Generalized methods for application

specific hardware specialization
by
Snehasish Kumar

M. Sc., Simon Fraser University, 2013
B. Tech., Biju Patnaik University of Technology, 2010

Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science

Faculty of Applied Sciences

(© Snehasish Kumar 2017
SIMON FRASER UNIVERSITY
Spring 2017

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely to
be in accordance with the law, particularly if cited appropriately.

Approval

Name:
Degree:
Title:

Examining Committee:

Arrvindh Shriraman
Senior Supervisor
Associate Professor
Simon Fraser University

William Sumner
Supervisor

Assistant Professor
Simon Fraser University

Snehasish Kumar
Doctor of Philosophy (Computing Science)

Generalized methods for application specific
hardware specialization

Chair: Binay Bhattacharyya
Professor

Vijayalakshmi Srinivasan

Supervisor
Research Staff Member,
IBM Research

Alexandra Fedorova
Supervisor
Associate Professor

University of British Columbia

Richard Vaughan
Internal Examiner
Associate Professor
Simon Fraser University

Andreas Moshovos
External Examiner
Professor

University of Toronto

Date Defended:

November 21, 2016

ii

Abstract

Since the invention of the microprocessor in 1971, the computational capacity of the
microprocessor has scaled over 1000x with Moore and Dennard scaling. Dennard scaling
ended with a rapid increase in leakage power 30 years after it was proposed. This ushered in
the era of multiprocessing where additional transistors afforded by Moore’s scaling were put
to use. With the scaling of computational capacity no longer guaranteed every generation,
application specific hardware specialization is an attractive alternative to sustain scaling
trends. Hardware specialization broadly refers to the identification and optimization of

recurrent patterns, dynamic and static, in software via integrated circuitry.

This dissertation describes a two-pronged approach to architectural specialization. First, a top
down approach uses program analysis to determine code regions amenable for specialization.
We have implemented a prototype compiler tool-chain to automatically identify, analyze,
extract and grow code segments which are amenable to specialization in a methodical manner.
Second, a bottom up approach evaluated particular hardware enhancements to enable the
efficient data movement of specialized regions. We have devised and evaluated coherence
protocols and flexible caching mechanisms to reduce the overhead of data movement within

specialized regions.

The former workload centric approach analyses programs at the path granularity. Our
observations show that analysis of amenability for specialization along the path granularity
yield different conclusions than prior work. We analyse the potential for performance and
energy improvement via specialization at the path granularity. We develop mechanisms to
extract and merge amenable paths into segments called Braids. This allows for increased

offload opportunity while retaining the same interface as path granularity specialization.

To address the challenges of data movement, the latter micro-architecture first approach,
proposes a specialized coherence protocol tailored for accelerators and an adaptive granularity
caching mechanism. The hybrid coherence protocol localizes data movement to a specialized
accelerator-only tile reducing energy consumption and improving performance. Modern
workloads have varied program characteristics where fixed granularity caching often intro-
duces waste in the cache hierarchy. We propose a variable granularity caching mechanism
which reduces energy consumption while improving performance via better utilization of the

available storage space.

iii

Keywords: hardware accelerators, program analysis, energy efficiency, caching, accelerator

benchmark, coherence protocol

iv

Dedication

Dedicated to Baba, Ma, Bukum and Tinki

Acknowledgements

I would like to thank my supervisors, Dr. Arrvindh Shriraman, Dr. Nick Sumner, Dr. Viji
Srinivasan and Dr. Alexandra Fedorova for their guidance, motivation and support. I would
like to thank my colleagues, Amirali Sharifian, Naveen Vedula, Steve Margerm and Dr.
Apala Guha for their help and support. I would also like to thank Dr. Andreas Moshovos for
serving as examiner on such short notice. Additionally, the departmental staff, Melissa and
David, have been very helpful in the final stages of preparing the thesis. Finally, I would
like to thank my lovely wife, Tinki, for her patience as I worked my way through graduate

school instead of getting a real job.

vi

Table of Contents

Approval

Abstract
Dedication
Acknowledgements
Table of Contents
List of Tables

List of Figures

1 Introduction
1.1 The breakdown of technology scaling
1.2 Challenges o
1.3 Approach

1.4 Dissertation Organisation

2 Background
2.1 Application Specific Hardware Specialization
2.2 Challenges e

2.3 Thesis Contributionso
2.4 Relationship to published work L.

3 What to specialize — Extracting Accelerator Benchmarks from Micro-

processor Benchmarks
3.1 Introduction
3.2 Motivation & Methodology
3.2.1 Acyclic Program Paths [15]

vii

ii

iii

vi

vii

xi

xii

11
14
15
15
17
18
19
21

3.2.2 Selecting Paths to Characterize
3.2.3 Extracting identified paths o000
3.2.4 Metrics & ISA-independence,
3.2.5 Characterizing at the Path Level
326 Benchmarks
3.3 Characterization
3.3.1 Making a case for Path-based Acceleration.
3.3.2 Characteristics Summary
3.4 Path Characteristic Variability
3.5 Path Derived Workload Suite
3.5.1 Memory Address Entropy Analysis
3.6 Related Work
3.7 Conclusion e

How to specialize — Leveraging Program Analysis to Extract Accelera-

tors from Whole Programs
4.1 Introduction L
4.2 Scope and Related Work
4.2.1 Hardware Accelerator Perspective.
4.2.2 Compilers for VLIW processors
4.3 BL-Path Accelerators.
4.3.1 Path Ranking
4.3.2 BL-Path Properties.o
4.4 BL-Path Expansion and Braids
4.4.1 BL-Path Target Expansion
4.4.2 Braids — Merging BL-Paths 0.
4.5 Execution Model
4.6 Evaluation
4.6.1 Performance.
4.6.2 Energy Evaluation 000,
4.7 Conclusion
Integration — Coherent Cache Hierarchies for Accelerators
5.1 Introduction e
5.2 Background and Motivationo oo
5.2.1 Baseline Architectures
5.3 FUSION: A Coherent Accelerator Cache Hierarchy
5.3.1 Design Overview o
5.3.2 FUSION Architecture
5.4 Toolchain and Benchmarks

5.5 Evaluation e 85

5.5.1 Performance. 85
5.0.2 Energyo 87
5.5.3 Writeback vs Write-Through at LOX 88
5.5.4 FUSION-Dz: Write Forwarding 88
5.5.5 Larger AXCcaches 89
5.5.6 Address Translation 89
5.6 Related Work e 90
5.7 Summaryo e e 92
Integration — Adaptive Granularity Caching 93
6.1 Introduction L e 93
6.2 Motivation for Adaptive Blocks oL 95
6.2.1 Cache Utilizationo 96
6.2.2 Effect of Block Granularity on Miss Rate and Bandwidth 96
6.2.3 Need for adaptive cache blocks 98
6.3 Amoeba-Cache: Architecture, 98
6.3.1 Amoeba Blocks and Set-Indexing 100
6.3.2 Data Lookup 101
6.3.3 Amoeba Block Insertion 101
6.3.4 Replacement: Pseudo LRU 102
6.3.5 Partial Misses 102
6.4 Hardware Complexity 103
6.4.1 Cache Controller 104
6.4.2 Area, Latency, and Energy Overhead 105
6.4.3 Tag-only Operations 106
6.4.4 Tradeoff with Large Caches 107
6.5 Chip-Level Issues e 108
6.5.1 Spatial Patterns Prediction 108
6.5.2 Multi-level Caches 109
6.5.3 Cache Coherence L o 110
6.6 Evaluation 110
6.6.1 Improved Memory Hierarchy Efficiency 111
6.6.2 Overall Performance and Energy 113
6.7 Spatial Predictor Tradeoffs oL 116
6.7.1 Predictor Indexing Lo L oo 116
6.7.2 Predictor Table 116
6.7.3 Spatial Pattern Training L oL 118
6.7.4 Predictor Summary Lo 119

ix

6.8 Amoeba-Cache Adaptivity
6.9 Amoeba-Cache vs other approaches
6.10 Multicore Shared Cache
6.11 Related Work

6.12 Conclusion e

7 Software Release
7.1 Path Profiling
7.2 Path Derived Workload Suite
7.3 Needle e
7.4 Fusion Simulator

7.5 Amoeba Simulator

8 Future Work and Conclusion
8.1 Concurrent and Future Work
8.1.1 Macro Instructions from Sequentially Dependent Operations
8.1.2 Eliminating the Load-Store Queue for Specialized Units
8.1.3 Software specialization based on dynamic profiling
8.1.4 Micro-Workload Generation

8.2 Summary of contributionso

Bibliography

125
125
125
126
127
127

128
128
128
129
129
131
131

133

List of Tables

Table 3.1
Table 3.2

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5

Table 5.6

Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8

Workload Characteristics 34
Path Predictability oo 38
Comparison of sequential programs on spatial architectures 48
Control flow Characteristics 49
Path Characteristics 56
Next Path Target Expansion 58
Braid Characteristics Lo oo 60
System parameters. 63
Accelerator Characteristics 75
System parameters.o 83
Accelerator Execution Metrics 84
Bandwidth in Flits (8bytes/flit) 88
Inter-AXC forwarded blocks and percentage reduction in energy con-

sumption per component 89
Virtual memory table look up count 89
Benchmark Groups 96
Optimal block size. Metric: Miss—rate><1Bandwidth 98
Amoeba-Cache Hardware Complexity. 105
% of direct accesses with fast tags 108
Avg. # of Amoeba-Block / Set 113
Amoeba-Cache Performance. Absolute #s. 118
Predictor Policy Comparison 120

Multiprogrammed Workloads on 1M Shared Amoeba-Cache% reduction
in miss rate and bandwidth. Baseline: Fixed 1IM. 123

xi

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4
Figure 4.5

Moore’s Law [122]o o 2
Moore’s Cost Data [122] 2
Transistor Size Scaling [25] L. 3
Transistor Cost Scaling [123] 3
Voltage Scaling [44] Lo o 4
Frequency Scaling [44] 4
Amdahl’s Projection [6] L. 12
Multicore Scaling [49]o 12
Intel Tick [7, 147] 12
Cost/Transistor stops scaling [149] 12
Performance increase more than technology scaling [44] 13
Using program analysis to demarcate and extract code paths [15] for

accelerators within CPU programs. 25
Acyclic paths in a control flow graph 26
Path Bias 27
Benefits of Path-Based Execution. We have only shown a few work-

loads due to lack of space. Opcode histogram of paths within a

function; % indicates exec coverage. 31
Opcode Distribution. The 5 bars for each workload represent the

top-5 hot paths (L-R), GEP=pointer access. 32
D1: Total Ins, D2: Guards, D3: ¢’s Simplified, D4: Total Live Vals,

D5: Path Predictability D6: Path Coverage 39
Superblock and Hyperblock construction for overlapped paths. %

indicates the relative frequency. oL 51
The distribution of biased branches in the application. Applications

not shown in the plot have 99% of the branches with each branch

> 80% bias. . . . e 52
Fraction of “cold” ops included in Hyperblocks. 53
Path Coverage : Path weight (Py:) by rank. 54
Braid construction from BL-Paths 59

xii

Figure 4.6
Figure 4.7
Figure 4.8

Figure 5.1
Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4
Figure 6.5

Frame construction from Braid.

Performance Improvement

Net Energy Reduction for Braid

Offloading Sequential Program to Accelerators
Left: SCRATCH Architecture.
which DMA transfers data. Switches to a different accelerator Right:
SHARED. Shared L1 cache between the accelerators in a tile. The
Shared L1 cache is kept coherent with the host multicore through

Per-accelerator scratchpads into

MESI protocol. Host shared L2 maintains inclusion with the acceler-
ators shared L1X. oo
Top: FUSION Architecture. Bottom: Timeline for image processing
example on FUSION and FUSION-Dx.
Left: ACC protocol servicing requests from accelerator and interaction
with MESI. Right: ACC Protocol servicing forwarded requests from
MESI.
Left: FUSION without write forwarding. Right: FUSION-Dz. ACC

protocol with write forwarding.

Design tradeoffs in the accelerator cache hierarchy. X-Axis SC:
SCRATCH, SH: SHARED, FU: FUSION. Y-Axis: All plots/fusion,
lower is better and values are normalized to SCRATCH system. Note
for the SHARED design, the L1X—LOXDATA represents response
from shared L1X to AXC and LOX—L1XMSG represents requests
from AXC to the shared L1X. For the SCRATCH design, there is
only one link for data from L2 to the local scratchpad.
Comparing the benefits of LARGE (L0OX:8KB,L1X:256KB) vs SMALL
(LOX:4KB,L1X:64KB)

Cache designs optimizing different memory hierarchy parameters.
Arrows indicate the parameters that are targeted and improved
compared to a conventional cache.
Distribution of words touched in a cache block. Avg. utilization is
on top. (Config: 64K, 4 way, 64-byte block.)
Bandwidth vs. Miss Rate. (a),(c),(e): 64K, 4-way L1. (b),(d),(f):
1M, 8-way LLC. Markers on the plot indicate cache block size. Note
the different scales for different groups.
Amoeba-Cache Architecture.

Lookup Logic

xiii

80

82

86

90

94

97

Figure 6.6

Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14
Figure 6.15

Figure 8.1

Partial Miss Handling. Upper: Identify relevant sub-blocks. Useful

for other cache controller events as well, e.g., recalls. Lower: Refill of

words and insertion.o Lo oL 103
Amoeba Cache Controller (L1 level). 104
Serial vs Normal mode cache. 107
Spatial Predictor invoked on a Amoeba-Cache miss 109
Fixed vs. Amoeba (Bandwidth and Miss Rate). Note the different

scale for different application groups. 112
Distribution of cache line granularities in the 64K L1 and 1M L2

Amoeba-Cache. Avg. utilization ison top. 114

% improvement in performance and % reduction in on-chip memory
hierarchy energy. Higher is better. Y-axis terminated to illustrate
bars clearly. Baseline: Fixed, 64K L1, IM L2. 115
Spatial Predictor Performance Comparison 117
Effect of increase in block size from 64 to 128 bytes in a 1 MB cache 120
Relative miss rate and bandwidth for different caches. Baseline (1,1)
is the Fixed-2x design. Labels: o Fixed-2x, o Sector approaches. *:
Multi$, A Amoeba. (a),(b) 64K cache (c),(d) 1M cache. Note the

different Y-axis scale for each group. 122

% Reduction in IR Instructions 130

Xiv

Chapter 1

Introduction

Since the invention of the microprocessor, it is unlikely that the role of a computer architect
has ever been as important as it is now. The breakdown of Dennard’s scaling led to the
multi-core revolution [57]. Mark Bohr, Intel Fellow and recipient of the IEEE Jun-ichi
Nishizawa Medal [82], reflecting on the breakdown of Dennard scaling [25] stated —

. ours is a very inventive industry and new transistor technologies such as
strained silicon, high-dielectrics, metal gates and multiple-gate devices have been
or will be introduced to continue scaling. So although the letter of Dennard’s Law
can no longer be followed, it has gotten us very far over the past 30 years and

the spirit is alive and well in transistor RED facilities around the world.

As of 2016, the breakdown of Moore’s Law seems inevitable [4]. This marks the second time
computer architects are called upon to devise novel technologies that deliver performance
improvements and reduced energy consumption. Arguably, it is even more challenging than

the crisis faced at the onset of the 21st century.

1.1 The breakdown of technology scaling

Gordon Moore’s seminal work in 1965 defined the law that governed semiconductor cost
scaling for the next five decades. Primarily interested in shrinking transistor costs, Moore for-
mulated the law based on empirical data presented in his paper. The plot which extrapolates
the exponential transistor count increase as a function of time is reproduced in Figure 1.1.
Based on the observations from 1959 to 1965, he predicted a doubling of the transistor count
every ~ 2 years [122]. It is an impressive achievement of the semiconductor industry to have
borne out five decades of scaling in accordance to Moore’s law. The increased transistor
count in each generation has been the primary driving force for increased computational
efficiency.

Furthermore Moore describes cost scaling as shown in Figure 1.2. Moore stated —

16 10
15F e =
= 14+ e = 1962
Lo 3t)4 £ 10°f
== 2L ’ Z
w e v =
zZ |1+ ’ 2
wo>2 7 [1965
o 10} Vs 0 3
[o 4 O I07F
Loa 9 / O
oY 8r ’ ©
o<t 7T ,’ =z
;o x .,
o8 6r 2107 1970
—Ge 5k O
[sa s 44+ E
== =
S 3r Z
Zw ol < 10
o =
| w
O P o T T S W N T T W W T . 2
DO —NMITNONDVNO — N0 T ID = , . , .
NWOWOWWWOWWWNSNNMNR N~ < | 3 5 3 5
RODNDONNNRADDRNNND g | o 10 10° 1 10
YEAR ® NUMBER OF COMPONENTS PER INTEGRATED
CIRCUIT
. . s)
Figure 1.1: Moore’s Law [122] Figure 1.2: Moore’s Cost Data [122]

“For simple circuits, the cost per component is nearly inversely proportional
to the number of components, the result of the equivalent piece of semiconductor
in the equivalent package containing more components. But as components
are added, decreased yields more than compensate for the increased complexity,
tending to raise the cost per component. Thus there is a minimum cost at any

given time in the evolution of the technology.” [122]

Moore observed that the overall cost is dependent on two factors: the density of transistors
on a single chip and the reliability of the fabrication process. The reliability is also known
as the yield rate. Increasing the number of transistors for a given area makes them cheaper;
however it increases the chance of defects. The presence of fabrication process induced
defects on wafers reduces yield rate and drives up cost. This net effect results in an optimal
number of components per integrated circuit, as shown in Figure 1.2. To maintain fabrication
cost scaling of microelectronics as described by Moore, two sizes need to be considered
a) the wafer size and b) the transistor size. A single wafer contains multiple dies, small
block of semiconducting material on which a functional circuit is etched. As of 2016, the
current industry standard wafer is 300mm in diameter. A simple estimation of the number
of processing dies per wafer for the Haswell 4 core configuration at 22nm is ~ 400 dies (not
accounting for fabrication defects).

Larger wafers are preferred, as a fixed number of steps are required to produce a single
wafer, and cost is amortized. Additionally, defects are often found on the edges which also
favours larger wafers to improve yield. There have been efforts to move to a 450mm size
wafer, and estimated use in volume production is projected to start in 2020.

Figures 1.3 and 1.4 show the scaling of transistors in terms of a) size and b) cost from

the year 1970 onwards. We can see that transistor sizes have scaled linearly on the log scale

10
1
€ \ —
2 &
. 2
%) k]
® 2
2 S 10E-3
8 =
[130 nm >
c 90 nm o .
2 0.1 65 nm]
£ \ ©
>)
10E-6 %o
OO
0015575 1980 1990 2000 2010 1970 1975 1980 1985 1990 1995 2000
Figure 1.3: Transistor Size Scaling [25] Figure 1.4: Transistor Cost Scaling [123]

as shown in Figure 1.3. Similarly, the number of transistors has doubled every two years in
this time frame. The cost has decreased from 1 transistor for $1 in 1970 to 10° transistors
for $1 in 2000 due to advances in VLSI technology [123].

Dennard Scaling: Moore’s scaling for cost motivates the need to make smaller transistors
but it is Robert Dennard who outlined the implications of semiconductor scaling in 1974 [46].
In his work, Dennard showed that as transistors get smaller, they switch faster and use
less power. Thus power density remains constant in spite of increased transistor density.
This implies that smaller chips consume less power whereas similar sized chips could run
faster. Dennard’s scaling has set the roadmap for the semiconductor industry for each
generation of process technology, with a concrete transistor scaling formula to move each
generation forward. From the early 70’s with the invention of the microprocessor till the
early 2000’s, improvements in computational efficiency were primarily afforded by Dennard
Scaling [46]. With Dennard scaling, the computing industry reaped the benefits of improved
silicon fabrication methodologies year on year. A 1000x improvement in performance has
been realized since 1970. The scaling described a 30% reduction in transistor size every
18 months. Their area shrinks by 50% thus doubling transistor density. A commensurate
30% reduction in supply voltage is also necessary to maintain reliability. Thus transistor
density doubles while reducing delay by 30%. The power consumption is reduced by 50%
and energy by 65% [26]. Additionally, the larger number of available transistors contributed
to micro-architectural innovations.

In the early 2000s the industry found that the current scaling trends showed increased
power consumption inconsistent with the trend forecast by Dennard. While Dennard scaling
projections for transistor feature sizes held, the chip supply voltage did not. This in turn
made it difficult to provide economically viable cooling solutions to new power hungry chips.
Figure 1.5 shows the how supply voltage scales with respect to transistor feature size. On

reducing the feature size from 0.13 pm to 0.03 pm there has been little change in the supply

10G

5L (o] e 00606
e 8 1
: cga@gggﬁggéégé
° — °8, o° §ogHfl
co0 00 @ i G- ° § o8 o .
337 oO P é ° E 8 8
3 o % 5 E L |
e > 8
> 2 Q o § é §
Ot £ 100m -
(0] @ (I £ 8o
o 8 g g sl § 8°
1 © ° o e ° g)
10 2.37 0.56 0.13 0.03 10Mi5g5 7950 1995 2000 2005 2010 2015
Transistor size (um)
Figure 1.5: Voltage Scaling [44] Figure 1.6: Frequency Scaling [44]

voltage. This manifests as a lack of threshold voltage (minimum gate-to-source voltage
differential) scaling. Thus a significant amount of sub-threshold leakage current counts
against the overall consumed power. The impact of this issue is reflected in Figure 1.6. The
frequency of microprocessors reached a plateau in the early 2000s. In fact, even 15 years
later, consumer Intel microprocessors are clocked in the 2.4-3.4 GHz range similar to their
Pentium 4 microprocessor released in 2004 (Prescott).

Smarter utilization of silicon is imperative with the growing menace of the Utilization
Wall [171]. The utilization wall is a consequence of CMOS scaling theory and current-day
technology constraints, assuming fixed power and chip area. In 2010, researchers showed
that less than 7% of the chip can be utilized in order to maintain power consumption below
80W. Should the entire chip be use, using the 45nm TSMC process, a staggering 1225W
of power is consumed! The consequence of the utilization wall is dark silicon, silicon that
cannot be powered-on at the operating voltage for a given thermal design power (TDP)

constraint.

Implications of technology scaling breakdown: Dark silicon is not a new phenomenon.
Rather the rapid increase, 2x per process generation, is the cause for concern. There is
often circuitry available on the chip which is not used by all workloads. A simple example is
the presence of hardware floating point units which are not used by the linux kernel [109].
To mitigate dark silicon, four approaches have emerged as potential candidates [166]. The
first approach is to shrink the size of the chip itself. Compromising on performance to
decrease the size of the chip is a non sequitur for chipmakers. The second approach is
to wait for a breakthrough in semiconductor devices. Two candidates are Tunnel Field
Effect Transistors (TFETS) [84], and Nano-Electro-Mechanical switches [41, 35]. Both
of them hint at orders-of-magnitude improvements in leakage power consumption, but
remain to be realized as economic alternatives. The third approach is increased usage of

dim silicon, general purpose logic which is underclocked or used infrequently to meet the

constrained power budget. This introduces heterogeneity in the chip and has been explored
by chipmakers. For example, NVidia used a “low power companion core” in the Tegra
architecture [168]. While this approach counters the utilization wall, it is not a measure
targeted at increasing performance. The final approach is the usage of specialized circuitry.
This approach can provide much faster performance, much lower energy consumption or even
both [171, 70]. The dark silicon is used to implement specialized co-processors. Execution
migrates to a particular co-processor while power and clock gating the primary core. As of
2016, an increasing number of chips are dominated by specialized co-processors [66].

With the migration of execution across the chip, data movement becomes an additional
cause for concern in specialized architectures. Using dedicated wires have long been depre-
cated in favour of on-chip networks [148, 43]. Published research by Intel in 2004 showed
up to 50% of the dynamic power consumption in their microprocessor can be attributed to
the network-on-chip (NOC) [112] The 80-core Intel TERAFLOPs chip expends 39% of the
dynamic power per node in the NOC [75]. In the current generation, often the energy cost
of data movement is as high as the computation itself leading to significant overheads in
dynamic power consumption [11, 42]. In effect, wires have not scaled in power consumption

with respect to the rest of the system.

