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Abstract

Activity analysis in which multiple people interact across a large space is challenging due to
the interplay of individual actions and collective group dynamics. We propose an end-to-end
generic approach for learning person trajectory representations for group activity analysis.
The learned representations encode rich spatio-temporal dependencies and capture useful
motion patterns for recognizing individual events, as well as characteristic group dynamics
that can be used to identify groups from their trajectories alone. We develop our deep
learning approach in the context of team sports, which provide well-defined sets of events
(e.g. pass, shot) and groups of people (teams). We evaluate our model on NBA basketball
and NHL hockey games datasets. Analysis of events and team formations using these two
sports datasets demonstrate the generality of our approach. Experiments show that our
model is capable of (1) capturing strong spatio-temporal cues for recognizing events in
hockey dataset (2) capturing distinctive group dynamics for identifying group identity.

Keywords: Trajectory Features; Shared-Compare Trajectory Network; Stacked Trajectory
Network; Team Sport Analysis
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Chapter 1

Introduction

Human activity analysis is a fundamental problem in computer vision and it has a wide
range of applications in the context of surveillance and security, health-care monitoring,
team-sport analysis and etc. Activities can be divided into two categories: (1) They may
involve a single person performing a series of actions to complete a task. (2) they can include
multiple people distributed across a large space collectively trying to achieve a shared goal
which is referred as the group activity. Group activity analysis is more complex because
it has the complexity of both recognizing each individual activity and also capturing the
pairwise and global relationship of people in the scene. In this work, we focus on the end-to-
end learning of feature representations for analyzing group activities which involve multiple
interacting people distributed in space. In the end to end learning procedure, we have
trajectories as the input and we will learn trajectory representation and we can have team
identity or event label as the output. Our aim is to learn rich feature representations that
encode useful information about individual events as well as the overall group dynamics.

We observe that a sequence of a person’s movement across space over time (called
trajectory), can provide valuable information such as the person’s goal or intention. When
activities involve multiple interacting people, the relative trajectory patterns of different
people can also provide important interaction cues. For example, consider the snapshot of
time shown in Fig. 1.1, which shows a hockey player trying to pass the puck to a teammate
while an opposing player moves to block the pass.

A large volume of related works have focused on visual features for recognizing individual
actions. These are typically built from challenging unconstrained Internet video datasets
such as UCF Sports [23], UCF-101 [27], HMDB-51 [16], and Sports-1M [13]. However,
it is hard to determine what a crowd of players is doing by simply inspecting the pixels
inside the bounding boxes of individuals in a video clip. It is helpful to analyze the relative
positions of people over time as well, so as to understand the spatio-temporal context and
then understand the behavior of each person. We will show that learned person trajectory
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Figure 1.1: When activities involve multiple people distributed in space, the relative trajec-
tory patterns of different people can provide valuable cues for activity analysis. We learn
rich trajectory representations that encode useful information for recognizing individual
events as well as overall group dynamics in the context of team sports. For example this
learnt features can be used for recognizing that a hockey player trying to pass the puck t
while an opposing player moves to block the pass.

representations can encode useful individual and collective movement patterns for analyzing
group actions in the video.

We develop our deep learning approach in the context of team sports. Team sports are
a useful testbed for complex group activity analysis as they provide: (1) a well-defined set
of events, such as pass, dump-in, and shot; (2) well-defined groups (teams) with distinct
dynamics due to differences in strategies and tactics; (3) detailed annotations from sports an-
alytics professionals. At the same time, sports video analysis presents numerous challenges.
Players move quickly and often frames are blurred due to this rapid movement. Thus, the
input video clips do not always carry the rich visual information as expected. Moreover,
sports video, especially team sports, contains many player interactions. Interpreting those
interactions can help understand their activities as a group, but the representations used
to decode such interactions remains an open challenge.

A body of literature focuses on group activity and human interaction [1, 2, 4, 5, 11, 14,
17, 18, 22], some of which incorporate spatial information of individuals. However, these
representations tend to be hand-crafted and do not sufficiently encode the rich information
of individual movements and their interactions over time.

We propose a method to analyze team activities by using player locations in world
coordinates over time. Analysis of trajectory data is not a new area of research. Many
works have proposed computational methods to analyze player behaviors using trajectories.
We refer readers to [9] for a recent survey on this field of research. However, to the best of
our knowledge, we are the first to learn features describing trajectories with convolutional
neural networks and the first to combine trajectory representations of multiple interacting
actors in a single framework for group activity analysis.

