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Abstract

We investigate the attractor of the Nikolaevskiy equation, a sixth-order partial differential
equation (PDE) containing a small parameter whose solutions exhibit spatiotemporal chaos
with strong scale separation.

We first prove well-posedness and regularity of the solutions, and derive asymptotic bounds
on their derivatives, to put the subsequent results on a firm footing. The rest of the work
focuses on showing that the dynamical system associated with the Nikolaevskiy equation
possesses an attractor with a finite fractal dimension. Bounds on this dimension are both
derived analytically and computed numerically, paying particular attention to their scaling
with the parameters. We describe the numerical methods, and present computational results
that include the scaling of various norms of the solutions, as well as of the power spectrum
and the spectrum of Lyapunov exponents of the PDE.
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Chapter 1

Introduction

The study of chaotic dynamical systems has long been a major focus of mathematics and
physics. Defining characteristics of chaotic systems are that nearby solutions separate ex-
ponentially fast in phase space, and that their long-term dynamics is confined to a compact
set, known as an attractor [Str15]. Much work has gone into characterizing the dynamics
on the attractor of these systems, and its dependence on the system’s parameters. Al-
though chaos was originally discovered in finite dimensions [Lor63], since the 1980s, partial
differential equations (PDEs) whose solutions are chaotic have also been investigated ex-
tensively [HN86, Li04]. Although many PDEs can exhibit chaotic behaviour, some PDEs
have emerged as canonical models that capture the essential features of various types of
chaos, including spatiotemporal chaos in PDEs. Among these, the Kuramoto-Sivashinsky
(KS) equation [KT76, Siv77, HN86, WH99], discussed in Section 1.1, has been of particu-
lar interest, and has been studied in great detail as a canonical model of chaos in PDEs.
More recently, KS-like equations, such as the (de)stabilized KS equations and the Niko-
laevskiy equation have also been investigated for their parameter-dependent, chaotic and
pattern-forming properties [Wit14].

In this text we will focus on the one-dimensional Nikolaevskiy equation [Nik89, Poo09], a
sixth-order analogue of the KS equation, whose solutions possess interesting scale separation
properties in the presence of a small bifurcation parameter r. We perform analytical and
numerical studies of solutions of the equation to estimate the dependence of the long-term
dynamics of the Nikolaevskiy equation on its parameters.

1.1 The Kuramoto-Sivashinsky Equation

Before we talk about the Nikolaevskiy equation, we will discuss the Kuramoto-Sivashinsky
(KS) equation, a more widely studied PDE that shares many properties with the Niko-
laevskiy equation. Many of the techniques developed to study the KS equation carry over
to the Nikolaevskiy equation, and it is therefore helpful to first understand some aspects
of the KS equation. The KS equation has been proposed as a model for several physi-
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cal phenomena, such as the evolution of disturbed flame fronts [Siv80]. Other applications
of this model include plasma physics [LMRT75] and as a simplified model for describing
some of the phenomena found in the Navier-Stokes equations, such as wave propagation
[KT76]. It combines a fourth-order diffusive term with a second-order destabilizing term
and a Burgers-like, nonlinear reaction term. Although other boundary conditions have been
studied [Man85], periodic boundary conditions are a natural choice for the KS equation due
to certain symmetries that its solutions enjoy. The equation is given by

ut = −∂4
xu− 2∂2

xu− u ∂xu, x ∈ [0, `]. (1.1)

Since the time derivative only appears in the equation to first order, we will just use a
subscript t to denote it, whereas we will use ∂x to denote space derivatives. The scaling
which leads to the coefficient two is non-standard for the KS equation, but convenient for
generalization, and for factoring the linear operator [Wit14, Poo09]. The domain size ` plays
the role of a bifurcation parameter, and governs the onset of chaos.

A related equation is the (de)stabilized KS equation, which contains a term proportional
to u, which has the effect of stabilizing or destabilizing long wavelength modes, depending
on the sign of the coefficient α. It is given by

ut = −∂4
xu− 2∂2

xu+ αu− u ∂xu, x ∈ [0, `]. (1.2)

Its linear dispersion relation is

ωdKS(k) = −k4 + 2k2 + α = −(1− k2)2 + 1 + α. (1.3)

Here, k = 2πn/`, with n ∈ Z, is a Fourier wavenumber of the solution, and the sign of
ωdKS(k) gives the stability of the n’th Fourier mode and of u about the zero solution (the
stability of the zero solution, which is a fixed point of equation (1.2). For α = 0, this is just
the dispersion relation for (1.1). The dispersion relation is shown in Figure 1.1.

It can be shown that the KS equation possesses an absorbing ball in its phase space L̇2

(as defined in Appendix A), containing the attractor of the system [NST85]. The radius of
this absorbing ball depends on the domain size `. Numerical evidence indicates, that the
radius of the absorbing ball is bounded by some constant times `1/2 [WH99]; that is, for
large t, one has ||u(t)||L̇2 = O(`1/2). In numerical experiments, the maximum amplitude of
|u(x, t)| is bounded independent of the domain size `, which implies the bound on the L̇2

norm of u.
Since a bound O(`5/2) was initially derived for odd solutions by Nicolaenko et al.

[NST85], the exponent on ` has been subsequently refined to 8/5 in [CEES93b] (for any
initial condition) and to 3/2 in [BG06]. A further improvement to o(`3/2) has been proved
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Figure 1.1: Linear dispersion relation for the KS equation for various values of α

in [GO04], and a very recent result using semidefinite programming suggests a method that
can give arbitrarily tight bounds, given enough computing power [GF18].

Part of the interest in refining this bound stems from the fact that many other extensive
quantities, such as the radius of analyticity of solutions [CEES93a], bounds in other spaces,
and the fractal dimension of the attractor [NST85], depend on the radius of the absorbing
ball. Since the number of Fourier modes in the unstable band of (1.3) is proportional to `
for any fixed α, the scaling of the dimension is expected to be O(`). This proposition is also
supported by numerical experiments [Man85].

The KS equation shares similar diffusive linear terms as well as an identical nonlinear
term with the Nikolaevskiy equation, introduced below, which means that the methods for
the KS equation are generalizable to the Nikolaevskiy equation. In much of the analysis,
the main difficulties arise from finding suitable ways to treat the nonlinear term in the
equation. In many applications, such as proving analyticity, bounding the long-term degrees
of freedom and energy estimates, one can directly apply results obtained for the KS equation
to the Nikolaevskiy equation. Furthermore, the KS equation seems to share the same scaling
properties with the system size ` as the Nikolaevskiy equation for all the quantities that
we study here. These properties, together with the considerably larger body of knowledge
that exists for the KS equation makes the KS a useful model equation when studying the
Nikolaevskiy equation.
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1.2 The Nikolaevskiy Equation

The Nikolaevskiy equation is sixth-order in space and nonlinear. In this text, we only study
the Nikolaevskiy equation in one space dimension. For r ∈ R, it is given by

ut = ∂6
xu+ 2∂4

xu+ (1− r)∂2
xu− u ∂xu. (1.4)

For r ≤ 0, all solutions to equation (1.4) decay to zero [WP09]. Since we are interested in
solutions that contain energy for all time (their L̇2 norm is nonzero), we will only consider
r > 0. We sometimes write r as r := ε2 for ε ∈ R to emphasize that r is positive, and
because some quantities, such as the energy of the solutions, scale with

√
r rather than with

r. These coefficients allow us to factorize the linear operator in equation (1.4) and write it
as

ut + u ∂xu = −∂2
x(ε2 − (1 + ∂2

x)2)u, x ∈ [0, `],

following the notation in [Wit14] and [WP09].
In the following chapters, we will often make use of the linear dispersion relation of

equation (1.4):

ω(k) := −k6 + 2k4 − (1− r)k2, (1.5)

where k = 2πj/`, with j ∈ Z, denotes a wavenumber of the solution u. The dispersion
relation ω(k) has the same interpretation for equation (1.4) as for equation (1.2). Figure
1.2 shows some plots of the linear dispersion relation of (1.4).

The Nikolaevskiy equation is physically relevant, in that it has been derived as a model
for nonlinear seismic waves in viscoelastic materials, such as marine sands [Nik89]. Later
the Nikolaevskiy equation was proposed by Tribelski and Tsuboi [TT96] as a model for
describing the transition to turbulence, where it was numerically shown that there exists
a supercritical bifurcation in the parameter r that demarcates the boundary between the
chaotic and the spatially uniform regime of solutions. In addition, much work has also gone
into investigating its pattern-forming properties (see for instance [MC00, WP09, Poo09]).
Most investigations of equation (1.4) have employed numerical and asymptotic methods,
but a few exact solutions have also been found [RSK11], albeit on an unbounded domain.

We can view equation (1.4) as a dynamical system mapping time into a function space,
which serves as the phase space of the system. We will define this function space in the next
chapter. One quantity associated with this dynamical system is the radius R of an absorbing
ball in the phase space L̇2 of solutions. The estimation of this radius, in particular its scaling
with the two parameters r and `, lies at the heart of much of the analysis that is done to
derive extensive properties, such as the number of degrees of freedom of solutions of the

4



0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

Figure 1.2: Linear dispersion relation ω(k) (1.5), for the Nikolaevskiy equation for various
values of r.

equation. The optimal scaling in r has been derived rigorously for the radius of the absorbing
ball [Wit14], but the scaling in ` is subject to the same difficulties that are encountered when
deriving parameter scalings for the absorbing ball of the better-known KS equation, since
the same methods are used on both equations, and thus still remains an open problem.
The importance to the analysis of the radius R for the absorbing ball of equation (1.4) lies
in the fact that many other quantities, such as the dimension of the attractor, the radius
of analyticity, and the radii of absorbing balls in other Sobolev spaces, depend upon it. A
primary focus of this thesis will be to attempt to derive bounds on these quantities, paying
particular attention to their dependence on the parameter r.

For small r, the solutions to (1.4) display strong scale separation, with the unstable
modes being in two distinct bands, one containing long wavelengths and one containing short
wavelengths. This gives rise to high frequency oscillations, modulated by a low frequency
wave envelope. The strong separation between the short wavelength and long wavelength
unstable modes gives rise to the so-called ‘Nikolaevskiy Chaos’, which was first found using
asymptotic analysis in [TT96] (where it was called ‘slow turbulence’) and later shown to
exist numerically in [Tan05b]. Bifurcation routes to Nikolaevskiy chaos were explored in
[Tan05a], and extensive numerical and asymptotic work was later done in [Poo09] to further
characterize Nikolaevskiy chaos. It should be noted that this type of chaos is not found in
the KS equation (1.1) or its generalization, the (de)stabilized KS equation (1.2), and is one
of the main reasons why the Nikolaevskiy equation (1.4) deserves to be studied in its own
right.
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1.3 Spatiotemporal Chaos

In this section we give a brief overview of the type of dynamics that solutions to both the
Nikolaevskiy equation (1.4) and the KS equation (1.1) display for the choices of system size
` and the parameter r in this thesis. As stated earlier, we will be studying solutions in the
chaotic regime of these equations, but characterizing and quantifying the type of chaos they
exhibit is not always straightforward, and we will attempt to provide some definitions to
help make these concepts more clear.

One can generally distinguish between two types of chaos: Temporal chaos [Str15, p. 331],
which is more often found in low-dimensional systems such as the famous Lorenz equations
[Lor63], and spatiotemporal chaos (STC), which is more often found in systems with a high
number of degrees of freedom [CH93, p. 941], and which requires solutions to depend on
both time and space. Several different definitions have been proposed to quantify STC. Most
rely on the asymptotic scaling of the number of degrees of freedom of the system, or on
measuring the rate of decay of spatial and temporal correlations of values of the solutions.

As we will see in Section 4.1, asymptotically in time all the dynamics of the system occurs
on a bounded set in the phase space of solutions, called an attractor. Furthermore, in Section
5.1, we will discuss how one can use the exponential rate of separation of nearby solutions
(the Lyapunov exponents) to estimate the number of degrees of freedom of solutions on
the attractor. Later we will make this more precise by defining the concept of the fractal
dimension df of the attractor. A straightforward definition of STC is to say that a system
exhibits STC if its fractal dimension diverges with the system size ` [CH93, p. 945], while
keeping any other parameters fixed. Numerical studies by Xi et al. [XTGT00] have shown
this to be true for equation (1.4), at least for fairly large r. In Section 6.4 we confirm this
result and extend it to a wider range of r values. This definition is useful for checking for
the existence of STC, but it does not directly separate the chaotic behaviour in time from
that in space.

To clearly separate the ‘spatial’ from the temporal chaos of solutions, it is often useful to
define a correlation length ξ. Spatiotemporally chaotic systems are characterized by a finite
correlation length [CH93, CH94]. Although one can use the ` scaling of the fractal dimension
of the attractor to define a correlation length [Gre96], a more common way to define it is
via a correlation function. A correlation function essentially measures the degree to which
some variables depend on each other. If the correlation is high, then one can generally find
some relationship between the variables, while if it is low, then the variables are essentially
independent from each other, and knowledge about one variable does not provide knowledge
about the other variable. In chaotic dynamical systems, two nearby initial conditions (which
are thus initially highly correlated) diverge exponentially fast, and after only a short while,
their trajectories will be unrelated and it becomes very difficult to distinguish solutions
that started out close to each other from ones that started out far away from each other.
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The trajectories have then become decorrelated, which is measured by a low value of their
correlation function.

Temporal chaos is characterized by a rapidly decaying temporal correlation function,
whereas STC is characterized by both a rapidly decaying temporal correlation function
and a rapidly decaying spatial correlation function. The correlation length quantifies how
fast two variables become decorrelated. There are many different ways to define correlation
functions [CH93, p. 945]. For instance, one way to define a correlation function is via the
so-called autocorrelation functions as follows:

C(4x, x′) := lim
T→∞

1
T

∫ T

0
u(x′ −4x, t)u(x′, t) dt

for the spatial autocorrelation function (for fixed x′) as in [WH99], and as

C(4τ, t) := 1
`

∫ `

0
u(x, t−4τ)u(x, t) dx,

for the temporal autocorrelation function (for fixed t). If the system is chaotic, we expect

C(4x) = O(e−4x/ξ),

in which case ξ is the correlation length (or correlation time, if x is replaced with τ). For
equation (1.4), it has been shown that the system has finite correlation lengths and times
[Poo09].

1.4 Basic Properties of the Nikolaevskiy Equation

Nondimensionalization:

Since the Nikolaevskiy equation is proposed in order to model physical systems [Nik89],
its terms will generally have coefficients that come from the physical derivation. It is usually
easiest to work with the equation when it has the form (1.4), and so we will first begin by
showing how to non-dimensionalize the equation to obtain this form. Consider therefore the
PDE in the following form:

ũt̃ = A ∂6
x̃ũ+B ∂4

x̃ũ+ C ∂2
x̃ũ+D ũ ∂x̃ũ , x̃ ∈ [0, E], (1.6)

where A > 0, B > 0, C,D and E > 0 are some constants. Without loss of generality, we
assume that the coefficient in front of ũt̃ is 1. Let

ũ = αu , x = βx̃ , t = γt̃,

7



where α, β and γ are to be determined. With this change of variables the equation (1.6)
becomes:

ut = Aβ6

γ︸ ︷︷ ︸
a

∂6
xu+ Bβ4

γ︸ ︷︷ ︸
b

∂4
xu+ Cβ2

γ︸ ︷︷ ︸
c

∂2
xu+ Dαβ

γ︸ ︷︷ ︸
d

u ∂xu , x ∈ [0, Eβ︸︷︷︸
`

].

We now choose α, β and γ to make a = 1, b = 2, and d = 1, giving

α = A

D

(
B

2A

)5/2
,

β =
(
B

2A

)1/2
,

γ = B3

8A2 ,

and define r by r := 1−c and ` by ` := Eβ; then the equation takes on the desired form (1.4).

Symmetries and Conservation of Mean:

Another property of (1.4) is that its flow preserves the spatial mean of solutions. In
everything that follows, we will be imposing periodic boundary conditions on the solutions
u and on their derivatives. Thus the spatial mean evolves as follows:

d

dt

1
`

∫ `

0
u dx = 1

`

∫ `

0
ut dx = 1

`

∫ `

0

(
∂6
xu+ 2∂4

xu+ (1− r)∂2
xu−

1
2∂x(u2)

)
dx

= 1
`

(
∂5
xu+ 2∂3

xu+ (1− r)∂xu−
1
2u

2
) ∣∣∣`

0
= 0.

This shows that the spatial mean is conserved, and for this reason we will work in spaces
of functions with zero mean.

Besides conserving the mean, the Nikolaevskiy equation also enjoys several symmetries.
The equation is symmetric under space and time shifts, x 7→ x+ c1 and t 7→ t+ c2, for some
constants c1 and c2. The equation is also invariant under Galilean transformations of the
form x 7→ x− c3t and u(x, t) 7→ ũ := u(x− c3t, t) + c3, since if u solves equation (1.4), then

ũt = ∂6
xũ+ 2∂4

xũ+ (1− r)∂2
xũ− ũ ∂xũ

⇐⇒ −c3∂xu+ ut = ∂6
xu+ 2∂4

xu+ (1− r)∂2
xu− (u+ c3) ∂xu.

Thus both u and ũ solve the PDE, meaning that after applying the above transformations
to u, the result is still a solution to the Nikolaevskiy equation. Another important symmetry
which we will make use of is the symmetry under odd reflections. Let x̃ := −x and ũ(x̃, t) :=
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−u(x, t). Then since ∂x = −∂x̃, if u(x, t) solves equation (1.4), one has

ut = ∂6
xu+ 2∂4

xu+ (1− r)∂2
xu− u ∂xu

⇐⇒ ut = ∂6
x̃u+ 2∂4

x̃u+ (1− r)∂2
x̃u+ u ∂x̃u

⇐⇒ ũt = ∂6
x̃ũ+ 2∂4

x̃ũ+ (1− r)∂2
x̃ũ− ũ ∂x̃ũ,

and ũ(x̃, t) also solves (1.4). Thus the odd reflection of u also solves the PDE. This means
that solutions that are initially odd, remain so for all time. Thus the subspace of odd
solutions is invariant under the flow of (1.4)
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Chapter 2

Well-Posedness

In this chapter we will set up the framework in which we will conduct the rest of the work in
the thesis. We will rigorously prove existence and uniqueness of solutions of the Nikolaevskiy
equation (1.4). We begin by motivating the approach that we are taking and defining the
function spaces that we will be working in. We then prove existence and uniqueness of
solutions. We also state some known results about long-term bounds on solutions in L̇2,
and then extend these bounds to more function spaces. Finally, it is shown that solutions
are analytic in space. Most of the work in this chapter is based on the procedure in [Rob01]
for proving existence and uniqueness for the KS equation (1.1).

2.1 Spaces of Solutions, and Basic Framework

In this section we list some basic properties that functions need to have in order to be
eligible as solutions to equation (1.4):

ut = ∂6
xu+ 2∂4

xu+ (1− r)∂2
xu− u ∂xu, u(0, x) = u0 ∈ L̇2(0, `).

These properties are then used to motivate the choice of function spaces in which in which
we seek solutions. The solutions to (1.4) require a degree of temporal as well as spatial
differentiability in order to be able to satisfy the equation. At first we will not be looking
for classical (the derivatives exist classically and the right hand side of the PDE equals
the left hand side pointwise) or even strong solutions (the right hand side of the PDE
equals the left hand side in the L2(0, T ; L̇2) norm), to the PDE, but rather, to solutions in
the sense of distributions. That is, if we look at (1.4) in the sense of distributions, and if
φ ∈ D := C∞0 [0, `] is a test function on the space of distributions, then we need

〈ut, φ〉 − 〈∂6
xu, φ〉 − 〈2∂4

xu, φ〉 − 〈(1− r)∂4
xu, φ〉+ 〈u ∂xu, φ〉 = 0, (2.1)

for almost every t, where 〈·, ·〉 denotes the action of a functional on a function. We think
of u ∈ D′ (the dual space of D) in the sense that for an integrable function u on [0, `], its
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action as a distribution on φ is given by

〈u, φ〉 :=
∫ `

0
uφ dx.

The x-derivatives of u should at least exist in some weak sense.
By the definition of distributional derivatives, (2.1) is equivalent to

〈ut, φ〉+ 〈∂3
xu, ∂

3
xφ〉 − 2〈∂2

xu, ∂
2
xφ〉+ (1− r)〈∂xu, ∂xφ〉+ 〈u ∂xu, φ〉 = 0.

We will be working in Hilbert spaces, and so we will be replacing the action by an inner
product, using the Riesz representation theorem [Kre89, p. 188]. Of course we could move
even more (or fewer) derivatives to the right hand side in the expression of the above action;
however this would would have two undesirable consequences:

First (at least for the second term), it would mean that the function φ or the function u
would have at least four derivatives on it instead of just three. Second, it would also break a
symmetry between the derivatives on both terms which we might want to exploit later on.
Thus the minimum number of spatial derivatives that we will need are three. Furthermore,
we will also require the solutions to be integrable in time, and their time derivative ut should
also exist in some distributional sense.

A further property that we want for solutions is that they satisfy suitable boundary
conditions; in particular, we want boundary conditions that make the cross terms in the
integration by parts vanish, which will allow us to keep only three derivatives when taking
the action of (2.1) on a solution itself. One possibility for such boundary conditions are
periodic boundary conditions, that is u(0, t) = u(`, t).

Given periodic boundary conditions, and that u is square integrable, it is natural to
represent u by its Fourier series:

u(x, t) =
∑
k

ûk(t)eikx, (2.2)

where the ûk are the Fourier coefficients

uk(t) := 1
`

∫ `

0
u(x, t) eikx dx,

and k = 2πj/`, with j ∈ Z, is the wave number. In general, we will let the index of sums
range over a countable index set (such as Z) unless otherwise specified.

Putting (2.2) into (1.4), we obtain

∑
k

d

dt
ûke

ikx −
∑
k

ω(k) ûkeikx +
∑
l

ûle
ilx
∑
m

imûke
imx = 0,
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where l and m are defined analogously to k. In the above, ω(k) is the linear dispersion
relation given by (1.5) of equation (1.4).

For a fixed k we can take the inner product of the above with eikx, which gives

d

dt
ûk − ω(k)ûk +

∑
l

i(k − l) ûlûk−l = 0. (2.3)

This gives us an ordinary differential equation (ODE) for each Fourier coefficient ûk of u. Us-
ing equations (2.3), we can thus represent the original PDE (1.4) as an infinite-dimensional
dynamical system. We will make use of this idea in the next section when we introduce
Galerkin approximations.

Finally, putting together all these observations, namely three x-derivatives, a single t-
derivative, integrability, periodicity and zero mean, we are ready to define the spaces in
which we will look for solutions. We will first state what the spaces are, and then give a
precise definition afterwards. We will look for u in the space

L2(0, T ; Ḣ3), (2.4)

and for the weak time derivative (which we will define at the end of this section) ut of u in
the space

L2(0, T ; Ḣ−3), (2.5)

where T > 0 is some maximum time, Ḣ3 is the Sobolev space whose elements have three
(weak) spatial derivatives, zero mean and periodic boundary conditions on [0, `]. The space
Ḣ−3 is the dual space of Ḣ3.

We will now give a more precise definition of these spaces. A function u is in (2.4) if its
weak space derivatives up to order 3 exist, it is periodic and has zero mean, and it is finite
under the following norm:

||u||L2(0,T ;Ḣ3) :=
(∫ T

0

∫ `

0

∑
n≤3
|∂nxu|2 dx dt

)1/2

.

Similarly, a functional u is an element of the space (2.5), if it is finite under the norm

||u||L2(0,T ;Ḣ−3) :=
(∫ T

0
||u||2

Ḣ−3 dt

)1/2

.

Note that L2(0, T ; Ḣ3) ⊂ L2(0, T ; Ḣ−3).
Since we are looking for the weak time derivative in the space (2.5), we will now define

precisely what this means.
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Definition 2.1.1 (Weak Time Derivative). We say that ut ∈ L2(0, T ; Ḣ−3) is the weak
time derivative of u ∈ L2(0, T ; Ḣ−3) if for every test function φ ∈ C∞c [0, T ] and every
v ∈ Ḣ3, we have 〈∫ T

0
utφ dt+

∫ T

0
uφt dt , v

〉
= 0. (2.6)

Note that this implies that
∫ T

0
utφ dt = −

∫ T

0
uφt dt

in the space Ḣ−3. Note also that since L2(0, T ; Ḣ3) ⊂ L2(0, T ; Ḣ−3), the above defini-
tion is also the definition for the weak time derivative of u if u ∈ L2(0, T ; Ḣ3) and ut ∈
L2(0, T ; Ḣ−3).

2.2 The Galerkin Approximations

As we saw in the previous section, the Nikolaevskiy equation (1.4) can be represented by an
infinite-dimensional dynamical system. Here we will be approximating (1.4) by a sequence
of PDEs that can be represented by finite-dimensional dynamical systems. In other words
we will first obtain solutions to a sequence of approximate ‘Nikolaevskiy’ equations, and
then show that this sequence of solutions converges to a solution of the full PDE (1.4).
That is, we approximate our original problem with problems that can be solved more easily
and then show that the solutions to those problems converge to a solution of (1.4). The
solutions to the approximate equations are known as the Galerkin approximations of
the solution to equation (1.4).

To begin, note that the eigenfunctions of the Laplacian (∂2
x) are also eigenfunctions of

all the other linear spatial derivative operators in the Nikolaevskiy equation. In particular,
they are the Fourier modes of the series (2.2). Moreover, since the partial Fourier sum

2πn/`∑
k=−2πn/`

ûke
ikx,

converges to u in L̇2 as n → ∞, we also know that the eigenfunctions of the Laplacian
span L̇2. In order to get approximate solutions, we will thus project (1.4) onto the subspace
spanned by the first 2n+ 1 basis functions. By a projection we mean

Pnu :=
2πn/`∑

k=−2πn/`
ûke

ikx. (2.7)
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Note that ∂x(Pnu) = Pn(∂xu) and that u ∈ L̇2 implies that û0 = 0. The approximate
equations are then given by

unt − ∂6
xu

n − 2∂4
xu

n − (1− r)∂2
xu

n + Pn (un ∂xun) = 0 , un(0) = Pnu0, (2.8)

where u0 is the initial condition of u of the original problem (1.4). Note that in general,
Pnu 6= un. The reason why we have to apply an extra projection to the nonlinear term is
because multiplying two series like (2.7) will produce terms that lie outside of the projection
space due to cross terms in the multiplication. We assume that the initial condition of u is
in L̇2. We will then look for solutions given by

un(x, t) =
2πn/`∑

k=−2πn/`
ûnk(t) eikx, (2.9)

in the subspace defined by Pn. We hope that un converges to u, and a major focus of this
chapter is to show that this is indeed the case.

With (2.9), equation (2.8) becomes

2πn/`∑
k=−2πn/`

 d

dt
ûnk − ω(k)ûnk +

∑
j+m=k

|j|,|m|≤2πn/`

(im)ûnmûnj

 eikx = 0, (2.10)

where we have collected the ûnm and the ûnj in the last term (the nonlinear term), such that
j and m add up to k, so that each term in the sum is multiplied by the k’th basis function.

Now recall that the basis functions eikx are orthogonal, and so if we take the inner
product of the whole equation (2.10) with eikx, for each k we get an equation of the form

d

dt
ûnk − ω(k)ûnk +

∑
j+m=k

|j|,|m|≤2πn/`

(im) ûnmûnj = 0, (2.11)

for a total of 2n + 1 equations. This is now a system of coupled ODEs for the Fourier
coefficients of un. In fact, due to the nonlinear term, each coefficient depends on all the
other coefficients! But the saving grace is that the system is still finite-dimensional: It is
really a system of ODEs in C2n+1.

