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Abstract 

In this Age of Extinction, we must prioritize the species we want to conserve. 

Conservation programs use different metrics for species prioritization, but more work is 

needed linking these metrics to particular aspects of biodiversity value.  Here, I focus on 

the species-specific conservation metric of Evolutionary Distinctness (ED) designed to 

identify species with few close relatives. I first explore the relationship between ED and a 

presumed valuable attribute, the average rarity of traits. Using simulations, I find high 

degrees of association between ED and trait rarity; however unlike another metric of 

isolation (Average Pairwise Distance) this ability decreases as higher gamma clades are 

sampled.  I then examine, under different scenarios of extinction, how well ED captures 

a related touted value, total phylogenetic diversity (PD).  I find a very strong correlation 

between PD and ED across all surveyed trees.  Overall, ED is not perfect, but shows 

some promise as a simple conservation metric, capturing at least two related measures 

of biodiversity value.  

Keywords:  Conservation prioritization; evolutionary distinctness; rarity of traits; 

phylogenetic diversity 
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Chapter 1.  
 
Introduction 

The magnitude of biodiversity loss over past centuries and millennia is 

comparable to that of past five mass extinction events (Barnosky et al. 2011). The latest 

estimates for number of threatened species of Vertebrates ranges from 13% to 42% for 

birds and amphibians respectively (Hoffman et al. 2010).  

Given the fact that we are far from having enough funding in order to address the 

biodiversity loss crisis, prioritization seems inevitable. This means that we are likely only 

ever going to save a portion of the biodiversity that is at the risk of extinction. Since 

species is the most commonly studied unit of biodiversity (Agapov et al. 2004) and 

conservation resource allocation usually occurs at the species level, various species-

specific metrics have been suggested for conservation prioritization. One class of those 

metrics, evolutionary isolation, is broadly considered to capture non-redundant genetic 

information of species across the tree of life (Redding and Mooers 2006; Faith 2008). 

These metrics capture the extent to which a species has more or fewer, and more 

distant or closer, relatives.  Some of these metrics have been designed for conservation 

prioritization and some have been borrowed from other disciplines (Redding et al. 2014). 

Evolutionary distinctness (ED), however, is the only metric from that pool that is being 

actively used for species prioritization, by the Zoological Society of London in its Edge of 

Existence (EDGE) program. Under that scheme, the EDGE score is calculated as a 

function of species ED and its risk of extinction (Zoological Society of London 2008). ED 

itself is the sum of branch length from a focal species to the root of tree, with each 

branch length divided by the number of taxa it subtends (Redding 2003).  

The sum of the ED values across the tips is the total phylogenetic diversity of that 

tree: the sum of branch lengths of a species subset (Phylogenetic Diversity (Faith 1992)) 

is a second popular set metric of biodiversity that has been purported to explain 

difference in ecosystem functioning and ecosystem services (Srivastava et al. 2012; 

Cadotte 2015).  However, PD has yielded mixed results in explaining ecosystem function 

at different scales (see, e.g. (Genung et al. 2014)).  This has made another argument 

more valuable, that of  “option value.” Option value argues for the unknown values and 
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benefits of biodiversity for future generations (Faith 1992; Faith 2013). From a biological 

standpoint this can be translated to unique characteristics of a species that can be lost 

forever due to extinction. Related to this concept is "originality," defined in ecology as the 

distance from a focal species to the centre of a trait space (Buisson et al. 2013)(see 

Figure 1).  Originality is recommended as an essential criteria in conservation planning 

(Pavoine et al. 2005), and the rarity of traits (the proportion of species in a set that 

express a trait value) has been suggested as a proxy for originality (Pavoine et al. 2005). 

Unique character states are, of course, as rare as they can be.   Because studying 

biological traits is challenging, researchers usually consider a limited subset of traits and 

use this subset for assessing the functional diversity of an assemblage (see Buisson and 

Grenouillet 2009; Buisson et al. 2013). Inclusion of functional diversity into conservation 

programs has been suggested from a utilitarian perspective to ensure ecosystem 

services (Díaz et al. 2007) . It has also been argued that functional diversity will severely 

suffer from the impacts of ongoing environmental changes (Buisson et al. 2013). The 

infeasibility of studying large sets of biological traits across taxa impedes the inclusion of 

trait rarity in conservation programs, such that evolutionary isolation may be a useful 

proxy. Here, I investigate to what extent we can use evolutionary isolation (and 

specifically, the ED measure of this isolation) to capture what we think is of conservation 

value, namely trait rarity. 

The main aim of this thesis is to help evaluate whether ED has any essential 

characteristics for being a preferred measure of prioritization. The rising availability of 

complete dated phylogenies for a wide range of taxa and the simplicity of calculations 

has made it very convenient to calculate ED scores. I first employ a combination of 

simulated tree shapes and sizes and modes of character evolution to investigate if 

ranking species based on ED scores leads to preserving trait rarity or not. I use different 

numbers of discrete traits simulated on the phylogenies and calculate average rarity as a 

measure of originality (Pavoine et al. 2005; Huang et al. 2011). For comparison I also 

look at the ability of average pairwise distance (APD) in capturing average rarity (Ricotta, 

2007); it has been shown that these two isolation metrics are found at two ends of an 

evolutionary isolation spectrum (Redding et al. 2014) (detailed in chapter 2). 

I then ask a second simple question motivated by a query from A. Chaudhary to 

A. Mooers: how does the loss of ED relate to the loss of phylogenetic diversity (PD)?  

The motivation here is to see if loss of ED can be used as a proxy to loss of PD across 
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different types of phylogenies. Unlike ED, PD is a property of a set and its calculation is 

not always straightforward. Given the justifications for application of PD in conservation 

planning and prioritization (see Faith, 1992, 2013), testing this link may be important to 

users of ED (e.g. the ZSL) and to conservation managers looking for a simple-to-

calculate conservation metric with flexibility. 
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Chapter 2.  
 
Are the most Evolutionarily Distinct species the most 
original? 

Abstract 

While trait diversity is considered as a crucial component of biodiversity and funding 

shortages for conservation programs make prioritization likely, metrics being used for 

species prioritization do no explicitly take trait diversity into account. Here, I consider a 

species-specific metric of conservation worth, evolutionary distinctness (ED). I use the 

concept of average trait rarity, which has been suggested as a measure of "originality", 

whereby original species contribute more to total trait richness, and investigate to what 

extent prioritizing species based on ED captures trait rarity. Using simulated phylogenies 

and traits simulated under a simple Markov model of evolution at various rates, I find that 

mean trait rarity increases with the rate of evolution as well as the number of traits’ 

states. Importantly, while ED is associated with trait rarity in stemmy phylogenies (low 

gamma), this relationship deteriorates in higher gamma trees. Another common metric of 

distinctness used in community ecology, average pairwise distance (APD), showed both 

a higher positive correlation with trait rarity and also seemed fairly robust to tree shape 

and size. The findings can be seen as a cautionary message for conservation planning: 

different facets of diversity may not covary and hence conservation programs must 

explicitly delineate facet(s) of biodiversity they aim to preserve and choose the metric of 

prioritization accordingly.  

Keywords: Evolutionary Distinctness, Average Pairwise Distance, trait rarity.  

Introduction 

The unprecedented loss of biodiversity and ongoing funding shortages for 

conservation makes prioritization inevitable (Thuiller et al. 2011; Waldron et al. 2013). To 

address this challenge, various currencies such as threat status, economical cost and 

social value have been used to rank species for conservation actions (Weitzman 1998; 

Joseph et al. 2009). Here, we focus on evolutionary isolation as another currency that is 
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gaining traction for species prioritization (Isaac et al. 2007). As the name suggests, 

metrics of evolutionary isolation consider the position of species on phylogenetic trees, 

where species with fewer close relatives are ranked as more isolated and hence of 

higher conservation rank. More than a dozen different isolation metrics exist, some 

created especially with conservation in mind and some adopted from other literatures, 

with varying degrees of redundancy (Redding et al. 2014).  

The Fair Proportion index (Redding 2003) is one commonly-considered 

conservation-specific metric. It is now generally called evolutionary distinctiveness or 

evolutionary distinctness (ED) after its adoption by the Edge of Existence conservation 

program in 2007 (Isaac et al. 2007). ED is calculated as the sum of edge lengths from a 

focal species to the root of phylogenetic tree, with each edge being divided by the 

number of taxa it subtends. Taxa with longer branches, and taxa that share fewer close 

relatives, are more evolutionarily isolated. In addition to the convenience of calculation, 

ED has been used to help prioritize conservation actions in three classes of animals: 

Mammalia, Amphibia, and Aves, as well as the Scleractinia corals (Zoological Society of 

London 2008).  

 Average Pairwise Distance (APD) (Ricotta 2007), calculated as the average 

patristic distance between a given species and all other species on a phylogeny, is 

another isolation metric that was adapted for conservation from the community ecology 

literature (Ricotta 2007; Buisson et al. 2013). In one recent study on North American 

birds, APD showed a positive correlation with its spatially restricted version (i.e. high 

correlation of APD calculated from a global tree correlated with APD calculated from a 

community tree) and some ability to capture measures of trait uniqueness (Redding et 

al. 2015).  Interestingly, APD at the community level is the tree-based counterpart of 

functional originality, defined as the proximity of species to the center in 

multidimensional functional space derived from a set of measured traits (Buisson et al., 

2013). The further a taxon is away from the center of multidimensional functional space, 

the more original it is in terms of surveyed features (see Figure 1). Its counterpart, 

ecological "uniqueness" is the distance to the nearest neighbour in functional space 

(Buisson et al. 2013).  On an ultrametric phylogeny, this would be 2*the Pendent Edge 

(PE) of a focal species: PE and ED scores are highly correlated across many tree 

shapes (Redding et al. 2008; Redding and Mooers 2015). While PE is too simplistic to 

be considered an applicable evolutionary isolation metric, APD and ED were shown to 
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be opposite points of an external-internal branch range: APD measures the phylogenetic 

information that is deeper on a tree while ED gives more weight to information nearer to 

the tips (Redding et al. 2014). Although an increasing number of studies have begun to 

evaluate the effects of change in functional diversity at the ecosystem level (see, e.g., 

Thuiller et al. 2006; Buisson and Grenouillet 2009), we know of only one study that has 

compared the ability of different isolation metrics to capture functional diversity for 

conservation (Redding et al. 2015).  

