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Abstract

In wildfire management, a spot fire is the result of an airborne ember igniting a separate
fire away from the main wildfire. Under certain environmental and wildfire conditions, a
burning ember can breach a fuel break, such as a river or road, and result in the production
of a spot fire. This project derives distributions of the time to the first spot fire in various
situations, and verifies them by simulation. To demonstrate the implementation of the dis-
tributions in practice, we incorporate a stochastic fire spread model. This research assesses
the likelihood of spot fire occurring passed a fuel break, all while taking into account both
spotting distance and spotting rate. This contrasts with the traditional approach that solely
involves the maximal spotting distance, and can be a tool for fire management.

Keywords: Firebrand; Mixture distribution; Poisson process; Simulation; Wildfire mod-
elling
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Chapter 1

Introduction

1.1 Background

Wildfires are both natural and human caused phenomena that, on occasion, devastate com-
munities and economies around the world. A notable example is the 2016 Fort McMurray,
Alberta wildfire where the city was placed under mandatory evacuation, and resulted in
approximately $3.58 billion worth of damage (Snowdon 2016). Several factors led to the
event at Fort McMurray, one of which was the wildfire producing spot fires. A spot fire
is the occurrence of airborne burning embers, referred to as firebrands, that ignites a new
fire ahead of the main wildfire (Thomas and McAlpine 2010). Many spot fires occur near
the main fire front and are of minimal interest, since the main wildfire engulfs the new fire
before it significantly contributes to the rate of spread (Perryman et al. 2013). However, if
a convection column is developed, spot fires can potentially occur several kilometres ahead
of the main fire (Thomas and McAlpine 2010). Of special interest is the occurrence of a
new fire spawning on the opposite end of a fuel break, such as a river or roadway. The
significance of this event allows the wildfire to overcome natural barriers, and to possibly
advance towards communities. For example, it was confirmed that spot fires occurred on
the opposite side of both the Athabasca and Hangingstone rivers, which contributed to the
wildfire reaching Fort McMurray (Ha 2016).

Due to the dangers that spot fires present, comprehending the fire spotting process has
been an active research area within wildfire management. The common strategy within the
literature is to decompose the entire spotting process into several sub-processes, and model
each sub-process separately. Examples of these sub-processes include the potential of a fire-
brand to be sent aloft, the release of the firebrand from the convection column, the firebrand
landing on combustible fuel, and the capability of a firebrand to remain burning through-
out the entire operation. Albini (1979) was one of the first investigators to implement this
strategy. Physical models pertaining to characteristics of wildfires were used to develop a
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predictive model, although in an improvised manner, for the maximum distance a firebrand
can travel. However, the model requires observations that are difficult to measure, such as
the mass of a firebrand, the vertical wind speed profile, and the surface topography in the
direction the firebrand is travelling (Finney 2004). Recent modelling of spot fires have been
directed towards estimating the distribution of the distance firebrands travel. For example,
Martin and Hillen (2016) obtained what they termed as a “spotting distribution”, as the
probability distribution of observing a spot fire at a particular location through a trans-
port equation. Another model proposed by Boychuk et al. (2008) introduced a stochastic
cellular automaton fire spread model, along with a fire spotting procedure. This method
essentially simulated the distance firebrands travel along the convection column, and the
landing location of descending firebrands. Although it was the first fire spread model to
incorporate long-distance fire spotting, there are other complications within their spotting
submodel, such as reliance on normality for the firebrand travelling distribution (Martin
and Hillen 2016).

1.2 Objective and Outline

Although the cited works are important bridges to comprehend the fire spotting process,
the likelihood of a spot fire occurring remains an open problem. Rather than centring our
attention towards the distance firebrands travel, we focus on the rate at which firebrands
are emitted from the wildfire. This will allow us to quantitatively assess the probability
of a spot fire occurring within a specific location, such as passed a fuel break. This can
ultimately assist with fire management resource allocation, and administration affairs when
livelihoods are at risk.

We organize this project as follows. In Chapter 2, we undertake a counting process
framework to derive the distribution of the time to the first spot fire. By imposing assump-
tions on the intensity function and probability of a firebrand resulting in a spot fire that
travels the necessary distance, we can obtain a form pertaining to the distribution of the
time to the first spot fire. Chapter 3 presents a simulation study where we numerically
generate realizations of the time to the first spot fire, and offer a link between firebrand
generation and wildfire modelling. A summary and an outlook for future research concludes
this project in Chapter 4.
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Chapter 2

Deriving Distributions of Time to
the First Spot Fire

In this Chapter, we derive the distribution of the time to the first spot fire that crossed
a fuel break. In other words, if we let W denote the time when a firebrand successfully
ignites a new fire passed a fuel break, we proceed to derive P (W ≤ t) for any t > 0. The
outline of this Chapter is as follows. Chapter 2.1 introduces the common notation used
throughout this project, and is accompanied with preliminary definitions. We derive the
marginal distribution of W in Chapter 2.2 after supplying the firebrand rate function over
time, and the success probability for an individual firebrand to result in a spot fire. We
then conclude this Chapter with an illustration with three examples in Chapter 2.3.

2.1 Preliminaries & Notation

Suppose that a wildfire is ignited at time t = 0 within a cell s ∈ S , where S is a regular
two-dimensional lattice. Let N(t; s) denote the cumulative number of firebrands generated
by the wildfire within cell s over the time interval [0, t], where t > 0. With s fixed, we
regard {N(t; s) : t > 0} as a counting process with λ(t; s) denoting the intensity function.
Moreover, let p(t; s) denote the probability that a firebrand generated within cell s at time
t results in a spot fire that crossed a fuel break. Then given the time interval [0, T ∗], where
T ∗ > 0 is the time point when we stop observing the wildfire, we utilize the theory behind
counting processes to derive the distribution of the time to the first spot fire that crossed a
fuel break.

For each s ∈ S , let Ws denote the time to the first spot fire that crossed a fuel break
caused by a firebrand generated within cell s. We then either have (i) Ws ∈ [0, T ∗], which
means that we observed at least one firebrand generated within cell s that resulted in a spot
fire that crossed a fuel break, or (ii) Ws is right-censored at time T ∗, meaning that we were
unable to observe a firebrand generated within cell s result in a spot fire that crossed a fuel
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break over the interval [0, T ∗]. To accommodate for this latter scenario, we assign Ws =∞
if no spot fires occurred, so that Ws ∈ [0, T ∗] ∪ {∞}, for every s ∈ S . This allows us to
investigate the time to the first spot that crossed a fuel break, which is W = min

s∈S
{Ws}.

In the case where Ws = ∞ for every s ∈ S , we then have W = ∞, so that no spot fires
crossed a fuel break over [0, T ∗].

In order for a spot fire to occur, Thomas and McAlpine (2010) outline three basic
elements that must take place:

(i) A firebrand must be able to kindle a fire upon landing. If a firebrand is too moist,
it is incapable of igniting a new fire. Conversely, if a firebrand is not moist enough,
then the firebrand will burn-out prior to landing.

(ii) Fire whirls and the convection column must have sufficient convective energy to carry
firebrands aloft.

(iii) The ground where a firebrand lands must be receptive to rapid ignition.

In addition to these three conditions, we require a fourth element if a firebrand is to cross
a fuel break:

(iv) The firebrand must travel a sufficient distance in order to overcome the fuel break.