In order to show existence of solutions to this system, we turn to some ODE theory. In
what follows, we will be working with vectors in C2n+1 whose components are associated
with particular Fourier coefficients ûk. We will thus formally index the components of a
vector by the wavenumber k, even though k is not an integer. If we now think of (2.11) as
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a system of ODEs then we can let the right hand side for the ûk equation be

fk(un) := ω(k)ûnk −
∑

j+m=k
|j|,|m|≤2πn/`

(im) ûnmûnj .

Then the actual vector that we are solving for is the vector y(t) ∈ C2n+1, whose components
are the Fourier coefficients ûnk(t) at some time t. That is, if (y(t))k = ûnk(t) and (F(y))k =
fk(un), then we will show that the solution to the system

d

dt
y(t) = F(y)

exists.
In order to conclude that a solution must exist, we use Theorem B.1.1 from the Ap-

pendix. We simply need to verify that F is locally Lipschitz. But F is just the sum of a
linear term plus many quadratic terms; thus it can easily be verified that F is indeed locally
Lipschitz. So we may use Theorem B.1.1 to conclude that there exists some time T̃ such that
the system of ODEs has a unique solution on [0, T̃ ]. Since the Fourier modes are smooth,
the approximate Galerkin solutions also possess infinitely many spatial derivatives; that is
un ∈ C1([0, T̃ ];C∞(0, `)).

So far we only have some undetermined time T̃ > 0 up to which, solutions are guaranteed
to exist. However, according to Lemma B.1.2 in the Appendix, the maximal value of T̃ is
only finite if the solutions to (2.11) become unbounded at some finite time. As we will show
in the next section, the solutions remain bounded in any finite time interval [0, T ]. Once we
have shown those bounds, then we will be able to conclude that these solutions exist and
are unique up to any time T .

2.3 Bounds on Galerkin Approximations to the Nikolaevskiy
Equation

We will now derive some bounds on the Galerkin solutions (2.9) of the approximate equa-
tions (2.8). Since it will turn out that these bounds are uniform (they do not depend on n),
we will drop the superscript n, and work with the full Nikolaevskiy equation (1.4) in the
following calculations to simplify notation.

Bounds in L∞(0, T ; L̇2).

First note that there are some distinct cases to consider. The analysis is slightly different
for (1 − r) < 0 and for (1 − r) ≥ 0, we will therefore treat each case separately. Before we
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begin, we will introduce some simplified notation for the nonlinear term in (1.4). Let

N (u) := u ∂xu. (2.12)

Note that by the periodicity of u, the L̇2 inner product of the nonlinear term with u satisfies

(N (u), u) := (u ∂xu, u) =
∫ `

0

1
3∂x(u3) dx = 1

3u
3
∣∣∣`
0

= 0, (2.13)

where (·, ·) denotes the inner product on L̇2, with induced norm ||·||L̇2 . Furthermore, note
that since the projection Pn (2.7) only removes Fourier modes that are orthogonal to the
Galerkin solution un, one has that

(
Pn(un ∂xun), un

)
=
(
un ∂xu

n, un
)

= 0 by the above
identity (2.13). Essentially, since un is an element of the subspace defined by Pn already,
taking an inner product of any vector with un acts as a (weighted) projection of that vector
into the subspace defined by Pn.

In what follows we will use the following trilinear form to make treating the nonlinear
term in (1.4) more straightforward. Let

b(u, v, w) :=
∫ `

0
u ∂xv w dx. (2.14)

We start with equation (2.8), and take the L̇2 inner product of the equation with u.
Then we get

(ut, u)− (∂6
xu, u)− 2(∂4

xu, u)− (1− r)(∂2
xu, u) + (u ∂xu, u) = 0

=⇒ 1
2
d

dt
||u||2L̇2 +

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 − 2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xu||2L̇2 = 0, (2.15)

where we have used (2.13), to remove the nonlinear term. In what follows we will repeat-
edly use the generalized Young’s inequalities from Appendix B.3 and Poincaré’s inequality
(B.12). It should be noted that in this section, when we use Poincaré’s inequality, we intro-
duce a bounding constant C = (`/(2π))2. Later on, when we derive bounds for which we are
interested in the scaling with `, we will try to avoid using Poincaré’s inequality whenever
possible, as this introduces an extra factor of `. In this section though, we are only interested
in the finiteness of the bound, since the bound we will derive is still t-dependent, and so
the ` scaling is unimportant. We will also frequently introduce arbitrary, positive constants
that come from the Young’s-type inequalities from Appendix B.3. We will usually call these
constants α, β, γ, δ, ε, η and σ.

Case 1: (1− r) ≥ 0
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From (2.15) we begin with

1
2
d

dt
||u||2L̇2 +

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xu||2L̇2 = 2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2

≤ 2 ||∂xu||L̇2

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣

L̇2

≤
||∂xu||2L̇2

β
+ β

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2

≤
||u||2L̇2

2βγ + γ

2β

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 + β
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2 ,

for any β, γ > 0. Now since (1 − r) ≥ 0 we can drop the (1 − r) term, and we can bound
the ∂2

xu term from above by the third derivative term using Poincaré’s inequality (B.12).
So we get

1
2
d

dt
||u||2L̇2 +

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 ≤
||u||2L̇2

2βγ +
(
Cγ

2β + β

) ∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 .

Choosing β = 1/2 and γ = 1/(2C), we get

Cγ

2β + β = 1,

so

d

dt
||u(t)||2L̇2 ≤ 4C ||u(t)||2L̇2 .

Hence by Gronwall’s inequality

||u(t)||2L̇2 ≤ ||u0||2L̇2 e4Ct,

where u(0) = u0. This shows that ||u||L̇2 remains bounded in t for any finite T .

Case 2: (1− r) < 0.

We begin with the same Ansatz (2.15) as in the first case, but since (1− r) < 0, we can
move the second-order term over to the right hand side. The idea for deriving the bound is
the same; however, since there are fewer damping terms when r > 1, we will use inequality
(B.7) with n = 1 and ε = β and inequality (B.8) with n = 0 and ε = α to get

1
2
d

dt
||u||2L̇2 +

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 = 2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 − (1− r) ||∂xu||2L̇2

≤
(

2
α
− (1− r)β2

4

) ∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 +
(
α2

2 −
(1− r)
β

)
||u||2L̇2 .
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If we now pick α = 4 and β =
√
−2/(1− r), then we can drop the third derivative term

and get

1
2
d

dt
||u||2L̇2 ≤

(
α2

2 −
(1− r)
β

)
||u||2L̇2 =

(
8 + (r − 1)3/2

√
2

)
||u||2L̇2 .

If we now once again apply Gronwall’s inequality, we get

||u(t)||2L̇2 ≤ ||u0||2L̇2 e

(
8+ (r−1)3/2

√
2

)
t
.

So ||u(t)||L̇2 is also bounded for any finite T for (1− r) < 0. This gives us the bound in
L∞(0, T ; L̇2) in the second case, and thus we now have uniform boundedness in time for all
cases that we are considering.

Bounds in L2(0, T ; Ḣ3).

We will now turn to the problem of getting some bounds on the spatial derivatives of u
in finite time.

As we have just seen, u is in fact in L∞(0, T ; L̇2), so now we also want to get a bound
in L2(0, T ; Ḣ3).

Case 1: (1− r) ≥ 0

We begin with (2.15) and integrate over t from 0 to T . After immediately dropping the
||u(T )||2L̇2 term and the (1− r) ||∂xu||2L̇2 term, we get

∫ T

0

(∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 − 2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2

)
dt ≤ 1

2 ||u0||2L̇2 .

Now if we move the second term to the right hand side and use the inequalities (B.6) and
(B.4) twice we have

∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤
∫ T

0

( 1
β
||∂xu||2L̇2 + β

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2

≤
∫ T

0

( 1
2βγ ||u||

2
L̇2 + γ

2β

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 + β
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2 ,

which after applying inequality (B.12) becomes

∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤
∫ T

0

( 1
2βγ ||u||

2
L̇2 + Cγ

2β

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 + β
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2 .
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Now if we pick β = 1
4 and γ = 1

8C to get

Cγ

2β = 1
4 ,

then ∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤
∫ T

0

(
16C ||u||2L̇2 + 1

2

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2

=⇒ 1
2

∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤
∫ T

0

(
16C ||u||2L̇2

)
dt+ 1

2 ||u0||2L̇2 .

Now, repeatedly using Poincaré’s inequality (B.12), one can bound the L2(0, T ; Ḣ3) norm
of u by the L2(0, T ; L̇2) norm of ∂3

xu as follows:

||u||2
L2(0,T ;Ḣ3)

≤
(
C3 + C2 + C + 1

)
||∂3

xu||2L2(0,T ;L̇2)
.

Thus, letting C̃ := 1
C3+C2+C+1 , we get

1
2 C̃||u||

2
L2(0,T ;Ḣ3)

≤
∫ T

0

1
2

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤ 16CT ||u||2
L∞(0,T ;L̇2)

+ 1
2 ||u0||2L̇2 <∞.

This shows that for (1− r) ≥ 0, we have u ∈ L2(0, T ; Ḣ3).

Case 2: (1− r) < 0

We start again with equation (2.15), and integrate it over time from 0 to T . This gives

1
2 ||u(T )||2L̇2 +

∫ T

0

(∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 − 2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xu||2L̇2

)
dt = 1

2 ||u0||2L̇2 . (2.16)
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Dropping the first term, moving the lower derivatives to the other side and repeatedly using
inequalities (B.6) and (B.4) we get

∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt

∫ T

0

(
2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 − (1− r) ||∂xu||2L̇2

)
dt+ 1

2 ||u0||2L̇2

≤
∫ T

0

(
2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 −
(1− r)

2β ||u||2L̇2 −
(1− r)β

2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2

≤
∫ T

0

(
1
γ
||∂xu||2L̇2 + γ

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 −
(1− r)

2β ||u||2L̇2

− (1− r)β
2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2

≤
∫ T

0

(
δ

2γ ||u||
2
L̇2 + 1

2γδ

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 + γ
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2

− (1− r)
2β ||u||2L̇2 −

(1− r)β
2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2 ,

then using Poincaré’s inequality (B.12)

∫ T

0

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt =
∫ T

0

(( δ
2γ −

(1− r)
2β

)
||u||2L̇2 +

( C

2γδ −
C(1− r)β

2
) ∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2

+ γ
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2 .

Now if we pick

γ = 1
4 ,

δ = 16C,

β = −1
4C(1− r) ,

then we have∫ T

0

(∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤
∫ T

0

(
32C + 2(1− r)2C

)
||u||2L̇2 + 1

2

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2

)
dt+ 1

2 ||u0||2L̇2 .

So we get

1
2 C̃||u||

2
L2(0,T ;Ḣ3)

≤
∫ T

0

1
2

∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2 dt ≤ T
(
32C + 2(1− r)2C

)
||u||2

L∞(0,T ;L̇2)
+ 1

2 ||u0||2L̇2 <∞,

where we have bounded the first term below using Poincaré’s inequality. Thus for (1−r) < 0,
we also have u ∈ L2(0, T ; Ḣ3).
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We now know that the L̇2 norm of u and of its first three spatial derivatives is bounded
in finite time in the mean square sense. Since we also have a time derivative, we will now
turn to bounding ut in the L2(0, T ; Ḣ−1) for finite time.

Bound on ut in L2(0, T ; Ḣ−3).

In order to get a bound on ut in L2(0, T ; Ḣ−3), we simply take the L2(0, T ; Ḣ−3) norm
of (1.4), apply the triangle inequality and use the fact that u ∈ L2(0, T ; Ḣ3) implies that
the first six spatial derivatives are in L2(0, T ; Ḣ−3). The nonlinear term (2.12) is also in this
space, since for any v ∈ L2(0, T ; Ḣ3), we have

∫ T

0
〈N (u), v〉 dt =

∫ T

0
b(u, u, v) dt

=
∫ T

0

∫ `

0
uuxv dx dt,

and then using estimate (B.6.3) gives

∫ T

0
b(u, u, v) dt ≤ `1/2

∫ T

0
||u||L̇2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 ||v||L̇2 dt

≤ `1/2 ||u||L∞(0,T ;L̇2)

(
||u||L2(0,T ;Ḣ2)||v||L2(0,T ;L̇2)

)
<∞,

by the bounds we derived on u in these spaces. Now let

L := −∂6
x − 2∂4

x − (1− r)∂2
x (2.17)

be the linear operator in equation (1.4). Then since all terms except the ut term can be
shown to be in L2(0, T ; Ḣ3), the triangle inequality implies that

||ut||L2(0,T ;Ḣ−3) = ||Lu+N (u)||L2(0,T ;Ḣ−3) ≤ ||Lu||L2(0,T ;Ḣ−3) + ||N (u)||L2(0,T ;Ḣ−3) <∞.

Thus ut ∈ L2(0, T ; Ḣ−3) also.
As stated before, even though we did not explicitly use the Galerkin solutions un for

the bounds, we originally required that un0 := Pnu0, so we can bound all of their bounds
from above uniformly using the norm of the initial condition to the full problem. None of
the bounds we have derived above depend on n.

2.4 Convergence of the Galerkin Approximations

In the previous section we saw that the sequence of Galerkin approximations un is uniformly
bounded in L∞(0, T ; L̇2), as well as in L2(0, T ; Ḣ3). We now want to show that these func-
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tions converge to a solution to the Nikolaevskiy equation, and that their time derivatives
converge to the time derivative of the solution.

We begin by recalling the Alaoglu Compactness theorem B.2.1. Since L2(0, T ; Ḣ3) is a
Hilbert space, it is reflexive, and since the sequence un is uniformly bounded in it, there
exists some element u ∈ L2(0, T ; Ḣ3), such that a subsequence unj converges weakly to u in
L2(0, T ; Ḣ3). In what follows we will relabel the subsequence unj as un.

We begin by showing that the Galerkin approximations un under the linear operator
L converge to u under the linear operator, where u is the weak limit of a subsequence of
un. We will then show that the time derivatives of un converge to the weak time derivative
of u. In order to show that the un converge under the nonlinear operator (2.12), we will
first have to show that un converges to u strongly. We can then prove that un under the
nonlinear term converges to u under the nonlinear term.

Convergence of the linear spatial terms:

Recall the form of the linear spatial operator in (1.4)

L := −∂6
x − 2∂4

x − (1− r)∂2
x. (2.18)

We want to show that Lun → Lu as n → ∞ in L2(0, T ; Ḣ−3) in the weak sense; that is,
we want to show that Lun ⇀ Lu . We first note that (2.17) is self-adjoint because of the
boundary conditions and from integrating by parts. Thus for v ∈ L2(0, T ; Ḣ3),

∫ T

0
〈Lun, v〉 dt =

∫ T

0

∫ `

0
(Lun)v dx dt

=
∫ T

0

∫ `

0
(Lv)un dx dt

=
∫ T

0
〈Lv, un〉 dt→

∫ T

0
〈Lv, u〉 dt

=
∫ T

0
〈Lu, v〉 dt.

Thus Lun ⇀ Lu in L2(0, T ; Ḣ−3). Here we have used the fact that for any v ∈ L2(0, T ; Ḣ3),
we have that Lv ∈ L2(0, T ; Ḣ−3) to get the above convergence.

Convergence of the time derivative terms:

We will now show that the partial time derivatives ∂tun converge to the weak time
derivative ut of u in the sense of (2.6), in the space L2(0, T ; Ḣ−3). Since the sequence ∂tun is
uniformly bounded in L2(0, T ; Ḣ−3), and L2(0, T ; Ḣ−3) is reflexive, we can take as corollary
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to the Alaoglu compactness theorem B.2.1 that there exist a subsequence ∂tun
j of ∂tun and

an element u̇ ∈ L2(0, T ; Ḣ−3), such that ∂tun
j converges weakly to u̇ in L2(0, T ; Ḣ−3).

We now have to show that u̇ is indeed the weak time derivative of u. Thus let φ ∈
C∞c (0, T ), and v ∈ Ḣ3. Then since the ∂tun are the classical time derivatives of un, we have
by integration by parts that

LHS :=
∫ T

0
(∂tun)φ dt = −

∫ T

0
un ∂tφ dt := −RHS. (2.19)

Now if we take the action of each term on the element v, then beginning with the left
hand side we get

〈LHS, v〉 =
〈∫ T

0
∂tu

nφ dt , v

〉
=
∫ T

0
〈∂tun, vφ〉 dt

→
∫ T

0
〈u̇, vφ〉 dt =

〈∫ T

0
u̇φ dt , v

〉
,

where we have treated vφ as an element of L2(0, T ; Ḣ3) since φ only depends on t and v

only depends on x. Next, the action on the right hand side of (2.19) becomes

〈RHS, v〉 =
〈∫ T

0
un∂tφ dt , v

〉
=
∫ T

0
〈un, v ∂tφ〉 dt

→
∫ T

0
〈u, v ∂tφ〉 dt =

〈∫ T

0
u ∂tφ dt , v

〉
.

Therefore 〈∫ T

0
u̇φ dt+

∫ T

0
uφt dt , v

〉
= 〈LHS +RHS, v〉 = 0,

which implies that u̇, is the weak time derivative of u, that is, u̇ = ut.

Strong convergence of the sequence un.

Recall that by the Rellich-Kondrachov Compactness Theorem [Rob01, p. 143], we have
that Ḣ3 is compactly embedded in Ḣ2 (we write Ḣ3 ⊂⊂ Ḣ2). That is, there exists a constant
C such that

||u||Ḣ2 ≤ C||u||Ḣ3 ,

for every u ∈ Ḣ3. Furthermore, every bounded sequence in Ḣ3 contain a subsequence that
converges in Ḣ2.
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Also, since we can use any element in Ḣ2 to define a bounded linear functional on Ḣ3,
we have that

Ḣ2 ⊂⊂ Ḣ1 ⊂ Ḣ−2
.

Thus since un is uniformly bounded in L2(0, T ; Ḣ2), and ∂tun is uniformly bounded in
L2(0, T ; Ḣ−3), we get by Theorem B.2.4 in the Appendix that the weakly convergent sub-
sequence we obtained for un also converges strongly in L2(0, T ; Ḣ2). The proof of Theorem
B.2.4 is somewhat lengthy, and relies on Ehrling’s lemma B.3 and on its corollary B.2.3. To
make this section more clear, we did not include it here, but rather proved Theorem B.2.4
in the Appendix.

Using the result from Theorem B.2.4 we get

||un − u||L2(0,T ;Ḣ2) → 0 as n→∞. (2.20)

It follows from Ḣ2 ⊂ Ḣ1 ⊂ L̇2 that we also have un → u (strongly) in L2(0, T ; Ḣ1) and
L2(0, T ; L̇2).

Convergence of the nonlinear term:

Before we begin, we will introduce some new notation for the nonlinear term in the
Nikolaevskiy equation. We will use this notation again, throughout this text, whenever the
two functions in the non-linear term may not be equal. Let

B(u, v) := u ∂xv. (2.21)

We want to show that PnB(un, un) in (2.8) converges to B(u, u) in the sense of distributions
in L2(0, T ; Ḣ−3). We will apply this to a test function φ ∈ D([0, T ] × [0, `]), and use the
definition of 〈B(un, un), φ〉 to show the result, but first we will get some more bounds on
un. We want to use the uniform bounds on un in L∞(0, T ; L̇2) and in L2(0, T ; Ḣ3), to derive
uniform bounds on un in L2(0, T ; L̇∞), and hence in L4(0, T ; L̇4).

Recall that the norm of un in L2(0, T ; L̇∞) is just

||un||2L2(0,T ;L̇∞) :=
∫ T

0
||un(t)||2L̇∞ dt.

Furthermore, recall the bound

||un(t)||L̇∞ ≤ `
1/2 ||∂xun(t)||L̇2 .
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Using this we get

||un||2L2(0,T ;L̇∞) =
∫ T

0
||un(t)||2L̇∞ dt

≤ `
∫ T

0
||∂xun(t)||2L̇2 dt ≤ `||un||2

L2(0,T ;Ḣ1)

≤ `||un||2
L2(0,T ;Ḣ3)

.

By the uniform boundedness of un in L2(0, T ; Ḣ3) this shows that un is uniformly bounded
in L2(0, T ; L̇∞)) and we will now use this to get the bound in L4(0, T ; L̇4): We calculate

||un||4
L4(0,T ;L̇4)

=
∫ T

0

∫ `

0
(un)4 dx dt ≤

∫ T

0
||(un)2||L̇∞

∫ `

0
(un)2 dx dt;

but in the previous section we showed that un ∈ L∞(0, T ; L̇2), so we can take the
∫ `

0 (un)2 dx

term out of the time integral and bound it by the uniform bound of un in L∞(0, T ; L̇2) to
get

||un||4
L4(0,T ;L̇4)

≤ sup
0≤t≤T

(∫ `

0
(un)2 dx

)∫ T

0
||(un)2||L̇∞ dt

= ||un||L∞(0,T ;L̇2)||u
n||L2(0,T ;L̇∞) ≤M,

for some new M .
Using all these bounds, we will now show the convergence of the nonlinear term in (1.4):

Let φ ∈ D([0, T ]× [0, `]) (whose elements are also assumed to be periodic), then

∫ T

0
〈PnB(un, un), φ〉 − 〈B(u, u), φ〉 dt =

∫ T

0
〈B(un, un), Pnφ〉 − 〈B(u, u), φ〉 dt

=
∫ T

0

∫ `

0
un∂xu

nPnφ− u ∂xuφ dx dt.

Now if we use the reverse chain rule to get v ∂xv = 1
2∂x(v2) and integrate by parts we have

2
∫ T

0

∫ `

0
un∂xu

nPnφ− u ∂xuφ dx dt =
∫ T

0

∫ `

0
u2∂xφ− (un)2Pn∂xφ dx dt

=
∫ T

0

∫ `

0
u2∂xφ− u2Pn∂xφ︸ ︷︷ ︸

1

+u2Pn∂xφ− (un)2Pn∂xφ︸ ︷︷ ︸
2

dx dt.
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We will look at each of the terms 1 and 2 separately. First,

1 =
∫ T

0

∫ `

0
u2(∂xφ− Pn∂xφ) dx dt

≤
(∫ T

0

∫ `

0
u4 dx dt

)1/2(∫ T

0

∫ `

0
(∂xφ− Pn∂xφ)2 dx dt

)1/2

≤M1/2||∂xφ− Pn∂xφ||L2(0,T ;L̇2) → 0

as n→∞, since projections converge strongly for any test function φ. Next we look at the
second term and define ||∂xφ||∞ := ||∂xφ||L∞(0,T ;L̇∞). Note that ||Pn∂xφ||∞ = ||∂xPnφ||∞ ≤
`1/2 ∣∣∣∣∂2

xPnφ
∣∣∣∣

L̇2 ≤ `1/2 ∣∣∣∣∂2
xφ
∣∣∣∣

L̇2 . Thus we have

2 =
∫ T

0

∫ `

0
(u2 − (un)2)Pn∂xφ dx dt ≤ `1/2

∣∣∣∣∣∣∂2
xφ
∣∣∣∣∣∣

L̇2

∫ T

0

∫ `

0
(u− un)(u+ un) dx dt

≤ `1/2
∣∣∣∣∣∣∂2

xφ
∣∣∣∣∣∣

L̇2

(∫ T

0

∫ `

0
(u− un)2 dx dt

)1/2(∫ T

0

∫ `

0
(u+ un)2 dx dt

)1/2

≤ `1/2
∣∣∣∣∣∣∂2

xφ
∣∣∣∣∣∣

L̇2 M̃

∫ T

0

∫ `

0
(u− un)2 dx dt = `1/2

∣∣∣∣∣∣∂2
xφ
∣∣∣∣∣∣

L̇2 M̃ ||u− un||2L2(0,T ;L̇2)
→ 0,

as n → ∞, by the strong convergence of un in L2(0, T ; L̇2), where M̃ is twice the uniform
bound on u in L2(0, T ; L̇2). We thus have that

∫ T

0
〈PnB(un, un), φ〉 − 〈B(u, u), φ〉 dt = 1 + 2 → 0

as n → ∞, giving the convergence of the nonlinear term in equation (1.4) in the sense of
distributions.

We now know that ∂tun, Lun and N (un) converge, at least in the sense of distributions.
Putting all of this together, we get that the Galerkin approximations do converge to a
distributional solution of the Nikolaevskiy equation (1.4). In later sections, we will see that
these solutions do exist classically as well, and are continuous in time, and even analytic
in space! In fact, Theorem B.5.4 shows that u ∈ C([0, T ]; L̇2), and therefore we can also
conclude that limt→0 u(t) = u0 with convergence in L̇2.

2.5 Uniqueness

Now that we know that weak solutions to the Nikolaevskiy equation (1.4) exist, we will
show that they are unique. We begin with the case (1 − r) ≥ 0. Thus, suppose that we
have two solutions u and v, such that u(0) = u0 and v(0) = v0, and they both satisfy the
equation (1.4). Define w := u− v. Then subtracting the equations that u and v satisfy, we
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get

dw

dt
− ∂6

xw − (1− r)∂2
xw = 2∂4

xw −B(u, u) +B(v, v)

= 2∂4
xw −B(u, u) +B(u, v)−B(u, v) +B(v, v)

= 2∂4
xw −B(u,w)−B(w, v).

We now take the inner product of the above with w and integrate by parts to get

1
2
d

dt
||w||2L̇2 +

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xw||2L̇2 = 2
∣∣∣∣∣∣∂2

xw
∣∣∣∣∣∣2

L̇2 − b(u,w,w)− b(w, v, w)

≤ 2
∣∣∣∣∣∣∂2

xw
∣∣∣∣∣∣2

L̇2 + C ||u||L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣

L̇2 ||w||L̇2 + C

2 ||v||L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣

L̇2 ||w||L̇2 ,

where C := `1/2 and we have used Corollary (B.6.2) on the nonlinear term. Using Young’s
inequality and inequality (B.6) we have

1
2
d

dt
||w||2L̇2 +

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xw||2L̇2 ≤2
∣∣∣∣∣∣∂2

xw
∣∣∣∣∣∣2

L̇2 +
(
C

2 ||u||
2
L̇2 + C

4 ||v||
2
L̇2

)
||w||2L̇2

+
(
C

2 + C

4

) ∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2 .

Redefining C := `1/2/2 and letting C0 = 2 + 3`1/2

4 , and repeatedly using Young’s inequality
and equality (B.6) gives

1
2
d

dt
||w||2L̇2 +

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xw||2L̇2 ≤ C0
∣∣∣∣∣∣∂2

xw
∣∣∣∣∣∣2

L̇2 + C

2 (2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2

≤ βC0
2 ||∂xw||2L̇2 + C0

2β

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + C

4 (2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2

≤ βγC0
4 ||w||2L̇2 + βC0

4γ

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2 + C0
2β

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + C

2 (2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2

≤ βγC0
4 ||w||2L̇2 + βC0

γ
||w||2L̇2 + βC0

16γ

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2

+ C0
2β

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 + C

2 (2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2

≤
(
βC0
16γ + C0

2β

) ∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 +
(
βγC0

4 + βC0
γ

+ C

2 (2 ||u||2L̇2 + ||v||2L̇2)
)
||w||2L̇2 .

(2.22)

Since we assumed that (1− r) ≥ 0 we can drop it on the left. Then if for instance, we make
the choices

β = 2C0

γ = C2
0 ,
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then the coefficient in front of
∣∣∣∣∂3

xw
∣∣∣∣2

L̇2 on the right hand side is less than 1, so for two
universal constants C1 > 0 and C2 > 0, we have

1
2
d

dt
||w||2L̇2 + C1

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ≤
C

2 (C2 + 2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2 . (2.23)

This will be useful later on when we bound the attractor dimension, but for now let us drop
the spatial derivative term on the left to get

d

dt
||w||2L̇2 ≤ C(C2 + 2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2 .

Therefore, by Gronwall’s inequality, we have

||w(t)||2L̇2 ≤ ||w0||2L̇2 e
C
∫ t

0 (C2+2||u||2
L̇2 +||v||2

L̇2 ) ds
, (2.24)

with w0 = u0 − v0, which is finite for all t ≤ T , since u, v ∈ L2(0, T ; Ḣ3). Thus, if u0 = v0,
this implies that w(t) = 0 for all t ≥ 0, so u(t) = v(t).

