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Abstract

Graph search is an important research area in both mathematics and computer sci-
ence with many practical applications such as eliminating a malicious software in a
computer network. The graph search problem can be intuitively described as follows:
given a set of searchers and a fugitive in a graph, the searchers and fugitive move
from vertices to vertices in the graph alternatively and the searchers try to capture
the fugitive which tries to escape from the searchers. A major optimization problem
in graph search is to find the minimum number of searchers (called search number) to
capture the fugitive. There are several well known graph models: node-search, edge-
search, mixed-search and exclusive search. In this thesis, we propose a new search
model which is an extension of the exclusive search. We prove the extended exclusive
search number for trees. We give the search numbers for the well known graph search
models and the extended exclusive search on trees of rings. We also propose heuristic
search algorithms for power law graphs based on these models.

Keywords: Graph search, trees, tree of rings, power law graphs
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Chapter 1

Introduction

The problem of Graph Searching was first introduced by Breisch [6, 7], for solving
the problem of rescuing a lost speleologist in a network of caves. Alternatively, graph
searching can be defined as a particular type of searchers-and-fugitive game, as follows.
Given a graph G, modeling any kind of network, develop a strategy for a team of
searchers moving in G resulting in capturing a fugitive. There are no limitations
on the capabilities of the fugitive, who can be arbitrary fast, be aware of the whole
structure of the network, and be aware of the current positions of the searchers. The
objective is to compute the minimum number of searchers required to capture the
fugitive in G.

To be more formal regarding the behavior of the fugitive above, it is more conve-
nient to rephrase the problem in terms of clearing a network of pipes contaminated
by some gas [35]. In this framework, a team of searchers aims at clearing the edges
of a initially contaminated graph. Searchers stand on the nodes of the graph, and
can slide along its edges. Moreover, a searcher can be removed from one node and
then placed to any other node, that is, a searcher can “jump” from one node to an-
other. Sliding of a searcher along an edge, as well as positioning one searcher at each
endpoint of an edge, results in clearing that edge. Nevertheless, if there is a path
free of searchers between a clear edge and a contaminated edge, then the former is
instantaneously recontaminated. Thus, to actually keep an edge clear, searchers must
occupy appropriate nodes for avoiding recontamination to occur.

A search strategy is a sequence of operations that will clear an initially contami-
nated graph. The search number for a graph G is the minimum number of searchers
for which a search strategy exists. For example, one searcher is sufficient to clear a

1



path graph, while two searchers are necessary (and sufficient) in a cycle: the search
number of any path is 1, while the search number of any cycle is 2.

The above variant of graph searching is actually called mixed-search. Other clas-
sical variants of graph searching are node-search, edge-search, cops-and-robbers prob-
lem.

When consider the three basic searching games: edge searching, node searching
and mixed searching, the fugitive is invisible and active, which involves placing some
restrictions on searchers, but placing no restrictions on the fugitive. In these search
games, the discrete time intervals (or time-steps) are introduced. Initially, G contains
a fugitive who is located at a vertex in G, and G does not contain any searchers.
Each searcher has no information on the whereabouts of the fugitive (i.e., fugitive is
invisible), but the fugitive has complete knowledge of the location of all searchers.
The goal of the searchers is to capture the fugitive, and the goal of the fugitive is to
avoid being captured. The fugitive always chooses the best strategy so that he evades
capture. Suppose the game starts at time t0 and the fugitive is captured at time tN
and the search time is divided into N intervals (t0, t1], (t1, t2], ..., (tN−1, tN ] such that
in each interval (ti, ti+1] (also called step), exactly one searcher performs one action:
placing, removing, or sliding. The fugitive can move from a vertex x to a vertex y
in G at any time in the interval (t0, tN ] if there exists a path between x and y which
contains no searcher (i.e., fugitive is active).

In the edge search game introduced by Megiddo et al. [28], there are three actions
for searchers: placing a searcher on a vertex, removing a searcher from a vertex, and
sliding a searcher along an edge from one end to the other. The fugitive is captured
if a searcher and the fugitive occupy the same vertex on G.

In the node search game introduced by Kirousis and Papadimitriou [24], there
are two actions for searchers: placing a searcher on a vertex and removing a searcher
from a vertex. The fugitive is captured if a searcher and the fugitive occupy the
same vertex of G or the fugitive is on an edge whose endpoints are both occupied by
searchers.

In the mixed search game introduced by Bienstock and Seymour [9], searchers
have the same actions as those in the edge search game. The fugitive is captured if a
searcher and the fugitive occupy the same vertex on G or the fugitive is on an edge
whose endpoints are both occupied by searchers.

The edge search number of G, denoted by es(G), is the smallest positive integer k
such that k searchers can capture the fugitive in the edge search model. Analogously,
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define the node search number of G (written ns(G)) and mixed search number of G
(written ms(G)).

The node searching problem is equivalent to the gate matrix layout problem and
interval graph augmentation problem [27]. The problem of finding the node-search
number is equivalent to the pathwidth problem [27, 32], the interval thickness problem
[26], the narrowness problem [1], and the vertex separation problem [25, 21]. From
the equivalent of the above problems, the node searching problem is NP-complete on
planar graphs with vertex degree at most 3 [3], starlike graphs (a proper subclass
of chordal graphs) [14], bipartite graphs [22], cobipartite graphs (i.e., complement of
bipartite graphs) [37], and bipartite distance-hereditary graphs (a proper subclass of
the chordal bipartite graphs and distance-hereditary graphs) [42]. For some special
classes of graphs, it can be solved in polynomial time, as e.g., trees [20, 27, 39],
cographs [18], permutation graphs [15], trapezoid graphs [16], split graphs [14, 22],
partial k-trees [19], and k-starlike graphs for a fixed k [14, 41].

The edge searching problem is equivalent to the min-cut linear arrangement prob-
lem for any graph with the maximum degree 3 [12]. The edge searching problem is
NP-complete on general graphs [29], planar graphs with the maximum vertex degree
3 [3] and starlike graphs [41]. However, it can be solved in polynomial time on com-
plete graphs [34], trees [29], interval graphs, split graphs, and k-starlike graphs for a
fixed k ≥ 2 [41].

Moreover, the search numbers for all these three models have the following rela-
tionship with each other.

Theorem 1.0.1. [10] If G is a connected graph, then the following inequalities hold

1. ns(G)− 1 ≤ es(G) ≤ ns(G) + 1

2. ms(G) ≤ es(G) ≤ ms(G) + 1

3. ms(G) ≤ ns(G) ≤ ms(G) + 1

Though the seach numbers for these searching problems appear to be similar, the
time complexities to solve them are different. For example, there are linear time
algorithms on a tree to find both its node-search number and an optimal node-search
strategy [39, 40] (also mentioned in [27], Theorem 4.7). However, the previous best
algorithm [29] takes O(nlogn) time to find an optimal edge-search strategy on a tree
of n vertices, while its edge-search number can be found in linear time [29].

Cops and Robbers is another interesting model where the fugitive is visible by
the searchers. In this two-player game of perfect information, a set of cops tries to
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capture a robber by moving at unit speed from vertex to vertex. More precisely,
Cops and Robbers is a game played on a reflexive graph (i.e., there is a loop at each
vertex). There are two players consisting of a set of cops and a single robber. The
game is played over a sequence of discrete time-steps or rounds, with the cops going
first in round 0 and then playing alternate time-steps. The set of cops is referred to
as C and the robber as R: When a player is ready to move in a round, they must
move to a neighboring vertex. Because of the loops, players can pass or remain on
their own vertex. The cops win if after some finite number of rounds, one of them can
occupy the same vertex as the robber (in a reflexive graph, this is equivalent to the
cop landing on the robber). This is called a capture. The robber wins if he can evade
capture indefinitely. A winning strategy for the cops is a set of rules that if followed,
result in a win for the cops. A winning strategy for the robber is defined analogously.
If a cop is placed at each vertex, then the cops are guaranteed to win. Therefore,
the minimum number of cops required to win in a graph G is a well-defined positive
integer, named the cop number (or copnumber) of the graph G: The notation c(G)
is used for the cop number of a graph G. If c(G) = k, then G is k-cop-win. In the
special case k = 1, G is cop-win (or copwin).

J. Burman[5] introduced exclusive graph searching model. This model is motivated
to address some assumptions used by the node searching, edge searching and mixed
searching models that may have limitations in practice.