Researchers have been trying to link functional diversity and ecosystem 

functions and provide stronger justifications to extend criteria for conservation 

prioritization such that conservation procedures capture functional diversity as well 

(Cadotte et al. 2011). In parallel, the importance of saving rare features has been 

emphasized more explicitly through the concept of “option value” (Faith 1992; Faith 

2008). Since rare features are not possessed by many (or, at the extreme, any) other 

species and extinction is forever, one rationale for saving rare features originates from 

uncertainty of the need for those features in the future. An often-cited example of such 

rare trait is found in the gastric brooding frog Rheobatrachus silus.  This species had a 

specific mechanism to inhibit acid secretion in the female’s stomach where the young 

frogs develop (Tyler et al. 1983). Since the species is now extinct (Meyer et al. 2004), 

we have missed the opportunity of exploring that feature in more detail as well as any 

potential benefit that could have been yielded from it. 

More formally, the "average rarity of characters" has been suggested as a 

measure of "originality," whereby original species contribute more to total feature 

richness (Pavoine et al. 2005; Huang et al. 2011). Character rarity is the probability that 

a focal taxon shares a character state with other species of a set (here a phylogenetic 

tree).  Expected character rarity varies from 0 (where all taxa are expected to share the 

same character state) to 1 (where no other taxa are expected to share the observed 

character state). We use this concept of trait rarity to investigate to what extent 

prioritizing species based on isolation metrics will concomitantly save rare features.  

It has been shown that isolation scores in trees smaller than 250-300 species are 

not absolute and need standardization (e.g. by the depth of the tree). However after this 

threshold most surveyed isolation metrics reach an asymptote and hence are 

comparable among taxonomic groups (Redding et al. 2014). Given the effect of tree 
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size, I designed my study to involve tree sizes below, at, and above that threshold. 

Intuitively, tree shape can also impact the relationship between isolation metrics and trait 

rarity and supposedly a metric that is robust to tree shape and hence can be used 

effectively in wide range of phylogenies is likely to be preferred. In order test this 

property, I employed a range of tree shapes in terms of their balance and average node 

age in my study. 

More concretely, I investigate the relationship between two isolation metrics and 

the rarity of evolving traits under very simple process models. My main analyses employ 

simulated phylogenies and simulated character data under simple Markov models.  I ask 

three main questions: 

1) Do APD and ED capture rarity differently? How do tree size, number of character 

state and rate of character change affect the relationship between each metric and 

rarity? 

2) Which of the two isolation metrics performs best at capturing rarity in the class of 

trees where APD and ED show highest divergence? 

3) How do these two metrics perform in real life situations? 

Methods  

Simulating trees and traits  

In order to get a range of tree shapes, I first simulated 3 sets of 5,000 pure-birth 

(Yule) trees using the function pbtree in R package phytools (Revell 2012).  The depth of 

all trees was set to 50 and the three sets of phylogenies had 64, 256 and 1024 species. 

Gamma for each tree was calculated using the gammaStat function in R package APE 

(Paradis et al. 2004) while the tree balance value was obtained by means of Colless 

function in apTreeshape (Bortolussi et al. 2006). The values of Ic were standardized to 

the Yule model in order to allow comparison among trees with different numbers of tips 

(Blum et al. 2006).   

I then randomly chose 1000 trees with Ic values smaller than 0 and 1000 trees 

with Ic values greater than 0. I performed the same procedure for each of the three tree 
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sizes, resulting in 6000 Yule trees (2000 trees of each size) with overall Ic values from -

1.99-3.69. I then applied the delta transformation (Pagel 1999) (using the rescale 

function in geiger package (Pennell et al. 2014) to produce a wide range of gamma 

values on both balanced (trees with Ic below 0) and imbalanced (trees with Ic above 0) 

set of trees. The range of gamma values for the transformed trees was -6.33 to 12.30. 

This produced 4000 trees of each size, 1000 in each of the four combinations of low/high 

gamma and low/high Ic.  Hereon, I refer to trees with gamma values greater than 0 and 

trees with gamma values less than 0 "high" and " low " gamma trees respectively (see 

Figure 2).  

For traits, I used the Markov model of trait evolution (Mk) to simulate 500 discrete 

traits on each simulated tree using the sim.history function in phytools (Lewis 2001; 

Revell 2012), with k (number of states) set to 2, 4, 8 or 16 states. In order to test the 

effect of number traits on the ability of APD and ED in capturing average rarity, I also 

included simulation of 5 and 50 traits.  Based on the Markov model the probability of 

transitions can be calculated as follows: 

𝑃𝑃𝑖𝑖𝑖𝑖 (𝑡𝑡) =  
1
𝑘𝑘

+  
𝑘𝑘 − 1
𝑘𝑘

 𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘  

𝑃𝑃𝑖𝑖𝑖𝑖  (𝑡𝑡) =  
1
𝑘𝑘
−  

1
𝑘𝑘

 𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘          

Here, 𝑡𝑡 is the elapsed time and 𝑞𝑞 is the instantaneous rate of character change 

(Lewis 2001). In order to set q, the expected distance between two randomly selected 

tips under the Yule model was calculated (Steel and McKenzie 2001) and four rates of 

character change (0.002, 0.004, 0.008 & 0.016) were set using the above equations so 

that it includes slow and fast evolving characters while avoiding full saturation. In order 

to make sure those rates would result in reasonable probability of change and my 

simulation involves slow and fast evolving traits, I measured the average pairwise 

patristic distance across my trees. Low gamma trees ought to exhibit higher patristic 

distances on average for a given tree depth. The average pairwise patristic distance in 

balanced low gamma trees with 64 tips was ~ 90. For a binary trait this would mean a 

chance of change equal to 0.15, 0.26,0.38 and 0.47 for rates of 0.002, 0.004, 0.008 and 

0.016 respectively between two randomly chosen tips.  
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Calculation of isolation scores  

Evolutionary Distinctiveness. I calculated the Fair Proportion index(Redding 

2003) (hereafter ED) as a globally well-known measure of evolutionary isolation using 

caper (Orme et al. 2013) package of R. For each species on a tree, ED is the weighted 

sum from the root to the tip of phylogeny (Redding 2003): 

𝐸𝐸𝐸𝐸 (𝑇𝑇, 𝑖𝑖) =  �
λ𝒆𝒆
𝑐𝑐𝑒𝑒

𝑟𝑟

𝑒𝑒 ∈(𝑇𝑇,𝑖𝑖,𝑟𝑟) 

 

Where 𝑖𝑖 is the species of interest, λ𝒆𝒆 is the edge length, which is being divided by 

number of species (𝑐𝑐𝑒𝑒) it subtends.  

Average Pairwise Distance.  This metric of isolation quantifies the mean pairwise 

distance between a focal species and all other species on a phylogeny (Ricotta 2007). I 

calculated this metric using caper (Orme et al. 2013) package of R.  

𝐴𝐴𝑃𝑃𝐸𝐸 (𝑇𝑇, 𝑖𝑖) =  
1

𝑁𝑁 − 1
⎢
⎢
⎢
⎢
⎡

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ∈𝑓𝑓(𝑇𝑇,𝑥𝑥)

𝑖𝑖∈𝑔𝑔(𝑇𝑇,𝑥𝑥−{𝑖𝑖}) ⎥
⎥
⎥
⎥
⎤
 

Where 𝑖𝑖 is the species of interest, 𝑥𝑥 is the set of species, N is the size of the set 

(i.e. | 𝑥𝑥 |) and 𝑑𝑑𝑖𝑖𝑖𝑖 is the patristic distance between focal species and other species on the 

tree(see Redding et al. 2014). 

Calculation of trait rarity  

The rarity of a trait for a species is calculated as: 

𝑅𝑅 = 1 −  �
𝑝𝑝𝑖𝑖

(𝑠𝑠 − 1)

𝑠𝑠−1

𝑖𝑖=1
 

Where 𝑠𝑠 is number of species and 𝑝𝑝𝑖𝑖 is the presence (1) or absence (0) of the 

character state in other species of a phylogeny compared to the target species (Huang 

et al. 2011). After simulating 500 traits on each tree for all combinations of rate of 
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character change (four rates) and number of traits’ states (four levels), I calculated the 

average rarity across the 500 traits to produce a mean rarity value for each species in 

each phylogenetic tree for each combination of rate and number of states. 

Distribution of rarity 

After estimating the average rarity of simulated traits for each species, I 

calculated the mean of those values for each single tree and extended it to all 12000 

trees of this study. This gives us an insight into the behaviour of average rarity regarding 

changes in tree size, rate of character change and the number of character change.  

Empirical data  

In order to evaluate the behaviour of ED and APD in real life situations, I 

employed the Elton traits dataset for mammals (Wilman et al. 2014). I chose the 

Chiroptera clade (1073 species) as a test case since they represent a diverse order of 

mammals especially in regards to diet and activity-time. I calculated rarity for 15 discrete 

traits for each species, including foraging and activity-time data. I converted the 

continuous body size trait to a discrete trait by log-transforming body mass and 

assigning each one unit interval to a different state, which resulted in nine states for log 

of body mass. The two isolation metrics were then calculated for each bat species using 

a recent supertree of mammals (Martyn et al. 2012). Appendix A provides more detail on 

how the employed empirical trees were updated. 

Results  

Distribution of rarity. In order to investigate the effect of number of character 

states and rate of character change on mean rarity, I calculated mean rarity value for all 

species in each tree across four rates of character change and four levels of character 

state. In all tree sizes there is a rising pattern in mean rarity values when the rate of 

character change increases. Also, for any given rate of character change, increasing the 

number of character states yields a broader range of mean rarity values (Figure 3). 

Those findings are also reflected in the results of the linear model where K and q and 

trees size all positively affect mean rarity and there is also an interaction between K and 

q (Table 1). 
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Figure 4 shows the impact of tree shape on observed variation of rarity values 

among species of each tree. Trees with high gamma contained species that are more 

different in terms of their rarity values. In other words, trees with more recent node 

distribution are expected to have species with higher variation in trait rarity scores 

compare to phylogenies with deeper node distribution. In low gamma trees I observed 

lower variation in rarity values, although if controlled for the rate and number of trait 

state, those trees contain species with higher average rarity. While at first glance the 

impact of tree balance on variation in rarity might be overlooked, the results of linear 

models performed at a given tree size and a specific rate of change and K suggest both 

metrics of tree shape are significant predictors of variation in rarity. The impact of rate of 

change on the mean rarity and skewness is plotted in Figure 5where higher rates of 

character changes results in larger mean rarity values as well as higher skewness.  