To summarize, the implications of the breakdown of technology scaling are

1. Favouring specialization to increase performance/watt
Hardware specialization is the use of circuitry or mechanisms which target a particular
pattern in a workload. With knowledge of the pattern, a hardware specialized unit
can provide faster performance and/or energy efficient execution. For example, vector
units (SIMD) optimize for data parallel code segments within a program. With the
transistors afforded by Moore’s law scaling, multiple patterns can be targeted by
different specialized units. We see this trend in modern, low power processors where
more than 50% of the chip area is dedicated to specialized co-processors [66].

2. Optimizing for data movement is necessary:
Von-Neumann architectures fetch data from memory to perform computation. However,
due to deep memory hierarchies and increased efficiency for compute operations, a
significant part of the dynamic energy consumption within a chip is due to the movement
of data. Eliminating waste or unused data can reduce overall energy consumption,
particularly in the memory hierarchy. With the use of specialized compute units, the
problem is aggravated. Compute units consume less energy while data movement is
increased as the execution of the workload migrates across the chip to utilize varied

specialized hardware units.

1.2 Challenges

The use of specialized co-processors introduces three significant challenges.

What to specialize? Figuring out the target for specialization within a large workload
can be a daunting task. Computer architects often use dynamic profilers to identify important
functions. Profilers such as gprof [65] can identify the fraction of execution time consumed
by each function. However, their insights are tied to a particular architecture and yield no
information about the amenability for specialization.

Domain experts can be consulted to provide insight to the engineers as to which segments
of an algorithm are amenable to specialization. This implies a large investment in time
and money for the industry. Researchers have proposed the use of standardized kernels
to study specialization [142]. However, it relies on manual culling of kernels and may not
be representative of complicated real work workloads. Prior work focused on specialized
co-processors [64, 127, 39, 68] have obliquely addressed this problem. Unfortunately, the
regions of interest selected by the authors for specialization is constrained by their accelerator
micro-architecture. Considerations regarding the amenability and profitability of selected

regions further complicate the issue.

How to specialize? Often there is no clear distinction in prior works between what to
specialize and how to specialize. For example, the DySER [64] and CCA [39] architectures
target computation only in their specialized regions. Thus their choice of what to specialize is
constrained by their specialized architecture, i.e. how to specialize. There is a lack of research
into how a target region should be specialized. This is exacerbated by the focus on irregular,
general purpose applications with the focus on specialization to improve performance and
energy efficiency.

High level synthesis tools such as LegUp [32], Bambu [134] and Vivado [52] require
programmer annotations at the function level to identify the region to be specialized.
Additional hints may be inferred by the usage of the function. Parallel invocation of the
specialized unit can be derived from the use of the identified function in the pthread [126]

(POSIX thread) programming model.

Integration Introducing heterogeneity in the system introduces additional challenges.
In this thesis we study the challenge of data movement introduced by the integration of
specialized units. Traditional methods of transferring data to specialized co-processors employ
direct memory access (DMA). Initializing such transfers introduce delays. The performance
obtained from the specialized unit must amortize the setup costs. Newer architectures such
as the Intel HARP, Xilinx Zynq and Altera Cyclone, allow closer integration of reconfigurable

accelerators. They add FPGAs on the same chip which have coherent access to the cache

memory hierarchy. Close integration allows for the use of “pull” based coherence protocols

as opposed to “push” based DMA transfers.

1.3 Approach

This dissertation adopts generalized methods to address the challenges of application specific
hardware specialization. In this section we introduce terminology and techniques used in this
thesis. We discuss how the work presented in this dissertation leverages existing techniques

and builds upon them.

We use program analysis driven workload characterization

Program analysis can be defined as —

. the process of automatically analyzing the behavior of computer programs

regarding a property such as correctness, robustness, safety and liveness. [179]

Software engineering disciplines have established varied program analysis techniques to
address primarily issues related to program optimization or program correctness. We use
program analysis to identify frequently executed code segments for further characterization.
The workloads we study are programs which are representative of a group programs. They
serve as benchmarks for computing systems and are crucial for performance engineering.
Herein we describe our approach and rationale.

Program analysis can be static or dynamic in nature. Static program analysis is performed
without executing the program, for example at compile time. Dynamic analysis is performed
at runtime. We implement efficient path profiling [15, 13]. A path can be loosely defined as
an acyclic sequence of basic blocks. A basic block is a sequence of instructions terminated by
a branch. A more precise description is provided in section 3.2.1. In the work presented in
chapter 3 we adopt a hybrid approach. We use dynamic path profiling to identify the “hot”
paths in the program. We use static reconstruction of the hot paths for characterization.
The characterization serves as a first order metric for assessing the amenability of the regions
with respect to specialization.

The rationale behind our approach is the need for scalability. Prior works such as [151, 76]
have adopted fine-grained instruction granularity profiling to characterize workloads. We
find that these approaches impose a high runtime overhead. In contrast, our approach
imposes a 30-40% overhead at runtime with no loss of control flow information. The low
overhead and granularity of abstraction allows our approach to be flexible. The bane of
dynamic analysis is input dependence. With dynamic analyses we can derive properties of
programs observed for a particular input. Dynamic analysis cannot prove that a particular
program satisfies a certain property [14]. However, using our approach we can mitigate

the impact of input dependence by aggregating profiles collected for different inputs. We

study the program behavior across a set of representative inputs rather than a single one.
The static reconstruction for characterization is fast, on the order of 10s of seconds for our

largest workloads.

We target specialized units, i.e. “accelerators” With the breakdown of technology
scaling, computer architects have resorted to the use of specialized units, i.e. accelerators to
provide increased performance and energy efficiency. An accelerator is any unit tailored to
optimize execution for a particular program pattern. For example, vector extensions (SIMD)
to the x86 ISA serve to accelerate data parallel program segments. Thus accelerators can be
broadly defined as any specialized circuitry which targets particular program characteris-
tics. SIMD and floating point units can be classified as programmable accelerators. The
research presented in chapters 3 and 3 focuses on reconfigurable accelerators. Reconfigurable
accelerators can be Coarse Grain Reconfigurable Arrays [45], or Field Programmable Gate
Arrays [28]. Reconfigurable accelerators that stem from academia such as DySER [64],
CCA [39] and BERET [68] can also leverage our work.

We define program abstractions for accelerators Program abstractions are essential
for scalable techniques be developed. For example, a function is an abstraction a programmer
may use to group code which serves a singular purpose. Similarly, abstractions such as
the control flow graph and program dependence graph [54] offer representations on which
analyses can be performed. In this thesis (chapter 4) we describe a program abstraction,
(“Braid”, Section 4.4.2) to target for specialization. This abstraction builds upon program
paths. It merges paths which start and end at the same basic block. Paths which contain
features that are not supported on accelerators are left to execute on the host. We use a
software based speculative execution model as the basis for the abstraction.

Speculative execution is a technique by which the microprocessor executes instructions
past a branch without knowing the outcome of the branch. Effective hardware speculation
is enabled by accurate branch predictors. Paths are composed of basic blocks spanning
across several branches at a time. Executing a path at a time speculates on all the branches
in the path. Merging paths to construct “Braids” speculates on branches which are never
taken for the profiling input. Hardware speculation includes support for rolling back changes
to program state if the wrong path is executed. We construct software “frames” that
include instrumentation for checkpointing state. Our implementation of software speculation
eliminates branches, reduces control flow complexity and provides software support for

rollback in case of wrong path execution. More details are provided in section 4.5.

We propose coherence protocols for accelerators Coherence protocols allow shared
memory multiprocessors to have a synchronized view of memory. Updates issued from

a processor are propagated to all processors which access the same datum. Coherence

protocols enforce the contract established by the consistency model [162]. Data movement
in accelerators have traditionally used non-coherent interfaces such as direct memory access
(DMA). These require manual effort for the programmer to restructure the code so that
data can be shipped to the accelerator for processing and then back again. This type of
interface also has a high overhead; thus the accelerator must perform a significant amount of
cost to amortize the cost of data transfer. This type of model is also referred to as a “push”
based model. We design coherence protocols for accelerators, which allow for a “pull” based
model. Accelerators are allowed to request for and cache data exclusively in our proposed
protocol. We mitigate the overheads of data movement by using a specialized coherence

protocol for accelerators.

We describe mechanisms for adaptive granularity caching Caching mechanisms
in modern processors save data at a fixed granularity. Modern consumer microprocessor’s
cache data at the 64B or 32B granularity [44]. However, the design decisions for cache line
sizes do not take into account the memory access behavior of modern workloads. Prior
researchers [141, 150] have looked at caches which support block sizes of varied size. Our
approach detailed in chapter 6 allows for variable sized cache blocks in multiples of 8B in

size.

1.4 Dissertation Organisation

With the breakdown of technology scaling, computer architects have resorted to specialization
as a means to provide the scaling in performance and energy benefits consumers have
experienced since the invention of the microprocessor. The overarching theme of this
dissertation addresses the challenges of application specific hardware specialization. The
underlying motifs of the work presented in this dissertation are automation and generality.
The tools and techniques are application agnostic and operate via automated compiler
analyses or via transparent hardware mechanisms.

Chapter 2 discusses the current challenges faced by computer architects with the break-
down of transistor scaling. It puts the new challenge of harnessing specialized units in
contrast to the dawn of the multi-core era in computing. Section 2.2 enumerates the chal-
lenges of what to specialize, how to specialize and integration issues. Section 2.3 lists the
contributions made and finally, section 2.4 discusses the relationship of thesis content to
prior peer reviewed published work.

Chapter 3 describes our work on extracting accelerator benchmarks from microprocessor
benchmarks. We show the scalability and precision of analysis at the granularity of program
paths. We present our characterization of workloads drawn from established microprocessor
benchmark suites. In this chapter we present our approach to address the challenge of

what to specialize. Section 3.2.1 provides a primer on path profiling and motivates its use

as an abstraction for characterization with the end goal of specialization. We study of 29
workloads drawn from prevalent microprocessor benchmark suites. Sections 3.3 and 3.4
present the data collected and discuss the implications on specialization.

Chapter 4 builds upon the path based characterization to demonstrate the feasibility of
path based specialization in terms of performance and energy efficiency. Building upon paths,
we describe a new abstraction for hardware specialization called “Braids”. We evaluate and
discuss the opportunities of leveraging Braids for hardware specialization. In this chapter
we present our approach to address the challenge of how to specialize. Section 4.2 discusses
related work showing how heuristic based approaches tailored for VLIW processors may
fail when reused as specialization targets. Section 4.4.2 presents our methodology for the
construction of “Braids”. We describe the construction of speculative software frames in
Section 4.5. We model the performance and energy implications of specialization for the
abstractions described. We present our results in section 4.6.

Chapters 5 and 6 tackle the challenge of integration. We study issues with respect to
data movement. We discuss coherence protocols tailored for specialized hardware. They
allow for low overhead data movement as execution of the workload migrates across the host
and the accelerators. Section 5.3 describes the hybrid coherence protocol. We develop a
cycle accurate simulator to study the impact of using time stamp based coherence within the
accelerator domain. Section 5.5 presents our results showing the reduced energy consumption
for data movement in the workloads we study. We also study the utilization of cache lines
based on workload behaviour. We look at the amount of data accessed by the processor
while the line is cached. We describe an adaptive granularity cache memory hierarchy in
section 6.3. We evaluate two dynamic predictors and present the results we observe across
a diverse set of workloads including desktop applications such as Firefox. The results are
presented in section 6.6.

Chapter 7 outlines the software developed to conduct the research presented herein.

Finally, chapter 8 presents concluding thoughts and directions for future work.

10

Chapter 2
Background

In 2006, the industry shifted focus to shared memory multiprocessing as a means to
scale computational throughput, marking the end of Dennard scaling. Shared memory
multiprocessing was proposed in academia as early as 1996 [71] and well studied. Figure 2.1
shows the maximum possible speedup given what fraction of the program can be executed in
parallel. The curves represent the parallel fraction and even the largest depicted in the graph
(95% parallel) plateau after 256 cores. A more realistic 50-75% parallel fraction benefits
very little overall with more than 16 cores. The shift to a parallel paradigm for consumer
applications brought along with it a whole host of issues. Developers long accustomed to
reasoning about sequential execution now have to deal with more complex multi-threaded
code to extract performance from the hardware provided. In work by Blake et al. [23]
available thread level parallelism in desktop applications was studied. Their exhaustive
analysis across a wide range of applications such as gaming, office, web browsing and more
showed little available thread level parallelism (TLP) that can be exploited for improved
performance within a workload. For instance they found that for office, gaming and web
browsing the average TLP was 1.2, 1.6 and 2 respectively. Only video processing applications
showed the need for many cores with an average TLP of 7.4.

High Performance Computing (HPC) applications are often data parallel problems. In
the effort to extract performance, GPUs have been repurposed to accelerate HPC workloads.
This paradigm represents the extreme end of the TLP spectrum using many parallel yet
simple processors that maintain a Thermal Dissipation Power close to a general purpose
core. Their use however is via tailored programming models such as CUDA or OpenCL,
thus requiring a rewrite of existing programs to take advantage of their processing power.

Figure 2.2 shows the stark contrast between Moore’s law scaling and actual multi-core
scaling as overall application speedup. While multi-core scaling has utilized the transistors
afforded by Moore’s law, it is infeasible to sustain with transistor feature sizes reaching
single digits. At that nanometer scale, transistor sizes are comparable to a few atoms. Until

late 2016, Intel followed the “Tick-Tock”, two stage model of micro-architecture updates. A

11

20 32

95% Parallel H : === Moore’s Law
90% Parallel Multi-core Scaling
75% Parallel
15H 50% Parallel : o4l
[oX [oX
3 3
@ 10 D 16
[0 [0
o o
n n
5 8
0 ; ; ; oL ; ; ; ; ;
1 16 256 4036 65536 45 32 22 16 11 8
Core Counts Transistor Node (nm)
Figure 2.1: Amdahl’s Projection [6] Figure 2.2: Multicore Scaling [49]

“Tick” in the model, represented a shift to a smaller process technology whereas a “Tock”
represented a change in the micro-architecture design. Figure 2.3 shows the fabrication
process used by Intel over the years and their projected usage. Reliability and yield at such
small feature sizes has forced Intel to abandon the two stage “Tick-Tock” model in 2016.
Going forward, Intel has announced the introduction of a second “Tock” which focuses on

the optimization of the micro-architecture introduced previously.

=17
g 1
o 150 -
7]
B 125 hole]
2 O 07
. 100 =5 80nm
o g = 55nm
5 6 0 0.4l 40nm
c c Y 280m
S Z s 20nm
'_
(] 14nm
= Jonm 0.1 T H H H H H
2005 2007 2009 2011 2013 2015 2017

0
RN RN RN R RN N I N I R RN U RN IRV RS
v

Years

Figure 2.4: Cost/Transistor stops scaling [149]
Figure 2.3: Intel Tick [7, 147]

The semiconductor industry has largely been affected by the increase in costs of research
required for next generation semiconducting fabs (fabrication facilities). For example,
FinFET technology allows for smaller feature sizes but requires more fabrication steps and
supporting tools. This has forced many semiconductor companies to become "fab-less', i.e.
they only provide the design and rely on other manufacturers to realize the design at a
desired technology node. Larger wafer size can lower fabrication costs by increasing the
number of dies per wafer and providing better yields. However, as mentioned previously,
wafer sizes are not expected to change until 2020 due to the significant investment required
to upgrade fab lines.

Figure 2.4 (data from NVidia), shows the cost of transistors for different technology
nodes. It shows limited cost benefit after scaling past the 28nm technology node (curves

normalized to 28nm). Smaller feature sizes will no longer provide an economic benefit for

12

fab-less semiconductor companies. This heralds the end of economic scaling and thus the

breakdown of Moore’s Law.

Scaling via specialization: = With the imminent collapse of Moore’s Law scaling, the
semiconductor industry has begun efforts to compensate. Without either Dennard or Moore’s
scaling, there is a risk that the industry will stagnate. While a driving force for consolidation,
i.e fewer companies can afford fabs, it also leads to increased research in technologies
which offer more scaling at the micro-architecture level. It is expected that companies will
increasingly adopt solutions which provide performance by the use of innovative hardware
architectures. One such example is the success of the GPGPU computation. The massively
parallel processing power of the GPU can only be harnessed by a specific programming
model coupled with the target architecture. Furthermore, application and domain-specific
accelerators become more attractive as it is able to provide the performance improvement

no longer provided by device technology scaling, i.e increase in transistor density.

10000

) Perfo‘rman‘ce/P‘erform‘ance‘of 386 3 |
& & FO4 of386/FO4 i
‘ : : ‘ : : A ® O 3
1000}~ S S S e - RER SRS s
: : : : 3 : :
g
100p @R BTy
o gef"e g 8 e
3 . o ¢ ‘
: . @ ‘ <> f f : :
: ®g 9 : : ¢ 3 : : : :
10 e @ QWQ """" e O S R S e e e s
| | ‘ s A | | | | |
% JOUE AR I
g 0008
A0 A0 QQ,‘?) o® Q"3)‘.) qu.) 0:\‘?3 0\‘5 QQQ) P P @

Feature size (um)

Figure 2.5: Performance increase more than technology scaling [44]

Figure 2.5 shows the normalized performance of microprocessors since Intel’s 80386.
Blue circles indicate normalized overall performance while the orange diamonds indicate
the FO4 delay. The FO4 delay (process-dependent delay metric used in digital CMOS
technologies) serves as a proxy for Dennard’s transistor performance scaling. From the
trends indicated on the graph, we see that the actual performance improvement outstrips
the predicted performance from Dennard’s scaling law. A significant amount of performance
improvement is afforded by micro-architecture innovations, also known as architectural

scaling. Computer architects have put the extra transistors afforded by Moore’s law to use

13

in the design of subsystems such as superscalar and out-of-order (OOOQ) execution, cache
memory hierarchies and specialized units such as vector extensions. These improvements
target different characteristics of modern workloads such as the presence of instruction level
parallelism (ILP) using superscalar and OOO execution. Data level parallelism is targeted
using Single Instruction Multiple Data (SIMD) units, which introduce vector extensions to
the ISA which the compiler or programmer can use while implementing their algorithms.
These are fundamental advances which have provided performance increase over and above
device scaling. In the future, computer architects may have to work with the assumption
that no performance improvements will be from device scaling, and it is architectural scaling
which carries the burden. As the blue squares show how processor performance scaled
over time, the orange diamonds indicate how much of it came from device scaling. This
graph is derived from [44]. Overall, the figure indicates the need for an order of magnitude

improvement to be derived from architectural scaling due to the loss of device scaling.

2.1 Application Specific Hardware Specialization

Hardware accelerators are increasingly being adopted to mitigate the loss of device scaling.
The term accelerator is loosely defined and alludes to any specialized architecture which
provides a performance and/or energy efficiency benefit when compared to execution on a
general purpose CPU. For specialized circuitry, often orders of magnitude greater performance
can be obtained as indicated by research presented in [185, 70]. Compared to general-
purpose processors, customized processors like DSPs deliver from 10x to 100x more energy
efficiency, while dedicated application-specific accelerators (ASICs) are 1000x more energy
efficient [185].

Customized architectures composed of CPUs, GPUs, and accelerators are already seen in
mobile systems and are beginning to emerge in servers and desktops. Analysis of die photos
from three generations of Apple’s SoCs: A6 (iPhone 5), A7 (iPhone 5S), and A8 (iPhone
6), shows that more than half of the die area is dedicated to non-CPU, non-GPU blocks
Most of these blocks are application-specific hardware accelerators. Customized hardware
accelerators, implemented as application specific integrated circuits (ASICs) efficiently
perform key kernel computations within larger applications. However, flexibility is sacrificed.
After fabrication, an ASIC’s custom datapath cannot be modified to meet new requirements.
ASICs also have high non-recurring engineering (NRE) costs associated with manufacturing
and long development cycles.

Heterogeneous systems combine general purpose processing cores with diverse character-
istics. Architectures such as the ARM big.LITTLE target energy efficient execution based
on workload characteristics. They target sequential sections of code with large OOO cores
which can extract finer grain ILP. Many small cores are used for parallel portions of the

workload as indicated by the programmer. Additionally, GPGPU accelerators have become

14

ubiquitous. Modern artificial intelligence methods have become increasingly reliant on neural
architectures. Neural architectures are data parallel with a large amount of floating point
computations. NVidia has made great strides in tailored GPGPU accelerators for neural
networks.

A radical approach to the heterogeneous system model is the integration of reconfigurable
FPGAs. IBM has developed CAPI (Coherent Accelerator Peripheral Interface) for the Power8
architecture. This allows for the addition of reconfigurable FPGA based accelerators over
PCle with ease. The CAPI model allows for shared virtual memory between the accelerator
and the host without complicated DMA transfers. Intel has announced plans to release
a Xeon server with an FPGA on chip (HARP). The Intel HARP project arises from the
Altera’s acquisition by Intel. It allows for even tighter integration of accelerators with the
CPU. The HARP architecture utilizes QPI (Intel Quick Path Interconnect) to access the
FPGA. The FPGA accelerator is also provided coherent access to memory. Similar SoCs
have been previously developed by Altera and Xilinx which couple ARM cores with FPGAs
on a coherent interconnect via the ACP (Accelerator Coherence Port).

While academia has explored coarse grain reconfigurable architectures (CGRAs) practical
reconfigurable accelerators available today are primarily FPGAs. FPGAs allow engineers
to design custom circuitry after manufacturing. FPGAs are configured using a hardware
description language such as Verilog. They contain arrays of programmable logic blocks and
interconnects to route data. Historically, FPGAs were primarily used in telecommunications
and networking. In recent times, they are found everywhere from the automobiles to
mobile phones. The primary benefit of a hardware accelerator is the elimination of core
frontend costs incurred in a traditional OOO processor. Research indicates that the more
than 40% of the power consumption in an OOO frontend is due to instruction fetch and
control, considering pipeline registers as well this can be as high as 60% [70]. The energy
consumed in the execution per operation is also generally lower than that of an OOO core.
Furthermore there are many optimizations available such as the bitwidth reduction and

fusion of operations when targeting an FPGA.

2.2 Challenges

With the flexibility afforded by reconfigurable FPGA accelerators come a host of challenges
which need to be addressed to extract performance while retaining the energy benefits
of specialized computation. In this section we enumerate and outline the challenges of

harnessing hardware accelerators.

2.2.1 Challenge 1: What to specialize?

The foremost challenge is what should developers target for specialization? For the most

part engineers have relied on domain experts to indicate what parts of an algorithm are

15

beneficial and amenable. This has been the de facto approach where a large non-recurring
investment is made in terms of man-hours to understand and rewrite the algorithm to target
a particular FPGA accelerator. Often such an effort will consist of multi-person teams over
a project which lasts a few months. However, with the pressing need for more workloads
to be accelerated, few companies can afford such a long turn around time on accelerator
synthesis. An additional concern is the rate of evolution of the algorithm itself. This
particular concern was discussed at length when Microsoft offloaded part of their machine
learning for Bing search to FPGAs (Catapult [137]). Rapid evolution of the algorithm meant
that the hardware design often lagged behind the software implementation. The inherent
challenge is to eliminate the reliance on expert guidance while building accelerators. To

address the question of what to specialize, two aspects must be taken into consideration.

a) Amenability — FPGA accelerators are not yet first class citizens in the SoC. There
are many operations with well defined semantics on CPUs which are undefined on FPGAs.
A simple example is the usage of exceptions. While software has well defined interfaces
to halt and deal with exceptions, such support is not present on the FPGA. Furthermore,
whether such a construct is feasible to implement on an FPGA is questionable. There are
more examples such as dynamic memory allocation, runtime shared library invocation, etc
which software developers take for granted but are difficult to mimic on an FPGA. Thus
existing implementations of algorithms cannot be blindly used as templates to generate
FPGA accelerators. The standard approach to understand what parts of the algorithm
are amenable is to refer to an expert. Engineers often use statistical profilers (eg. gprof)
to understand which parts of a program consume the largest amount of time. With this
information they can then dissect the program to separate out the parts which are amenable
from those that are not. For automated analyses, the key to assessing amenability is the
choice of abstraction. Having a robust abstraction which represents the workload at a fine

granularity lends scalability to automated analyses.

b) Profitability — The second and arguably more critical aspect of what to accelerate
is to assess the profitability of offloading computation to a target accelerator. There are
inherent overheads to any heterogeneous execution model when execution migrates from
one substrate to another. For example, the overheads of kickstarting computation on an
FPGA need to be understood in order to assess profitability. Often, benefits of fine grained
acceleration can be nullified by associated overheads. The overheads themselves can be
categorised as system dependent and workload dependent. System dependent overheads are
those which are inherent to the offload model adopted by the SoC. For example, IBM CAPI
simplifies the address translation and memory interface but latency of each access is in the
order of 1000s of CPU cycles due to the PCle interconnect. SoCs from Altera and Xilinx do

not offer address translation but do have coherent access to the last level of cache in the

16

order of 20-50 cycles. Finally the key to understanding the workload overheads is the use of
a proper abstraction. Given an abstraction, automated analyses can model the potential

gain from offloading work to the accelerator.