Overall, a variety of events must transpire in order for a spot fire to cross a fuel break, which
may not be satisfied over the entire interval [0, T ∗]. For example, the distance between the
wildfire and a fuel break may be greater than the maximal spotting distance (Albini 1979).
This means that none of the firebrands generated by the wildfire can possibly breach a fuel
break, in which case, we have p(t; s) = 0. This motivates us to specify the probability of a
firebrand generated within cell s at time resulting in a spot fire that crossed a fuel break as

p(t; s) = psI(t ∈ [tp1s, t
p
2s]), (2.1)

where ps ∈ [0, 1] is, in general, an unknown parameter, and [tp1s, t
p
2s] ⊆ [0, T ∗], is a known

time interval. With the counting process {N(t; s) : t > 0} along with the probability p(t; s),
we proceed to derive

FW (t) = P (W ≤ t), (2.2)

that is, the marginal distribution of W . Equivalently, we will derive

P (W > t) = 1− FW (t), (2.3)
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which is the survival function of W . Under the assumption that the times {Ws : s ∈ S }
are mutually independent, we expand Equation (2.3) as

P (W > t) = P

(
min
s∈S
{Ws} > t

)
= P (Ws > t, for all s ∈ S )

=
∏
s∈S

P (Ws > t), (2.4)

and by the law of total probability, each term within Equation (2.4) becomes

P (Ws > t) =


1 if t < tp1s
∞∑
k=0

P (Ws > t|N(t; s) = k)P (N(t; s) = k) if tp1s ≤ t ≤ t
p
2s

∞∑
k=0

P (Ws > tp2s|N(tp2s; s) = k)P (N(tp2s; s) = k) if tp2s < t ≤ T ∗.

(2.5)

We can see from Equation (2.4) that the survival function of W is obtained by calculating
the joint survival function of {Ws : s ∈ S }, which is the product of each Ws’s marginal
survival functions under the mutual independence assumption. In fact, we can see that
Ws follows a mixture distribution, with components (i) the resulting distribution emerging
from Equation (2.5), and (ii) a point mass distribution at t =∞. The mixture weights are
known however, since the weight of the point mass distribution is the accumulated mass
that surpassed the censoring time T ∗, which is P (Ws > T ∗).

2.2 Marginal Distribution of Time to the First Spot Fire

For each s ∈ S , suppose that {N(t; s) : t > 0} follows a Poisson process, which is a
collection of point events that occur completely at random over the interval [0, t] (Cox and
Isham 1980). We further assume that the intensity function λ(t; s) = λs(t) is a known
function of t, but can vary over s. By specifying a form for λs(t), this will aid us towards
evaluating the survival function of Ws presented in Equation (2.5). First, let us consider
the case where firebrands are generated at a constant rate over time.

2.2.1 Modelling Firebrand Generation Over Time as a Homogeneous
Poisson Process

Suppose that a wildfire is able to generate firebrands within cell s over the interval [0,∞),
and the intensity function is a homogeneous function of time. That is, the intensity function
is λs(t) = λs, where λs is an unknown constant that may vary over cells s ∈ S . Under this
situation, {N(t; s) : t > 0} is a homogeneous Poisson process, which is presented below.
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Definition 2.2.1. Cox and Isham, (1980): Let N(t; s) denote the number of firebrands
generated by a wildfire in a fixed cell s ∈ S and time interval [0, t]. Then {N(t; s) : t > 0}
is a homogeneous Poisson process with intensity function λ(t; s) = λs if

(i) N(t; s) ∼ Poisson(λst),

(ii) N(t; s) is independent of N(t; s)−N(u; s) for any 0 < u ≤ t.

Note that because λs completely specifies the distribution of N(t; s), we only need to specify
λs, in order to evaluate P (N(t; s) = k) in Equation (2.5). Moreover, since N(t; s) follows
a homogeneous Poisson process, the conditional distribution of the N(t; s) = k firebrand
arrival times is

(T1s, · · ·Tks|N(t; s) = k) d= (U(1), · · · , U(k)),

where “ d=” is denoted as equal in distribution, Tjs is the time when the jth firebrand is
generated within cell s, and U(j) is the jth order statistic of k independent and identically
distributed Uniform(0, t) random variables. This allows us to calculate the probability of a
firebrand generated within [tp1s, t

p
2s], to be P (Uj ∈ [tp1s, t

p
2s]) = L ([0, t] ∩ [tp1s, t

p
2s])/t, where

L (A ) = |A | is the length of the interval A . In the case where t ∈ [tp1s, t
p
2s], we see that

P (Uj ∈ [tp1s, t
p
2s]) = (t − tp1s)/t, which informs us that the arrival time of the jth firebrand

is uniformly distributed over [0, t]. Since we are primarily interested in firebrands that are
generated within [tp1s, t

p
2s], let N∗(t; s) = N(t; s) − N(tp1s; s). We can then condition on

N∗(t; s), and simplify Equation (2.5) for t ∈ [tp1s, t
p
2s] as

P (Ws > t|N(t; s) = k) =
k∑
`=0

P (Ws > t|N(t; s) = k,N∗(t; s) = `)P (N∗(t; s) = `|N(t; s) = k)

=
k∑
`=0

(1− ps)`
(
k

`

)(
t− tp1s
t

)`(
1− t− tp1s

t

)k−`
(2.6)

=
k∑
`=0

(
k

`

)(
(1− ps)

t− tp1s
t

)`(
1− t− tp1s

t

)k−`
. (2.7)

Equation (2.6) follows from P (Ws > t|N(t; s) = k,N∗(t; s) = `) being the probability that
all ` firebrands generated within [tp1s, t] fail to result in a spot fire, and by making use
of the firebrand mutual independence assumption, this occurs with probability (1 − ps)`.
Also, P (N∗(t; s) = `|N(t; s) = k) is the probability that ` of the k generated firebrands
are developed in the time interval [tp1s, t], which is Binomial(k, (t − tp1s)/t) distributed. By
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letting πs = (t− tp1s)/t, Equation (2.7) becomes

P (Ws > t|N(t; s) = k) =
k∑
`=0

(
k

`

)(
(1− ps)

πs
1− πs

)`
(1− πs)k

=
(

1 + (1− ps)
πs

1− πs

)k
(1− πs)k

=
(

1− ps
t− tp1s
t

)k
= qks , (2.8)

where qs = 1− ps(t− tp1s)/t. By using Equation (2.8) and Definition 2.2.1, Equation (2.5)
simplifies to

P (Ws > t) =
∞∑
k=0

qks
(λst)k

k! exp(−λst)

= exp(−λst)
∞∑
k=0

(λsqst)k

k!︸ ︷︷ ︸
exp(λsqst)

= exp(−λst(1− qs))

= exp (−λsps(t− tp1s)) .

Overall, Equation (2.5) is simplified for any t as

P (Ws > t) =


1 if t < tp1s

exp (−λsps(t− tp1s)) if tp1s ≤ t ≤ t
p
2s

exp (−λsps(tp2s − t
p
1s)) if tp2s < t ≤ T ∗,

(2.9)

and P (Ws = ∞) = P (Ws > T ∗) is the mass at time t = ∞. Equation (2.9) reveals to us
that for any s ∈ S , Ws follows a mixture distribution composed of (i) a shifted Exponential
distribution with shift parameter tp1s and rate parameter λsps with support t ∈ [tp1s, t

p
2s],

and (ii) a point mass distribution at t = ∞. With the survival function of Ws derived, we
can insert Equation (2.9) into Equation (2.4), and obtain the survival function of W as

P (W > t) =


1 if t < tp1

exp
(
−
{ ∑
s∈S

λsps [tI(t ∈ [tp1s, t
p
2s]) + tp2sI(t > tp2s)− t

p
1sI(t ≥ tp1s)]

})
if tp1 ≤ t ≤ T ∗,

(2.10)
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and P (W = ∞) =
∏
s∈S

P (Ws > T ∗) is the probability of zero spot fires occurring passed a

fuel break over the time interval [0, T ∗], where tp1 = min
s∈S
{tp1s}.

2.2.2 Modelling Firebrand Generation Over Time as a Non-homogeneous
Poisson Process

Although a variety of phenomena can be adequately modelled with the homogeneous Poisson
process in Chapter 2.2.1, the assumption of a constant intensity function is unrealistic
within our setting. As shown in Figure A.1, it is likely that there exists a cell s ∈ S that
is incapable of generating firebrands at time t = 0, or the intensity function of
{N(t; s) : t > 0} may not be a constant function with respect to time. That is, each s ∈ S

can generate firebrands within a certain time interval [tλ1s, tλ2s] ⊆ [0, T ∗], and λ(t; s) = λs(t) is
not necessarily a temporal homogeneous function. A more realistic scenario is to associate
[tλ1s, tλ2s] with the time interval when cell s is burning. All that we require however, is
[tp1s, t

p
2s] ⊆ [tλ1s, tλ2s], so that there is a time interval for firebrands generated within cell s to

potentially result in a spot fire that crossed a fuel break. This motivates us to utilize the
non-homogeneous Poisson process, which is presented below.