First, all of node, edge and mixed searching models assume that any node can be
simultaneously occupied by several searchers. This assumption may be unrealistic in
several contexts. Typically, placing several searchers at the same node may simply
be impossible in a physical environment in which, e.g., the searchers are modeling
physical robots moving in a network of pipes. In the case of software agents deployed
in a computer network, maintaining several searchers at the same node may consume
local resources (e.g., memory, computation cycles, etc.). To be more realistic on these
situations, it is better to investigate exclusive graph searching, i.e., graph searching
bounded to satisfy the exclusivity constraint stating that no two or more searchers
can occupy the same node at the same time.

Second, those classic graph searching model also suffer from another unrealistic
assumption: searchers are enabled to “jump” from one node of the graph, to another,
potentially far away, node. If searcher jump is allowed during the search process, the
first restriction would be meaningless. Thus in exclusive searching model, searchers
are limited to move along the edges of the graph, that is, restricted to satisfy the
internality constraint.
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To sum up, exclusive search is mixed searching model by applying the constrain
that any node cannot be simultaneously occupied by more than one searcher.

In the exclusive search model, a vertex gets recontaminated when it is exposed to
a single dirty path. This may have limitations in practice. We extend the exclusive
search model by considering a more general recontamination scenario. In this thesis,
we generalize the exclusive search model to better fit the current computer network.
We design a polynomial-time algorithm which, given any tree T , computes the search
number of T for the extended exclusive search. Moreover, for any integer k, we provide
a characterization of the trees T with extended exclusive search number at most k.
This characterization allows us to describe a special type of extended exclusive search
strategy.

Then we present exclusive search number and extended exclusive search number
for graphs of tree of rings. We also give the search numbers for the node-search, edge-
search and mixed-search models on tree of rings. Finally, we propose heuristic search
algorithms for power law graphs based on the exclusive search, extended exclusive
search, node-search, edge-search and mixed search models.
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Chapter 2

Preliminaries

In this chapter, we first present important properties of the three classic graph search-
ing model, then review the definition of original exclusive graph searching, and present
some basic general properties of exclusive search.

2.1 Graph Search Basics

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Let {u, v}
denote an edge of G. For an edge e = {u, v}, vertices u and v are called the endpoints
of e. For a vertex v ∈ V , the node degree of v is the number of edges incident to
v. G is connected if for any two vertices of G, there is a path connecting the two
vertices. A connected component of G is a maximum connected subgraph of G (if G
is connected, G has only one component, G itself). A vertex v is a cut vertex of G if
removing v from G gives a graph with at least two connected components.

Theorem 2.1.1. [10, 24] Given an arbitrary graph G and an integer k, the problem
of determining whether es(G) ≤ k (ns(G) ≤ k or ms(G) ≤ k) is NP-complete.

Definition 2.1 A search strategy is monotonic if the set of cleared edges before any
step is always a subset of the set of cleared edges after the step.

Megiddo et al. [28] showed that the edge search problem is NP-hard. This problem
belongs to NP owing to the monotonicity result of [23], in which LaPaugh showed
that recontamination of edges cannot reduce the number of searchers needed to clear
a graph.

Monotonicity is an important issue in graph search problems. Bienstock and
Seymour [10] proposed a method that gives a succinct proof for the monotonicity of
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the mixed search problem, which implies the monotonicity of the edge search problem
and the node search problem. Fomin and Thilikos [13] provided a general framework
that can unify monotonicity results in a unique min-max theorem.

Theorem 2.1.2. [10, 23] The edge search, node search, and mixed search problems
are monotonic.

Search numbers have close relationships with pathwidth and treewidth [30, 31].
Given a graph G, a tree decomposition of G is a pair (T,W ) with a tree T = (I, F ),
I = 1, 2, ...,m and a family of nonempty subsets W = Wi ⊆ V : i = 1, 2, ...,m, such
that

1. ∪mi=1Wi = V .

2. For each edge uv ∈ E, there is an i ∈ I with {u, v} ⊆ Wi.

3. For all i, j, k ∈ I, if j is on the path from i to k in T , then Wi ∩Wk ⊆ Wj.

The width of a tree decomposition (T,W ) is max|Wi| − 1 : 1 ≤ i ≤ m

The treewidth of G, denoted by tw(G), is the minimum width over all tree de-
compositions of G. A tree decomposition (T,W ) is a path decomposition if T is a
path; the pathwidth of a graph G, denoted by pw(G), is the minimum width over all
path decompositions of G. More information on treewidth and related problems can
be found in the survey papers [12, 36].

2.2 The Results for Trees

It follows from results of Parsons in [11] that the mixed graph-searching problem,
when restricted to trees, can be solved in polynomial time.

Claim 2.2.1. [35] For any tree T and integer k ≥ 1, ms(T ) ≥ k+ 1 if and only if T
has a vertex v at which there are three or more branches that have search number k
or more.

Notice that this result implies that a tree with mixed search number k must have
at least 3k−1 edges, hence we have the following property:

Property 2.2.1. The mixed search number of an n node tree always satisfiesms(T ) ≤
1 + log3(n− 1)
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This result leads us to the key concept also needed for other graph searching
theorem, the concept of the "avenue" of a tree. Intuitively, an avenue of a tree T is
a path vl, v2, ..., vr of two or more vertices such that T can be cleared using ms(T )
searchers by placing a searcher on vl and subsequently moving it along the avenue
to v2, v3, ..., vr, pausing long enough at each vertex vi along the path so that the
nonavenue branches at vi can be cleared using the remaining ms(T ) − 1 searchers.
Formally, a path vl, v2, ..., vr of two or more vertices is an avenue for T if vl and vr,
each have exactly one branch with search number ms(T ) = s (containing v2 and vr−1

, respectively) and for every j, 2 ≤ j ≤ r−1, vj has exactly two branches with search
number s (containing vj−1 and vj+1, respectively). It is not hard to see that this
definition implies that the avenue can be used inductively to search T with ms(T )
searchers in the manner indicated above.

2.3 Exclusive Search and Properties

J. Burman[5] first introduced the exclusive search model. Here we formally review
the problem of exclusive graph searching and its unique properties.

Given a connected n-node graph G, an exclusive search strategy in G, using k ≤
n searchers consists: 1) placing the k searchers at k different nodes of G and 2)
performing a sequence of moves, A move is to slide one searcher from one endpoint u
of an edge e = {u, v} to its other endpoint v. Such a move can be performed only if v
is free of searchers. That is, exclusive search limits the strategy to place at most one
searcher at each node, at any point in time. The edges of graph G are supposed to be
initially contaminated. An edge becomes clear whenever either a searcher slides along
it, or one searcher is placed at each of its endpoints. An edge becomes recontaminated
whenever there is a path free of searchers from that edge to a contaminated edge. A
search strategy is winning if its execution results in all edges of the graph G being
simultaneously clear. The exclusive search number of G, denoted by xs(G) is the
smallest k for which there exists a winning search strategy for searchers in G.

Now, we formally state and explain the main differences between exclusive search
and all classical variants of graph searching. These differences are mainly due to
the combination of the two restrictions introduced in exclusive search: two searchers
cannot occupy the same node (exclusivity) and a searcher cannot “jump” (internality).
Therefore, intuitively, the difficulty occurs when a searcher has to go from one node
u to a far away node v, and all paths from u to v contain a node with a searcher.
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Consider a simple example of a star with central node c and n leaves. In the classi-
cal graph searching, we can use one searcher to occupy c, while a second searcher will
sequentially clear all leaves, either by jumping from one leaf to another, or by sliding
from one leaf to another, and therefore occupying several times the already occupied
node c. In exclusive graph searching, such strategies are not allowed. Intuitively, if a
searcher r1 has to cross a node v that is already occupied by another searcher r2, the
latter should step aside for letting r1 pass. However, r2 may occupy v to preserve the
graph from recontamination, and moving away from v could lead to recontaminate
the whole graph. To avoid this, it may be necessary to use extra searchers (compared
to the classical graph searching) that will guard several neighbors of v to prevent from
recontamination when r2 gives way to r1. It follows that, as opposed to all classical
search numbers, which differ by at most some constant factor, the exclusive search
number may be arbitrary large compared to the mixed-search number, even in trees.
For instance, it is easy to check that xs(Sn) = n − 2 for any n-node star Sn, n ≥ 3.
A more general result is stated below:

Property 2.3.1. [5] For any tree T with maximum degree ∆ ≥ 2, xs(T ) > ∆− 2

Proof. Since later proofs use similar techniques, we include the prove details of [5]
here.