This gives us uniqueness when (1− r) ≥ 0.
Now for the case when (1 − r) < 0, we begin with (2.22) and interpolate the (1 − r)

term with (B.7) with n = 1 to get

1
2
d

dt
||w||2L̇2 +

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ≤
(
βC0
16γ + C0

2β + (r − 1)η2

4

) ∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2

+

(r − 1)
η

+ βγC0
4 + βC0

γ︸ ︷︷ ︸
C1/2

+C

2 (2 ||u||2L̇2 + ||v||2L̇2)

 ||w||2L̇2 .

Letting

γ = C2
0 , β = 2C0 , η2 = 1

(r − 1) ,

we can drop the third derivative term and then, using Gronwall’s inequality, we again have
that

||w(t)||2L̇2 ≤ ||w(0)||2L̇2 e

∫ t
0

(
C1+C(2||u||2

L̇2 +||v||2
L̇2 )
)
dt
, (2.25)

which gives uniqueness for (1− r) < 0.
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Chapter 3

Asymptotic Bounds and Regularity

3.1 An Absorbing Set in L̇2(0, `)

We will now state an important result that has been developed in the literature of the
Nikolaevskiy equation, and that gives one an absorbing set in L̇2.

Definition 3.1.1 (Absorbing Set). Let H be a space with a dynamical system

dx

dt
= f(x), x(0) = x0,

defined on it. We say that B ⊂ H is an absorbing set in H if for all x0 ∈ H, there exists a
t0 ≥ 0, such that

x(t) ∈ B

for all t ≥ t0.

Technically the above definition does not require B to be bounded; however, we will
always be interested in the case when B is bounded.

Finding optimal bounds on the size of an absorbing ball for equations similar to (1.4),
such as the Kuramoto-Sivashinksy (KS) equation (1.1) is an area of active research, and
one into which much work has gone in the past [NST85, WH99, Wit14, BG06, GO04] as
discussed in Section 1.1. In particular, the scaling with the parameter `, the domain size,
has been investigated, since the KS equation can be rescaled so that all possible parameters
are absorbed into the parameter `.

For the case of the Nikolaevskiy equation, it has been shown that there exists an absorb-
ing ball in L̇2(0, `), and that the bound on its radius depends on ` [FR08, Wit14], although
[FR08] derived a bound of O(`9/2) for large ` and did not derive an r dependence of the
absorbing ball. As we will see in later sections, the radius of analyticity of solution to (1.4),
the dimension of the attractor, as well as the absorbing balls of the derivatives of solutions
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to (1.4), depend on the size of the L̇2 absorbing set. It is thus important to obtain the
optimal scaling of this ball with the parameters.

The strictest bound on the absorbing set in L̇2(0, `) for the Nikolaevskiy equation derived
to date, taking both the ` and the r scaling into account, is given in [Wit14], and we state
it without proof:

Theorem 3.1.2 (Absorbing Set in L̇2(0, `)). Let u(t) be a solution to (1.4); then there
exists a constant K, independent of ` and r, such that

lim sup
t→∞

||u(t)||L̇2 ≤ K
√
r`3/2, r ≤ 1.

For a proof see [Wit14].
In particular, define

R := K
√
r`3/2, (3.1)

then the theorem says that the ball of radius R constitutes an absorbing set B of (1.4) in
L̇2(0, `).

We should note here that the ` scaling in (3.1) is generally not believed to be optimal.
However, the scaling with r is, since it can be shown that (1.4) has unstable stationary
solutions that scale like

√
r to leading order [TV96]. Such solutions will generally not be

seen in numerical experiments, due to their instability, but their existence implies that the
r-dependence of the bound (3.1) cannot be improved.

3.2 An Absorbing Set in Ḣ1(0, `)

One ingredient that we shall need in order to prove the existence of an attractor in L̇2 for
the Nikolaevskiy equation (1.4), is a uniform bound on the derivative of solutions to (1.4).
Specifically we need an absorbing ball in Ḣ1. In what follows, we require that 0 < r ≤ 1, so
that the bound (3.1) holds.

We start by taking the L̇2 inner product of equation (1.4) with −∂2
xu to get

1
2
d

dt
||∂xu||2L̇2 = −

∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2 − (1− r)
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 + b(u, u, ∂2
xu).

We bound the b(u, u, ∂2
xu) term by `1/2 ||u||L̇2

∣∣∣∣∂2
xu
∣∣∣∣2

L̇2 by Proposition B.6.3, and then use
the L̇2 absorbing ball ||u||L̇2 ≤ R (for large t) to get

1
2
d

dt
||∂xu||2L̇2 ≤ −

∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2 −
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 +M1
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 , (3.2)
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where M1 := r + `1/2R, with R defined as in (3.1). Applying (B.11) with µ = 2 and n = 0
to the third order term we get

1
2
d

dt
||∂xu||2L̇2 ≤ −

1
2

∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣2

L̇2 + α

η

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 − 2α ||∂xu||2L̇2 + αη ||u||2L̇2 + (M1 + 2)
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2

= −1
2

∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣2

L̇2 +
(
α

η
+M1 + 2

) ∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 − 2α ||∂xu||2L̇2 + αη ||u||2L̇2 .

If we now define M := M1 + 2 and apply (B.9) to the second-order term we have

1
2
d

dt
||∂xu||2L̇2 ≤

[
−1

2 + σ

(
α

η
+M

)] ∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣2

L̇2 − 2α ||∂xu||2L̇2 +
[
αη + 1

2σ

(
α

η
+M

)]
||u||2L̇2 .

Now, in order to apply Gronwall’s lemma (B.14) we want the highest order term to be
zero, so we pick σ =

(
2(α/η +M)

)−1, giving

d

dt
||∂xu||2L̇2 ≤ −4α ||∂xu||2L̇2 + 2

[
αη +

(
α

η
+M

)2
]
||u||2L̇2

≤ −4α ||∂xu||2L̇2 + 2
[
αη +

(
α

η
+M

)2
]
R2.

where we have used the bound (3.1) on ||u||2L̇2 . Then using Gronwall’s inequality (B.14), we
have that

lim sup
t→∞

||∂xu||2L̇2 ≤
2[αη + (α/η +M)2]

4α R2. (3.3)

We thus have to choose α and η to optimize this constant. We want α to be as large as
possible while keeping the product αη small. At the same time we want α/η = O(M) and
αη = O(M2). Therefore, one possible choice is α = M3/2/2 and η = M1/2/2. With these
choices of the constants, the above expression becomes:

lim sup
t→∞

||∂xu||2L̇2 ≤
17
4 M

1/2R2 := R2
1 = O(`1/4R1/2R2) = O(r5/4`4). (3.4)

The above bound also automatically gives us an upper bound for the L̇∞ norm scaling
for large t. Specifically, since

||u||L̇∞ ≤ `
1/2 ||∂xu||L̇2 ,

an upper bound on the L̇∞ norm of u is `1/2R. Thus the scaling of the L̇∞ norm can be at
most r5/8. Computationally, we expect the L̇∞ norm to be ` independent, but there does
seem to be an r dependence.
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3.3 An Absorbing Set in Ḣ2(0, `)

In this section we will derive an absorbing set in Ḣ2. We once more only assume that
0 < r ≤ 1, so that the bound (3.1) holds. Such a set is not needed to conclude that an
attractor exists; however, we will use it, and specifically its scaling with r, to derive tighter
bounds on the dimension of the attractor in the following chapter.

Theorem 3.3.1 (An Absorbing Set in Ḣ2(0, `)). Suppose u is a solution to (1.4); then one
has

lim sup
t→∞

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 ≤ R2, (3.5)

where R2 = O(r7/8`3) is the radius of the absorbing ball in Ḣ2 (3.1).

Proof. We start by taking the inner product of the equation (1.4) with ∂4
xu to get

1
2
d

dt

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 = −
∣∣∣∣∣∣∂5

xu
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂4

xu
∣∣∣∣∣∣2

L̇2 − (1− r)
∣∣∣∣∣∣∂3

xu
∣∣∣∣∣∣2

L̇2 − b(u, u, ∂4
xu).

We now bound the b(u, u, ∂4
xu) term. We can bound it as follows:

|b(u, u, ∂4
x)| ≤

∣∣∣∣∣
∫ `

0
u ∂xu ∂

4
xu dx

∣∣∣∣∣
≤ `1/2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2

∫ `

0

∣∣∣u ∂4
xu
∣∣∣ dx

≤ `1/2R
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣

L̇2

∣∣∣∣∣∣∂4
xu
∣∣∣∣∣∣

L̇2 ,

where R is the radius of the L̇2 absorbing ball (3.1). Now let M := `R2/4, then using
Young’s inequality and dropping the (1− r) term we get

1
2
d

dt

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 ≤ −
∣∣∣∣∣∣∂5

xu
∣∣∣∣∣∣2

L̇2 + 3
∣∣∣∣∣∣∂4

xu
∣∣∣∣∣∣2

L̇2 +M
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 .

We will now use inequality (B.11) with n = 1 on the fourth-order term, and then follow
this up by using inequality (B.9) with n = 1 on the resulting third-order term. This gives

1
2
d

dt

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 ≤
(
−1 + 3

2µ

) ∣∣∣∣∣∣∂5
xu
∣∣∣∣∣∣2

L̇2 +
(3α

2η + 3µ
2

) ∣∣∣∣∣∣∂3
xu
∣∣∣∣∣∣2

L̇2

+ (M − 3α)
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 + 3αη
2 ||∂xu||2L̇2

≤
[
−1 + 3

2µ + 1
ε

(3α
2η + 3µ

2

)] ∣∣∣∣∣∣∂5
xu
∣∣∣∣∣∣2

L̇2 +
[
ε

2

(3α
2η + 3µ

2

)
+ 3αη

2

]
||∂xu||2L̇2

+ (M − 3α)
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 .

32



We immediately read off that µ = O(1), α/(εη) ≤ O(1) and α = O(M). We also choose
η = O(α1/2) so we must have ε = O(η) = O(α1/2). Choosing α = 2M/3, µ = 6/2, η = M1/2

and ε = 4M1/2 we get

1
2
d

dt

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 ≤ −M
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣2

L̇2 +
[
2M1/2

(
M1/2 + 9

2

)
+M3/2

]
||∂xu||2L̇2 ,

for large enough M . We can now use Gronwall’s Lemma B.14 to get

lim sup
t→∞

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 ≤
[
2
(

1 + 9
2M1/2

)
+M1/2

]
||∂xu||2L̇2 ≤

[
2
(

1 + 9
2M1/2

)
+M1/2

]
R2

1,

where R1 is the bound from the previous section (3.4). Thus

lim sup
t→∞

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣2

L̇2 := R2
2 = O(M1/2R2

1) = O(`1/2RR2
1) = O(r7/4`6).

We note here that the results on analyticity of solutions of the Nikolaevskiy equation
in the next section can be used to derive bounds on the radii of the absorbing balls in all
Ḣn spaces, since we derive uniform bounds on a norm that contains all the derivatives, and
hence also individually bounds each derivative of u. However, the results obtained in that
way are not as tight as the ones we obtained in this section.

3.4 Regularity

In this section we will show that the Nikolaevskiy equation (1.4) has the effect of ‘smoothing’
out initial data, much like the well-known heat equation. Specifically, we will show that
all solutions become analytic once they have entered the absorbing ball in L̇2. We will
be following the methods developed in [CEES93a], and derive bounds on the radius of
analyticity. A bound on the radius of analyticity has been derived for the KS equation
[CEES93a] and the (de)stabilized KS equation [Wit02], as well as on its generalizations
[IS14]. As in [Wit02], we are also interested in the scaling of the radius of analyticity with
the parameter r. Specifically we will show that for any initial condition in L̇2 the solution
starting at this initial condition is analytic for all t > 0.

Before we begin, we note that Theorem B.5.4 already gives us some regularity in time.
Since we showed that u ∈ L2(0, T ; Ḣ3) and ut ∈ L2(0, T ; Ḣ−3), we have that

u ∈ C([0, T ]; L̇2), (3.6)

so u is continuous in time. We will now proceed to show the regularity in space.
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In what follows we will be working with the absolute value of the derivative operator,
that is, we will work with A := |∂x|, where

Au = |∂x|u :=
∑
k

|k|ûkeikx. (3.7)

We will show that solutions to equation (1.4) and their derivatives decay in a certain
way, and then use the Paley-Wiener Theorem from B.5.3 to conclude that the solutions
must be analytic. The following approach comes directly from [CEES93a], but we present
the proof with added details, and with a slight modification to the linear term L to adapt
the results of [CEES93a] to the Nikolaevskiy equation (1.4). We begin by rewriting (1.4) in
Fourier space in a slightly different way than before. If we take the nonlinear term to be
1
2∂x(u)2 instead of u ∂xu, then we get

d

dt
ûk = ω(k)ûk + ik

2
∑

k′+k′′=k
ûk′ ûk′′ , (3.8)

for each Fourier coefficient.
In the following we define

v := eαtAu ⇐⇒ v̂k = eαt|k|ûk. (3.9)

We will show that the L̇2 norm of v defined in (3.9) is bounded. We first have to prove a
Lemma concerning the nonlinear term in (1.4). For the trilinear form b(u, v, w) defined in
(2.14) we have

b(u, v, w) =
∫ `

0
u ∂xv w dx =

∫ `

0

(∑
k

ûke
ikx

)(∑
k′

ik′v̂k′e
ik′x

)(∑
k′′

ŵk′′e
ik′′x

)
dx

=
∫ `

0

(∑
k

ûke
ikx

)∑
−k′
−ik′v̂−k′e−ik

′x

(∑
k′′

ŵk′′e
ik′′x

)
dx

=
∫ `

0

(∑
k

∑
k′

∑
k′′

(−ik′)ûkv̂−k′ŵk′′ei(k−k
′+k′′)x

)
dx

where we have flipped the middle sum, which can be done by simply relabelling. But the
only nonzero terms in this triple sum occur when the complex exponents add to zero. Thus
we need k′′ = k′ − k, so we have

b(u, v, w) = −i`
∑
k

∑
k′

k′ûkv̂−k′ŵk′−k. (3.10)

We will now find a bound on (2.14) in terms of the norm of v and its derivative.
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Lemma 3.4.1 ([CEES93a]). Let A = |∂x| be defined as in (3.7) and let α > 0; then

|b(u, u, eαtAv)| ≤ C
√
αt ||v||L̇2 ||Av||2L̇2 , (3.11)

where we define

C =

√
log(256)

π
.

Proof. Recall that we have the identities b(u, u, w) = −1
2b(u,w, u), and b(u, u, u) = 0 by

Corollary B.6.2. Thus using

v = eαtAu,

we can write

b(u, u, eαtAv) = −1
2b(u, e

αtAv, u)

= −1
2
[
b(e−αtAv, eαtAv, e−αtAv)− b(v, v, v)

]
= i`

2
∑
k

∑
k′

k′v̂kv̂−k′ v̂k′−k
(
eαt(|k

′|−|k|−|k′−k|) − 1
)
,

where we have used (3.10) in the last line. It is straightforward to verify considering the
different cases, that

|k′| − |k| − |k′ − k| =


0, if k′ ≥ k > 0 or k′ ≤ k < 0

−2|k|, if k′ > 0 > k or k′ < 0 < k

−2|k′ − k|, if k > k′ > 0 or k < k′ < 0

.

We omit the cases with k = 0 or k′ = 0, since v̂0 = 0. Thus the above sum can be split into
four sums of the form:
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b(u, u, eαtAv) = i`

2
∑

k′>0>k
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k| − 1

)
︸ ︷︷ ︸

1

+ i`

2
∑

k′<0<k
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k| − 1

)
︸ ︷︷ ︸

2

+ i`

2
∑

k>k′>0
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k′−k| − 1

)
︸ ︷︷ ︸

3

+ i`

2
∑

k<k′<0
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k′−k| − 1

)
︸ ︷︷ ︸

4

.

We will combine some of these terms and then treat the resultant terms individually.
Let us look at terms 3 and 4 . In term 4 , if we replace k with −k and k′ with −k′,

we get

4 =
∑

k<k′<0
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k′−k| − 1

)
=

∑
k>k′>0

(−k′)v̂−kv̂k′ v̂−k′+k
(
e−2αt|k′−k| − 1

)
=

∑
k>k′>0

−k′v̂kv̂−k′ v̂k′−k
(
e−2αt|k′−k| − 1

)
= − 3 ,

where the bar denotes complex conjugate. Thus 4 + 3 = 2i Im 3 . Similarly we get that
1 + 2 = 2i Im 1 . So we get

b(u, u, eαtAv) = −` Im
[ ∑
k′>0>k

k′v̂kv̂−k′ v̂k′−k
(
e−2αt|k| − 1

)

+
∑

k>k′>0
k′v̂kv̂−k′ v̂k′−k

(
e−2αt|k′−k| − 1

) ]
,
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so then

|b(u, u, eαtAv)| ≤ `
∑

k′>0>k
k′|v̂kv̂−k′ v̂k′−k|

∣∣∣e−2αt|k| − 1
∣∣∣︸ ︷︷ ︸

I

+ `
∑

k>k′>0
k′|v̂kv̂−k′ v̂k′−k|

∣∣∣e−2αt|k′−k| − 1
∣∣∣︸ ︷︷ ︸

II

.

We will first estimate I . Multiplying by k/k and applying Cauchy-Schwarz gives

I = `
∑

k′>0>k
k′|v̂kv̂−k′ v̂k′−k|

∣∣∣e−2αt|k| − 1
∣∣∣ (k
k

)

≤ `

 ∑
k′>0>k

k2|v̂k|2|v̂k′−k|2
1/2 ∑

k′>0>k
k′2|v̂−k′ |2

(
e−2αt|k| − 1

k

)2
1/2

= `

∑
k<0

k2|v̂k|2
∑
k′>0
|v̂k′−k|2

1/2∑
k′>0

∑
k<0

k′2|v̂k′ |2
(
e−2αt|k| − 1

k

)2
1/2

,

so summing first over k′ and then over k we have, using Parseval’s identity

I ≤ ||v||L̇2 ||Av||L̇2

(∑
k′

|k′|2|v̂k′ |2
)1/2

∑
k>0

(
e−2αt|k| − 1

k

)2
1/2

.

Now ∑
k>0

(
e−2αt|k| − 1

k

)2
1/2

=

∑
j>0

(
e−2αt(2πj/`) − 1

(2πj/`)

)2
1/2

≤

∫ ∞
0

(
e−2αt(2πx/`) − 1

(2πx/`)

)2

dx

1/2

=

2αt`
2π

∫ ∞
0

(
e−y − 1

y

)2

dy

1/2

=
(
αt log(4)`

π

)1/2
.
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We have used the software Maple to compute the integral
∫∞

0

(
e−y−1
y

)2
dy = log(4). Thus

by Parseval’s identity we have

I ≤

√
αt log(4)

π
||v||L̇2 ||Av||2L̇2 .

In order to estimate II , we will first make the change of variables p = k′ − k, so then
k = k′ − p. Then we have

II = `
∑

k>k′>0
k′|v̂kv̂−k′ v̂k′−k|

(
e−2αt|k′−k| − 1

)
= `

∑
k′−p>k′>0

k′|v̂k′−pv̂−k′ v̂p|
(
e−2αt|p| − 1

)
.

But the condition k′ − p > k′ > 0 implies that k′ > 0 > p and so we take the sum as

II = `
∑

k′>0>p
k′|v̂k′−pv̂−k′ v̂p|

(
e−2αt|p| − 1

)
.

Now we have a sum analogous to I , with an index p instead of k. Thus the same argument
as before shows that

II ≤

√
αt log(4)

π
||v||L̇2 ||Av||2L̇2 ,

and so we finally have

|b(u, u, eαtAv)| ≤ I + II ≤

√
αt log(256)

π
||v||L̇2 ||Av||2L̇2 ,

giving the result.

We are now ready to prove a theorem which, together with the Paley-Wiener Theorem
A.9, will give us analyticity of solutions of the Nikolaevskiy equation.

Theorem 3.4.2 (Analyticity of Solutions of the Nikolaevskiy Equation). Let u(x, t) be
a solution to (1.4). Then if ||u(0, ·)||L̇2 ≤ R, where R given in (3.1) is the radius of the
absorbing ball of solutions in L̇2, we have that∣∣∣∣∣∣eαmin(t,tc)Au(t, ·)

∣∣∣∣∣∣
L̇2 ≤ 2R, (3.12)

for any t > 0. Here A = |∂x|, α = α̃R2/3 and tc = t̃R−4/3, where, α̃ and t̃ are constants
independent of `.
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Specifically, solutions are analytic for all t > 0, and they are analytic in a strip of width
at least αtc = α̃t̃R−2/3 about [0, `] in the complex plane, once they have entered the absorbing
ball and t is greater than tc plus the time at which they have entered the absorbing ball.

The proof of the above theorem parallels the proof of Theorem 3.1 in [CEES93a].

Proof. If we multiply each of the equations (3.8) by v̂−keα|k|t and sum over k, we get

1
2
d

dt

∑
k

|v̂k|2 = α
∑
k

|k||v̂k|2 +
∑
k

ω(k)|v̂k|2 −
1
`
b(u, u, eαtAv),

where we have used a product rule on the time derivative term. And so using Lemma 3.4.1
and re-expressing everything in terms of real-space norms using Parseval’s inequality, we
get

1
2
d

dt
||v||2L̇2 ≤ α

∣∣∣∣∣∣A1/2v
∣∣∣∣∣∣2

L̇2 −
∣∣∣∣∣∣A3v

∣∣∣∣∣∣2
L̇2 + 2

∣∣∣∣∣∣A2v
∣∣∣∣∣∣2

L̇2 − (1− r) ||Av||2L̇2 + C
√
αt ||v||L̇2 ||Av||2L̇2

where ||Anv||L̇2 = ||∂nxv||L̇2 for n = 1, 2, 3. We will now repeatedly use Young’s inequality as
well as inequality (B.6) and the fact that r ≤ 1 to get an estimate on the above expression.

1
2
d

dt
||v||2L̇2 ≤ α ||v||L̇2 ||Av||L̇2 −

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + 2 ||Av||L̇2

∣∣∣∣∣∣A3v
∣∣∣∣∣∣

L̇2 + C
√
αt ||v||2L̇2

∣∣∣∣∣∣A2v
∣∣∣∣∣∣

L̇2

≤ α

2η ||v||
2
L̇2 + αη

2 ||Av||
2
L̇2 −

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + δ ||Av||2L̇2 + 1
δ

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2

+ Cαt

2 ||v||4L̇2 + C

2

∣∣∣∣∣∣A2v
∣∣∣∣∣∣2

L̇2

≤ α

2η ||v||
2
L̇2 + αη

2 ||Av||
2
L̇2 −

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + δ ||Av||2L̇2 + 1
δ

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2

+ Cαt

2 ||v||4L̇2 + Cγ

4 ||Av||
2
L̇2 + C

4γ

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 .

Now if we use the Young’s-type inequality (B.7) for the ||Av||2L̇2 terms, with ε = 1 for the
first occurrence, then we have

1
2
d

dt
||v||2L̇2 ≤

α

2η ||v||
2
L̇2 + αη

2 ||v||
2
L̇2 + αη

8

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 −
∣∣∣∣∣∣A3v

∣∣∣∣∣∣2
L̇2

+ δ

ρ
||v||2L̇2 + δρ2

4

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + 1
δ

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2

+ Cαt

2 ||v||4L̇2 + Cγ

4ε ||v||
2
L̇2 + Cγε2

16

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + C

4γ

∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2

=
(
α

2η + αη

8 + δ

ρ
+ Cγ

4ε

)
||v||2L̇2

+
(
αη

8 − 1 + δρ2

4 + 1
δ

+ Cγε2

16 + C

4γ

) ∣∣∣∣∣∣A3v
∣∣∣∣∣∣2

L̇2 + Cαt

2 ||v||4L̇2 .
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Thus we need to pick the constants in the Young’s inequalities such that

αη

8 + δρ2

4 + 1
δ

+ Cγε2

16 + C

4γ − 1 = 0.

Thus if we pick the constants to be equal, for instance to

η = 8
5α , δ = 5 , ρ = 2

5 , γ = 5C
4 , ε = 8

5C ,

then we have

αη

8 + δρ2

4 + 1
δ

+ Cγε2

16 + C

4γ − 1 = 1
5 + 1

5 + 1
5 + 1

5 + 1
5 − 1 = 0.

Thus if we define

C1 :=
(

8
5 + 25 + 25C3

64

)
,

then we have

d

dt
||v||2L̇2 ≤

(
5α2

8 + C1

)
||v||2L̇2 + Cαt ||v||4L̇2 .

Now, if ||v(0)||L̇2 = ||u(0)||L̇2 ≤ R, where R is any bound on ||u(0)||L̇2 if the initial
condition is outside of the absorbing ball, but if ||u(0)||L̇2 is inside of it, then R is the radius
of the absorbing ball of the Nikolaevskiy equation in L̇2, then since it is known that solutions
grow at most exponentially in time (see Section 2.3), we know that there exists some time
tc, such that for t ≤ tc we must have ||v(t)||2L̇2 ≤ 4R2. Thus for all t ≤ tc, we have

d

dt
||v||2L̇2 ≤

(
5α2

8 + C1

)
||v||2L̇2 + 4CαtR2 ||v||2L̇2 .

Then by Gronwall’s inequality we have

||v(t)||2L̇2 ≤ ||v(0)||2L̇2 exp
(

5α2

8 t+ C1t+ 2CR2αt2
)

≤ R2 exp
(

5α2

8 t+ C1t+ 2CR2αt2
)
.

The above bound is less than 4R2 as long as the exponent is less than log(4), which is true
when t is sufficiently small that(

5α2

8 t+ C1t+ 2CR2αt2
)
≤ log(4).
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We need to choose the constant α and the maximum time in such a way that the
exponent scales as R−a for some a ≥ 0. Thus we will let α = α̃Rp and tc = t̃Rq, where α̃
and t̃ are two suitably chosen constants independent of `. If we let p = 2/3 and q = −4/3,
then for t ≤ tc we have(

5α2

8 t+ C1t+ 2CR2αt2
)
≤
(

5α̃2t̃

8 + C1t̃R
−4/3 + 2Cα̃t̃2

)
≤ log(4),

for small enough α̃ and t̃, and for R ≥ 1 (This holds for any R ≥ ||u(0)||L̇2).
Thus the width of the strip of analyticity about [0, `] is at least O(tR2/3) for 0 < t < tc

and αtc = O(R−2/3) when t ≥ tc.
Thus the above theorem and the Paley-Wiener Theorem B.5.3 in the Appendix show

that any initial condition u0 immediately gets smoothed by the flow of (1.4). In fact, this
shows that u is analytic for all t > 0, since one can use t 7→ t−t0 and do the whole argument
of before using

v = eα(t−t0)A,

for an arbitrary t0, since then ||v(t0)||2L̇2 ≤ R2 until t0 + tc. Thus u is analytic for all time,
and in fact any initial condition in L̇2 immediately gets smoothed out, even if it doesn’t
start in the absorbing ball, since one can choose t0 so that the solutions starts outside of
the absorbing ball.
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Chapter 4

Attractor Dimension

In this chapter we will show that the Nikolaevskiy equation (1.4) has an attractor in L̇2,
and we will show that this attractor is finite-dimensional and derive an upper bound on its
fractal dimension. The first four sections in this chapter give some necessary background
on dynamical systems, which we include here for completeness. We also state and give the
proofs of some technical theorems about the dimension of dynamical systems. The first four
sections are mainly based on [Rob01], and the proofs of the main theorems can be found in
the references provided in the statement of the theorems. For this reason the reader may
wish to skip the first four sections of this chapter, and begin reading at Section 4.5, where
the main results for the Nikolaevskiy equation begin.