Definition 2.2.2. Cox and Isham, (1980): Let N(t; s) denote the number of firebrands
generated by a wildfire at a fixed cell s ∈ S and time interval [0, t]. Then {N(t; s) : t > 0}
is a non-homogeneous Poisson process with intensity function λ(t; s) = λs(t) if

(i) N(t; s) ∼ Poisson(Λs(t)), where

Λs(t) = E{N(t; s)} =
∫ t

0
λs(u)du

(ii) N(t; s) is independent of N(t; s)−N(u; s) for any 0 < u ≤ t.

As discussed in Chapter 2.2.1, λs(t) completely specifies the distribution of N(t; s), so
that P (N(t; s) = k) in Equation (2.5) can be evaluated once we specify λs(t). However,
since the non-homogeneous Poisson process is not a stationary process, this prevents us from
directly using the results pertaining to the homogeneous Poisson process. After performing a
deterministic time change, the non-homogeneous Poisson process reduces to a homogeneous
Poisson process with intensity λs = 1. To see why, suppose that {N(t; s) : t > 0} is a non-
homogeneous Poisson process with intensity function λs(t). We define γs : [0,∞)→ [0,∞)
to be the mapping γs(t) ≡ λs(t), and let

t̃ = γ−1
s (t), (2.11)

where γ−1
s (t) is the generalized inverse of λs(t). Then N(t̃; s) has the cumulative intensity

function Λs(t̃) = Λs(γ−1
s (t)) = t, and the independence assumption of N(t̃; s) and N(t̃−ũ; s)
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for any 0 < ũ ≤ t̃ still holds. Therefore, we see that {N(t̃; s) : t̃ > 0} is a homogeneous
Poisson process with intensity λs = 1. The significance of this result resides with

(T̃1s, · · · T̃ks|N(t̃; s) = k) d= (Ũ(1), · · · , Ũ(k)),

where Ũ(j) is the jth order statistic of k independent and identically distributed Uniform(t̃λ1s, t̃)
random variables. By working in the modified time scale, we can perform the same exercise
as in Chapter 2.2.1, and simplify Equation (2.5) for t̃ ∈ [t̃p1s, t̃

p
2s] as

P
(
W̃s > t̃|N(t̃; s) = k

)
=
(

1− ps
t̃− t̃p1s
t̃− t̃λ1s

)k
= q̃ks , (2.12)

where q̃s = 1 − ps(t̃ − t̃p1s)/(t̃ − t̃λ1s). We can then utilize Equation (2.12) and Definition
2.2.2 to simplify Equation (2.5) with the new time scale as

P (W̃s > t̃) =
∞∑
k=0

q̃ks
k! Λs(t̃− t̃λ1s)k exp(−Λs(t̃− t̃λ1s))

= exp

−Λs(t̃− t̃λ1s)︸ ︷︷ ︸
t̃−t̃λ1s

ps
t̃− t̃p1s
t̃− t̃λ1s


= exp(−ps(t̃− t̃p1s)).

We then have for any t̃

P (W̃s > t̃) =


1 if t̃ < t̃p1s

exp
(
−ps(t̃− t̃p1s)

)
if t̃p1s ≤ t̃ ≤ t̃

p
2s

exp
(
−ps(t̃p2s − t̃

p
1s)
)

if t̃p2s < t̃ ≤ T ∗.

(2.13)

Although Equation (2.13) operates in the modified time scale, the main lesson is that we
obtained {N(t̃; s) : t̃ > 0} as a homogeneous Poisson process with intensity λs = 1, when we
started with {N(t; s) : t > 0} as a non-homogeneous Poisson process with intensity λs(t).
By reverting this exercise, we start with a homogeneous Poisson process with intensity
λs = 1, and apply the inverse of the time transformation in Equation (2.11) to construct a
non-homogeneous Poisson process with intensity λs(t). Hence, we obtain

P (Ws > t) =


1 if t < tp1s

exp (−ps{Λs(t)− Λs(tp1s)}) if tp1s ≤ t ≤ t
p
2s

exp (−ps{Λs(tp2s)− Λs(tp1s)}) if tp2s < t ≤ T ∗.

(2.14)
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Similar to Equation (2.10), we can insert Equation (2.14) into Equation (2.4) and obtain
the survival function of W as

P (W > t) =


1 if t < tp1

exp
(
−
{ ∑
s∈S

λsps [Λs(t)I(t ∈ [tp1s, t
p
2s]) + Λs(tp2s)I(t > tp2s)− Λs(tp1s)I(t ≥ tp1s)]

})
if tp1 ≤ t ≤ T ∗,

(2.15)

and P (W =∞) =
∏
s∈S

P (Ws > T ∗) is the probability of zero spot fires occurring passed a

fuel break over the time interval [0, T ∗], where tp1 = min
s∈S
{tp1s}. As an illustration of Equations

(2.14) and (2.15), we now proceed with a few examples.

2.3 Examples

2.3.1 Example 1 - Constant Firebrand Rate Within a Subinterval

Suppose for a fixed s ∈ S that the intensity function is λs(t) = λsI(t ∈ [tλ1s, tλ2s]) as
motivated by Figure A.1a, where λs > 0. We then have for t ∈ [tλ1s, tλ2s]

Λs(t) =
∫ t

0
λs(u)du =

∫ t

tλ1s

λsdu = λs(t− tλ1s),

and for any t, we have

Λs(t) =


0 if t < tλ1s

λs(t− tλ1s) if tλ1s ≤ t ≤ tλ2s
λs(tλ2s − tλ1s) if tλ2s < T ≤ T ∗.

By recalling that [tp1s, t
p
2s] ⊆ [tλ1s, tλ2s], we insert Λs(t) into Equation (2.14) to obtain

P (Ws > t) =


1 if t < tp1s

exp (−λsps(t− tp1s)) if tp1s ≤ t ≤ t
p
2s

exp (−λsps(tp2s − t
p
1s)) if tp2s < t ≤ T ∗,

which we recognize as Equation (2.9), as expected. If we were to further suppose that
λs(t) = λsI(t ∈ [tλ1s, tλ2s]) for every s ∈ S , then Equation (2.15) simplifies to Equation
(2.10).

10



2.3.2 Example 2 - Power Law Firebrand Rate Within a Subinterval

Suppose for a fixed cell s ∈ S that λs(t) = µsλs(λs[t− tλ1s])µs−1I(t ∈ [tλ1s, tλ2s]) as motivated
by Figure A.1b, where µs > 0 and λs > 0. We can say for t ∈ [tλ1s, tλ2s] that

Λs(t) =
∫ t

0
λs(u)du =

∫ t

tλ1s

µsλs(λs[u− tλ1s])µs−1du = (λs[t− tλ1s])µs .

We can then simplify Equation (2.14) as

P (Ws > t) =


1 if t < tp1s

exp
(
−λµss ps{[t− tλ1s]µs − [tp1s − tλ1s]µs}

)
if tp1s ≤ t ≤ t

p
2s

exp
(
−λµss ps{[t

p
2s − tλ1s]µs − [tp1s − tλ1s]µs}

)
if tp2s < t ≤ T ∗.

Remark 1

Observe in the special case where tλ1s = tp1s, we have

P (Ws > t) =


1 if t < tp1s

exp (−λµss ps{[t− t
p
1s]µs}) if tp1s ≤ t ≤ t

p
2s

exp
(
−λµss ps{[t

p
2s − tλ1s]µs}

)
if tp2s < t ≤ T ∗,

which informs us that Ws is a mixture distribution composed of (i) a shifted Weibull distri-
bution with shift parameter tp1s, shape parameter µs, and scale parameter λsp−µss ; and (ii)
a point mass distribution at t =∞.