2



Our main contribution is a novel deep learning approach for group behavior analysis,
which encodes spatio-temporal dependencies from person trajectories. To demonstrate the
generality of our model, we analyze events and team formations using NHL (hockey) and
NBA (basketball) datasets. We show that our learned representations capture useful in-
formation for recognizing events in team sports video. Our learned representations also
capture distinctive group dynamics. We show that the collective trajectory patterns of a
group can provide strong cues for identifying the group.

1.1 Contribution

This work has been done in collaboration with Yatao Zhong, Dr. Frederick Tung, Dr. Luke
Bornn, and Dr. Greg Mori. In addition to this project, I also collaborated on a video
segmentation project [15] which was accepted to IAPR International Conference on Pattern
Recognition (ICPR), 2016.
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Chapter 2

Related Work

The existing literature on analyzing human activities is extensive. Thorough surveys of
earlier work include Gavrila [8] and Weinland et al. [33]. Below, we review closely related
work in activity recognition, including individual actions, group multi-person activities, and
trajectory analysis.

2.1 Deep Learning for Action Recognition

Recently, deep learning has been brought to bear on the problem of action recognition.
Approaches for video-based action recognition include the two-stream network of Simonyan
and Zisserman [26], which fuse motion and appearance feature branches into a single net-
work. It has two recognition streams. One ConvNet for capturing spatial information and
one other ConvNet for capturing temporal feature. The obtained information of these two
streams is mixed by late fusion. Feichtenhofer et al. [7] investigate different methods of
fusing motion and appearance information. Karpathy et al. [13] did extensive experiments
on when and how to fuse information extracted from video frames to extend convolutional
neural networks to video classification. three time infomation fusion methods has beed
investigated in this paper slow fusion, early fusion, and late fusion. Veeriah, et al. [30] pro-
posed a differentiable recurrent neural network which highlights the change caused by the
salient motions between the successive frames. Donahue et al. [6] extract features from each
frame and encode temporal information using a recurrent neural net (LSTM [10]) for action
recognition. Their proposed method is deep in both spatial and temporal dimension. Tran
et al. [29] extended traditional 2D convolution to the 3D case, where filters are applied to
the spatial dimensions and temporal dimension simultaneously. Sun et al. [28] introduce a
factorized spatio-temporal convolutional network which factorize the 3D convolution kernel
as a sequence of 2D spatial kernels followed by 1D temporal kernels. These approaches have
surpassed the performance of the best hand-crafted features, based on dense trajectories
and motion features [31].
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2.2 Group Activity Recognition

Group activity recognition examines classifying the behaviour of multiple, interacting peo-
ple. Effective models typically consider both individual actions and person-level interactions
within the group. Previous works use hand-crafted features and model interactions with
graphical models. Choi et al. [3] build hand-crafted descriptors of relative human poses.
Their proposed spatio-temporal local descriptor(STL) is a histogram which takes into ac-
count the number of people and their poses. Lan et al. [18] and Amer et al. [1] utilize
hierarchical models to understand collective activity among a group of people at different
levels, ranging from atomic individual action to group activity in the scene. The concept of
social roles performed by people during interactions has also been studied [17, 22]. All of
these methods use hand-crafted representations of inter-person relationships.

Another line of work introduces structures into deep learning frameworks by integrating
neural networks and graphical models in a unified framework [24, 25, 34]. For example,
Deng et al. [5, 4] apply deep structured models to collective activity recognition, learning
dependencies between the actions of people in a scene. However, these works do not con-
sider spatio-temporal relationships between participants, which we believe would provide
strong indication about how a group activity is formulated. Thus, we propose a model to
incorporate spatial information by learning the dynamics of trajectories of each participant
as well as their relative movements.

The incorporation of track-level features as extra cues for interaction modeling was done
by Choi et al. [2] and Khamis et al. [14]. Recent work has developed more sophisticated
deep temporal models for activity analysis. Ramanathan et al. [21] utilize attention models
to focus on key players in sports activties. Ibrahim et al. [11] build hieararchical LSTMs
to model multiple interacting people over time. In contrast with this, our work learns
trajectory features directly from human position inputs.

