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Abstract

We consider new baseball data from Statcast which includes launch angle, launch velocity,
and hit distance for batted balls in Major League Baseball during the 2015, and 2016 seasons.
Using logistic regression, we train two models on 2015 data to get the probability that a
player will get a hit on each of their 2015 at-bats. For each player we sum these predictions
and divide by their total at bats to predict their 2016 batting average. We then use linear
regression, which expresses 2016 actual batting averages as a linear combination of 2016
Statcast predictions and 2016 PECOTA predictions. When using this procedure to obtain
2017 predictions, we find that the combined prediction performs better than PECOTA. This
information may be used to make better predictions of batting averages for future seasons.

Keywords: Batting Average, MLB, Logistic Regression, Big Data, Forecasting
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Chapter 1

Introduction

Sports analytics is becoming an ever increasing component of sports. Different
teams and sports use data in a variety of functions. The main use of analytics and the focus
of this project is on predicting player performance. However analytics is also prominent in
the sports business sector, digital media, and for injury prevention (Davenport, 2014). By
combining statistical analyses and sport, researchers are able to provide deeper insight into
player and team abilities for both coaches and fans. From a team’s perspective, analyzing
data can give coaches and scouts a different view of the strengths and weaknesses of players
and recruits. Not only can analytics be used on a player level, but also on a team level
to highlight insufficient areas in both their own team and their competitors. This can give
teams a competitive advantage by filling missing spots in their roster and exploiting other
team’s weaknesses. Both players and managers have the opportunity to use data to negotiate
contracts and salaries based on player performance and progression. Managers can also use
it when hiring or firing coaches by looking at the history of their coaching performance from
an analytical mindset (Brousell, 2014).

Fans have welcomed sports analytics to enhance their game experience. Fans with
a statistical inclination have scraped their own data to explore and analyze. Entire websites
have been created for researchers to share their findings. One such website is baseball-
prospectus.com, which consists of a variety of analytics in all aspects of baseball including
player performance, transaction records, fantasy teams, and salary analysis. Fans have also
used data to increase their chances of success in sports betting. Whether they use their
own methods or other findings, the hope is to gain an advantage in the gambling world.
We discuss a multitude of applications in sports analytics, as well as how analytics have
impacted technology and player tracking. Specifically, we focus on an application to baseball
and batting averages, which is the concentration of this project.
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1.1 Analytics in Sport

From a business perspective, analytics can be used to optimize sales performance
of both tickets and merchandise as well as optimize fan experience through promotions and
social media (Davenport, 2014). Davenport discusses that many teams are apprehensive
to invest a lot into analytics from a business perspective, as the main focus of a team is on
sport performance and winning. The most popular source of business analytics is in ticket
pricing. One common approach to ticket sales is through variable pricing, which allows
teams to charge different prices for different tickets and games. However, the variable price
does not change throughout the season. This was initially primarily used in Major League
Baseball (MLB), but starting in 2015 half of the NFL teams had also implemented variable
pricing (Smith, 2015).

An alternative to variable pricing is dynamic pricing. This allows teams to change
their variable price throughout the season depending on who they are playing and how their
team is currently doing. Another form of business analytics involves fan engagement through
their online websites. Most teams have a tracking system to see where fans are visiting on
their website. They also utilize social media platforms. However, few sports are actually
using these metrics to improve and customize engagement on their site (Davenport, 2014).

Health analytics and injury prevention are also becoming prevalent with sports
teams. AC Milan, a professional soccer team, uses analytics from their lab MilanLab, to
study both mental and biomechanical components of players. Using this data, they create
alerts when a player is out of an accepted range. This team has a consistently low injury
rate since fully implementing their system in 2003 (Davenport, 2014). Despite the clear
benefits of injury prevention with player analytics, many teams are apprehensive to use it.
Players worry they will be punished or brought out of a game when their data shows that
they are on the verge of injury. Players also fear that their data will show potential injuries
during a contract year, which regardless of performance, could affect the evaluation of their
worth. As well, there is some discussion as to privacy issues and who will be able to access
the data and to what extent it should be used (Karkazis and Fishman, 2017). Nonetheless,
there can clearly be a benefit to using data for injury prevention, but it is still in the early
stages of being fully developed and implemented.

The most popular use of sports data includes player analysis and evaluation. This
kind of data can come in many forms including video analysis, player tracking, box scores,
and other summary statistics. With analyses of these datasets, teams can find optimal line-
ups for games, use findings when drafting and recruiting, and work with players to optimize
their game and discuss salary options based on analytical findings (Davenport, 2014). The
opportunity for applications is endless, but using analytics for player evaluation is still a
work in progress. One major backlash that sports science has faced is that decision makers
sometimes have little statistical experience. From their perspective, making decisions based
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on analytics is risky and goes against the sports culture of intuition and gut (Alamar and
Mehrotra, 2012). Despite the backlash, teams that can find a balance between traditional
methods and analytics can be very successful.