4.1 Existence of an Attractor, and Fractal Dimensions

We will first give some general results about dynamical systems and then apply these to
equation (1.4).

Definition 4.1.1 (Strongly Continuous Semigroup (Flow) [Bre10, p. 121]). Let B be a
Banach space. A strongly continuous semigroup of linear operators on B is a family of
linear maps {S(t)|t ≥ 0} with the following properties:

(i) Each S(t) : B → B is a bounded linear operator.

(ii) For every s, t ≥ 0, the composition satisfies S(t)S(s) = S(t+ s) (semigroup property).
Moreover, S(0) = I, where I is the identity operator.

(iii) For every u ∈ B, the map t 7→ S(t)u is continuous from [0,∞) into B.

The continuity property will be important for us later on. For a definition of a weakly
continuous semigroup, see [Cer94].

We will be using semigroups to define solutions to dynamical systems. We will often call
the semigroup of some dynamical system the flow of the system. Consider the dynamical
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system

dx

dt
= f(x), x(0) = x0 ∈ H, (4.1)

whose solution is evolved by the flow S(t)x0. Here x0 and hence x(t) are in some Hilbert
space H, and f is some operator on H. Here we have used semigroups to define the solution.
The solution x(t) of (4.1) is given as x(t) := S(t)x0. The linearisation of (4.1) about the
solution x(t) is given by

dy

dt
= Df(x(t))y, y(0) = y0 ∈ H, (4.2)

where Df is the Fréchet derivative if H is infinite-dimensional, or just the Jacobian if H is
finite-dimensional. For the linearised system (4.2), we will denote its flow by y(t) := Λ(t)y0.

Having defined dynamical systems and their flows, we will now state some results con-
cerning attractors of systems such as (4.1).

Definition 4.1.2 (Global Attractor [Rob01, p. 268]). The global attractor A ⊂ H is the
maximal compact, invariant set

S(t)A = A for all t ≥ 0,

and the minimal set that attracts all bounded sets:

dist(S(t)X,A)→ 0 as t→∞,

for any bounded set X ⊂ H.

For two sets X and Y , by ‘dist’ we mean

dist(X,Y ) := sup
x∈X

inf
y∈Y
|x− y|.

Note that the above expression is not symmetric in X and Y , and is thus not a metric.
We will now state the general theorem that gives the existence of an attractor.

Theorem 4.1.3 (Existence of an attractor). Suppose that H contains a compact, absorbing
set under the flow S(t) of a dissipative dynamical system (4.1). Then there exists a connected
global attractor A in H.

For a proof of this theorem see [Rob01, p. 269]. We will later use this theorem to conclude
that the Nikolaevskiy equation (1.4) possesses an attractor in L̇2.

Having defined attractors, we will look at the concept of dimension more closely, and give
some definitions and results about the fractal dimension of a set, specifically of an attractor.
The reason we are interested in the dimension of the attractor of the Nikolaevskiy equation
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(1.4) is because, as we saw, equation (1.4) can be thought of as a system of coupled ODEs.
The dimension of the attractor then tells us how large this system has to be in order to
represent the long-term dynamics of solutions of equation (1.4). If the dimension is finite,
then the dynamical system associated with equation (1.4) can essentially be thought of as
a finite-dimensional system of ODEs for large t.

Definition 4.1.4 (Fractal dimension [YHK93]). Let A be a bounded set. Let N(ε) be the
minimum number of balls of radius ε > 0 needed to cover A. Then the fractal dimension
of A is defined as

df (A) := − lim
ε→0

log
(
N(ε)

)
log(ε) . (4.3)

We now have all the fundamental definitions that we need. In the following section we
will develop some tools which we will later use to prove a theorem about bounding the
fractal dimension of an attractor.

4.2 Tools and Lemmas

Before we can prove that the dynamical system given by the Nikolaevskiy equation (1.4) is
finite-dimensional, we have to prove several important theorems in a more abstract setting
first. Our treatment is mainly based on the approach in the book by Robinson [Rob01], in
which many of the results in this section can be found. We include these results here to make
our discussion self contained, and we also add some additional results for completeness.

The main purpose of the next few sections is to study how a volume in phase space
evolves under some map, such as the flow of a dynamical system. We will study the evolution
of the volume along trajectories; in general, if the volume decays to zero along all trajectories
on the attractor, then we can conclude that the attractor cannot contain volumes of the
same dimension as the one whose evolution we are studying.

Let us first prove some general lemmas about the image of volumes under compact maps
in a Hilbert space. The results that we present here can be found in [Hun96]. We present
the proofs in more detail, and give the proofs of propositions that were assumed to be true
in [Hun96], but whose proofs are nevertheless not trivial.

Lemma 4.2.1 (Lemma [Rob01, p. 439]). Let Λ be a compact, linear operator from a sepa-
rable Hilbert space H to itself. Then Λ(B), the image of the unit ball B in H under Λ, is an
ellipse, with the lengths of its semi-axes given by the eigenvalues of (Λ∗Λ)1/2 (the singular
values of Λ), where Λ∗ is the adjoint of Λ.

Proof. The self-adjoint operator (Λ∗Λ)1/2 has non-negative eigenvalues λn, with corre-
sponding orthonormal eigenvectors en. Then the vectors Λen are orthogonal with lengths
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||Λen|| = λn, since in general we have

(Λen,Λej) = (Λ∗Λen, ej) = λ2
n(en, ej) = λ2

nδnj .

This shows that the vectors Λen are orthogonal and form a basis for Λ(H), since en is an
orthonormal basis for H by the Hilbert-Schmidt theorem [Rob01, p. 75]. Furthermore, for
λn 6= 0 the Λen/λn are normalized, while if λn = 0, we exclude this term from the sum.

Now let u ∈ B, where B is the unit ball in H, by which we mean u ∈ B if and only if

u =
∞∑
n=1

cnen.

and
∞∑
n=1
|cn|2 ≤ 1.

Then we conclude

Λu =
∞∑
n=1

cnΛen =
∞∑
n=1

cnλn
Λen
λn

.

It follows that if kn := cnλn, we have that

Λu ∈
{
y =

∞∑
n=1

kn
Λen
λn

∣∣∣∣∣
∞∑
n=1

|kn|2

λ2
n

≤ 1
}
,

which is an ellipse with semi-axes of lengths λn.

Definition 4.2.2. We define the maximum factor of expansion of a j-dimensional
volume in H by

ωj := λj · · ·λi · · ·λ1 =
j∏
i=1

λi,

where the λi are the lengths of the semi-axes of the ellipse in the previous lemma. Alterna-
tively, we will sometimes write

ωj(F, x) = ωj(DF (x)) := λj · · ·λi · · ·λ1,

where the λi are now understood to be the singular values of the linearisation of F about x.
That is, the λi are the eigenvalues of the operator (DF (x)∗DF (x))−1/2. In both cases they
are ordered λ1 ≥ λ2 ≥ ... ≥ 0.
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We now use the result from Lemma 4.2.1 to get a bound on the number of ε-balls needed
to cover an ellipse.

Lemma 4.2.3 ([Hun96]). Let G be a C1 map defined on a neighbourhood of a compact
set X. Then the linearisation of G, DG(x), exists for all x ∈ X. Assume that DG(x) is
compact and let λi be the eigenvalues of (DG(x)∗DG(x))1/2. Now assume that there exists
an integer d and constants ρ ≥ σ > 0, such that for all x ∈ X,

(i) λd+1(x) ≤ ρ/2, and

(ii) ωj(x) ≤ (σ/2)j−d for 1 ≤ j ≤ d.

Let β(x) := max(2λd+1(x), σ) ∈ [σ, ρ]. Then there exist constants c > 1 and ε0 > 0, such
that for all x ∈ X and 0 < ε < ε0, the set G(B(x, ε)) can be covered by at most

cβ(x)−d

balls of radius β(x)ε.

Proof. Let β := β(x) = max(2λd+1(x), σ). Then since 2λd+1 ≤ ρ by (i), we must have that
β ∈ [σ, ρ]. If β > σ take j = d, but if β = σ take j to be the smallest natural number such
that 2λj+1 < β. This is a strict inequality, because if 2λd+1 = β were true, then 2λd+1 = σ

since by assumption β = σ, and then we would take j = d. Thus if β = σ we can assume
that at least 2λd+1 < β. The smallest natural number j such that 2λj+1 < β must thus
satisfy j ≤ d. Furthermore, by (ii) we have

ωj(x) ≤
(σ

2
)j−d

=
(β

2
)j−d

,

since we either have j = d or β = σ.
Now let us look at the image of the unit ball under DG(x). Let E = DG(x)[B(0, 1)],

then by Lemma 4.2.1, the lengths of the semi-axes of E are the λi(x). Set δ = σ/4, and
let E′ be the δ-neighbourhood of E. Since 2λi+1 ≤ β for every i ≥ j, we have that every
point of E′ lies within (β/2 + δ) of E ∩ Π, where Π is the hyperplane spanned by the first
j semi-axes of E. This is true since all the semi-axes not in the span of Π have lengths less
than β/2, (λi+1 ≤ β/2).

So if E ∩ Π is covered by a collection of balls of radius (β/2 − δ) with their centres in
Π, then E′ is covered by balls with the same centres but with radius β .

To estimate the number of balls to cover E∩Π, we first cover it by a grid of j-dimensional
boxes with sides of length (β − 2δ)/

√
j. Then the number of balls is bounded by

Nb =
(

(2λ1 + 2δ)
(β − 2δ)/

√
j

+ 1
)
·
(

(2λ2 + 2δ)
(β − 2δ)/

√
j

+ 1
)
· ... ·

(
(2λj + 2δ)

(β − 2δ)/
√
j

+ 1
)
. (4.4)
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The reason is that if r = (β/2 − δ) (half of the length of the diagonal of the box) and
s = (β − 2δ)/

√
j (the side length of the box), then we need at most Nb boxes to cover the

ellipse. We need the same number of balls of radius r to cover the ellipse, since

(2r)2 = js2 =⇒ s = (β − 2δ)/
√
j,

is the largest box that can be inscribed in a ball of radius r.
Now continuing with the estimate, since β ≥ σ = 4δ, we have β− 2δ ≥ (β+ 2δ)/3, since

3β − 6δ = β + 2β − 6δ ≥ β + 2δ ≥ β + 2δ

=⇒ β − 2δ ≥ (β + 2δ)/3.

Thus (
(2λi + 2δ)

(β − 2δ)/
√
j

+ 1
)
≤
(

3
√
j(2λi + 2δ)
(β + 2δ) + 1

)
.

By the ordering of the λi, we have for 1 ≤ i ≤ j

(2λi + 2δ) ≥ (β + 2δ),

so (
3
√
j(2λi + 2δ)
(β + 2δ) + (β + 2δ)

(β + 2δ)

)
≤ (3

√
j + 1)(2λi + 2δ)
β + 2δ .

But in general if a > b > 0 and c > 0, then

(a+ c)
b+ c

<
a

b
,

so we can write

(3
√
j + 1)(2λi + 2δ)
β + 2δ ≤ (3

√
j + 1)2λi
β

.

Thus the number of balls Nb is bounded by

Nb ≤
(3
√
j + 1)2λ1
β

· (3
√
j + 1)2λ2
β

· ...(3
√
j + 1)2λj
β

(4.5)

= (6
√
j + 2)j ωj

βj
≤ cβ

j−d

βj
= cβ−d, (4.6)

with c = (6
√
j + 2)d.
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Now let {Bi(y)}Mi=1 be a covering of balls of radius (β/2− δ) of E ∩Π, with y ∈ Π. The
above estimate showed that Nb ≤ cβ−d.

Now

DG(x)[B(x, ε)] = DG(x)[x] + εDG(x)[B(0, 1)],

where + is taken in the sense of element-wise addition of vectors in a set. Thus if B̃i(y) :=
DG(x)[x] + εDG(x)[Bi(y)], then {B̃i(y)}Mi=1 is a covering of at most cβ−d balls of radius
ε(β − δ)/2 of the set DG(x)[B(x, ε)].

Now since G is C1 on the compact set X, we can pick a small enough ε0, so that we
have

|(G(x) +DG(x)u)−G(u)| ≤ δε,

for all 0 < ε < ε0 and u ∈ B(x, ε). Thus for this choice of ε we have

G(B(x, ε)) ⊂ G(x) + εDG(x)[B(0, 1)] + εδB(0, 1)

= G(x) + εE + εδB(0, 1) = G(x) + εE′,

where E and E′ are defined as before. Now, since E′ can be covered by at most cβ−d balls
of radius β, we have that G(x) + εE′ can be covered by at most cβ−d of radius εβ. Thus we
have the result that G(B(x, ε) can be covered by at most cβ−d balls of radius εβ too, for
any 0 < ε < ε0.

The above is the main Lemma that we will need in the next section. However, we still
need some smaller results whose proofs can nevertheless be rather involved, which we will
also use in the proof of the main theorem.

Lemma 4.2.4 (Compact Gradients of Composite Operators). Suppose F ∈ C1(X) on some
set X ⊂ H, and suppose that the gradient (linearisation) DF (x) of F is compact on H for
every x ∈ X, where H is some Hilbert space. Then for any r ∈ N, D(F r)(x) is also compact.

Proof. By the chain rule we have

D(F r)(x) = [DF (F r−1(x))][DF (F r−2(x))] . . . [DF (F (x))][DF (x)].

For any given x ∈ X, by the compactness of DF (x) we know that for any bounded sequence
vn, there exists a subsequence vnj and some element v in the space such that

||DF (x)vnj − v|| → 0
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as j →∞. But then if we let w := [DF (F r−1(x))][DF (F r−2(x))] . . . [DF (F (x))]v, we have

||D(F r(x))vnj − w||

≤
(
||[DF (F r−1(x))][DF (F r−2(x))] . . . [DF (F (x))]||

) (
||DF (x)vnj − v||

)
→ 0

as j →∞. Thus D(F r)(x) is compact.

We now prove another lemma which will allow us to deduce some stricter bounds on
the product of numbers.

Lemma 4.2.5. Let β0, β1, ..., βj , ... be a sequence of real numbers such that βj ∈ [σ, ρ] for
all j ≥ 0, with 0 < σ < ρ < 1. Then for every integer m ≥ 1, there exists an integer
0 ≤ n ≤ m− 1, such that

βn · βn+1 · · ·βm−1 ∈ [σρm, ρm]. (4.7)

Proof. Clearly β0 · · ·βm−1 ≤ ρm. Let n ≤ m−1 be the largest integer such that βn · · ·βm−1 ≤
ρm. We want to show that σρm ≤ βn · · ·βm−1. Thus suppose for a contradiction that
σρm > βn · · ·βm−1 then we have(

βn
σ

)
βn+1 · · ·βm−1 < ρm.

But βn
σ ≥ 1, and so

βn+1 · · ·βm−1 < ρm,

but this contradicts the assumption that n is the largest integer such that βn · · ·βm−1 ≤ ρm.
Thus we must have σρm ≤ βn · · ·βm−1, which gives the result.

Theorem 4.2.6 (Bound on Expansion Factors [Tem98, p. 345]). Let Q,Λ : E → E be
compact, linear operators; then we have

ωd(QΛ) ≤ ωd(Q)ωd(Λ). (4.8)

Proof. The proof of this theorem requires tools and concepts from the theory of exterior
algebras on Hilbert spaces. It is somewhat involved and requires a lot of machinery that,
for the sake of brevity, we will not give in this thesis. For a proof and for all of the relevant
background, see [Tem98, p. 345].
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4.3 Bounding the Fractal Dimension of a Set

We are now ready to prove a very general theorem that tells us about the dimension of a
set, if we know something about the long-time behaviour of expansion factors in Definition
4.2.2. From there, it is only a small step to get a result about the attractor dimension of
the Nikolaevskiy equation. The proof of the theorem below was first given by Hunt in 1996
[Hun96]. The proof was modified from [Hun96] and reproduced the Appendix of [Rob01].
The proof below is reproduced from the Appendix of [Rob01] with some details added.

Theorem 4.3.1 (Bound on the Fractal Dimension of a Set [Hun96]). Let X be a compact
set, and let F be a C1 map defined on a neighbourhood of X whose derivative DF is compact.
Let λ1 ≥ ... ≥ λj ≥ ... ≥ 0 be the singular values of DF . Suppose also that X is invariant
under F , that is F (X) = X. If for some integer d,

ωd(F, x) ≤ γ for all x ∈ X

for some 0 < γ < 1, then we have

df (X) ≤ d. (4.9)

Here df (X) is the fractal dimension (4.3) of the set X.

Proof. Let ωd be defined as in the previous section in Definition 4.2.2. By assumption we
have

ωd+1(F, x) ≤ γ < 1

for all x ∈ X. Since X is invariant under F , by inequality (4.8) and Lemma 4.2.4 we get
that for any r ≥ 1,

ωd+1(F r, x) ≤ ωd+1(F, x)ωd+1(F, F (x)) . . . ωd+1(F, F r−1(x)) ≤ γr.

Now since λd+1(x) ≤ λj(x) for all j ≤ d, we also have

ωd+1(F r, x) ≥ [λd+1(F r, x)]d+1,

where λd+1(F r, x) is the d+ 1’th singular value of D(F r). This implies that

λd+1(F r, x) ≤ γr/(d+1).

Since γ < 1, we can pick r large enough, so that

ρ := 2γr/(d+1) <
1
2 .
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This means that if we define G := F r, then G satisfies condition (i) of Lemma 4.2.3.
To show condition (ii) of Lemma 4.2.3, note that by Lemma 4.2.4 and since F is C1,

DG(x) is compact on X. We must therefore have that ωd+1(F, x) is a continuous function
of x in X, and so it takes on its maximum on the compact set X, and hence we can choose
σ > 0 small enough, such that ωj(DG,x) ≤ (σ/2)j−dfor j ≤ d. Thus condition (ii) of Lemma
4.2.3 is also satisfied.

Define β(x) := max{2λd+1(x), σ} as in Lemma 4.2.3. We will now iteratively cover X
and obtain a bound on its dimension. Observe that on X we have β(x) > 0 and in fact
β(x) ≥ h > 0 for some h, since X is compact. This means that for every x ∈ X, there exists
an ε > 0, such that for all y with |y − x| < ε we have

1
2β(y) ≤ β(x) ≤ 2β(y). (4.10)

By the uniform continuity of β(x) we can choose an ε such that the above holds for all
x ∈ X. Thus let C0 be a covering of N0, consisting of balls of radius ε of X.

What we will do now is estimate the number of balls of radius (2ρ)mε, that are needed
to cover X. We will do this by covering X with some balls, then applying G to those balls,
and then covering the resulting ellipses with smaller balls, to which we then apply Lemma
4.2.3, to get a covering of each ellipse made up of smaller balls. We repeat this process until
we have balls that are small enough, and then we will estimate their number.

We begin with our cover C0 of balls of radius ε, and apply Lemma 4.2.3 to the balls.
We then know that the ellipse G(B(x0, ε)) can be covered by at most cβ(x0)−d balls of
radius β(x0)ε, where x0 denotes a center of a ball in C0. Let C1 be union of C0 and the
cover of balls of radius β(x0)ε of all the ellipses G(B(x0, ε)). So the number of balls in C1

is N1 ≤ N0 +
∑
x0 cβ(x0)−d. For some x0, we then apply Lemma 4.2.3 to the balls of radius

β(x0)ε, and conclude that each set G(B(x1, β(x0)ε)) can be covered by at most cβ(x1)−d

balls of radius β(x1)β(x0)ε.
We continue with these covers, until we arrive at a cover Cm, which can be covered

by at most Nm ≤ Nm−1 +
∑
xm cβ(xm)−d balls of radius β(x0) · ... · β(xj) · ... · β(xm−1)ε,

where the xj are the centres of the balls used in each stage of the construction. Note that
Ci ⊂ Cj for i ≤ j, since we take the union of Cj−1 and the balls centred at xj to construct
Cj . We will now show that the sub-collection C ′m of balls in Cm whose radii lie in the range
[(ρ/2)mσε, (2ρ)mε], sill covers X. To see this, let y be a point in X and consider the points

y0, y1, ..., ym with ym = y , y0 ∈ X and yj+1 = G(yj).

The above is well defined, since we assumed that X is invariant under G. Since β(x) ∈ [σ, ρ],
for all x ∈ X, we can apply Lemma 4.2.5, and conclude that there exists an n with 0 ≤ n ≤
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m− 1 such that

β(yn)β(yn+1) · · ·β(ym−1) ∈ [σρm, ρm]. (4.11)

Now if we follow the trajectory of yn under iterations of G, we get a sequence of balls as
follows: Take B(x0, ε) to be a ball in C0 that contains yn. Then choose x1 to be the center of
a ball in C1\C0 that contains yn+1, and in general, let xj be the center of a ball in Cj\Cj−1

that contains yn+j . Then eventually we get a point xm−n, which is the center of a ball of
radius β(xm−n−1) · · ·β(x0)ε in Cm−n\Cm−n−1 ⊂ Cm that contains y = ym. Furthermore,
we also have that |xj − yn+j | ≤ ρjε ≤ ε for any 0 ≤ j ≤ m − n. Thus by the continuity
result (4.10), we have that for each 0 ≤ j ≤ m− n,

1
2β(yn+j) ≤ β(xj) ≤ 2β(yn+j),

which implies that we have the bound

β(xm−n−1) · · ·β(x0)ε ∈ [2n−mβ(yn)β(yn+1) · · ·β(ym−1)ε , 2m−nβ(yn)β(yn+1) · · ·β(ym−1)ε].

But then because of (4.11), we have

β(xm−n−1) · · ·β(x0)ε ∈ [(ρ/2)mσε , (2ρ)mε].

But this means that there is a ball whose radius is in [(ρ/2)mσε , (2ρ)mε], that contains y,
and so we have found a ball in C ′m that contains y for an arbitrary point y ∈ X, so C ′m is
a cover of X.

We will now look at how many balls of C ′m are needed to cover X. The following uses the
weighted system from [Rob01, p. 443]. We assign a weight of one to the balls with centres
x0 of the N0 balls in the original cover. For every x0, we divide the weight evenly among
all the balls centred at x1 that are needed to cover the ellipse formed from the ball centred
at x0 under G. We continue in this way for each stage of the construction. Since we are
dividing the weights equally, the sum of the weights for each collection of balls centred at
xn (1 ≤ n ≤ m) is at most N0, and the sum of the weights of all the balls in Cm is at most
mN0.

Since the weights are divided equally, an upper bound on the number of balls centred
at xn+1 coming from a ball centred at xn implies a lower bound on the weights of the balls
at the n+ 1 level. The weight assigned to a ball at the nth stage is therefore at least

1
cβ(x0)d · · ·β(xn − 1)d =

(
β(x0)d · · ·β(xn−1)

)d
cn

.
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Now, if a ball centred at xn lies in C ′m then its weight must be at least

(
(ρ/2)mσ

)d
cn

≥
(
(ρ/2)mσ

)d
cm

,

and since the total number of weights of all the balls in C ′m cannot exceed mN0, the number
of balls in C ′m cannot exceed

Ñ ′m = mN0c
m(

(ρ/2)mσ
)d .

We are now finally ready to estimate the dimension of X. We have that

df (X) ≤ lim sup
m→∞

log(Ñ ′m)
− log((2ρ)mσε) = lim sup

m→∞

log(mN0σ
−d) +m log(c(ρ/2)−d)

− log(σε)−m log(2ρ)

= log(c(ρ/2)−d)
− log(ρ/2) = d

log(ρ/2) + log(4)
log(2ρ) − log(c)

log(2ρ) = d− log(c)− log(4)
log(2ρ) .

The last term can be made arbitrarily small by choosing ρ small enough, so we finally have
the result,

df (X) ≤ d. (4.12)

4.4 Growth of Volumes

We will now return to the more concrete setting of a dynamical system, and derive an ODE
that governs the evolution of volumes in phase space. This will then give us a quantity
which is the analogue of the expansion factor in Definition 4.2.2, and which we can use in
Theorem 4.3.1. The derivation we give in this section comes from Section 13.2 in [Rob01],
but we have added some additional details, and we prove some lemmas that are not given
in [Rob01].

Consider the dynamical system (4.1) and its linearisation (4.2). Then any displacement
δx

(j)
0 away from some initial point x0 will evolve according to

dδx(j)

dt
= Df(x) δx(j) , δx(j)(0) = δx

(j)
0 , (4.13)

along the trajectory x(t), where x(t) is the solution to the full system (4.1), with initial
condition x(0) = x0.
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If we have n linearly independent initial displacements δx(j)
0 , j = 1, ..., n, then the volume

of the parallelepiped spanned by these displacements is given by

Vn(0) = ||δx(1)
0 ∧ ... ∧ δx

(n)
0 ||, (4.14)

where

||δx(1)
0 ∧ ... ∧ δx

(n)
0 ||

2 := det
{(
δx

(i)
0 , δx

(j)
0
)
H

}
, (4.15)

and H is the Hilbert space in (4.1) [Tem98, p. 338]. Letting

M(t)ij :=
(
δx(i)(t), δx(j)(t)

)
H
,

the volume Vn(t) is given by

Vn(t)2 = det
(
M(t)

)
. (4.16)

We will now try to derive a differential equation that governs the growth of Vn(t) directly,
without having to know the δx(j)’s explicitly. To do this, we will first prove two short lemmas.

Lemma 4.4.1 ([Rob01, Exercise 13.8]). Suppose M is a positive definite, self-adjoint ma-
trix; then

log(det(M)) = Tr(log(M)), (4.17)

where Tr denotes the trace of a matrix.

Proof. Let A := log(M), in the sense of [Cul66], which is defined because M is invertible.
Note however that in general, the logarithm of a matrix is not unique. Fortunately, the
trace and the determinant of the logarithm of a matrix are unique [Cul66], so the result we
derive is well-defined. Then M = eA. Note that if vi is an eigenvector of A, with eigenvalue
λi, then

Mvi = eAvi = eλivi,

so A andM have the same eigenvectors, and eλi is the corresponding eigenvalue ofM . Then
since Tr(A) =

∑
i λi, and det(eA) =

∏
i e
λi , we have

det(M) = det(eA) =
∏
i

eλi = e
∑

i
λi = eTr(A) = eTr(log(M)).

Taking the logarithm of both sides gives the result.
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Lemma 4.4.2 ([Rob01, Exercise 13.8]). Suppose M(t) is a positive definite, self-adjoint
matrix; then

d

dt
Tr(log(M)) = Tr

(
M−1dM

dt

)
. (4.18)

Proof. The quantity detM(t) is just a function of t, and so we can differentiate its logarithm
using the chain rule. Thus, differentiating (4.17) with respect to t gives

d

dt
Tr(log(M)) = d

dt
log(det(M)) = 1

detM
d

dt
detM.

By Jacobi’s formula of Theorem B.2.5 we have

d

dt
detM = detM Tr

(
M−1 d

dt
M

)
.

Putting the two together gives

d

dt
Tr(log(M)) = 1

detM
d

dt
detM = Tr

(
M−1 d

dt
M

)
,

as desired.

Using the above results, we can now proceed. Where no confusion can arise, we will
usually not write that the quantities in question depend on time explicitly; however, in
what follows the vectors and matrices do depend on t. The following derivation can be
found in [Rob01, p. 336]. In order to get an equation that governs the evolution of Vn(t),
we start by taking the following derivative, using Lemmas 4.4.1 and 4.4.2:

d

dt
log(Vn(t)) = 1

2
d

dt
log(Vn(t)2) = 1

2
d

dt
log(det(M(t)))

= 1
2
d

dt
Tr(log(M(t)) = 1

2Tr
(
M−1dM(t)

dt

)
.