2.3 Trajectory Data Analytics

There exists significant literature on trajectory analysis focusing on team sports, such as
basketball, soccer, and hockey. Applications within sports analytics include analyzing player
and team performance, and mining underlying patterns that lead to certain results. Work in
this field has included various statistical models to capture the spatio-temporal dynamics in
player trajectories. We refer readers to a recent survey [9] on detailed team sports analysis
with trajectory data.

Classic examples in the vision literature include Intille and Bobick [12] who analyzed
American football plays based on trajectory inputs. Médioni et al. [20] utilized relative
positioning between key elements in a scene, such as vehicles and checkpoints, to recognize
activities.
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Figure 2.1: Our shared-compare trajectory network (Sec.3.1) learns generic individual rep-
resentations as well as features describing pairwise interactions. Pairs are determined by
an ordering based on proximity to a key player. The shared-compare structure is useful for
recognizing events such as passes and shots.

In the sports context, Lucey et al. [19] use a basis representation of person trajectories
that utilizes roles. The work that is most similar to ours is Wang and Zemel [32], which
uses a traditional CNN plus RNN to classify NBA offensive patterns. Person trajectories
are converted to an image representation for input to the CNN. However, an image repre-
sentation of trajectories is not an effective coding mechanism in that time is ignored, and
further most pixels are zeros, making this representation redundant. We instead propose
to build a neural network directly on top of raw trajectories.
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Chapter 3

Proposed Approach

We aim to learn trajectory representations that encode rich spatio-temporal patterns for
recognizing individual events as well as characteristic group dynamics. Our proposed trajec-
tory networks use layers of 1D temporal convolutions over person location inputs in world
coordinates. We present two instantiations of this idea.

1. The shared trajectory network takes a single person’s trajectory as input. Since the
weights of the network are shared across all people, the network learns a generic rep-
resentation for any individual. The resulting individual representations are passed
through a compare network, which takes pairs of people as input, with pairs de-
termined by an ordering based on proximity to a “key" player. We show that the
shared-compare network structure is useful for recognizing events such as passes and
shots.

2. The stacked trajectory network takes as input the stacked trajectories of all group
members. This network learns representations that take into account all interactions
among group members, and is effective at capturing overall group dynamics. We show
that the stacked network structure can accurately predict group (team) identities by
their member trajectories alone.

3.1 Shared-Compare Trajectory Network

The shared-compare network structure is illustrated in Fig. 2.1. The input to the shared
network is a sequence of person world coordinates in the form of (xt, yt), where t is the
frame number, associated with a single person. These inputs are obtained via state of the
art tracking and camera calibration systems, which provide reasonably accurate, though
sometimes noisy, data. To learn the space-time variations in person trajectories, we propose
to use layers of 1D convolutions. The network is “shared" in that the same 1D convolutions
are applied to each person.
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Recall that a person trajectory is essentially a continuous signal. We propose a direct
way of interpreting a trajectory. A 2D trajectory in world coordinates (e.g. player position
in court or rink coordinates) has two separate continuous signals, one for the x series and one
for the y series. We can split the input [(x1, y1), (x2, y2), · · · , (xT , yT )] into two sequences
[x1, x2, · · · , xT ] and [y1, y2, · · · , yT ], each being a 1D continuous signal. In our approach
we treat these two sequences as two channels. We build a convolutional neural network
on top of these inputs, with 1D convolution operating on each input. By stacking layers
of 1D convolution, we can learn combinations of x and y movements that are indicative of
particular action classes.

In detail, let X ∈ RN×T denote the input, F ∈ RN×W×M denote the filters in a convo-
lutional layer and O ∈ RM×T denote the output, where N is the number of input channels,
T is the length of input sequence, W is the filter size and M is the number of filters. To
model the behaviour of a convolutional layer1, we perform the basic operation as follows:

Ok,t = σ(
N∑

i=1

W∑
j=1

Xi,t+j−1Fi,j,k). (3.1)

In the above formula, σ (·) can be any activation function. In our case, we choose ReLU
for all activations. Two convolutional layers are followed by a max pooling layer to make
the model shift-invariant and help reduce the dimension of the output.

Let Z ∈ RM×dT
S
e be the output of max pooling, where S is the step size in the pooling

operation, then we have
Zk,t = max

1≤j≤S
Ok, (t−1)·S+j . (3.2)

To build a network with stacked convolutional and max pooling layers, we use the output
Z l−1 at layer l − 1 as the input X l at layer l:

X l = Z l−1. (3.3)

We repeat the process described in Eq. 3.1 and Eq. 3.2 for a number of layers. To obtain
the output of the shared trajectory network, we flatten the output of the last layer.