Teams across all disciplines have found a place for data. The NBA is one example
where advanced analytics have begun to play a prominent role in decision making. Although
not the best example of sport performance, the Philadelphia 76ers are one such team that
have recently embraced analytics. In May 2013, they hired General Manager and President
of Basketball Operations Sam Hinkie, who has an analytics first mindset. Hinkie began
rebuilding the team from scratch using advanced statistics to build the roster (Torre, 2015).
Hinkie has since been let go, but his decision making will influence the future of the Philadel-
phia 76ers. Some players have also begun to take an interest in their own personal data. The
New England Patriots star quarterback Tom Brady, is one who takes an active approach in
using analytics to enhance his game. At one point, he looked at what went wrong when he
threw incomplete and intercepted passes by analyzing game day videos (Davenport, 2014).

Player analysis is also heavily used in fantasy sports and gambling. Many fans
belong to fantasy leagues in which they select various players to a team that will go head
to head each week with other members of their league. The team that gets the most points
wins the week and the process is repeated with other members of the league throughout
the season. This type of gambling is seen across most sports including hockey, football
(European), baseball, basketball, and American football. There are many other methods
to sports gambling, with the three main ones being moneyline, spread, and over/under
wagering. Betting on the moneyline simply means the team you bet on must win. Betting
with a spread requires the team you bet on must win by more than the point spread that
was assigned. Finally, betting over/under allows the gambler to bet whether the combined
number of points in a game will be greater than or less than the predicted value where the
prediction comes from the betting platform you are using. Swish Analytics is an example of
a website that gives fans (for a price) both sport predictions and betting tools to improve
their Return on Investment (ROI) (Swish, 2017). Swish analytics claims their algorithms
have been successful in making profit over all three main styles of betting (Connolly, 2014).
Statisticians who also have a passion for sports and gambling often use their own methods
when placing wagers. Whatever source fans use to gamble and play in fantasy leagues, there
is a clear benefit to having access to the data and analyses.

With the influx in information, there has also been an increase in technology used
to record data and increase its accuracy. Prior to the technology boom, data would consist
of simple summary statistics mainly from box scores. However, when many of these box
scores became digitized and made publicly available, the interest in the data also increased.
Many professional sports teams use a player monitoring system consisting of video cameras
and tracking devices that track both players and balls or other equipment used. SportVU
is the provider of game data for the NBA and was installed in all NBA arenas in 2013. This
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setup consists of six cameras in the catwalk area of the arena and has the ability to track
both the movements of players and the ball 25 times per second ("STATS", n.d.). Similarly,
Sportvision is the technology used in all MLB Parks. It’s initial installation into all stadiums
began in 2007, where its cameras captured all pitch trajectories. In 2015, Statcast was
implemented, which not only tracked pitches, but also what players in the field were doing
and the result of the ball after it had been hit (Kagan and Nathan, 2017). More on Statcast
and the type of data it provides will be explained in Chapter 2. One major provider of sports
data and technology is STATS.com. This website provides data for almost all professional
sports including the NFL, NBA, MLB, NCAA, and PGA. They are responsible for the
technologies described previously, but also provide information to increase fan engagement,
including data feeds, digital products, and fantasy sport predictions ("STATS", n.d.).

1.2 Analytics in Baseball

The rise of technology and data has been seen across many sports, however, Major
League Baseball has been at the forefront of analytics since its introduction into sport.
Although baseball analytics have been a part of the game since its beginnings, sabermetrics
was only first officially defined by Bill James in 1980 as "the search for objective knowledge
about baseball." The name stemmed from the "Society for American Baseball Research", or
SABR, which is an organization dedicated to sharing baseball ideas and research. Members
come from a variety of backgrounds including broadcasters, former players, and baseball
officials (Birnbaum, 2013). From that definition 37 years ago to now, sabermetrics has seen
rapid growth in both the academic and the sports world. After the annual publication
of "The Bill James Baseball Abstract" began in 1982, the general public became aware
and interested in the benefits of analyzing sports. In 1989, baseball data became easier
to access when Retrosheet was created by David Smith, which had the goal of making
every box score in MLB computerized ("Sabermetrics", n.d.). This allowed easier, more
reliable data for scientists to analyze. One of the most famous users of sabermetrics was
Billy Beane, who was hired as the general manager of the Oakland Athletics MLB team in
1989 and became known for his eccentric methods in recruiting, that utilized sabermetric
findings. In 2003, Michael Lewis published "Moneyball: The Art of Winning an Unfair
Game", which gained notoriety worldwide. In 2011 the movie "Moneyball" was released that
was based on the book by Lewis. This movie broadened the audience of baseball analytics.
In particular, casual fans, gamblers, and non-numerically inclined people began to see the
benefits of baseball analytics ("Sabermetrics", n.d.). Sabermetrics has large variation in its
complexity, from basic data counting strategies, to the invention of unique metrics including
on-base plus slugging (OPS), which is the sum of a players on-base percentage and slugging
percentage ("OPS", n.d.). There is also more data than many MLB teams know what to
do with including the trajectories of every pitch and outcomes in MLB. This data has been
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used for multiple purposes including predicting game outcomes, on base percentages, and
batting averages.