2.2.2 Challenge 2: How to specialize?

It is imperative that we clearly distinguish the how from the what. It is easy to redefine what
based on how a particular algorithm is accelerated. To demonstrate this potential pitfall,
consider the following example. If a high level synthesis tool does not support dynamic
memory allocation, it may discard any program region which has such operations. Thus
the inability of an automated tool to target operations to run on an FPGA may determine
what should be targeted at a coarser granularity. Once again the selection of a proper
abstraction is paramount to achieving a clean partitioning of program regions to offload to a

reconfigurable accelerator.

a) Compiler Analysis — There is a paucity of research on appropriate abstractions that
allow for flexible representations of work to be offloaded to a target accelerator. Prior work
such as Spatial Computation [29] and BERET [68] have repurposed Hyperblocks [114] and
Superblocks [117] respectively. Both these abstractions were originally designed for VLIW
processors. Often these heuristic based abstractions yield poor results. See Section 4.2.2
for more details. Meanwhile standard compiler research has made great progress. There
are many robust building blocks available to the developer to work with. Yet, there are
no techniques that target accelerators which take advantage of recent advances in compiler
techniques and program analysis. Another potential application of compiler analyses is the
detection of coarse grain parallelism. All the tools available rely on programmer annotations
such as OpenMP pragmas or pthread invocations. There is a rich body of auto parallelization
compiler analyses [57, 86, 103] which can be leveraged for the detection of coarse grain

parallelism.

b) High Level Synthesis — This has been an open problem for more than 20 years.
Xilinx supports high level synthesis, i.e C/C++ to Verilog, using compiler technology
acquired from Autopilot. Their current generation product is built on the LLVM compiler
infrastructure and supports programmer annotations to ascertain target functions to be
synthesised in an FPGA SoC use case. There are also some notable open source projects
available such as Bambu and LegUp. Bambu [134] is based on gcc whereas LegUp [32] is
based on LLVM. These tools represent the cutting edge in terms of flexibility in high level
synthesis from academia and industry. Yet they are unable to deal with simple workloads
derived from benchmark suites such as SPEC2006. This is primarily due to the presence
of “unacceleratable” features as determined by the tool. Altera has adopted an alternate

view with the use of the OpenCL programming model. The OpenCL programming model

17

is originally intended for GPGPU applications. They allow for the specification of large
amounts of data parallel work in the form of kernels. These kernels are allowed to perform
only a restricted set of operations. This ensures that the kernels can be mapped onto the
FPGA accelerator with ease. The data parallel and simple nature of the work offloaded
makes it easy to precompute the data which needs to be fetched from memory. Having a
parameterizable model, Altera is able to target different FPGA accelerator targets. While
the OpenCL model generalizes well, it is unclear as to what benefits an FPGA provides
over a GPGPU. The key segment where FPGAs excel, workloads with large heterogeneous

parallelism, cannot be expressed in the OpenCL model.

2.2.3 Challenge 3: Integration

A third significant challenge for FPGA hardware accelerators is system integration. As
alluded to previously in this section, vendors have built systems which have different
tradeoffs. IBM has deployed CAPI with the Power8 architecture. This allows for PCle based
accelerators to be easily programmed using a unified shared memory model between the
host and the FPGA. The system however incurs the latency of the PCle bus for accesses
which are routed to host memory. Therefore, while they are able to support larger FPGA
chips with more onboard DRAM (1 GB) than on-chip FPGA solutions, they require careful
programming to extract performance. The Altera Cyclone V SoC and Xilinx Zynq platforms
couple ARM host cores with on-chip (SoC) FPGAs. They offer smaller FPGAs with lower
onboard DRAM (64-256MB) but fast access to host memory. They do not however offer
address translation hardware. The Intel HARP system couples Xeon cores with an Altera
Arria 10 FPGA on a single chip. It performs hardware address translation and includes a
64K coherent local cache for the FPGA. Since each of these design choices has significant
impact on the offload model, automated analyses can afford to quickly explore the design
space in a short period of time. The following issues need to be considered when integrating

an accelerator with the rest of the system.

a) Distributed Execution — With accelerated workloads on heterogeneous systems, the
execution of the workload migrates back and forth between the accelerator and the host. The
execution model of the accelerator can be synchronous or asynchronous. In the synchronous
model the host is stalled until accelerator execution ends. The execution model is not set in
stone, rather determined by the flexibility of the synthesis tool and structure of the workload.
With HLS tools like LegUp, the accelerator invocation is synchronous whereas for Vivado
the accelerator invocations may target either paradigm. Further complications arise in the

presence of multiple accelerators which need to coordinate with each other.

b) Data Movement — It is unlikely that an accelerator can perform a large amount of

useful work without a robust memory interface. Computation intensive accelerators such as

18

those which target cryptographic applications may have less performance oriented interfaces
for data fetch. Others such as DySER [64] may eschew memory operations altogether in the
accelerator. Instead these memory operations are executed from the CPU. However, with
increasing focus on “Big Data”, it is likely that more data-centric workloads will be of interest
to consumers. Traditional data movement to peripheral devices including accelerators is
orchestrated using DMA (Direct Memory Access). These interfaces are cumbersome and
require effort from the programmers to use. They need to ensure enough data is gathered
and shipped to the accelerator to perform useful work. Often optimizations such as “double
buffering” are required to keep the accelerator busy. Recent research work has highlighted the
drawbacks of DMA based approaches [95]. The use of pull based data fetch (automatically
performed by coherence protocols) is often preferred to push based DMA interfaces. A
further concern is the granularity of data movement. A pertinent example is the usage of
128B cache lines on GPGPU L1 caches. This is larger than the standard cache line size
found on general purpose CPU cores (64B). Workloads may have distinct access patterns
where the full data present in the cache line may not be useful to fetch. For such cases data

movement at a finer granularity offer significant reduction in energy consumption.

2.3 Thesis Contributions

This thesis summarizes work done at a time when the semiconductor industry is undergoing
a fundamental shift to cope with the breakdown of Dennard and Moore’s Law scaling. With
the breakdown of device scaling, it is the burden of architectural scaling to provide the
performance and energy improvements expected with the passage of time. The novelty of
this dissertation lies in the fact that it does not attempt to target a particular accelerator
architecture. It addresses the overall challenges of defining what to accelerate without the
constraints applied by prior works which consider how to accelerate. We borrow abstractions
from program analysis and build upon them to suit the needs of hardware specialization.
Finally, we describe hardware specialization for data movement. In this section, we enumerate

the contributions and potential impact of the work.

Contributions

1. Profiling for Specialization: We advocate path profiling [15] as a low overhead and
precise methodology to guide analyses. Path profiling offers an alternative to coarser
grained sampling based profilers as well as finer grained instruction granularity profilers.
We show that finer grained analyses at the path granularity yields different results
from coarser grained analyses. This has implications with respect to the specialized
region and/or the specialization methodology. We have released the LLVM based
implementation as free and open source software.

Impact: Adopting our methodology will allow researchers to study the characteristics

19

of large workloads without sacrificing precision. The tools released can also be used
to provide rich profile information to guide compiler transformations. Additionally,
Path profiles can be used as templates for the generation of micro-benchmarks which
replicate the recurrent behaviour for stress testing architectures.

Release: github.com/sfu-arch/epp

. Accelerator Benchmarking: To enable computer architects to study recurring program
behaviour at the path granularity, we have assembled and released a workload suite for
accelerators. This suite is derived from well known existing microprocessor benchmarks.
With our released benchmarks, computer architects can rest easy knowing that they
are targeting regions which are a) representative of the workload they are derived
from, b) allow comparison of different accelerator architectures and c) are specializable
(contain no accelerator unfriendly program features).

Impact: The workload suite is released in a convenient package to encourage adoption.
It includes workloads of significant complexity previously not targeted by accelerator
research.

Release: github.com/sfu-arch/pdws

. Program Abstraction for Accelerators: We define a new program abstraction for
hardware accelerators based on the program paths. They abstraction allows for the
program to be summarized as speculative, single-entry single-exit regions. Control
flow is minimized and opportunities for optimizations are increased. The constructed
regions can be tuned for available accelerator resources as well as features. We provide
a reference implementation based on LLVM for researchers to use.

Impact: We present an abstraction tailored particularly for accelerators. Using this
abstraction eases target accelerator codegen while ensuring program coverage. Using
this abstraction, we have shown high level synthesis tools (LegUp [32]) can work where
they previously failed.

Release: github.com/sfu-arch/needle

. Software Speculation: We develop a framework for the construction of software
speculation frames. These allow for the removal of control flow, i.e branches are
converted into control flow assertions. With this framework, arbitrary control flow
segments can be outlined for further analyses or target code generation. Simple
deoptimization strategies ensure correct program execution if a control flow assertion
fails. We release the implementation as free and open source software.

Impact: The simplification of control flow specialized regions allows for techniques
such as sequentially dependent macro operation fusion [154] and the simplification of
hardware interfaces to memory for specialized program regions.

Release: github.com/sfu-arch/needle

20

5. Coherence Protocols for Accelerators: We identify the issues of traditional DMA

based approaches to data movement in the context of many specialized regions in
modern workloads. We develop and evaluate a timestamp based coherence protocol
for localized data movement amongst specialized units. We show significant energy
savings as well as performance improvements for workloads which have fine grained
data sharing. Additionally, our proposed coherence protocol allows for performance
improvements while simplifying the programming model.
Impact: Based on our observations, researchers have studied opportunities for
pipelined execution of kernels [73], efficient synchronization [156] and selective caching
on GPUs [1]. Our work has also influenced research in the design of SoC interfaces [153]
and sandboxing of accelerators [129].

Release: github.com/sfu-arch/fusion

6. Adaptive Granularity Caching: We develop mechanisms to support variable granularity
caching and show that often workloads fetch data which is not used in the lifetime of
a cache line. Combining support for variable granularity with accurate prediction of
cache line granularity, we show performance and energy improvements across a wide
range of workloads.
Impact: With variable granularity caching enabled by our work, researchers have
applied similar methods to DRAM caches [87, 88, 67] and GPGPU caches [8, 16].
Additionally, variable granularity caching enables cache compression by decoupling
the compression from storage concerns. Coherence protocols [186, 38] and prefetching
mechanisms [173, 69] also leverage our work.

Release: github.com/sfu-arch/amoeba

2.4 Relationship to published work

This dissertation includes work published at four peer reviewed conferences. In this section

we detail the venues where the individual works have been presented.

IISWC 2016 — What to specialize? [96] Path based characterization as means to
assess what to specialize was previously published at the IEEE International Symposium
on Workload Characterization with co-authors Nick Sumner and Arrvindh Shriraman. A

workload suite derived from microprocessor benchmarks was also released.

HPCA 2017 — How to specialize? [97] Program abstractions for specialization and
their evaluation has been accepted for publication at the 23" IEEE Symposium on High
Performance Computer Architecture with co-authors Nick Sumner, Viji Srinivasan, Steven

Margerm and Arrvindh Shriraman.

21

ISCA 2015 — Integration — Accelerator Coherence [94] The Fusion coherence
protocol tailored to mitigate redundant data movement was previously published at the 427¢
International Symposium on Computer Architecture with co-authors Arrvindh Shriraman

and Naveen Vedula.

MICRO 2012 — Integration — Adaptive Granularity Caching [99] The mechanisms
for adaptive granularity caching with fetch size prediction was previously published at the
45" IEEE/ACM International Symposium on Microarchitecture with co-authors Hongzhou
Zhao, Arrvindh Shriraman, Eric Matthews, Sandhya Dwarkadas and Lesley Shannon.

22

Chapter 3

What to specialize — Extracting
Accelerator Benchmarks from

Microprocessor Benchmarks

This chapter presents a characterization of microprocessor workloads with the goal of
discerning their acceleration potential. The characterization is performed at the granularity
of program paths [15]. This is a new facet to existing dynamic and static approaches. We have
shown how this can be done in a scalable manner via lightweight dynamic instrumentation
and static reconstruction. Our results show that within a workload, paths have disparate
characteristics. Summarized characteristics at coarser granularities blend these characteristics
and may draw imprecise conclusions. We derive a workload suite to assist accelerator

architects by isolating the dominant paths within a workload for easier analysis.

3.1 Introduction

The objective in accelerators is typically to design a fixed-function or programmable hardware
that provides the necessary support for a given program behavior with the lowest possible
overhead (area/power). In contrast, a general-purpose processor tries to maximize perfor-
mance across all applications for a given cost. It is imperative that the computer architects
have access to the specific code regions within existing target applications so that accelerators
can be designed with confidence. It is imperative for designers to understand not just the
statistical characteristics and microarchitectural behavior [48] of the specific applications but
also the precise functionality and semantics of code when designing the custom hardware.
By design, accelerators are expected to provide functionality and performance only for a
narrow phase of the application.

However, many critical real world applications were developed for CPUs and do not

have explicitly marked phases of the program on which computer architects and designers

23

can focus the accelerator design effort. The absence of such real world workloads makes it
extremely challenging to reliably develop accelerators hoping that they will be used in existing
or future applications. Unfortunately, there have not been good benchmark suites. Current
accelerator-specific suites [142] are essentially important kernels from libraries in mature
application domains, but real world workloads are significantly more complex. By design,
different fixed-domain and fixed-function accelerator proposals tend to pick algorithms and
kernels from a specific application domain (e.g., machine learning or databases). It is not
clear how to compare other accelerator architectures that may target the same code region
or what code regions within a workload different accelerators should even target.

Benchmarking is a key tool for assessing computer systems. A core benefit of benchmarks
is to enable comparing design alternatives during research or development and evaluating
power /performance tradeoffs. Inflection points in computing systems (e.g., multicore, cloud
computing) have resulted in new benchmark suites (e.g., PARSEC [20], CLOUDSUITE [53)).
The pitfall and limitation is that these benchmarks may not be representative of real-life
applications and may be very different from the application(s) of interest. An alternative
would be to use real-life applications of interest. Unfortunately, real-life applications are very
often challenging to set up with the need for mature compiler, operating system and library
stacks (typically not available with hardware accelerators). This introduces a chicken-and-egg
problem: designing accelerators suitable for applications requires the applications to convey
precisely what function needs to be accelerated in the first place. We take an alternative
approach. Instead of developing a new benchmark suite for hardware acceleration, we
highlight specific code regions within existing applications that accelerators should target.

Our objective is to explore acceleration opportunities in existing CPU-based applications
and make it possible for architects and designers to rapidly explore behaviors to specialize and
accelerate. We ensure that the accelerators developed for the demarcated regions within each
application can be directly deployed within the original application. In order to achieve this
we have employed precise analysis of the execution paths [15] and extracted the frequently
executed path into a separate function within the original program. Converse to prior work
that extracted only key performance characteristics, we extract the frequently executed
code region paths that an accelerator should target. We have extracted the acceleratable
program paths embedded amongst many other unimportant or unacceleratable code regions
into functions that accelerator compilers can target or use for simulation studies (e.g., Pin
instrumentation [111]). We demonstrate that extracting such frequently executed paths in
many cases requires carefully navigating across the control flow and precisely characterizing
the biases of the control flow.

The approach that we propose overcomes an important shortcoming of existing accelerator
benchmarks — they only seek to retain the memory access patterns and control flow behavior
similar to the workload they represent [89]. Similarity is typically characterized using

statistics such as branch biases or cache miss rates, which may suffice for studying micro-

24

Microprocessor Accelerator

Benchmark Hot Paths Benchmark
CPU Paths Acc. Path

— Program analysis Auto Path — |
— | (LLVM and dynamic) extraction —

=| > > | = aeepm
e — — |
— — =1

Figure 3.1: Using program analysis to demarcate and extract code paths [15] for accelerators
within CPU programs.

architectural resource characteristics (e.g., branch prediction or cache architectures). While
benchmarks have sufficed to study general-purpose microprocessor characteristics, they
are too imprecise to indicate the specific code behavior that should be accelerated. We
have extracted the specific code paths and ensure that our extracted paths i) replicate
the functional semantics of the original application region ii) include the control flow of
the original program, and iii) mimic the memory access behaviour of the original program.

Figure 3.1 illustrates our overall approach.

3.2 Motivation & Methodology

Workloads often exhibit varied behavior internally. For instance, a program may have
different phases of behavior representing initialization, computation, or cleanup. These
phases perform different tasks and, as a result, exhibit different characteristics. However,
analyzing an entire workload at once blends the characteristics of these different tasks
together, obscuring the patterns in behavior of any one specific task. When exploring which
behaviors in a workload to accelerate, these blended results may make it harder to tease out
the characteristics of a particular program segment that capture desirable or undesirable

behavior.

3.2.1 Acyclic Program Paths [15]

At a fine granularity of program segment, different acyclic paths in a program may exhibit
different characteristics. A path is simply a sequence of instructions in a program. An
acyclic path is a sequence of instructions that starts either at the beginning of a program
or immediately after a back edge in a control flow graph and terminates at the end of a
program or at the next back edge. Intuitively, acyclic paths divide the behavior of a program
into loop free segments. For example, in Fig. 3.2, 1234 is an acyclic path that represents

entering a loop starting at 2 but not revisiting 2. The acyclic path 234 represents a single

25

Back Edge
7 Acyclic Paths
s 1234
‘ 1235
234
235

Figure 3.2: Acyclic paths in a control flow graph

iteration of the loop starting at 2, while the acyclic path 235 exits the loop. A function in
a program comprises its constituent acyclic paths as well as any back edges that connect
them. Thus, characterizing a workload’s behavior at the function granularity will combine
characteristics of all constituent paths within that function.

Some paths may be more beneficial to accelerate than others. For instance, when most of
the computation in a workload happens along one path, it may be more fruitful to accelerate
that path than an alternative. Indeed, we have found that the real world behavior of
workloads can be highly biased toward some acyclic paths over others. Fig. 3.3 examines the
relative coverage (in terms of dynamically executed instructions) of different paths for the
hottest functions in workloads as determined by gperftools [63]. It presents the relative
coverage of a workload provided by the five most frequently executed paths in the selected
function vs the coverage of the workload provided by all other paths in the function combined.
For most workloads, these five hottest acyclic paths are sufficient to cover the majority
of workload’s behavior. In many cases, the hottest path alone dominates the coverage.
Accelerating those particular paths can thus be more beneficial than accelerating others.
However, characterizing a workload at a coarser granularity, such as an entire function
or loop body, will blend the characteristics across paths, once again potentially obscuring
information that may help in making acceleration decisions. To overcome this problem,
workloads can be characterized along acyclic paths in order to capture program behaviors
within these fine grained program segments.

To examine the impact of characterizing paths of workloads, we first identify the most
frequently executed acyclic paths within each workload. We then statically reconstruct each
of these paths into independent functions and collect machine independent characteristics
for each selected path in each workload. This section discusses the benchmarks that we used

as well as our approach for selecting, reconstructing, and characterizing program paths.

26

B Ist 1 2nd [] 3rd [4th W 5th [Others

1.0 - =
I L = =
| =

0.8] | . N -

S aln

@ 0.6 ||

3

2 B - m

00.4 N L]

© =1 1

0.2 = - ol

= [— I
= = -

0.0 R = HTG oo HohggoMdmET =
o, O O o oMM LTSV
-ﬁQ%U@“amg.oUgahmgﬁ‘gz,qomgmgﬁxwﬁg
CD> Eshgﬁmﬁ O>E®©-—' oL gL agmo% o
o SR E o8 B NT AR s S8 ECRES
JEORD 0 g PR8N ERRAEN O RN NELZERS 59 L T a
© —® 29 NG oMo DN ©Q = O ¢, 0D
— — N 0 < < LDm .mwﬂ ('U'-d s&-qL'UJLA
— 00— O < n o o © = o = © 82

- — tvdgnYg a9 w »n
<f

Figure 3.3: Path Bias

3.2.2 Selecting Paths to Characterize

Identifying frequently executed paths is an important part of many analyses for both
architecture and for software. The classic approach to addressing this problem is to use
the efficient path profiling technique developed by Ball and Larus [15]. This technique
instruments a program to produce a dynamic profile as it runs. The instrumentation process
first decomposes the control flow graph of a function into acyclic paths and assigns each path
a unique integer id in the range from 0 to the total number of paths. Next, the program
is instrumented so that the id for a path is computed as that path executes within the
program, and the count or frequency of a path is incremented once the end of the path is
reached. The end result of running an instrumented program is a count of how many times
each acyclic path through a function is executed.

Efficient path profiling provides the foundation for our approach to identifying which
paths inside a workload to characterize. For each workload in our benchmark suite, we select
the 5 most frequently executed acyclic paths through the workload. Note, however, that the
default efficient path profiling algorithm does not identify the frequencies of paths through
an entire program, rather, it identifies the frequencies of paths through individual functions.
Thus, we must adapt path profiling in order to profile acyclic paths at the program level.

In order to profile acyclic paths at the program level, we merge the control flow graphs

of the entire program into a single function. We perform this by running an aggressive

27

inlining pass on the LLVM intermediate representation (IR) of a workload. This aggressive
optimization performs function inlining at every possible call site within the IR. The impact
of compiler optimizations on profiling is discussed in Section 3.2.3.

With inlining completed, efficient path profiling again enables us to identify the most
frequently executed paths in the entire program. However, inlining introduces additional
engineering burdens that must first be addressed. In particular, the number of acyclic paths
through an entire program is larger than the number of paths through just one function
within a program. As a result of inlining, the total number of paths may not be representable
as a single integer during the profiling process. Column C1 in Table 3.1 shows the number
of bits required to represent all the paths for a particular workload.

After performing path profiling on the fully inlined version of the program, we select the
top five most frequently executed paths from each workload. Recursive function calls and
calls through function pointers cannot necessarily be inlined. These constructs partition the
program into disjoint functions after aggressive inlining. In these cases, we select the hottest

of the remaining functions using gperftools.

3.2.3 Extracting identified paths

After identifying the most frequently executed paths inside each workload, we extracted
each such path into its own function for easier, more isolated study. For each path, we
created a new function containing the same sequence of instructions as in the original path.
A branch instruction in the middle of the path can force program execution to deviate
from the path once it has started. When this happens, the function returns early, and the
original version of the program is executed. Thus, we call these exit guards. All incoming
dependencies from live-ins inside the path are hoisted to arguments of the function, while
all outgoing dependencies are returned through a struct when the function completes. All
store instructions are recorded to an undo buffer that is replayed when the path exits early.
After extracting each path into its own function, we once again run -02 optimizations to
remove any unnecessary operations and simplify the path specific behavior. By extracting
these paths into their own functions, we have created durable artifacts that may be reused

by other analyses.

Impact of compiler optimizations on profiling: Compiler optimization applied prior
to path identification and profiling can alter observed characteristics. Herein we focus on
optimization applied in the optimizer or “middle-end” of a three pass compiler. These
optimizations are generic in nature, i.e not tied to any particular source language or target
architecture. We find that there is no correlation between the sizes of paths extracted with
the level optimizations applied, i.e 01, 02 and 03. The median size of paths profiled across
applications remained the same. The instruction mix varied based on the optimizations

applied. For example, some IR operations are only introduced by more aggressive optimiza-

28

tions such as InstCombine, LLVM’s peephole optimizer. Loop specific optimizations such as
unrolling, interchange, rotation and independent code motion all affect the instruction mix
of hot paths. Furthermore, optimization passes are often scheduled multiple times (phase
ordering) to take advantage of changes introduced by other passes. For example, Loop
Independent Code Motion is scheduled 3x at 02. Phase ordering of compiler passes is fixed
by standard compilers (GCC and LLVM) without regard to the input program. Optimal
phase ordering is undecidable [167]. In our methodology, we use 02 optimizations prior to
profiling and identification. Prior work [40] has shown the impact of 03 optimizations over
02 is often indistinguishable from noise.