A more general result of the claim is that : Let G be any connected graph with a
cut-vertex v and let cc(v) ≥ 2 be the number of the connected components in G\{v}.
Then xs(G) > cc(v) − 2(here we can imagine replacing each edge of the star by a
connected component). We prove the general result by induction. The result clearly
holds for cc(v) = 2 since any strategy must use at least one searcher to clear any
graph with at least one edge. Therefore, we may assume that cc(v) > 2.

Let v be a cut-vertex of a graph G and consider any strategy using at most cc(v)−2
searchers. Initially, at least two components U andW of G\{v} are unoccupied and so
all edges in these components are contaminated. Let us, consider the first step when
a searcher occupies a node in one of these components, say U . That is, let us consider
the first step when a searcher slides from v to a node in U(in order to move a searcher
into U , the searcher must be moved to v first). But after this step, no searchers
are occupying a node in W which is still contaminated, no searcher is occupying v
and there is a connected component C of G\(v ∪ U ∪W ) that contains no searchers.
Hence, at any step of the strategy, at least two connected components of G\{v}
remain contaminated. Property 2.3.1 is implied by the above general result.
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Property 2.3.2. [5] For any connected graph G with maximum degree ∆, ms(G) ≤
xs(G) ≤ (∆− 1)(ms(G) + 1)

A proof for this property is that given a search strategy S for edge, node or mixed
search on G, S can be mimicked by a team of ∆− 1 searchers for each searcher in S.

Property 2.3.3. [5] Exclusive graph searching is not monotonic

Proof. Since the model we proposed will use a similar technique, we include the prove
of [5] here.

Figure 2.1: A possible tree structure where optimal exclusive search strategy is not
monotonic

It can be easily seen that the given tree above can not be cleared by only using
one searcher. Here we demonstrate a winning strategy of exclusive search with two
searchers in the graph in Figure 2.1.

The strategy works like the following : choose a1 and a3 as initial position and
place our two searchers X, Y on the initial position respectively. Then slide Y along
the edges of the path from a3 to c2, X slides along the edges from a1 to b, Y goes to
c3 and finally X goes to c1. As we can see, during our strategy when Y goes to c3,
edge (b, c2) becomes recontaminated.

We just showed that we have a winning strategy for two searchers. Now consider
any winning exclusive search strategy with two searchers, there has to be a step with
recontamination. There are two cases to be considered. Either the set of initial
positions contains no nodes in C = {c1, c2, c3}(or symmetrically in A = {a1, a2, a3}),
or one searcher initially occupies a node in C and the other searcher occupied a node
in A.

In the first case, no nodes in C are occupied initially, consider the first step when
c1 is occupied. This can be done only by moving a searcher along the edge(c2, c1).
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But then the edge(b, c2) is recontaminated by (c2, c3)(since c3 has never been occupied
yet).

In the second case, consider the first searcher to reach b, suppose it comes from
a2. Then it is easy to verify that (a2, b) is recontaminated because a single searcher
cannot have cleaned (a1, a2) and (a3, a2) simultaneously.

Property 2.3.4. [5] For any tree T and any subtree T ′ of T , xs(T ′) ≤ xs(T ).

Property 2.3.4 is not true for general graphs. Taking a subgraph can decrease the
connectivity which may not help reduce the used of searchers (due to the exclusivity
constraint). That is, there exist a graph G and a subgraph H of G such that xs(H) >
xs(G). Consider the following example in Figure 2.2:

Figure 2.2: An example shows that cleaning subgraph may need more searchers in
exclusive search

In the figure, the graph on the left can be cleared by placing one searcher on the
center and another two searchers walking along the boundary edges. While the graph
on the right needs five searchers as we already discussed in Property 2.3.1.

Contrary to classical graph searching, the proof of Property 2.3.4 is not trivial
because of the exclusivity property. To prove it, Janna Burman[5] transformed an
exclusive strategy S for T into a strategy S ′ for T ′ using the same number of searchers,
and without violating the exclusivity property. Details are omitted here.

Exclusive graph searching is different from classic graph searching, for at least
two reasons. First, it does not satisfy the monotonicity property. That is, there
are graphs (even trees) in which every exclusive search strategy using the minimum
number of searchers requires to let recontamination occurring at some step of the
strategy. Second, exclusive graph searching is not closed under taking minor (not
even under subgraph). That is, there are graphs G and H such that H is a subgraph
of G, and xs(H) > xs(G). The absence of these two properties makes exclusive-search
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considerably different from classical search, and its analysis requires introducing new
techniques. The following is the main result for exclusive search model on trees.

Theorem 2.3.1. [5] Let k ≥ 1. For any tree T , xs(T ) ≤ k if and only if, for any
node v, the following three properties hold:

1. v has degree at most k + 1;

2. for any branch B at v, xs(B) ≤ k;

3. for any even i > 1, at most i branches B at v have xs(B) ≤ k − i/2 + 1.
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Chapter 3

Extended Exclusive Search

In this chapter, we propose extended exclusive search model. In the previous exclusive
search, when a node is exposed to a single contaminated link, the node becomes
recontaminated. In a real network, however, each node may have a certain capability
to prevent contamination and may not become recontaminated when the number of
contaminated edges the node is exposed to is below some threshold value. To address
a more general exclusive search as stated above, we propose a new search model which
is an extension of the previous exclusive search.

3.1 Extended Exclusive Search Basics

First we formally state extended exclusive search model.
Given a connected graph G of n nodes, an extended exclusive search strategy with

recontamination constraint m in G, using k ≤ n searchers satisfying:

1. Placing the k searchers at k different nodes of G

2. Performing a sequence of moves. A move consists of sliding one searcher from
one end node u of an edge e = {u, v} to the other end node v;

Such a move can be performed only if v is free of searchers. Here we still limit
the strategy to place at most 1 searcher at each node, at any time. The edges of
graph G are supposed to be initially contaminated. An edge becomes clear whenever
either a searcher slides along it, or one searcher is placed at each of its extremities.
An edge is contaminated if one end node of the edge is contaminated. A node can be
recontaminated if at least m edges incident to it are contaminated. An edge becomes
recontaminated whenever one of its end node is recontaminated. A search strategy
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is winning if its execution results in all edges of the graph G being simultaneously
clear.The extended exclusive-search number of G, denoted by xsm(G) is the smallest
k for which there exists a winning search strategy in G.

For the extended exclusive search on trees, we have the following properties:

Property 3.1.1. For any tree T with maximum degree ∆ ≥ 2 and recontimination
constrain m, xsm(T ) > ∆−m− 1

Proof. We consider a connected graph G with a cut-vertex v and let cc(v) ≥ 2 be the
number of the connected components in G\{v}. The result clearly holds for cc(v) = 2
sincem is at least 1 and any strategy must use at least one searcher to clear any graph
with at least one edge. Therefore, we assume that cc(v) > 2.

Let v be a cut-vertex of a graph G. We consider any strategy using at most cc(v)−
m− 1 searchers. Initially, at least ∆− (∆−m− 1) = m+ 1 components {U0, .., Um}
of G\{v} are unoccupied and so all edges in these components are contaminated.
Assume that ti is the first step that a searcher slides from v to one of these components,
say U0. After ti, no searchers are occupying a node in m connected components which
are still contaminated, no searcher is occupying v and there is a connected component
C of G\(v ∪ ∪mi=0Ui) that contains no searchers. Hence, C is fully recontaminated.
Hence, at any step of the strategy, at least m + 1 connected components of G\{v}
remain contaminated. Thus in extended exclusive search model, for any tree T with
maximum degree ∆ ≥ 2, xsm(T ) > ∆−m− 1

Property 3.1.2. The extended exclusive graph search model is not monotonic.