Albert (2016) created a method for predicting a player’s batting average. In his
paper he demonstrated that instead of using a standard binomial setting where the outcome
of a plate appearance is a hit or an out, the result can be represented as a multinomial
distribution with four outcomes: strikeout (SO), home-run (HR), hit-in-play (HIP), and
out-in-play (OIP). Albert emphasized a luck component in batting averages and showed
that around half of the variability in player’s batting averages can be contributed to luck.
By breaking up a hit into different outcomes, he addressed the issue of luck and limited
it’s impact when predicting batting averages. A Bayesian random effects model was used to
estimate each of the posterior probabilities for the different batting outcomes. Combining
these probabilities, such that

pH = (1− pSO) · (pHR + (1− pHR) · pHIP ) (1.1)

gives the probability of a hit. The estimate for the probability of a hit, p̂H is found by
replacing the exact probabilities in (1.1) with their estimates from the Bayesian random
effects model (Albert, 2016). In this project, we wish to consider a luck aspect as well. A
batted ball can be classified as one of four outcomes. These include ground ball (GB), line
drive (LD), fly ball (FB), and pop up (PU). We represent these outcomes in our model with
various explanatory variables. In particular, the launch angle of a batted ball can be used
to classify these types of outcomes. A ground ball is measured as less than 10 degrees, a
line drive is 10-25 degrees, a fly ball 25-50 degrees, and a pop up is greater than 50 degrees
("MLB", n.d.b). Typically a fly ball will produce more runs than a ground ball. Therefore
if a batter gets an abnormally large number of hits from a ground ball, his hits would be
considered "lucky". By including launch angle in our model, the coefficient should be fitted
such that a batted ball with a small launch angle will have a lower probability of getting
a hit. Using this and the other variables in the model, we hope to minimize the effect luck
will have on predicting batting averages. We explain launch angle and the other variables
in more detail in Section 2.3.

1.3 Organization of the Project

This paper will look at PECOTA, a popular algorithm for predicting batting aver-
ages, in combination with Statcast data to see if PECOTA can be improved. In Chapter 2,
we will describe the data in both PECOTA and Statcast and the different variables that
were used in building our model. In Chapter 3, we explain the method used to create our
own Statcast model and combine this with PECOTA to create a super model for predicting
batting averages. We also discuss the predictions and compare them to various methods
used for predicting batting averages. In Chapter 4 we conclude by summarizing our findings
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and noting difficulties that were encountered as well as improvements that can be made.
The purpose of this project is to try to use new information available via Statcast to see
if the data can be used to improve PECOTA’s predictions. However, with the limited data
availability from Statcast, this may not be feasible at this point. Regardless, we hope to
provide some insight into various metrics in Statcast and how these can be used when
analyzing data and making predictions.
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Chapter 2

Data

2.1 Batting Averages

The primary goal of this project is to predict batting averages. Batting averages
(BA) are one method used in baseball to evaluate a players hitting performance, but can
also be used to value a pitcher’s skill by analyzing the batting average of batters faced.
MLB.com defines batting average (BA) as BA = H

AB , where H is a players number of hits
and AB is the number of the player’s at-bats. An at-bat is officially defined as when a
batter reaches base by a hit, error, or a fielders choice. An at-bat also includes instances
when a batter is out, but not on a sacrifice hit (sacrifice fly or bunt). A hit is defined as
getting to base on a fair hit, but not through a fielders choice or an error ("MLB", n.d.a). On
average, MLB players have a .260 batting average with elite players having batting averages
exceeding .300. Most sporting sites that keep track of MLB data record and post batting
averages. Common websites include baseball-reference.com, espn.com/mlb, and MLB.com.
However, virtually all websites that provide baseball statistics include batting average, or
at the minimum, the number of at-bats and hits per player. Providing records on batting
averages has been used for over 100 years. For example, currently the best single season
batting average record belongs to Hugh Duffy, who in 1894 had a batting average of .4397
("baseball reference", n.d.).