Remark 2

In the special case with µs = 1, we then see that Example 2 reduces to Example 1. This
result is as expected, since the Exponential distribution is a special case of the Weibull
distribution.

2.3.3 Example 3 - Exponential Firebrand Rate Within a Subinterval

For a fixed cell s ∈ S , suppose that λs(t) = µs exp(λs[t − tλ1s])I(t ∈ [tλ1s, tλ2s]) as shown in
Figure A.1c, where µs > 0 and λs > 0. By again considering t ∈ [tλ1s, tλ2s], we have

Λs(t) =
∫ t

0
λs(u)du =

∫ t

tλ1s

µs exp(λs[u− tλ1s])du = µs
λs

(
exp(λs[t− tλ1s])− 1

)
.
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By inserting Λs(t) in Equation (2.14), we see that

P (Ws > t) =


1 if t < tp1s

exp
(
−psµs/λs{exp(λs[t− tλ1s])− exp(λs[tp1s − tλ1s])}

)
if tp1s ≤ t ≤ t

p
2s

exp
(
−psµs/λs{exp(λs[tp2s − tλ1s])− exp(λs[tp1s − tλ1s])}

)
if tp2s < t ≤ T ∗.

Remark 1

Observe in the special case where tλ1s = tp1s, we have

P (Ws > t) =


1 if t < tp1s

exp (−psµs/λs{exp(λs[t− tp1s])}) if tp1s ≤ t ≤ t
p
2s

exp
(
−psµs/λs{exp(λs[tp2s − tλ1s])}

)
if tp2s < t ≤ T ∗,

which informs us that Ws is a mixture distribution composed of (i) a shifted Gompertz
distribution with shift parameter tp1s, shape parameter µsps/λs, and scale parameter λs;
and (ii) a point mass distribution at t =∞.
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Chapter 3

Simulation Study

In this Chapter, we simulate the time to the first spot fire that crossed a fuel break in R
(R Core Team 2016). The purpose in doing so is to numerically obtain the distribution
of W under a variety of situations, and make a comparison with the true distribution of
W derived in Chapter 2. The outline of this chapter is as follows. Chapter 3.1 provides
preliminaries for the simulation study, and details how spot fires are generated. In order to
realistically simulate the time when each cell ignited, Chapter 3.2 presents a stochastic wave
propagation fire spread model. We then proceed with three simulation settings in Chapter
3.3, and provide a discussion of the resulting distributions.

3.1 Preliminaries

Analogous to Chapter 2.1, consider an active wildfire over the time interval [0, T ∗], where
the wildfire ignites at time t = 0 within a cell s ∈ S , T ∗ = 45 is the end of the fire spotting
observation window, and S is the set of cells that can generate firebrands. Throughout the
simulation study, we define S as

S = {s = [x, x+ 1]× [y, y + 1] : x ∈ {0, · · · , 10}, y ∈ {−5, · · · , 5}},

so that each cell has unit length and width, and at most |S | = 121 cells can generate
firebrands within our environment. For each cell s ∈ S , let N(t; s) denote the cumulative
number of firebrands generated by the wildfire within cell s over the time interval [0, t]. As
in Chapter 2.2, suppose that {N(t; s) : t > 0} is a Poisson process with intensity function
λ(t; s) = λs(t), and the probability of a firebrand generated within cell s resulting in a spot
fire that crossed a fuel break at time t is p(t; s) = psI(t ∈ [tp1s, t

p
2s]). Out of simplicity, we set

[tp1s, t
p
2s] = [tλ1s, tλ2s], where [tλ1s, tλ2s] is the time interval when cell s can generate firebrands.

Within our artificial environment, we designate a set of cells that constitute a fuel break F ,
in which the wildfire cannot breach without spotting. We specify the fuel break throughout
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the simulation study as

F = {s = [x, x+ 1]× [y, y + 1] : x ∈ {11, 12, 13}, y ∈ {−5, · · · , 5}},

so that we have a rectangular fuel break that is three units wide. For a fixed cell s ∈ S ,
we simulate

M(t; s) = N(t; s)−N(t− 1; s) ∼ Poisson
(∫ t

t−1
λs(u)du

)
to be the number of firebrands generated by the wildfire within cell s over the time in-
terval [t − 1, t]. By assuming that firebrands generated within cell s result in a spot fire
independently, we simulate the number of spot fires over the time interval [t− 1, t] as

M∗(t; s) ∼ Binomial(M(t; s), p(t; s)).

If M∗(u; s) = 0 for u < t, but M∗(t; s) > 0 for any s ∈ S , we set Ws = t, and obtain
W = min

s∈S
{Ws} as our simulated realization of the time to the first spot fire. In the event

thatM∗(u; s) = 0 for all 0 ≤ u ≤ T ∗ and s ∈ S , we declare that the wildfire did not breach
the fuel break, and we set W =∞.

After executing the fire spotting procedure m = 1,000 times, we estimate FW (t) with
the empirical cumulative distribution function (ECDF)

F̂W (t) =

m∑
i=1

I(W (i) ≤ t)

m
,

where W (i) ∈ {1, 2, · · · , T ∗,∞} is the ith simulated realization of W . By observing that
F̂W (t) is a sum of independent and identically distributed random variables, such that

E(F̂W (t)) = FW (t)

Var(F̂W (t)) = FW (t)(1− FW (t))
m

,

we can obtain an approximate 95% confidence interval for FW (t) by the central limit theorem
as [

F̂W (t)− 1.96
√
V̂ar(F̂W (t)), F̂W (t) + 1.96

√
V̂ar(F̂W (t))

]
,

where V̂ar(F̂W (t)) = F̂W (t)(1− F̂W (t))/m is a plug-in estimate for Var(F̂W (t)).
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3.2 Wildfire Growth

In order for us to simulate firebrands in a sensible manner, we need to determine
tλ1 = {tλ1s : s ∈ S }, which is the set of times when cells s ∈ S are ignited. However even
under homogeneous conditions, the magnitude and direction of a wildfire’s growth over time
is stochastic, which means that tλ1 is random. This motivates us to implement a fire growth
model to obtain tλ1 . Due to the practicality of the wave propagation fire spread model (cf.
Richards (1990), Finney (2004), Tymstra et al. (2010)), we applied a modified version of
PROMETHEUS, initially developed by Han and Braun (2013). This model employs the
Canadian Fire Behaviour Prediction system (Forestry Canada, 1992) to obtain empirical
rate of spread (RoS) estimates, which are associated with fire growth ellipse parameters.
The Canadian Fire Behaviour Prediction system assumes that the RoS has a sigmoidal
relationship with the initial spread index (defined below), which is a function of the fuel
type, fuel moisture, and wind speed. The envelope of ellipses is then applied to obtain the
curve that determines the wildfire, and we specify tλ1s to be the time when the wildfire curve
intersects with cell s.

Specifically, the forward, back, and flank RoS values at time t within cell s ∈ S are
denoted by R(t, s), B(t, s), and K(t, s), respectively, and they are

logR(t, s) = log{φs(1− exp[−βsIR(t, s)])νs}+ εR (3.1)

logB(t, s) = log{φs(1− exp[−βsIB(t, s)])νs}+ εB (3.2)

K(t, s) = R(t, s) +B(t, s)
2ρ(ω) ,

where φs, βs, and νs are fuel specific parameters (see Table 6 of Forestry Canada (1992)),
IR(t, s) and IB(t, s) are the forward and backward initial spread indices, respectively, ρ(ω)
is the length-to-breadth ratio, ω = ω(t, s) is the current wind speed at time t within cell
s, and εR, εB

iid∼ Normal(0, σ2
ε). The purpose of incorporating the error terms εR and εB

in Equations (3.1) and (3.2) is to capture any unexplained variation of the RoS and RoS
model, and the log-scale in Equations (3.1) and (3.2) is motivated by a variance-stabilizing
transformation in the Han and Braun (2013) analysis. The initial spread indices and length-
to-breadth ratio are obtained via empirical estimates

IR(t, s) =

0.208g1(ω, 0.05039)g2(r) if ω ≤ 40 km/h

2.496(1− exp(−0.0818{ω − 28}))g2(r) if ω > 40 km/h

IB(t, s) = 0.208g1(ω,−0.05039)g2(r)

ρ(ω) = 1 + 8.729{1− exp(−0.03ω)}2.155,
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where

g1(ω, x) = exp(xω)

g2(r) = 91.9 exp(−0.1386r)
(

1 + r5.31

4.93× 107

)
,

and r = r(t, s) is the fuel moisture at time t in cell s; see Forestry Canada (1992) for further
details.