The outputs of the shared network are then paired and passed to the compare network.
The compare network aims to learn representations for the relative motion patterns of pairs
of people. The comparison of trajectory pairs allows the network to learn interaction cues
that can be useful for recognizing events or actions (e.g. pass, shot).

Pairs are formed relative to a “key" person according to a pre-defined rule (we discuss
the case of an unknown key person later). Denote the key person as P (1) and the other
people as P (2), P (3), ..., P (Np). Np is the number of players on the rink. Given a pair

1We choose a step size of 1 when doing convolution and pad zeros to the input if the domain of a filter
goes outside of the input.
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Figure 3.1: Our stacked trajectory network (Section 3.2) takes trajectories of all group
members as input and learns representations that consider all interactions within the group.
The stacked network captures overall group dynamics and can be used to identify groups
(teams) using member trajectories alone.

(P (1), P (i)), 2 ≤ i ≤ Np, the individual trajectory representations of P (1) and P (i) (computed
using the shared network) are input to a compare network consisting of several convolutional
and max pooling layers. The output feature of the compare network can then be used as a
learned feature representation of the trajectory pair. We apply the compare network to all
pairs (P (1), P (i)), 2 ≤ i ≤ Np relative to the key person, and concatenate the output features
Z(i) to obtain the final feature descriptor of the group of people, [Z(1), Z(2), . . . , Z(Np)]. Next,
a fully connected layer and softmax can be applied depending on the activity analysis task:

Ze = σ([Z(1), Z(2), . . . , Z(Np)]We) (3.4)

where σ(·) denotes softmax normalization, Fe is the output feature size, We ∈ R(F ·Np)×Fe

are the weights of the fully connected layer, and Ze ∈ RFe is the prediction vector which
can be fed into a loss function for end-to-end training

Note that when we perform the concatenation, we implicitly enforce an ordering among
the group of people. Arbitrarily enforcing such an order is problematic. We set a consistent
ordering by spatial proximity to the key person: P (1) is the key person, P (2) is the person
closest to the key person, P (3) is the next closest person to the key person, and so on.

The key person is often available in professional annotations for sports analytics, and
typically corresponds to the player with possession of the ball or puck. However, the key
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person in a general non-sports setting may not be as well-defined. In addition, the key person
may be unknown, or difficult to determine automatically, in general broadcast sports videos.
When the key person is not provided, we adopt an average pooling strategy to determine Ze.
For each person in the scene, we fix that person as P (1), rank the other people accordingly
based on proximity, and compute the network output. This produces Np prediction vectors
{Z(1)

e , Z
(2)
e , . . . , Z

(Np)
e }. We then apply element-wise average pooling over the Np prediction

vectors to obtain the final prediction vector Ze. Results for both known and unknown key
player settings are presented in the experiments.

3.2 Stacked Trajectory Network

The stacked trajectory network structure is illustrated in Fig. 3.1. The input to this network
is a stack of (xt, yt) sequences for all members of the group (e.g. all members of the
same team) and the ball. For example, suppose a group consists of Np people. Then the
sequences [(x(i)

1 , y
(i)
1 ), (x(i)

2 , y
(i)
2 ), . . . , (x(i)

T , y
(i)
T )] for each person i and ball are stacked to form

a (C · (Np + 1)) × T dimensional input (C = 2 for two channels x and y. However, after
stacking, its actual number of channels is C ·(Np+1)). Similar to Section 3.1, a convolutional
neural network consisting of layers of 1D convolutions is trained on this input. We set a
consistent ordering by spatial proximity to the ball. The output of the final layer is flattened
and input to a fully connected layer and softmax for task-specific end-to-end training.

By taking into account all combinations of interactions within the group, the stacked
trajectory network learns overall group dynamics instead of individual representations.
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Chapter 4

Datasets

We conduct experiments on two datasets. The first includes player trajectories and vi-
suals from broadcast video footage of NHL hockey games. The second consists of player
trajectories extracted from an external tracking system recording player positions in NBA
basketball games.