The methodology we adopt is target independent yet there are target specific opti-
mizations or architectural features which may reduce the overheads of profiling and path
identification; our current implementation imposes a 20-40% runtime overhead. For example,
native support for 128 bit arithmetic will reduce the overhead of 128 bit emulation using 64
bit registers; required for path identification at runtime. Architectural extensions such as

Intel Processor Trace [85] may also provide low overhead profiling alternatives.

3.2.4 Metrics & ISA-independence

We base our workload metrics upon prior work by Shao [151]. In particular, we examine the
unique opcodes, memory address entropy, and the number of guards or unique branches.
We also extend their metrics into analogues at the path granularity. This includes path
predictability, an analogue of branch entropy, as well as the average number of read and write
operations across extracted paths for a workload, which together provide an upper bound to
the memory footprint. Finally, we add metrics that are more relevant for analyzing acyclic
paths. This includes the number of live in and live out values to the path, the number of ¢
operations removed when extracting the path from the original control flow graph, and the
total number of static instructions in the path. More details are provided in Section 3.3.2.

Our analysis operates on the LLVM Intermediate Representation (IR) used in the middle
end. By utilizing LLVM IR as our representation for characterization, we are able to draw
conclusions that better reflect the intrinsic semantics of the original program. Prior work
has shown this to be highly desirable [151].

3.2.5 Characterizing at the Path Level

Static characteristics of the extracted paths are computed directly from their corresponding
functions. Applying optimizations again after extracting each path into its own function
produces characteristics that are more reflective of that particular path’s behavior. Any
computation used only on branches that exit from the path is removed, and the remaining

computation is simplified to more accurately reflect the behavior of just the path of interest.

29

Dynamic characteristics of the path, namely the addresses of loads and stores to heap
allocated memory, are computed by re-executing the entire workload with the path of interest
outlined into its respective extracted function. The addresses of heap accesses are recorded
using Pin for further characterization via, e.g., memory entropy. Stack accesses are ignored,
as they reflect more architectural dependent characteristics rather than intrinsic behaviors

of the workloads of interest.

3.2.6 Benchmarks

We include 29 workloads from SPEC2000, SPEC2006, PERFECT [17] and PARSEC [21]. !
All benchmarks were compiled with the LLVM C and C++ compiler, Clang (version 3.8), in
order to generate LLVM bitcode for instrumentation and analysis. We perform aggressive
loop unrolling (4x) with an increased threshold (2x) and allow partial unrolling. Both
before and after instrumentation, all workloads were optimized at the level of -02 with
vectorization disabled. Executable versions of the extracted workloads were then compiled
for X86-64 using LLVM 3.8.

3.3 Characterization

This section highlights the disparate behaviour of workloads along frequently executed acyclic
paths. Our approach is in contrast to prior work [151, 181], which examines workloads as a
whole or at a function granularity. We find that considering paths as the granularity for
characterization yields insightful information for specialization. We describe our methodology
in § 3.2.

3.3.1 Making a case for Path-based Acceleration

The key to an effective offload abstraction is that it must concisely capture varied dynamic
phase behavior exhibited by a workload. For instance, a program may have phases of
behavior representing initialization, computation, or cleanup that exhibit different execution
characteristics. Analyzing an entire workload at once blends the characteristics of these
different tasks together, obscuring the patterns in behavior that should be accelerated.
When exploring which behaviors in a workload to accelerate, these blended results may
make it harder to tease out the characteristics of a particular program segment that capture
desirable or undesirable behavior. We show that paths executed by even a single program
exhibit diverse characteristics and are a natural fit for specialization. A path is simply a
sequence of dynamic instructions in a program. Intuitively, acyclic paths divide the behavior

of a program into loop free segments. A function in a program comprises its constituent

"We drop benchmark programs where the selected function contains language features unsuitable for an
accelerator: e.g.,setjmp and longjmp in 471.omnetpp and C++ exceptions 447.dealll in 483.xalancbmk.

30

[INT = FP 1 MEM

1.0 85% 87% 100% 51% 26%
£ gl mRlE| g |=R|R| B ®RR] 5| |=elE |3 =|RE
50.8 |E = £ - -
= @) @) (@) (@) (@)
= Z = Z. z z
90.6 2 i 2
= 7 7 73
1%

704
K L — -
60.2 -
(&)
o
©0.0
403.gcc 453.povray 470.1lbm fft-2d freqmine

Figure 3.4: Benefits of Path-Based Execution. We have only shown a few workloads due to
lack of space. Opcode histogram of paths within a function; % indicates exec coverage.

acyclic paths as well as any back edges that connect them. Thus, characterizing a workload’s
behavior at the function granularity will combine characteristics of all constituent paths,
obscuring overall behavior. Furthermore, some paths may be more beneficial to accelerate
than others. For instance, when most of the computation in a workload happens along
one path, it may be more fruitful to accelerate that path. Indeed, we have found that the

behavior of real workloads is highly biased with only a few hot paths.

31

Figure 3.5: Opcode Distribution. The 5 bars for each workload represent the top-5 hot paths (L-R), GEP

MEM

(%) Tonnqrusiq epoodo

suonrydems
NOWeaIls
1-ejd-aes
dxjoeq-1es
aurwbaj
wruepingj
P13

10119]

e e CGmMp
g B (0q
m = OT[0Ss3or[q
= § uudsTey
[a W) I E—— .
O ———
R e 1P9TU'P9Y
- e RG] elel7
Ay s
2 — TeWWY 9G¥
L == cod gy
= = B odos
- . & DUWERU T
e JW6TY
— e 00D COT
e e duzq 0¥
s ss1ed/6T
e E—] ©10 0 Q T
5 1 senbeggr
e Jow'[g]
T = EVU6LT
e B udag/T
m— d1z6$97
(@) 0 © <t (9] (@)
- o o o o o

pointer access.

The histogram in the Figure 3.4 demonstrates that the granularity of program analysis
and offload abstraction fundamentally biases what to include on the hardware accelerator.
The opcode distributions are shown for the top three hot paths in the most important
function the program, and the % indicates the total execution coverage achieved by the
paths. An example that motivates our approach is 470.lbm. The function breakdown
shows an overall bias for FP (60% of dynamic ops). However, we see that the only one
path executes floating point instructions. The remaining paths are dominated by MEM
operations, and they have no FP operations at alll An accelerator designed to offload each
path separately can be customized to support only the operations in that path. Another
interesting observation is that while 453.povray is an INT-heavy function (60%+ operations),
the hottest paths cover 87% of the dynamic execution yet consist less than 20% of INT
operations. Thus, some colder path with INT ops skews the bias of the function overall.
Finally, we highlight freqmine and gcc as cases where the overall function can be easily
segregated into paths that access memory and paths that compute, which permits the
synthesis of fully decoupled specialized accelerators. Another benefit of path-based regions
is saving of wasted work. Typical program regions tend to have multiple execution paths
due to control flow and the relative hotness of these paths is exhibited only by dynamic
execution profiles. Current HLS tools use a static approach to acceleration region formation

and conservatively offload multiple paths.

33

28

Table 3.1: Workload Characteristics

C1 : log2(NumPaths) C2 : Exe. Paths (M AXj5) C3 : Ins. C4 Cov. C5 : Guards C6 : Phi Nodes Removed
C7 : Live Vals C8 : Mem. Entropy (GEOMEAN;) C9 : Mem. RD C10 : Mem. WR C11 : Num Unique Opcodes

C1 c2| C3 C4 C5 C6 Ccr C8 co9 C10 C11
Workload Function Bits Exec | Size Cov% o ¢ VL M.S| M| M7t {Op}
164.gzip longest_match 10.4 813 70 59 7 11 6,6 16.0 4.2 0 11
175.vpr try_route 79.8 5394 | 332 2 25 10 96 146 | 26.8 6.2 138
179.art match 19.8 6082 | 174 11 4 3 3,3 10.0| 31.2 4 132
181.mcf price_out_impl 10.8 402 21 1 2 2 32 83 2.2 0 7.8
183.equake smvp 4.3 13 | 962 53 4 8 14,11 173 | 1314 84 10.6
186.crafty EvaluatePawns 62.7 37443 67 03 14 12 114 6.9 4.8 0 10.6
197.parser table_pointer 9.5 250 | 115 51 12 2 7,2 10.8 8.8 2.6 128
401.bzip2 BZ2_compressBlock 69.5 72561 | 784 05 71 6 9,8 18.3 | 100.8 4 11
403.gcc bitmap_operation 11.9 21 | 100 67 6 13 9,7 10.0 4.4 2 8
429.mcf price_out_impl 9.7 141 24 1 2 2 3,2 8.9 3.0 0 8.8
444 namd calc_pair_energy_fullelect 14.8 249 | 673 44 8§ 16 36,16 120 | 226 6.6 134
450.soplex vSolveUrightNoNZ 9.3 389 94 13 4 3 11,4 128 | 11.0 3.6 11.8
453.povray All_Sphere_Intersections 17.8 33377 | 331 8 10 10 15,12 6.0 | 16.6 58 17.6
456.hmmer P7Viterbi 13.8 36 | 490 71 8 7 20,2 16 | 472 20.2 9.2
458.sjeng gen 34.3 46971 95 05 13 4 3,3 54 6.8 0.8 10.6
464.h264ref dct_luma_16x16 26.5 88 | 433 19 25 25 14,5 83| 48.0 8 16
470.1bm LBM _performStreamCollide | 2.3 2| 479 96 2 1 3,2 19.6 | 26.0 19 10.7
482.sphinx3 vector_gautbl_eval_logs3 5.9 9| 154 4 4 4 138 14.0| 120 1.2 11.6
blackscholes BlkSchlsEqEuroNoDiv 22 34 | 314 08 32 52 94 2 0.4 0 20
bodytrack InsideError 18.8 64516 | 233 16 16 6 12,6 47| 16.0 6.4 152
dwtb3 dwtb3_row_transpose 5.9 12 | 122 37 4 1 9,2 19.0 9.8 54 126
ferret image_segment 19.0 31136 | 485 04 32 54 8,7 17.3 7.2 48 126
fft-2d fft 27.9 46 | 232 24 28 5 81 17.2 | 11.2 8 144
fluidanimate ComputeForces 23.1 39838 | 143 13 12 4 183 14.0| 13.8 1.2 14.8
freqmine conditional _pattern_base 8.4 133 94 13 4 3 6,8 10.2 8.0 3.6 9.4
sar-backp sar_backprojection 777 4616 | 127 01 13 9 12,7 84 4.2 38 222
sar-pfa-in sar_interpl 40 173 | 509 07 54 29 17,3 6.5 234 76 224
streamc pgain 114 74 | 249 41 16 3 116 136 | 274 0.6 13.6
swaptions HJM_Swaption_Blocking 72.5 11663 | 462 12 30 18 9,3 11.5 | 24.0 8 24.8

3.3.2 Characteristics Summary

Table 3.1 presents key characteristics for the workloads we study. Column C1 indicates the
number of bits required to encode all the static paths that a workload may execute. We see
a large variance across workloads depending on their nature. Some of the more complex
workloads we study are swaptions and 186.crafty with 73 and 63 bits required to enumerate
all paths. Path explosion is described in more detail in § 3.2. Often, floating point workloads
demonstrate less complex structure. Workloads such as 470.1lbm, 183.equake and 482.sphinx3
all require fewer than 5 bits to enumerate all paths.In comparison to the potential number
of paths in a workload, the actual number of unique paths executed is often low. Only 11
workloads have more than 1000 paths executed during program execution. 401.bzip2 has the
largest number of paths executed with over 72K. The median number of paths executed is
250. Across the workloads we study, there exists path bias, i.e few paths executed far more
frequently than others (see Figure 3.3).

Columns C3-C8 in Table 3.1 provide the maximum value of a particular characteristic
across the five most frequent paths of a workload. This data combined with the normalized
visualization presented in Figure 3.6 allows the reader to derive the absolute values for
each of the 143 paths (across 29 workloads) presented. The observations are discussed
in a workload centric manner in § 3.4. Herein, we discuss the path characteristics across

workloads and their implications on accelerator synthesis.

Path Length and Opcode Miz: Column C3 in Table 3.1 shows the size of the largest path for
each workload. The largest path overall was from 183.equake with 962 IR instructions. The
median size of the largest path from each workload across the suite was 232 instructions. 7
out of 29 workloads have fewer than 100 operations, and four workloads have paths with
more than 500 operations.

Prior work such as BERET [68], has sought to accelerate “Superblock” regions. Such
characterization is often limited by predetermined hardware constraints of the accelerator.
Our path based characterization yields different results as we do not have any preconceived
notion of the specialization target. Figure 3.5 shows the distribution of Opcodes across the
five frequent paths for each workload. We classify the opcodes as INT, FP, MEM and GEP.

GEP operations in the LLVM IR are a succinct representation of address generation
logic. They define, in a platform independent manner, the operations required to generate
a particular memory address prior to the access. Classifying GEPs separately allows us
to quantify “work” required to fetch data independent of the actual compute on the data.
Overall Figure 3.5 shows that across the frequent paths in a workload there may be significant
differences in their opcode mix. GEP and MEM operations tend to account for a significant

fraction of the work in the hot paths across workloads, on average 45% of the number of

35

operations. Only 49 of 143 paths have more compute (INT+FP) operations than memory
(GEP+MEM).

In some floating point workloads, amongst the top 5 paths, there exist paths with no
floating point operations at all. Workloads such as 444.namd, 470.1bm and blackscholes have
at least one or more frequent paths devoid of floating point operations.

Conversely, four of the top five paths in 175.vpr have floating point operations (5% of
total) on average. Similarly for dwt53, 7% of the operations across three of the top five paths
are floating point operations (primary datatype was integer — typedef int algPixel_t).

Another interesting observation is the presence of paths with only GEP operations or
GEP and MEM operations but no compute. 470.lbm is a workload with two paths that
only compute GEP expressions. One of the paths is the macro definition SWEEP_START. The

macro is defined shown in Listing 3.1.

Listing 3.1: Macro definition — 470.1bm

#define SWEEP_START(x1,y1l,z1,x2,y2,22) \
for(i = CALC_INDEX(x1l, yi1, z1, 0); \
i < CALC_INDEX(x2, y2, z2, 0); \

i += N_CELL_ENTRIES) {

[R

This particular case occurs in freqmine (2 paths) and 403.gcc as well. Column C11 in
Table 3.1 shows the average number of unique IR instructions that are present in the top
five paths. The number ranges from ~8 to 25 unique IR operations across the workloads.
Within workloads the variability is low. The total number of opcodes present in the IR is 64
(LLVM 3.8).

Branches, Guards and ¢: Column C4 in Table 3.1 shows the number of conditional branches
converted to guard checks for exiting the middle of a path. Guards are discussed in more
detail in § 3.2. The presented number is the maximum across the five frequent paths for
each workload. The largest paths, 401.bzip2 and sar-pfa-interpl have 71 and 54 guard
checks respectively. All other workloads have 32 or fewer guards, and 13 workloads have <10
guards. The largest “guard density” (guards divided by size) we find is 22% for 183.crafty.

¢’s in the LLVM IR are instructions that select incoming values based on the result
of control flow operations. ¢’s have a direct impact on the complexity of specialization as
observed in prior work [64, 127]. Reasoning about specialization along paths allows for ¢
simplification. The ¢’s can be resolved since the control flow is known a priori. This is
proportional to the number of branches removed (conditional and unconditional). Workload
behaviour determines the number of ¢’s required (and thus elided) at each branch.

The largest number of simplifications across 143 paths occur in ferret. Note that in this

case there is no path correspondence with the other metrics such as the path size. The

36

maximum number of ¢ simplifications may occur along different paths. Over 143 paths, the
average number of ¢’s simplified per path is 0.68 (geomean). However, it can be particularly
high in some cases, with 6-8 ¢’s simplified in 5 of 143 paths (workloads — 164.gzip, 183.equake,
444 namd x2, bodytrack). Note that ¢ used as induction variables are not included in this

analysis.

Live Values: The live values of a path are the virtual register values that are a) used within
the path (live in) and b) defined within the path and used outside (live out). Quantifying
the live input and output values (Column C7) provides a notion of the overheads of data
transfer into and out of the specialized unit. We present the maximum number of live values
(input and output) per workload in Column C7. Memory state is treated separately and
discussed in the following paragraph.

Across workloads and their top five paths, the average number of live values is 10.
The maximum number of live values was observed in 444.namd (36/16 — in/out). Across
benchmarks the least number of live values was observed for 181.mcf. 59 of 143 paths had

fewer than 10 live values while only 1 path had more than 25 (444.namd).

Memory Access Characteristics: We present characteristics of the paths in Columns C8-C10
of Table 3.1 with respect to memory behaviour. Column C8 enumerates the maximum
memory address entropy for the five most frequent paths per workload. This metric has
been used previously [151, 182] to quantify the information content, i.e. the predictability of
memory addresses. Entropy in information theory encodes the randomness of the variable.
Herein, each unique location accessed is treated as a value for the variable. Lower numbers
imply higher predictability. We analyze the memory address entropy for heap accesses only.
Shao et al.[151] find that analyzing heap+stack addresses together provides less meaningful
results. blackscholes has a pattern of reading from six arrays of same size, computing a value,
and writing the computed value to a seventh array. The memory accesses are regular uniform
strides and result in low memory address entropy (2). More details of the implementation
are presented in § 3.5.

Columns C9 and C10 present the average number of memory read and memory write
operations across the frequent paths. The range of average number of memory reads extends
from 0.4 (blackscholes) to 131.4 (183.equake) across the frequent paths in our workloads.
The blackscholes benchmark from PARSEC passes input as function arguments to the hot
function, thus reducing memory reads. The range of memory writes extends from 1 to 20.2
operations (for workloads with non-zero memory writes on average). For applications with
zero writes (52 of 143 paths), we find paths that return live values rather than issue stores
to memory. Almost all paths are “consumer” in nature, where the reads outnumber writes.

One path (sar-backprojection, rank 5) has more writes than reads. Only 11 of 143 paths

37

Table 3.2: Path Predictability

ID | Freq | Path Probability
1| 100 | ABC | 100/(100+ 25) = 0.8
2 25 | ABD | 25/(100+ 25) =0.2
3 10| FG 10/10 = 1.0

have more than 16 writes to memory. Note that this does not distinguish aliasing memory

locations. We only comment on the number of operations per path.

3.4 Path Characteristic Variability

In this section, we summarize our observations across workloads. Figure 3.6 presents key
characteristics of the five most frequent paths across workloads. We present six features to
contrast paths within a workload, four of which are derived statically. Prior work [151, 127]
has indicated these features are key to understanding amenability to acceleration. We

observe that different program paths exhibit different characteristics.

Description: Each radar chart represents a single workload. Each outlined overlay on the
chart represents a frequent path (five in total). There are six dimensions on each radar
chart. In counter clockwise order, they are i) D1: (Norm.) Number of instructions ii) D2:
(Norm.) Number of guards, iii) D3: (Norm.) Number of ¢’s simplified, iv) D4: (Norm.)
Total number of live values v) D5: Predictability, vi) D6: Coverage.

Of the six metrics enumerated, D1-D4 have been discussed previously in § 3.3.2. The
radar charts present normalized values. Absolute values per path can be derived from
the max values presented in Table 3.1 (C3-C7). D6: Path predictability is a new metric
we introduce in this section. Path predictability is the probability of following a known
path given the starting basic block. Consider the contrived path profile in Table 3.2. The
predictability of each path is calculated as the execution frequency of the path divided by
the sum of the frequencies of all other paths which begin at the same basic block. Paths with
IDs 1 and 2 start from basic block A. Based on their respective frequencies, the probability
of executing 1 to completion is 0.8. Similarly, the probability of executing 2 to completion is
0.2. Larger numbers (maz = 1) indicate amenable paths for specialization since they exit

less often.

Discussion: Overall, we observe that paths within workloads have varied characteristics;
i.e path outlines are clearly visible in Figure 3.6. In a few cases there is overall similarity
amongst a subset of paths. Examples of such cases include *.mcf, 453.soplex, sar-*, and
swaptions.

Along dimension D1 (size) some workloads are linearly spaced out. Examples of

such workloads are 183.equake, 186.crafty, blackscholes and freqmine. Workloads such as

38

Figure 3.6: D1: Total Ins, D2: Guards, D3: ¢’s Simplified, D4: Total Live Vals, D5: Path
Predictability D6: Path Coverage

179.art 181.mcf

183.equake 186.crafty 197.parser 401.bzip2

429.mcf 444.namd 450.soplex 453.povray 456.hmmer

~

458.sjeng 464.h264ref 482.sphinx3 blackscholes

bodytrack dwt53

fluidanimate

freqmine sar-pfa-interp1l streamcluster swaptions

39

bodytrack and streamcluster have little to no variability in the size of the longest path. This
is frequently observed where paths are spatially colocated.

D2 enumerates the number of guards introduced by eliminating conditional branches.
Workloads such as 179.art, 456.hmmer, fft-2d and bodytrack show significant overlap along
this axis. 450.soplex has 4 paths with the same number of guards (4). The same holds for
four paths in streamcluster (paths #1-#4). It is interesting to contrast D2 (guards) with
D1 (size). For example in 183.equake, four paths are linearly spaced out across D1 and D2.
186.crafty has 3 paths of similar size but differing number of guards. In 179.art, paths #3
and #5 have similar number of guards but differ in size. One cause where such behaviour is
observed is due to unbalanced if conditions.

In most workloads (21 of 29), the path with the largest number of instructions is also
the path with the largest number of guard checks. This does not hold true for 186.crafty,
444 .namd, 464.h264ref, blackscholes, ferret, fft-2d, freqmine and sar-backprojection.

Dimension D3 enumerates the number of ¢’s simplified. 183.crafty and 197.parser have
a similar number of ¢s removed while differing along axes D2 and D1. dwt53 has the same
number of ¢s simplified but differing number of branches (converted to guards) in each path.
fluidanimate along D1, D2 and D3 have interesting characteristics. Path #4 has large size
but significantly fewer guards and ¢’s simplified.

The sum of live input and output values is shown along dimension D4. It is interesting
to compare the value along D4 with D1, i.e whether the number of live in and live outs is
proportional to the size of the path. For 21 of the 29 workloads the largest path also has the
largest number of live values. The converse is true for streamcluster, fluidanimate, 450.soplex,
ferret, bodytrack, fft-2d, 470.1bm and 464.h264ref. For each workload there is significant
variability across paths with respect to live values. There are a few workloads where 3 or
more paths have similar live values. Some examples are ferret, bodytrack, 444.namd and
164.gzip. In many workloads, accounting for the largest number of live values per path will
waste 25% or more of the local scratchpad. This holds in 9 of 29 applications; one path has
25% more live values than others.

Path predictability D5 is the measure of probability a path will execute to the end.
Values close to one are desirable as they imply lower overheads for specialization. Overheads
are incurred when partial execution on a specialized unit needs to be rolled back. The
path also needs to be evaluated in software, restarting at the beginning. Five of the 29
workloads, 470.hmmer, 444.namd, 456.hmmer, fft-2d and freqmine, have frequent paths that
are perfectly predictable for the given input data. In 17 out of 29 workloads, the largest
path had near perfect predictability. Conversely, 8 out of 29 workloads had large paths with
poor predictability (< 50%).

Path coverage is shown along D6. It is representative of the amount of work each path

does. It is computed as the frequency weighted size of each path. Often the largest path (D1)

40

does not have the highest coverage. Some examples are 164.gzip, 401.bzip2, blackscholes
and fluidanimate.