We will now find a suitable expression for dM
dt that will allow us to relate it back to

the linearised operator in (4.2). Let φ(i)(t), i = 1, ..., n, be an orthonormal basis for the
time-dependent subspace spanned by the δx(i)(t). Then we define

m :=
{(
φ(i)(t), δx(j)(t)

)
H

}
, (4.19)
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so that m is an n × n matrix whose components are mij =
(
φ(i)(t), δx(j)(t)

)
H
. Now since

the φ(i) are orthonormal and span the same subspace as the δx(i)(t), we can write

δx(i) =
n∑
l=1

(
δx(i), φ(l))

H
φ(l).

Thus we have

Mij =
(
δx(i), δx(j))

H
=

n∑
l=1

(
δx(i), φ(l))

H

(
φ(l), δx(j))

H

=
n∑
l=1

(mT )ilmli = (mTm)ij ,

which shows that

M = mTm, (4.20)

and M−1 = m−1(mT )−1. Furthermore, if we look at the derivative of M , by the product
rule we have

dMij

dt
=
( d
dt
δx(i)(t), δx(j)(t)

)
H

+
(
δx(i)(t), d

dt
δx(j)(t)

)
H

=
(
Df(x)δx(i)(t), δx(j)(t)

)
H

+
(
δx(i)(t), Df(x)δx(j)(t)

)
H
,

by (4.13). We can express the displacements in terms of the orthonormal basis by projecting
δx(i) onto the vectors φ(j):

δx(i) =
n∑
j=1

(δx(i), φ(j))H φ(j).

We now define

aij := (φ(i), Df(x)φ(j))H , (4.21)
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with which we can get

dMij

dt
=
(

n∑
l=1

Df(x)φ(l)(φ(l), δx(i))H ,
n∑
k=1

φ(k)(φ(k), δx(j))H

)
H

+
(

n∑
l=1

φ(l)(φ(l), δx(i))H ,
n∑
k=1

Df(x)φ(k)(φ(k), δx(j))H

)
H

=
n∑
l=1

n∑
k=1

(φ(l), δx(i))H
(
Df(x)φ(l), φ(k)

)
(φ(k), δx(j))H

+
n∑
l=1

n∑
k=1

(φ(l), δx(i))H
(
φ(l), Df(x)φ(k)

)
(φ(k), δx(j))H

=
n∑
l=1

n∑
k=1

(φ(l), δx(i))H [akl + alk](φ(k), δx(j))H .

Thus

dM

dt
= mT (aT + a)m. (4.22)

Thus using (4.20) and (4.22), we have that

2 d
dt

log(Vn(t)) = Tr
(
M−1dM

dt

)
= Tr

(
m−1(mT )−1mT (aT + a)m

)
= Tr

(
m−1(aT + a)m

)
= Tr

(
m m−1(aT + a)

)
= Tr(aT + a) = 2Tr(a),

since for any n× n matrices A and B one has Tr(AB) = Tr(BA). So

d

dt
log(Vn(t)) = Tr(a). (4.23)

Now consider the projection

Pn :=
n∑
i=1

φ(i)(φ(i), ·)H ,

that is Pnv is the projection of any v ∈ H into the subspace spanned by the φ(j) (and the
δx(j), since they span the same space).

We define the trace of a linear operator A on H as

Tr(A) :=
∞∑
i=1

(
φ(i), Aφ(i))

H
, (4.24)

where φ(i) is an orthonormal basis of H. The above is well-defined since it is indepen-
dent of our choice of orthonormal basis. To see this let ψ(i) be another orthonormal ba-
sis for H; then we have ψ(i) =

∑∞
j=1(φ(j), ψ(i))H φ(j), so then since we also have φ(i) =
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∑∞
j=1(ψ(j), φ(i))H ψ(j) we get

Tr(A) :=
∞∑
i=1

(ψ(i), Aψ(i))H =
∞∑
i=1

∞∑
j=1

∞∑
l=1

(
φ(j), ψ(i))

H

(
φ(l), ψ(i))

H
(φ(l), Aφ(j))H

=
∞∑
l=1

∞∑
j=1

(
φ(l), φ(j))

H
(φ(l), Aφ(j))H

=
∞∑
j=1

(
φ(j), Aφ(j))H .

Therefore the value of Tr(A) is the same no matter which orthonormal basis we choose.
This means that we have

Tr(Df(x)Pn) =
∞∑
i=1

(
φ(i), Df(x)Pnφ(i))

H

=
∞∑
i=1

n∑
j=1

(
φ(i), Df(x)

(
φ(j), φ(i))

H
φ(j)

)
H

=
∞∑
i=1

n∑
j=1

(
φ(i), Df(x) φ(j)

)
H

(
φ(j), φ(i))

H

=
n∑
j=1

(
φ(j), Df(x) φ(j)

)
H
.

Now, for the matrix a we have

Tr(a) =
n∑
i=1

(φ(i), Df(x)φ(i))H =
n∑
i=1

n∑
j=1

(φ(i), Df(x)φ(j))H (φ(i), φ(j))H

=
n∑
j=1

n∑
i=1

(
φ(i)(φ(i), Df(x)φ(j))H , φ(j)

)
H

=
n∑
j=1

(
φ(j), Df(x)φ(j)

)
H

= Tr(Df(x)Pn).

So we get that

d

dt
log(Vn(t)) = Tr(Df(x)Pn),

which gives us the differential equation

d

dt
Vn(t) = Vn(t)Tr(Df(x)Pn), (4.25)
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whose solution is

Vn(t) = Vn(0)e
∫ t

0 Tr(Df(x(s))Pn) ds. (4.26)

Of course the exponent can be negative or positive for different values of t, so we have to
look at the long-time average of the exponent to determine whether how the volume grows
as t gets large. We thus look at

lim sup
t→∞

1
t

∫ t

0
Tr(Df(x(s))Pn) ds. (4.27)

If the integrand is positive on average, then the volume will grow, but if the integrand is
negative on average, then the volume will decay as t→∞. To get an upper bound on this
growth rate of volumes along trajectories starting in some set A, we define

T Rn(A) := sup
x0∈A

sup
Pn(0)

lim sup
t→∞

1
t

∫ t

0
Tr(Df(x(s))Pn) ds, (4.28)

where x0 is the initial condition of x(t), and the supremum over Pn(0) is a supremum over
n-dimensional projections into H. The quantity T Rn(A) can be thought of as the maximum
growth rate of any n-dimensional volume in H which evolves along trajectories of (4.1).

Note that since we want to know how much a volume expands in phase space, the
quantity

eT Rn(A)

plays the role of the expansion factor ωn(x) of Definition 4.2.2. To be more precise, it is an
upper bound on ωn(x). Thus if T Rn(A) < 0, then we can define γ in Theorem 4.3.1 to be
γ := eT Rn(A) < 1, giving a uniform upper bound on ω)n(x) less than one.

4.5 Uniform Differentiability

In the following three sections, we will restrict our estimates to r ≤ 1. We made this choice,
since all the bounds we obtain will involve the L̇2 norm of u on the attractor A. The
calculations for r > 1 are essentially the same as for r ≤ 1, but since there is no published
bound on the r-dependence of the L̇2 norm of u for r < 1, we will omit this case.

Two more ingredients that we need in order to get a bound on the dimension of the
attractor of a dynamical system are uniform differentiability of the flow and compactness
of the linearised flow. The reason we need these ingredients is so that we can satisfy the
conditions of Theorem 4.3.1, which we want to use to get a bound on the fractal dimension
of the attractor.
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We say that the flow S(t) of (4.1) is uniformly differentiable on A, if for every u0 ∈ A
there exists a linear operator Λ(t, u0) such that for all t ≥ 0,

sup
u0,v0∈A ; 0<||u0−v0||≤ε

||S(t)v0 − S(t)u0 − Λ(t, u0)(v0 − u0)||
||v0 − u0||

→ 0 as ε→ 0 (4.29)

and

sup
u0∈A

||Λ(t, u0)||op <∞ for each t ≥ 0.

In the above || · || is the norm on the Hilbert space H on which (4.1) is defined, and || · ||op

is the induced operator norm. The operator Λ(t, u0) should be thought of as the flow of the
linearised dynamical system (4.2), or more concretely, the flow of the linearisation of the
Nikolaevskiy equation (1.4). Thus proving uniform differentiability is equivalent to proving
that an equation can be linearised and that the linearised problem is well-posed.

In what follows, we will be proving uniform differentiability for the Nikolaevskiy equation
(1.4). The approach we are taking has been developed for the 2D Navier-Stokes equations
and is based on Section 13.4 of [Rob01], following the suggestions of [Rob01, Section 17.4].
We adapted this approach to the Nikolaevskiy equation.

The linearisation of (1.4) about a solution u is given by

Ut = ∂6
xU + 2 ∂4

xU + (1− r)∂2
xU −B(U, u)−B(u, U), (4.30)

and its linear operator is then

Gu := ∂6
x + 2∂4

x + (1− r)∂2
x −B(·, u)−B(u, ·), (4.31)

where B(u, U) := u ∂xU as in (2.21). We will use the linearised equation to show that
the flow of the full equation is uniformly differentiable. Essentially, this is equivalent to
rigorously showing that (4.30) is the linearisation of equation (1.4).

We consider r ≤ 1. We begin by defining θ(t) := S(t)u0 − S(t)v0 − Λ(t, u0)(u0 − v0) =
u(t) − v(t) − U(t), where u and v satisfy the full equation (1.4) with initial conditions u0

and v0, and U satisfies the linearised equation (4.30), with U0 = u0 − v0. Then we derive
the equation that θ satisfies as follows: We insert each term in θ into its respective equation
and add them together in the order in which they appear in θ, to get

dθ

dt
= Lθ −B(u, u) +B(v, v) +B(u, U) +B(U, u),
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where L is the operator (2.17). Upon adding zero in strategic places we get

dθ

dt
= Lθ −B(u, θ)−B(u, v) +B(v, v) +B(U, u)

= Lθ −B(u, θ)−B(θ, u) +B(u, u)−B(u, v)−B(v, u) +B(v, v)

= Lθ −B(u, θ)−B(θ, u) +B(u− v, u− v).

As in Section 2.5, we define w := u − v. Now take the inner product of the above with θ,
and use the bounds on the trilinear form in Proposition B.6.3 to get

1
2
d

dt
||θ||2L̇2 +

∣∣∣∣∣∣∂3
xθ
∣∣∣∣∣∣2

L̇2 + (1− r) ||∂xθ||2L̇2 ≤ 2
∣∣∣∣∣∣∂2

xθ
∣∣∣∣∣∣2

L̇2 + `1/2 ||u0||L̇2 eC0t ||θ||L̇2

∣∣∣∣∣∣∂2
xθ
∣∣∣∣∣∣

L̇2

+ `1/2 ||w||L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣

L̇2 ||θ||L̇2 , (4.32)

where we have used the identities on the trilinear term, as well as the fact that ||u(t)||L̇2 ≤
||u0||L̇2 eC0t for some (possibly parameter-dependent) C0, which we derived in Section 2.3
where we derived uniform bounds on Galerkin solutions. Since r ≤ 1 we can drop the
second-order term with the (1 − r) coefficient. We then use our Young’s inequality as well
as inequality (B.8) with ε = 4 in the following estimate:

1
2
d

dt
||θ||2L̇2 +

∣∣∣∣∣∣∂3
xθ
∣∣∣∣∣∣2

L̇2 ≤ 2
∣∣∣∣∣∣∂2

xθ
∣∣∣∣∣∣2

L̇2 +
β`1/2 ||u0||L̇2 eC0t

2 ||θ||2L̇2 +
`1/2 ||u0||L̇2 eC0t

2β

∣∣∣∣∣∣∂2
xθ
∣∣∣∣∣∣2

L̇2

+ `1/2

2 ||θ||2L̇2 + `1/2

2 ||w||2L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2

=
(

2 +
`1/2 ||u0||L̇2 eC0t

2β

) ∣∣∣∣∣∣∂2
xθ
∣∣∣∣∣∣2

L̇2 +
(
`1/2

2 +
β`1/2 ||u0||L̇2 eC0t

2

)
||θ||2L̇2

+ `1/2

2 ||w||2L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2

≤
(

1
2 +

`1/2 ||u0||L̇2 eC0t

8β

) ∣∣∣∣∣∣∂3
xθ
∣∣∣∣∣∣2

L̇2 +
(
C(t) + `1/2

2 +
β`1/2 ||u0||L̇2 eC0t

2

)
||θ||2L̇2

+ `1/2

2 ||w||2L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2 ,

for arbitrary β > 0 where

C(t) =
(

8 +
2`1/2 ||u0||L̇2 eC0t

β

)
.

Choosing β = `1/2 ||u0||L̇2 eC0t (technically Young’s inequality is stated with β as a constant,
but it also works for nonconstant β, as long as it remains positive), we can drop all the
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∣∣∣∣∂3
xθ
∣∣∣∣

L̇2 terms; and if we define:

G(t) := 2

C(t) + `1/2

2 +
` ||u0||2L̇2 e2C0t

2


we have

d

dt
||θ||2L̇2 ≤ G ||θ||2L̇2 + C2 ||w||2L̇2

∣∣∣∣∣∣∂2
xw
∣∣∣∣∣∣2

L̇2 , (4.33)

where C2 = `1/2. Using Gronwall’s inequality we get

||θ(t)||2L̇2 ≤ C2e
∫ t

0 G(s) ds
∫ t

0
||w(s)||2L̇2

∣∣∣∣∣∣∂2
xw(s)

∣∣∣∣∣∣2
L̇2 e
−
∫ s

0 G(t′) dt′ ds,

since θ(0) = 0. Thus since e−
∫ t

0 G(t′) dt′ ≤ 1 we get

||θ(t)||2L̇2 ≤ C2e
∫ t

0 G(s) ds
∫ t

0
||w(s)||2L̇2

∣∣∣∣∣∣∂2
xw(s)

∣∣∣∣∣∣2
L̇2 ds

≤ C̃2e
∫ t

0 G(s) ds
∫ t

0
||w(s)||2L̇2

∣∣∣∣∣∣∂3
xw(s)

∣∣∣∣∣∣2
L̇2 ds, (4.34)

where we have used a Poincaré inequality (B.12), and C̃2 := (`/2π)2C2.
Recall that during the proof of uniqueness of solutions of the Nikolaevskiy equation (see

equation (2.25) in Section 2.5), we got an estimate similar to

||w||4L̇2 ≤ ||w0||4L̇2 eC3t,

which we got from the inequality (2.23)

d

dt
||w||2L̇2 + C4

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ≤ C5(C6 + 2 ||u||2L̇2 + ||v||2L̇2) ||w||2L̇2 ,

where 0 ≤ C5(C6 + 2 ||u||2L̇2 + ||v||2L̇2) ≤ C3 is some constant to bound the time-dependent
exponent in (2.25). We multiply the above expression by ||w||2L̇2 to get:

1
2
d

dt
||w||4L̇2 + C4

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ||w||2L̇2 ≤ C5
(
C6 + 2 ||u||2L̇2 + ||v||2L̇2

)
||w||4L̇2

≤ C5

(
C6 + 2||u||2

L∞(0,T ;L̇2)
+ ||v||2

L∞(0,T ;L̇2)

)
||w0||4L̇2 eC3t,
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which we integrate over time to get

1
2 ||w||

4
L̇2 + C4

∫ t

0

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ||w||2L̇2 ds

≤
[
C5
C3

(
C6 + 2||u||2

L∞(0,T ;L̇2)
+ ||v||2

L∞(0,T ;L̇2)

)
(eC3t − 1) + 1

2

]
︸ ︷︷ ︸

=: C4G2(t)

||w0||4L̇2 .

We can drop the ||w||4L̇2 term to the left, and get

∫ t

0

∣∣∣∣∣∣∂3
xw
∣∣∣∣∣∣2

L̇2 ||w||2L̇2 ds ≤ G2(t) ||w0||4L̇2 ,

which we insert into (4.34), to get

||θ(t)||2L̇2 ≤ C̃2e
∫ t

0 G(s) dsG2(t) ||w0||4L̇2 .

Taking the square root of both sides and dividing by ||w0||L̇2 gives

||u− v − U ||L̇2

||u0 − v0||L̇2
≤
√
C2e

∫ t
0 G(s) dsG2(t) ||u0 − v0||L̇2 .

Now taking the limit as v0 → u0 shows the uniform differentiability of the flow of the Niko-
laevskiy equation (1.4), where U(t) plays the role of Λ(t, u0)(u0 − v0) in (4.29).

4.6 Compactness

In this section we will show that the flow of the linearised equation Λ(t, u0) (4.30) is com-
pact on A. We will do this by showing that any uniformly bounded sequence Ũn ∈ L̇2, the
domain of Λ(t, u0), maps to a uniformly bounded sequence in Ḣ1 under Λ(t, u0) for any
finite t. We will then use the Rellich-Kondrachov compactness theorem to conclude that the
sequence Λ(t, u0)Ũn must be pre-compact in L̇2.
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In order to show compactness, we again consider the case r ≤ 1. We then take the inner
product of equation (4.30) with U to get

1
2
d

dt
||U ||2L̇2 = −

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 − (1− r) ||∂xu||2L̇2 −
∫ `

0
U ∂xu U + u ∂xU U dx

≤ −
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 +
∫ `

0
Uu ∂xU dx

≤ −
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 + `1/2 ||∂xu||L̇2 ||U ||L̇2 ||∂xU ||L̇2

≤ −
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 + Cα

2 ||U ||
2
L̇2 + C

2α ||∂xU ||
2
L̇2 ,

where C = `1/2R1, where R1 is the bound on ∂xu in L̇2 from (3.4). Picking α = C/2 and
using Young’s inequality and inequality (B.8) we get

1
2
d

dt
||U ||2L̇2 ≤ −

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣2

L̇2 + 3
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 +
(
C2

4 + 1
4

)
||U ||2L̇2

≤ −
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + 3
η

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣2

L̇2 +
(

3η2

4 + C2

4 + 1
4

)
||U ||2L̇2 . (4.35)

So choosing η = 3 we get

d

dt
||U ||2L̇2 ≤ C1 ||U ||2L̇2 ,

where C1 =
(
27 + C2

2 + 1
2

)
, which by Gronwall’s inequality implies that

||U(t)||2L̇2 ≤ ||U(0)||2L̇2 eC1t, (4.36)

for any 0 ≤ t, so that U ∈ L∞(0, T ; L̇2). Returning once more to inequality (4.35), choosing
η = 6 and T > 0 and integrating over time from 0 to T we get

||U(T )||2L̇2 +
∫ T

0

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣2

L̇2 dt ≤
(

108 + C2

2 + 1
2

)∫ T

0
||U ||2L̇2 dt+ ||U(0)||2L̇2 .

Thus, using (4.36), we have

∫ T

0

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣2

L̇2 dt ≤
[

1
C1

(
108 + C2

2 + 1
2

)
eC1T − 1

C1

(
108 + C2

2 + 1
2

)
+ 1

]
︸ ︷︷ ︸

C̃

||U(0)||2L̇2 .

(4.37)
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This implies that U ∈ L2(0, T ; Ḣ3). We now just need one more bound on U to get the
result. We take the inner product of equation (4.30) with −∂2

xU to get

1
2
d

dt
||∂xU ||2L̇2 +

∣∣∣∣∣∣∂4
xU
∣∣∣∣∣∣2

L̇2 − 2
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + (1− r)
∣∣∣∣∣∣∂2

xU
∣∣∣∣∣∣2

L̇2 = b(u, U, ∂2
xU) + b(U, u, ∂2

xU).

Dropping the (1 − r) term and applying our inequalities on the trilinear form given in
Proposition B.6.3, we get

1
2
d

dt
||∂xU ||2L̇2 ≤ −

∣∣∣∣∣∣∂4
xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 +
∫ `

0
(u ∂xU + U ∂xu)∂2

xU dx

= −
∣∣∣∣∣∣∂4

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 −
∫ `

0
uU ∂3

xU dx

≤ −
∣∣∣∣∣∣∂4

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + C2 ||∂xU ||L̇2

∣∣∣∣∣∣∂3
xU
∣∣∣∣∣∣

L̇2

≤ −
∣∣∣∣∣∣∂4

xU
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 + C2
2β ||∂xU ||

2
L̇2 + C2

2 β
∣∣∣∣∣∣∂3

xU
∣∣∣∣∣∣2

L̇2 ,

where C2 = `1/2R, and we have used Young’s inequality. That is, `1/2 ||u||L̇2 ≤ C2. Then we
can use (B.3.5) to get

1
2
d

dt
||∂xU ||2L̇2 +

∣∣∣∣∣∣∂4
xU
∣∣∣∣∣∣2

L̇2 ≤
1
η

(
βC2

2 + 2
) ∣∣∣∣∣∣∂4

xU
∣∣∣∣∣∣2

L̇2 +
[
η2

4

(
βC2

2 + 2
)

+ C2
2β

]
||∂xU ||2L̇2 .

(4.38)

If we let η = 3 and choose β = 2/C2, the
∣∣∣∣∂4

xU
∣∣∣∣2

L̇2 terms cancel and we get

d

dt
||∂xU ||2L̇2 ≤

(
27
4 + C2

2
4

)
||∂xU ||2L̇2 .

Letting C3 :=
(

27
4 + C2

4

)
, we integrate the above expression over time from t0 to t to get

||∂xU(t)||2L̇2 ≤ C3

∫ t

t0
||∂xU ||2L̇2 dt+ ||∂xU(t0)||2L̇2 .

Now using Poincaré’s inequality with constant C4 := (`/2π)2 and using inequality (4.37)
we get

||∂xU(t)||2L̇2 ≤ C3C
2
4 C̃ ||U(0)||2L̇2 + ||∂xU(t0)||2L̇2 ,
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which we can integrate over t0 from 0 to T to get

T ||∂xU(t)||2L̇2 ≤ TC3C
2
4 C̃ ||U(0)||2L̇2 +

∫ T

0
||∂xU(t0)||2L̇2 dt0

≤ TC3C
2
4 C̃ ||U(0)||2L̇2 + C2

4

∫ T

0

∣∣∣∣∣∣∂3
xU(t0)

∣∣∣∣∣∣2
L̇2 dt0

≤ TC3C
2
4 C̃ ||U(0)||2L̇2 + C2

4 C̃ ||U(0)||2L̇2 .

We therefore have

||∂xU(t)||2L̇2 ≤ C3C
2
4 C̃ ||U(0)||2L̇2 + C2

4 C̃

T
||U(0)||2L̇2 . (4.39)

Thus for any finite t ≤ T , if the initial condition U(0) is bounded in L̇2, then ∂xU(t) is also
bounded in L̇2. This is valid for any t, since we can always choose T large enough. However,
note that C̃ depends on T , so we cannot take the limit as T →∞.

We will now use this to show compactness. Let Λ(t, u0) be the flow associated with U(t).
That is, Λ(t, u0)U(0) = U(t) with initial condition U(0) ∈ L̇2. Then if Un(0) is a uniformly
bounded sequence in L̇2 such that ||Un(0)||L̇2 ≤ M for some M > 0 and all n ∈ N, we can
use inequality (4.39) to conclude that

||∂xΛ(t, u0)Un(0)||2L̇2 = ||∂xU(t)||2L̇2 ≤ C3C
2
4 C̃ ||U(0)||2L̇2 + C2

4 C̃

T
||U(0)||2L̇2

≤ C3C
2
4 C̃M

2 + C2
4 C̃

T
M2.

Thus the sequence Λ(t, u0)Un(0) is also uniformly bounded in Ḣ1, and so by the Rellich-
Kondrachov compactness theorem [Eva15, p. 288], the sequence Λ(t, u0)Un(0) must be pre-
compact in L̇2. Therefore Λ(t, u0) is a compact operator from L̇2 to L̇2 for any finite t > 0.

4.7 The Dimension of the Attractor

In this section we will state the main theorem of this chapter, concerning the dimension
of the attractor of a dynamical system. We will then prove that the growth rate T Rn(A)
(4.28) of the Nikolaevskiy equation (1.4) satisfies the necessary bounds. Furthermore we
will attempt to get the tightest possible bounds on the scaling of the attractor dimension
with r and `.

Theorem 4.7.1 (Dimension of the Attractor [Rob01, p. 341]). Suppose that the flow S(t)
of (4.1) is uniformly differentiable on A, and that for any u0 ∈ A there exists a t0 such
that Λ(t, u0) is compact for all t ≥ t0. If T Rn(A) < 0, then the fractal dimension df (4.3)
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satisfies

df (A) ≤ n.

The above theorem is very general, and the results from the previous sections in this
chapter constitute the proof of this theorem. Specifically, the map F in Theorem 4.3.1 is
the flow S(t) of equation (1.4), and DF is the flow of the linearised system (4.30) given by
Λ(t, u0). The previous two sections proved that Λ(t, u0) exists and is compact. In this section
we will apply this general theorem to equation (1.4). Since we already have compactness
and uniform differentiability, we only need to show the condition T Rn(A) < 0, and find the
smallest n for which this is true. We will define γ from Theorem 4.3.1 to be γ := eT Rn(A) < 1.

The highest order term in (1.4) will play an important role, as it is the term which we
can make ‘negative enough’ to make T Rn(A) negative. We will thus derive some bounds
that let us deal with it concretely, and relate it back to dimension.

To bound (4.28), we will get some bounds on powers of the projection of the Laplacian.
Recall that the projection onto an n-dimensional subspace of a Hilbert space H is

Pn :=
n∑
i=1

φi(φi, ·), (4.40)

where φi is an orthonormal basis that spans the space of the volume that we are studying,
and that for any linear operator A : H → H, the trace is defined as

Tr(APn) :=
n∑
i=1

(φi, Aφi)H . (4.41)

Lemma 4.7.2 (Bounds on Traces of an operator). Let Pn be a projection onto an n-
dimensional subspace in the Hilbert space H. Then for any symmetric operator A whose
eigenvalues can be ordered, λ1 ≤ λ2 ≤ λ3 ≤ ..., and whose eigenvectors form an orthonormal
basis of H, we have

Tr(APn) ≥ λ1 + ...+ λn, (4.42)

where λ1, ..., λn are the n smallest eigenvalues of A.

Proof. By assumption there exists an orthonormal set of eigenvectors wk, k ∈ N of A, which
form an orthonormal basis of H. We can thus express each φi in the definition of Pn in terms
of this basis as

φi =
∞∑
k=1

(φi, wk)wk.
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Thus

Tr(APn) =
n∑
i=1

∞∑
k=1

λk|(φi, wk)|2 =
∞∑
k=1

λk

n∑
i=1
|(φi, wk)|2.

We want to show that

Tr(APn) ≥
n∑
i=1

λi.

Note that λi ≤ λi+1. Also, note that since ||φi|| = 1 for each i, we have

∞∑
k=1
|(φi, wk)|2 = 1,

which implies that

n∑
k=1
|(φi, wk)|2 ≤ 1, i = 1, ..., n

and that,

∞∑
k=1

n∑
i=1
|(φi, wk)|2 = n.

Now the trace satisfies

Tr(APn) =
∞∑
k=1

λk

n∑
i=1
|(φi, wk)|2

=
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 +

∞∑
k=n+1

λk

n∑
i=1
|(φi, wk)|2

≥
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 + λn+1

∞∑
k=n+1

n∑
i=1
|(φi, wk)|2

=
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 + λn+1

( ∞∑
k=1

n∑
i=1
|(φi, wk)|2 −

n∑
k=1

n∑
i=1
|(φi, wk)|2

)
,

by the ordering of the eigenvalues. But then using the fact that
∑∞
k=1

∑n
i=1 |(φi, wk)|2 =∑n

k=1 1 = n, we have

Tr(APn) ≥
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 + λn+1

(
n∑
k=1

1−
n∑
k=1

n∑
i=1
|(φi, wk)|2

)

=
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 +

n∑
k=1

λn+1

(
1−

n∑
i=1
|(φi, wk)|2

)
.
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But λn+1 ≥ λk for each k ≤ n+ 1, and so we have

Tr(APn) ≥
n∑
k=1

λk

n∑
i=1
|(φi, wk)|2 +

n∑
k=1

λk

(
1−

n∑
i=1
|(φi, wk)|2

)

=
n∑
k=1

λk.