2.2 Prediction Systems

There are many systems in place to predict player performances including batting
averages, where the top algorithms range from simple to complex. Henry Druschel from
Beyond the Boxscore describes the main systems in place; Marcel, PECOTA, Steamer, and
ZiPS (Druschel, 2016). Marcel the Monkey Forecasting System or simply Marcel, is consid-
ered the most simple of the four. It was developed in 2004 by Tom Tango and is often used
as an initial model for other algorithms to build on. It’s algorithm is available to anyone
and involves using data from the last three years of a player, but gives a heavier weight to
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the most recent year. It then shrinks a player’s prediction to the current league average.
PECOTA is the second major prediction system and the basis for this project. It will be
described in Section 2.2. Steamer is a prediction algorithm that was developed in 2008 as
a high school project by teacher Jared Cross and his students Dash Davidson and Peter
Rosenbloom. It uses a weighted average of past performances, but also adjusts the predic-
tions so they are closer to the league average. Steamer determines these weights and the
degree of alteration based on regression analysis from previous players. The final commonly
used prediction method is ZiPS or the sZymborski Projection System, that was created by
Dan Szymborski and uses Voros McCracken’s discovery of Defense Independent Pitching
Statistics (DIPS). DIPS is based on the notion that pitchers have very little control of an
opponent’s batting result on balls in play (BABIP). ZiPS uses a weighted regression analysis
on four years of data for experienced players and three years for newer players or players
reaching the end of their careers. It then pools players together (loosely) based on similar
characteristics (Druschel, 2016). Each method has its various strengths and weaknesses and
performs with different efficiencies depending on the desired statistic you wish to predict.

2.3 PECOTA

PECOTA, or formally known as Player Emprical Comparison and Optimization
Test Algorithm is a proprietary prediction system created by Nate Silver in 2002 − 2003
and was bought by Baseball Prospectus in 2003 (PECOTA, 2017). Silver continued to
manage the predictions until 2009. In 2008, Silver created FiveThirtyEight.com, a blog
that covers politics, sports, science and health, economics, and culture from an analytical
perspective. In 2008, Silver’s predictions for the U.S. presidential election gained him and
his website notoriety when he correctly predicted the winner for 49 of the 50 States. His
prediction also accurately forecasted the winner of all 50 U.S. Senate members ("NateSilver",
n.d.). PECOTA utilizes prior seasons to predict player performance using three elements.
These include Major-league equivalencies, baseline forecasts and a career-path adjustment
("BaseballProspectus", n.d.). PECOTA contains predictions for seven baseball statistics,
each of which has an associated confidence interval (Schwarz, 2005). PECOTA is similar to
ZiPS in that it regresses on prior performances to get a baseline prediction. It then uses
that prediction to cluster players into pools based on different characteristics. PECOTA
is more advanced with the clustering as it considers age, position, body type, and other
features. The exact comparison structure is not known due to the proprietary nature of the
predictions (Druschel, 2016). This project considers the PECOTA predictions of batting
average for 2016 and 2017. We only consider players who are strictly batters since pitchers
only bat in the National League and often have less at-bats, as well as more fluctuation in
their batting averages.
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2.4 Statcast

Statcast is a relatively new data source that was implemented in 2015 across all
MLB parks. Prior to Statcast, MLB only allowed the general public to access data through
PITCHf/x, which measured a multitude of parameters including pitch speed, trajectory,
spin, and release point. It was created by Sportvision and was implemented in every MLB
stadium before the 2008 season (Fast, 2010). In 2015, Statcast was introduced, which has
the capability to track pitches, balls batted, and players in the field. Statcast uses two
different types of technology to do this. The first is Trackmans Doppler radar, which follows
the ball and the second is ChyronHego video monitoring, which tracks the players (Kagan
and Nathan, 2017). Statcast measures over 30 variables related to defensive, offensive, and
pitching statistics. The model used in this project includes three variables from Statcast,
which we believe are important predictors of hits. These variables are launch angle, exit
velocity, and hit distance. Launch angle is the vertical angle, measured in degrees, of a
batted ball when it leaves a players bat. Exit velocity is the speed of the batted ball and is
measured in miles per hour (mph). Hit distance is the distance in feet from the home plate
that a ball either hits the ground, or reaches its final position ("MLB", n.d.b). In Chapter 3
we describe the model as well as the transformations and interactions of the variables that
were used.
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Chapter 3

Data Analysis

The analysis involved three years of data from both Statcast and PECOTA as well
as building two models using this data to form our predictions of the batting averages for
2017. This chapter describes the process in detail, but Figure 3.1 is provided below as a
guideline to keep track of the different years of data and their role in the prediction process.

Figure 3.1: Analysis overview
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3.1 Verification of Statcast Accuracy

Because it is a relatively new tracking system, we wanted to check the accuracy of
Statcast data to ensure it contained all at-bats. As well, Statcast does not have a separate
indicator for a hit, out, or walk. Instead it has an event column and a description column.
The event column describes the outcome of each at-bat, such as field error, strikeout, double
play, and more. The description column is a play by play sentence that indicates the players
involved and the result of the play as well as details on the type of pitch, batted ball, and
fielding play. Using a string matcher in R, we searched through the event and description to
classify each at-bat as either a hit, out, or other. The other column consisted of sacrificial
at-bats, walks, and hits by pitches. We grouped these together because they will not be
considered in the analysis.