Overall, there are interesting paths that stand out across workloads. Path #1 from
freqmine is the largest path and has the highest number of live values and coverage, yet it
is perfectly predictable for the given input. 444.namd has a few paths oriented along the
D2-D5, i.e paths that have many guards yet are predictable. For some paths in bodytrack,
streamcluster and 458.sjeng, increased ¢ simplification was observed along more predictable
paths. Path #1 from 470.lbm has the maximum values along 5 of the 6 axes. While being
the largest path, with the highest number of guards and ¢ simplifications and high coverage,
it has fewer live values. Path #5 in 179.art has the maximum along all axes apart from D5,
i.e it is a large (174 instructions) path with perfect predictability, few ¢’s simplified (3) and
6 live values. These characteristics make the path amenable for specialization. On analysis
of the source for the particular path, we find lines 140-146 in scanner.c. This is a segment

from the function simtest2. The code for the path is shown in Listing 3.2 (reformatted for

typesetting).
Listing 3.2: Path from simtest2 — 179.art
1|/Su = ((double)numfls*su2-su*su)/
2 ((double)numfis*((double)numfis-1.0));
3|/ Su = sqrt(Su);
4]/8p = ((double)numfls*sp2-sp*sp)/
5 ((double)numfis*((double)numfis-1.0));
6|Sp = sqrt(Sp);
7 || numerator = (double) numfls * sup - su * sp;
8 || denom = sqrt((double) numfls*su2 - su*su) *
9 sqrt ((double) numfls*sp2 - sp*sp);
10 [|[r = (numerator+e)/(denom+e) ;

Changes in 181.mcf to 429.mcf in SPEC2000 to SPEC2006 are described [163] as
‘‘Because there have been no significant errors or changes during the years 2000 - 2004, most
of the source code of the CPU2000 benchmark 181.mcf was not changed in the transition
to CPU2006 benchmark 429.mcf. However, several central type definitions were changed
for the CPU2006 version by the author”. For mcf, overall path characteristics remain the
same between versions. Path #5 has increased coverage. On analysis of the source, we
find a new condition that changes the memory reallocation criteria, which in turn make
paths in 429.mcf more amenable to specialization (increased coverage). The condition is
if(net->n_trips <= MAX_NB_TRIPS_FOR_SMALL_NET) in implicit.c.

470.1bm has a total of five dynamically executed paths. Of these three are represented
on the chart as area filled polygons. The other two consist of a single basic block and have

zeros for dimensions D2, D3 and D4, i.e they have no guards, ¢’s simplified (artifact of

41

being a single block path) and no live values. They are perfectly predictable as there is only
one basic block. They are not shown on the radar chart.

To summarize, we find that distinct paths across workloads have characteristics that
are unique to the paths themselves. Analysis of characteristics at the function or coarser
granularity blends the characteristics from many paths and adds noise. For the purpose of

specialization, we advocate the adoption of a path granularity analysis.

3.5 Path Derived Workload Suite

The previous sections have established the significance of characterization at a path granu-
larity and discussed at length the characterization of a large number of workloads. We have
identified frequent acyclic paths across 29 workloads drawn from popular benchmark suites.
Using our LLVM tool chain we have outlined the paths into independent functions free from
control flow (apart from guard checks). These can now be easily analyzed using existing

tools for dynamic analysis such as Intel Pin.

3.5.1 Memory Address Entropy Analysis

In this section we describe how our derived suite assists researchers perform precise analyses
using existing tools. To compute the memory address entropy along a path, we extended an
existing memory address tracing tool. A flag was added to enable / disable trace dump at
runtime. We then added instrumentation to set and unset the flag at function invocation
and return via the IMG_AddInstrumentFunction(...) interface. The code that targets the
path is shown in Listing 3.3.

Listing 3.3: Pintool Modifications

1||string name = PIN_UndecorateSymbolName (RTN_Name (rtn),
UNDECORATION_NAME_ONLY);

2 ||if (name.find(string("__offload_func")) != string::npos) {
RTN_Open(rtn);

4 RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR) EnterROI, IARG_END

);

5 RTN_InsertCall(rtn, IPOINT_AFTER, (AFUNPTR) ExitROI, IARG_END);
RTN_Close(rtn);

71}

All the outlined paths have the following naming convention __offload_func_XXX where
XXX is the identifier of the path computed by the Ball-Larus algorithm [15] (see Section 3.2
for more details). When control flow reaches the starting basic block of the outlined path, it
optimistically chooses to invoke the “path outlined as function”. Providing a clean abstraction

for the path allows us to write tools to target that particular region only. Should control

42

flow deviate from the path, the function returns false to indicate a side exit, and the original

program code is executed after the original program state is restored.

3.6 Related Work

Benchmarks and Synthetic Workloads Several approaches have been proposed to
construct synthetic benchmarks that are representative of the real workload for specific
microarchitectural behavior (e.g., cache misses [118] or branch predictability [89]). These
techniques typically measure the microarchitectural runtime behavior of the real workload and
construct a set of synthetic code regions that place similar demand on hardware resources. It
is not sufficient for an acceleratable region to simply demonstrate statistically similar behavior
to be useful for computer architects. The benchmark must be functionally representative since
accelerators by definition are functionally specialized for the targeted code. Prior work has
largely focused on benchmarks that mimic a real workload’s power consumption [77] memory
locality behavior [161], cache hit/miss ratios or even branch behavior. Bell et al. [18] presented
a framework for the automatically synthesizing benchmarks from executables/specax. They
leveraged statistical simulation theory and generate C-code and assembly instructions that
accurately model the workload attributes. Performance cloning [89] is another technique
that seeks to more precisely capture the control flow and memory locality predictability of
the original application. In contrast, our goal is to demarcate program regions in existing
applications to indicate explicitly to simulators and binary analysis tools the code paths that
are suitable for hardware acceleration. The demarcated paths within the original program

precisely capture the functional behavior of the dynamic execution of the code paths.

Accelerator Studies: Current accelerator studies have developed compiler infrastructure
for studying existing CPU workloads [64, 68, 128]. They identify specific code behaviors
within the workload targeted by their hardware and have provided mechanisms to demarcate
them in the application. Unfortunately, the compiler approaches are closely tied in with
the hardware accelerator, and it is unclear whether the identified code regions can be
used by researchers developing a different accelerator architecture. A key challenge with
current accelerator studies is that it is not feasible to compare accelerator architectures
directly since they may not even be commenting on the same code region. Our focus has
been to approach the question of “acceleratability” from the application’s perspective and
demarcate code paths for which specialization can directly provide performance and power
benefits to the application. This permits different accelerator microarchitectures to be
directly comparable since they target a common code region. Machsuite [142] provided a
set of kernels drawn from various algorithms. It is unclear yet whether accelerators should
be targeted at fine-granularity regions such as kernels and also whether kernels can be

representative of real programs that include frequent control and are not necessarily written

43

as a collection of kernel workloads. Our goal has been to identify the code paths within

existing CPU workloads that accelerators should target.

3.7 Conclusion

We advocate analysis at the granularity of acyclic program paths when assessing the
amenability for acceleration of a workload. This is a new facet to the existing dynamic and
static approaches. We have shown how this can be done in a scalable manner via lightweight
dynamic instrumentation and static reconstruction. We have built a robust LLVM based
toolchain to automate the analysis and presented our results for 29 workloads drawn from
SPEC2000, SPEC2006, PERFECT and PARSEC. We have analysed ~ 356K paths across
workloads and presented data for 143 paths. Our results show that within a workload, paths
have disparate characteristics. Summarized characteristics at coarser granularities blend

these characteristics and may draw imprecise conclusions.

44

Chapter 4

How to specialize — Leveraging
Program Analysis to Extract

Accelerators from Whole Programs

The previous chapter analysed programs at the path granularity for suitability for special-
ization. This chapter evaluates the impact on performance and energy when frequent paths
in the program are targeted for hardware specialization using a speculative execution model.
While program paths represent dominant program behaviour for specialization, they may
incur overheads due to naive speculative execution. We design an abstraction, called Braid,
to address these challenges. We present our results for specializing programs using paths
and Braids as well as their utility when applied to automated high level synthesis. Overall,
we coarsen the granularity of offload to accelerators to achieve improvements in performance

and energy efficiency.

4.1 Introduction

Often accelerators require an understanding of the specialized algorithm and program
structure [139] to enable appropriate offload region formation. Since programs include
complex control flow and have many possible execution paths, it is challenging to profile
and compose an offload region for the accelerator. Real world examples of offloading a
stable code region required that the API be redefined [137]. Recent works [152, 142, 128]
have leveraged compiler intermediate representation (IR) to aid architectural simulation and
enable comparison of different accelerator architectures. Such works still seem to largely leave
unanswered the questions, “what code region in the original program should be specialized?”
and “how to prepare it for offload?”. Conventional profilers and analysis tools, e.g. gprof or
trace analysis, are unsuitable for this task. Their scalability and accuracy is impeded by the

structure of typical programs, which tend to have irregular control and dataflow. Compilers

45

for coarse-grained reconfigurable array (CGRA) like fabrics [64], while successful for simple
inner loops, find it challenging to prepare effective offload regions with many flows of control.
VLIW compiler research has studied the formation of scheduling regions larger than a basic
block by exploiting hardware predication (e.g., hyperblocks). Unfortunately, defining high
quality regions depend on heuristics [10] and predication hardware; in Section 4.2 we analyze

the specific requirements of accelerators.

Our Insight and Proposal:

We demonstrate that an effective approach to building accelerators requires dynamic profiling
for accurate early-stage exploration of the specialization tradeoffs between 1) targeting few
code paths for efficiency and 2) coverage that seeks to offload a larger fraction of the
application. We develop Needle, an LLVM framework that leverages dynamic program
analysis profiles to identify “what paths to specialize” in a program, merge paths and prepare
them for acceleration. We study existing region formation algorithms (see Section 4.2) and
demonstrate the efficacy of Ball-Larus paths [15](BL-Path) for forming accelerator-friendly
regions.

In Step 1, Needle analyzes programs to profile and construct two types of code regions
for accelerators to target: BL-Paths and Braids. BL-Paths are single entry, single exit
regions which represent a single flow of control. A control flow divergence leads to a jump
back to the CPU and a reversion of externally visible program state.

Unfortunately, programs may execute a large number of paths (over 100K in the workloads
we study) with no single path dominating execution. This may lead to accelerators frequently
switching between different paths, imposing a high overhead. To achieve high coverage we
introduce a new program abstraction, called Braid, that takes advantage of the observation
that many frequently executed BL-Paths tend to have the same basic blocks. Braids merge
overlapping BL-Paths and seek to achieve high coverage. While BL-Paths revert to the CPU
on any control flow divergence, the intuition behind Braids is that the program exits from
the accelerator to the CPU only when the control flow appears to break out of a hot region
of code. These regions are single-entry, single exit but incorporate multiple flows of control.
BL-Paths and Braids are also inherently acyclic, we employ path prediction to identify loop
back edges and construct larger regions for accelerator offload.

In Step 2, Needle prepares the BL-Path and Braid abstractions to run on the hardware
accelerator by generating software frames to handle control flow along the path and enable
speculation on accelerators. This reduces the accelerator’s reliance on the power-hungry
00O processor. Software frames support guarded execution on the accelerator [135]. Needle
creates frames by hoisting instructions in a BL-Path above the branches in that BL-Path,
fusing them to create coarse-grained atomic regions of offload. The branches are converted
into asynchronous guards that determine whether speculation was successful. Needle’s frames

permit all operations to be speculative, including memory operations. Software frames are

46

accelerator micro-architecture independent and do not depend on specific hardware features
(e.g., store buffers [68, 146]). Needle regulates when the guards checks are inserted along
the path to reduce the overheads of speculation failure while raising the number of hoisted

operations to increase instruction parallelism.

4.2 Scope and Related Work

Needle is a profiling and compilation framework for sequential programs to target accelerators.
A key impediment to implementing complexity effective hardware accelerators and precise
code profiling is the control flow in sequential programs. Here, we study how Needle can help
existing accelerators handle multiple flows of control in a program with software controlled
speculation. We also discuss the challenges with existing compiler abstractions for often

used for accelerators, superblocks and hyperblocks.

4.2.1 Hardware Accelerator Perspective

Spatial accelerators often use a dataflow-based approach, custom or reconfigurable hardware,
and use a compiler to map computation to functional units. Prior work has shown that code
regions with regular control flow and abundant data parallelism achieve high performance and
efficiency [64, 58, 29, 132]. However, sequential code with limited data parallelism, nested
control-flow, and irregular memory access patterns either compromise on performance [29, 58],
or energy efficiency [56]. Additionally, fine grained offload regions require frequent interaction
with the OOO processor, leading to further energy waste. Figure 4.1 discusses the design
trade-offs in spatial accelerators. Prior approaches can be broadly classified into three designs:
i) compound function units with minimal or no support for control flow. ii) non-speculative
CGRAs that leverage predication to handle forward branches, and iii) speculative dataflow
adopted by block architectures that can execute backward and forward branches.

The compound function unit approach fuses frequently used operations but terminates
the fusion at branches, limiting offload granularity to basic blocks. Larger granularity offloads
can be constructed by either leveraging an OOO processor’s branch predictor [105] or using
apriori profiling techniques with superblock construction. As observed by prior work [127],
such architectures (e.g., BERET [68]) when integrated with an out-of-order processor, require
frequent interactions with the processor and achieve low ILP. The non-speculative dataflow
approach is prevalent amongst CGRAs that include support for predicating individual
operations. This design converts control flow into dataflow dependencies through if-conversion
and hyperblock formation. Many challenges remain including support for speculating
on backward branches, conversion of nested ifs, occupation of hardware resources, and
lengthening of critical path [10]. Dataflow architectures such as TRIPS [159] target whole
programs and support forward and backward branches at the expense of increased hardware

complexity.

47

87

Compound Unit | Non-Speculative CGRA | Speculative Dataflow || NEEDLE
[39, 68, 139, 60] [64, 130, 157, 132] [159, 51]
Granularity Basic blocks @ Hyperblocks Hyperblocks BL-Path [15] or
Target Code Braid
Scope Few ops @/ Inner loops Full Program BL-Path or
Braid
Control flow None Predication @ Dataflow predication /@/ Software specula-
tion
Design Branch prediction Necessary for high performance. Not required
Granularity Fine Medium (hyperblock) Coarse (paths)
Accelerator& 000 High 2f Medium (on block termination) 2f Low (on spec.
failure)
Speculative Ops. None None @ \ Partial (No mem ops) Full
Rollback Granularity || Small Medium (entire hyperblock) Flexible (sub-
path)
Compiler Static Static or Profile-driven Profile-driven
Profiling Superblock Path-trees [64] None BL-Path or
Braid
Code-gen Superblock Hyperblocks Hyperblocks BL-Path or
Braid

@ Full speculation support. @) High energy efficiency. @) Coarse-grained offload. @ Low hardware overhead

Table 4.1: Comparison of sequential programs on spatial architectures

The TRIPS compiler relies on aggressive loop unrolling and flattening to reduce backwards
branches and removes forward branches by forming hyperblocks. As a result of the increased
hardware complexity, TRIPS exhibits only a 9% improvement in energy efficiency compared

to an IBM Power4 superscalar processor at roughly the same performance [58].

Table 4.2: Control flow Characteristics

Branch=Mem. Avg. mem ops dependent on a branch
1—10 | 10 Apps hmmer,lbm, crafty, bodytrack,
mcf, fluidanimate, ferret, sar-back,
gce
>10 8 apps gzip, blackscholes, h264ref, swap-
tions, vpr ,sar-pfa-interpl, povray,
sjeng .

Mem=-Branch. Avg. mem ops a branch is dependent on.

1—10 | 11 apps art, parser, lbm, bodytrack,
bzip2, freqmine, gcc, h264ref, mcf,
blackscholes, mcf

>10 7 apps crafty, gzip, vpr, sar-pfa, povray,
swaptions, sjeng

Max. predication. #Bits required for hot path if-conversion

>100 | 13 apps povray,fluidaimate, bodytrack,
ferret, hmmer sar-pf, art,crafty,fft-
2d,sar-back, sjeng, swaptions,
bzip2,vpr.

Loops. Number of backward branches in hot function.
>10 14 apps streamcluster, art, gcc, ferret,
blackscholes, mcf2k, mcf2k6, hm-
mer, bodytrack, crafty, povray,
swaptions, bzip2, vpr

In the remainder of this section we summarize the challenges posed by control flow in
real world programs. See Section 4.3 for workload specific statistics. Table 4.2 summarizes
the number of predication bits required to if-convert the fully inlined hottest function.
Nine workloads required > 100 bits of predication. Only four workloads required < 10
bits. Our predication statistics differ from prior work [130] because of aggressive inlining
of call sequences. Prior work would need inter-procedural analysis prior to if-conversion
to reveal this behavior. We studied the Hyperblock sizes for all the inner loops in our
function assuming two bits for predication [64]. We find that Hyperblocks only attain ~2.2x
the basic block granularity. For four applications, sjeng, sar-pfa-interpl and swaptions,
hyperblocks increased block size by 6.3x. Overall, predication and Hyperblocks do not
suffice to enlarge the offload region granularity and minimize interactions with the OOO
processor. To understand whether speculation is required, we look at individual branches

and classify them into two categories (see Table 4.2) MEM-Branch (Ifs that depend on

49

memory operations) and Branch-MEM (Ifs statements with memory operations dependent
on the branch). Either case could introduce serialization and loss of ILP. We find that on
average each branch includes > 10 memory ops per branch in 8 applications (including
floating point intensive applications). In 18 workloads, the MEM-Branch ratio is > 1 i.e.,
the branch depends on at least one memory access. Both these statistics highlight the need
for accelerators to implement a speculation framework including memory operations like an
00O processor. However, implementing hardware based speculation support is challenging
in the absence of a notion of instruction or program order in dataflow accelerators. Thus
we propose the use of software based speculation, where the compiler automatically inserts
operations into the specialized region to support speculation (See Section 4.5 for details).
Furthermore, workloads display varied characteristics and a unified hardware speculation

strategy may be a poor fit. To summarize:

e Control dependencies limit the granularity of offload to accelerators and hence require

frequent switchbacks to an OOO processor, reducing the energy benefits.

e Real programs have nested control flow, many backward branches and control in-
terleaved with memory operations necessitating speculative execution support in

accelerators.

e Finally, some current accelerators rely on a OOO processors to leverage speculation

which makes it challenging to enlarge the offload granularity.

e Implementing speculation in accelerators is hindered by the need for a complex hardware

mechanism to perform rollbacks which typically occur at fixed granularity.

Needle adopts a software based speculation approach to compile specialized regions for
accelerators. Needle constructs atomic software frames from profiled hot regions. Needle’s
LLVM framework extracts each hot region into a separate “frame”, converting biased branches
along the path into guards [135]. Needle generates the necessary rollback operations in
software which enables workload tailored coarse-grained regions for offload. It improves
energy efficiency and minimizes reliance on the OOO processor. Needle supports full

speculation, including memory operations.

4.2.2 Compilers for VLIW processors

Needle’s path-based offload region formation addresses a problem that at the high level seems
similar to VLIW region formation strategies to handle control flow. Compilers for VLIW
processors [5, 114, 113] pioneered the use of coarse-grained region formations by exploiting
hardware predication. Hardware accelerators [64, 130] have primarily adopted “predication”
to convert control flow dependencies into dataflow dependencies. Specialized regions offloaded

to accelerators need to account for a large fraction of the dynamic instructions in order to

50

achieve energy efficiency[70]. Our observations show, heuristic based region construction
such as Superblocks [117] and Hyperblocks [114] targeted towards VLIW processors may
include infrequently executed operations. It is unclear whether effective, coarse-grained
offload regions can be constructed by tuning the heuristics in a manner independent of the
accelerator and program control flow.

SUPERBLOCK HYPERBLOCK NEEDLE TRACE
(0% Coverage) (40% coverage + "Y=A" Wasted) (40% coverage)

(a=1] (A=) (A=) [A=1){A=0]

Figure 4.1: Superblock and Hyperblock construction for overlapped paths. % indicates the
relative frequency.

Superblock and Hyperblock Construction Challenges Some existing accelerators
have sought to target offload regions [68, 74] that are constructed from edge profiles of
branches. The Superblock is an abstraction proposed by Hwu et. al [117] targeting Very
Long Instruction Word (VLIW) and superscalar processors. They proposed a heuristic which
uses edge profiles, frequencies of branch taken / not-taken edges, to construct a “macro-block”
of frequently executed basic blocks. The constructed block has a single entry point but
potentially multiple exit points. Side entrances to the Superblock, i.e branches which target
blocks merged into the Superblock, are supported using “tail duplication” During Superblock
construction, a local decision is made at each branch for which side of the branch to include.
In the presence of overlapping paths, edge profiles may yield less than optimal results.
Figure 4.1 illustrates such an example. The edge profile will lead to a Superblock that will
always fail and trigger a side exit. Hyperblock construction may recognize the lack of bias
and fold in both sides. However, this will lead to wasted blocks (since given A=0 the Y=A is
wasted). Using Ball-Larus path profiling [15] provides a precise characterization of executed
program paths. Needle uses Ball-Larus paths (BL-Path) as a building block for offloaded
regions. It is able to precisely identify the hottest path and construct the accelerator offload

without waste.

Challenges in Achieving High Code Coverage. We find 5 benchmarks out of
29, 403.gcc, 181.mcf, 429.mcf, and swaptions that demonstrate “infeasible” Superblock
construction for innermost loops. In these cases, the constructed Superblocks do not

correspond to the actual paths taken by the program. Overlapping paths misleadingly cause

o1

100 T T T T
B < 60% bias
g 30 [60-80% bias
o [1 > 80% bias
2
2 60
O
<
o)
3 40
e
S
°
© 20
[
' AlcE

gzip
art

mcf
crafty
parser
gcc
namd
soplex
povray
sjeng
blacksc
bodytra
ferret
fluidan
sar-pfa

Figure 4.2: The distribution of biased branches in the application. Applications not shown
in the plot have 99% of the branches with each branch > 80% bias.

individual block edges to become hot even though that particular sequence of hot blocks
may never appear in program execution. Infeasible Superblocks degrade performance and
provide no acceleration coverage.

When Superblocks and Hyperblocks are feasible, they still may not capture the hottest
paths through the program. The local branch edge profiles may skew the ranks of hot
basic block sequences, deprioritizing the offloading of hotter program paths. Ranking the
paths in order of frequency, we find 6 workloads (453.povray, 458.sjeng, 181.mcf, bodytrack,
swaptions and 401.bzip2) where the constructed Superblocks are not the hottest path. This
implies that there exists some path for the same program region that is executed more

frequently than the Superblock.

Challenges in Heuristic Tuning A key challenge for compilers seeking to leverage
dynamic profiles is the tuning required for heuristic based approaches. To illustrate, we
summarize the branch biases (i.e, how often a branch is taken) in the hottest function.
The branch biases indicate to the compiler which successor basic block of a branch should
be included (the taken or not-taken block). We find that in many workloads, 15 of 29,
individual branch biases can vary significantly. Up to 24% of the branches have less than
80% bias (see Figure 4.2). In such cases, it is not clear how to tune the branch bias heuristic
to achieve optimal coverage. Superblock and Hyperblock formation requires carefully tuned

heuristics [9], multiple metrics including resource utilization and execution coverage need

52

90
» 80

block
|

pe
|
|

> 50 —]
w» 40
O 30
o 20

10

ps (H
|
|

1d

vpr

181.mcf
gcc

gzip
crafty
parser
bzip2
429.mcf
sjeng
h264ref |]
bodytra []
ferret
fluidan
sar-bac []
sar-pfa

povray

% C
o
hmmer

soplex
streamc
swaptio

Figure 4.3: Fraction of “cold” ops included in Hyperblocks.

to be considered. More important, the heuristic must understand how the included blocks
will interact with other included blocks and the runtime behavior of shared branches in the
offloaded region. Figure 4.3 plots the number of operations that are part of the Hyperblock
but are “cold”, i.e infrequently executed. For a hardware accelerator, such operations tend
to waste both 1) resources leading to area penalty for custom circuit and/or 2) energy in
reconfigurable accelerators. The Hyperblock construction makes a local decision and thus
may include wasted operations (See Figure 4.1 for an example). Without contextual program
path information they may include blocks without including the other basic blocks in the
path.

Dynamic Compilation for Accelerators Recent work has studied dynamic compilation
to target a CGRA [176]. They however do not support control flow and map a single basic
block to the CGRA at a time [176] . Control flow speculation is key to enabling coarse-
grained regions that improve the effectiveness of a dynamic compiler. Needle focuses on

identifying such coarse-grained regions in programs.