As depicted in Table 2 when I controlled for tree shape, the variation in average 

rarity scores could be explained by average rarity, number of trait states, rate of trait 

change and their interactions. As expected, increases in average rarity, number of trait 

states and rate of trait change result in more variation in rarity scores. 

Correlations of rarity with isolation metrics. Figure 6 shows the correlation 

between the two isolation metrics (ED and APD) and average rarity across the four tree-

shape classes and three sizes of phylogenies. Increasing tree size doesn’t substantially 

change the ability of APD to capture average rarity. In contrast, ED’s ability to capture 

rarity deteriorates as trees gets larger. Larger trees of this study happened to have 

higher gamma values (median gamma increased from 6.07 in imbalanced high gamma 

trees with 64 species to 8.07 in trees with 1024 species). In order to test if gamma is the 

main driver of this pattern in large trees I simulated Yule trees of different size and 

compared with imbalanced high gamma trees. As depicted in Figure 7, when gamma is 

kept constant (ie. in the Yule trees), different sizes of phylogenies exhibit similar patterns 

for the performance of ED and APD in terms of capturing trait rarity.  Consistently, in 

high gamma trees where the pendant edges are relatively short, APD captures average 

rarity notably better than ED, while in low gamma trees the two isolation metrics perform 

fairly similar.  

Real world phylogenies are generally imbalanced (Blum and François 2006) and 

as one of the main objectives of this research was to explore the application of  these 
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metrics in real-life situations, hereon I focus my attention primarily on the performance of 

each metric at different rates and numbers of trait states in imbalanced  trees. Also, 

since I found higher degrees of divergence in high gamma trees in terms of isolation 

metrics performance I will be focusing on imbalanced high gamma trees specifically. 

Figure 8 illustrates the ability of the two isolation metrics in capturing average rarity at all 

sixteen combinations of rate of change and number of traits state evolved on the 

smallest employed trees (n=64). APD is shown to be more highly correlated with 

average rarity in 13 out of 16 combinations. However, this correlation drops as trait 

dimensionality and rate increases, while ED seems less affected; when the trait 

dimensionality was at the maximum, ED performed better than APD at capturing 

average rarity.  A similar pattern was observed in bigger phylogenies (Figure 9 and 

Figure 10) and the two isolation metrics diverged increasingly with increased size of 

phylogenies. In order to explore plausible explanations for better performance of ED at 

high rates of trait evolution, I performed two tests: first I checked if mixed rates of trait 

evolution (i.e. slow and fast rates) result in an intermediate performance of the two 

isolation metrics (Figure 11) and if there is any evidence of saturation in high rates of 

trait change (Figure 12). As shown in Figure 12, there is evidence of saturation at high 

rates of changes and high trait dimensionality, where, beyond a certain phylogenetic 

distance, more distantly related species are not more divergent in terms of simulated 

traits. 

I also showed that increasing the number of traits has a positive effect on both 

metrics’ performance (Figure 13). The mean correlation between isolation metrics and 

average rarity is 0.58 and 0.52 for APD and ED respectively when 5 traits are 

considered on the smallest trees. This correlation increases to 0.88 and 0.78 when 500 

traits are considered on the same tree size. Increasing tree size weakens the ability of 

both metrics so that in the case of the biggest tree size (n=1024) with 5 traits the 

correlation drops to 0.44 and 0.12 for APD and ED respectively, but once again it 

improves when number of simulated traits is 500 (0.86 and 0.25). 

Empirical data. The two isolation metrics showed different degrees of association 

with average rarity in 1073 species of bats, with a correlation of 0.36 with APD and only 

0.02 for ED (Figure 14). The Pel's pouched bat (Saccolaimus peli) was ranked first 

based on APD scores while Madagascar sucker-footed bat (Myzopoda aurita) had the 



13 

highest score of median ED; interestingly both species were ranked very low in terms of 

average rarity of studied traits (0.11 and 0.15). Sister species: Straw-colored fruit bat 

(Eidolon helvum) and Madagascan fruit bat (Eidolon dupreanum) have the highest score 

(0.35) for average rarity (e.g. they are most original bats) and APD gave a higher rank to 

these species (241st and 242nd ; same APD score) compared to ED (566th  and 567th; 

same ED scores). 

Discussion 

The fact that evolutionary history has not been extensively applied to 

conservation has been attributed to the lack of empirical justifications (Winter et al. 2013) 

and also confusion around selecting the proper metric from the ‘Jungle’ of indices 

(Winter et al. 2013; Tucker et al. 2016). It should be noted that metrics of functional 

diversity haven’t been used for conservation prioritization either, with one barrier being 

the subjectivity of those measures, which makes it difficult to decide about species value 

(see Srivastava and Vellend 2005; Mouquet et al. 2012). In parallel, an increasing 

amount of research is being directed towards studying loss of functional traits as a 

crucial facet of biodiversity that is at stake in a rapidly changing environment (McGill et 

al. 2006; Buisson et al. 2013). In functional space, two metrics of diversity have been 

suggested: uniqueness, which is defined as the distance to the nearest neighbour as 

apposed to functional redundancy (Fonseca and Ganade 2001; Buisson et al. 2013) and 

originality, which represents the average rarity of species traits and is measured as the 

average distance to the center of functional space (Pavoine et al. 2005; Mouillot et al. 

2008; Buisson et al. 2013). The explicit inclusion of functional diversity in conservation 

has been suggested specifically as a response to deal with a changing environment 

(Dalerum 2013; Thuiller et al. 2014). Conservation of uncommon biological traits has 

been also advocated strongly from an ecosystem functioning perspective (Purvis et al. 

2000; Mouillot et al. 2008; Mouillot et al. 2013) . Regardless of the suggested 

justifications for including functional diversity in conservation planning, this facet of 

biodiversity is not yet been considered explicitly in conservation. To help address this 

gap, I investigated if ED, as a simple and species-based metric of evolutionary isolation, 

captures this facet of biodiversity, and whether its application should be encouraged due 

to it capturing this particular value. 
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I employed the concept of average rarity, applied it to a discrete trait framework, 

and explored drivers of average rarity. All three predictors (rate of character change, 

number of character states and tree size) significantly affect mean rarity. Tree size 

however showed a very small effect size compare to the other two predictors of mean 

rarity. From a conservation standpoint this can be interpreted as expecting higher 

average rarity in cases where traits evolve rapidly and where they can take more states. 

Mean rarity itself turned out as a powerful predictor of variation in rarity, besides the 

other two predictors (rate of character evolution and number of character states). Those 

analyses were insightful as they provided a better understanding of factors that are in 

play for determining a species' average rarity value and suggests that in cases where 

assemblages represent high average rarity, we expect to find more variation in the rarity 

of traits as well. This makes the choice of which species we preserve more important.  

I also showed that the ability of ED to capture trait rarity is highly impacted by 

properties of the phylogeny. While ED’s performance in capturing average rarity in small 

trees (n=64) is encouraging and comparable to that of APD, its performance deteriorated 

with increasing size of the phylogeny in my dataset. This pattern was more profound in 

high gamma trees. Unfortunately, the effect of tree size is confounded with gamma in my 

dataset. In other words, as the employed phylogenies get larger in size they tend to 

show higher gamma values (i.e. the pendant edges become relatively short). Under the 

Markov model I used, this would lead to higher probability of change on internal vs. 

pendant edges. While APD is an effective metric in capturing changes in internal edges, 

ED is highly correlated with the pendant edge (Redding et al. 2014).  So, in cases where 

pendant edges are short and are less informative, ED performs poorly. 

The robust performance of APD might be further explained by the fact that it is an 

average measure of distance between species, as is the measure of rarity used here. I 

also simulated large number of traits under Markov model of trait evolution: this set of 

characters could be used to recover the original tree under Maximum Parsimony: this 

would lead us to predict that the full tree measure APD might perform better than ED on 

average. The modest performance of both isolation metrics in low gamma trees on the 

other hand, may be explained by the distribution of rarity values in different tree shapes. 

As illustrated in Figure 4, lower gamma trees embody species with more similar rarity 

scores. Lower variation in trait rarity in low gamma trees could be explained by the fact 

that in those trees where pendant edges are relatively long, species can embody 
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different character states depending on trait dimensionality. Therefore (and particularly 

at high trait dimensionality) we will usually find species with rarity values close to 

maximum and so lower variation overall, compared to high gamma trees where we find 

rare as well as unrare species.  

I also identified examples where ED performed better than APD. When I 

controlled for tree shape and looked at performances of the two metrics at different rates 

of character change, then on small trees and high rate of change and many state (K=8 

and K=16), ED was more highly correlated with average rarity than was APD. This could 

be due to getting some degrees of saturation at these high rates of evolution coupled 

with many autapomorphies on the pendant edges. To test this idea, I replicated the 

simulation process that was done to create Figure 8d with the only difference being that I 

had half of traits evolving at the slowest and half of them at highest rate. Consistent with 

what I hypothesized, I found that the two isolation metrics behave very similarly in this 

case. I also showed that there is evidence of saturation in my data when traits evolve at 

the highest applied rate and the trait dimensionality is also at the maximum. The fact that 

ED is a tippy metric and is highly correlated with pendant edge (Redding et al. 2014), 

makes it more effective in cases of multiple hits whereby the most recent changes occur 

likely on the pendent edge; APD that can not capture information nearer the tips as 

efficiently. In other words, in cases of saturation, information near the tips is more 

informative and intuitively the metric that is more weighted towards the tips (i.e. ED) is 

expected to perform better. Measures of phylogenetic distance in general tend to 

underestimate trait rarity when saturation fades the phylogenetic signal (Pavoine et al. 

2005;  see also Wake et al. 2011). 

APD shows very high degree of correlation (close to one) with average rarity 

when high numbers of traits are simulated. Another study also reported good 

performance of APD in terms of capturing PD at local scale as well as some metrics of 

trait uniqueness (Redding et al. 2015). Whether these qualities of APD can be explained 

by its correlation with the tree shape at different spatial scales or its ability in capturing 

deep time, or whether the performance is simply an artefact of surveyed traits and their 

model of evolution needs further investigation.  