Figure 3.1: A possible tree structure where extended exclusive search strategy is not
monotonic

Proof. Here we first utilize the proof idea of Property 2.3.3. Let recontamination
constrain m to be 2. By Property 3.1.1, the number of searchers to clear this graph
is at least 2. Here we use Figure 3.1 to demonstrate a winning strategy of extended
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exclusive search with two searchers that works like the following : choose a1 and a3 as
initial position and place our two searchers X, Y on the initial position respectively.
Then slide Y along the edges of the path from a3 to c2, X slides along the edges from
a1 to a4 then to b, Y goes to c3 and finally X goes to c1, back to c2, goes to c4. As we
can see, during our strategy when Y goes to c3, edge (b, c2) becomes recontaminated.

The above shows that we have a winning strategy with two searchers. Now
consider any winning exclusive search strategy with two searchers, there has to be
a step with recontamination. There are two cases to be considered. Either the
set of initial positions contains no nodes in C = {c1, c2, c3, c4}(or symmetrically in
A = {a1, a2, a3, a4}), or one searcher initially occupies a node in C and the other
searcher occupied a node in A.

In the first case, no nodes in C are occupied initially. Consider the first step when
c1 is occupied. This can be done only by moving a searcher along the edge(c2, c1).
But then the edge(b, c2) is recontaminated by (c2, c3) and (c2, c4)(since two dirty edges
connected to c2 has never been occupied yet).

In the second case, consider the first searcher to reach b, suppose it comes from
a2. Then it is easy to verify that (a2, b) is recontaminated because a single searcher
cannot have cleaned (a1, a2), (a4, a2) and (a3, a2) simultaneously.

A more general proof idea is to consider a graph that two symmetric star structure
connected by a single path of more than one vertex. The analysis is similar to the
description above.

Now we present a polynomial-time algorithm which, given any tree T , computes
the extended exclusive search number xsm(T ) of T as well as an exclusive search
strategy enabling xsm(T ) searchers to clear T.

This algorithm is based on a characteristics of trees with exclusive search number
at most k. Given a node v in a tree T , a connected component of T\{v} is called
a branch at v. Our characterization establishes a relationship between the extended
exclusive-search number of T and the extended exclusive-search number of some of
the branches adjacent to any node in T . More precisely, we prove that:

Theorem 3.1.1. Let k ≥ 1. For any tree T , xsm(T ) ≤ k −m+ 1 if and only if, for
any node v, the following three properties hold:

1. v has degree at most k + 1;

2. for any branch B at v, xsm(B) ≤ k −m+ 1;
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3. for choosing k−m+ 2 branches, for any even i > 1, at most i branches B at v
have xsm(B) ≥ k − i/2− (m− 1) + 1.

To prove the theorem, we first prove that, for any tree T and k ≥ 1, xsm(T ) ≤
k −m+ 1, only if the conditions of Theorem 3.1.1 are satisfied. Then, we show that
any tree satisfying these conditions can be decomposed in a particular way, depending
on k. Next, we describe an extended exclusive search strategy using at most k−m+1
searchers, that clears any tree decomposed in such a way.

3.2 Necessary Conditions for Theorem 3.1.1

We first prove that the conditions of Theorem 3.1.1 are necessary. The fact that the
first property is necessary directly follows from the following claim:

Claim 3.2.1. For any tree T with maximum degree ∆ and recontaminating constrain
m, xsm(T ) > ∆−m− 1.

The claim can be directly derived by Property 3.1.1.
The second property is necessary by the following claim.

Claim 3.2.2. For any tree T and any subtree T ′ of T , xsm(T ′) ≤ xsm(T ).

Proof. Contrary to classical graph searching, the proof of this result is not trivial
because of the constraint that no vertex can have more than one searcher on it. To
prove it, we have to transform an exclusive strategy S for T into a strategy S ′ for T ′

using the same number of searchers, and without violating the exclusivity property.
The fact that S may be not monotone (i.e., some recontamination may occur during
S) makes the proof technical, because one has to “control” the recontamination of T ′

in S ′.
An easy way to get the idea is like this: Given a graph G and its subgraph H,

if xsm(H) > xsm(G), then for any extended exclusive search strategy that clears
H, there has to be some moves of searchers resulting in clearing the edges in G\H.
However, any tree T and its subtree T ′ is connected by a single vertex. Thus the
moves of searchers within H would never help clearing T\T ′, which makes clearing
T ′ a sub problem of clearing T .

The idea to show the third property in the theorem is necessary is to reduce the
problem to a smaller scope and use the strategy from the exclusive graph search with
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m = 1. Suppose that we are able to clean k−m+2 branches that are connected to node
v. Then there are onlym−1 branches left to be cleaned. Consider the recontamination
constrain stated in the definition, node v will never get recontaminated again. Then
the problem becomes easy, we can simply clean remaining branches one by one and
finally finish cleaning the whole tree. Thus the key point is to clean a sub-graph with
k−m+2 branches. We have reduced the original problem to a problem that exclusive
graph search a sub-graph with k −m+ 2 branches.

We prove the following claim to show the third condition

Claim 3.2.3. Let k ≥ 1. For any tree T , if there exists v ∈ T and an even integer
i > 1 such that any branch B at v, xsm(B) ≤ k −m+ 1 and there is a set B = {Tj :
xsm(Tj) ≥ k−i/2−(m−1)+1} of branches at v and |B| > i, then xsm(T ) > k−m+1.

Proof. Let S be any extended exclusive strategy that clears T . For the sake of con-
tradiction, suppose S uses at most k −m+ 1 searchers. Then, at some step, at least
k − i/2 − (m − 1) + 1 searchers are in Tj of B in order to clear the branch accord-
ing to the definition of set B. Let sj be the last such step of S that occurs in Tj .
Without loss of generality, assume that si < sj for any 1 < i < j ≤ |B|. Then we
may assume before step sj , Tj is not completely clear. Then at step si/2+1, at least
k− i/2− (m−1)+1 searches are in Ti/2+1, some edges have been cleared in Tj for any
j ≤ i/2 and Tj cannot become fully contaminated again.(Otherwise there would be
another step after sj that has k− i/2−(m−1)+1 searches in Tj ). Now consider step
si/2+1, at least k− i/2−(m−1)+1 searches are in Ti/2+1 and there are at most i/2−1
searches outside Ti/2+1. What we have here is that there is at least one branch at v
in Ti/2+2, ...T|B| with still contaminated edges(at least m+ i− i/2− 1− (i/2− 1) = m

branch at v in Ti/2+2, ...T|B| is not guarded ),and at least one branch at v in T1, ...Ti/2

with (at least) some clear edges that must not be recontaminated and no searchers
occupy nodes in both these branches.

By Claim 3.2.1, 3.2.2, 3.2.3 together, we have proved the necessary conditions of
Theorem 3.1.1.
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3.3 Sufficient Proof

Claim 3.3.1. Given a Tree T , for any node v that satisfies

1. v has degree at most k + 1;

2. for any branch B at v, xsm(B) ≤ k −m+ 1;

3. for choosing k−m+ 2 branches, for any even i > 1, at most i branches B at v
have xsm(B) ≥ k − i/2− (m− 1) + 1.

then T can be cleaned by using at most k−m+ 1 searchers in the extended exclusive
search model.

Proof. Here we still take advantage of the avenue structure but show the differences
with classic search strategy when it comes to the extended exclusive search procedure.

Recall the definition of avenue. First we use k−m+1 searchers to clean the branch
that is connected to vl(the left most vertex of the avenue), since for any branch B

at v, xsm(B) ≤ k −m + 1, we have enough searchers to clean the branch. Then we
move the searchers out through vl to v2 one by one, during this movement, we clean
the avenue edge (vl, v2) and leave a guard searcher on v2. Then in order to minimize
the use of searchers, we first choose k−m+ 2 branches that are connected to v2 that
satisfy the condition 3. Sort all the chosen branches in non-increasing order of xsm,
suppose the order is {B1, B2, ..., Bk−m+2}. We partition all the branches into two sets
S1 = {B1, B3, ...} and S2 = {B2, B4, ...}. After the partition is done, the clean process
is divided into two steps. Set S1 is cleaned first in non-increasing order of their xsm,
during this process, we leave one searcher to guard the previous cleaned branch as we
proceed. Since the third property restricts the structure of the tree, the searchers we
need to clean the next branch is always decreasing.

After clearing the branches in S1, there are searchers currently blocked in the
roots of the cleared branches. In order to reuse these searchers to clear the remaining
branches, we would like the roots of the contaminated branches occupied to prevent
recontamination of the cleared subtrees. That is, we would like to switch the searchers
from guarding the cleared branches to guard the contaminated branches.

