to be fully specified up to a normalizing
constant. Up to this point we have not set the value of λ in the likelihood distribution in
equation (4.21).
To understand why λ is important, consider the cases when λ is very small or very large.
In the former case the exponential term

exp
(
− 1

2λ2 ‖Âq− y‖2
)
, (4.27)

in the likelihood becomes negligible unless ‖Âq − y‖ is of the same order as λ. The in-
terpretation is that measurements are so accurate that we are giving all credibility to the
model and the data. In this situation the prior has little effect other than imposing certain
constraints, and the posterior behaves like the likelihood. When λ is large the exponential
in equation (4.27) flattens out, and the likelihood has less influence over the posterior, thus
the prior distribution is more credible. In this case the posterior behaves similarly to the
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Figure 4.5: Emulator for the J(λ) in equation (4.28)
.

prior. Thus, it is necessary to pick a value of λ that weights the importance of the likelihood
correctly. That is, we are looking for a value of λ that weights the data, the atmospheric
model simulation output and the prior information appropriately according to the quality
of the data. To achieve this we choose the value of λ that minimizes the functional

J(λ) = 1
2

∫ (
‖Â(p, L, z0)q− y)‖2 + ‖q− qest‖2

)
dPλpost, (4.28)

where qest = [35, 80, 5, 5]T Tonyr . We use the notation Pλpost to explicitly show the dependence
of the posterior measure Ppost with the parameter λ. The motivation to define J as above
is the following: consider the expression

(1− δ)‖Â(p, L, z0)q− y)‖2 + δ‖q− qest‖2, for δ ∈ [0, 1]. (4.29)

In this case, depending on the value of δ, we are giving different weights to the atmospheric
disperssion model credibility, and the prior information about q. There is no reason to
believe the atmospheric model is completely accurate so the engineering emission estimates
can be dismissed. Hence, by choosing δ = 1

2 we weight both terms equally. Also we want
to make the term (4.29) as small as possible, regardless of the values of p, z0, L and q,
and using the information contained in the experimental data y. Taking the expectation of
(4.29) accomplishes that.
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Estimating J(λ) accurately is expensive, since it involves evaluating a seven-dimensional
integral. Thus, to approximate a minimizer for λ we will approximate J using a Gaussian
processes emulator. To create the training set, we evaluate J for six different values of λ
using Markov Chain Monte Carlo integration. The results of the emulation are shown in
Figure 4.5. The minimum for J(λ) is attained approximately at λ = 2.80008× 10−5, which
is the value we pick for λ in the reminder of this chapter. We note that if more accuracy is
needed in finding the minimizer it is possible to use Gaussian processes to perform accurate
optimization; we refer the reader to [29] for details in this topic.

For the MH implementation we adapt Algorithm 1 in Chapter 3, in a way that the
sampling of u (line 3 in the Algorithm) is done adaptively as proposed in [35]. Using the
adaptative algorithm we obtained two million samples and as a burn-in period we discarded
the first one million samples. Since the acceptance rate was relatively low, around 10%, we
thinned the last million samples by picking every hundredth sample. In this way we end
up with 10, 000 samples that are weakly correlated in the sense that the autocorrelation
function is close to zero.

Using MH to sample from high-dimensional probability distributions is challenging, as
is assessing the convergence of the Markov chain to the target distribution. To overcome
these difficulties, several heuristics on convergence criteria have been developed, such as
graphical methods and non-parametric tests of stationarity. The reader interested in this
topic is referred to [34] and the references within. In this work we use the traces of the
Markov chain to assess its convergence. A trace plot is a graphical display of the motion of
the Markov chain in each of the dimensions in the support of the target probability density.
Recall that the probability density we are interested in is the posterior in equation (4.26).
This posterior is supported in a subset of R7. To obtain the trace plots, we plot the motion
of the Markov chain separately in each of the seven dimensions (see Figure 4.6).
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Figure 4.6: Trace plots of the Markov chain for each of the variables p, z0, L and q. Using
the Metropolis-Hastings algorithm of Algorithm 1 in Chapter 3.

The trace plots in Figure 4.6 show that the Markov chain is moving around the whole
support of the posterior density. Another observation is that different regions in the support
of Ppost(p, z0, L,q|y) are visited by the chain every so often. This means that the chain is
not getting stuck in a local mode of the distribution and is mixing properly. In conclusion
the trace plots have the behaviour one would expect of a Markov chain that has converged
and whose realizations are taken from the target probability density.

One of the advantages of most sampling algorithm is that the samples obtained in
each dimension are distributed as the marginal distribution for that variable. If X and Y
are random variables jointly distributed as P(X,Y ), then the marginal distribution of the
random variable X is given by

P(X) =
∫

P(X,Y )dY.
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For example the marginal distribution for the parameter p is given by

P(p|y) =
∫

Ppost(p, z0, L,q|y)dz0dLdq.

We will use the marginals for each of the variables in the posterior distribution in
equation (4.26) to obtain useful statistics about the parameters. The posterior histograms for
the marginals of each of the variables of interest are shown in Figure 4.7), where we show the
values of the point estimates for each distribution and the fitting curves for the parameters
p, z0, L and the sources q1 to q4. We now explain how we chose the point estimates and the
associated uncertainties.

The next step for estimating the parameters is to decide which of the point estimates
from equation (2.8) we will choose. By looking at Figure 4.7, it is clear that the marginal
posterior for the four sources is skewed and with a well-defined mode. Thus, the mode is a
reasonable choice for a point estimate. To approximate the value of the mode in the marginal
of the sources, we will take advantage of the fact that the histograms for the marginals have
a similar shape to the histogram obtained from a gamma distribution, hence we will fit a
gamma distribution to the histograms and take the mode of the fitted distribution as our
point estimate.