In the case of the empirical dataset, lists of high ED bats did not conform to that 

of bats with rare traits at all. In contrast, APD exhibited some degrees of correlation with 
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rarity. Similar results were found in a study of Nearctic and Neotropical birds where 

unlike ED, APD showed degrees of association with a community metric of trait diversity 

(Redding et al. 2015). This might imply that APD on average is a better representative of 

trait rarity. However more scrutiny is needed in order to advocate for its application in 

species prioritization. 

While there are many justifications for saving isolated species (Redding et al. 

2010; Jetz et al. 2014) and conservation dollars are spent to save evolutionary distinct 

species (Zoological Society of London 2008) it is not yet clear which facet(s) of 

biodiversity is being preserved. Here, I showed that ED captures trait rarity on low 

gamma trees and also in case of fast evolving traits in simulation. The efficiency of ED is 

impacted by tree shape and underlying properties of trait evolution (e.g. doing better at 

higher rate and higher numbers of trait state). The inconsistent performance of ED in 

terms of capturing trait rarity presented here should be taken into account by 

conservation planners. ED might effectively capture trait rarity in some (i.e. if the target 

clade is mostly consisted of old lineages (i.e. low gamma) or if the functional traits of 

interest saturate) but not all, real life situations. Aside from some unappealing properties 

of APD (i.e. double counts), there is evidence for its efficiency in terms capturing some 

facets of biodiversity (Redding et al. 2015 and this chapter). If future studies confirm its 

promising performance, then conservation managers should consider its application in 

conservation prioritization.   

 Those findings can be seen as a cautionary message for conservation planning: 

different facets of diversity may not covary. This in turn emphasizes that different 

currencies of prioritization should be selected based on the explicit aims of any given 

conservation program. I take up more specific suggestions and ideas for future research 

following on from my MSc. work in Chapter 4. 
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Chapter 3.  
 
Is Evolutionary Distinctness a robust proxy for 
Phylogenetic Diversity? 

Abstract 

A rising number of studies are recommending the inclusion of phylogenetic information 

in conservation planning. The oft-cited Phylogenetic diversity (PD) metric is problematic 

for direct inclusion into species based conservation planning. In contrast, Evolutionary 

Distinctness (ED), which is actively being used for species prioritization, has been 

criticized for not taking complementarity into account. Here, I show a strong correlation 

between loss of PD and loss of ED under two scenarios of extinction across different 

sizes and shapes of phylogenies. I also report a robust performance of ED in capturing 

phylogenetic diversity when I controlled for number of dropped species. My results 

suggest that ranking species based on ED safeguards PD very well. This may offer a 

strong argument for focusing species-specific conservation efforts on highly ED species. 

 

Keywords: Evolutionary Distinctness, Phylogenetic diversity, Extinction, species 

prioritization 

Introduction 

The criteria for species prioritization in conservation biology range from cultural 

preferences to extinction risk (Metrick and Weitzman 1996; Possingham et al. 2002).  

Phylogenetic diversity (PD) – the sum of the lengths of branches in a phylogeny 

connecting species of a set – has been presented as a framework for preserving sets of 

species and areas for conservation (Faith 1992), justified by the argument that subsets 

of species that represent more phylogeny are likely to embody more evolved features, 

something that may impart value from community to ecosystem levels (see, e.g. Cadotte 

et al. 2008; Faith 2016). 
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Evolutionary isolation may be considered a general term for species-specific 

measures of a species' contribution of branch length to a phylogenetic tree.  Many exist 

(see Redding et al. 2008; Vellend et al. 2011; Redding et al. 2014), with the most 

commonly used being Fair Proportion (Redding 2003), which, called Evolutionary 

Distinctiveness or ED, serves as the basis for the Zoological Society of London's Edge of 

Existence (EDGE) conservation program (Zoological Society of London 2008). Indeed, 

ED scores are now available globally for mammals (Isaac et al. 2007), amphibians 

(Isaac et al. 2012), birds (Jetz et al., 2014), squamate reptiles (Tonini et al. 2016), 

Scleractinian corals (Huang 2012), Sharks and Rays (Stein et al., pers. comm.) and 

some smaller groups (see, e.g., Redding et al. 2010; Bennett et al. 2014). Given the 

convenience of getting and using ED scores, researchers have begun to use the sum of 

ED scores as a surrogate for PD based on the premise that these two should be closely 

related (see, e.g., Dalerum 2013). Indeed, it has been shown that sets of species with 

high ED scores produce a high PD phylogeny on small simulated trees (Redding et al. 

2008), and ranking on ED can produce a near-optimal approach to conserving 

threatened PD (for birds, see Jetz et al., 2014).  However, it is easy to produce cartoon 

trees where high ED species do not contribute highly to PD because ED scores fail to 

completely incorporate  “complementarity" (Faith 2016).  Such cases can be imagined 

when two subsets of species represent similar ED but embody different PD values due 

to different relatedness on the phylogeny. 

In this chapter, I investigate the strength and the shape of relationship between 

sum of ED loss and PD loss for different types (i.e. shapes) of simulated trees and 

several real phylogenies under different scenarios of extinction. This works complements 

recent analytical work predicting the relationship between sum of ED loss and PD loss in 

the case of birth-death trees (Steel et al., pers. comm.).  Both studies stem from a query 

about the form of this relationship from A. Chaudhary to A. Mooers.  

In order to investigate what factors might be contributing to the shape and the 

strength of relationship between ED loss and PD loss, I measured two typical measures 

of tree shape: Pybus’ gamma, γ (Pybus and Harvey 2000)  and Colless’ index of 

imbalance, Ic (Colless 1982; Mooers and Heard 1997) and tested how they contribute to 

the above mentioned relationship. The γ is an indicator for timing of branching events on 

a phylogeny with γ > 0 denoting more recent and γ < 0 indicating deeper speciation 

events than expected on a equal-rates birth tree (Pybus and Harvey 2000). Colless' 



19 

index on the other hand, measures variation in clade size throughout the tree, and is 

calculated as the sum of differences in number of species between sister clades at each 

internal node (Colless 1982; Mooers and Heard 1997). Greater Colless index is found on 

phylogenetic treess that are more imbalanced (Blum et al. 2006).  I also considered two 

new metrics of tree shape introduced by Lewitus and Morlon (2016a, b) based on 

spectral density profile: "skewness" and "kurtosis". Skewness is a measure of the 

asymmetry of a tree’s spectral density profile, and is a metric of relative timing of 

branching events from the root to the present. Positive skewness is an indicator of 

branching events being recent and negative skewness denotes deep speciation events. 

Kurtosis quantifies the peakedness of trees’ spectral density profile where small values 

of this measure is interpreted as branch length being homogeneous, which in turn can 

be inferred as the tree being balanced (Lewitus and Morlon 2016a; Lewitus and Morlon 

2016b). However, skewness and kurtosis were shown not to be tightly correlated with Ic 

and γ, respectively (Lewitus and Morlon 2016b). I therefore tested whether variation in 

the relationship linking ED loss to PD loss is captured by the variation in any of these 

four features of tree shape. 

Evolutionarily isolated species are shown to embody unique traits in some taxa 

(Magnuson-Ford et al. 2009; Redding et al. 2010). It has also been suggested that sets 

of evolutionarily distinct species may capture more total phylogenetic diversity (Redding 

et al. 2008). Those results suggest that isolated species may represent some special 

value of biodiversity. Therefore, I included both simulations where species loss is 

random with respect to ED, and simulations where extinctions events occur based on 

the ED ranking of the species, with high ED species going extinct first. This latter 

approach helps assess the efficiency of ED as a surrogate of PD under scenarios of 

extinction where high ED species are more likely to be threatened. 

Given the challenges of applying PD into species-specific conservation 

programs, if on average the relationship between ED loss and PD loss is found to be 

tight, and robust across different phylogenies, then conservation planners can benefit 

from the convenience of calculating summed ED scores and using this as a proxy for 

PD. A strong link between ED loss and PD loss would also support the use of ED in the 

ZSL's edge of existence program. 
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Methods 

Simulated trees 

 I simulated three sets of 1000 trees with n=64 tips using the function pbtree in R 

package phytools (Revell 2012) representing Yule, low and high extinction regimes (d=0, 

d=0.1 and d=0.9). I also simulate pure birth trees with evolving rates (Beaulieu and 

O’Meara 2015) and selected trees with normalized Colless index greater than zero so 

that my simulated trees covered a wider range of balances. For each tree I calculated 

the four metrics of tree shape. Using gammaStat function in ape package (Emmanuel 

Paradis et al. 2004) and  colless function in R package apTreeshape (Bortolussi et al. 

2006) I calculated γ and normalized Ic for each tree respectively. γ value greater than 

zero indicates recent speciation while negative value of γ is an indicator of old speciation 

(long pendant edges). Normalized Ic on the other hand, can vary between -∞ and +∞ 

with higher positive values indicating more heterogeneity in diversification rates among 

clades. In order to explore the phylogenetic space in more scrutiny and to be able to 

better capture the variation in tree shape among phylogenies I also measured two 

metrics of the spectral density profile of each tree using the RPANDA package of R 

(Morlon et al. 2016). Using the spectR function I computed the skewness and kurtosis of 

the spectral density profile for each phylogeny. Skewness (aka asymmetry) is another 

measure of the node distribution from the root to the tips in a tree. Positive skewness 

value is an indicator of recent branching events (stemmy trees) while negative skewness 

is an indicative of deep branching events (tippy trees) (Lewitus and Morlon 2016). These 

authors reported weak relationships between skewness and gamma (R2=0.19) which 

they interpreted as suggesting that their proposed metric measured nodes distribution 

differently from gamma (Lewitus and Morlon 2016a). Lastly, I measured the kurtosis for 

each tree, which quantifies homogeneity/heterogeneity of branch lengths. Low kurtosis 

value is a sign of homogeneity in branch lengths, which in turn indicates a balanced tree 

shape, while high values represent imbalanced trees where there is higher degree of 

heterogeneity in branch lengths. Conceptually, The kurtosis value of a phylogeny should 

overlap with that of Colless index; however these two measures of imbalance are 

reported to be uncorrelated (Lewitus and Morlon 2016a). More details on the spectral 

density profiles of my simulated and empirical phylogenies can be found in Appendix B, 

where I conclude that the behaviour of these measures are not yet well established. 
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Pruning process 

 I randomly pruned species iteratively from each tree using the drop.tip function 

in the R package ape (Paradis et al., 2004), from one up to 64 species, recording the 

summed ED loss and the attendant PD loss from that tree. A similar procedure was 

followed when I performed high ED extinction with the only difference being that species 

were dropped based on their ED scores starting from the highest to the lowest. All loss 

values were divided by the total length of the corresponding full tree, so that all loss 

values range between 0 and 1. The form of the relationship over the first 15% (10 

species) lost (simulating the current proportion of species at risk of extinction in major 

groups (Hoffmann et al. 2010)) and over the 100% (64 species) lost were tested 

separately using lm function in stats package of R (R Core Team 2016). 