4.1 The SPORTLOGiQ NHL Dataset

The SPORTLOGiQ NHL dataset includes both video and trajectory data. Unlike the NBA
dataset where person trajectories are obtained from a multi-camera system, the player
positions in the NHL dataset are estimated using a homography, which maps a pixel in
image coordinates to a point in world coordinates. State of the art algorithms are used to
automatically detect and track players in raw broadcast videos. If we have the bottom-
middle point of a player bounding box, we can map this point to world coordinates with
a homography matrix, hence acquiring the player position. The NHL dataset has detailed
event annotation for each frame, each event being categorized into a super class and a fine-
grained class. In our experiment, we use 8 games with 6 super classes: pass, dump out,
dump in, shot, carry and puck protection. Fig. 4.1 shows the fraction of each event in the
8-game dataset. We will describe how we handle the event imbalance in Sec. 5.1.

4.1.1 Data Preprocessing

In a hockey game, typically there are 4 on-ice officials and 12 players (6 on each team).
Thus, there can be at most 16 persons on the rink at the same time. In the following we
do not make any distinction between officials and players and we use “player" to refer to all
people on the rink. Because the dataset is created from NHL broadcast videos where not
all players are visible in each frame, we need to set a threshold Np so that our model can
handle a fixed number of players. If the number of players available in a frame is less than
Np, we pad with zeros the part where players are unavailable. Each training sample consists
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Figure 4.1: Number of samples per event in the SPORTLOGiQ NHL dataset.

of data from Np players. The data of each player includes a T -frame video clip (cropped
from raw video using bounding boxes) and the corresponding T -frame trajectory estimated
from this video clip. Note that our model supports variable-length input. If in some frames
a player is not available, we set the data in these frames to zeros. In our experiments, Np

is set to 5 and video frame size is set to 96× 96. We set T to 16 by first locating the center
frame where an event happens and then cropping 7 frames before the center frame plus 8
frames after it. If the center frame of a certain event happens to be close to that of another
event within 15 frames, we drop this sample.

4.2 The STATS SportVU NBA Dataset

The STATS SportVU NBA dataset consists of real-time positions of players and the ball in
2D world coordinates captured by a six-camera system at a frame rate of 25 Hz. Each frame
has complete annotations of the events happening in the frame, such as dribble, possession,
shot, pass and rebound. The dataset we use has 1076 games during the 2013–2014 NBA
season with approximately 106 frames in each game. We will use this dataset for evaluating
the ability of our model to capture characteristic group dynamics. In particular, we attempt
to predict the identity of a team using only the trajectories of its players during a game.

4.2.1 Data Preprocessing

We extract 137176 possessions from the 1076 games for experiments. Each possession starts
with an offensive team having possession of the ball and ends with a shot. We fix possession
length to 200 frames. If a possession is longer than 200 frames, we crop it starting from the
last frame and count the number of frames backward until it reaches 200. If a possession is
shorter than 200 frames, we pad zeros to it. Originally there are 25 frames per second, but
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we sample only half of the frames in a second, so the sampled 200 frames actually represent
a 16 second long sequence. There are in total 30 NBA teams. Fig. 4.2 shows the number of
possessions we extracted from each team in the dataset. We can see that this is a relatively
balanced dataset, each team having a similar number of samples for experiments.

Figure 4.2: Number of possessions of each team in the STATS SportVU NBA dataset.
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Chapter 5

Experiments

We conduct our experiments on the NHL and NBA datasets described above. To demon-
strate that our shared-compare network is capable of learning temporal dynamics of person
trajectories and group interactions, we perform event recognition using the NHL dataset.
We then show that the stacked trajectory network captures overall group dynamics by
performing team identity prediction on the NBA dataset, using only player trajectories.

5.1 Event Recognition on the NHL Dataset

5.1.1 Task Description

The goal is to predict the event label given the trajectories of players on the rink. The
events used are pass, dump out, dump in, shot, carry and puck protection. The number of
samples of each event in the dataset is shown in Fig. 4.1. This dataset is highly unbalanced
with the pass event taking up half of the dataset. To resolve this problem, we minimize
a weighted cross-entropy loss function during training. The weighting for each class is in
inverse proportion to its frequency in the dataset.

5.1.2 Experiment Settings

We use the exact model shown in Fig. 2.1 for the shared-compare model. The 1D convo-
lutions of the shared trajectory network have 64 and 128 filters with a filter size of 3. The
first two layers of compare network have 128 filters with filter size 3, and the last two have
256, 512 filters with filter size 3,2 respectively. All max-pooling layers are performed with a
window size of 2 with stride 2. The weights in the loss function for pass, dump out, dump
in, shot, carry and puck protection are 0.07, 0.6, 1, 0.4, 0.2 and 0.7 respectively. We use
average precision as the evaluation metric.
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5.1.3 Baselines

We compare the proposed model with (1) a hand-crafted trajectory feature, IDT [31]; (2)
deep learning using video features, C3D [29]. Comparisons with these baselines demonstrate
that our learned trajectory features are better than previous trajectory descriptors; and our
approach, which only uses features from person trajectories, can outperform methods that
learn on top of video input.