4.3 BL-Path Accelerators

In this section we revisit the notion of a Ball-Larus path (BL-Path) and contrast it against
other region formation strategies (e.g., Superblock or Hyperblock). We identify the BL-Path

characteristics that make them suited for accelerators. In particular, the BL-Path approach

53

will not encounter the same challenge as Superblocks in Figure 4.1 since it identifies not just
the bias of the individual branch but the overall bias of the code path to reach the branch.
This leads to accurate profiling of basic block hotness, formation of regions with guaranteed
coverage of dynamic execution by construction, thus improving efficiency.

Ball-Larus path profiling [15] is used by Needle to obtain the initial set of acyclic candidate
paths that summarize a program’s dynamic behavior. The Ball-Larus method pre-processes
the control flow graph of a routine to replace loop back edges with fake edges, one each from
entry to back edge target and from back edge source to routine exit. Paths in the directed
acyclic graph are enumerated bottom-up using dynamic programming, leading to unique
ids for each acyclic path. Instrumentation is inserted to track which paths are executed at
runtime. The dynamic profile of executed paths is collected, i.e for each unique path id we
log the number of times it has been executed. Each unique id can be decoded to a sequence
of basic blocks. We rank each uniquely executed path and select most suitable candidates
for acceleration. Needle extracts the blocks in the selected path(s) into an offload function,

adds support for software speculation and prepares it for hardware accelerator synthesis.

4.3.1 Path Ranking

B Ist 7 2nd [] 3rd 7 4th W 5th [0 Others

1.0 —
| _ H =
0.8 . 5 -
. |
3 0.6 n
[¢]
3 = =
S 0.4 -
O\O 1 [
0.2 = - = m 1B
= 7 —
= . .
OO $_‘4—><4—l'x.p q"'U C ~“ o)~ o M =
o, O N O [¢] o (9] O O D w»
‘K]'Q'EEUCUqu'mgougahwaﬁ*ggaomgmgﬂxmgﬂ
@?'E:‘L‘E'EGEMO>E®©'—‘ oL oL agmo% o
o i eB NI E 0B E SR B EE 5L EESRES
SRbgeg AR E2RETco NS SEEg5qlsn
O ® 9N S Vgomaw DN OF ST 80
— S <<+ 3R PR < @ = B i I B
— 0 - OO < 00w o O = O = © 82
= — <t AU TTYo R <t Q2 .Q 0 n o
<t

Figure 4.4: Path Coverage : Path weight (P,;) by rank.

To rank the paths for hardware accelerators, we define a new metric, path weight (Pyy).

It captures both the execution frequency of the path and number of operations. Eliding

54

instruction fetch is a primary source of energy efficiency in hardware accelerators [70].
Maximizing P,; maximizes energy saved in the processor front-end. For the first order
ranking of paths our weight metric assumes that all instructions carry the same weight,
since instructions carry similar front-end energy costs in a processor. Latency of each
instruction can be factored into the weight should the primary target be performance rather
than energy efficiency. We also calculate Function Weight (Fy;), which accumulates all its
constituent P,;s. We present only the data for highest ranked function by weight for the
sake of readability.

To understand the potential implications of selecting a frequency based metric, we
profiled the time spent in the hottest ranked path using Linux’s pprof (1500 samples/s)
versus its parent function. We computed P/ Fyy as well as Psgmples/ Fsamples and compared
the values as relative weights. In 12 of the 29 workloads we study, the sampling based profile
indicated an average 10% increased weight; in 6 workloads we found a 15% decrease and in
4 workloads no change. The variability in sampling based profiling reaffirms our decision to

use a frequency based metric that accounts for the dynamic power of the front-end.

4.3.2 BL-Path Properties

In the remainder of this section we present the characteristics of BL-Paths profiled across
29 workloads. Figure 4.4 shows the breakdown of dynamic instructions attributed to the
top five paths amongst all paths in the highest ranked function. Table 4.3 presents the
characteristics of the top five highest ranked BL-Paths.

Few BL-Paths Enable High Dynamic Execution Coverage Figure 4.4 shows the
coverage (Py) of paths in our workloads. The stacks (bottom to top) represent the coverage
of the highest to lower ranked paths. The average coverage (fraction of dynamic instructions)
of the highest ranked BL-Path is 25%. In 18 of 29 applications the top path offers 20% or
more coverage (See Figure 4.4). The median coverage using top five paths is 86%. Thus
reasoning about paths allows us to understand the semantically different, yet frequent basic
block sequences executed by a workload. For instance, as shown in Figure 4.1, it is desirable
to precisely account for the frequency of the taken and not-taken sides based on which path

is invoking the if-block.

BL-Paths Enable Coarse-Grained Offload (Table 4.3:C3) Table 4.3:C3 shows the
average size (number of instructions) of the top five paths in the workloads. With a
coarse-grained offload region, more computation is performed on the accelerator and fewer
interactions with the host OOO processor. BL-Paths are acyclic; we investigate techniques
to enlarge them further in Section 4.4.2. The median size across workloads is 65 operations.
We have highlighted the applications that had a large number of branches in the path despite

which the BL-Path was able to construct regions with 80+ operations (outliers are swaptions

95

— 438 and 458.sjeng — 50). The highlighted values in C4 indicate workloads in which the
BL-Path traverses many branches. On 11 of the 29 workloads the highest ranked BL-Path
spans across ~13 branches. These sizes are larger than those observed with edge-profiled
Superblocks in prior work [68]. An interesting workload is 401.bzip2, where the number of
instructions in the top five paths vary significantly (29, 66, 371, 371, 194) with each path
providing small coverage of the overall (35 Cov. = 18). Table 1:C7 indicates the number of
memory operations that are part of the BL-Path and would be hoisted and become control
independent when software frames are formed. The circled numbers highlight the workloads

that benefit most from memory speculation.
Table 4.3: Path Characteristics

C1: Exe. Paths C2:) 5 Cov.: Coverage of top 5paths C3 : Ins. C4 : Branch
C5 : Live Vals C6 : Phi ops cancel C7 : Mem.ops C8: # Overlapping paths

C1 C2 Cc3 (4 C5 C6 Cc7 C8
Name Exec | Y5 Cov. #Ins. O) # Mem| Ov.
& 164.gzip 80 90 33 4 7,5 4 4 6
0| 175.vpr 713 53 80 8 6,3 8 21 2
E 179.art 1446 74 24 2 3,4 2 7 12
» | 181.mcf 48 87 30 2 5,3 2 7
T | 183.equake 7 100 88 1 9,5 1 32 1
® | 186.crafty 37K 23 49 7 8,3 7 4 31
E 197.parser 10 91 33 3 6,2 3 6 2
0| 401.bzip2 54K 18 207 15 10,6 15 29 15
K| 403.gcc 21 89 43 4 7,5 4 6 3
5"3 429.mcf 41 88 21 2 4,2 2 6 2
444 namd 57 86 90 2 18, 10 2 14 2
450.soplex 67 93 33 2 7,3 2 7 3
453.povray 375 88 137 8 7,4 8 17 21
456.hmmer 61 100 105 6 12, 2 6 35 2
458.sjeng 45K 20 50 9 3,3 9 8 43
464.h264ref 43 80 49 4 11, 3 4 9 2
470.1bm 2 100 232 2 3,2 2 45 2
482.sphinx3 6 100 30 1 9,4 1 6 1
8 blackscholes 42 37 380 19 9,1 19 0 11
= | bodytrack 732 43 68 4 10, 5 4 3 24
E dwt53 12| 100 28 1 6,2 1 6 1
& | ferret 556 20 98 9 7,6 9 2 10
g fit-2d 29| 87 38 2 6,3 2 4 2
C:U fluidanimate 377 53 67 4 9,4 4 10 5
O freqmine 22 64 31 2 6,4 2 10 2
& | sar-back. 539 14 85 9 7,5 9 6 3
2| sar-pfa-interpl 53| 47 146 14 14,3 14 8 8
é streamcluster 42 98 35 3 6,4 3 6 2
swaptions 11K 50 438 29 9,3 29 32 138

56

BL-Paths Have Overlapping Basic Blocks (Table 4.3:C8) A key concern with
accelerator architectures is reusability or recurrence of acceleratable sections in the program.
Prior work has evaluated this at the granularity of subgraphs containing a few operations [172,
39]. Here we present a methodical evaluation at the path granularity. Programs often execute
a large number of paths in the same region. This often implies that many paths share
common basic blocks. We quantify the overlap of basic blocks across the top five paths in
each workload. Column C7 in Table 4.3 represents the average (geomean) block overlap. In
10 out of the 29 workloads we see that between 6-31 BL-Paths overlap (outlier: swaptions).
In the other 19 workloads at least 2 paths overlap. BL-Paths enable precise accounting for

common basic blocks.

Hardware overheads for BL-Path based accelerators (Table 4.3:C5 & C6) The
number of live inputs and outputs determine the amount of data transferred to and from the
accelerator. We summarize the results for the top five paths in Table 4.3:C5. These do not
include the memory operations within the accelerator. Some workloads may have compute
intensive regions with few live in and live out values (e.g., 470.1lbm, 175.vpr, 183.equake,
444 namd). The workloads with coarse-granularity offload (C3 highlighted) have an average
~10 live ins and ~4 live outs). ¢ instructions in LLVM correspond to selection operator
and incur significant hardware overhead [19]. When speculating on the control flow in a
BL-Path (see Section 4.5), a frame is constructed, ¢s can be removed. It is interesting that
in 10 out of 29 workloads, we remove multiple ¢s per branch. This implies speculation on

just a few branches we can significantly reduce hardware.

4.4 BL-Path Expansion and Braids

In order to reduce execution migration between the host and the accelerator, we explore
two approaches to increase the granularity of offload. BL-Path FExpansion seeks to extend

acceleration across back edges of loops, while Braids combine multiple paths for offloading.

4.4.1 BL-Path Target Expansion

BL-Paths are acyclic in nature. Sequencing paths across backward branches is essential
to loop pipelining and extraction of data parallelism. Prior work [29, 116] has shown that
outer loop pipelining is critical to finding parallelism in sequential programs. Acyclic regions
superblocks and hyperblocks encounter the same challenge and typically attempt to grow in
size via loop unrolling, branch target expansion and loop peeling [117]. Needle can construct
offload regions by sequencing multiple BL-Paths using the dynamic execution profiles. We
collected a path trace (sequence of path ids) during the profiling phase of the program. We
then processed the trace and found that in many cases applications demonstrate a bias for

back-to-back paths. We use the profile to guide which path to sequence next.

57

Table 4.4: Next Path Target Expansion

Path Seq. Bias| +Ops| Workloads

90-100% 68% | 175.vpr 179.art 181.mcf
401.bzip2 403.gcc 429.mcf
444 namd 453.povray 456.hm-
mer 470.]Jbm 482.sphinx3
blackscholes dwtb3 fft-2d

streamcluster

70-90% 2% 183.equake 450.soplex
464.h264ref

<70% 73% | 164.gzip 186.crafty 197.parser

458.sjeng bodytrack ferret
fluidanimate freqmine sar-
backprojection sar-pfa-interpl
swaptions

We summarize the data in Table 4.4. In 15 out of 29 workloads, a single path occurred
in sequence more than 90% of the time. Of these 10 workloads repeated the same BL-Path.
This enables us to enlarge the granularity of offload by a factor of 2x. The remaining 5
workloads (*.mcf, 401.bzip2, 403.gcc, blackscholes) where a different path follows in sequence
we were able to expand the offload by a further 17%. Overall, the same path repeats in 17

out of 29 workloads, and the average offload unit can be increased in size by 72%.

4.4.2 Braids — Merging BL-Paths

Each BL-Path offload targets a specific sequence of basic blocks (which corresponds to a
program path) with a single flow of control; any deviation requires accelerator rollback.
Programs may have many paths which originate from the same basic block. It is challenging
to determine exactly which path should be invoked. The penalty for invoking the wrong
accelerator is rollback. A promising approach would be to merge paths to create a single
offload unit. The key questions are “which paths to merge?” and “how to merge paths?”.
We present a new offload region abstraction, Braids, formed by merging BL-Paths thus
achieving coverage equal to the cumulative coverage of the BL-Paths. We analyzed all the
paths across our workloads and observed that in many cases of overlap, in particular the
paths had a common start and end basic block. These paths diverged from the same point
in the program and then re-converged. Consider Figure 4.5, the BL-Paths for this section
are ABDGH and ABEGH (all hot paths start at block A and exit at block H). We construct a
Braid by merging BL-Paths, and this requires the introduction of multiple flows of control
within the region. The Braids are acyclic and thus introduce only forward branches. Braids
include the basic blocks observed to have been executed and guarantees monotonic increase

in coverage with each merged BL-Path. Braids are prevalent in program loops that have

58

multiple control flows within the loop body. Since Braids only merge BL-Paths that share
the entry and exit block, live ins and live out values do not change. This permits the
accelerator to transparently switch between the BL-Path or Braid configurations based on

code coverage and area tradeoffs.

Basic blocks: Ato |

Hot Traces Hot Braid
AB,E’G’H} A,B,[DE],G,H
A.B,D,G,H
ABDC
FH
HYPERBLOCK
AB,C,[DE],G,H,I
C-D edge is cold, Z-C edge is hot.
(C will not increase coverage, but adds overhead)

Braids offload multiple hot BL-Paths beginning and ending with the same basic blocks. In
contrast, Hyperblocks also fold in cold blocks C and I.

Figure 4.5: Braid construction from BL-Paths

Relationship to Hyperblocks [114], Path-Trees [64] Hyperblocks are an extension
to Superblocks where basic block successors to unbiased branches are merged for architectures
that support predicated execution. Braids are a specific type of Hyperblocks that support
multiple flows of control but always exit from the same block on completion. The heuristic
based construction of Hyperblocks gives rise to multiple exits, which makes it challenging to
bound the construction process. For example in Figure 4.5 the Hyperblock could include
C. Additionally, Hyperblocks needs “tail duplication” for block F since it may merge paths
that don’t exit at F. Path trees are used by DySER [64]. In essence, they are Hyperblocks
constructed from path profiles rather than edge profiles. They merge paths which originate
from the same basic block and diverge. In Braids, the biased branches are converted to
guards and enable speculation which is more energy efficient than predication when successful.
While path trees originate from the same block, they may diverge to different basic blocks

and have different live out sets based on the exiting blocks.

Braids improve accelerator code coverage (see Table 4.5:C3) We calculate the
coverage-per-op (%) i.e., the fraction of dynamic execution covered by each operation
in the Braid. This permits us to evaluate coverage by neutralizing the effect of a larger

region size. Constructing Braids improved coverage-per-op for 17 applications (avg 0.85% of

59

C1 : Number of Braids C2 : # paths merger to create a Braid

Table 4.5: Braid Characteristics

C3 : Code coverage C4 : Ins. C5 : Guards i.e., branches removed C6 : IFs;

branches introduced when merging paths C7 : Live Vals

C1 c2 C3 C4 Cs C6 Cc7

#Braids #BF;ZZZS Cov% #Ins. O IFs)

& 164.gzip 48 1.5 80 39 3 3 8,5
Q| 175.vpr 549 1.2 28 177 12 10 8,2
2| 179.art 84 23 36 21 10 2,1
»n| 181.mcf 40 1.1 38 53 3 3 6,2
| 183.equake 8 1.0 77 144 1 0 14,8
®| 186.crafty 388 2.0 6 28 5 0 6,3
E 197.parser 7 1.4 49 56 1 0 5,2
0| 401.bzip2 3383 1.4 5 27 4 0 7,3
K| 403.gcc 9 1.8 73 50 1 6 6,7
& | 420 mef 39| 10 37 31 | 3 1 6,2
444 namd 51 1.1 42 229 1 0 36,16
450.soplex 47 1.3 57 30 2 0 5,3
453.povray 8 11.8 85 54 1 1 2,1
456.hmmer 47 1.1 85 61 2 0 16, 1
458.sjeng 296 1.7 27 2272 36 115 3,3
464.h264ref 40 1.1 33 71 6 1 16 , 5
470.1bm 2 1.4 100 o511 1 1 3,1
482.sphinx3 7 1.0 82 30 1 0 9,3

8 blackscholes 4 5.3 52 381 16 8 9,1
= | bodytrack 19 6.0 27 45 4 0 12,2
E dwt53 13 1.0 37 23 1 0 9,1
(|| ferret 95 1.6 39 138 7 5 6,6
g fft-2d 23 12 51 39 1 0 8,1
g fluidanimate 74 1.3 25 117 8 8 4.4
&) freqmine 21 1.1 17 43 4 0 6,2
/| | sar-backprojection 125 1.3 19 135 4 8 6,6
2 | sar-pfa-interpl 9 20 88 344 | 14 14 14,3
E streamcluster 31 1.2 91 47 4 0 5,2
swaptions 85 3.0 38 1704 82 42 9,3

overall.

It might be beneficial to look beyond the hottest path and merge the lower-ranked paths

60

total dynamic execution per op). For 6 workloads the Braids improves coverage but also
substantially increases the region size. For 444.namd, swaptions, 175.vpr, 470.1bm, 401.bzip,
186.crafty the BL-Path provided better coverage per op; Braid provided better coverage

to create hot Braids. This occurs in cases (eg.175.vpr, fluidanimate and sar-backprojection)

where there is not much overlap between the hotter BL-Paths but there is a lot of overlap in

the lower-ranked BL-Paths making them amenable for merging. Needle provides a methodical

framework to reason about this tradeoff.

Fewer guards than BL-Path = Fewer speculation failures When merging paths,
Braids introduce multiple flows of control within the region. This effectively reduces
the number of guards that would have otherwise been needed by the constituent paths
individually. On 12 applications the Braids have 2x fewer guards than the hot BL-Path.
The reduction in guards directly correlates with how much overlap is between the merged
BL-Paths. Fewer guards mean that the offloaded region into the accelerator is less likely to
fail (see Section 4.6 for the details). Outliers, 458.sjeng and swaptions increased the number
of guards by 10x due to merging paths with minimal overlap, but each with path having

many guards.

Braids enable memory speculation The control dependency enforced by the branch
may limit memory level parallelism available in the dataflow graph; eliminating branches
from the hot region will enable memory operations to speculative execute. We find that
in 14 workloads the hottest braids have 0 memory operations dependent on a branch (in
comparison to 11; see Branch-Mem in Table 4.2b). The number of workloads where the
dependencies were greater than 10 was reduced to 4 workloads. In 6 workloads (179.art,
186.crafty, 197.parser, 401.bzip2, bodytrack, freqmine) the number of dependencies reduced
to zero in the hottest Braid.

4.5 Execution Model

In Needle, candidate hot BL-Paths and Braids are converted into software frames for offload
to the accelerator. They serve the same purpose as Traces within a Trace Scheduling
compiler [110] or Superblocks [117] and hardware frames [146]. While Traces are multiple-
entry, multiple-exit regions, Superblocks and hardware frames [146] are single-entry multi-exit
regions with a single flow of control. Needle constructs single-entry single-exit regions but
also support multiple flows of control. Software frames are atomic and coarse-grained,
enabling effective speculative execution on accelerators. Software frames consist of three
components (see Figure 4.6) the frame, a block of operations to run on the accelerator, the
guards consisting of the control flow operations, and the undo log that captures values in
locations modified by the frame to revert in case of speculation failure. All the branches
within a frame (see ¢ W>10 in Figure 4.6) are converted to guards. The compiler is permitted
to move instructions within the frame. When multiple paths are merged to create a Braid
(e.g., paths P and P’ diverging at p==0), then the frame introduces multiple flows of control;
we rely on non-speculative predication [64] being available in the accelerator. When a guard

is triggered during a frame’s execution, the externally visible state has to be reverted. No

61

Live
Z=X+Yy in

c=a+b Guards Frame Undo log
W=f+0 Z=X+Y 0x2 : old val
Cold c=a+b 0x3 : old val
T
Block “ W=zZ+ce
p = load Ox1
Load P ===
Store W Store w, [0x2]
PATH Y PATH Load w, 0x2
‘Ss=w+1

P
=
w
[
o
=+
—

Store s, [0x3]

Live
out

Figure 4.6: Frame construction from Braid.

_U
a
1
1
“’Q \
(V2]
T
<—Guard position
==07?

Store S

A\

architectural state is shared between the frame and OOO processor; live values and memory
operations are the only form of communication to and from the frame. Needle implements

the rollback using a software undo log populated by instrumenting stores.

When to invoke a BL-Path accelerator? As program execution approaches the entry
basic block for the frame (see Figure 4.6) it has to determine whether to invoke the frame
on the accelerator or to run on the host. Predicting that the accelerated path may actually
fail due to a guard failure. This is challenging in BL-Paths since they may include multiple
guards, and if any fail, the entire frame must be rolled back. This issue is not as critical
to Braids as they merge paths and reduce guards. To resolve this we use an accelerator
invocation history table that maintains information on program branch history prior to the
accelerator path and determines whether the BL-Path accelerator should be invoked. In our

suite, 9 applications always invoked the accelerator.

4.6 Evaluation

We have developed a cycle accurate simulator that models the host cores, the accelerator and

data movement. The host OOO core pipeline is modelled in detail using macsim [81]. We

62

—
R100[X < .
. x X % X 1 BL-Path
8 80 X X X Z73 Oracle Path
g X X X B Braid
g @ AXPrecision
° 60 4
£
v
~ 40 7 A
: i i i
T 0]
S il z
QB P H O R RE QY T K >R DY MmO @8 m L T g g9 0 8 Q9 O g
-gggg_mdﬁg‘goggggw:ngﬁbmgq]mﬂmggsm
o 1 g S 2" 2 8 3§ & S g QL g = g 3 5 E = kel g < g ®© [T
= 5 8 8 9 o & 9 8 g W Q £ 835 &&E 35845809 g g
E @ g B < %Q Q =) & o 9 £ 7

Figure 4.7: Performance Improvement

assume that the accelerator is uncore and transfers data to the OOO core via the L2 cache.
We model a CGRA fabric similar to prior work [64, 131]. The CGRAs we model are capable
of issuing memory operations and are cache coherent. We model the memory operations in
detail. The OOO assumes a perfect branch predictor, but the accelerator simulation models

guard failures and rollback overheads to obtain a conservative estimate of speedup.

Table 4.6: System parameters

Host 1 GHz, Embedded. 4-way OOO, 96 entry
Core ROB, 6 ALU, 2 FPU,

INT RF (64 entries), FP RF (64 entries)

L1 64K 4-way D-Cache, 2 cycles. LLC NUCA 8
banks, 20 cycles, MESI.

En. Mcpat [102]; ARM 1Ghz Template.
Coarse-Grained Reconfigurable Array (CGRA)
16x8 function units. 16 cycle reconfig.

Energy Parameters (Dynamic) Network (12
pd/switch+link), Function units (8 pJ/INT,
25pJ/FPU), 5pJ latch

4.6.1 Performance

NEEDLE automatically identifies and offloads coarse-grained Braids to achieve a average
performance improvement of 33% (max: 68%) across 29 applications.

We evaluate the performance of coarse-grained offload regions (BL-Paths and Braids)
that have been automatically curated from large workloads using Needle. Figure 4.7 shows
the improvement in performance (% reduction in cycle count) for the highest ranked BL-Path
and the highest ranked Braid. For the BL-Path, we quantify the performance of a) an Oracle
predictor and b) a branch pattern based predictor (see § 4.5). The precision of the predictor
is displayed on the Y-scale for clarity and brevity.

63

With a dataflow oriented accelerator, performance benefits are primarily obtained by
exploiting Instruction Level Parallelism (ILP) present in the workload. While an Out-of-
Order processor can uncover more ILP than an In-Order processor, they are limited by
available physical resources (eg. number of arithmetic units). Dataflow accelerators allocate
a single functional unit for each operation in the dataflow graph. Thus the entire ILP of
the workload can be exploited for performance. Other sources of performance include the
elimination of fetch and decode for each instruction in the dataflow graph. The accelerator
eliminates the need by configuring the spatial fabric prior to execution.

The performance of the BL-Path as offload is a tradeoff between the expected benefit
of offload versus penalty of rollback on a guard failure. The penalty incurred in terms
of performance includes the cycles spent in the accelerator as well the re-execution of
the offload on the host. The performance benefit gleaned from mining more dataflow
parallelism and eliding certain operations (e.g., bit manipulation) may be squandered by
overly greedy invocation. Furthermore, many workloads have a small margin for error due
to the constrained nature of their dataflow graphs. In this work, we explore the bounds of
offload potential by assuming a) guard failure detection only at the end of the accelerator
invocation and b) CPU re-execution of a failed BL-Path.