Real Trees 

 In order to extend the results to real world situations, I also considered updated 

sets of 1000 trees of birds (Jetz et al. 2014; BirdLife International 2015), n = 10284 

species, of mammals (Martyn et al. 2012), n = 5139 species; and amphibians (Isaac et 

al. 2012), n=5713 species. Details of the updates for each phylogeny set can be found in 

Appendix B. I randomly dropped 1543, 771 and 857 species (15%) from the birds, 

mammals and amphibians trees respectively. The exact same protocol of pruning was 

applied to real trees in order to generate the slope of relationship between ED loss and 

PD loss for each taxon over 15% of random extinction.  I then repeated this choosing the 

top 15% ED species for pruning. All four metrics of tree shape were also calculated for 

empirical phylogenies. 

Results 

Random loss of species 

The shape of relationship between ED loss and PD loss (from 0 to 100% loss) 

under random scenario of extinction in birth-death trees is presented in Figure 15.  The 

relative death rate of simulated trees has a significant effect on the shape of the curve. 

In trees where on average terminal edges are longer than internal edges, relatively high 

amounts of PD is lost initially. In contrast, in high death trees short terminal edges cause 
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the PD loss to be low until a certain tipping point. As can be seen from Figure 15, the 

expected curve of such relationship can be well predicted using the equation from Steel 

(Steel et al., pers. comm.). 

In order to make the simulations more comparable to real life situations, I turn my 

focus to the relationship between ED loss and PD loss when only a moderate proportion 

of species (15%) are removed from each phylogeny. For each empirical and simulated 

phylogeny, I generated the slope of ED loss and PD loss. As indicated by r2 values in 

Table 3, loss of cumulative ED and loss of PD under random extinction are very closely 

related to each other in all surveyed phylogenies, and specifically in the empirical 

phylogenies. Estimates of slope for Yule and low-death trees are very similar (~0.5) 

where on average each unit of ED loss corresponds with about 0.5 unit of PD loss. This 

finding is more intuitive when we consider the fact that Yule trees are expected to have 

equal internal and pendant edge lengths and they are also expected to exhibit an 

intermediate degree of balance. Under minor random extinction, individual pendant 

edges are most commonly lost, and total pendant edge length is roughly half the entire 

PD of a tree (Mooers et al. 2012). 

High-Ic and high-death trees had the highest and lowest estimated slopes among 

all surveyed phylogenies respectively. The shallow slope of high-death (high gamma) 

trees is not unexpected given that other research has shown negligible amount of loss of 

PD as species are lost on high gamma (coalescent) trees (Nee and May 1997). Among 

empirical phylogenies, birds showed the steepest, and amphibians showed the 

shallowest, slopes (Table 3). The phylogeny of birds also exhibited the lowest amount of 

variation along the best fit line (standard error of the slope=0.0002 as apposed to 0.0007 

for mammals and amphibians). A similar improvement in goodness of fit resulted when I 

compared Yule tree of different size (64 vs. 1024) where the r2 increased from 0.85 to 

0.98 (Figure 18). This can be partly due to the fact that external edges in larger trees are 

more similar in length compare to smaller trees. This difference is reflected in Figure 19 

where external edges show very negligible amount of variation in the super tree of birds 

compare to those of smaller trees. 

In order to explore drivers of observed variation in slope of different phylogenies, 

I considered the four metrics of tree shape. I first considered Colless' Ic, which quantifies 

the degree of variation in diversification rate. Three out of four types of simulated trees 
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had median Colless values centered on zero (no variation) while the median Colless 

index for high-Ic trees was 1.51. Empirical phylogenies occupied a much wider range, 

with birds showing the highest (Median = 12.03) and mammals showing the lowest 

(Median = 6.39) values (Figure 20). 

The result of gamma statistics distribution is shown in Figure 21where high-Ic 

trees (Ic>0) were the only group of simulated trees with negative gamma values (Median 

= -1.03). Low death and Yule trees show almost the same values of median gamma (not 

significantly different from zero), and high death trees exhibit the highest values of 

gamma (Median gamma= 4.86). Among empirical phylogenies, amphibians displayed 

the highest (Median = 27.25) and mammals showed the lowest (Median = 5.33) gamma 

values: amphibians have the most relatively recent distribution of nodes and mammals 

the deepest relative distribution of nodes among empirical phylogenies. 

As shown in Figure 22, there seems to be roughly linear relationships between 

the PD-ED slope and each of these two metrics of tree shape. I therefore fit a linear 

model in order to estimate the effect size of gamma and Colless index for explaining 

variation in slope. The outputs from the linear model performed on 4000 simulated trees 

showed that Colless index positively affects the slope, meaning that in phylogenies 

where there is high variation in diversification rates among clades, higher estimates of 

slope are expected. Gamma, on the other hand inversely affects the slope: trees with 

smaller values of gamma (so a, deeper distribution of nodes) are expected to lose higher 

amounts of PD on average when one unit of ED is lost. Importantly, the effect size of 

gamma is more than twofold bigger than that of Ic .The same linear model was 

performed on the 3000 empirical phylogenies. The general inferences are the same, with 

the model fitting the empirical trees better (Table 4). 

I also considered the new measures of tree shape (Figure 23), while these 

scatterplots are messier, I tested a linear model with skewness and kurtosis as 

predictors in order to check whether these two metrics of tree shape can better predict 

the slope of PD loss and ED loss relationship. The goodness of fits for the models using 

the two sets of measures are very similar, indicating that the two newly-introduced 

metrics of tree shape (Lewitus and Morlon 2016a) are as powerful, but no more 

powerful, as classic measures of tree shape in describing the variation in slope across 

different phylogenies. 
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Non-random loss of species 

Figure 24 depicts the shape of relationship between ED loss and PD loss (from 0 

to 100% loss) in birth-death trees where species are dropped based on the descending 

rank of their ED values. Overall and importantly, the fit is much improved and the slopes 

are nearer unity. Because of this, and unlike the random scenario of extinction, here the 

relative death rate of simulated trees does not have a strong effect on the slope (0.94 vs. 

0.91 in low death and high death trees respectively). Given that the initial slope is near 

unity, the quadratic relationship between the two variables under the random extinction 

has become a nearly linear relationship 

Similar to random scenario of extinction, I focused on 15% extinction here. Figure 

25 shows the relationship between loss of ED and loss of PD in the four types of 

simulated trees where top 15% high ED species are dropped. The slopes are much 

higher in this case comparing to that of random extinction scenario for all surveyed 

phylogenies. Among simulated trees, imbalanced trees showed the steepest slope, as 

expected. Due to the shape of these phylogenies, loss of highly isolated species, which 

occur in the species-poor areas of the tree will produce this steep slope. Unlike random 

extinctions, empirical phylogenies exhibit slopes similar to simulated trees (i.e. near 

unity). My results show that in this type of non-random extinction, tree shape and size 

seem not to be crucial determinants of how much phylogenetic diversity is lost per each 

unit of ED loss. 

Discussion  

Following the introduction of phylogenetic diversity (PD) by Faith in his landmark 

paper (Faith 1992), subsequent research has focused on what is effectively being 

conserved by preserving PD (Faith 2013). Preserving feature diversity is one of the 

arguments for PD-based conservation approaches (Faith 1992). Some researches have 

been able to confirm that prioritizing conservation efforts based on PD translate into 

better-than-random capture of feature diversity and subsequently option-value (see, e.g., 

Forest et al. 2007). 

Apart from arguments for and against PD as a measure of feature or trait 

diversity, a central barrier for application of PD-based metrics in conservation arises 
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from the fact that PD is a set-specific measure and conservation planners may find it 

challenging to apply such metrics for species conservation. In other words, although 

many conservation plans are designed at species level there is been no straightforward 

way of calculating the expected PD contributed by a single species to some future or 

hypothesized set of species. This shortfall has encouraged development of species-

specific isolation metrics (see Redding et al. 2014). These metrics differentially quantify 

the degree of isolation of each tip on a phylogenetic tree (Redding et al. 2014). Among 

several existing isolation metrics, ED (Redding 2003) has been the only one known to be 

used actively in conservation prioritization, by The Zoological Society of London's Edge 

of Existence programme (Zoological Society of London 2008). The simplicity of 

calculating ED and the ever-increasing availability of complete dated phylogenies 

facilitates the use of this metric for conservation prioritization purposes. One implicit 

argument for the use of such isolation metrics is that sets of high-ranking species 

capture non-random amounts of PD. 

In this chapter, I studied the relationship between loss of ED and loss of PD 

across different types/sizes of simulated and real trees. Using a combination of 

simulated and real phylogenies, I show for the first time that the loss of summed 

evolutionary distinctness is very closely correlated with loss of phylogenetic diversity 

under the two scenarios of extinction performed in this thesis. 

Under random extinction, tree shape significantly determines how much 

phylogenetic diversity is lost for each unit loss of ED. I find that tree balance (Colless 

index) has a positive effect on amount of PD loss, meaning that in trees with higher 

degrees of imbalance where clades are more dissimilar in number of species, loss of ED 

is more closely related to loss of PD. This can be attributed to two things: imbalanced 

trees have more of the total PD represented by exterior (pendant) branches (Figure 27), 

and also have the loss of internal branches when the few representatives of a small 

clade are lost. 

 Gamma is shown to be negatively related to the loss of phylogenetic diversity. 