• IDT [31]: We use the same input data as in our method: sequences of x, y coordinates
of 5 players. We represent each trajectory using the IDT Trajectory shape descriptor
which is the normalized displacement vector of the trajectory. An SVM with RBF
kernel and ’one vs. rest’ mechanism is deployed for multi-class classification.

• C3D [29]: We use a C3D model as the visual baseline, either trained from scratch
using only the NHL dataset, or fine-tuned from a model pre-trained on Sports-1M.
We obtain a short clip for each player by concatenating player bounding boxes across
time. C3D takes each player clip as input. The weights of the network are shared
across all players. Then the extracted features of players are concatenated using the
same ordering as in our approach and passed to a softmax layer for classification.

5.1.4 Train phase

We train all three networks by providing the key player, defined as the player who performs
the action. The remaining players are ranked by proximity to the key player as described
in Sec. 3.1.

5.1.5 Test phase

For test time evaluation, we consider both the case where the key player is given, and the
more general case where the key player is unknown. When the key player is not given, we
adopt an average pooling strategy as described in Sec. 3.1. In our experiments, we use 4
games for training, 2 games for validation and 2 games for testing.

5.1.6 Experiment Results

Tables 5.1 and 5.2 show experimental results when the key player is unknown and known, re-
spectively. When the key player is unknown, our learned trajectory representations achieve
13.2% higher mean average precision compared to state-of-the-art hand-crafted trajectory
features (IDT). Compared to deep learning using video features, our shared-compare model
obtains 8.7% higher mAP when the C3D model is trained from scratch. Compared to the
C3D baseline pre-trained on Sports-1M and fine-tuned on the NHL dataset, our shared-
compare model obtains 1.7% higher mAP while not requiring auxiliary training data (note
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IDT C3D Fine-tuned C3D Shared-Cmp
pass 72.86% 71.10% 77.45% 78.13%

dump out 13.75% 11.66% 18.15% 22.14%
dump in 6.35% 7.58% 19.04% 26.63%
shot 13.05% 23.37% 38.96% 40.52%
carry 45.66% 64.75% 65.65% 61.10%

puck protection 6.28% 6.50% 7.98% 8.72%
mAP 26.32% 30.83% 37.87% 39.54%

Table 5.1: Average precision for event recognition on the NHL dataset, unknown key player.

IDT C3D Fine-tuned C3D Shared-Cmp
pass 73.35% 77.30% 84.34% 81.33%

dump out 14.34% 10.17% 17.10% 23.11%
dump in 5.77% 10.25% 24.83% 50.04%
shot 13.07% 34.17% 58.88% 48.51%
carry 47.38% 86.37% 90.10% 85.96%

puck protection 7.28% 11.83% 13.99% 11.54%
mAP 26.86% 38.35% 48.21% 50.08%

Table 5.2: Average precision for event recognition on the NHL dataset, known key player.

that Sports-1M is a large sports dataset). Fig. 5.1 shows precision-recall curves for each
event. Our learned trajectory features consistently outperform the hand-crafted IDT tra-
jectory features, and obtain mixed performance compared to the fine-tuned C3D model
pre-trained on Sports-1M. When the key player is known, performance increases for all
models; the shared-compare model improves by 10.5% mAP. This result suggests that a
useful direction for future work is the automatic prediction of the key person in the scene.

For the case where key player is provided, we visualize the top 5 candidates retrieved as
shot and dump in in Fig. 5.2 and 5.3 . The retrieved events look similar visually, highlighting
the benefit of using the spatio-temporal relationships of the players to recognize events.

Figure 5.1: Precision-recall curves for each event in the NHL dataset. The first row shows
the results of the known key player case while the second row the unknown key player case.