Consider the last time step when we finish cleaning the last branch of S1, since
the size of S1 is at most k−m+1

2 and we have k −m+ 1 searchers, so we have at least
k−m+1

2 searchers that are in the last branch of S1. Since we know the size of S2 is at
most the size of S1, this means the searchers in the last branch is enough to guard
all the branches in S2. After it is done, there are only m − 1 dirty edges connected
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to v2, we can safely move the guard searchers on the branches of S1 to S2 without
worry about recontamination.

Then S2 is cleaned in non-decreasing order of xsm. The procedure is similar to
step 1, we gain new searchers as we proceed since we can reuse the previous guard
searcher. By the first condition, v has degree at most k+ 1. By the second condition,
the searchers needed for each branch is at most k −m + 1. And the third condition
guarantees that during each step the searchers needed is only increased by one. After
we finish clean all the chosen dirty branches, there are onlym−1 dirty edges connected
to v2 which would never cause recontamination, so we can use the remaining searchers
to clean each branch one by one. Then we move on to each vertex on the avenue,
follow these steps and eventually clean the whole graph.

By Claim 3.3.1, the sufficient conditions of Theorem 3.1.1 are proved.
The time complexity to check the properties in Theorem 3.1.1 is O(n) where n

is the number of vertices in T . Basically for each vertex v in T , we need xsm(B)
for every branch B which is connected to v. We can do the check starting from the
leaf vertices, the extended exclusive search number for a single vertex is 1, then by
following a bottom up merging strategy, we can finally get the extended exclusive
search number for every branch in T .
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Chapter 4

Graph Search on Tree Of Rings

In this chapter, we show the search numbers for several well studied graph search
models on networks, called tree of rings, which are supergraphs of trees and have
important applications in computer networks and parallel computing. Especially, we
generalize the exclusive and extended exclusive search strategies for trees to trees of
rings. The motivation is that, we would like to extend the search algorithms for trees
to be viable on graphs with cycles.

4.1 Tree Of Rings Basics

A ring network is a cycle with at least three vertices. A tree of rings can be defined
as follows:

Definition 4.1.1 [11] A single ring is a tree of rings, and the graph obtained by
adding a vertex-disjoint ring R to an existing tree of rings G and then merging one
vertex of R and one vertex of G into one is also a tree of rings.

In a tree of rings, any two rings have at most one vertex in common, and for any pair
(u, v) of vertices in the tree of rings there are exactly two edge-disjoint paths between
u and v. A tree of rings is a practical topology, with several sub-rings connected to a
main ring, and sub-subrings to the sub-rings, and so on. It remains connected even
if an arbitrary link fails in each ring, and thus provides a better fault tolerance than
a tree network.

A tree of rings network is denoted by a graph TR with vertex set V (TR) and
edge set E(TR). We use a path for a simple path in TR (i.e. repetition of nodes is
not allowed). Two paths in TR intersect if they have a common edge. Two paths in
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TR are edge-disjoint if they do not intersect. A set of paths in TR is edge-disjoint
if any two paths in the set do not intersect. We say a path is on an edge if the path
contains the edge.

Property 4.1.1. [43] For any node u ∈ V (TR), a path on u can be on at most two
rings which contain u.

Definition 4.1.2 Given a vertex v in TR, v has ring degree k if v is the common
vertex of k rings.

It can be easily seen ring degree of vertex v is half of the degree of vertex v. Also,
we give the definition of a branch in tree of rings to make it consistent with the graph
theory of tree.

Definition 4.1.3 For any vertex in a tree of rings, consider two edges a and b that
are connected to v, if those two edges are in the same ring, then a branch of v is the
connected component that is reachable from v and pass through a or b.

4.2 Exclusive Search on Tree of Rings

An interesting observation is that instead of only need one searcher to guard a single
branch in the case of trees, in tree of rings we need two searchers to guard a sin-
gle branch from recontamination. This makes guarding and the reuse of searchers
relatively expensive compared to the case of trees.

Consider the following graph where multiple single rings are merged to a single
vertex.

Suppose v is the common vertex. It is easy to see a possible exclusive search
strategy is to place a searcher on the common vertex v and assign each ring with
a unique searcher to clean the rings. If we do not allow the guard searcher to be
removed from v, we are always using ∆ + 1 searchers. For the rest of this chapter,
we define this kind of search strategy to be lazy search.

Then we consider the search strategy that the guard searcher steps aside from v in
order to reuse searchers. If we choose to guard the rings that are already cleaned, for
each ring we need two searchers. On the other hand if we choose to guard the rings
that haven’t been cleaned, we also need two searchers for each ring. If the degree of
v is even, as the search strategy proceed, there is always a time when the number
of cleaned rings is equal to the number of dirty rings. In this case we need at least
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Figure 4.1: An example of Tree of Rings where all rings are merged to a single vertex

∆ guard searchers and there has to be extra searchers in order to make the search
proceed. When the degree of v is odd, analysis is similar. Similarly, define this type
of search strategy to be searcher reuse strategy.

The analysis above indicates that for some tree of rings graphs, the optimal solu-
tion does not require reusing searchers. Thus our result consists of two parts.

Given a tree of rings TR, let v be a vertex in TR, denote xs(v,B) to be the
exclusive search number of B which is a branch of v, ∑

xs(v,B) to be the sum of
exclusive search number of every branch of v.

We first present our result for exclusive search on tree of rings graphs.

Theorem 4.2.1. Let k ≥ 1. For any tree of rings TR, xs(TR) ≤ k if and only if

I ∃v ∈ TR,∑xs(v) < k or

II for every vertex v, the following three properties hold:

1 v has ring degree at most
⌊
k+1

2

⌋
;

2 for any branch B at v, xs(B) ≤ k;

3 for any even i > 1, at most i branches B at v have xs(B) ≥ k − i+ 1

We first show that the conditions of Theorem 4.2.1 are necessary. If xs(TR) ≤ k,
we need to consider lazy search strategy or searcher reuse strategy. Consider using
lazy search strategy, then there exists a vertex v in TR such that ∑

xs(v) < k.
Otherwise, we check if we can finish clearing the graph using search reuse strategy.
The fact that the property (1) is necessary directly follows from the following claim:
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Claim 4.2.1. For any tree of rings TR with maximum ring degree ∆, xs(TR) >
2× (∆− 1) if we only consider the searcher resue strategy

Proof. Again we consider the simple case where multiple single rings are merged to
a single vertex. Suppose v is the common vertex.

Since for each branch we need two guard searchers and there are ∆ branches. We
know we have use (∆−1)×2 searchers as guard searchers. And there has to be extra
searchers in order to make the search proceed.

The property (2) is necessary by the following claim:

Claim 4.2.2. Any tree of rings TR and any subgraph TR′ of TR, xs(TR′) ≤ xs(TR).

Proof. Restricted by the structure of tree of rings, any TR and its subgraph TR′ can
only share a single common vertex. Consider any search strategy that cleans TR′,
the searchers in TR′ can only clean the edges in TR′, in order to clean the edges in
TR\{TR′}, the searchers has to move from TR′ to TR\{TR′} through the shared
common vertex, this makes the problem of cleaning TR′ a sub problem of cleaning
TR. Thus if subgraph TR′ uses xs(TR′) searches, the TR can not be cleaned with
less resources.

We then prove the following claim to show condition (3) is necessary

Claim 4.2.3. Let k ≥ 1. For any tree of rings TR, if there exists v ∈ TR and an
even integer i > 1 such that there is a set B = {TRj : xs(TRj) ≥ k − i + 1} of
branches at v and |B| > i, then xs(TR) > k.

Proof. To show the claim, let S be any exclusive strategy that clears TR. For the
sake of contradiction, suppose S uses at most k searchers. Then, at some step, at
least k− i+ 1 searchers are in TRj of B in order to clear the branch according to the
definition of set B. Let sj be the last such step of S that occurs in TRj . Without
loss of generality, assume that si < sj for any 1 < i < j ≤ |B|. Then we may assume
before step sj , TRj is not completely clear. Then at step si/2+1, at least k − i + 1
searches are in TRi/2+1, some edges have been cleared in TRj for any j ≤ i/2, TRj

cannot become fully contaminated again.(Otherwise there would be another step after
sj that has k − i + 1 searches in TRj ). Now consider step si/2+1, at least k − i + 1
searches are in TRi/2+1 and there are at most i− 1 searches outside TRi/2+1. What
we have here is that there is at least one branch at v in TRi/2+2, ...TR|B| with still
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contaminated edges(at least one branch at v in TRi/2+2, ...TR|B| is not guarded ),and
at least one branch at v in TR1, ...TRi/2 with (at least) some clear edges that must
not be recontaminated and no searchers occupy nodes in both these branches

By Claims 4.2.1−4.2.3, we have proved the necessary conditions of Theorem 4.2.1.
Next we prove that the conditions in Theorem 4.2.1 are sufficient.