We randomly selected five players from 2015 and five from 2016 and found their
total number of at-bats and total number of hits for the regular season of their respective
year. This was then checked with www.baseball-reference.com to ensure accuracy. Eight of
the players had the same number of at-bats and hits as Baseball-Reference, however there
were two players that were off by one due to unique classifiers. These were Clint Robinson,
who in 2016 had a double play that should’ve been classified as an out and Troy Tulowitzki
who had an additional restraint for a fielders choice that was incorrectly labelled. The
accuracy of the data is an important component of our prediction procedure. The check is
shown in Table 3.1.

Table 3.1: Checking Statcast accuracy

In this research we were interested in launch angle, exit velocity, and hit distance.
We believe these variables are important indicators of whether a batted ball will result in
a hit or an out. We believe launch angle will have an impact on the probability of a hit as
balls with a large or small angle are more likely to result in an out. As well, exit velocity
is important as faster batted balls give fielders less time to react and respond. We believe
hit distance is important as a ball batted out of the park will always result in a hit (home
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run). As well, we believe batted balls with a small hit distance will result in an out more
often than not.

Due to it’s new technology, some of Statcast’s cameras do not capture every ele-
ment of every batted ball. Therefore, there are some at-bats where our variables of interest
were not measured. This could decrease the efficiency of our model, but leaves room for
improvement in the future as the technology and accuracy improves. In particular, Statcast
sometimes loses ball location for extreme cases of batted balls, including high angled pop-
ups and very low, sharp angled balls or ground balls. This can be due to the system being
down which Statcast classifies as an unbiased source of error, or because of the radar losing
track of the ball which is considered a biased source of error. If the missed data is due to
the system being down, they will input the average launch angle and speed based on the
type of batted ball and the outcome. If the missing data is due to the cameras losing sight
of the ball, then they have to adjust the average such that it is slightly more extreme in
order to correspond to the typical batted balls that are missed (Tangotiger, 2017).

It is also possible to have missing data due to the nature of the at-bat. For example,
strikeouts necessarily do not have an exit velocity covariate. This type of missingness requires
special consideration in our estimation procedure. In this analysis, we consider two different
models to address systematic missingness. The first logistic regression model removed batted
balls that contained empty data for any of our variables and removed batted balls that were
classified as either a ground ball, pop-up, or when the result of the ball was a strikeout.
The second logistic regression model used ground balls and only considered exit velocity as
a predictor of the probability of a hit. In our approach, we believe we handle systematic
missingness in a sensible way. The other types of missingness (i.e. missing at random and
due to technical problems) account for only 2.3% of our data (3280 cases from 140896
at-bats)

3.2 Using 2015 Statcast Data to Predict 2016 Batting Aver-
ages

Two logistic regression models were used to predict the probability of a hit. A lo-
gistic regression was chosen for several reasons including the simplicity and interpretability
of the model while still maintaining a relatively high efficiency. Logistic regression is partic-
ularly useful in the case of predicting the probability of success and assumes each event, in
our case each at-bat is independent of other at-bats. This assumption is a common approach
taken by statisticians analyzing baseball data.

We began with three years of Statcast data, 2015, 2016, and 2017. The first step was
to use 2015 data to predict 2016 batting averages. Initially we had considered all players.
However, we found that some players had very few at-bats, which would affect the final
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results (Table 3.2). Therefore we chose to use batters with 200 or more at-bats to build
the model. This resulted in using 84.1% of all the at-bats (140896 cases of the 167606 total
at-bats). The logistic regression where all variables were recorded used 49845 at-bats or
35.4% of the data for 2015. For the ground ball logistic regression, 50717 at-bats were used
or 36.0% of the 2015 data. Including the at-bats for pop-ups (7341 at-bats or 5.21% of
data) and strikeouts (29713 at-bats or 21.09% of data) resulted in the use of 97.7% of 2015
at-bats. This resulted in the prediction of 334 players’ batting averages for 2015 and 333
for 2016.

Table 3.2: Some examples of players during the 2015 season who had very few at-bats

3.2.1 Predicting the probability of a hit with complete 2015 Statcast data

Due to the "missingness" of data as described in Section 3.1, we limited model
training for the first regression to be on complete cases of the data. We initially considered
10 variables. These included hit distance, launch angle, exit velocity, launch angle2, launch
angle3, hit distance2, hit distance3, hit distance × launch angle, hit distance × exit velocity,
and launch angle × exit velocity. After analyzing the correlation between these variables,
we determined that launch angle × exit velocity, hit distance × exit velocity, launch angle2,
hit distance2, and hit distance3 should be removed from consideration due to their high
correlation with other variables.

We chose the above interaction terms due to our physical understanding of the
original variables having a non-linear effect. For example, launch angle can vary from −90
degrees to 90 degrees, where a negative angle represents a ground ball and a large angle a
fly ball. We expect the probability of a hit to increase as the angle increases until it reaches
a certain point. This is because the probability of a hit for both a ground ball and fly ball,
which are at opposite ends of the range, will be lower than those angles in the middle of
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the range. Therefore, we would expect some curvature in the relationship of a probability
of a hit and launch angle.