Trees with younger speciation events (higher gamma) lose less phylogenetic diversity 

per unit of ED lost. This is due to the fact that minor extinction events prune the pendant 

edges of such trees that tend to be short in average. Similar results were suggested by 

Nee and May (1997) in which they argued that a big portion of tree of life would survive a 
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mass extinction event. This claim was based on the fact that they employed coalescent 

trees that have very short pendant edges (Mooers et al., 2012). 

The association between loss of PD and loss of ED under random extinction was 

always greater than 0.65. However I detected some degree of variation, with bigger 

trees showing stronger correlations between the two variables. As demonstrated in 

figure 15 bigger trees tend to have less variation in the length of pendant edges and that 

is perhaps the underlying reason for getting tighter relationship for empirical 

phylogenies. 

Although slow-down in diversification rates of clades is common in real-life (Moen 

and Morlon 2014), there is no unequivocal agreement on the  mode of evolution through 

time (Lewitus and Morlon 2016b). All three real phylogenies were found to be high 

gamma trees, with nodes closer to the tips of the phylogeny, with amphibians’ standing 

out as the "tippiest" phylogeny. More relatively recent diversification in amphibians 

(shorter pendant edges) is reflected in the shallower slope of ED loss and PD loss 

relationship compare to birds and mammals. As one can predict from the shape metrics 

of the three empirical phylogenies, extinction of one amphibian species leads to much 

lower loss of amphibian PD compared to the extinction of a bird or mammal species and 

the loss of their total PD. 

Interestingly, under extinction scenarios where high ED species are chosen for 

extinction, the relationship between loss of PD and loss of ED was very similar among all 

surveyed phylogenies. Unlike the observed variation among different types and sizes of 

phylogenies under the random scenario of extinction, here I report very steep slopes 

(above 0.9) and tight associations between loss of phylogenetic diversity and ED, 

regardless of tree shape and size. Successive loss of highly isolated species can result 

in the loss of internal branches associated with them and under such circumstances a 

high proportion of PD is lost from early on. Evolutionarily distinct species have been 

shown to contribute disproportionately to overall phenotypic diversity for several taxa 

(Redding et al. 2008; Magnuson-Ford et al. 2009; Redding et al. 2015, see also Chapter 

2). In sharks and rays, though not in other vertebrate groups (Verde Arregoitia et al. 

2013; Jetz et al. 2014) evolutionary isolated species are also at higher risk of extinction 

(Stein et al., pers. comm.). Although much more work is needed testing the overall value 
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of PD, the strong relationship I report here may offer a strong argument for focusing 

species-specific conservation efforts on the highest ED species. 

Despite the arguments for saving evolutionarily isolated species, the ED metric 

has been criticized vigorously for not taking species complementarity into account (Faith 

2008), and more sophisticated forms of ED have been suggested that explicitly take 

complementarity into account (Jensen et al. 2016). The tight correlations I report here 

argue against the need for more complex metrics.  

A correlation between PD and cumulative ED is somewhat expected because PD 

is highly correlated with species richness (Davies and Buckley 2011, F. Mazel, pers. 

comm.), and so is cumulative ED (results now show). In order to test to what extend 

species richness is driving the strong correlations we see, I employed the two discussed 

scenarios of extinction in Yule trees where I controlled for number of species pruned. In 

both cases I report high degrees of association between PD and ED  (r2 ~ 0.8) for any 

given number of extinct species. Consistently, loss of 10 highly isolated species is 

associated with loss of more phylogenetic diversity compared to the loss of 10 random 

species (Figure 26). This final test is an indication that ED may be a much more reliable 

surrogate of PD than has been appreciated by both advocates and critics of the 

approach. I take up more specific suggestions for future research following on from my 

MSc. work in Chapter 4. 
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Chapter 4.  
 
Conclusion 

The unprecedented biodiversity loss has invoked responses from scientists and 

decision makers in hopes of mitigating this crisis. As one of the most internationally 

engaged organizations in conservation, the Convention on Biological Diversity (CBD) 

has set the following as one of its goals (www.cbd.int/sp/targets/#GoalC): 

“By 2020, at least 17 per cent of terrestrial and inland water, and 10 per cent of coastal 

and marine areas, especially areas of particular importance for biodiversity and 

ecosystem services, are conserved through effectively and equitably managed, 

ecologically representative and well connected systems of protected areas and other 

effective area-based conservation measures, and integrated into the wider landscapes 

and seascapes.” 

There is probably a consensus on the need for more conservation effort and 

resources but what different scientists and policy makers may find “of particular 

importance for biodiversity” varies noticeably. This challenge, combined with funding 

limitations, can hinder implementation of comprehensive conservation plans to a great 

extent.  

Aside from those challenges, conservation programs are inconsistently allocating 

the scarce funding across ecosystems/species/populations (see Joseph et al. 2009; 

Veron et al. 2015). One species-based currency for conservation prioritization; 

Evolutionary Distinctness (Redding 2003) has been adopted by EDGE of EXISTENCE 

initiative (Zoological Society of London 2008). In this thesis I rigorously tested the 

effectiveness of this metrics from two perspectives: 

Since evolution is assumed to be a conservative process, phylogenetic distance 

should correlate with functional distance. However this relationship may decay very fast 

under different models of trait evolution (see Cadotte et al. 2013; Kelly et al. 2014; Letten 

and Cornwell 2015). I employed the concept of average trait rarity which was suggested 

as a measure of originality (Pavoine et al. 2005) and showed that ED highly correlates 
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with average rarity of traits in low gamma trees but its efficiency declines as tree gets 

tippy. However, when traits evolve very fast and there is evidence of saturation, ED 

actually captures trait rarity quite well. Those result echoes the fact that ED is an 

effective measure in capturing changes that occur near the tip of a phylogeny so that in 

low gamma trees where pendant edges are relatively longer on average as well as 

cases of multiple changes along the external edges of a phylogeny it is positively 

correlated with the employed index of originality (i.e. average rarity). Further studies 

(simulation and real life data) should scrutinize the behaviour of continuous traits, and 

consider different measures of functional diversity, as has been suggested by others 

(see Buisson and Grenouillet 2009; Buisson et al. 2013)  

An analytical critique about ED is its failure for taking complementarity into 

account (Faith 2008). However, ED has favourable properties because it is a species-

specific metric. This latter property is an asset since many conservation planning and 

resource allocation occur at species level. Here, I showed that loss of ED is strongly 

correlated with loss of PD regardless of size and shape of the phylogeny. This holds 

under both random and high ED scenarios of extinction. Notably, this relationship 

remained tight when I controlled for number of lost species. In spite of rigorous criticism 

about ED lacking complementarity (Faith 2008), my results suggest that, on average, ED 

is a robust proxy for phylogenetic diversity across several types and different sizes of 

phylogenies. 

In summary, results of this research can be applied for informing conservation 

programs, and particularly the programs that are applying ED for species prioritization. 

These conservation programs should consider the possibility that saving evolutionarily 

isolated species might not always lead to conservation of high degree of trait rarity. In 

case of high gamma phylogenies and also instances where traits of interests are known 

to evolve rather slowly, ED shouldn’t be the first choice for prioritization purposes. 

Indeed, the poor performance of ED in capturing rarity of life history traits in the order of 

Chiroptera, which was also detected in birds at different spatial scales (Redding et al. 

2015) should be of particular concern for its users. The good news however, is the 

robust performance of another metric of isolation (APD) in capturing trait rarity. APD 

showed very high degrees of association with rarity in simulation and some degrees of 

positive correlation with trait rarity in bats which is in accord with its performance in case 

of Nearctic and Neotropical birds (see Redding et al. 2015) . These results should 
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prompt further studies to test APD’s performance in capturing other facets of biodiversity 

before its application in conservation prioritization is advocated. 

That said, if a conservation program’s goal is to preserve the tree of life (i.e. 

preserve PD), it can conveniently benefit from application of ED as a species-specific 

metric that highly correlates with PD on a wide range of phylogenetic sizes and shapes. 

Taken together, conservation programs should choose their metric of prioritization based 

on the explicit aim of the program. Otherwise, the limited resources available for 

conservation will not be used efficiently.  
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Figures and Tables 

 

 

Figure 1. The concept of originality and uniqueness in functional space. 
Based on these two traits, species A is both original and unique 
while B and C are original but not unique. Adapted from Buisson et 
al. 2013. 
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Figure 2.  Two metrics of tree shape used in this study: a) Colless’ measure of 

tree balance (Ic), smaller value represents more balanced tree (left) 
as apposed to higher values (right) and b) Distribution of nodes 
ages (γ) with higher values indicating younger speciation events 
(lef) and lower values representing older speciation events. 

 

 
Figure 3. Mean rarity for 500 traits across three size of phylogenies and four 

rate of character change in case of: a) two-state traits, b) four-state 
traits c) eight-state traits and d) sixteen-state traits. 
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Figure 4. Standard deviation of mean rarity among species. Each point 

represnts the SD of mean rarity among species of the corresponding 
tree. 

 
Figure 5. Distribution of average rarity of 500 traits with 8 states on 

imbalanced high gamma trees: a) rate of 0.008 (Mean rarity=0.7, 
skewness=-0.85) and b) rate of 0.016 (Mean rarity=0.79, skewness=-
1.06). 
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Figure 6.  Correlation between each isolation metric and average rarity in: a) 

balanced high gamma trees, b) balanced low gamma trees c) 
imbalanced high gamma trees and d) imbalanced low gamma trees. 
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Figure 7. Effecft of tree size on the perfomance of isolation metrics in terms of 

capturing trait rarity. Top panel: 5 traits simulated on 100 Yule trees 
of different size and bottom panel: 5 traits simulated on 100 
imbalanced high gamma trees of different size.  
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Figure 8. Correlation between each isolation metric and average rarity in 

imbalanced high gamma trees of size 64 with 500 traits having: a) 
Two, b) Four c) Eight and d) Sixteen trait states, at different rates of 
evolution. 
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Figure 9.  Correlation between each isolation metric and average rarity in 

imbalanced high gamma trees of size 256 with 500 traits having: a) 
Two, b) Four c) Eight and d) Sixteen trait states, at different rates of 
evolution. 
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Figure 10. Correlation between each isolation metric and average rarity in 

imbalanced high gamma trees of size 1024 with 500 traits having: a) 
Two, b) Four c) Eight and d) Sixteen trait states, at different rates of 
evolution. 