Overall, for offloading BL-Paths we see a mean performance improvement of ~24% across
24 applications. Five paths suffer from performance degradation, with an average of 7%.

We discuss the results presented in Figure 4.7 with respect to their workload characteristics.

High Potential (Predictable and High ILP) (1) Workloads with high ILP and coarse
offload regions (e.g., 470.1bm, ferret, swaptions and sar-pfa-interpl) show significant perfor-
mance improvement (up to 68%). While some workloads may be complex (e.g. swaptions
with 11K paths), they demonstrate regular predictable behaviour (avg precision 98%) that
translated to large gains as almost no work is wasted by wrong path rollback. Other
applications such as 179.art, 197.parser are predictable, though they have lesser potential

due to the nature of the computation being inherently sequential.

Access Execute Decoupling (1) For 470.1bm, we also find the separation of memory
access and computation paths. The inner loop path selected for acceleration is compute
dominated. The effective decoupling of access and execute can yield better performance
for the accelerated region. Recent research [36] has shown the utility of access execute
decoupling for accelerator architectures. However, their work demonstrates automated
prefetching for simple kernels [142] only. Using Needle based abstractions may lend to easier

partitioning of access and execute phases as observed in 470.lbm.

Low margin for error (2) 403.gcc has no ILP that the accelerator can take advantage of

to improve performance. Thus, the Oracle predictor does not improve performance, and

64

the branch history predictor degrades performance with wasted rollback being executed on
the CPU. 175.vpr suffers from a similar problem due to the offloaded region being only 7
operations in size; there is no performance benefit of the accelerator. Though it is highly
predictable (97%), the rollbacks for the 3% of failed executions contribute to a net 2.2%

degradation.

Pathological unpredictability (3) Due to a combination of data dependent loop branches
and aggressive loop unrolling (4x) freqmine, bodytrack and blackscholes degrade performance,
as the branch history patterns are insufficient. One possible approach to mitigate the issue
would be to use loop fission to segregate unrolled iterations where the loop bounds are
determined by data dependent values.

For Braids, we observe a mean 33% performance improvement. Note, there is low
potential for degradation, as Braids have fewer guards than paths and include control flow
in the offload via if-conversion. In all but one workload (sar-pfa-interpl), the highest ranked
Braid provides equal or greater performance than a BL-Path with the Oracle predictor. In
this workload, the BL-Path and Braid target different code regions with varying ILP.

Apples to Oranges (4) sar-pfa-interpl is one of the 3 workloads where the highest ranked
BL-Path is not part of the highest ranked Braid. This implies that the coverage of lower
ranked BL-Paths contribute to an overall higher ranked Braid. In this case, the Braid has
more than 2x the number of operations and provides a higher overall energy reduction
(88% vs 79%) for the BL-Path. Needle provides a systematic approach to study offload

granularity.

4.6.2 Energy Evaluation

Needle constructed Braids in a programmer independent, automated fashion which reduced
the energy consumption by 20%. Figure 4.8 shows the net energy improvement for offloading
Braids. While the performance improvements that can be obtained from coarse-grained
offloading depend on the criticality of the dataflow graph, energy consumption can be
reduced on a per operation basis due to the elimination of a processor front-end [70]. We
present only Braids in this section due to their higher performance and simplicity. We
present net reduction for the entire workload region (hottest function) in contrast to the
Braid only to highlight the utility of our tool.

The coverage of the Braid is indicated on top of each bar. The reduction in energy
consumption is commensurate with the coverage apart from a couple of application pairs.
For 453.povray and 456.hmmer, the coverage is the same however the net energy reduction
for 456.hmmer is lower. ferret has higher coverage than dwtb3 yet has a lesser impact on
energy reduction. Both pairs are due to the increased dataflow graph dependencies (2x in
ferret <» dwtb3) and (1.4x in 453.povray <+ 456.hmmer).

65

o1
o

kg
- g 91
S 85 g5 82 88
S 77
Q4O 80
S
45 73
%30 57
by 49 = o
2 49
42
- 3754 38
920 36 38 37
5 33
Lﬁ 28 27 21 25
S0 1719
[¢b]
Z 6 | |5
. bl
fEE 0 g N E 0 s e ER AR NG E RS
5 CECdAROESREECSFSSEEL L LT ERPE S
S EESa oFoBERY ZgYsCESTLEOD
S598° gRRRETR AEESTRagREL:
© S = »nlq P Trn

Figure 4.8: Net Energy Reduction for Braid

While 401.bzip2 comprises > 3K Braids, we find a single Braid (5% coverage) reduces
energy by 2.7% overall. Similarly, just one Braid for 186.crafty reduces energy by 2x.
Both these Braids offer much larger energy reduction per coverage than other workloads.
The other workloads that demonstrate similar behavior are fluidanimate, freqmine and
sar-backprojection. In general, floating point workloads enjoy larger reductions in energy
consumption due to reduced cost of floating point operations on the spatial fabric as well as

simpler control flow structure.

HLS for Needle identified Braids Needle also enables high level synthesis tools [31]
to target irregular workloads. We target a Altera Cyclone V SoC Processor/FPGA that
combines dual ARM cores with a tightly coupled FPGA fabric. We synthesize both BL-Paths
and Braids. Data can be moved between the ARM cores and the FPGA through the cache
coherent AXI bus, and the memory maps permit us to share up to 1GB of coherence space
between the core and the FPGA. Our backend RTL generator includes support for only
a subset of the LLVM IR (v3.8). We use this infrastructure for functional testing of the
hardware accelerators and area tradeoff analysis.

We synthesize RTL for 22 workloads from Needle identified hot Braids. We target
an Altera Cyclone V SoC device and find that for all but four workloads, the Adaptive
Logic Modules used is less than 20% (total ~85K). For these workloads the average is 38%,
max utilization is for 470.1bm (72%) where double precision floating operations are used.

Modelsim simulations for power revealed that apart from three workloads all others consumed

66

5-60mW. The remaining three consumed 80mW, 175mW and 305mW for 444.namd, 470.1bm

and swaptions respectively.

4.7 Conclusion

Needle is a automated tool chain that enables precise profiling, selection, and construction of
“accelerator-friendly” regions. Needle is independent of accelerator architecture and released
as free and open source software. We introduce a new program path abstraction, “Braids”,
that merges paths with many common basic blocks to help increase accelerator code coverage
without impacting the hardware complexity and energy efficiency. Finally, we use Braids to
enable energy efficient software speculation on accelerators. Overall, we enable offload of
irregular workloads to accelerators and achieve a 34% improvement in performance and 20%
reduction in energy. With Needle, we enable high level synthesis for irregular workloads

where they previously failed.

67

Chapter 5

Integration — Coherent Cache

Hierarchies for Accelerators

With application specific hardware specialization, data movement can pose to be a challenging
problem. In this chapter, we design a coherence protocol for hardware accelerators which
optimizes data movement between multiple specialized units. We show that DMA transfers
introduce overheads and traditional coherence protocols are unsuitable. We study multiple
facets of the cache hierarchy including write optimizations and evaluate the tradeoffs between
the pull-based model of the cache hierarchy and push-based model of the DMA.

5.1 Introduction

Current trends in microchip design indicate that to meet power budgets designers would
have to power down an increasing fraction of the components on a chip [119]. Prior research
in both industry and academia [133] have sought to address the power challenge through the
use of hardware specialization (aka., accelerators) that target specific program regions. Prior
work [171, 64, 66] has sought to extract accelerators from program regions such as functions
and loops. We find that a key challenge to retaining the energy efficiency of accelerators is the
data movement as the program moves around the chip seeking accelerators. This challenge is
particularly relevant today as wire communication energy and cache access energy dominate
compute energy in fixed function accelerators. Accelerators improve efficiency of the compute
datapath to the level at which the overall energy consumption is primarily dominated by
memory operations [66]. It is important to optimize data access energy to ensure that we
retain the overall energy benefits from the use of accelerators. In this work, our quantitative
analysis focuses on fixed-function accelerators [66] to highlight the energy overhead of data
migration between accelerators. However, we believe that the overall qualitative conclusions

should extend to other accelerator types. Prior work has recognized the need to minimize

68

Sequential Program
Read_image(in_img[])
tmp_1[] =step1(in_img[]);
tmp_2[] = step2(tmp_1[]);
out_img[] = step3(tmp_2[]);

Read_image(in_img][]) Fixed-function Accelerators

(;L.J.t_img[] = step3(tmp_2[]);

1 | ekl W |
T][un G n |
BTN B E— — j

Top: Image processing application that processes the input in 3 steps. An application
representative of these steps would be “histogram” in our benchmark suite. Bottom:
Multicore chip with fixed-function accelerators. AXC-1 and AXC-2 are accelerators collocated
in a single tile. The 7 indicate the design questions addressed in this work: the cache
hierarchy for accelerators, efficient data migration between accelerators, and the tradeoffs
when transferring data to/from the host.

Figure 5.1: Offloading Sequential Program to Accelerators

short data movement between producer and consumer operations within an accelerator [139];
here, we focus on data sharing and data movement between accelerators.

We highlight the design challenges with an image processing application in Figure 5.1.
The application reads an image and passes it through different step functions (step1(),
step2(), step3()). In the contrived example, step1() and step2() are accelerated by the
accelerators AXC-1 and AXC-2 respectively while step3() continues to run in software on
the host processor. The key questions are i) how are data elements in_img[] and out_img[]
transferred between the host and the accelerator and ii) how do the accelerators, AXC-1
and AXC-2, exchange the intermediate data (tmp_1()).

Industry vendors, spurred by the need to reduce the latency overhead of host-accelerator
communication, have developed coherent direct memory access (DMA) engines [62, 24, 83]
that transfer data directly from the host’s LLC into the accelerator’s explicitly managed
local storage (scratchpad). While this approach is suitable for computationally intensive
accelerators with few memory operations it is inefficient when fixed-function accelerators
offload functions that share data with each other. The DMA-based approach requires multiple
data transfers between the accelerator’s scratchpads and the host, expending significant
cache and interconnect energy. The DMA overhead is particularly notable compared to the
“un-accelerated” system in which the inter-function data reuse would be captured by the cache

hierarchy of the core running the sequential program. Also accelerators that are not compute

69

dominated may experience performance overhead due to the DMA transfers on the critical
path. Recent research [171, 187] has recognized the importance of collocating accelerators
to minimize data transfer overhead. They integrate fixed-function accelerators at the host,
and the L1 cache is shared between the host and the accelerators. Sharing the L1 cache
helps minimize the overhead of data transfers between accelerators and enables participation
in coherence. However, the shared L1 cache also introduces a challenge. We show that
accelerators exhibit different memory level parallelism. To ensure that we retain the energy
and performance benefits of the fixed function accelerators [66], the cache hierarchy needs
to be optimized. We also show that the load-to-use latency and energy of the shared cache
might minimize the benefits of fixed function accelerators. Additionally, the datapath of an
in-core accelerator is limited by the bandwidth afforded by TLB, L1 cache, and register file
ports of the core.

In this work we focus on fine-grain offloading of multiple functions from a sequential
program. We find that cache and coherence protocol optimizations are even more important
today since with fixed-function accelerators the data movement constitutes the dominant
overhead. We propose, FUSION, a multi-level coherent cache hierarchy for accelerators.
FUSION adopts a split organization in which fixed-function accelerators are grouped in
a physical “tile” and implement a localized lightweight memory hierarchy with private L0
caches per accelerator (LOX) and a shared L1 (L1X) cache per accelerator-tile. The private
LOX caches data and act like a scratchpad to capture the locality within an offloaded function,
and ensure low load-to-use latency and energy for the memory operations. The shared L1X
captures the inter-function temporal and spatial locality between functions offloaded to the
accelerators. Typically sequential programs tend to include multiple functions suitable for
acceleration like the image processing example and a lightweight multi-level hierarchy is
needed to capture this locality while minimizing energy for the access to the cached data
elements.

Coherence is maintained locally within the accelerator tile between the LOXs and L1X
using time-stamp based coherence protocol [155, 158, 121]. Implementing lightweight
coherence between the private LOXs and the shared L1X eliminates the need for “DMA-
ing” (programmed explicit copying) data between accelerator cores. FUSION removes the
ping-pong effect of moving data out of an accelerator scratchpad into the host’s coherence
space (at the shared L2) and then into another accelerator scratchpad. Overall FUSION
saves bandwidth between the L2 and the accelerator tile and hence energy in the on-chip
interconnect. In this work, we also propose FUSION-Dz, that further optimizes the inter-
accelerator data sharing the accelerated functions similar to the example in Figure 5.1. In
such cases FUSION-Dz leverages the accelerator tile’s coherence protocol to proactively
forward the dirty data from the producer accelerator’s LOX to the consumer accelerator’s
LOX, thus saving write energy to the shared L1X and minimizing load-to-use latency for the

shared data. Overall, we also discuss the energy benefits of the timestamp-based coherence

70

SCRATCHPAD

H Host : AXC-1
Core Core

I
i DMA
[Sharelz | (uemm—Soratchpad

______________ DMA
(2pj/byte, 10 cycles/block)

Shared L2
@Host

Om,
N~
1

AXC-1 AXC-2

Time

0 @ DMA input to
scratchpad
© (3 DVA dirty data
from scratchpad

@ @ Accelerator

execution

DMA Stall
Overhead

1 :2a4|Step2()
LD tmp_1[]
(5]

DMA ESTt 2
Oy R erim

Step3(),
@ host

Step1()
‘LD in_img[]
2]

_ET tmp_1[]

Figure 5.2: Left: SCRATCH Architecture. Per-accelerator scratchpads into which DMA
transfers data. Switches to a different accelerator Right: SHARFED. Shared L1 cache between
the accelerators in a tile. The Shared L1 cache is kept coherent with the host multicore
through MESI protocol. Host shared 1.2 maintains inclusion with the accelerators shared

L1X.

71

SHARED-L1X

e
I
'l\E": Host Host AXC-1 AXC-2
g! Core ' [Core 0.5pj/byte X 4 cycles
i LD || LD | [Shared L1X
I
! Shared L2
I
Shared L2 Shared
@Host Lix AXC-1 AXC-2
ol | I
E L | Step1()
1 Mis ! LD in_img[]
I (1)
: : ST tmp_1[]
1 1
1 1
1 1
1 1
1 | Step2()
' Mis ! LD tmp_1[]
; its (D]
1 1 ST tmp_2[]
1 1 .
1 1
Step3(), 1
@ host

which minimizes coherence messages, permits relocation of the TLBs to cache miss path,
and enables proactive data movement optimizations.

FUSION is evaluated using a variety of applications drawn from the SD-VBS [170] and
Machsuite [142] benchmark suites. FUSION eliminates the DMA transfers required to
transfer data between accelerators and on average reduces energy by 2.5x. Like scratchpad
based systems, FUSION exploits the temporal and spatial locality to minimize the accesses
to the shared cache. Additionally, FUSION-Dz saves up to 17% of the dynamic link energy,
for accelerators sharing data, by eliminating the shared L1X from the critical path.

The rest of the work is organized as follows: Section 5.2 describes the baseline architecture
and the challenges in designing a cache hierarchy for accelerator. We also characterize the
behavior of functions offloaded to accelerators. Section 5.3.1 provides an overview of the
FUSION architecture and highlights the benefits compared to the scratchpad approach and
shared cache approach, and Section 5.3.2 provides a detailed description of the architecture
and discusses the details of the protocol and cache layout. Section 5.4 details the evaluation
toolchain and finally in Section 5.5 we present the quantitative tradeoffs between the different

cache organizations.

Lessons Learned

e Coherency mechanisms help optimize data movement. We find that local-
ized cache coherence within the accelerator tile help optimize data sharing between

accelerators while minimizing interaction with the host’s LLC to save energy.

e DMA transfers increase energy overhead. We have analyzed the traffic caused
by repeated DMA transfers and find that significant energy is expended in applications

which share data between functions.

e Need to eliminate request messages. Caches operate in a pull-based mode and
potentially expend significant energy in the network links that may offset the gains
obtained from eliminating host-accelerator DMA transfers for compute intensive

accelerators.

e Write forwarding can reduce cache energy. We find that accesses to the shared
L1X can expend significant energy in accelerators and proactive transfer of data

between accelerator caches directly can save significant energy.

5.2 Background and Motivation

In this section, we characterize the two baseline architectures currently explored by recent
accelerator studies [66, 187]: SCRATCH and SHARED. Later in the section we present

the characteristics of accelerators derived from sequential programs. We using the image

72

processing example shown in Figure 5.1 to highlight the overheads that may arise when
running on SCRATCH and SHARED designs.

5.2.1 Baseline Architectures

Scratchpad per Accelerator (SCRATCH): Both ARM [62] and IBM [24] have
enabled coherent access to the shared LLC from the accelerators. The coherence is limited
to the DMA operations reading the most up-to-date data from the shared last level cache
(LLC); writebacks from the scratchpad are managed using DMA. In Figure 5.2 the individual
accelerators each include a scratchpad that connects with the shared L2 in the multicore
through a coherent DMA controller. The scratchpad approach is well suited system which
are either compute intensive (e.g., Cryptographic Unit [24]) or there is minimal interaction
between accelerators (Cell SPE [164]). However, when functions or loops from sequential
programs are offloaded to accelerators the shared data needs to be carefully managed as the
program execution migrates between the different accelerators.

We illustrate the operation SCRATCH with the image processing example. To initialize
the accelerator the host processor fills in the input data block at the shared L2 and DMAs
the block to the accelerator (Steps @,@). In the evaluation (see Section 5.5) we find that the
proactive pushing of data into the scratchpad is one of the key benefits of DMA compared
to a cache hierarchy which operates in a pull-based mode. We find that coherence request
messages expend significant energy in links. The scratchpad size per accelerator introduces
a tradeoff. A large scratchpad reduces the number of DMA operations and amortizes the
cost of DMA but increases the load-to-use latency and load-to-use energy during accelerator
execution. With the data accesses dominating the energy consumption in fixed-function
accelerators [145], scratchpads tend to be small requiring repeated DMA. Another challenge
is the interaction between multiple accelerators. As shown in Figure 5.2, when the program
switches from step1() to step2(), DMA is needed to transfer the temporary data (tmp_1[])
from AXC-1’s scratchpad to the shared L2 and then into AXC-2’s scratchpad (@ and @).
Our analysis of data access patterns reveals that functions drawn from the same program

tend to have significant data sharing (see Table 5.1 below).

SHARED between Accelerators: Current work in academia [171, 64] and industry
[70] are exploring the benefits of “at-the-core” accelerators that share a host core’s L1
cache which enables the accelerators to efficiently transfer data between the host and the
accelerators and between the accelerators. Unfortunately, the shared L1 needs to be sized
to accommodate both software threads running on the host processor and the various
accelerators. Since fixed-function accelerators expend minimal energy on the operation
itself the load-to-use latency and energy of the shared L1 cache constitutes a significant

overhead [145] in today’s wire limited era [42]. In this work, we explore the benefit of

73

multi-level caches for accelerators and demonstrate how to efficiently maintain coherence in
the hierarchy.

Figure 5.2: SHARED-L1X illustrates the SHARED architecture; we only show a single
tile of accelerators. In SHARED, a tile of accelerators is connected to a multibanked L1
shared cache (Shared L1X) through a common switch. The accelerators incrementally load
data into the shared cache as they run. As shown in steps @ and @, the accelerators
are activated on a context switch once the basic register state is transferred. All accesses
from the accelerators are issued to the shared L1X cache which appears as just another
L1 agent to the coherence protocol and participates in the MESI operations. The host’s
shared L2 maintains inclusion with the L1X. Compared to SCRATCH all accesses from
the accelerators are issued to the L1X which has a higher load-to-use latency and energy.
Our SHARED architecture is similar to both Dyser [64, 143] in that accelerators share a
common L1 cache that participates in coherence operations; in our model the host processor
resides on a separate tile. Since caches tend to dominate the overall energy consumption
in fixed function accelerators, earlier work [138] has recognized the need for customizing
the cache size and organization for individual accelerators [145, 66]. However, there is a
tradeoff between optimizing the shared L1X for data sharing between accelerators while
supporting low load-to-use latency and energy per accelerator. Prior work [187] has managed

the coherence between the host cache and the scratchpad using explicit instructions.

Fixed-Function accelerators from Sequential Applications: Table 5.1 lists the
characteristics of the specific functions we accelerated from our benchmarks drawn from
Machsuite [142] and SD-VBS [170]. We focus on the workloads in which multiple functions
can be offloaded to accelerators and share data between the accelerated functions and the
host processor. Please refer to Section 5.4 for a detailed description of our toolchain. The
term “accelerator” is used in different contexts so we have listed the function names and
their features to clarify to the reader the granularity; in this work we extract accelerators
from loops and functions of sequential programs.

To choose the appropriate accelerators for this study we profiled the sequential programs
on a Intel Core i5 processor. Table 5.1: % TIME lists the fraction of total time spent in the
individual functions. In many of our applications (other than histogram) the critical path
includes multiple functions and the functions are invoked repeatedly (possibly from different
sites in the program). The breakdown of the operations within each accelerated function
(%INT, %FP, %LD, %ST) is also presented in Table 5.1. The operation breakdown is obtained
from the fixed-function hardware extracted from the dataflow graph of the accelerator (see
Section 5.4). Given the dominance of interconnect energy (~1pJ/mm/byte [42]) and
cache energy [66] compared to operation energy (0.5pJ/integer add [12]) in fixed-function
accelerators it is imperative to capture the spatial and temporal locality and thus reduce

the energy for load and store operation. The sharing degree (%SHR) characterizes inter-

74

Table 5.1: Accelerator Characteristics

Function [% Time | %INT | %FP | %LD [%ST | MLP | %SHR
FFT
stepl 27.3 28 7.8 46.3| 179 4.8 56.3
step2 8.8 52.1 0| 29.9 18 4.0 99.5
step3 28.7 31.6 7.5 432 17.7 4.4 61.5
step4 8.5 49 0| 31.8| 19.2 2.9 50.8
stepd 8.4 49 0| 31.8| 19.2 2.9 50.8
step6 18.4 20.3 3.3 53.8| 22.6 4.3 19.4
Disparity
padarray4 7.7 71 0| 15.2| 13.8 5.0 50
SAD 7.7 57.9 82| 17.6| 16.3 3.0 33.3
2D2D 15.4 62.8 0| 24.9| 123 3.5 49.7
finalSAD 30.8 22.8 0| 71.3| 5.9 5.7 47.9
findDisp. 23.1 32.7| 32.3| 30.7| 4.3 2.2 314
Tracking
imgBlur 14.3 52.8| 15.1 24| 8.1 2.0 58
imgResize 14.3 57.1| 11.4| 26.3| 5.2 1.3 99.9
calcSobel 28.6 52.8| 17.4| 22.8 7.1 1.0 32.5
ADPCM
coder 50 32.8 0.0/ 56.0| 11.2 1.6 99.0
decoder 50 40.8 0.0] 48.0| 11.2 1.7 98.9
Susan
bright 1.0 22.5| 48.9| 20.3| 84 2.2 59.4
smooth 66.2 24.3 0.0] 67.6 8.1 2.0 36.2
corn. 13.2 33.1 1.3| 61.0| 4.6 2.1 7.6
edges 20.6 32.6 1.6 60.3| 5.5 1.9 12.3
Filter
medfilt 74.4 48.2 0.0] 49.1 2.7 1.6 14.2
edgefilt 25.5 41.3| 23.9] 28.1 6.7 4.1 23.1
Histogram
rgb2hsl 48.2 22.1| 51.8| 20.7| 54 3.5 8.3
histogram 3.6 40 0| 53.3 6.7 1.0 100
equaliz. 3.6 36 0.1] 59.9 4 1.0 66.2
hsl2rgh 15.7 26.3| 40.8| 22.1| 10.8 3.1 75.0

See Section 5.4 for detailed description of our toolchain

accelerator communication. We define the sharing degree (%SHR) to be the fraction of cache
blocks accessed by the accelerator that are also accessed by at least another accelerator.
The %SHR here is reflective of the temporal locality in the original application between
functions and manifests itself as data transfers between individual accelerators. In our
applications, apart from the initialization functions (e.g., rgb2hsl in Histogram) in our
accelerated functions the average %SHR is ~ 50%. Even in cases where only a small fraction

of application time is spent (e.g., paddaray4 in Disparity, Equaliz. in Histogram) the

75

%SHR degree can be significant (50%+). In such cases, if we do not ensure low overhead
data transfers into the functions, the overheads could potentially dominate the overall energy
consumption of the accelerator. The final columns, LT, presents the Lease Time (used in
the ACC protocol, see Section 5.3.1) assigned to each cache block in the LOX per function

per benchmark.