After removing the correlated variables, we conducted stepwise variable selection
using a likelihood ratio test at each step to determine the included variables in the model.
Stepwise variable selection is an appropriate choice as it allows variables to enter and exit
the model at any point. We began with the simplest model of just including an intercept
term and moved forward towards the model with all terms included. At the end of the
process four variables and the intercept were selected. The R output for the model is shown
in Table 3.3.

Table 3.3: Logistic regression output

We can see from the table that all of the variables have small p-values. This is due
to the large size of the dataset. To verify the effect sizes, we went through each variable and
their corresponding coefficients to determine whether the coefficients made sense in terms
of increasing the probability of a hit or not. For example, we assume a batted ball with a
fast exit velocity will have a higher probability of a hit than one with a slow exit velocity.
Inputting one slow exit velocity (20mph) and one fast exit velocity (120mph) for x1 in (3.1),
where β̂0 is the intercept and β̂1 is the estimated coefficient for exit velocity, we get the
probability of a hit p.

p = eβ̂0+x1β̂1

1 + eβ̂0+x1β̂1
(3.1)

For the slow batted ball, we get the probability of a hit to be 0.28 and for the fast batted ball
0.77. These calculations seem reasonable according to our baseball intuition. Note that the
simple calculation does not account for launch angle nor hit distance. Similar calculations
were carried out for the other variables in the model.

Furthermore, we can use the ANOVA function to conduct a likelihood ratio test.
In particular, we focus on the deviance of the variables. The deviance column in Table 3.4
shows how much the residual deviance will decrease when the term is added to the model
(in decreasing order of magnitude).
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Table 3.4: Anova output

With the exception of hit distance3, most of the variables have a relatively high
impact on the deviance of the model. Because Hit distance3 was selected in the stepwise
process used to build the model, we chose to keep it in the final regression despite its smaller
deviance. After verifying the logical nature of the coefficients and variables, we end up with
the final fitted model shown in (3.2).

log
(

p

1− p

)
=− 1.37− 2.645−5x3

2 + 2.15−2x1 − 1.52−4x2x3 + 3.12−3x3 (3.2)

where p is the probability of a hit, x1 is exit velocity, x2 is the launch angle and x3 is the hit
distance. Using this model and the 2015 and 2016 Statcast data, we predict the probability
of a hit for each at-bat.

3.2.2 Predicting the probability of a hit for ground balls

Because of missing hit distances in the Statcast data for ground balls, a separate
logistic regression was used. We considered exit velocity as the only predictor for the proba-
bility of a hit for ground balls. We excluded launch angle because we believed the minimum
variation in their values for ground balls would not greatly affect the probability of a hit. As
well, we believe that velocity is the most important predictor in ground balls as faster balls
are harder for fielders to deal with and could have more unpredictable bounces compared
to slower ground balls. Fitting the binary logistic regression model, we have

log
(

p

1− p

)
= −4.515 + 0.0392x1. (3.3)

We again confirm the logic of these values with an application to baseball. With respect to
ground balls, we would expect a slow exit velocity at-bat to have a very little probability
of hit success. Using an exit velocity of 20mph and 120 mph, we have P (hit) = 0.023 and
P (hit) = 0.547 respectively. These values are logical as we would expect the probability of
a hit for a ground ball at any exit velocity to be lower than that of other batted ball types.

3.2.3 Predicting batting averages

After using (3.3) to find the probability of a hit for each ground ball in 2015 and
2016, we combined these probabilities with the ones computed by (3.2) as well as the zero
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probabilities for pop-ups and strikeouts. Let mj be the number of at-bats for the jth player
during the season of interest. We have mj > 200 and 1 ≤ j ≤ 334 for 2015 and 1 ≤ j ≤ 333
for 2016. Therefore, to predict the batting averages for the subsequent year for player j,
we take the sum of the predicted probability of a hit for the jth player, p̂ji during the ith
at-bat, and divide this sum by the total number of at-bats for that player, mj , to give his
Statcast prediction.

ŷsj =
∑mj

i=1 p̂ji
mj

(3.4)

We believe this method is logical as we assume the majority of players will perform
similarly in the following year as they did during the current year. Furthermore, we hope
(3.2) and (3.3) focus on the quality of a player’s at-bats and not the luck or bad luck
component that we wish to remove from the prior season when making our prediction.

3.3 Combining 2016 PECOTA and 2016 Statcast to predict
2016 batting averages

Using the Statcast prediction for a player’s 2016 batting average shown in (3.3)
and PECOTA’s 2016 batting average predictions, we wish to combine them in a linear
regression that will be used to predict 2017 batting averages. Although advanced in nature,
PECOTA doesn’t use the at-bat qualities from the Statcast data that we use for our model.
We hope this additional information given by a player’s at-bats will improve the PECOTA
predictions.