Corollary 4.7.3. Let A := (−1)m∂2m
x , and recall that the eigenvalues of A are just λ2j−1 =

λ2j = (2πj/`)2m (so they have multiplicity two). Then A satisfies the conditions of the above
lemma. For the special cases m = 1, m = 2 and m = 3, we have that

Tr(−∂2
xP2n) ≥ 2

(2π
`

)2 (n(n+ 1)(2n+ 1)
6

)
,

T r(∂4
xP2n) ≥ 2

(2π
`

)4
(

6n5 + 15n4 + 10n3 − n
30

)
,

and

Tr(−∂6
xP2n) ≥ 2

(2π
`

)6
(

6n7 + 21n6 + 21n5 − 7n3 + n

42

)
,

respectively.

Proof. For the case
∑
j j

2, the formula is well known. For the other cases we have [Bea96]

n∑
j=1

j4 = 6n5 + 15n4 + 10n3 − n
30 ,

and
n∑
j=1

j6 = 6n7 + 21n6 + 21n5 − 7n3 + n

42 .

Thus

Tr(∂4
xP2n) ≥

2n∑
j=1

λj = 2
n∑
j=1

(2πj
`

)4

= 2
(2π
`

)4 6n5 + 15n4 + 10n3 − n
30 ,
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and

Tr(−∂6
xP2n) ≥ 2

2n∑
j=1

λj =
n∑
j=1

(2πj
`

)6

= 2
(2π
`

)6 6n7 + 21n6 + 21n5 − 7n3 + n

42 .

We will now show that the trace of the operator of the Nikolaevskiy equation is negative
for large enough n. Using the definition (4.41) of the trace of the linearised operator of
(1.4), it is given by

Tr(GuPn) =
n∑
i=1

[
(φi, ∂6

xφi) + 2(φi, ∂4
xφi) + (1− r)(φi, ∂2

xφi) + b(φi, φi, u)
]
, (4.43)

since b(φi, u, φi)+b(u, φi, φi) = −b(φi, φi, u). Note that if we can bound Tr(GuPn) uniformly,
such that the bound does not depend on t, u0 or the projection Pn, then this immediately
implies a bound on T Rn(A), for the dynamical system defined by equation (1.4).

Case 1, r < 1:

Sine we are interested in the chaotic regime of equation (1.4), we will therefore assume
that r`2 is large, which will allow us to neglect some of the additive constants in our bounds.
We will now proceed with the derivation. We start with (4.43). This time, we will bound
the nonlinear term as follows: Using Proposition B.6.3 we get

|b(φi, φi, u)| =
∣∣∣∣∣−1

2

∫ `

0
(φi)2 ∂xu dx

∣∣∣∣∣ ≤ `1/2

2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 ||φi||2L̇2 (4.44)

= `1/2

2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 ≤
`1/2

2 R2,

for large enough t, since φi is a unit vector. Then we can bound the inner products in the
trace as

(
φi,Guφi

)
≤ −

∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xφi
∣∣∣∣∣∣2

L̇2 − (1− r) ||∂xφi||2L̇2 + `1/2

2 R2

≤
(
−1 + 1

σ

) ∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + (−1 + σ + r) ||∂xφi||2L̇2 + `1/2

2 R2.
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Then with σ = 1 + rp for 0 < p ≤ 1 arbitrary, using inequality (B.7) we have

(
φi,Guφi

)
≤
(
−1 + 1

1 + rp

) ∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + (rp + r) ||∂xφi||2L̇2 + `1/2

2 R2

≤ −rp

1 + rp

∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + 2rp ||∂xφi||2L̇2 + `1/2

2 R2

≤
(
−rp

1 + rp
+ 2η2rp

4

) ∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + 2rp

η
||φi||2L̇2 + `1/2

2 R2,

for η > 0 arbitrary. Using the fact that φi is a unit vector and letting η2 = 1/(1 + rp) we
get

(
φi,Guφi

)
≤
( −rp

2(1 + rp)

) ∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + 2rp
√

1 + rp + `1/2

2 R2. (4.45)

Then if we take the limit p→ 0, and sum over i we get:

Tr(GuP2n) ≤
2n∑
i=1

[
−1

4

∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + 2
√

2 + `1/2

2 R2

]
,

which by Corollary 4.7.3 is bounded by

Tr(GuP2n) ≤ 2n
[
2
√

2 + `1/2

2 R2

]
− 1

2

(2π
`

)6 6n7 + 21n6 + 21n5 − 7n3 + n

42

≤ 2n
[
2
√

2 + `1/2

2 R2

]
− 1

2

(2π
`

)6 6n7

42 .

Then the trace is less than zero if

n >
`

2π
(
14
[√

32 + `1/2R2
])1/6

.

In the present work, we are generally interested in the large system limit. That is, the limit
in which the number of unstable modes is large enough to capture the full PDE behaviour.
Recall that the number of unstable modes (the number of modes in the unstable band of
the dispersion relation) is Nunstable ∼ (

√
r`)/(2π). Thus we will assume that

√
r` is large

and then, since R2 = O(r7/8`3), we have an upper bound on the dimension of

df (A) ≤ `

2π
(
14
[√

32 + `1/2R2
])1/6

= O(r7/48`19/12). (4.46)

This gives the bound for small r. The bound (4.46), gives us a scaling with `, but really,
it does not give us a scaling with r. Deriving such a scaling is difficult, because it is not
true, in general, that limr→0 df (A) = 0. The reason for this is that we know that for large
enough

√
r`, the system is in the chaotic regime for any r > 0. Thus the Poincaré-Bendixson
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theorem [Per00] tells us that the dimension must be greater than 2 for r > 0. This lower
bound on the dimension is reflected in our derivation by the fact that our bound for the
attractor contains an additive constant, independent of r.

Case 2, r = 1:

Beginning with a term in (4.43) and using the bound on b(φi, φi, u) (4.44) we get

(
φi,Guφi

)
= (φi, ∂6

xφi) + 2(φi, ∂4
xφi) + (1− r)(φi, ∂2

xφi) + b(φi, φi, u)

≤ −
∣∣∣∣∣∣∂3

xφi
∣∣∣∣∣∣2

L̇2 + 2
∣∣∣∣∣∣∂2

xφi
∣∣∣∣∣∣2

L̇2 + `1/2
∣∣∣∣∣∣∂2

xu
∣∣∣∣∣∣

L̇2

≤
(
−1 + 2

η

) ∣∣∣∣∣∣∂3
xφi
∣∣∣∣∣∣2

L̇2 + η2

2 ||φi||
2
L̇2 + `1/2R2,

where we have used integration by parts, Young’s inequality, and inequality (B.8). So if we
note that φi is a unit vector and we choose, for instance η = 4, and sum over i we have

Tr(GuP2n) ≤ 2
(
8 + `1/2R2

)
n−

(
6n7 + 21n6 + 21n5 − 7n3 + n

42

)(2π
`

)6
.

For any given value of `, we can thus find an n large enough, such that the above expression
is less than zero. Specifically, if we assume that ` is large, then the above shows that for
r = 1 the dimension of the attractor can be bounded by

df (A) = O(`19/12),

by the same reasoning as in the first case.
The above is of course the same scaling as in (4.46) and so the bound (4.46) holds for

all 0 < r ≤ 1.
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Chapter 5

Numerical Methods

In this chapter, we will describe the numerical tools that we used to compute the solutions of
the Nikolaevskiy equation. We will also explain some procedures that have been developed
to compute the dimension of a dynamical system in general. The concept of Lyapunov
exponents will play a vital role in this chapter. Since, as we have seen, the dimension of the
attractor of the Nikolaevskiy equation (1.4) is finite (4.46), we can expect the dynamics of
(1.4) to resemble that of a finite-dimensional dynamical system on Rn. Thus it is reasonable
to assume that the same techniques that work for finite-dimensional systems will also work
for (1.4), after possibly some minor modifications.

5.1 Lyapunov Exponents

One characteristic of chaotic systems is that even though the long-term behaviour of so-
lutions is bounded (the attractor lies in an absorbing ball), the solutions still depend sen-
sitively on initial conditions. This means that on average, solutions starting close to each
other locally diverge exponentially fast.

Consider the dynamical system (4.1)

dx(t)
dt

= f
(
x(t)

)
.

We can ask how rapidly trajectories starting at the points x and x̃ separate if x and x̃
are close. We will now define Lyapunov exponents, which will allow us to make this more
precise.

A Lyapunov exponent (LE) is a scalar µ that measures the rate at which nearby trajec-
tories separate. Suppose x̃(t) = x(t) + εy(t), where y(t) is some vector in the direction of
separation of x̃ and x, and ε is a small scalar. Then we have

d

dt
(x̃− x) = ε

dy

dt
= f

(
x(t) + εy(t)

)
− f

(
x(t)

)
.
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Assuming f is differentiable with respect to x(t), this becomes

ε
dy

dt
= f

(
x(t) + εy(t)

)
− f

(
x(t)

)
= f

(
x(t)

)
− f

(
x(t)

)
+ εDf

(
x(t)

)
y(t) +O(ε2),

where Df is the Jacobian or Fréchet derivative of f as in the linearization of (4.1). Taking
the limit as ε→ 0 gives [Mei17, p. 239]

dy

dt
= Df

(
x(t)

)
y(t).

In fact, this shows that the separation vector between two infinitesimally close initial con-
ditions evolves exactly according to the linearisation (4.2) of (4.1).

To compute Lyapunov exponents, we want to know how fast ||y(t)|| grows, where || · || is
the norm on the space the system lives in. Specifically, we are interested in cases when ||y(t)||
grows (or decays) exponentially fast. One thus defines the Lyapunov exponent associated
with the vector y(t) as follows [PP16, p. 12]:

Definition 5.1.1 (Lyapunov Exponents). Let x(t) be a solution to (4.1), and let y(t) be a
solution to (4.2) in the tangent space of x(t), then the Lyapunov exponent (LE) µ of the
trajectory x(t) in the direction of y(t) is defined by

µ := lim sup
t→∞

log (||y(t)||)
t

. (5.1)

The set of µ computed from all y(t) in the tangent space of x(t) is called the Lyapunov
spectrum (LS) of x(t).

The reason for the logarithm is that, intuitively, ||y(t)|| ∼ ||y0||eµt on average, as is
certainly the case for linear systems where the coefficient matrix is constant. We are taking
the lim sup here because the above limit may not be unique [Mei17, p. 241] and we are
generally interested in the maximum growth rate in a given direction.

In general, in an n-dimensional Hilbert space H (where n may be infinite), we can have
at most n distinct LEs for some trajectory x(t). Since the LEs give the growth rate in a
certain direction, we will also need the concept of a Lyapunov vector (LV) [Mei17, p. 243].
The LVs, if they exist, are a set of linearly independent vectors {y1(t), y2(t), ..., yn(t)} which
are solutions to the linearised dynamical system (4.2) which are elements of the tangent
space of x(t), such that

∑
j

µj :=
∑
j

lim sup
t→∞

log (||yj(t)||)
t

is minimized. We call such a set of vectors a Lyapunov basis. In this text, we will always
assume that the LEs and LVs exist and are well defined for the system that we are working
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with, and we will always order the LEs from largest to smallest

µ1 ≥ µ2 ≥ ... ≥ µn.

Another assumption that we will make is that the LEs are the same no matter what tra-
jectory x(t) we choose. For most systems of interest this is true for almost every trajectory,
by Oseledets’ theorem [Ose68]. For our system, LEs and LVs are assumed to exist and to
be independent of initial condition. It should be noted, however, that these assumptions
cannot always be made, and in fact, there are examples of systems for which the LVs do
not exist [OY08], because the limit in (5.1) does not exist and we really have to take the
lim sup instead.

We will end this section with a useful property of LEs, which we can later exploit in the
computation of these numbers.

Proposition 5.1.2. Let c1 and c2 be scalars, and let y1(t) and y2(t) be linearly independent
and evolve according to the linearisation (4.2) along some trajectory x(t). Let µ1 and µ2 be
the LEs computed from y1(t) and y2(t) along this trajectory x(t). Then

lim sup
t→∞

log(||c1y1(t) + c2y2(t)||)
t

= max{µ1, µ2}. (5.2)

For a proof see [Mei17, p. 242]. Intuitively, the above result is true by basic properties
of logarithms, and from the fact that the LV associated with max{µ1, µ2} has a component
along the vector c1y1(t)+c2y2(t), since it must have a component along at least one of y1(t)
or y2(t).

5.2 Computing Lyapunov Exponents

In this section we will give the algorithm that we used to compute the Lyapunov spectrum
of (1.4). Several algorithms have been proposed to compute the LEs of a dynamical system
[GPT+07, EP98, SN79, PC89]. Most of them are based on [SN79]. Even though Shimada
and Nagashima [SN79] formulated their algorithm in terms of a finite-dimensional system,
it works perfectly well for our infinite-dimensional system too. The reason is that we ap-
proximate it by a finite-dimensional system anyway, because we can only compute a finite
number of Fourier modes.

The idea for computing the first n LEs is simple, and we will outline it here: Consider
an arbitrary vector v1(t) ∈ H that evolves under the flow of (4.2). With probability one
it contains a component along y1(t), the initial condition of the LV corresponding to the
largest LE. Thus, (5.2) implies that with probability one,

lim sup
t→∞

log(||v1(t)||)
t

= lim sup
t→∞

log(||y1(t)||)
t

= µ1.
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Similarly, if we consider a time-dependent plane spanned by two linearly independent vectors
v1(t) and v2(t), then with probability one the vectors will contain components along the
LVs y1(t) and y2(t), corresponding to the largest two LEs. Thus the ellipse, defined by v1(t)
and v2(t) will expand at an exponential rate µ1 in the direction of y1(t) and at a rate µ2

in the direction of y2(t) under the flow of (4.2). Thus the area of the ellipse will grow at a
rate of µ1 + µ2, and we find

lim sup
t→∞

log(||v1 ∧ v2||)
t

= lim sup
t→∞

log(||y1 ∧ y2||)
t

= µ1 + µ2,

where ∧ denotes the outer product [Tem98] and ||v1 ∧ v2|| is the area of the parallelogram
defined by v1(t) and v2(t) (which is proportional to the area of the disc defined by these
vectors). Continuing along this line of reasoning, we get that the volume of the parallelepiped
defined by n linearly independent vectors v1(t), ..., vn(t) grows at a rate proportional to the
sum of the largest n LEs under the flow of (4.2), that is,

lim sup
t→∞

log(||v1 ∧ ... ∧ vn||)
t

= lim sup
t→∞

log(||y1 ∧ ... ∧ yn||)
t

=
n∑
j=1

µj . (5.3)

So in principle, to compute n LEs we could just follow the evolution of volumes under
the flow of the linearised dynamical system. The problem with this, however, is that with
probability one, each of the vectors vj(t) contains a component along y1(t). This means that
the parallelepiped defined by the vj(t)s will become very ‘stretched’ and ‘thin’ after a short
time. Speaking more precisely,

||v1(t) ∧ ... ∧ vn(t)|| =
√

det{M(t)}, (5.4)

where M(t) is the matrix with components Mij(t) := (vi(t), vj(t)) and (·, ·) is the inner
product of H. Thus computing this volume becomes unstable as the vj(t) become close
to linearly dependent and their norm grows exponentially. Thus the matrix M(t) becomes
ill-conditioned, and so in practice computing the volume is not feasible for larger times.

The way we can get around this difficulty is by periodically re-orthonormalizing the
vectors vj(t), using a QR or Gram-Schmidt algorithm. As long as we keep track of how
much each vector grew, we can compute better and better approximations to the LEs. One
advantage of this approach is that we don’t have to compute the LEs in sequence and can
actually compute all of them simultaneously. Another advantage is that since we are already
performing a Gram-Schmidt procedure, which is equivalent to reshaping the parallelepiped
into a rectangular box, it becomes very easy to compute the volume, since we just have to
take the product of the lengths of the orthogonalized vectors.
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We will now give the specific algorithm, based on [PC89], which we used for (1.4), with
the specific norm and L̇2 inner product. The flow of the linearised Nikolaevskiy equation
(4.30) is denoted by Λ(t).

Algorithm 1: Algorithm for computing the largest n Lyapunov exponents of (1.4)
Input : Linearly independent vectors v1, ..., vn, final time Tmax, time increment ∆t
Output: Largest n LEs µ1, ..., µn.

1 while T < Tmax do
2 vj = Λ(∆t)vj Evolve the vectors for a time ∆t.
3 T = T + ∆t Update the current time
4 for j=1:n do
5 ṽj = vj −

∑j−1
i=1

(vi,vj)
(vi,vi)vi Do ‘Gram-Schmidt’

6 end
7 Sj = Sj + log(||ṽj ||L̇2) Add the current length to the previous lengths
8 µj = Sj/T Compute the LE
9 vj = ṽj/ ||ṽj ||L̇2 Normalize the vectors

10 end

Some more notes about the above algorithm are in order. We have written ‘Gram-
Schmidt’ in the algorithm, because we performed the orthogonalization with a (modified)
Gram-Schmidt algorithm [TB97, p. 58]. One could however also do this step using a QR
factorization, in which case the LEs are the logarithms of the time-averaged diagonal ele-
ments of the ‘R’ matrix of the QR factorization [GPT+07]. We found that using QR instead
of an explicit Gram-Schmidt algorithm does not speed up the computation.

As we will discuss in the section on the numerical procedures, most of the numerical steps
in obtaining a solution to (1.4) are done in Fourier space, which means that one could also
do this orthogonalization on the Fourier transform of the solution, using the inner product
of the Fourier coefficients of the function. This would have the advantage of reducing the
number of fast Fourier transforms one has to perform, but we found that the computation
becomes unstable when performed in this way. For this reason we computed all the inner
products in the above algorithm using L̇2 inner products in real space.

5.3 Kaplan-Yorke Dimension

We will now describe a procedure for calculating the fractal dimension of an attractor
that makes use of LEs. Although there are procedures for calculating the dimension of an
attractor using the definition (4.3) directly [Mol93], they tend to scale badly with dimension,
as the number N of boxes required to cover a set in Rm scales as a powers of m. For this
reason, it would be desirable to be able to calculate the fractal dimension of the attractor
using a less computationally costly method. Some such methods are proposed in [KY79]
and [SBH99], which use invariants of the flow of a dynamical system (4.1) to estimate the
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fractal dimension of the attractor. We will be using the approach proposed by Kaplan and
Yorke [KY79], which uses the Lyapunov exponents of the system to get an upper bound on
the attractor dimension. This approach is desirable since it only requires the computation of
LEs, which means that the computational cost only scales linearly with the true dimension
of the attractor.

Kaplan and Yorke proposed the following formula:

Definition 5.3.1 (Kaplan-Yorke Formula [KY79]). Let the Lyapunov exponents µ1 ≥ ... ≥
µj ≥ ... be ordered as usual, from largest to smallest. Furthermore, assume that the dynam-
ical system is dissipative and that it is ergodic, so that the LEs are equal for all trajectories,
and solutions remain bounded. Since the system is dissipative, the sum of LEs is less than
zero. Let ñ be the smallest integer such that

ñ∑
j=1

µj < 0.

Then the Kaplan-Yorke formula for the dimension of the attractor A of (4.1) is

dKY := ñ− 1 +
∑ñ−1
j=1 µj

−µñ
. (5.5)

The Kaplan-Yorke conjecture states that the above formula exactly gives the fractal
dimension (4.3) of A [KY79]. For this reason, the quantity (5.5) is sometimes called the
Kaplan-Yorke dimension of A. We will proceed to give a heuristic argument of why
this should be true, but a rigorous proof has not yet been found. It can however be shown
rigorously that (5.5) gives an upper bound on the fractal dimension (4.3) [Hun96]. The
rigorous proof is essentially exactly what we did in Chapter 4.

We will give a heuristic argument for the Kaplan -Yorke conjecture. The intuition [KY79]
is as follows: Suppose our dynamical system hasM LEs that are ordered from most positive
to most negative (as usual) µ1 ≥ ... ≥ µj ≥ ... ≥ µM . For any n ∈ {1, ...,M}, if we take a
parallelepiped spanned by the corresponding first n LVs, then its volume V (t), in the sense
of (5.4), at time t is given by:

V (t) =
n∏
j=1

(
aeµjt

)
= ane(µ1+...+µn)t,

where a is the side length, and we have chosen a cube as the initial volume V (0). Clearly, if
µ1 + ...+ µn < 0, then the volume contracts, so V (t)→ 0 as t→∞. Thus we can estimate
the evolution of the volume of an n-dimensional cube in the basin of attraction of A. In
particular, if we cover A by an ε-cover formed from a lattice of cubes of side length ε as
in Section 4.2, then we can study its evolution under the flow of the system. To do this,
suppose we are given ε, and that N(ε) denotes the minimum number of cubes of side-length
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ε that are needed to cover A. We can assume that N(ε) is finite, since A is compact. We
now study the evolution of its volume. First, note that since the system is assumed to be
dissipative, the sum of all of its LEs has to be negative. Now let ñ denote the smallest
integer such that the sum of the first ñ elements is negative. That is,

ñ∑
j=1

µj < 0 ,
ñ−1∑
j=1

µj ≥ 0,

implying that µñ < 0. Then the volume of the ñ-dimensional ε-cube is given by: V (0) = εñ,
and V (t) = εñe(µ1+...+µñ)t. But now there is a problem! Even though the union of all the
V (t) is still a cover of A, since the attractor is invariant, it is no longer an ε cover, since
the side-lengths of the boxes are no longer equal. To remedy this, we divide each V (t) into
smaller cubes, each with side-length ε̃ = εeµñt, then ε̃ ≤ εeµjt for all j ≤ ñ, since µñ is the
most negative exponent we consider. Thus if we let NV be the number of ε̃-cubes needed to
cover V (t), then for an ñ-dimensional volume, we would have

NV =
ñ∏
j=1

εeµjt

εeµñt
+ Err =

ñ−1∏
j=1

εeµjt

εeµñt
+ Err = e(µ1+...+µñ−1)t−(ñ−1)µñt + Err,

where Err accounts for overlap, that is, it accounts for the fact that εeµjt

εeµñt
may not be an

integer. It can be bounded as follows: Clearly the amount of ñ-dimensional ε̃-cubes needed
to encase V (t) is an upper bound for Err. Therefore, recall that the surface ‘area’ (really
a (ñ − 1)-dimensional volume) of an ñ-dimensional hyperrectangle of side lengths εeµjt is
given by

S′ = 2
ñ∑
q=1

ñ∏
j=1
j 6=q

εeµjt.

The amount of ñ-dimensional ε̃-cubes needed to encase V (t) is S′ε̃/ε̃ñ. But now we have
to remember that by definition, ε̃ divides the ñ’th side length exactly, and so there is no
overlap in that direction and hence no contribution to Err. This means that we actually
don’t need to include the contribution from the parts of the surface ‘area’ that are orthogonal
to the vertex of side length ε̃. This means that we only have to consider the volume of the
(ñ− 1)-dimensional ‘area’

S = 2
ñ−1∑
q=1

ñ∏
j=1
j 6=q

εeµjt.
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Thus we get an upper bound for Err of

Err ≤ 2
ε̃ñ−1

ñ−1∑
q=1

ñ∏
j=1
j 6=q

εeµjt.

Note that

lim
t→∞

Err
e(µ1+...+µñ−1)t−(ñ−1)µñt

= lim
t→∞

ε̃ñ−1Err
εñ−1e(µ1+...+µñ−1)t

≤ lim
t→∞

2e−(µ1+...+µñ−1)t
ñ−1∑
q=1

ñ∏
j=1
j 6=q

eµjt = lim
t→∞

2
ñ−1∑
q=1

e(µñ−µq)t = 0,

by the ordering of the µj and because µñ < 0. Clearly, since Err is just a sum of exponentials,
we also have that the above limit holds if we replace Err by d

dtErr.
Now that we know how Err behaves, we can proceed with the argument of the Kaplan-

Yorke conjecture. The number of ε̃-cubes needed to cover A, is thus

N(ε̃) = N(ε) NV .

Now for any fixed ε, log(N(ε))
− log(ε) is an approximation to df (A), which becomes exact as

ε→ 0. So the ε̃ approximation to df is

df (A) ≈ log(N(ε̃))
− log(ε̃) = log(N(ε) NV ))

− log(ε̃)

=
log

(
N(ε)

(
e(µ1+...+µñ−1)t−(ñ−1)µñt + Err

))
− log (εeµñt)

=
log (N(ε)) + log

(
e(µ1+...+µñ−1)t−(ñ−1)µñt + Err

)
− log (ε)− log(eµñt) .

Now, in the limit as t→∞, we have that ε̃→ 0. Thus

df (A) = lim
t→∞

log (N(ε)) + log
(
e(µ1+...+µñ−1)t−(ñ−1)µñt + Err

)
− log (ε)− log(eµñt)

= lim
t→∞

((µ1+...+µñ−1)−(ñ−1)µñ)e(µ1+...+µñ−1)t−(ñ−1)µñt

e(µ1+...+µñ−1)t−(ñ−1)µñt+Err

−µñeµñt

eµñt

= µ1 + ...+ µñ−1 − (ñ− 1)µñ
−µñ

= ñ− 1 +
∑ñ−1
j=1 µj

−µñ
,
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where we have used L’Hôpital’s rule and Err has gone to zero in the above limit by the
properties that we proved about it above. This is now exactly formula (5.5). The above
argument suggests that the Kaplan-Yorke formula does indeed give the fractal dimension
of an attractor. The reason why the above is not a proof, is because volumes don’t always
grow at a rate proportional to the LEs, but only do so on average.

However, for the purposes of this text, we will assume that the Kaplan-Yorke conjecture
is true, and we will use (5.5) to compute the fractal dimension of the attractor of (1.4), as
has been done, for instance, in [XTGT00] for the Nikolaevskiy equation, and in [Man85] for
the KS equation.

5.4 Numerical Methods

In this section we will describe the numerical procedure that we used to solve equation (1.4)
and its linearisation (4.30). All computations were performed in MATLAB.

For the numerical solution, we used the exponential time-differencing, fourth-order
Runge-Kutta scheme (ETDRK4), which was derived by Cox and Matthews [CM02]. The
method ETDRK4 is an example of exponential time-differencing schemes, which themselves
are similar to the so-called integrating factor (IF) schemes [KT05]. We will be using the
slightly improved version of ETDRK4 presented by Kassam and Trefethen [KT05]. A good
introduction and examples of the scheme can also be found in [LeV07]. These types of
schemes are particularly well suited for equations such as (1.4), because they eliminate the
difficulties that arise from having a stiff linear term in the equation, by solving the linear
term exactly.

In theory, both IF schemes and exponential time-differencing schemes involve a change
of variables. In order to get some intuition for these types of schemes, we will outline the
procedure behind IF schemes as done in [KT05] and [Tre00]. Consider an equation of the
form

ut = Lu+N (u), (5.6)

where L is a linear and stiff term, and N is a nonlinear term. We can introduce the change
of variables

v = e−Ltu,

where e−Lt is the integrating factor, which is given by the operator exponential of L as in
[Bre10, p. 118]. In our case, this operator diagonalizes in the form of the linear dispersion
relation (1.5) in Fourier space, and so this exponential is easy to compute for us. That is,
L̂ = ω(k), and thus, in Fourier space (where we perform our computations), e−Lt → e−ω(k)t
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and L → ω(k). Then

vt = −e−LtLu+ e−Ltut,

so we get

vt = e−LtN (eLtv).

The above can now be solved using a suitable time-stepping method; for instance a Runge-
Kutta method.

This is the basic intuition behind IF schemes, and it also applies to ETDRK4, although
the details are more involved for ETDRK4, and involve more intermediate steps.

In this section we will give the general scheme for ETDRK4 as applied to (5.6), and
then give a brief discussion of how we implemented it in MATLAB.