16



Figure 5.2: Top 5 candidates retrieved as shot. Green sequences are true positives while
red ones are false positives. The person with a bounding box is the “key” player who is
performing the action. We show 8 frames of the 16-frame video clip by sub-sampling. If a
frame is black, it means the key player is missing because of failure to detect and track the
player.
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Figure 5.3: Top 5 candidates retrieved as dump in. Green sequences are true positives while
red ones are false positives. The person with a bounding box is the “key” player who is
performing the action. We show 8 frames of the 16-frame video clip by sub-sampling. If a
frame is black, it means the key player is missing because of failure to detect and track the
player.
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5.2 Team Identification on the NBA Dataset

5.2.1 Task Description

The goal is to predict the team identity given only its member trajectories. Good perfor-
mance on this task demonstrates the capacity of our model to capture characteristic group
dynamics.

5.2.2 Experiment Settings

We use the exact model shown in Fig. 3.1 and described in Sec. 3.2 for the stacked trajectory
network. The x and y coordinates of the ball and 5 players are stacked together, resulting
in a 200× 12 matrix as input, where 200 is the length of the input sequence and 12 is the
number of channels. We use 60% of the 1076 games for training, 20% for validation and
20% for testing.

5.2.3 Baseline

We compare our model with IDT [31] . The same input data is used as in our method:
sequences of x, y coordinates of the ball and 5 players. Each trajectory is represented by
the IDT trajectory shape descriptor which is the normalized displacement vector of the
trajectory. Then we concatenate the IDT features of the ball and the players and apply an
SVM with RBF kernel and ’one vs. rest’ mechanism for classification.

5.2.4 Measurement

We measure the performance of our model according to accuracy and hit-at-k accuracy1

metrics, both of which are calculated over possessions. However, a single possession can
hardly capture the distinctive group dynamics a team might possess. We therefore also
aggregate all of a team’s possessions in a game and predict the team identity using majority
voting.

5.2.5 Results and Analysis

Using the network architecture shown in Fig. 3.1, we are able to achieve 95% accuracy in
predicting a team’s identity by majority voting over all its possessions in the game, given
trajectory information alone. We next explore the architecture of our model by varying
the number of convolutional layers, the filter size and the number of filters in each layer.
Tables 5.3, 5.4 and 5.5 show the results respectively. From Tables 5.3 and 5.5, we see that by
increasing the number of layers and filters, generally we can obtain a more complex model

1Hit-at-k accuracy: if any one of the top-k predictions equals the ground truth label, we consider it as
being correctly classified.
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layers acc hit@2 hit@3 game acc
2conv 10.68% 18.09% 24.31% 50.00%
3conv 18.86% 28.89% 36.47% 87.05%
4conv 22.34% 33.03% 40.47% 93.41%
5conv 24.78% 35.61% 42.95% 95.91%

5conv+2fc 25.08% 35.83% 42.85% 94.32%

Table 5.3: Metrics on models with different number of layers. All convolutional layers use
a filter size of 3 except the first layer, where the filter size is 5. The number of filters in
next layer is double the number in previous layer except the fifth layer (if any), where the
number of filters is the same as that in the fourth layer. The number of neurons in fully
connected layer is set to 1024.

filter sizes acc hit@2 hit@3 game acc
3 3 3 2 2 24.24% 35.36% 43.25% 94.10%
5 3 3 3 3 24.78% 35.61% 42.95% 95.91%
7 5 5 3 3 23.12% 33.48% 41.04% 95.45%
9 7 7 5 5 14.13% 23.15% 30.01% 62.05%

Table 5.4: Metrics on models with different filter sizes. All models in the table use five
convolutional layers with no fully connected layer. The filter sizes listed is in a bottom-up
order and the number of filters used are 64, 128, 256, 512, 512 (bottom-up order).

to achieve better performance. However, as we increase the number of parameters in the
model, we reach a limit that prevents us from acquiring further improvement by increasing
the model complexity. For example, by adding two fully connected layers after the 5conv
model in Table 5.3, we obtain only a slight increase in possession-based accuracy and a
drop in game-based accuracy. Also note that in Table 5.4, using small filter sizes generally
leads to good results (see the first three models in Table 5.4). If we increase the filter size,
we have a large decrease in model performance (see the last model in Table 5.4). Table 5.6
compares our model with the IDT baseline and shows that our model learns distinctive
group dynamics better than hand-crafted trajectory features.

Fig. 5.4b shows the confusion matrix created from the 5conv model in Table 5.3. For
most teams, our model can correctly predict the team identity when aggregating over all
of its possessions in a game. The worst case is the Phoenix Suns (PHX in Fig. 5.4b); the
model has only a probability around 65% to classify the Suns correctly, but this is still much
better than chance performance.