By applying the wave propagation concept to the wildfire over [t − 1, t], ellipses are
generated at each time t with angle of rotation θ(t, s) to be in the direction of the wind.
The resulting parameters for each ellipse are

a(t, s) = R(t, s) +B(t, s)
2

b(t, s) = K(t, s)

c(t, s) = R(t, s)−B(t, s)
2 ,

where a(t, s) and b(t, s) are the major and minor radii parameters, respectively, and c(t, s)
is the distance from the left focal point to the centre of the ellipse. Hence, the progression
of the wildfire over [t− 1, t] is the resulting curve after taking the outer envelope of all the
ellipses generated at time t.

3.3 Simulation Settings

3.3.1 Setting 1 - Uniform Firebrand Generation

For our first setting, we consider a special case of Example 1 from Chapter 2.3.1, where we
fix tλ1s = 0 and tλ2s = T ∗ for every s ∈ S . In other words, firebrands are uniformly generated
over cells s ∈ S and time t ∈ [0, T ∗]. Then for a fixed cell s ∈ S , the collection of point
events {N(t; s) : t > 0} is a homogeneous Poisson process with intensity function λs(t) = λ,
which is constant with respect to both t and s. In order to allow for the probability of a
firebrand resulting in a spot fire to vary across cells, we partition S into three subsets that
we refer to as fire zones, and are specified as

S1 = {s : x ∈ {0, 1, 2, 3}, y ∈ {−5, · · · , 5}}

S2 = {s : x ∈ {4, 5, 6, 7}, y ∈ {−5, · · · , 5}}

S3 = {s : x ∈ {8, 9, 10}, y ∈ {−5, · · · , 5}}.

The purpose of these fire zones is that they allow us to specify the probability of a firebrand
resulting in a spot fire to be greater, for firebrands generated within cells closer to the
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fuel break. That is, we specify p(t; s) = ps =
3∑
j=1

p(j)I(s ∈ Sj), where p(1) ≤ p(2) ≤ p(3).

As an illustration of our fire spotting process within our simulated environment, consider
the case where λ = 0.05, and p(1) = p(2) = p(3) = 0.007 in Figure A.2. The left panel
illustrates N(t; s) for every s ∈ S over the time interval [0, 19], and the right panel exhibits
that every s ∈ S can generate firebrands at time t = 19. Furthermore, cells s ∈ F are
coloured dark blue to represent the three unit wide rectangular fuel break that the wildfire
is attempting to breach. By increasing time by one unit to t = 20, Figure A.2b illustrates
that cell s = [4, 5]× [−1, 0] is coloured red, which indicates that M∗(20; s) > 0. This means
that we set Ws = 20, and since this is the first occurrence of a spot fire, we declare t = 20
as a simulated realization of W . An equivalent narrative is presented in Figure A.3, where
λ = 0.05, p(1) = 0.007, p(2) = 0.010, and p(3) = 0.015. We see that M∗(18; s) > 0 for
s = [6, 7]× [−2,−1], so that t = 18 is a simulated realization of W .

After obtaining 1,000 simulated realizations of W , we want to compare the simulated
distribution of W with its theoretical counterpart that we derived in Chapter 2. From
Equation (2.9), the survival function of Ws for each s ∈ S is

P (Ws > t) =

1 if t < 0

exp (−λpst) if 0 ≤ t ≤ T ∗,
(3.3)

so that Equation (3.3) is the survival function of an Exponential random variable with rate
λps for t ∈ [0, T ∗]. Since we assigned Ws = ∞ if none of the firebrands generated within
cell s resulted in a spot fire by time t = T ∗, we have P (Ws = ∞) = P (Ws > T ∗). Hence,
we make use of Equation (2.10) and obtain the survival function of W as

P (W > t) =


1 if t < 0

exp
(
−
∑
s∈S

λpst

)
if 0 ≤ t ≤ T ∗,

and P (W = ∞) =
∏
s∈S

P (Ws > T ∗). Under this particular setting, we can recognize W as

a mixture distribution composed of (i) an Exponential random variable with rate
∑
s∈S

λsps,

and (ii) a point mass distribution at t =∞.
Although the distribution of W in this setting is well-known, this may not be the case

in more complex settings. In order to gain investigate the distribution of W , we compute
the hazard function of W , which is the instantaneous rate of a spot fire occurring. The
hazard function for this setting is

hW (t) = fW (t)
P (W > t) = λ

3∑
j=1

p(j)|Sj |, (3.4)
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where fW (t) is the density function of W , and |Sj | is the number of cells in fire zone j. We
can see from Equation (3.4) that the occurrence of a spot fire is constant, with respect to
time, which should not come as a surprise since the Exponential distribution is memoryless.

Figure A.4 plots the ECDF accompanied with FW (t) and a histogram of the simulated
realizations of W for the two cases illustrated in Figures A.2 and A.3, where we applied a
continuity correction factor toW . We can see that the ECDF is in close agreement with the
true distribution function, as the true distribution function resides in the 95% confidence
interval for all t ∈ [0, T ∗]. Furthermore, we can clearly see within the histograms that W
follows a mixture distribution composed of (i) an Exponential distribution and (ii) a point
mass distribution at t =∞. By comparing these two cases, we can see that the probability
of observing a spot fire is higher with the parameter settings of Figure A.3 as opposed to
Figure A.2. This result is as expected, since the probability of a firebrand resulting in a
spot fire is higher within two fire zones. Table 3.1 presents the simulated probability of a
spot fire not occurring, under a variety of parameter settings. The same conclusions apply
for all of the parameter settings, since the true probability resides in the 95% confidence
interval. Additional plots for the parameter settings presented in Table 3.1 can be found in
Figures B.1 and B.2 in Appendix B.

Table 3.1: Parameter settings along with the simulated probability, 95% confidence interval (CI),
and true probability of a spot fire not crossing the fuel break. The two cases in Figure A.4 are
presented in bold font.

λ p(1) p(2) p(3) P̂(W =∞) 95 % CI P(W =∞)
0.002 0.05 0.08 0.15 0.394 [0.364, 0.424] 0.383
0.002 0.15 0.15 0.15 0.206 [0.181, 0.231] 0.195
0.002 0.15 0.20 0.25 0.124 [0.104, 0.144] 0.119
0.05 0.001 0.007 0.02 0.114 [0.094, 0.134] 0.103
0.05 0.007 0.007 0.007 0.154 [0.132, 0.176] 0.149
0.05 0.007 0.010 0.015 0.060 [0.045, 0.075] 0.061
0.10 0.0025 0.0025 0.0025 0.240 [0.214, 0.266] 0.256
0.85 0.0002 0.0002 0.0002 0.394 [0.364, 0.424] 0.396

3.3.2 Setting 2 - Cells Ignited By Zone

For our second setting, we consider another special case of Example 1 from Chapter 2.3.1,
where we used a deterministic cellular automaton fire growth model to obtain tλ1 . That
is, we no longer fix t1s = 0 and t2s = T ∗ for every s ∈ S , but rather, t1s and t2s are
fixed to separate times to roughly mimic fire growth. This means for a fixed cell s ∈ S ,
the collection of point events {N(t; s) : t > 0} is a non-homogeneous Poisson process with
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intensity function λs(t) = λsI(t ∈ [tλ1s, tλ2s]), where

tλ1s =
3∑
i=1

t(i)I(s ∈ S i)

λs =
3∑
i=1

λ(i)I(s ∈ S i)

S 1 = {s ∈ S : x ∈ {0, 1, 2, 3}, y ∈ {−1, 0, 1}}

S 2 = {s ∈ S : x ∈ {0, · · · , 6}, y ∈ {−3, · · · , 3}, s /∈ S 1}

S 3 = S \{S 1⋃S 2},

and t(1) = 5, t(2) = 15, and t(3) = 25 are fixed. We also considered two separate conditions
for tλ2s:

(i) Cells s ∈ S only generate firebrands for 20 time units, meaning that tλ2s = tλ1s + 20.
This can be interpreted as each cell s becoming extinguished after 20 time units from
being ignited.