Consider the solution un to (5.6) at some time tn = t0 + hn, where n denotes the index
of the time step and h is the time step size. We compute un+1 using ETDRK4 as follows,
using the table in [KT05]:

an = eLh/2un + L−1
(
eLh/2 − I

)
N (un, tn), (5.7)

bn = eLh/2un + L−1
(
eLh/2 − I

)
N (an, tn + h/2),

cn = eLh/2an + L−1
(
eLh/2 − I

)
(2N (bn, tn + h/2)−N (un, tn)) ,

un+1 = eLhun + h−2L−3
{ [
−4− Lh+ eLh(4− 3Lh+ (Lh)2

]
N (un, tn)

+ 2
[
2 + Lh+ eLh(−2 + Lh)

]
(N (an, tn + h/2) +N (bn, tn + h/2))

+
[
−4− 3Lh− (Lh)2 + eLh(4− Lh)

]
N (cn, tn + h)

}
,

where I denotes the identity operator. The above expression may look somewhat daunting
to implement, but in Fourier space, it becomes a lot tamer. Specifically, what we do is
take the fast Fourier transform (FFT) of u and then do the time stepping in Fourier space.
As mentioned before, this has the effect of turning L into the linear dispersion relation
(1.5), which is easy to compute and to exponentiate, since it is just a diagonal matrix
multiplying the vector of Fourier modes. The nonlinear term is treated as follows: Since
N (u) = −1

2∂x(u2), we get that

N̂(û) = − ik2
(
F−1(û)

)2
,

where F−1 denotes the inverse FFT and ·̂ denotes the FFT.
We implemented the scheme in MATLAB, by modifying the code kursiv.m from

[KT05]. The code kursiv.m uses ETDRK4 to solve the KS equation (1.1), and so it can
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easily be modified to solve the Nikolaevskiy equation (1.4). Since the equations share the
same nonlinear term (2.12), one simply has to modify the linear dispersion relation to be
that given by (1.5).

The main modification we introduced to kursiv.m was by coupling the linearised equa-
tions (4.30) to the full Nikolaevskiy equation (1.4). Since the linear part of the linearised
equation is the same as that of the original equation, it did not have to change. The B(u, U)
and B(U, u) terms (2.21), where u is the solution to (1.4) and U is the solution to the
linearised equation, had to be implemented in a slightly modified way. In Fourier space,
B(u, U) = u ∂xU becomes

F
(
B
(
F−1û,F−1Û

))
= F

((
F−1(û)

)(
F−1(ikÛ)

))
,

since we are working with the Fourier transforms û and Û . A similar expression holds for
B(U, u). The solutions to the linearised equations are then computed by doing one time step
for u(t), and then using this value of u(t) to do one time step of the linearised equations.
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Chapter 6

Numerical Results

In this chapter, we will be presenting the results that we obtained by the methods described
in the previous section. We will first show some characteristic examples of solutions of the
Nikolaevskiy equation (1.4), and then proceed to discuss the Lyapunov spectrum and the
Kaplan-Yorke dimension, and how these quantities depend on the parameters in the system.

6.1 Solutions of the Nikolaevskiy Equation

We computed solutions of the Nikolaevskiy equation (1.4) for various values of r and `.
The aim was to determine the dependence of various quantities of the system on these
parameters. In the chaotic regime (r > 0) equation (1.4) displays two qualitatively dis-
tinct types of behaviour, that distinguish what is sometimes known as ‘Nikolaevskiy chaos’
[Tan05b, WP09], from the spatiotemporal chaos that can also be found in other, similar
equations such as the Kuramoto-Sivashinsky (KS) equation [WH99]. We shall refer to the
latter as KS-type chaos.

KS-type chaos is characterized by instabilities for long wavelengths, all the way down
to the k = 0 mode, whereas Nikolaevskiy chaos is characterized by energy in both high
and low wavelengths. The most striking difference between the two types of chaos is the
separation of scales that occurs in the Nikolaevskiy equation (1.4). For small r values,
solutions possess energy around two well-separated frequencies. This behaviour is clearly
visible in Figure 6.1, where the r values are sufficiently small to capture the separation of
scales that is characteristic of Nikolaevskiy chaos. We plotted these solutions on very large
spatial domains and over long time intervals to fully capture the small k structures that
emerge at the onset of Nikolaevskiy chaos. On plots with shorter t and `, only the large
k rolls are visible and the solution looks like a more streamlined KS-type chaos plot. In
Figure 6.1b, one can see the short wavelength peaks between the larger, long wavelength
peaks clearly. The snapshot of the solution shows how the long wavelength modes modulate
the short wavelength modes, by effectively acting as an ‘envelope’ for the short wavelength
modes. In Figure 6.1a the scale separation between the wavelengths of the small and large
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modes has become so strong that the wavelength of the large k modes is barely visible any
more. The large k rolls are only visible upon zooming in to the solution.
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Figure 6.1: Plots of solutions to equation (1.4) for r � 1. Solutions are within the Nikolaevskiy
chaos regime. The top panels display the solutions over a range of t, while the bottom panels display
a snapshot of each solution at an abitrarily chosen time. The reader is encouraged to zoom in on
the plots to see the short wavelength rolls. Solutions are shown at parameter values (a) r = 0.0001
and ` = 5π × 104 and at (b) r = 0.04 and ` = 1600.
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For comparison, in Figure 6.2 we show spatiotemporal chaos in the KS equation (1.1)
(using blue tones, to distinguish from the orange tones used for the Nikolaevskiy equation
(1.4)).

Figure 6.3 shows two solutions of equation (1.4), for r ≈ 1. This is well into the KS-type
chaotic regime, and there is no separation of scales visible any more. The wavelengths of the
rolls in the solution are now all of the same order. Note that despite coming from different
equations, the solutions in Figure 6.3 and Figure 6.2 appear very similar. We have chosen
to display these solutions on relatively small spatial domains, since the solutions do not
possess any apparent structure at larger scales and the rolls shown in these solutions just
look like ‘noise’ on larger plots.
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Figure 6.2: Plot of a typical solution of the KS equation (1.1). The top panel displays the solution
over a range of t, while the bottom panel displays a snapshot of the solution at an arbitrary time
for ` = 200.
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Figure 6.3: Plots of solutions to the Nikolaevskiy equation (1.4) well into the KS-type chaos regime.
The top panels display the solutions over a range of t, while the bottom panels display a snapshot of
each solution at an arbitrary time. Solutions are shown at parameter values (a) r = 0.5 and ` = 100
and at (b) r = 1 and ` = 30.

The transition between these two types of spatiotemporal chaos occurs around r ≈ 0.1.
The solution shown in Figure 6.4 is in this regime; we see that solutions can readily be
distinguished from those of the KS equation (1.1) with the naked eye, but we do not yet
see the clear separation of scales visible in solutions for smaller r values.
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Figure 6.4: Plot of solutions to the Nikolaevskiy equation (1.4) in the transition region between
Nikolaevskiy-type and KS-type chaos at parameter values r = 0.1 and ` = 1000. The top panel
displays the solution over a range of t, while the bottom panel displays a snapshot of the solution
at an arbitrary time.

Scaling of Norms:

One more result we should mention is the scaling of the norms of the solutions of
equation (1.4). As mentioned in Section 3.1, we expect ||u||L̇2 = O(`p) and ||u||L̇∞ = O(`p′)
for some exponents p and p′. Figures 6.5a and 6.5b show the scaling of these exponents for
the L̇2 norm and the L̇∞ norm, respectively. As for the KS equation, the L̇∞ norm appears
to be `-independent [Wit14], since we compute the scaling exponent to be p′ = −0.024
with standard deviation 0.068. The scaling of the L̇2 norm also seems to be the same as
the scaling that is believed to be the case for the KS equation, namely 0.5. The computed
scaling is p = 0.4923 with standard deviation 0.0319. The results were obtained from five
trials for each `, with ` ranging from 500 to 1000 in increments of 100 and r fixed at r = 1.
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Figure 6.5: Scaling of (a) the L̇2 norm and (b) the L̇∞ norm of solutions to (1.4) with `. Plots
show the data and a best fit line on a log-log scale, for fixed r = 1. For the L̇2 norm (a) the scaling
of the exponent on ` is 0.492 ± 0.032. For the L̇∞ norm (b) the scaling of the exponent on ` is
−0.024± 0.068.

6.2 The Power Spectrum

When trying to understand certain aspects of the behaviour of solutions, such as the appear-
ance of distinct wavelengths of the rolls, it is instructive to measure which Fourier modes
carry the most energy. To see which modes carry the most energy on average, and which
modes on the other hand, do not contribute significantly to the solution, one can compute
the time-averaged power spectrum, defined as follows:

S(k) := lim
t→∞

1
t

∫ t

0
|ûk(s)|2 ds. (6.1)

We will rescale S(k) with `, and study S(k)/` to minimize the effects of the domain size
[WP09]. It has been suggested however, that S(k)/` is independent of ` and that the energy
distribution is an extensive property of the system [Tan05b]. Our computations are done
for ` = 50π/ε, where ε =

√
r, paralleling the approach in [Poo09], in order to have 25

(plus 25 complex conjugate) modes in the unstable band of the dispersion relation (1.5).
Taking the time average of the power spectrum tells us which modes consistently appear
in the solution. Figure 6.6 shows the time-averaged power spectra for various values of the
parameter r.

Figure 6.6 indicates that for r ≈ 1, the energy is concentrated in a single peak about
k ≈ 1. In this range of r, the power spectrum is qualitatively the same as that of the KS
equation, also shown in the figure. In this range, we also generally observe KS-type chaos.

For small r (r . 0.01) [Tan05a] the peaks are well separated. This scale separation can
also readily be seen in the solutions themselves. For r ≈ 1 the solutions look qualitatively
similar to those of the KS equation, whereas for r � 1, one can clearly see the peaks which
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Figure 6.6: Plots of the normalized time-averaged power spectrum S(k)/`, for r = 10−n for
n ∈ {0, 1, 2, 3, 4} for the Nikolaevskiy equation (blue), as well as for the KS equation (red).

are caused by the long wavelength instabilities, together with the small-scale rolls which are
caused by the short wave instabilities.

6.3 Lyapunov Spectrum

In this section we will plot the Lyapunov Spectra (LS) for various values of the parameters
r and `. Figure 6.7 shows the LS, the ordered sets of Lyapunov exponents of the system
for various values of r. We plotted the exponents against the wavenumber k, rather than
simply against the index of the exponent. As a function of k, the shapes of the spectra do
not appear to depend on ` when ` is large enough. For ` = 100 the values of the negative LEs
are slightly bigger than for larger `, but the spectra converge to the same curve as ` becomes
large. We computed the exponents in the spectra using Definition 5.1.1 and Algorithm 1.
We stored the approximations to each exponent periodically during the time integration,
and produced a time series of exponents in this way. We computed the standard deviation
of the maximum exponents for the last 25% of the integration, and used them later on to
test for convergence of the time series. To minimize the effects of random fluctuations, we
took as the value of the LEs the average of the last 25% of the time series of approximate
LEs.

90



0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

(a)

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

(b)

0 0.5 1 1.5 2 2.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(c)

0 0.5 1 1.5 2 2.5

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

(d)

0 0.5 1 1.5 2 2.5

-0.2

-0.15

-0.1

-0.05

0

(e)

0 0.5 1 1.5 2 2.5

-0.15

-0.1

-0.05

0

(f)

Figure 6.7: Lyapunov spectra, showing the LEs µ vs. the wavenumber k. The parameter r
is fixed at (a) r = 1, (b) r = 0.9, (c) r = 0.5, (d) r = 0.1, (e) r = 0.03 and (f) r = 0.01. For
each r value, the spectra are shown for system size ` ∈ {100, 200, 300, 400}.

Again we can see the difference between the two types of chaos that can be found in
solutions of equation (1.4) in the spectra in Figure 6.7. For r ≈ 1 the spectra have a very
similar shape, with only one ‘ledge’ at around k ≈ 1.2 beyond which the slope of the
spectrum decreases. Xi et al. [XTGT00] computed the LS for r = 0.5 for various ` values
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77.5 ≤ ` ≤ 186. Unlike in Figure 6.7c the spectra in [XTGT00] lie on top of each other. It
is possible that our plots for ` = 100 are not completely converged yet, but the spectra in
Figure 6.7c are also computed for larger ` values than those in [XTGT00], and thereby give
a better approximation to the large-` limit.

The shape of the LS does not seem to change appreciably as r gets large, although their
height certainly changes. The maximum Lyapunov exponent and the number of positive
Lyapunov exponents increases as r increases. This is to be expected, since r and ` determine
the number of modes in the unstable band of the dispersion relation (Figure 1.2). Thus
larger r implies more instabilities in the system, which means that the system becomes
more chaotic, which is characterized by larger and more positive LEs.

When r is decreased so that it is close to the Nikolaevskiy chaos range, the shape of the
LS undergoes a clear change. Instead of just one ledge at k ≈ 1.2, two ledges appear, one
at k ≈ 0.8 and the second one at k ≈ 1.7, as in Figure 6.7e. For even smaller r (Figure 6.7f)
the spectrum loses much of its structure. For r = 0.01, the shape of the spectrum seems
to become discontinuous for large k, in the sense that the exponents appear in pairs that
are separated by a clear gap. This behaviour of the exponents has been observed in the
KS equation [TYG+11], and we also observed it for the Nikolaevskiy equation. However,
it is not clear if the behaviour seen in Figure 6.7f is the same, since it is only visible in
the ` = 100 spectrum. It is possible that these spectra aren’t fully resolved yet, because
for smaller r, significantly longer time series have to be computed to obtain well-converged
averages. In the limit as r → 0 the system’s largest LE seems to converge to zero. This is to
be expected, since r = 0 marks the transition from the chaotic to the non-chaotic regime,
which is characterized by an absence of positive LEs.

6.4 Dimension

Using the LS and the Kaplan-Yorke formula (5.5), we have computed the fractal dimension
of the attractor. We will attempt to determine the dependence of the attractor dimension
on both the system size ` and the bifurcation parameter r. In order to reduce the effects
that varying system sizes can have on the value of the dimension, we used two approaches
when computing the dimension: Computing the dimension density, as defined below, and
keeping the number of modes in the unstable band of the dispersion relation (1.5) constant.
For fixed r, we computed the dimension density, defined as

D(r) := lim
`→∞

df (A(`, r))
`

, (6.2)

(for one-dimensional domains) where we are thinking of the attractor A of (1.4) as being
parametrized by ` and r.
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Figure 6.9 shows a plot of the Kaplan-Yorke dimension as a function of the domain size
`, for various values of r, as well as some log-log plots of the dimension density (6.2) versus
r.
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Figure 6.8: Kaplan-Yorke dimension df as a function of ` for: ◦ r = 1 with D = 0.351, ×
r = 0.5 with D = 0.328, × r = 0.1 with D = 0.244 and ◦ r = 0.03 with D = 0.110.

Figure 6.8 shows that the dimension is proportional to `, even for these relatively small
values of `. Since the lines in Figure 6.8 fit the data very closely, this suggests that the value
` = 100 is already within the asymptotic regime for the linear scaling of the dimension df
with `. The numerical scaling of the exponent with ` is better than the O(`19/12) scaling that
we obtained analytically in (4.46). This suggests that the analytic results are not optimal
in ` and can still be improved.

Both the analytic results and the numerical results suggest that the dimension’s depen-
dence on ` is constant, whenever ` is large enough. Decreasing r does not seem to influence
the fact that the dimension scales as O(`) for fixed r. The dimension densities we computed
agree with those of other authors. Xi et al. [XTGT00] obtained a value of 1/3 for D at
r = 0.5. Our result of D ≈ 0.327 at r = 0.5 is very close to this value, and we suspect that
the ‘exact’ value of 1/3 in [XTGT00] comes from rounding an approximate value, since it
was also obtained through a numerical computation.

Figures 6.9a and 6.9b show how the dimension density D scales with r. Since D is
proportional to df and captures the (`-independent) behaviour of df for large `, the r
scaling of D is expected to be the same as the r scaling of df for large `. For 0.2 ≤ r ≤ 1,
we have that D ≈ O(r0.093). Comparing this with the analytic bound (4.46) we obtained
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for the dimension, we see that the exponent 0.093 is bounded by the exponent 7/48 that
was obtained analytically.
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Figure 6.9: (a) Log-log plot of the dimension density D versus r, over a range 0.2 ≤ r ≤ 1.
The scaling exponent on r is approximately 0.093. (b) A log-log plot of D vs. r, over a range
0.03 ≤ r ≤ 1. The scaling exponent on r for small r is approximately 0.665.

If we turn to Figure 6.9b however, we see that when r is decreased below 0.2, then
the scaling of the exponent on r changes drastically. Taking only the last two points, we
compute that the slope is approximately 0.665, suggesting that in the limit as r → 0, we
have df = O(rp) for p ≥ 0.665! This means that in order to capture the asymptotic scaling
of df with r, one would have to compute the Kaplan-Yorke dimension for r values below
0.2. In fact, as we will see, even r = 0.2 is not small enough yet, and in order to compute
asymptotic scalings as r → 0, one has to compute the dimension for r values below r = 0.01!

As mentioned earlier we used two approaches when computing the dimenson. In the
second approach, we tried to determine the scaling of the dimension df with r by keeping
the number of unstable modes constant while varying r. The purpose of this was to minimize
the effect that different system sizes could have on the results. We followed the approach in
[WP09], and chose the values of ` and r in such a way that the number of Fourier modes
in the unstable band of the linear dispersion relation (1.5) remains approximately constant.
Recall that the linear dispersion relation can be written as ω(k) = −k2(r − (1 − k2)2).
Therefore, now writing r := ε2, the width of the unstable band (for k ≥ 0) is

4k =
√

1 + ε−
√

1− ε =
(

1 + ε

2

)
−
(

1− ε

2

)
+O(ε2) = ε+O(ε2).

Then since k = 2πn/`, we have that the number of Fourier modes in the unstable band is

4n = `ε

π
, (6.3)
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to leading order. Note that this number isn’t `ε/(2π), because technically there are two
unstable bands, one for positive k and one for negative k, even though we only plot the
positive one.

We then computed the Kaplan-Yorke dimension for various decreasing values of r, keep-
ing the number of modes 4n in the unstable band fixed at 50, 36 and 24. We chose the same
r values as in [WP09]; namely, for each fixed value of 4n, we computed the dimension for
r = 0.1, 0.04, 0.01, 0.001 and 0.0001, letting ` be induced by (6.3). We computed solutions
on a grid of 2n points, where n is an integer ranging from 11 to 16, and using a time step
in a range between dt = 0.001 and dt = 1. Initial conditions were taken as solutions that
are already on the attractor of equation (1.4), and were computed over times varying from
t = 3500 to t = 105, where the computation times increased with decreasing r. In order
to check that the computations converged sufficiently, we stored the approximations to the
LS periodically throughout the time integration of the solutions. We then computed the
standard deviation of all the approximation over the last 25% of the total integration time,
and found that its value scaled with the value of the maximum LE. If the standard deviation
(for the maximum exponent) was less than 5% of the maximum exponent, then we took the
results to be sufficiently converged. For small values of r, it wasn’t feasible to run longer
time averages due to time constraints.

Figure 6.10 shows the Kaplan-Yorke dimension as a function of r for fixed values of 4n.
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Figure 6.10: (a) Kaplan-Yorke dimension df versus r for fixed 4n. (b) Log-log plot of
Kaplan-Yorke dimension df versus r for fixed 4n. In both plots, 4n ∈ {24, 36, 50}.

As the number of unstable modes 4n increases, the Kaplan-Yorke dimension of the
attractor also increases. This is to be expected from the ` scaling in Figure 6.9. In general,
the value of the dimension does decrease with r; however, for 4n = 24 and 4n = 50,
at r = 0.01 the value of the computed value of the dimension is actually smaller than at
r = 0.001, suggesting that the result of the computation is not accurate for this r value.

95



Even though the dimension increases with 4n overall, there is no clear rate of conver-
gence visible with r yet. In fact, for larger r values, the rate of convergence seems to be
somewhat slower than for smaller r values, as shown in the log-log plots in Figure 6.10b. The
plots seem to suggest that the value of r is not yet small enough to capture the asymptotic
convergence rate that the dimension of the attractor obeys as r → 0. There is however, good
reason to doubt the accuracy of the results in these plots, since the type of behaviour shown
in them is not seen in any of our other computations. In all likelihood, the values given in
the figures are not very good and the value of the dimension has not yet fully converged;
one would have to compute averages over a much longer time to obtain accurate results.

Both Tanaka [Tan05a], and the power spectrum in Figure 6.1, suggest that the scale
separation that characterizes Nikolaevskiy chaos does not fully develop until r ≤ 0.01 at
least, even though the solutions themselves already look qualitatively different for r values
that are slightly larger than 0.01, as can be seen in Figure 6.1 for instance. The value of
r = 0.01 is right around the value at which we see the slope of the Kaplan-Yorke dimension
as a function of r change in Figure 6.10. This suggests that the type of chaos exhibited by
solutions of equation (1.4) influences the r scaling of the attractor dimension. Analytically,
we saw that for any r ≤ 1, the attractor dimension scales at least as r7/48 for large enough
system size (4.46). This means that even if the scaling changes during the transition period
when r ≈ 0.01, we still have an r scaling of at least r7/48.

This suggests that the reason why we obtained a relatively loose lower bound for the
scaling in (4.46) is because we were trying to bound the behaviour for two qualitatively
different regimes of the dynamics of the Nikolaevskiy equation (1.4). As further work, it
may therefore be possible to derive tighter bounds on the scaling of the attractor with r, if
instead of assuming that r < 1, we assume that r < 0.01 or even smaller.
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Chapter 7

Conclusion

In this final chapter we summarize and elaborate on the main findings in the thesis. Specif-
ically, we will review what we found about the scaling of various norms of u with ` and
with r, and comment on the extent to which these bounds are optimal. We will then state
our main results, namely the scaling of the fractal dimension of the attractor df with the
parameters in the equation. Finally, we will propose some further work that could be done
to improve the results that we have so far.

Scaling of Norms:

In Sections 3.2 and 3.3 we rigorously derived bounds on the radii of the absorbing balls of
solutions in the Sobolev spaces Ḣ1 and Ḣ2, and showed that they scale with the parameters
r and `. Specifically, we found that

lim sup
t→∞

||∂xu||L̇2 = O(r5/8`2),

and

lim sup
t→∞

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 = O(r7/8`3).

Deriving the optimal scaling in r and ` rigorously remains an open problem, but in Section
6.1 we provided numerical evidence which shows that the scaling of the L̇2 norm with ` is
in fact `1/2, as is generally believed to be the case for the Nikolaevskiy equation.

In Section 6.1 we also provided numerical evidence that the L̇∞ norm of u is `-independent.
Using the inequality

||u||L̇2 ≤ `1/2||u||L̇∞ ≤ ` ||∂xu||L̇2 ,
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and the results about the r scaling of the absorbing ball in Ḣ1, we can thus make the case
that ||u||L̇∞ = O(r5/8).

Scaling of the Dimension of the Attractor:

In Section 4.7, we found that the fractal dimension df of the attractor of the Nikolaevskiy
equation obeys the scaling

df = O
(
r7/48`19/12)

for 0 < r ≤ 1, whenever
√
r` is large. In Section 6.4, we found numerical evidence that the

` scaling of the dimension is df = O(`) for fixed r, rather than the scaling of `19/12 that
we derived analytically. As the analytic bounds depend on the scaling of the L̇2 norm of u,
it is unlikely that significantly better bounds can be derived rigorously until better bounds
on the L̇2 norm of u are found.

We also computed the r scaling of df and of the dimension density D (which we expect
to be the same as that of df ) for r < 1 in Section 6.4. We found that for 0.2 ≤ r ≤ 1 the
scaling of the dimension density is D ≈ O(r0.092916), which is bounded by the analytically
derived scaling of df = O(r7/48). Furthermore, we showed that as r decreases below 0.2, the
scaling exponent once more increases. However, for the range of r values that we computed,
we were unable to find the asymptotic r scaling of df yet, as all our results indicate that one
has to compute the dimension for r values well below 0.01 to hope to get into the regime
of the asymptotic limit.

Further Work:

There are two projects that immediately come to mind which could be undertaken
to extend the work of this thesis: The first is to continue the numerical calculations to
estimate the fractal dimension of the attractor for r values less than 0.001. For r values in
this range, the power spectrum already possesses strong separation between the long and
short wavelength unstable modes, and so it is reasonable to expect any values of r less than
0.001 (and in fact even less than 0.01) to give results that accurately capture the scaling of
the dimension of the attractor in the Nikolaevskiy chaos regime.

Working along similar lines, a second project would be to improve the analytic estimates
on the fractal dimension for very small r values. As we saw, the reason why we obtained
seemingly large bounds on the dimension estimate was because our estimate included r

values that were still close to one. It would thus be interesting to see if the analytic bound
on the fractal dimension can be improved further, if one makes the assumption that r � 1.
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Our results suggest that the full Nikolaevskiy chaos regime does not begin until r is very
small, and therefore it would be interesting to investigate the dynamics of the Nikolaevskiy
equation for such r values.
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Appendix A

Table of Notation

• A : A spatial differential operator of the form A = ∂nx for n ∈ N or A = |∂x|.

• A : The attractor of (1.4), as well as a general attractor.

• b(u, v, w) : The trilinear form (2.14) b(u, v, w) :=
∫ `

0 u ∂xv w dx.

• B : A general Banach space.

• B : The absorbing set of (1.4), as well as of a general dynamical system.

• D : The space of test functions.

• df (X) : The fractal dimension of the set X.

• f(x), f : H → H : The right-hand side a dynamical system,
may contain spatial differential operators.

• Gu : The operator (4.31) linearised about a solution to (1.4).

• H : A general Hilbert space.

• Ḣn : The Sobolev space Hn(0, `) with periodic, zero mean elements, n ∈ N.

• K : The constant, independent of r or `, in the L̇2 bound on u (3.1).

• ` : The spatial domain size.

• L : The linear operator of (1.4), L = ∂6
x + 2∂4

x + (1− r)∂2
x.

• Λ : A general linear operator.

• L̇2 : The Lebesgue space L2(0, `) with periodic, zero mean elements.

• N (·) : The nonlinear term in (1.4), N (u) := u ∂xu.

• ω(k): The linear dispersion relation (1.5) of (1.4).

• r : The parameter in the coefficient of the second-order term in (1.4).
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• R: The radius of the L̇2 absorbing ball of (1.4).

• S(k): The time-averaged power spectrum (6.1).
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Appendix B

Lemmas and Tools

B.1 ODE Theory

In Section 2.2, the system of ODEs (2.11) obtained by Galerkin projections are solved to
approximate the solution to the full PDE (1.4). Here we state some results which allow us
to obtain solutions to ODEs. We don’t give the proofs since they are somewhat lengthy,
but proofs can be found in any book on ODE theory.

Theorem B.1.1 (Existence and Uniqueness for ODEs). Consider the dynamical system

dx

dt
= f(x), x(0) = x0. (B.1)

If for any bounded set B containing x0 there exists a constant L(B) such that f satisfies

|f(x)− f(y)| ≤ L(B)|x− y|

for any x, y ∈ B, then there exists a T = T (x0) such that (B.1) has a unique solution on
[0, T ].

Lemma B.1.2 (Maximal Interval of Existence). A solution x(t) to (B.1) has a finite max-
imal interval of existence [0, T̃ ) if and only if |x(t)| → ∞ as t→ T̃ .

Theorem B.1.1 is stated in [Rob01, p. 45]. For a proof of Theorem B.1.1 and Lemma B.1.2
see for instance [Per00, pp. 70 & 87].