Initially we had wanted to assign weights to the PECOTA and Statcast predictions
that utilized the variance of each prediction method to get a combined predicted batting
average for 2016 and 2017. However upon further consideration, we wanted our combined
prediction to reflect both the variance and bias of the predictions. Therefore we decided to
use a linear combination of the predictions. Let ŷpj be the 2016 PECOTA predicted batting
average for the jth player and yaj be the 2016 actual batting average for the jth player.
Then we regress

yaj = β0 + β1ŷpj + β2ŷsj

with unknown coefficients β0, β1, and β2. Fitting this model, we have

ŷaj = 0.0257 + 0.6482ŷpj + 0.2577ŷsj . (3.5)

The non-zero intercept term reflects bias in the estimations. As well, we notice that
the PECOTA predictions are more heavily weighted than the Statcast predictions. This is
not concerning as we expect the more advanced algorithm to contribute most of the final
prediction. We show the relationship of the two predictions in Figure 3.2. Clearly there
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exists some linear relationship between the two predictions. Therefore we are confident in
our decision to use regression to combine the predictions.

Figure 3.2: Statcast and PECOTA predictions

3.4 2017 Predictions and Comparisons

Using the 2016 Statcast data and (3.2), (3.3), along with (3.4), we get the 2017
Statcast predictions for 246 players. The decrease from the original 2017 Statcast predictions
(333 players) to the final 2017 predictions comes from players leaving the league in 2017, or
having less than 200 at-bats for the 2017 season. We then combine the Statcast predictions
with the 2017 PECOTA predictions using (3.5) to get the final predictions for 2017.

To compare the predictions, we used mean absolute error (3.6), where k repre-
sents one of the three different prediction methods, Statcast, PECOTA, and their linear
combination (3.5), and yj is the actual batting average for the jth player in 2017.

MAE = 1
N | ŷkj − yj | (3.6)

We began by comparing the 2016 PECOTA and Statcast predictions. For PECOTA, we got
a mean absolute error of 0.0209 and for Statcast 0.0236. We expected PECOTA to perform
better than the original Statcast predictions. However, the difference between the two errors
is relatively small and impressive when comparing a proprietary method like PECOTA to
openly available data. Statcast also does not take into account important variables such as
age. It is also evident that the prediction of batting average is difficult. A MAE of 25 points
is a large difference in the perceived quality of players.

The main focus of this project was to see if an improvement could be made with the
2017 predictions. Again, using mean absolute error, we compare 2017 PECOTA predictions
with the 2017 combined predictions. The mean absolute error for PECOTA was 0.0208
and for the combined model 0.0207. In terms of mean absolute error, there is a slight
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improvement in the combined model. Looking at the absolute errors of the combined model
for every prediction, it appears a lot of the larger mean errors occurred where PECOTA also
had large errors. However, in many cases, the combined version was better than PECOTA.
In cases where PECOTA outperformed the combined version, larger differences of prediction
performance (i.e. > 0.005) occurred for only 37 players. Looking at individual mean errors,
it was found that the combined predictions outperformed the PECOTA predictions 56%
of the time, implying an improved prediction performance for the combined model on an
individual level. Looking at individuals is appealing in baseball as many players have "off"
years that, due to the limited Statcast data, our model does not consider.

Using either error, the combined version does outperform the PECOTA prediction
which suggests that the additional information provided from Statcast is valuable in pre-
dicting batting averages. As well, we believe as the data from Statcast will become more
accurate, and with additional years, the predictions will continue to improve.

Unlike the PECOTA predictions, we are able to provide estimates of the standard
error for each player. Consider the Statcast prediction for a player’s batting average as given
by (3.4). Because of the assumption that each at-bat is independent, we are able to estimate
the variance of the Statcast predicted batting averages,

Var(ŷsj) =
∑mj

i=1(SE(p̂ji))2

m2
j

(3.7)

where SE(p̂ji) is the standard error of the probability of a hit for the ith at-bat from the
logistic regression output. To estimate the variance of the combined estimator in (3.5), we
have

V̂ar(ŷaj) = β̂2
1Var(ŷpj) + β̂2

2Var(ŷsj) + 2β̂1β̂2Cov(ŷpj , ŷsj) (3.8)

where Var(ŷpj) can be estimated by squaring the standard error of the PECOTA predic-
tions. Note we are treating β̂1 and β̂2 as constants when they are in fact random. The
Cov(ŷpj , ŷsj) can be estimated by calculating the sample covariance of the PECOTA and
Statcast predictions. This covariance is positive as can be seen in Figure 3.2. Therefore we
have

Var(ŷaj) = 0.64822(0.000295) + 0.25772Var(ŷsj) + 2(0.6482)(.0.2577)(0.000304)

= 0.066Var(ŷsj) + 0.000226.
(3.9)

Due to the small nature of the variances, we report players standard errors by squaring
(3.9).
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3.5 Players with Large Absolute Errors

We consider the players who had the highest errors for the combined predictions.
We look at 13 players who’s combined prediction had an absolute error of 0.05 or more.
Table 3.5 lists the combined absolute difference per player along with their corresponding
batting average and combined, Statcast, and PECOTA prediction along with the combined
standard deviation and the statcast standard error. Note that the standard errors for the
combined estimators are smaller and preferred to the standard errors of both PECOTA and
Statcast.