Claim 4.2.4. Given a Tree of rings TR, if

I ∃v ∈ TR,∑xs(v) < k or

II for every vertex v, the following three properties hold:

1 v has ring degree at most
⌊
k+1

2

⌋
;

2 for any branch B at v, xs(B) ≤ k;

3 for any even i > 1, at most i branches B at v have xs(B) ≥ k − i+ 1

we have an exclusive search strategy using k searchers.

Proof. if there exists a vertex v in TR, ∑
xs(v) < k, we can place a searcher on v

and assign enough searchers for each branch that is connected to v. Otherwise, we
define the searcher strategy as following.

First sort all the branches in non-increasing order of xs, suppose the order is
{B1, B2, ...}. We partition all the branches into two sets S1 = {B1, B3, ...} and S2 =
{B2, B4, ...}. After the partition is done, the clean process is divided into two steps.
Set S1 is cleared first in non-increasing order. During this process, we leave two
searchers to guard the previous cleared branch as we proceed. Some of these selected
branches may use lazy search strategy, thus search number for a selected branch may
be smaller than 2, however, since v has ring degree at most

⌊
k+1

2

⌋
, we always have

enough searchers to guard each branch. Also the third property restricts the structure
of the TR, the searchers we need to clean the next branch is always decreasing.
Then we switch the searchers from guarding the cleared branches to guarding the
contaminate branches. After all contaminate branches are guarded, we can move on
to step 2

In step 2, S2 is cleaned in non-decreasing order. It is similar to step 1 since we
can reuse the guard searchers as we procceed. After we clear B2 we have finished
cleaning the given tree of rings.

By Claims 4.2.1-4.2.4, Theorem 4.2.1 is proved.
Similarly, the property check can be done in O(n).
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4.3 Extended Exclusive Search on Tree of Rings

Now we apply our extended exclusive search strategy on Tree of Rings
An interesting observation is that if the recontamination constrain m is even, that

means at least m
2 incident dirty branches would cause recontamination. Otherwise,⌈

m
2

⌉
dirty branches would cause recontamination.

Here we still consider two type of tree of rings graphs.

Theorem 4.3.1. Let k ≥ 1. For any tree of rings TR, xsm(T ) ≤ k−
⌈
m
2

⌉
+ 1 if and

only if for any node v, the following three properties hold:

1. v has ring degree at most
⌊
k+1

2

⌋
;

2. for any branch B at v, xsm(B) ≤ k −
⌈
m
2

⌉
+ 1;

3. for choosing k+1
2 −m+ 2 branches, for any even i > 1, at most i branches B at

v have xsm(B) ≥ k − i− (
⌈
m
2

⌉
− 1) + 1.

The fact that the first property is necessary directly follows from the following
claim:

Claim 4.3.1. For any tree of rings TR with maximum ring degree ∆ and recontam-
inating constrain m, xsm(T ) > 2×∆−m− 1.

Proof. The situation of clearing a tree of rings with maximum ring degree ∆ and
recontamination constrain m is equivalent to clear a tree of rings with maximum ring
degree ∆ −

⌈
m
2

⌉
+ 1 in exclusive search model. From claim 4.2.1, the searchers we

need for the equivalent problem will always use searchers more than 2×∆−m− 1.
Thus claim 4.3.1 is proved.

The second property is necessary by the next claim.

Claim 4.3.2. Any tree of rings TR and any subtree TR′ of TR, xsm(TR′) ≤ xsm(TR).

Proof. Contrary to classical graph searching, the proof of this result is not trivial
because of the exclusivity property. To prove it, we have to transform an exclusive
strategy S for TR into a strategy S ′ for T ′ using the same number of searchers, and
without violating the exclusivity property. The fact that S may be not monotone
(i.e., some recontamination may occur during S) makes the proof technical, because
one has to “control” the recontamination of T ′ in S ′.
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An easy way to get the idea is like this: for the cases where the exclusive search
number for a subgraph is larger than the whole graph is that a single slide move
can clean multiple edges, that is, a move in one section can help the cleaning for
another section, but for trees, we could never achieve this goal since two sections are
connected by a single common vertex.

The idea to show the third property in the theorem is necessary is to reduce
the problem to a smaller scope and use the strategy from what we developed before.
Suppose that we are able to clean

⌊
k+1

2

⌋
−

⌈
m
2

⌉
+2 branches from a node v. Then there

are at most
⌊
m
2

⌋
− 1 branches left to be cleaned. Considering the re-contamination

constrain stated in the definition. Node v will never get recontaminated again. Then
the problem becomes easy, simply clean remaining branches one by one and finally
finish cleaning the whole tree. So the key point is to clean a sub-graph with

⌊
k+1

2

⌋
−⌈

m
2

⌉
+ 2 branches. We have reduced the original problem to a problem that exclusive

graph search a sub-graph with
⌊
k+1

2

⌋
−

⌈
m
2

⌉
+ 2 branches. We prove the following

claim to show the third condition

Claim 4.3.3. Let k ≥ 1. For any tree of rings TR, if there exists v ∈ TR and an even
integer i > 1 such that any branch B at v, xsm(B) ≤ k −

⌈
m
2

⌉
+ 1 and there is a set

B = {TRj : xs(TRj) ≥ k− i− (
⌈
m
2

⌉
−1) + 1} of branches at v and |B| > i+

⌈
m
2

⌉
−1,

then xsm(TR) > k −
⌈
m
2

⌉
+ 1.

Proof. Let S be any exclusive strategy that clears TR. For the sake of contradiction,
suppose S uses at most k −

⌈
m
2

⌉
+ 1 searchers. Then, at some step, at least k −

i − (
⌈
m
2

⌉
− 1) + 1 searchers are in TRj of B in order to clear the branch according

to the definition of set B. Let sj be the last such step of S that occurs in TRj .
Without loss of generality, assume that si < sj for any 1 < i < j ≤ |B|. Then we
may assume before step sj , TRj is not completely clear. Then at step si/2+1, at
least k − i− (

⌈
m
2

⌉
− 1) + 1 searches are in TRi/2+1, some edges have been cleared in

TRj for any j ≤ i/2 and TRj cannot become fully contaminated again.(Otherwise
there would be another step after sj that has k − i− (

⌈
m
2

⌉
− 1) + 1 searches in TRj

). Now consider step si/2+1, at least k − i − (
⌈
m
2

⌉
− 1) + 1 searches are in TRi/2+1

and there are at most i− 1 searches outside Ti/2+1. What we have here is that there
is at least one branch at v in TRi/2+2, ...TR|B| with still contaminated edges, and at
least one branch at v in T1, ...Ti/2 with (at least) some clear edges that must not be
recontaminated and no searchers occupy nodes in both these branches

Next we prove that the conditions in Theorem 4.3.1 are sufficient.
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Claim 4.3.4. Given a tree of rings TR, if for any node v in TR satisfies

1. v has ring degree at most
⌊
k+1

2

⌋
;

2. for any branch B at v, xsm(B) ≤ k −
⌈
m
2

⌉
+ 1;

3. for choosing
⌊
k+1

2

⌋
−m+ 2 branches, for any even i > 1, at most i branches B

at v have xsm(B) ≥ k − i− (
⌈
m
2

⌉
− 1) + 1.

we have a winning extended exclusive search strategy using at most k −
⌈
m
2

⌉
+ 1

searchers.

Proof. The search strategy here is very similar to the strategy we developed for ex-
tended exclusive search on trees so it is not stated in detail here.

By Claims 4.3.1-4.3.4, Theorem 4.3.1 is proved. Similarly, the property check can
be done in O(n).
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4.4 Classic Graph Search on Tree of Rings

In this section we present the classic graph search results on tree of rings. These results
can be trivially obtained from the previous results of the classical search models for
trees but to our best knowledge, they are not reported in the literature.