(ii) Cells s ∈ S continue to generate firebrands until t = T ∗, so that tλ2s = T ∗.

As for the probability of a firebrand resulting in a spot fire, we maintained with the same

specification of p(t; s) as in Setting 1, so that p(t; s) =
3∑
j=1

p(j)I(s ∈ Sj). Figures A.5 and

A.6 present two separate cases of cells generating firebrands with tλ2s = tλ1s + 20. Similar
to Setting 1, Figure A.5b shows us that t = 36 is a simulated realization for W , whereas
t = 25 is a simulated realization for W in Figure A.6b.

Similar to Setting 1, the survival function of Ws for a fixed cell s ∈ S is

P (Ws > t) =

1 if t < tλ1s

exp
(
−λsps(t− tλ1s)

)
if tλ1s ≤ t ≤ tλ2s,

which informs us that for t ∈ [0, T ∗], Ws is an Exponential random variable with rate λsps
and shift parameter tλ1s. We can then obtain the survival function of W as

P (W > t) =


1 if t < 5

exp
(
−
{ ∑
s∈S

λsps
[
tI(t ∈ [tλ1s, tλ2s]) + tλ2sI(t > tλ2s)− tλ1sI(t ≥ tλ1s)

]})
if 5 ≤ t ≤ T ∗,

and P (W =∞) =
∏
s∈S

P (Ws > T ∗).
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Based on the way we specified [tλ1s, tλ2s], the hazard function of W for this setting is

hW (t) =



λ(1)p(1)|S 1 ∩S1| if 5 < t ≤ 15
2∑
i=1

2∑
j=1

λ(i)p(j)|S i ∩Sj | if 15 < t ≤ 25
3∑
i=1

3∑
j=1

λ(i)p(j)|S i ∩Sj | if 25 < t ≤ 45

0 otherwise,

if tλ2s = T ∗, and

hW (t) =



λ(1)p(1)|S 1 ∩S1| if 5 < t ≤ 15
2∑
i=1

2∑
j=1

λ(i)p(j)|S i ∩Sj | if 15 < t ≤ 25
2∑
i=1

2∑
j=1

λ(i)p(j)|S i ∩Sj | if 25 < t ≤ 45
3∑
i=2

2∑
j=1

λ(i)p(j)|S i ∩Sj | if 25 < t ≤ 35

λ(3)
2∑
j=1

p(j)|S 3 ∩Sj | if 35 < t ≤ 45

0 otherwise,

if tλ2s = tλ1s + 20. In either scenario, we can see that the hazard function is a step-function,
so that the rate of a spot fire occurrence is piece-wise constant. Furthermore, each step of
the hazard function occurs whenever a cell transitions to a new state.

Figure A.7 plots the ECDF and distribution function of W in the left panel and the
histogram of W in the right panel, for the two cases presented in Figures A.5 and A.6. We
can see the effect of cells changing states within these two plots, which is precisely what
hW (t) informs us. Similar to Table 3.1, we present the probability of a firebrand resulting
in a spot fire, and its true value under a variety of parameter settings in Table 3.2. We
see that the true probability values reside in their 95% confidence intervals, minus one case
that narrowly misses. Additional plots for the parameter settings presented in Table 3.2
can be found in Figures B.3 and B.4 in Appendix B.

3.3.3 Setting 3 - Cells Ignited According to a Fire Growth Model

For our third setting, we used the Han and Braun (2013) stochastic fire growth model as
discussed in Chapter 3.2 to obtain tλ1 . In order to do so, assumptions need to be made
pertaining to the environment where the wildfire is burning. For the sake of simplicity, we
assume a spatial homogeneous environment, in terms of fuel type, wind speed and direction,
and fuel moisture; but the wind speed and fuel direction can vary across each simulation.
We designate the fuel type to be mature jack or lodgepole pine (C-3 in Forestry Canada
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Table 3.2: Parameter settings along with the simulated probability, 95% confidence interval (CI),
and true probability of a spot fire not crossing the fuel break. The two cases in Figure A.7 are
presented in bold font.

λ(1) λ(2) λ(3) p(1) p(2) p(3) tλ2s P̂ (W =∞) 95% CI P (W =∞)
0.05 0.05 0.05 0.007 0.007 0.007 45 0.326 [0.297, 0.355] 0.346
0.05 0.05 0.05 0.007 0.007 0.007 tλ1s + 20 0.419 [0.388, 0.450] 0.429
0.05 0.05 0.05 0.007 0.010 0.015 45 0.220 [0.175, 0.225] 0.226
0.05 0.05 0.05 0.007 0.010 0.015 tλ1s + 20 0.282 [0.254, 0.310] 0.289
0.05 0.10 0.07 0.007 0.007 0.007 45 0.189 [0.165, 0.213] 0.192
0.05 0.10 0.07 0.007 0.007 0.007 tλ1s + 20 0.285 [0.257, 0.313] 0.270
0.05 0.10 0.07 0.007 0.010 0.015 45 0.095 [0.077, 0.113] 0.100
0.05 0.10 0.07 0.007 0.010 0.015 tλ1s + 20 0.152 0.130, 0.174 0.150

(1992)), so that φs = 110, βs = 0.0444, and νs = 3 are the fuel specific parameters of
Equations (3.1) and (3.2). The reason why we specified this fuel is simply due to the
perception of pine cones and other foliage becoming firebrands that can result in a spot
fire. As for the error terms εR and εB in Equations (3.1) and (3.2), we set σ2

ε = 0.42 to
account for the unexplained variation not explained by the model. All that remains for
us to obtain the RoS values are the wind speed and fuel moisture. Since we assumed a
spatially homogeneous environment, this means that the fuel moisture and wind speed only
vary over time. Due to the perceived autocorrelation within these variables, we generate
fuel moisture and wind speed as independent autoregressive models of order two

r(t) = µr + ϕ1r(t− 1) + ϕ2r(t− 2) + εr,

ω(t) = µω + ψ1ω(t− 1) + ψ2ω(t− 2) + εω,

where µr = 25, ϕ1 = 0.7, ϕ2 = 0.25, εr ∼ Normal(0, σ2
r ), σ2

r = 0.852, µω = 28, ψ1 = 0.45,
ψ2 = 0.15, εω ∼ Normal(0, σ2

ω), and σ2
ω = 2.452. By igniting the fire at time t = 0 as a

point ignition at location (0.5, 0.5), we generate the wildfire over times t ∈ {1, 2, · · · , T ∗}.
We also specify θ(t, s) = 0, for all s and t, so that the wind is constantly gusting eastwards.

In terms of generating firebrands, we have the collection of point events {N(t; s) : t > 0}
as a non-homogeneous Poisson process with intensity function λs(t) = λsI(t ∈ [tλ1s, tλ2s]),
for each s ∈ S . To make comparisons with Setting 2, we continue to specify the firebrand

rate as λs =
3∑
i=1

λ(i)I(s ∈ S i). However, we specify p(t; s) = psI(t ∈ [tλ1s, tλ2s]), where

ps = κdxe/(11 + 3) for some κ > 0, so that ps is proportional to the distance from the end
of cell s to the end of the three unit wide fuel break.

Figure A.8 illustrates cells generating firebrands, where we set tλ2s = tλ1s + 20. With this
example, we can see the wildfire spreading eastwards, and roughly takes on an elliptical
shape. For this case, we can see that the first spot fire occurs at time t = 27 within cell
s = [7, 8] × [3, 4]. Since we did not prespecify tλ1 , we can branch off into two separate
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situations: (i) we fix tλ1 to a simulated realization from the fire growth model, and (ii) we
let tλ1 vary across simulations. We consider both of these subcases below.