B.2 Functional Analysis and Linear Algebra

Convergence of the Galerkin solutions (2.9) to a solution of (1.4) is proved in a weak sense.
In this section some functional analysis and general convergence results are stated. Proofs
are given when the proof is illuminating, or when the result in question is less general and
applies specifically to the spaces in which we are working in the thesis.
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Theorem B.2.1 (Alaoglu Compactness Theorem). Let X be a reflexive Banach space with
dual X∗. Then if xn is a bounded sequence in X, there exists a subsequence xnj of xn and
an element x ∈ X such that

lim
j→∞
〈f, xnj 〉 = 〈f, x〉 (B.2)

for every f ∈ X∗, where 〈f, x〉 denotes the action of f on x. That is, the sequence xn
contains a weakly convergent subsequence in X.

For a proof of Theorem B.2.1 see [Rob01, p. 106].

Lemma B.2.2 (Ehrling’s Lemma [Rob01, p. 215]). Suppose we have three Banach spaces
X, Y and H, such that X ⊂⊂ H ⊂ Y (here ⊂⊂ denotes a compact embedding). Then for
each η > 0 there exists a constant cη such that

||u||H ≤ η||u||X + cη||u||Y for all u ∈ X.

Proof. Suppose not; then exists η > 0 such that for every n ∈ N, there exists some un ∈ X
such that

||un||H > η||un||X + n||un||Y .

Note that un 6= 0 under these assumptions. Now let vn := un/||un||X ; then since X is
continuously embedded in H, it follows that there exists some constant C > 0 such that

C ≥ ||un||H
||un||X

> η + n||vn||Y .

But this implies that vn → 0 in Y . Furthermore, vn is bounded in X, since ||vn||X = 1 for
all n. Thus by the compact embedding of X in H, vn contains a subsequence (which we will
relabel as vn) that also converges in H, and since 0 is a common element of both Y and H,
it must also tend to 0 in H, which contradicts the fact that

||vn||H > η > 0.

Corollary B.2.3. For p > 1 we also have

||u||pH ≤ η||u||
p
X + cη||u||pY for all u ∈ X, (B.3)

for some cη > 0.

The proof of the above result follows from the triangle inequality.

The following result is very important for Section 2.4 in that it allows one to obtain conver-
gence of the nonlinear term in (2.10) to the one in (1.4) in a distributional sense. We will
give the full proof of this theorem as it given in [Rob01].

108



Theorem B.2.4 (Strong Convergence fromWeak Convergence [Rob01, p. 214]). Let X ⊂⊂
H ⊂ Y be Banach spaces, where X is reflexive, and H is continuously embedded in Y . If
un is a sequence that is uniformly bounded in L2(0, T,X), and ∂tun is uniformly bounded
in L2(0, T, Y ), then there is a subsequence of un that converges strongly in L2(0, T,H).

Proof. First since un is uniformly bounded in L2(0, T ;X) there exists some subsequence,
which we will also call un such that un ⇀ u for some u ∈ L2(0, T ;X) (Theorem B.2.1). In
order to show that un → u in L2(0, T ;H), we will first show that if un → u in L2(0, T ;Y )
then we also have un → u in L2(0, T ;H). Of course we haven’t yet proved the convergence
in L2(0, T ;Y ). For this purpose define vn := un − u. Then by the corollary to Ehrling’s
Lemma B.2.3 we have that for each η > 0 there exists cη such that

||vn||2H ≤ η||vn||2X + cη||vn||2Y ,

which, if we integrate over time from 0 to T and use the fact that vn is uniformly bounded
in L2(0, T ;X), becomes

||vn||2L2(0,T ;H) ≤ ηC + cη||vn||2L2(0,T ;Y ).

Here C depends on the uniform bound on the un, as well as on the norm of u, but not on
η. But since vn tends to zero in L2(0, T ;Y ), we have that

lim sup
n→∞

||vn||2L2(0,T ;H) ≤ ηC,

which is true for any η > 0, and so we must have that

lim
n→∞

||vn||2L2(0,T ;H) = 0.

Thus under the assumption that un → u in L2(0, T, Y ), we also have that un → u in
L2(0, T,H).

To continue, we first note that ∂tvn ∈ L2(0, T ;Y ) implies that vn ∈ H1(0, T ;Y ), so we have
that vn ∈ C([0, T ], Y ), and we have the uniform bound

max
0≤t≤T

||vn(t)||Y ≤ ||vn||H1(0,T ;Y ) ≤M.

As an aside, we should note here that we have assumed that u has a weak time derivative
in L2(0, T ;Y ) and that ∂tun converges to this derivative. By the fundamental theorem of
calculus [Rob01, p. 192] we also have that

vn(t) = vn(β)−
∫ β

t
∂τvn(τ) dτ,

which we can integrate with respect to β from t to t+ s to get

vn(t) = 1
s

[ ∫ t+s

t
vn(β) dβ −

∫ t+s

t

∫ β

t
∂τvn(τ) dτ dβ

]
= an + bn.
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Now we find a more useful form for bn, which we will achieve by switching the order of
integration of the double integral. We find

bn = −1
s

∫ t+s

t

∫ β

t
∂τvn(τ) dτ dβ = −1

s

∫ t+s

t

∫ t+s

τ
∂τvn(τ) dβ dτ

= −1
s

∫ t+s

t
(t+ s− τ)∂τvn(τ) dτ = −1

s

∫ t+s

t
(t+ s− β)∂τvn(β) dβ,

where, in the last step, we relabelled τ as β. In this form, we can now bound bn by

|bn| ≤
1
s

∫ t+s

t
|t+ s− β||∂τvn(β)| dβ ≤

∫ t+s

t
|∂τvn(β)| dβ,

since for β ∈ [t, t + s], |t + s − β| ≤ s. So now using the triangle inequality property of
norms, as well as Hölder’s inequality we get that

||bn||Y ≤
∫ t+s

t
||∂τvn(β)||Y dβ ≤ s1/2||∂τvn||L2(0,T ;Y ) ≤ s

1/2M.

So choosing s small enough gives us that ||bn||Y ≤ ε/2. Next we claim that

an := 1
s

∫ t+s

t
vn(β) dβ

converges weakly in X. To see this let χ be the characteristic function on [t, t + s] and let
φ ∈ X∗ be arbitrary, then we have by the weak convergence of vn to 0 in L2(0, T ;X) that

0←
∫ T

0
〈vn, χφ〉 dβ =

∫ t+s

t
〈vn, φ〉 dβ =

〈∫ t+s

t
vn(β) dβ , φ

〉
= 〈an, φ〉.

So an converges weakly to 0 in X, which means that it is bounded in X, which means that
it (or a subsequence of it to be precise) converges strongly in H, and since H is continuously
embedded in Y , it also converges strongly in Y . Thus we have ||an||Y → 0 as n→∞. Thus
for large enough n this is smaller then ε/2 and therefore we have that

||vn(t)||Y ≤ ||an||Y + ||bn||Y ≤ ε.

Thus vn(t) converges strongly in Y too. Now since ||vn(t)||Y is uniformly bounded and
converges to some limit for almost every t (if we choose not to redefine it on a set of
measure zero), we have by the dominated convergence theorem that

lim
n→∞

∫ T

0
||vn(t)||2Y dt =

∫ T

0
lim
n→∞

||vn(t)||2Y dt = 0.

Hence vn converges to zero in L2(0, T ;Y ) and so by the first part of the proof, vn converges
to zero in L2(0, T ;H). Thus we have

||un − u||L2(0,T ;H) → 0 as n→∞.
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The next theorem comes from linear algebra. We we use it in Section 4.4, to derive an
evolution equation for an n-dimensional volume in phase space.

Theorem B.2.5 (Jacobi’s Formula). Let M(t) be an n× n, non-singular matrix which is
differentiable in t with t derivative d

dtM(t). Then

d

dt
detM(t) = detM(t) Tr

(
M(t)−1 d

dt
M(t)

)
,

where det is the determinant and Tr is the trace.

Proof. For a proof see for instance [Bel97].

B.3 Young’s-type Inequalities

We give a few inequalities that derive from Young’s inequality as well as from the interpo-
lation inequality between higher and lower derivatives. We will be needing many different
variations of these inequalities, and with the exception of the basic ones, proofs are difficult
to find in the literature. We therefore give the proofs of most of these inequalities. These in-
equalities are very important in our estimates, because they allow us to bound derivatives in
terms of higher (and lower) derivatives without introducing additional parameter-dependent
factors.

Proposition B.3.1 (Young’s Inequality [Eva15, p. 708]). For any positive real numbers
f, g > 0, and any constant ε > 0, one has

fg ≤ ε

2f
2 + 1

2εg
2. (B.4)

Proposition B.3.2 (Cauchy-Schwarz Inequality). Let (·, ·) be the inner product of some
Hilbert space H, and let || · || be the norm induced by this inner product. Then for any
x, y ∈ H one has

(x, y) ≤ ||x|| ||y||. (B.5)

We will mainly use the above inequality with the L̇2 inner product.

Proposition B.3.3 (Bounds on Derivatives Identity a [Rob01, p. 426]). If u ∈ Ḣ2 we have

||∂xu||2L̇2 ≤ ||u||L̇2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 . (B.6)
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Proof. Assume first that u ∈ Ċ2
p ; then by the density of Ċ2

p in Ḣ2, we can conclude that the
following also holds for functions in the larger space:

0 ≤ ||∂xu||2L̇2 =
∫ `

0
(∂xu)2 dx = u ∂xu

∣∣∣`
0
−
∫ `

0
u ∂2

xu dx = −
∫ `

0
u ∂2

xu dx

=
∣∣∣∣∣−

∫ `

0
u ∂2

xu dx

∣∣∣∣∣ ≤
(∫ `

0
u2 dx

)1/2(∫ `

0
(∂2
xu)2 dx

)1/2

= ||u||L̇2

∣∣∣∣∣∣∂2
xu
∣∣∣∣∣∣

L̇2 ,

where we have used the Cauchy-Schwarz inequality (B.5).

In the results in the rest of this section, n ∈ N is arbitrary.

Corollary B.3.4. For any u ∈ Ḣn+1 one has

||∂nxu||
2
L̇2 ≤

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣
L̇2

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣
L̇2 .

Proof. Apply (B.6) to v = ∂n−1
x u.

Proposition B.3.5 (Bounds on Derivatives b). For any u ∈ Ḣn+2, and for any ε > 0 we
have

||∂nxu||
2
L̇2 ≤

1
ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + ε2

4

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 . (B.7)

Proof. We apply Young’s inequality repeatedly. Let ε > 0; then for any δ > 0 we have

||∂nxu||
2
L̇2 ≤

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣
L̇2

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣
L̇2 ≤

1
2ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + ε

2

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣2
L̇2

≤ 1
2ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + ε

2 ||∂
n
xu||L̇2

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣
L̇2

≤ 1
2ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + ε

4δ ||∂
n
xu||

2
L̇2 + εδ

4

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 .

Letting δ = ε/2, we have

||∂nxu||
2
L̇2 ≤

1
2ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + 1

2 ||∂
n
xu||

2
L̇2 + ε2

8

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ,

which implies

||∂nxu||
2
L̇2 ≤

1
ε

∣∣∣∣∣∣∂n−1
x u

∣∣∣∣∣∣2
L̇2 + ε2

4

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 .

Corollary B.3.6. For u ∈ Ḣn+3 and any ε > 0 we have

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ≤

ε2

4 ||∂
n
xu||

2
L̇2 + 1

ε

∣∣∣∣∣∣∂n+3
x u

∣∣∣∣∣∣2
L̇2 . (B.8)

Furthermore (B.7) and (B.8) also hold for the absolute value, |∂x| (3.7), of the derivatives.
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Proof. The proof parallels that of Proposition B.3.5.

Proposition B.3.7 (More Bounds on Derivatives c). For u ∈ Ḣn+4, and for any ε > 0 one
has ∣∣∣∣∣∣∂n+2

x u
∣∣∣∣∣∣2

L̇2 ≤
1
ε

∣∣∣∣∣∣∂n+4
x u

∣∣∣∣∣∣2
L̇2 + ε

2 ||∂
n
xu||

2
L̇2 . (B.9)

Proof. By (B.8) we have

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ≤

ε2

4 ||∂
n
xu||

2
L̇2 + 1

ε

∣∣∣∣∣∣∂n+3
x u

∣∣∣∣∣∣2
L̇2 ;

applying (B.4) and (B.6) to this, we get

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ≤

ε2

4 ||∂
n
xu||

2
L̇2 + 1

2σε

∣∣∣∣∣∣∂n+4
x u

∣∣∣∣∣∣2
L̇2 + σ

2ε

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ,

for an arbitrary σ > 0. Letting σ = ε, one gets

1
2

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ≤

ε2

4 ||∂
n
xu||

2
L̇2 + 1

2ε2
∣∣∣∣∣∣∂n+4

x u
∣∣∣∣∣∣2

L̇2 .

Relabelling ε2 as ε gives the result.

Corollary B.3.8 (More Bounds on Derivatives d). For u ∈ Ḣn+5, and for any σ > 0 one
has ∣∣∣∣∣∣∂n+3

x u
∣∣∣∣∣∣2

L̇2 ≤ 2σ2
∣∣∣∣∣∣∂n+5

x u
∣∣∣∣∣∣2

L̇2 + 1
σ3 ||∂

n
xu||

2
L̇2 . (B.10)

Proof. We start with inequality (B.9), and then apply (B.8) to the
∣∣∣∣∂n+1

x u
∣∣∣∣2

L̇2 term to get
∣∣∣∣∣∣∂n+3

x u
∣∣∣∣∣∣2

L̇2 ≤
1
ε

∣∣∣∣∣∣∂n+5
x u

∣∣∣∣∣∣2
L̇2 + ε

2

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣2
L̇2

≤ 1
ε

∣∣∣∣∣∣∂n+5
x u

∣∣∣∣∣∣2
L̇2 + εη2

8

∣∣∣∣∣∣∂n+3
x u

∣∣∣∣∣∣2
L̇2 + ε

η
||∂nxu||

2
L̇2 .

Then, choosing ε = 4/η2 and subsequently letting σ = η/2, we get the result.

Proposition B.3.9 (More Bounds on Derivatives e). For u ∈ Ḣn+4, one has∣∣∣∣∣∣∂n+3
x u

∣∣∣∣∣∣2
L̇2 ≤

1
2µ

∣∣∣∣∣∣∂n+4
x u

∣∣∣∣∣∣2
L̇2 +

(
α

2η + µ

2

) ∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 − α

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣2
L̇2 + αη

2 ||∂
n
xu||

2
L̇2 ,

(B.11)

for any α, µ, η > 0.
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Proof. Applying (B.4) with ε = η to (B.6) and then multiplying the expression by α and
moving the middle term to the right we have

0 ≤ α

2η

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 − α

∣∣∣∣∣∣∂n+1
x u

∣∣∣∣∣∣2
L̇2 + αη

2 ||∂
n
xu||

2
L̇2 .

Then if we add this to∣∣∣∣∣∣∂n+3
x u

∣∣∣∣∣∣2
L̇2 ≤

1
2µ

∣∣∣∣∣∣∂n+4
x u

∣∣∣∣∣∣2
L̇2 + µ

2

∣∣∣∣∣∣∂n+2
x u

∣∣∣∣∣∣2
L̇2 ,

we have the result.

B.4 Other Inequalities

The first inequality that we shall prove in this section is Poincaré’s inequality, which allows
one to bound the L̇2 norm of a function directly by that of its derivative, but which has the
disadvantage of introducing a factor of the domain size `.

There are many different forms of Poincaré’s inequality. Here we will give the version for
one-dimensional, periodic functions, which can be represented by a Fourier series of the
form (2.2). The constant `/2π that is introduced in (B.12) is optimal, which can be seen by
substituting the lowest Fourier mode into the inequality.

Lemma B.4.1 (Poincaré’s Inequality). For any u ∈ Ḣ1, one has

||u||L̇2 ≤
`

2π ||∂xu||L̇2 . (B.12)

Proof. We use Parseval’s identity, and the fact that the wavenumber |k| ≥ 2π
` (ignoring the

zero mode). Then ||∂xu||L̇2 can be bounded below as follows:

||∂xu||2L̇2 = `
∑
k

|k|2|ûk|2 ≥ `
∑
k

(2π
`

)2
|ûk|2 =

(2π
`

)2
||u||2L̇2 .

Moving the 2π/` term to the other side and taking the square root gives the result.

We will quickly state the most common version of Gronwall’s inequality. For a proof see for
instance [Rob01, p. 54].

Lemma B.4.2. Let x(t) satisfy the differential inequality

dx

dt
≤ a(t)x
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for some function a(t). Then

x(t) ≤ x(t0)e
∫ t
t0
a(s) ds

. (B.13)

The following inequalities are generalizations of the well-known Gronwall inequality. We
will use them to bound quantities in time; in particular, we will use them to get uniform
bounds on solutions and absorbing balls in Sobolev spaces.

Lemma B.4.3 (Gronwall Lemma). Suppose that a, b ∈ R, with a > 0. Then if

dx

dt
≤ −ax+ b, x(t0) = x0,

then

lim sup
t→∞

x(t) ≤ b

a
. (B.14)

Proof. We use the integrating factor eat to solve the inequality.

d

dt

(
xeat

)
≤ beat

=⇒ x(t) ≤ x0e
−a(t−t0) + e−at

∫ t

t0
beas ds

= b

a
−
(
b

a
− x0

)
e−a(t−t0).

Taking the lim sup as t→∞ gives the result.

We will now prove a short result analogous to Poincaré’s inequality, but involving two
distinct norms. We use this result on many occasions in the text.

Proposition B.4.4. Let u ∈ Ḣ1; then

||u||L̇∞ ≤ `
1/2 ||∂xu||L̇2 . (B.15)

Proof. By the fundamental theorem of calculus we have

|u(x)| ≤
∫ x

x0
|∂su(s)| ds ≤

∫ `

0
|∂su(s)| ds,

where x0 ∈ [0, `] is a point such that u(x0) = 0. Then by the Cauchy-Schwarz inequality
(B.5) we have

|u(x)| ≤ ||1||L̇2 ||∂xu||L̇2 = `1/2 ||∂xu||L̇2 .

Taking the supremum over x of the have inequality gives the result.
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B.5 Regularity

The following results relate the decay rate of the Fourier coefficients of a function to its
degree of differentiability. In this thesis, they are used to show analyticity of solutions to
equation (1.4).

Lemma B.5.1 (Analyticity and Decay of Derivatives [Joh75, p. 65]). Suppose u ∈ L̇2

satisfies

|∂nxu(x)| ≤M (n+ 1)!
αn+1 , x ∈ [0, `], (B.16)

for some constant M and for all n ∈ N. Here α is a positive constant which, as we shall
later see, can be thought of as the radius of analyticity of u. Then u is analytic on [0, `].

Proof. We will show that u is analytic in a radius d < α about y for any y ∈ [0, `]. First
define, for any x with |x− y| ≤ d,

φ(s) := u
(
y + s(x− y)

)
,

then we have∣∣∣∣∣φ(n)(s)
n!

∣∣∣∣∣ =
∣∣∣∣ 1
n!∂

n
xu
(
y + s(x− y)

)
(x− y)n

∣∣∣∣ ≤M 1
n!

(n+ 1)!
αn+1 dn = M(n+ 1)

α

(
d

α

)n
.

Then u(x) = φ(1), while by Taylor’s theorem, we have

φ(1) =
N−1∑
n=1

1
n!φ

(n)(0) + 1
(N − 1)!

∫ 1

0
(1− s)N−1φ(N)(s) ds︸ ︷︷ ︸

rN

.

But the remainder rN satisfies

|rN | ≤
1

(N − 1)!

∫ 1

0
(1− s)N−1|φ(N)(s)| ds ≤ 1

N !
M(N + 1)!

α

(
d

α

)N
,

so since d < α, we have

lim
N→∞

rN = 0.

So u has a Taylor series that converges at all points in [0, `], which means that u is (real)
analytic.

Corollary B.5.2. For any infinitely differentiable function u defined on [0, `], if we have

|∂nxu| ≤ Cu
n!
αn+1 , (B.17)
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for all n ≥ n0, for some n0 > 0 and a constant Cu depending on u, then the above argument
shows that u must be analytic on [0, `].

Theorem B.5.3 (Paley-Wiener [Joh75]). Suppose that we are given a function u ∈ L̇2(0, `)
satisfying ∣∣∣∣∣∣eαAu∣∣∣∣∣∣

L̇2 ≤M, (B.18)

for some constants M and α > 0 where A = |∂x| is defined in (3.7). Then u is analytic in
a strip of radius α about [0, `].

Proof. We begin by noting that eαA acts on u in the following way:

eαAu =
∑
k

(1 + α|∂x|+ α2|∂x|2/2 + α3|∂x|3/6...)ûkeikx

=
∑
k

(1 + α|k|+ α2|k|2/2 + α3|k|3/6...)ûkeikx

=
∑
k

eα|k|ûke
ikx.

But then by Parseval’s identity we have

∑
k

∣∣∣eα|k|ûk∣∣∣2 = 1
`

∣∣∣∣∣∣eαAu∣∣∣∣∣∣2
L̇2 ≤

M2

`
.

Thus in order for the above sum to converge we must have |ûk| ≤ Me−α|k|/`1/2 for each
k. Thus the Fourier coefficients decay exponentially fast in k, and so the function must be
infinitely differentiable. To see why it is analytic, note that if n ≥ 1, then we have

|∂nxu| ≤
∑
k 6=0
|k|n|ûk| ≤ 2 M

`1/2

∑
k>0
|k|ne−α|k|.

But this series is dominated by the integral
∫∞

0 yne−αydy. Thus

|∂nxu| ≤
2M
`1/2

∫ ∞
0

yne−αy dy,

so with s = αy, we have

|∂nxu| ≤
2M
`1/2

1
αn+1

∫ ∞
0

sne−s ds = 2Mn!
`1/2

1
αn+1 , (B.19)

since
∫∞

0 sne−s ds is the Gamma function.

Thus by Corollary B.5.2, and the results about analytic continuation outlined below, u is
analytic in a strip of radius α about [0, `].

Analytic Continuation:
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The above argument shows that for any point y ∈ [0, `], the radius of analyticity of u about
y on the real line is α. So we have a series

u(x) =
∞∑
n=0

an(x− y)n,

that converges whenever |x − y| < α. But of course, nothing stops us from evaluating the
above series at some complex number z ∈ C instead of at x. In fact, as long as |z − y| < α,
then the series with the same coefficients an also converges, and must thus represent some
complex-analytic function, which coincides with u on [0, `]. Thus we can take the function
that is represented by

∑
n an(z−y)n as the analytic continuation of u to the complex plane.

We will call this function u, and so we have that u is analytic in a neighbourhood of radius
α about the set [0, `] ⊂ C.

Regularity in Time:

The following theorem is also very important in that it gives us some regularity in time,
and allows us to conclude that the limit as t → 0 of a solution gives the initial condition.
The result proved here is a minor generalization of the temporal regularity result of [Eva15,
p. 305].

Theorem B.5.4 (Temporal Regularity). Suppose u ∈ L2(0, T ; Ḣn) and additionally ut ∈
L2(0, T ; Ḣ−n).

Then

u ∈ C([0, T ]; L̇2),

after possibly being redefined on a set of measure zero.

Proof. The norm on C([0, T ]; L̇2) is given by

||u||
C([0,T ];L̇2) := max

0≤t≤T
||u||L̇2 .

We begin by extending u in time outside of the interval [0, T ] by zero, and then defining uε
to be the mollification of u in the sense of [Eva15, p. 716]. Then uε → u in L2(0, T ; Ḣn) and
uεt → ut in L2(0, T ; Ḣ−n) as ε→ 0. Thus for each ε, δ > 0, we have that

d

dt

∣∣∣∣∣∣uε(t)− uδ(t)∣∣∣∣∣∣2
L̇2 = 2

〈
uεt(t)− uδt (t), uε(t)− uδ(t)

〉
,

where 〈·, ·〉 denotes the action of an element in Ḣ−n on an element in Ḣn, since the molli-
fications are smooth in time. Now we integrate the above expression over time from s to t
to get ∣∣∣∣∣∣uε(t)− uδ(t)∣∣∣∣∣∣2

L̇2 =
∣∣∣∣∣∣uε(s)− uδ(s)∣∣∣∣∣∣2

L̇2 + 2
∫ t

s

〈
uεt(τ)− uδt (τ), uε(τ)− uδ(τ)

〉
dτ.
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Now using the fact that 〈a, b〉 ≤ ||a||Ḣ−n ||b||Ḣn for any a ∈ Ḣ−n and b ∈ Ḣn, we get

∣∣∣∣∣∣uε(t)− uδ(t)∣∣∣∣∣∣2
L̇2 ≤

∣∣∣∣∣∣uε(s)− uδ(s)∣∣∣∣∣∣2
L̇2 +

∫ T

0
||uεt(τ)− uδt (τ)||2

Ḣ−n
+ ||uε(τ)− uδ(τ)||2Ḣn dτ,

where we have used Young’s inequality on the integrand. Now since uε → u in L̇2 for a.e. t,
we can choose s so that

lim
ε,δ→0

∣∣∣∣∣∣uε(s)− uδ(s)∣∣∣∣∣∣2
L̇2 = 0.

But then we have that

lim
ε,δ→0

sup
0≤t≤T

∣∣∣∣∣∣uε(t)− uδ(t)∣∣∣∣∣∣2
L̇2

≤ lim
ε,δ→0

(∣∣∣∣∣∣uε(s)− uδ(s)∣∣∣∣∣∣2
L̇2 +

∫ T

0
||uεt(τ)− uδt (τ)||2

Ḣ−n
+ ||uε(τ)− uδ(τ)||2Ḣn dτ

)
= 0.

Thus the uε form a Cauchy sequence in C([0, T ]; L̇2) and hence converge to a limit in
C([0, T ]; L̇2); so we define this limit to be u (after possibly redefining u on a set of measure
zero). Thus we have the result.

B.6 The Nonlinear Term

We will often need to bound the nonlinear term. The trilinear form (2.14) associated with
the nonlinear term can be bounded in several different ways, and satisfies some commutative
properties, which we will state here.

Recall that the trilinear form associated with the nonlinear term N of equation (1.4) is
given by

b(u, v, w) :=
∫ `

0
u ∂xv w dx.

We will assume that u, v and w satisfy periodic boundary conditions and that they are
regular enough such that the above expression is well defined.

Proposition B.6.1. The trilinear form satisfies the commutative property

b(u, v, w) + b(w, u, v) + b(v, w, u) = 0. (B.20)
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Proof. We integrate by parts and use the periodic boundary conditions on u, v and w and
the product rule to get

b(u, v, w) = −
∫ `

0
∂x(uw) v dx

= −
∫ `

0
w ∂xu v dx−

∫ `

0
v ∂xw u dx = −b(w, u, v)− b(v, w, u).

Moving all terms to the left gives the result.

Corollary B.6.2. Evaluating (B.20) with w = v and with v = w = u, gives

b(u, v, v) = −1
2b(v, u, v),

and

b(u, u, u) = 0,

respectively.

Proposition B.6.3. The trilinear form (2.14) satisfies:

b(u, v, w) ≤ `1/2 ||u||L̇2

∣∣∣∣∣∣∂2
xv
∣∣∣∣∣∣

L̇2 ||w||L̇2 for all u,w ∈ L̇2
, v ∈ Ḣ2 (B.21)

and

b(u, v, w) ≤ `1/2 ||u||L̇2 ||∂xv||L̇2 ||∂xw||L̇2 for all u ∈ L̇2
, v, w ∈ Ḣ1

. (B.22)

Proof. By (B.15) we have that for a function u ∈ Ḣ1

||u||L̇∞ ≤ `
1/2 ||∂xu||L̇2 .

Thus we get that

b(u, v, w) ≤ `1/2
∣∣∣∣∣∣∂2

xv
∣∣∣∣∣∣

L̇2

∫ `

0
uw dx,

and

b(u, v, w) ≤ `1/2 ||∂xw||L̇2

∫ `

0
u ∂xv dx.

Applying the Cauchy-Schwarz inequality to the integrals gives the results.
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