Theorem 4.4.1. For any tree of rings TR and integer k ≥ 1, es(T ) ≥ k + 1 if and
only if T has a vertex v at which there are three or more branches that have search
number k or more.

Proof. The proof idea of the theorem is very similar to the proof of Parson’s lemma[35]
since we are also utilizing the tree structure to figure out the search number.

Theorem 4.4.2. For any tree of rings TR and integer k ≥ 1, ms(T ) ≥ k + 1 if and
only if T has a vertex v at which there are three or more branches that have search
number k or more.

The strategy for mixed search is similar to edge search since they both allow a
searcher to slide along an edge in the graph.

Theorem 4.4.3. For any tree of rings TR, ns(TR) ≥ k + 1 for k ≥ 2 if and only
if there exists a vertex t ∈ V (T ) with at least three branches TRu, TRv, andTRw such
that ns(TRu) ≥ k, ns(TRv) ≥ k, and ns(TRw) ≥ k. For any tree T , ns(T ) ≥ 2 if
and only if there exists a vertex t ∈ V (TR) with at least one branch.

Proof. The proof idea of the theorem is very similar to the proof of Scheffler’s lemma[34]
since we are also utilizing the tree structure to figure out the search number.
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Chapter 5

Graph Search for Power Law
Graphs

5.1 Power Law Graph Basics

Complex networks are common in many high technological areas. For example, the
Internet is a complex network of routers and computers linked by various physical or
wireless links. For social network, the nodes are human beings and edges represent
various social relationships. the World Wide Web is an virtual network of Web pages
connected by hyperlinks. These systems are just a few of the many examples that
draws the attention of the scientific community to investigate.

It was experimentally observed that the majority of these networks are scale-free
and follow power law degree distribution. The following three concepts are widely
accepted to be the characteristic of these networks.

Small worlds[2]: The small-world concept in simple terms describes the fact that
despite their often large size, in most networks there is a relatively short path between
any two nodes. The distance between two nodes is defined as the number of edges in
the shortest path connecting them. The most popular manifestation of small worlds is
the “six degrees of separation” concept, uncovered by the social psychologist Stanley
Milgram (1967), who concluded that there was a path of acquaintances with a typical
length of about six between most pairs of people in the United States (Kochen, 1989).
The small-world property appears to characterize most complex networks.

Clustering [2]: A common property of social networks is the cliques form, repre-
senting circles of friends or acquaintances in which every member knows every other
member. Suppose we have a selected node i in the network, having ki edges which
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connect it to ki other nodes. If the nearest neighbors of the original node were part
of a clique, there would be ki(ki − 1)/2 edges between them. The ratio between the
number of edges Ei that actually exist between these ki nodes and the total number
ki(ki − 1)/2 gives the value of the clustering coefficient of node i

Ci = 2Ei
ki(ki − 1)

The clustering coefficient of the whole network is the average of all individual Ci.
Degree distribution [2]: Not all nodes in a network have the same number of edges

(same node degree). The spread in the node degrees is characterized by a distribution
function P (k), which gives the probability that a randomly selected node has exactly
k edges. Power law graph has an interesting function P (k).

There are multiple definitions of power law networks. Some of them state that in a
power law network the number of vertices of degree k is proportional to k−α for some
parameter α [38]. In other cases power law is defined with respect to random graphs
and only talks about expected degrees of vertices[4, 17]. Both these approaches may
not be applied to the analysis of algorithms running on real-world networks. The first
one suffers from two serious drawbacks. First, it is often not stated in a formal way.
Second, it seems that it effectively disallows even a single vertex with high degree.
On the other hand the stochastic definition can only be applied to graphs randomly
drawn from some distribution. This is not the case for real-world graphs, which are
fixed.

Most previous research papers use the following definition. A power law graph is
a network whose vertex degree distribution follows a power law. That is, the fraction
P (k) of nodes in the network having k connections to other nodes goes for large values
of k as

P (k) directly proportional to k−γ

where γ is a parameter whose value is typically in the range 2 < γ < 3.
Formally, a power law graph is defined as the follows

Definition 5.1 Define di to be the number of vertices with degree i, the power law
graph has the following property.

di = αi−γ

Where α is a constant, 2 < γ < 3
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Pawl et. al. [33] pointed out possible drawbacks of the above power law graph
definition above. They define a deterministic condition for checking whether a graph
has a power law degree distribution and show that many real-world networks satisfy
it. Graphs satisfying their definition are called power law bounded networks (PLB).
It captures the power law behavior of degree distribution that is necessary for the
theoretical analysis of algorithms. At the same time it is flexible enough to cover
many real-world graphs. The main difference between Definition 5.1 and Definition
5.2 is that Definition 5.2 does not impose any lower bounds on the numbers of vertices
of given degrees.

Definition 5.2 [33] Let G be an undirected n-vertex graph and c1 > 0 be a universal
constant. We say that G is power law bounded (PLB) for some parameters 1 <

α = O(1) and t ≥ 0 if for every integer k ≥ 0, the number of vertices v, such that
deg(v) ∈ [2d, 2d+ 1) is at most

c1n(t+ 1)α−1
2d+1−1∑
i=2d

(i+ t)−α

The (t + 1)α−1 factor in the above definition is necessary to ensure that the sum
of the above upper bounds over all k is O(n). The above power law distribution that
includes the shift by the parameter t is called shifted power law and was observed
in different real-world networks. In particular, the parameter t allows us to better
fit the degree distributions in experiments. As experiments show, the value of t is
very small. However, in general it is unknown whether and how t depends on other
parameters of the network and we are not aware of the models that would describe
such dependence. A reasonable assumption here seems to be that t = O(nε) for every
ε > 0.

The rest of this chapter is organized as follows: We first show how to find a
cycle base in a power law graph. Then we point out that the classical power law
graph definition (Definition 5.1) may have a draw back that does not specify the
number of edges in realistic power law graphs correctly and give some observations
that Definition 5.2 may address this problem.

Finally, we give heuristic algorithms for the classical search models on power law
graphs.
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5.2 Cycles in Power Law Graph

Throughout this section we use n to represent the number of vertices in a graph, m
to be the number of edges, dk to be the number of vertices of degree k, and d≥k to be
the number of vertices of degree at least k.

A node-to-node adjacency structure is an n × n matrix such that entry aij = 1
if node i is adjacent to node j and 0 otherwise. A node-to-edge adjacency structure
has a list for each node v that contains all nodes adjacent to v.

As shown in the sections before, we already have a well-known algorithm for graph
search on tree structure. The main obstacle which prevent us from using the existing
technique is that for a power law graph we can have cycles.

Depth-first search (DFS) [8] can be used to find cycles in a graph. It is usually
assumed that the graph data structure is of the type node-edge adjacency instead of
node-node adjacency. In the node-edge adjacency structure, the nodes are numbered
from 1 to n. The node-i record lists the nodes adjacent to node i (connected to node
i by an edge).

If one or more nodes of the node-i record were not yet visited from i, let node j
be the first node not visited. If node j was already visited by DFS (obviously
from node other than node i), mark edge (i, j) as back edge otherwise mark
edge (i, j) as tree edge and set i as parent of j. Mark node j as visited in the
node-i record. Set node j as current node.
If all vertices of vertex-i are yet visited, set the parent vertex of vertex i as
current.

The algorithm stops when we are back to the first visited node called source. If
all nodes were visited, then the graph is connected. Each back edge (i, j) defines a
cycle. A cycle consists of the back edge (i, j) and unique tree edges forming the path
from j to i. The cycles so defined by the back edges form a cycle base of the graph.
Every cycle of the graph is the union (exclusive OR) of two or more cycles from this
cycle base(see below). Of course, the number of cycles in a graph can be exponential
in the number of nodes of the graph.

Definition 5.3 A cycle base is a set of m−(n−1) cycles that are independent in the
sense that we cannot reconstruct one cycle from the set by the union (defined below)
of two or more other cycles of the set.

The set of m− (n− 1) back edges defines a cycle base. This is not the only cycle
base. Actually there can be an exponential number of them.