Fixed tλ1

Upon simulating the wildfire once to obtain a simulated realization of tλ1 , we then proceeded
to simulate the firebrand generation process 1,000 times. That is, we generated realizations
of W conditional on tλ1 to obtain FW |tλ1 (t). This can be interpreted as the distribution of W
conditional on a particular wildfire. Figure A.9 plots a simulated realization of tλ1 , in which
we can see the progression of the wildfire over time. Furthermore, there are cells s ∈ S

where tλ1s > T ∗, so that not every cell can generate firebrands over [0, T ∗].
Since tλ1 is constant across the 1,000 simulations, we can compare the ECDF to the

true conditional distribution function that we derived in Chapter 2. The true conditional
survival function for Ws in this setting is

P (Ws > t|tλ1) =

1 if t < tλ1s

exp
(
−λsps(t− tλ1s)

)
if tλ1s ≤ t ≤ tλ2s,

and the conditional survival function of W is

P (W > t|tλ1) =


1 if t < 0

exp
(
−
{ ∑
s∈S

λsps
[
tI(t ∈ [tλ1s, tλ2s]) + tλ2sI(t > tλ2s)− tλ1sI(t ≥ tλ1s)

]})
if 0 ≤ t ≤ T ∗,

which we recognize has the same structure as Setting 2. We can obtain the conditional
hazard function of W for this setting as

hW |tλ1
(t) =


∑
s∈S

λspsI(t ∈ [tλ1s, tλ2s]) if 0 < t ≤ T ∗

0 otherwise,

so that hW |tλ1 (t) is a step function where the steps occur whenever cell s transitions to a
new state.

Figure A.10 plots the distribution of W , given tλ1 , for both the parameter settings in
Figure A.8, and the parameter settings in Figure A.8 with tλ2s = T ∗. We can see that these
two cases are quite similar, except it is more likely for a spot fire to occur when tλ2s = T ∗.
We can further compare Figures A.7 and A.10, and see that the distribution function of
Figure A.10 is quite smooth compared to Figure A.7. This is simply due to hW |tλ1 (t) taking
several steps, and each step is less profound compared to hW (t) from Setting 2. Table
3.3 presents the simulated and true probability of a spot fire not occurring, which aside
from two cases, we see that the true probability resides within the 95% confidence interval.
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Additional plots for the parameter settings presented in Table 3.3 can be found in Figures
B.5 and B.6 in Appendix B.

Table 3.3: Parameter settings along with the simulated probability, 95% confidence interval (CI),
and true probability of a spot fire not crossing the fuel break. The two cases in Figure A.10 are
presented in bold font.

λ(1) λ(2) λ(3) κ tλ2s P̂ (W =∞|tλ1) 95% CI P (W =∞|tλ1)
0.05 0.05 0.05 0.05 T ∗ 0.046 [0.033, 0.059] 0.062
0.05 0.05 0.05 0.05 tλ1s + 20 0.151 [0.129, 0.173] 0.170
0.05 0.05 0.05 0.08 T ∗ 0.005 [0.001, 0.009] 0.012
0.05 0.05 0.05 0.08 tλ1s + 20 0.059 [0.044, 0.074] 0.059
0.05 0.10 0.07 0.05 T ∗ 0.011 [0.005, 0.017] 0.013
0.05 0.10 0.07 0.05 tλ1s + 20 0.061 [0.046, 0.076] 0.064
0.05 0.10 0.07 0.08 T ∗ 0 NA 0.001
0.05 0.10 0.07 0.08 tλ1s + 20 0.01 [0.004, 0.016] 0.012

Varying tλ1

For this subsetting, we jointly simulate the fire growth model and firebrand generation
process to obtain our realizations of W . Since tλ1 is random, we cannot use Equation (2.15)
to obtain the survival function of W . However, upon conditioning on tλ1 , we have

FW (t) =
∫
FW (t|tλ1)f(tλ1)dtλ1 (3.5)

= E{FW (t|tλ1)}. (3.6)

where FW (t|tλ1) is the conditional distribution function of W , which we are familiar with,
and f(tλ1) is the joint density of tλ1 . Although we can in principle obtain FW (t), it is
very difficult to carry out the expectation of Equation (3.6) since f(tλ1) is difficult to obtain.
However, since we are very familiar with FW (t|tλ1), it is more sensible to approximate FW (t)
as

F̃W (t) = 1
m

m∑
i=1

FW (t|{tλ1}(i)),

where FW (t|{tλ1}(i)) is the conditional distribution of W for the ith simulation. Figure A.11
plots the histogram and ECDF accompanied with F̃W (t) for the same parameter settings
as in Figure A.10, and we see that the ECDF is in agreement with F̃W (t). By comparing
Figure A.11 with Figure A.10, we can see that they are quite similar. This is in due to the
1,000 simulated wildfires being similar. In other words, we can expect contrasts between
the distribution of W and W |tλ1 if the simulated wildfires are diverse. Table 3.4 presents
the simulated and true probability of a spot fire not occurring, where we see that the true
probability resides within the 95% confidence interval, except for one case. Additional plots
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for the parameter settings presented in Table 3.4 can be found in Figures B.7 and B.8 in
Appendix B.

Table 3.4: Parameter settings along with the simulated probability, 95% confidence interval (CI),
and true probability of a spot fire not crossing the fuel break. The two cases in Figure A.11 are
presented in bold font.

λ(1) λ(2) λ(3) κ tλ2s P̂ (W =∞) 95% CI P (W =∞)
0.05 0.05 0.05 0.05 T ∗ 0.065 [0.050, 0.080] 0.061
0.05 0.05 0.05 0.05 tλ1s + 20 0.133 [0.112, 0.154] 0.148
0.05 0.05 0.05 0.08 T ∗ 0.013 [0.006, 0.020] 0.126
0.05 0.05 0.05 0.08 tλ1s + 20 0.041 [0.029, 0.053] 0.049
0.05 0.10 0.07 0.05 T ∗ 0.012 [0.005, 0.019] 0.014
0.05 0.10 0.07 0.05 tλ1s + 20 0.035 [0.024, 0.046] 0.054
0.05 0.10 0.07 0.08 T ∗ 0.001 [0, 0.003] 0.001
0.05 0.10 0.07 0.08 tλ1s + 20 0.001 [0, 0.003] 0.001
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Chapter 4

Conclusion

4.1 Summary

In this project, we used a counting process framework to derive distributions of the time to
the first spot fire that crossed a fuel break, under numerous scenarios. Two specifications
are fundamental towards deriving the distributions, namely the rate at which firebrands are
emitted from the wildfire, and the probability that a firebrand results in a spot fire that
surpassed a fuel break. By using a Poisson process and specifying a simple form for the
probability of a firebrand to result in a spot fire, we showed that the derived distributions
follow a mixture distribution, with the Exponential, Weibull, and Gompertz distributions
arise as a component of the mixture distribution under special circumstances. We simulated
the time to the first spot fire, where our results corroborate with the derived distributions.
We also implemented a wildfire simulator to showcase how our fire spotting mechanism can
be implemented in practice.

The derived distributions can assist fire managers to prepare for the occurrence of a
wildfire breaching a fuel break. In particular, this can aid fire crews to attempt to extinguish
a spot fire that breached a fuel break, before the fire becomes out-of-control. Furthermore,
we showed that the true probability of a spot fire occurring by time t resides within the 95%
confidence intervals through our simulation study. This allows us to provide fire managers
with an interval estimate for the true probability of a spot fire of interest occurring.

4.2 Future Investigation

Although our derived distributions can assist fire managers, there are a variety of issues
that should be addressed to further enhance the value of this research. One such matter
pertains to the firebrand and probability parameters used within the simulation study, as
these quantities are unknown and need to be estimated. However, the challenge within our
context is that many of the firebrands generated by the wildfire are unobserved due to their
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extinguishment. One approach to overcome this challenge is to solely focus our attention
towards estimating the rate at which spot fires breach a fuel break.