Table 3.5: Players with large absolute errors based on 2017 predictions

The largest error occurred with Tyler Saladino who only had a 0.178 batting aver-
age in 2017. Saladino seemed to be plagued with injuries this season, which caused far lower
than normal performance. After an average start to his season in April (batting average
of 0.221) 1, Saladino experienced a performance decrease in May, where he batted 0.167.
He would not play in June due to nerve issues in his back and in July he only played nine
games where he again averaged 0.167. His performance looked to be increasing in August
with a 0.205 batting average, but in September he only had three hits of his 40 at-bats
(NBCSports, 2017)

Other poor performances included Trevor Plouffe, who had his first under 0.200
batting average since his first year in MLB in 2010, where he batted 0.146. Jose Bautista
has seen a steady decline in batting averages since he peaked in 2011 with a 0.302 batting
average. His performance in 2017 (0.203) marks the worst since 2005 (0.203 in only 11
games). Miguel Cabrera batted 0.249 in 2017, his first average under 0.300 since 2008
(0.292). Cabrera made headlines at the end of August for his involvement in a fight during
the August 24th game against the New York Yankees. This fight resulted in a six game
suspension for him.

1All player statistics in this section are from baseballreference.com
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On the opposite end of the spectrum, Avisail Garcia batted 0.330, the third highest
in the MLB for the 2017 regular season and a large improvement from his 0.245 batting
average in 2016. Bryce Harper rebounded from a slow 2016 season (0.243) after he had
a breakout season in 2015 (0.330). After signing with the Houston Astros this year, Josh
Reddick had his best batting average (0.313) since he began playing in MLB in 2009.

For the 2017 regular season, Jose Altuve led MLB in batting average with 0.346.
PECOTA had predicted Altuve to bat 0.307, while our Statcast model had predicted 0.313.
The combined prediction was 0.305. In this case, the Statcast model did the best job of
predicting his season. Interestingly enough, according to the Statcast model, Jose Altuve’s
predicted 2018 batting average is only 0.269. This implies he may have been lucky with a
lot of his hits for the 2017 season.

Because PECOTA doesn’t release their 2018 projections until February 2018, we
consider the 2018 projections for the Statcast model. According to this model, the top
three predicted batting averages for 2018 are Joe Mauer (0.319), DJ LeMahieu (0.316), and
Melky Cabrera (0.315). In the 2017 regular season, Mauer batted 0.305, LeMahieu 0.310,
and Cabrera 0.285. According to what we hope our model captures, these projections imply
Mauer and LeMahieu had good hits in 2017 and, assuming similar performances in 2018,
will continue to bat at a high level. As well, Cabrera is projected to be quite a bit higher
than his 2017 performance. This suggests he had good hitting statistics, but perhaps some
level of unluckiness with his number of outs in 2017.

The players in Table 3.5 all experienced irregular seasons compared to their pre-
vious year. This caused our prediction to be closer to their 2016 batting average than what
really occurred. We hope in the future when more Statcast data is available, that we can
use more prior years to help predict a player’s batting average. This will help reduce errors
in players whose first prior year was not consistent with their usual batting statistics.
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Chapter 4

Concluding Remarks

In this project, we wanted to explore new tracking data of batted balls by predicting
the batting average of MLB players. The new data allowed us to remove a luck component
from our predictions that naturally occurs in baseball. Using Statcast data and the logistic
regressions from (3.2) and (3.3) along with (3.4), we formed Statcast predictions for 2016
and 2017. We then fit a linear model using 2016 Statcast and PECOTA predictions and
obtained the combined 2017 predictions using 2017 Statcast and PECOTA predictions and
(3.5).

In Chapter 1, we discussed multiple applications of sports analytics as well as
their contribution to the growth in technology. We discussed the use of sports analytics
for both teams and fans. By providing a better prediction of batting averages than one of
the current best systems, we show the importance of considering the new Statcast data
in analyses. As well, we show that there is still room for improvement in the proprietary
systems. This information can be used to increase gambling success by fans or with coaches
as an assessment tool in their current roster.

In Chapter 2, we discussed the two different data sources we used as well as other
prediction systems that are available. In Chapter 3, we described the methodology behind
forming the combined PECOTA and Statcast predictions for 2017 batting averages.

Although the results were promising, we believe they can be improved as additional
years of Statcast data are available and the accuracy of the data improves. In the future we
could refit the logistic regression model with newer years of data that are more complete.
As well, we could include multiple years of comparison between our combined prediction
and PECOTA.

Regardless, we believe this project can be used as valuable source of information
in describing and using the Statcast data. As well, we have showed that adding additional
features to a complex set of predictions in a simple manner can be very effective.
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