For the parameters p, z0, L the situation is more subtle. For the parameter p the distri-
bution has no distinctive points. This means that the data has little information regarding
the values of p. For z0 and L there are values that are more distinctive than others, but
there is not sharp distinction between them. To pick a point estimate for p, z0, L we fit
a density over the histograms using the R built-in function density and then we pick the
mode of each histogram to be the chosen point estimate.

Next we consider the uncertainty estimates for our parameters. We consider the 68%
Bayesian confidence interval for each of the parameters. Given a point estimate x∗ for
a random variable X distributed with probability density ρ, a 68% Bayesian confidence
interval of that estimate is defined as the ball of radius r centered at x∗ such that∫

B(x∗,r)
ρ(x)dx = 0.68.

The reason to choose this uncertainty measure is to replicate the classical “mean plus
standard deviation” measurement of confidence when dealing with Gaussian probability
distributions [5]. The estimates for the parameters and the uncertainties are shown in Table
4.4.
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Figure 4.7: Histograms for the marginal posterior distribution for each of the seven unknowns
in our model

The spread of the 68% confidence interval for the distribution of the parameters shows
that the experimental data is not large enough so the posterior marginal distribution for the
parameters is not decisively informative about particular values of the parameters. Despite
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this, as we can see in the histograms in Figure 4.7 for L and z0 that there are region in the
support that are more likely than others. Even though we have no prior information about
the values of the parameters and only 9 measurements of zinc deposition, our approach
is able to distinguish certain regions with high probability. For the value of z0 the region
around the mode agrees with the typical values for this parameter in the literature, but for
L the high probability values do not agree with the typical values chosen for this parameter
[10, 38].

Parameter Point Estimate 68% Confidence Interval

p 0.3478 [0.1498, 0.5458]
z0 0.0811 [0, 1.5781]
L -379.45 [−195, 86,−563.04]

Table 4.4: Parameters along with their point estimates and 68% confidence interval.

For the estimates of the sources the situation is different due to the prior knowledge we
have about them. The estimates and uncertainties are shown in Figure 4.8

Figure 4.8: Comparison between engineering estimates of the source strength source with
our point estimate and the uncertainty associated to it. We also compare with the results
obtained in [10](S & H) and [25](S & L).
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The results in Figure 4.8, show that sources 1 and 2 are most likely overestimated by the
engineers. Whereas sources 3 and 4 are slightly underestimated. If we take into account
the error bars for our estimates and the small difference between that estimate and the
engineering estimate, we conclude that the experimental data is not necessary to make any
strong conclusion about sources 3 and 4. For sources 1, 3 and 4, our results agree with [25]
and [10]. However for source 2 the results we obtained agree with the results obtained in [25]
for this same source, but in the result obtained in [10], source 2 is severely underestimated.

To conclude this chapter we will compare our results with the results obtained in [25]
and [10].

Source Estimated Emission Rate [ton/yr]

q1 18
q2 60
q3 8
q4 8

Table 4.5: Emission rates estimated in [25].

The results obtained in Figure 4.8 agree with those obtained in [25] in the sense that
Sources 1 and 2 are overestimated by the engineers. Emissions in source 1 are overestimated
by 12 and 20 tons per year respectively, whereas for Sources 3 and 4 they are underestimated
by 3 tons each (see Table 4.5).

Source Estimated Emission Rate [ton/yr]

q1 80
q2 58
q3 39
q4 9

Table 4.6: Emission rates estimated in [10].

When comparing the results in Figure 4.8 with those obtained in [10], listed in Table
4.6, we see that their results for Source 2 partially disagree with the results obtained in this
work and in [25]. According to reference [10], Source 1 is severely underestimated by the
engineers by 45 tons a year. For the other three sources the results in this work and the
results in [10] and [25] agree in the sense that Source 2 is overestimated by the engineers
and Sources 3 and 4 are underestimated.

In summary our results agree or partially agree with those obtained in related works.
Also it is import to mention that to obtain the results exposed in this chapter, the computa-
tional overhead was considerably smaller than simulating equation (4.9) for several different
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values of the parameters until getting a reasonable prediction by the model. Plus we have
the benefit of assessing the accuracy of the estimates obtained.
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Chapter 5

Conclusions

In this thesis we have developed a method to cheaply compute, using Gaussian process,
computationally expensive atmospheric dispersion models. Also we show how to combine
this with the Bayesian framework to solve the source inversion problem. Furthermore we
include in the process, the estimation of the parameters the model depends upon. So far the
estimation of parameters in atmospheric dispersion models has been done empirically as a
trial and error process by calibrating the parameters involved so to obtain results that agree
with the experimental data, one benefit of the Bayesian approach is that there is no trial
and error step and the process to find the right parameters of the model is automatized.
Also, In this work we use the experimental data available and with the aid of Bayes’ rule
we obtain point estimates for the parameter and the associated uncertainty.

We stress the conclusion that the methodology explained in this thesis goes beyond
atmospheric dispersion models and partial differential equations such as the one used here
(see equation (1.2)). As long as there is a differential equation whose parameters we want
to estimate but is expensive to calculate, we can apply the methodology described here.

Finally, the results obtained using our proposed approach agree with the results obtained
in other papers and books where more classical approaches have been used, showing that
the emulation process does not affect the estimations and greatly accelerate calculations.
This observation makes the approach used here a good candidate for real time applications.
Again, we mention that the possible real time applications are not restricted to atmospheric
dispersion models but can also be applied in more general settings.
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