We also assumed that firebrands generated within a particular cell are independent from
each other, and that the times to the first spot fire within each cell are independent from
each other. The firebrand independent condition was imposed on us due to employing a
Poisson process for the number of firebrands generated by the wildfire within a cell. This can
be overcome by alternatively considering a non-Poisson counting process that utilizes the
history of firebrand generation. For the time to the first spot fire for each cell independence,
we can either consider specifying the spatial correlation within p(t; s), or directly model the
joint distribution of the Ws’s.

Throughout this project, we stratified the environment into cells in order to generate
spot fires, and simulated W in discrete time in Chapter 3. This requires the researcher to
not only specify the dimensions and shape of each cell, but the set of time units for fire
growth and firebrand generation. Ultimately, our objective is to expand our derivations
to embody a continuous spatio-temporal process so that our model can be utilized in real
time.

We also derived the marginal distribution of W throughout this project, however this
does not show the dependence of W with risk factors, such as fuel type, wind speed, etc.
In other words, there is a vector of covariates zs that is associated with W . This would
motivate the investigation of the conditional distribution of W , given zs. This can allow
us to make predictions for the likelihood of observing a spot fire, given the risk factors
associated with fire spotting, and further strengthen fire management fighting wildfires.
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Appendix A

List of Figures

t

λs(t)

tλ1s tλ2s

(a) λs(t) = λsI(t ∈ [tλ1s, tλ2s]).

t

λs(t)

tλ1s tλ2s

(b) λs(t) = µsλs(λs[t− tλ1s])µs−1I(t ∈ [tλ1s, tλ2s]).

t

λs(t)

tλ1s tλ2s

(c) λs(t) = µs exp(λs[t− tλ1s])I(t ∈ [tλ1s, tλ2s]).

t

λs(t)

tλ1s tλ2s

(d) λs(t) is a piece-wise defined function.

Figure A.1: Examples of λs(t) that can arise in practice.
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(a) All firebrands generated within cells s ∈ S have failed to result
in a spot fire that crossed the fuel break.
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(b) A firebrand generated within cell s = [4, 5]× [−1, 0] results in
a spot fire that crossed the fuel break.

Figure A.2: An illustration of the fire spotting procedure, where the left panel shows N(t; s) for
each s ∈ S over the time interval [0, t], and the right panel illustrates the state of each cell.
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(a) All firebrands generated within cells s ∈ S have failed to result
in a spot fire that crossed the fuel break.
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(b) A firebrand generated within cell s = [6, 7] × [−2,−1] results
in a spot fire that crossed the fuel break.

Figure A.3: An illustration of the fire spotting procedure, where the left panel shows N(t; s) for
each s ∈ S over the time interval [0, t], and the right panel illustrates the state of each cell.
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Figure A.4: Plots of the ECDF (left panel) and histogram (right panel) of W for the two simulation settings illustrated in Figures A.2 (top row)
and A.3 (bottom row). The mass to the right of W = T ∗ is P̂ (W =∞).
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(a) All firebrands generated within cells s ∈ S have failed to result
in a spot fire that crossed the fuel break.
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(b) A firebrand generated within cell s = [6, 7] × [−4,−3] results
in a spot fire that crossed the fuel break.

Figure A.5: An illustration of the fire spotting procedure, where the left panel shows N(t; s) for
each s ∈ S over the time interval [0, t], and the right panel illustrates the state of each cell.
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(a) All firebrands generated within cells s ∈ S have failed to result
in a spot fire that crossed the fuel break.
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(b) A firebrand generated within cell s = [10, 11]× [0, 1] results in
a spot fire that crossed the fuel break.

Figure A.6: An illustration of the fire spotting procedure, where the left panel shows N(t; s) for
each s ∈ S over the time interval [0, t], and the right panel illustrates the state of each cell.
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Figure A.7: Plots of the ECDF (left panel) and histogram (right panel) of W for the two simulation settings illustrated in Figures A.5 (top row)
and A.6 (bottom row). The mass to the right of W = T ∗ is P̂ (W =∞).
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in a spot fire that crossed the fuel break.
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(b) A firebrand generated within cell s = [7, 8]× [3, 4] results in a
spot fire that crossed the fuel break.

Figure A.8: An illustration of the fire spotting procedure, where the left panel shows N(t; s) for
each s ∈ S over the time interval [0, t], and the right panel illustrates the state of each cell.
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Figure A.9: A simulated realization of tλ1 in accordance with the stochastic fire growth model
presented in Chapter 3.2. Cells s coloured white indicate that tλ1s > T ∗.
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Figure A.10: Plots of the ECDF (left panel) and histogram (right panel) of W for the simulation setting illustrated in Figure A.8 (top row) and
the case presented in Figure A.8 without burn-out (bottom row); conditional on tλ1 illustrated in Figure A.9. The mass to the right of W = T ∗ is
P̂ (W =∞).
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Figure A.11: Plots of the ECDF (left panel) and histogram (right panel) of W for the two cases presented in Figure A.10, except tλ1 is random.
The mass to the right of W = T ∗ is P̂ (W =∞).
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Appendix B

Plots for Additional Cases
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Figure B.1: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.1.

40



0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ =  0.05   ;   p(j) = (0.001, 0.007, 0.02)

Simulated ECDF & True CDF

 1000 Simulations  ;  T* = 45

0

30

60

90

0 20 40

W

co
un

t

λ =  0.05   ;   p(j) = (0.001, 0.007, 0.02)  ;  Number of Cells = (44, 44, 33)

Histogram of W 

 1000 Simulations  ;  T* = 45

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ =  0.10  ;   p(j) = (0.0025, 0.0025, 0.0025)

Simulated ECDF & True CDF

 1000 Simulations  ;  T* = 45

0

50

100

150

200

250

0 20 40

W

co
un

t

λ =  0.10   ;   p(j) = (0.0025, 0.0025, 0.0025)

Histogram of W 

 1000 Simulations  ;  T* = 45

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ =  0.85  ;   p(j) = (0.0002, 0.0002, 0.0002)

Simulated ECDF & True CDF

 1000 Simulations  ;  T* = 45

0

100

200

300

400

0 20 40

W

co
un

t

λ =  0.85   ;   p(j) = (0.0002, 0.0002, 0.0002)

Histogram of W 

 1000 Simulations  ;  T* = 45

Figure B.2: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.1.
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Figure B.3: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.2.
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Figure B.4: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.2.
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Figure B.5: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.3.
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Figure B.6: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.3.

45



0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ(i) = (0.05, 0.05, 0.05)  ;   ps = 
0.05x

14

Simulated ECDF & Approximate CDF

 1000 Simulations ; t1s
λ : Random ; t2s

λ  = T* = 45

0

20

40

60

0 20 40

W

co
un

t

λ(i) = (0.05, 0.05, 0.05) ;  ps = 
0.05x

14

Histogram of W 

 1000 Simulations ;  t1s
λ : Random ;  t2s

λ  = T* = 45

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ(i) = (0.05, 0.05, 0.05)  ;   ps = 
0.05x

14

Simulated ECDF & Approximate CDF

 1000 Simulations ; t1s
λ : Random ; t2s

λ  = t1s
λ + 20

0

50

100

0 20 40

W

co
un

t

λ(i) = (0.05, 0.05, 0.05) ;  ps = 
0.05x

14

Histogram of W 

 1000 Simulations ;  t1s
λ : Random ;  t2s

λ  = t1s
λ + 20

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

W

P
(W

≤
t)

 

95% Confidence Interval

Legend

CDF (Continuous)

CDF (Discrete)

ECDF

λ(i) = (0.05, 0.05, 0.05)  ;   ps = 
0.08x

14

Simulated ECDF & Approximate CDF

 1000 Simulations ; t1s
λ : Random ; t2s

λ  = T* = 45

0

20

40

60

0 20 40

W

co
un

t

λ(i) = (0.05, 0.05, 0.05) ;  ps = 
0.08x

14

Histogram of W 

 1000 Simulations ;  t1s
λ : Random ;  t2s

λ  = T* = 45

Figure B.7: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.4.
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Figure B.8: Plots of the ECDF (left panel) and histogram (right panel) for additional cases
presented in Table 3.4.
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