32



Given a connected power law graph, perform DFS on the graph, the number of
back edges is always m− (n−1). This can be easily verified. We know the maximum
number of edges in a tree is (n− 1), and in the DFS algorithm above the tree edges
form a spanning tree since we went over all the vertices in the graph. The tree edge
marked by go through DFS process induce a connected sub-graph that contains every
vertex of the graph and no cycles.

We need searchers to guard the corresponding cycles refer to these back edges.
Thus we need m − (n − 1) guard searchers, then the graph becomes a tree and we
could apply previous graph search results on the spanning tree.

5.3 Problem with Classic Power Law Graph Defi-
nition

Lemma 5.3.1. Let G be a graph and k ≥ 0. The number of edges of G is 1
2

∑dmax
i=1 di×i

Proof. A vertex of degree k is counted k times in the summation. Thus the sum is
equal to the total degree of all vertices, which is twice the number of edges.

Let B be the set of back edges and dmax be the largest degree of a given power
law graph. Then,

|B| = m− (n− 1) = 1
2

dmax∑
i=1

di × i−
dmax∑
i=1

di + 1 (5.1)

Definition 5.4 The Riemann zeta function or Euler–Riemann zeta function, ζ(s), is
a function of a complex variable s that analytically continues the sum of the infinite
seriesζ(s) = ∑∞

n=1
1
ns

for when the real part of s is greater than 1.

It has been proved that ζ function convergence when s >= 2 and

ζ(1) = 1 + 1
2 + 1

3 + ... =∞ (5.2)

ζ(1.5) = 1 + 1
21.5 + 1

31.5 + ... = 2.612 (5.3)

ζ(2) = 1 + 1
22 + 1

32 + ... = π2

6 (5.4)

ζ(3) = 1 + 1
23 + 1

33 + ... = 1.202 (5.5)
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Figure 5.1: Numbers of Vertices and Edges of Real Graphs Reported in [33]

By combining (5.3) with (5.5) together with the classic definition of power law
graph, when γ is 2.5, the number of back edges is less than 1

10 of n. However, the
following graph shows that in a realistic power law graph, the number of back edges
is usually 5 to 10 times the number of vertices(see Figure 5.1).

The PLB definition, instead of specifying detailed vertex distribution for each
degree, defines the total number of vertices for each exponentially increased range
to be the total number of vertices if the vertices within the range follows power law
distribution. When the parameter d is small, we see the restriction on distribution is
just like the original power law definition distribution. As the parameter d increases,
this restriction is relaxed thus it allows a portion of low degree vertexes within a
range to be shifted to high degree within the same range. The main reason why the
original power law graph definition fails to appeal to the realistic network is that the
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graph does not have enough edges. By adjusting the vertex distribution, we allow the
number of high degree vertices to be larger, thus makes the graph have more edges.

Observed from the communication network, in a realistic undirected power law
graph, the number of edges is usually five to ten times the number of edges in the
graph. This actually proves our thinking that the original power law definition is
short of edges.

Recall definition 5.1, di = αi−γ. Assume we only have one vertex of degree dmax
in G, then

1 = αd−γmax (5.6)

Using the property of Riemann zeta function, α > n
2 , thus

1 > n

2d
−γ
max (5.7)

dmax >
γ

√
n

2 (5.8)

which means given a power law graph G of n vertices, there exists a vertex of degree
γ

√
n
2 with high probability

5.4 Heuristic Graph Search Algorithms on Power
Law Graphs

We first consider the mixed search on power law graph. As we have seen from the
previous section, the number of back edges is usually five to ten times the number of
vertices. This means for high degree vertex, usually it is associate with several back
edges. Thus instead of guarding the back edges, we now seek to guard high degree
vertices.

Our algorithm starts with guarding all the vertices with degree at least four. For
the rest of the graph we consider the number of searchers and the number of guardians
separately.

We first consider the number of guardians for degree one, two and tree vertices
separately. Note that the number of back edges for vertex v is at most the degree of
v minus one.

Degree one vertices are the leaf vertices of the graph thus we do not need searchers
to guard these vertices.
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For the vertices of degree two, we can always choose to form the DFS tree starting
from a vertex with degree at least three. Thus all vertices with degree two will never
have back edges.(The only situation where a degree two vertex can have a back edge
is that we start from a degree two vertex and follows DFS and return to itself, which
means that we start out from a degree two vertex, following a cycle when performing
our DFS and return to the starting vertex itself.). Thus we don’t need to guard degree
two vertices.

For the vertices of degree tree, we have three possibilities. If all the three edges
incident to the vertex are not back edges, that is, for vertex v we have zero back
edges, we do not need to guard it.

For degree three vertices with two back edges, it has to be leaf in the DFS tree,
since we already put guard vertices on all the vertices with degree at least four, the
only situation we need to consider is shown in figure 5.2 where the back edges are in
red.

Figure 5.2: Degree three vertex with two back edges

Hence one guardian searcher is enough to guard the all cycles in this subgraph.
Thus in this situation, 1/3 of d3 is enough for the guardians

For degree three vertices with one back edges, we do the following. We trace
staring from the back edge and follow the back tracking path until we reach another
vertex of degree at least three with back edges. If we met a vertex with degree at least
four, we know we already have a guardian on the vertex and thus break this cycle.
If we met a vertex with degree three, we check the number of back edges associate
with it. If the vertex has two back edges, we know we are considering situation two.
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Otherwise we reach a vertex of degree three with one back edge. Then we choose to
guard either of the two vertices to break the cycles. Thus in situation three, 1/2 of
d3 is enough for the guardians.

Sum all the situations up, we see for the remaining graph with vertices of degree
at most three, we need at most 1/2 of d3 for the guardians. Now we consider the
number of searchers to actually search the graph.

Recall Property 2.2.1, the searchers we need to clean the subgraph consist of
vertices with degree at most 3 is at most 1 + log3(d3 − 1). Thus

Theorem 5.4.1. Mixed search number for any power law graph is at most d≥4 +
1
2d3 + log3(d3 − 1) + 1.

The following two theorems can be easily derived from Theorem 5.2 together with
Theorem 1.0.1.

Theorem 5.4.2. Edge search number for power law graph is at most d≥4 + 1
2d3 +

log3(d3 − 1) + 2.

Theorem 5.4.3. Node search number for power law graph is at most d≥4 + 1
2d3 +

log3(d3 − 1) + 2.

The exclusive search number can be derived from Property 2.3.2 and Theorem
5.4.1

Theorem 5.4.4. Exclusive search number for power law graph is at most 2(log3(d3−
1) + 1) + 1

2d3 + d≥4

Now let us consider extended exclusive search on power law graph. Let v be a
vertex of degree d, then after cleaning d−m+ 1 branches, there are only m− 1 dirty
edges connecting to v which would never cause recontamination. Thus the strategy
to clean such vertex is similar to the exclusive search stragety to clean a vertex of
degree d−m+ 1. Hence we have the following:

Theorem 5.4.5. Extended exclusive search number for power law graph is at most
2(log3(d3+(m−1) − 1) + 1) + 1

2d3+(m−1) + d≥4+(m−1)

The number of searchers used by our heuristic algorithms are upper bounded
by O(d3) = O(n) for all search models discussed. For power law graphs with Ω(n)
maximum node degree, the numbers of searchers used by our algorithms are within
a constant factor from the search number of the graphs.

A remark here is that our algorithm can be applied to general graphs, and would
have a good performance on graphs with a small number of vertices with degree at
least three.
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Chapter 6

Conclusion

In this thesis, we first reviewed existing graph search models and show their differences
and connections. Based on review, we proposed a new graph search model called
extended exclusive search. Then we show graph search results on an interesting type
of graph called tree of rings. Finally, we proposed heuristic search algorithms for
power law graphs based on the known and new proposed search models.

In the area of power law graph searching, there are still many interesting problems.
Based on the content of this thesis and other works we have done, we list some
problems here and provide some suggestions for the future work.

1. Develop a new power law graph definition which gives a better description of
real world power law graphs. We have pointed out that the classic definition for
power law graph does not provide enough high degree vertices. A simple shift
parameter introduced in a modified definition for power law graphs may not be
enough to address this problem.

2. Our heuristic mixed search strategy on power law graphs consider vertices of
degree at least 4 to be high degree vertices. If we consider the vertices of degree
at least 5 to be high degree vertices, whether we could have search heuristics
using a smaller number of searchers.

3. It would be interesting to analyze the theoretic performances of our heuristic
algorithms.
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