 



39 

 
Figure 11.  Correlation between each isolation metric and average rarity in 

imbalanced high gamma trees of size 64 with 250 traits evolving at 
low rate (0.0002) and 250 traits evolving at high rate (0.016) both 
having 16 character states. 

 

 

Figure 12. Relationship between trait difference and normalized phylogenetic 
distance on an imbalanced high gamma tree (n=64) whereby: a) 500 
traits with 16 states evolving at the rate of 0.002 and b) 500 traits 
with 16 states evolving at the rate of 0.016. 
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Figure 13.  Effect of trait number on the efficiency of isolation metrics in 

capturing average rarity in: a) imbalanced high gamma tree with 64 
species, b) imbalanced high gamma tree with 256 species and c) 
imbalanced high gamma tree with 1024 species. 
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Figure 14. Distribution of the two isolation scores and average rarity across 

1073 species of bats: a) APD and b) ED 

 
Figure 15.  Relationship between Sum of ED loss and PD loss under random 

extinction in 1000 a) low-death (d=0.1) trees b) high-death (d=0.9) 
trees. The black curve in each panel depicts the expected curve 
from Mike Steel et al., pers. comm. 
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Figure 16  Relationship between Loss of ED and Loss of PD in case of 15% 
random extinction in: a) Yule trees, b) Imbalanced trees, c) Low 
death trees and d) High death tees.   
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Figure 17. Linear relationship between loss of ED and loss of PD up to 15% 

species loss under random extinction in: a) 1000 trees of mammals, 
b) 1000 trees of birds and c) 1000 trees of amphibians.   
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Figure 18. Effect of the tree size on the goodness of fit regarding the 

relationship between PD loss and ED loss in: a) 100 Yule trees of 
size 64 and b) 100 Yule trees of size 1024. 

 
Figure 19.  The distribution of variation in pendant edges (standardized by PD 

of the corresponding tree) in three different sets of phylogenies. 
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Figure 20.  Values of Colless index in: a) four types of simulated trees and b) 
three empirical phylogenies 
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Figure 21. The distribution of Gamma values in: a) four types of simulated 

trees and b) three empirical phylogenies. 

 
Figure 22.  The scatter plot of slope and two metrics of tree shape; a) Colless 

index and b) Gamma in simulated trees. 
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Figure 23.  The Scatter plot of slope against two metrics of tree shape; a) 

Asymmetry and b) log transformed Peakedness. 

 
Figure 24.  Relationship between Sum of ED loss and PD loss in 1000 a) low-

death (d=0.1) trees b) high-death (d=0.9) trees under high ED loss 
scenario. 
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Figure 25.  Relationship between Loss of ED and Loss of PD in case of high ED 

extinction (up to 15% loss) in: a) Yule trees, b) Imbalanced trees, c) 
Low death trees and d) High death tees 

. 
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Figure 26.  Loss of 10 species in 1000 Yule trees of size 64 under: a) random 

extinction and b) high-ED extinction where I controlled for number of 
extinct species. 

.
 

 
Figure 27.  Relationship between degree of imbalance and the sum of 

normalized external edges in 2000 simulated trees 
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Table 1. Results of the linear model performed on three sizes of imbalanced 
high gamma trees. The response variable is mean rarity and 
predictors are tree size, number of states (K), rate of trait change (q) 
and the interaction between K and q (R2 =0.93).  

Predictor Estimate (Standard Error) 

Tree size (256) 0.04(0.000) 

Tree size (1024)  0.065(0.001) 

K=4 0.124(0.001) 

K=8 0.3(0.001) 

K=16 0.51(0.001) 

q 15.1(0.12) 

(K=4)*q 10.16(0.17) 

(K=8)*q 12.7 (0.17) 

 

Table 2. Effect of average rarity, number of trait states (K), rate of trait 
change (q) and the interaction between K and q on the observed 
variation of rarity among species; obtained from a linear model 
performed on three size of imbalanced high gamma trees (R2 =0.69).  

Predictor Estimate (Standard Error) 
Average rarity 0.08 (0.004) 

K=4 0.04 (0.001) 
K=8 0.1 (0.001) 

K=16 0.17 (0.001) 
q 7.25 (0.081) 

(K=4)*q 4.31 (0.11) 
(K=8)*q 8.15 (0.13) 

(K=16)*q 11.1(0.15) 
Average rarity* (K=4) -0.062(0.005) 
Average rarity* (K=8) -0.17(0.005 

Average rarity* (K=16) -0.26(0.005) 
Average rarity* q -20.47(0.18) 
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Table 3. Estimates of slope between loss of PD and loss of ED under random 
extinction in simulated and empirical phylogenies 

Phylogeny #Species Slope PD loss ~ ED loss 
(s.e.) 

r2 

Yule 
 

64 0.58 
(0.002) 

0.85 

High-Ic trees 
(Ic>0) 

64 0.69 
(0.002) 

0.89 

Birth-death (d=0.1) 64 0.57 
(0.002) 

0.83 

Birth-death (d=0.9) 64 0.43 
(0.003) 

0.67 

Mammals 5139 0.57 
 (0.000) 

0.99 

Birds 10284 0.61 
(0.000) 

0.99 

Amphibians 5713 0.46 
(0.000) 

0.98 

 

Table 4.  Results of two linear regression models, performed on simulated 
and empirical phylogenies 

Simulated trees Empirical trees 

Predictor Estimate 
 (s.e.) 

p-value Estimate  
(s.e.) 

p-value 

Ic 0.022 
(0.002) 

<2e-16*** 0.014 
(0.000) 

<2e-16*** 

Gamma -0.038 
(0.001) 

< 2e-16 *** -0.006 
(0.000) 

< 2e-16 *** 

Multiple R-squared of the model: 0.47 
RSME: 0.11 

Multiple R-squared of the model: 0.87 
RSME: 0.02 
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Table 5. Results of linear regression model, performed on 4000 simulated 
trees in order to test the effects of asymetry and peakedness on the 
slope of PD loss and ED loss 

Slope ~ Asymmetry + Log (peakedness) 
Multiple R-squared of the model: 0.44, RSME: 0.12 

Predictor Slope (Standard error) p-value 
Asymmetry 0.005(0.000) <2e-16*** 

Log (peakedness) -0.23(0.004) < 2e-16 *** 
*** Significant at 0.000,  

Table 6.  Estimates of slope between loss of PD and loss of PD under high ED 
extinction in seven simulated and empirical phylogenies 

Phylogeny #Species Slope PD loss ~ ED loss 
(s.e.) 

r2 

Yule 
 

64 0.90 
(0.000) 

0.98 

High-Ic trees 
(Ic>0) 

64 0.94 
(0.001) 

0.99 

Birth-death (d=0.1) 64 0.90 
(0.001) 

0.98 

Birth-death (d=0.9) 64 0.89 
(0.000) 

0.92 

Mammals 5139 0.92 
(0.000) 

0.99 

Birds 10284 
 

0.94 
(0.000) 

0.99 

Amphibians 5713 0.90 
(0.000) 

0.99 
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Appendix A 

Update to the three vertebrate trees used 

Mammal trees 

The list of species in 1000 tree of mammals used in this study conformed to that 

of Martyn et al. (2012). We calculated ED scores for 5319 species of mammals, which is 

highly correlated, with scores provided by Martyn et al. (2012). 

Bird trees 

I calculated ED scores using an updated distribution of phylogenies incorporating 

a total of 10,284 extant bird species as recognized by the IUCN, based on the 

distribution of "Hackett backbone" trees used by Jetz et al. (2014). Updates were done 

by Karen Magnusson-Ford, and primarily involved the splitting of one named species 

into two or more.  

The phylogenies used by Jetz et al. (2014) were modified to be consistent with 

the 2016 IUCN Red List taxonomy (BirdLife International 2015). Thus (1) the scientific 

names of 561 species on the phylogeny were changed to match those of the IUCN Red 

List, (2) 136 species that were not recognized by the IUCN Red List were removed from 

the phylogeny, and (3) 427 species that are currently recognized by the IUCN Red List 

(BirdLife International 2015) as extant but are not on the Jetz et al. (2014) tree were 

added (details belwo). These changes were applied to the complete distribution of 

10,000 trees, each which now include 10,284 species, fully consistent with the IUCN 

Red List taxonomy. This set of updated trees is available upon request.  

Species additions: Of the 427 species added, 405 were species that had recently 

been elevated from subspecies to species status, i.e. splitting from a known sister 

species. In these cases, the new species was inserted into the phylogeny halfway down 

the branch of its sister. In cases where one species was split into more than two species, 

the topology of the new clade (including the sister already existing in the tree) was 

generated randomly (rtree in the R package ape) and all branch lengths were set as 

equal. This clade was then inserted into the tree, replacing the original sister branch and 



61 

the branch lengths of the pendant edges were increased such that the tree remained 

ultrametric.  

The remaining 22 species added to the tree included 11 newly described 

species, and 11 species not recognized by Jetz et al. (2014). These 22 species were 

added to the tree as described above, where sister species were identified based on 

BirdLife species factsheets or recent scientific literature. The only exception was 

Heliangelus zusii, which was inserted halfway down the branch leading to the clade 

containing the Taphrolesbia and Aglaiocercus genera: BirdLife states in its fact sheet 

“Heliangelus spp. typically occur in cloud-forest and shrubbery at elevations of 1,200- 

3,400 m, mostly at 1,400-2,200 m. This species is probably more closely allied to 

Aglaiocercus and Taphrolesbia, and should be sought in humid or semi-arid habitat as 

high as 3,200 m from northwestern Venezuela to northern Peru (Kirchman et al. 2010).”  