To see what kind of patterns the model learns over the time dimension, we visualize a
small fraction of the filters in the first convolutional layer. In Fig. 5.4a, we show 64 filters
learned from the input sequence of x coordinates of the ball. Some of them appear to be
“Z" or “S" shaped and some appear to be “M" or “W" shaped. Some of them are similar, so
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base # filters acc hit@2 hit@3 game acc
16 20.37% 30.71% 38.21% 81.14%
32 23.73% 34.55% 41.85% 92.95%
64 24.78% 35.61% 42.95% 95.91%
128 21.81% 32.10% 39.24% 94.45%

Table 5.5: Metrics on models with different number of filters. All models in the table use
five convolutional layers with no fully connected layer. The base number of filters listed in
the table is the number of filters in the first layer. The number of filters in next layer is
double the number in previous layer except that the fourth and the fifth layers have the
same number of filters.

models acc game acc
IDT 5.74% 9.10%

Stacked Traj. Net 25.78% 95.91%

Table 5.6: Stacked trajectory network vs. IDT. Comparison with this baseline show that
our model captures valuable collective features for understanding group dynamics

there could be redundancy in these filters. These temporal patterns are the building blocks
that form discriminative representations to distinguish teams.
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(a) (b)

Figure 5.4: (a) Visualization of the filters in the first convolutional layer. (b) Confusion
matrix based on game-wise prediction. Both figures are created using the 5conv model in
Table 5.3.
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Chapter 6

Conclusion and Future Work

We have presented deep neural network models for learning person trajectory representa-
tions for group activity analysis. Team sports provide a useful testbed for understanding
activities involving groups of people interacting to achieve shared goals. We evaluated our
models on two datasets for two group activity analysis tasks: event recognition on NHL
hockey games dataset and team classification on NBA basketball games dataset. Exper-
iments show that our learned trajectory representations encode complex spatial-temporal
dependencies for recognizing individual events and also capture distinctive group dynamics
that can be used to identify teams given only member trajectories.

6.1 Limitations and Future work

One of our limitation for activity recognition on NHL dataset is that we limit our framework
to know when events happen. As we mentioned in Sec. 4.1, the input samples to our model
are 16-frames player trajectory and center frame is when the event happens. In general,
we usually don’t have the annotation for the time that events happen. Hence, one of our
future direction will be the temporal localization of events in video. Then, we can chunk
the interval around the time that event is happening and feed it to the network.

In NHL event recognition we classify events into 6 classes of ’pass’, ’puck protection’,
’dump in’, ’dump out’ and shot. These 6 classes don’t occur at the same time by two players.
So, what we are doing is classifying single person action in a group. One future work can
be covering events that happen simultaneously and adding one more class of ’others’. Thus,
we don’t need to focus on predicting single person activity and we can have a label for each
player activity in the scene.

In our proposed model for event recognition, we evaluated our model by considering
both the case where the key player is given and the more general case which key player is
not provided. We observed that when the key player is known, the performance increased
compared to the case of the unknown key player. In our case, NHL hockey dataset provides
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the annotation for the key player. However, the key person in a general non-sport setting
may not be as well-defined. This suggests that a direction for future work is the automatic
detection of the key person in the scene.

Another future work can be the use of team membership information. In our exper-
iments on NHL dataset, we didn’t make any distinction between teammates, opponents,
and referees and We used ’player’ to refer to all people on the rink. I believe that use of
this information can be helpful. For example, comparing the trajectory of key player with a
teammate/opponent trajectory provides more information than the case of comparing key
player trajectory with referee trajectory.

In our shared-compare model, the comparison network tries to find the relationship of
key player with others. In some cases, there might be some other interesting relationships
like triplet relations, the relationship of other players (excluding key player) and etc. Thus,
one future work can be considering of these kind of relationships in our model.

6.2 Discussion

In addition to team sports analysis, we believe that our trajectory representation can be
useful in many human activity analysis tasks including surveillance and security, health care
monitoring, smart homes and etc. For example, in surveillance and security, these trajectory
features can be helpful in building a system for monitoring activities of a crowd of people
including determining somebody is running, some people are meeting each other, a crowd
of people is fleeing toward a location and detect any suspicious or unusual activity that is
happening. In general, our proposed models are applicable to any activity recognition task
that cares about movements, tracking key points and the interaction and relationship of
those key points.
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