Amphibian trees 

I used the amphibian tree from Isaac et al. (2012), which incorporated 5713 

species. I applied the method described by Kuhn et al. (2011) to resolve polytomies in 

the original tree. Using BEAST version 1.7.5. (Drummond et al. 2012), sampling every 

1000 trees and setting the burnin rate at 10%, 10,000 trees were retained as a posterior 

distribution of trees for further use.  
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Appendix B 

Spectral density profile of phylogenetic trees 

Lewitus and Morlon (2016a,b) have recently suggested that the spectral density 

profile may be a powerful description of tree shape. In particular, the authors suggest 

that, given the profile captures both among clade and through time patterns, it has 

distinct advantages over other more commonly applied but ad hoc metrics such as Ic 

and gamma. I therefore explored if these metrics of tree shape might better predict the 

slope of ED loss and PD loss relationship across various phylogenies. In addition to two 

well- known metrics of tree shape (Colless index and γ statistics), I measured the 

spectral density profile for each phylogeny using the RPANDA package of R. The 

spectR function computes the distribution of eigenvalues for each tree and returns 

eigenvalues, principal eigenvalue, asymmetry, peakedness (kurtosis and peak height) 

and eigengap of a tree (Morlon et al. 2016). Here I focus on asymmetry, kurtosis and the 

y-axis height of the spectral density profile. These three measures can be computed in 

normalized and raw versions, with the former normalizing scores based on the 

corresponding degree matrix so it can be compared among phylogenies.  

Asymmetry (skewness) was introduced as a measure of node distribution 

through time (Lewitus and Morlon 2016a). Unlike the Gamma statistic, asymmetry did 

not show much variation in four groups of simulated trees, though high-death trees 

showed more positive skewness (median =0.62). Among empirical phylogenies, the 

birds’ tree showed the highly positive skewness (median = 86.34).  

As noted by Lewitus and Morlon (2016), asymmetry and gamma scores are 

weakly but positively correlated. I found the same pattern in my simulated trees whereby 

gamma could explain only a portion of variation in normalized asymmetry (Slope=0.14, 

r2=014). Although gamma and raw asymmetry were also significantly related (Slope=-

0.29, r2=0.04), it was negatively: the goodness of fit was very weak in any case (Figure 

B3).  
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Figure B1.  Box-plots of asymmetry (skewness) in four types of simulated 

trees; upper panel depicts the raw asymmetry and bottom panel 
shows the normalized version  
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Figure B2.  Values of asymmetry (skewness) in empirical phylogenies (10 trees 

from each group). The top panel shows raw values and the bottom 
panel depicts normalized values of asymmetry 
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Figure B3.  Scatter-plots of asymmetry and gamma values in four types of 

simulated trees; the upper panel depicts the raw asymmetry and the 
bottom panel shows the normalized version 

Two measures of imbalance were proposed by Lewitus and Morlon (2016): The 

kurtosis of the spectral density, which quantifies the peakedness of a phylogenetic tree 

where higher peakedness implies heterogeneity of branch lengths; and the largest y-axis 

value of the spectral density profile (or peak height). Lewitus and Morlon (2016) showed 

that kurtosis was not correlated with the Colless index of tree imbalance. Here, however, 

it seems that kurtosis (both the raw and normalized versions) are significantly related to 

Colless index across my simulated tree set, though the strength of this relationship is 

very weak (Figure B4). On the other hand Colless index is more strongly and negatively 

correlated with the raw peak height (r2=0.31).  
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Figure B4.  Relationship between Colless index and various versions of 

imbalance introduced by Lewitus and Morlon (2016): a) Raw 
kurtosis, b) Normalized kurtosis, c) Log-transformed raw peak 
height and d) Log-transformed normalized peak height, each across 
four types of simulated trees (high and low gamma, high and low Ic, 
n=64, n=4000 trees)  

Interestingly, I found a very strong correlation between gamma and normalized 

peak height of the spectral density profile across my simulated trees (r2= 0.85). I also 

found kurtosis scores to be very strongly related to gamma despite the fact that kurtosis 

was primarily presented as a measure of imbalance (Lewitus and Morlon 2016a). Plots 

of kurtosis and peak scores in simulated trees vs. gamma are depicted in figure B5. All 

four variants of peakedness were found to be at their maximum in high-death trees 

(Figure B6) and as shown in Chapter 3 (Figure 2), high death trees exhibited the highest 

values of gamma among simulated trees.  

These findings suggest that peakedness (i.e. normalized peak height) is more 

representative of tree stemminess, Lewitus and Morlon (2016) who suggested it as a 

measure of imbalance. These preliminary patterns highlight that more work is sorely 
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needed to characterize what the shape of the spectral density profile of a phylogenetic 

tree actually captures.  

 

 

 
Figure B5.  Relationship between gamma values and various versions of 

imbalance introduced by Lewitus and Morlon (2016): a) Raw 
kurtosis, b) Normalized kurtosis, c) Log-transformed raw peak 
height and d) Log-transformed normalized peak in 4000 simulated 
tree  
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Figure B6.  Distribution of two metrics of imbalance in four groups of simulated 

trees a) Raw kurtosis, b) raw peak height and, c) Normalized 
kurtosis and d) Normalized peak height  
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Appendix C                                                                    

Annotated R code for simulating traits and calculating rarity 

# Written by Vahab Pourfaraj and optimized by Karen Gordon  
#Updated on April 2017 (Vahab Pourfaraj) 
 
library("phytools") 

Library("caper") 

trees<- read.tree("") #import the multiphylo object here 
 
#simulation of traits under Markov model 
##Define number of states (k) and the rate of character change 
 
## 2 states  q=0.002 
Q1<-  matrix (c(-0.002,0.002,0.002,-0.002),2,2) 
##2 states q=0.004  
Q2<-   matrix (c(-0.004,0.004,0.004,-0.004),2,2) 
###2 states q=0.008  
Q3<- matrix (c(-0.008,0.008,0.008,-0.008),2,2) 
###2 states q=0.016  
Q4<- matrix (c(-0.016,0.016,0.016,-0.016),2,2) 
 
 
Q.all<- list(Q1, Q2, Q3, Q4)) 

avg_rarity.multi<- as.data.frame(matrix(nrow=length(trees[[1]]$tip.labe
l),ncol=length(trees))) 
row.names(avg_rarity.multi)<- trees[[1]]$tip.label[order(trees[[1]]$tip
.label)] 
filenames.rarity<- paste("Rarity_Q", 1:length(Q.all), ".csv", sep="") 
 
for(l in 1:length(Q.all)){ 
  for(k in 1:length(trees)){ 
     
    tree<- trees[[k]] 
    Q<- Q.all[[l]] 
     
    file1<- sim.history (tree, Q, nsim=n) # n is the desired number of 
traits to be simulated 
     
    df<- getStates(file1, type="tips") 
 
     
    df2 <- as.data.frame(matrix(nrow=nrow(df),ncol=length(file1))) 
     



70 

    for(i in 1:length(file1)){  ### changes according to the number of 
traits (file1,nsim) 
      for(j in 1:nrow(df)){ ###changes according to the number of speci
es in the phylogeny 
        x <- df[j,i] 
        num <- sum(df[,i] == x) - 1 #this counts the number of similar 
states for that trait, discounting the species of interest 
        rarity <- 1 - num/(nrow(df)-1) #formula; the number at the bott
om changes according to the number of taxa (N-1)               
        df2[j,i] <- rarity 
         
      } 
    } 
    average_rarity <- rowMeans(df2, na.rm=TRUE) 
     
    if (l==1) { 
       
      total<- as.data.frame(cbind(tree$tip.label, average_rarity)) 
      names(total)<- c("Tip.Label","Rarity") 
      total<- total[order(total[,"Tip.Label"]),] 
       
      avg_rarity.multi[,k]<- total[,"Rarity"] 
       
    } else { 
      total<- as.data.frame(cbind(tree$tip.label, average_rarity)) 
      names(total)<- c("Tip.Label","Rarity") 
      total<- total[order(total[,"Tip.Label"]),] 
      avg_rarity.multi[,k]<- total[,"Rarity"] 
       
    } 
     
              } 
   
  write.csv(avg_rarity.multi, file=filenames.rarity[[l]]) 
   
} 
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Annotated R code for calculating loss of ED and loss of PD 

library(phytools) 

library(data.table) 
 
EDtable<-read.table("") #Import ED scores 
ED_df<- as.data.frame.matrix(EDtable) #converts it to df format 
idx <- lapply(integer(ncol(ED_df)-1), function(...) sample(ED_df$V1, n)
)#n should change according to the number extinct species 
setDT(ED_df) 
setkey(ED_df, V1) # Set the key for the data.table to V1 
 
Results = lapply(1:length(idx), function(i){ 
  ED_df[idx[[i]], lapply(.SD, cumsum), .SDcols = i + 1] 
} 
) 
cumEDloss = do.call(cbind, Results) 
write.csv(cumEDloss, ") # The output file for cumulative loss values 
#######loss of phylogenetic diversity##### 
 
#gets  PD scores and stores it, this is before any pruning. 
full_trees<- read.tree("") #Import the multiphylo object 
PD_FULL<-matrix(rep(NA,length(full_trees)[1],1),nrow=length(full_trees)
[1],ncol=1)  # place to store the PD values 
for (s in 1:length(full_trees)[1]) #goes through all trees and gets the 
PD value for each tree before pruning 
{                              
  full_tree<-full_trees[[s]] 
  PD_FULL[s] <-sum(full_trees[[s]]$edge.length) 
} 
write.csv(PD_FULL, "") #The output file for the PD of each tree 

 
changed_multiphylo=list()  
 
for (a in 1:length(full_trees))  
{  
  one_original_tree<- full_trees[[a]] 
  changed_multiphylo[[a]]<- bind.tip(full_trees[[a]],"outgroup1",edge.l
ength = 0, position = 0) #adding an outgroup so when we lose all ingrou
p spp we dont get errors 
  changed_multiphylo[[a]]<- bind.tip(changed_multiphylo[[a]],"outgroup2
",edge.length = 0, position = 0) #adding an outgroup so when we lose al
l ingroup spp we don’t get errors 
   
}  
 
#storage for PD values after extinction events 
PD_loss<-matrix(rep(NA,length(idx[[1]])*length(changed_multiphylo)),nro
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w=length(idx[[1]]),ncol=length(changed_multiphylo)) # place to store th
e PD differences  
for (j in 1:length(changed_multiphylo))   { #goes through all trees 
  full_tree<-changed_multiphylo[[j]] 
  for (i in 1:length(idx[[1]])) { #goes through each pruning event 
    PD_loss [i,j]<-   sum(full_tree$edge.length) - sum(drop.tip(full_tr
ee, idx[[j]][1:i])$edge.length) 
  }  
} 
write.csv(PD_loss,"")   #The output file for cumulative PD loss values 
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