Summary

e When multiple functions from a sequential program are offloaded to accelerators the

data sharing needs to be carefully managed.

e Fixed-function accelerators access both private and shared data and we need a multi-
level cache hierarchy to effectively capture the locality of the accelerators and reduce

data access energy.

e To effectively manage sharing between accelerators and maintain data across a multi-
level cache hierarchy scattered across accelerators we need to employ low-overhead

cache coherence that minimizes control messages.

5.3 FUSION: A Coherent Accelerator Cache Hierarchy

5.3.1 Design Overview

FUSION is a multi-level coherent cache hierarchy for the accelerator tile that supports i)
low load-to-use latency and low load-to-use energy for each fixed-function accelerator, ii)
low overhead data sharing and data migration between accelerators within the tile, and
iii) efficient data migration between the host and the accelerator. FUSION collocates
fixed-function accelerators in a separate tile and implements a separate coherence protocol
and cache hierarchy within the accelerator tile. The system can support multiple accelerator
tiles, though in Figure 5.3 only a single accelerator tile is shown.

Figure 5.3 depicts the architectural details and we focus on the overall hierarchy herein
to illustrate the tradeoffs between FUSION and existing designs, SCRATCH and SHARED.
Private LOX caches, which can be sized independently, are provisioned for each accelerator
within a tile to optimize load-to-use latency and energy [138]. All the private LOXs are
connected to a banked, shared L1X cache. The LOX supports write caching (unlike private
caches in GPUs) to minimize write bandwidth and link energy. FUSION maintains coherence
between the private LOX and shared L1X using the ACC (ACcelerator Coherence) protocol
(details of ACC are presented in Section 5.3.2). The shared L1X is the ordering point and is
a participant in the CPU’s MESI protocol actions.

As shown in the timing diagram (Figure 5.3), like SCRATCH, FUSION caches the
private data for the functions stepl1() and step2() in the LOX for energy efficiency.

76

FUSION Architecture

Physical addresses Virtual addresses
___ |
g°St gOSt el AXC2 | _ - [Cache Tine | LTime
ore ore TLOX]] [LLQXJ_—|-___

L1D L1D

Shared L2

Shared L1X :i_ R
i~~~ {Cache Tine[GTime]

i Cache line metadata for ACC Protocol
——————————————————— === =~ —-— — -~ i) LOX LTime: Local time. Line valid if TIME < LTIME
MESI protocol ACC protocol ii) L1X GTIME: Line cached by sharer LOX if GTIME < TIME.

Virtual memory support
i) AX-TLB : Translates virtual address to physical address
iii) AX-BMAP: Translates physical block address to virtual address (L1X line ptr: way and set)

Step2() Lox [Step2()

ead X (D tmp 1] LD tmp_1[]
WSS | (2] (2]
Step3() »i sTtmp_2p) |Step30 | | wr ST trp. 2[]
LD tmp_2[},_—1 @[Back == | LD tmp_2[1,_— Back S

FUSION FUSION-Dx
Shared L2 Shared Shared L2 Shared
@Host L1X AXC-1 AXC-2 @Host L1X AXC-1 AXC-2
g | g
El ' Lox|Ster10 El | | Lox [SteP10
! | LD in_im 1 I LD in im
<g§|] o el
1 I \WNY
! Back ST tmp_1[] ST tmp_1[]
1
I Wr|
1
1
1
1
1
1

1 [

1 1

1 I

1 1

1 1 Forwarding
1 1

1 I

1 1

1 I

1 I

1

FUSION: Baseline FUSION system that uses per-accelerator private caches (L0OX) and a
shared L1X to implement a multi-level hierarchy for accelerators. FUSION-Dzx: Optimizes the
accelerator coherence protocol (ACC) for direct Wr-forwarding between LOX of accelerators.

Figure 5.3: Top: FUSION Architecture. Bottom: Timeline for image processing example on
FUSION and FUSION-Dz.

Like SHARED, FUSION enables the shared data (tmp_1[]) produced by step1() to be
communicated efficiently to step2() without requiring intervention of the host processor
(unlike SCRATCH which uses DMA). Finally, AXC-2 writes back the tmp_2[] which the
host processor incrementally fetches as it runs step3(). Thus FUSION eliminates DMA
transfers from the critical path, allowing fixed-function accelerators to incrementally fetch
data when needed. More importantly, the extraneous DMA operations between accelerators
are also eliminated.

FUSION-Dz further optimizes the data migration between accelerators to save energy.
While FUSION eliminates the DMA required when execution switches to a different acceler-
ator, (e.g. step2()) it requires subsequent read misses to transfer data from the shared L1X
to the consumer LOX. We find that the control messages for requests fetching intermediate

data (e.g. tmp_1[]) expends significant energy (see Section 5.5.2: Lesson 4) compared

77

to SCRATCH. FUSION-Dzx (see Figure 5.3, bottom right) optimizes producer-consumer
sharing found between the accelerators by proactively pushing the data from the producer’s
(AXC-1) cache into the consumer’s (AXC-2) cache and eliminates cold misses. Overall,
FUSION-Dz eliminates the writeback from AXC-1’s LOX to the L1X, AXC-2’s read miss
and the L1X access.

5.3.2 FUSION Architecture

In this section, we describe the architecture of FUSION and illustrate how individual
accelerator and host memory operations, as well as their interaction, are handled. As
depicted in Figure 5.3 the architecture is segmented into separate host and accelerator tiles.
Only the operations within a single accelerator tile are described for brevity. The accelerator
tile operates on virtual addresses and maintains coherence between L0Xs and the shared

L1X using a time-stamp based coherence [155, 158, 121] protocol.

Virtual Memory: In FUSION, the accelerators operate with virtual addresses while
the host processor operates with physical addresses. This design eliminates TLB’s from
the critical path of accelerator memory operations and minimizes the energy consumption
per memory access. Figure 5.3 (top) shows the point of virtual-to-physical translation in
FUSION; we address the issue of synonyms in the Appendix. Process id (PID) tags are
added to the LOXs and L1Xs to ensure that accelerators executing functions from different
processes can co-exist on the same tile. The private L0Xs and shared L1Xs are indexed using
virtual addresses on AXC memory operations. Since ACC is a self-invalidation protocol
there are no internally forwarded coherence requests that need to look up the LOX caches.
We add a TLB (see AX-TLB in Figure 5.3, top) on the miss path of the shared L1X when
transiting from the accelerator tile to the host tile; the translation is needed to index into
the shared L2 and participate in MESI actions.

Since the host uses physical addresses, a reverse translation (physical to virtual address)
is needed to handle forwarded requests from the shared L2 to the L1X. A naive solution
is to include the virtual address for the memory access in the coherence control message.
Unfortunately, this doubles the size of the control message for all host memory requests
since it is not known beforehand which ones may need to be forwarded to the accelerator tile.
In the current wire energy dominated era, this is not an energy efficient solution. Instead,
we chose to expend area and dedicate a separate accelerator reverse map (AX-RMAP) per
accelerator tile. The AX-RMAP maintains the physical address of the lines in the shared
L1X; it is indexed using physical block address and stores a pointer to the shared L1X line.
Since the shared L2’s directory acts as a filter (sharer list indicates if an accelerator tile
has cached the line), only few requests are forwarded to the accelerator and require and
AX-RMAP look up. Section 5.5.6 evaluates the proposed address translation scheme for the

accelerator tiles.

78

Accelerator Coherence (ACC) Protocol: ACC is a time-stamp based self-invalidation
protocol similar to protocols proposed for multiprocessors and GPUs [155, 158, 121]. ACC
adds two important write optimizations for accelerators compared to the earlier approaches:
Write caching and Write forwarding. We describe the baseline writeback caching here and
implement write forwarding as part of the FUSION-Dzx system described below. ACC is
a self-invalidation protocol and is a strict 2-hop protocol that requires no extra coherence
messages over the baseline scratchpad systems. The reduced need for coherence makes
it attractive for the purpose of accelerators from an energy perspective. Note that the
primary purpose of ACC is to enable data migration between accelerators without host
intervention (DMA) as the program context migrates and not concurrent sharing between
different accelerators. The ACC protocol supports sequential consistency semantics for
accelerator execution.

Figure 5.3, FUSION Architecture (top), shows the components of ACC. Only the
accelerator cores within a single tile need to have a synchronized time-stamp register since
ACC implements coherence only within a tile. A small time-stamp field (32 bits) is added to
each cache line in the private LOX and shared L1X caches, as shown in Figure 5.3 (top). The
local timestamp value (LTIME) in the L1 cache line indicates the lease time, essentially the
time until which the particular cache line is valid. An LOX cache line with a local time-stamp
less than the current system time is invalid. The global time-stamp (GTIME) in the L1X
indicates a time by when all LOX caches will have self-invalidated the particular cache line.

Figure 5.4 (left) shows how ACC handles accelerator load and store misses. When
AXC-1 issues a load request to the shared L1X, it requests a read-only epoch for the address
(A) ending at time T=10 — @. The shared L1X receives AXC-1’s load request (including
the epoch request), records it and forwards it to the host-side along with a pointer to the
L1X location (way and set). When transiting into the host tile, the AXC’s load request is
translated to a physical address. When the request crosses over to the host tile, it appears
as a MESI load request from an L1 to the host’s L2.

We have implemented a directory based 3-hop MESI protocol that takes the requisite
actions to supply the requested data to the L1X. The data response includes a pointer to the
L1X location so that on transitioning into the accelerator tile (which uses virtual addresses),
the data response can update the he appropriate L1X entry. The shared L1X then replies to
AXC-1 with the data and time-stamp of T=10 — @. The time-stamp indicates to AXC-1
that it cannot use this location beyond time T=10 — @. Subsequently, AXC-1 requests a
write-epoch that expires at T=15 — @. To satisfy this write request the L1X implicitly locks
the line and updates the L1X time-stamp to T=15. Subsequent readers or writers detect the
locked line and simply stall at the L1X until the write lease expires and writeback completes.
AXC-1 triggers a self downgrades and issues a writeback to the L1X — @ at T=15. When
AXC-2 issues a read request — @ — the L1X finds the global time-stamp (T=20) to be

79

less than the current time (T=25) and checks if the writeback has completed and waits if
necessary. Once the writeback is complete, the LOX responds with a read lease.

A key implementation decision is how to implement self downgrade. This requires
checking for dirty lines in the cache. We implement the downgrade checks without sweeping
the entire cache by using the time-stamps as a filter. Each LOX cache set includes a writeback
time-stamp (the earliest write lease in the set); each accelerator includes a writeback time-
stamp for the entire LOX cache (the shortest lease time-stamp amongst all the sets). These
timestamps are used to filter the checks for the dirty lines. The writeback timestamps are
updated whenever the dirty bits in the cache are updated.

Overall, accelerators can acquire both read and write epoch’s on the cache line and
the shared L1X distinguishes such cases; subsequent accesses stall on write epochs, while
reads are permitted in conjunction with other read epochs. The epoch requests are fixed
based on the expected latency of the accelerator invocation since it experiences minimal

non-determinism (only due to memory hierarchy).

Accelerator Memory Ops Forwarded Host Requests
Phys Virt - Phys Virt -
addr | addr - addr | addr -

Shared L2| Shared — Shared L2 Shared
@ |.I°st L-II X AXC-1 AXC-2 g @ I'IOSt L? X AXC-1 AXC-2
=

| | | |

LAY 1 a2 DA k5 gé’?x\ g(| A#10 |A#15

1 [TLB RMAPR! Evict to \self
a— I I I)

| A#10-@A#10 _ho I Ibuffer Inv.

| le—]STA 1 I

| OW T-15 : IWBack b

1 > A#15 1 |Sta”

' ' | self 15 : : | self

! evi T Send ' © s

evict inv.

I 1 WBAC Data pUTX

[1 1 1

. : 5 to host, :

I A'M LDA bo I I

T e |

| | 4 | |

v —_—
R: Read D: Data, A#15: Cache block A with LTIME=15.
PUTX: Writeback; Fwd: Forwarded messages

Figure 5.4: Left: ACC protocol servicing requests from accelerator and interaction with
MESI. Right: ACC Protocol servicing forwarded requests from MESI.

80

Integrating ACC with MESI: Herein we describe how ACC participates in MESI
operations. Exclusivity is maintained between the host processor tile and accelerator tile.
The shared L1X always caches a block in exclusive state irrespective of the accelerator
operation (read or write). When participating in the MESI protocol the shared L1X states
map to a 3-state MEI protocol (M: modified, E: exclusive and clean, I:invalid). The ACC
protocol responds in the same manner to all forwarded host coherence requests; i.e. relinquish
ownership when the GTIME time-stamp expires and send an eviction notice to the shared
L2. The shared L2 has perfect information on whether the accelerator tile is caching the
block and eliminates any extraneous coherence messages that a cache would need to deal
with as a result of silent drops from S—I. When a block is in I state in the accelerator tile,
the L1X will not receive any messages from the shared L2 for that block.

Figure 5.4 (right) illustrates a forwarded request from the host processor. The host
processor performs a store operation which results in a forwarded request to the accelerator
tile. The forwarded request translates the physical address to the shared L1X pointer via the
Accelerator Reverse Map (AX-RMAP) — @. A key benefit of the time-stamp based approach
of the ACC protocol is that shared L1X will filter out the MESI Fwd messages and not
forward them to the LOX. In the illustration, the forwarded request is received at time T=5
while the block is cached in the private LOX until time T=15. The Fwd message triggers an
eviction from the shared L1X to a writeback buffer — @ — but the response eviction notice
is stalled until time T=15. At T=15, a PUTX (eviction notice) is sent back to the shared
L2 — @®. The shared L1X uses the GTIME (see Figure 5.3, top) to ascertain when it is safe
to respond to MESI protocol action and does so without involving the private L0OXs. In
our workloads, we observed between up to ~800 forwarded requests from the CPU to the
accelerator tile for the whole workload. (TRACK:817, ADPCM,DISP.:~500, others < 50).

FUSION-Dx — Extending ACC to support Forwarding: A key overhead present
in the cache based coherence model (pull-based) versus the scratchpad based DMA model
(push based) is the extraneous control messages issued per cache miss. While the control
message overhead is minimal in a multicore [155] or GPGPU [158] context, for fixed-function
accelerators, they add notable overhead to the overall energy consumption. One particular
source of inefficiency is the store-load forwarding shown in Figure 5.5:FUSION. AXC-1
writes to A — @ — but does not complete processing until later — @. In the meantime,
AXC-2 wishes to read the data but has to stall until AXC-1 self-evicts the line. There are
two inefficiencies in the contrived example: i) the coherence messages (write back, read
request and data response) needed over the LOX-L1X link wire and ii) the stalled read
on AXC-2. With accelerators exploiting all available operation parallelism and reducing
compute energy consumption, a significant challenge in our workloads is the energy cost
of the coherence messages. FUSION-Dzx optimizes by providing a mechanism to directly
forward data from AXC-1 to AXC-2. For MESI protocols such “proactive” forwarding

81

FUSION FUSION-DX

Shared Y Shared
L1X AXC-1 AXC-2 L} X AXC-1 AXC-2
I

l l
(.% STA — (I'W\T/;i STA
Ac A#15 ho Ac A#25

e,

Time

|
1
: FWD
LAT=2l g 1IDA LD A
1 PUTX éelf 15 A#25
: evict

D A#25

20

I
I
I
I
I
I

Stall ! __
|
I
I
I
I
I
I

R: Read D: Data, A#15: Cache block A with LTIME=15.
PUTX: Writeback; Fwd: Forwarded messages

Figure 5.5: Left: FUSION without write forwarding. Right: FUSION-Dz. ACC protocol

with write forwarding.

requires significant complexity and involvement of the coherence directory [91]. With the
ACC protocol, forwarding simply involves self-eviction and forwarding the data with the
already requested lease lifetime (see Figure 5.5: FUSION-Dz). Forwarding without informing
the shared L1X is feasible with ACC since the L1X only tracks the lease epoch and is not
concerned with the owner of the lease. The only challenge is to identify the stores that may
benefit for forwarding and the producer-consumer cores. In this work, where the simulation
infrastructure is trace driven (see Section 5.4), we post process the trace to identify the

stores to be forwarded from the producer to the consumer accelerator.

5.4 Toolchain and Benchmarks

We have developed a detailed cycle accurate simulator that models the host cores, fixed-
function accelerators and memory system faithfully. The host OOO core pipeline is modelled
in detail using macsim [81] and the memory hierarchy using GEMS [115]. Table 5.1
characterizes the accelerators that we extracted; we assume that all accelerators derived

from an application are collocated on the same accelerator tile.

Modelling accelerator cores: To identify and model the fixed-function datapath

of the accelerator we adopt a technique similar to Aladdin [66]. The applications are

82

profiled using gprof which identifies the critical functions and the function call hierarchy.
Based on the gprof profile, we identify top level functions for acceleration and ensure that
accelerated functions are free of external library calls such as malloc. A dynamic trace
of these functions is used to generate a constrained dynamic data dependence graph that
includes program order constraints (control and memory dependencies). To model the fixed
function accelerator we traverse the activity of the constrained data dependence graph on
a cycle-by-cycle, generating any requisite memory operations in a cycle and stalling the
appropriate operations as necessary based on the availability of allocated resources. We

assume an aggressive non-blocking interface to memory.

Table 5.2: System parameters

Host Core | 2 GHz, 4-way 00O, 96 entry ROB, 6
ALU, 2 FPU,
INT RF (64 entries), FP RF (64 en-
tries)
32 entry load queue, 32 entry store
queue

L1 | 64K 4-way D-Cache, 3 cycles
LLC | 4M shared 16 way, 8 tile NUCA, ring,
avg. 20 cycles. Directory MESI coher-
ence
Main Memory | 4ch,open-page, 16GB
32 entry cmd queue, 200 cycle latency

Accelerator Cache Hierarchy

Scratchpad | 4 or 8KB RAM (ITRS HP)
Shared-L1X | 64KB or 256KB, 16 banks. 8 way.
(ITRS, HP)
Private LOX | 4 or 8KB Cache (ITRS HP)

of AXCs |2 (FILT) — 6 (FFT)
Link Energy Parameters
Accelerator-L1X (0.4pJ/byte), L1X-
Host L2 (6pJ/byte)

Systems compared: We evaluate the following systems:

i) Oracle-SCRATCH: For the SCRATCH system we model individual scratchpads per-
accelerator and generate DMA code to move data into and out of the accelerator. We
assume a particularly aggressive oracle DMA implementation, and auto generate the DMA
operations based on the memory accesses we observe in the dynamic trace of the application.
We only DMA into the accelerator scratchpad read data and DMA out dirty data. All the
benchmarks have working set sizes larger than the scratchpad (4096 bytes) and thus are
segmented into “windows” of execution with DMA operations required for each window.

We faithfully model the complete state machine of the DMA controller and assume that it

83

Table 5.3: Accelerator Execution Metrics

Function ‘ KCyc.‘ LT‘ %En. ‘ Function ‘ KCyc.‘ LT‘ %En.
FFT (Cache/Compute Energy = 0.8)

stepl 25.3| 500 34 | stepd 9.9| 700 6

step2 7.1| 700 4 | steph 9.9| 700 6

step3 23.5| 200 35 | step6 17.8 | 500 15
Disparity (1.6)

padarray4 11.2| 500 5 | finalSAD 25.9| 500 23

SAD 27.7| 500 25 | finalDisp 71.4| 500 33

2D2D 34.2| 500 14

Tracking (0.5)
imgBlur 9587 | 700 48 | calcSobel 7358 | 720 34
imgResize 3837 | 770 18
Histogram (2.7)

rgh2hsl 38007 500| 47]equaliz. 3250 500 1
histogram 3244 | 500 2 | hsl2rgh 69671 | 500 50
ADPCM (9.7)
coder | 3453|1400 55|decoder | 3364|1400 45
Filter (4.9)
medfilt | 48403| 400| 49]edgefilt | 5663| 400 51
Susan (3.1)
bright 18.6 | 1000 1| corn 6328 | 1200)
smooth 61496 | 1700 | 86 | edges 18858 | 1700 8

KCyc.: Execution time (K Cycles), LT: lease time assigned
to blocks, %En.: % of total accelerator energy. Cache / Core
energy ratio shown in brackets beside benchmark name.

resides at the host’s LLC i.e., no overhead for issuing DMA requests.

ii) SHARED: This system models a single shared L1 cache for all the accelerators in a tile.
We collocate the functions from the same application in a tile and ensure that there is no
inter-tile communication between offloaded functions from the same application.

iii) Finally, FUSION and FUSION-Dz include the full cache hierarchy with private L0Xs
and shared L1X. GEMS was modified to add support for interfacing with the fixed-function
accelerator cores and to model the ACC and MESI protocols along with their interaction in
detail.

Energy Model: To model the energy of fixed function accelerators we use an activity
count based power model from Aladdin [66]. We assume a 45nm ITRS HP technology. Cache
energy is modeled using CACTTI [125]; Table 5.2 lists the transistor types we assume for
each cache. The LOX tag accesses include a 32 bit time stamp field check which is accounted
for as an 15% energy overhead. In the benchmarks studied, we find that provisioning for 24
bits accounts for 98% of accelerator invocations; (HIST., FILT. and SUSAN have functions

84

which run longer) and using 3 additional bits accounts for all invocations. We estimate

link energy based on published figures/fusion [42] (1pj/mm/byte) and calculate wire length

based on the area of the components where Wire Length = 2 x X" ,1/Component_Area;,
for each i € dataflow path). Table 5.2 lists our simulation parameters and Table 5.3 lists
the % of energy spent in each accelerator and the ratio of energy spent in caches relative to

compute.

5.5 Evaluation

In this section, we evaluate the proposed FUSION architecture and present our results
as a set of “Lessons Learned” in the design and implementation of a lightweight coherent
cache hierarchy for accelerators. The FUSION architecture is compared to SCRATCH
and SHARFED designs and we present results for overall performance and energy before
discussing the evaluation of i) Write-Back vs Write-Through at the LOX ii) accelerator cache
sizes iii) address translation iv) the FUSION-Dz design, optimized for producer consumer

data sharing.

5.5.1 Performance

Lesson 1: Small shared cache (L1X) improves performance. The SHARED
system, as described in [187], employs a shared 64KB cache to filter out accesses to the L2.
Figure 5.6b, shows the cycle time of each system normalized to the SCRATCH system. FFT,
DISP., TRACK., HIST. spend a significant amount of time (82%) in DMA transfers and the
SHARED system outperforms the SCRATCH system (average 5.71x). For ADPCM, SUSAN
and FILT., where the DMA cycle time is less than 40% of the total for the SCRATCH
system, the SHARED system degrades performance by 14%. For these 3 benchmarks the
working set size is less than 30kB. The high spatial locality is captured in the SCRATCH
system and offers low latency access to the data. Thus the higher penalty per access to the

shared L1X in the SHARFED design causes a performance degradation.

Lesson 2: Small private caches (L0X) are needed to optimize for load-to-use
latency. The FUSION system builds upon the SHARED system with the addition of
coherent private caches which are of the same size as the scratchpad in SCRATCH system.
The FUSION system is able to capture the spatial locality for SUSAN, FILT. and ADPCM
which is the cause of degradation in the SHARED system. The FUSION system improves
performance over SCRATCH by 2.8x.

With FUSION we eschew the traditional “load-before-use model” of SCRATCH based
accelerators. The SCRATCH ensures deterministic latency for memory accesses while

FUSION may incur cache misses which need to fetch data from the shared last level cache

85

15 12 _
OLINK OAXC ®DMA
| OL2-CACHE []

BAXC-CACHE
w

10 4= - S 08 —

> |7 . = -

;[s -

g 5

05 g 04 -

5 &

0o lmm D=l o MR- R
0E29E2952252352352952 FR2832952932352952852
FFT | DISP TRACK|ADPCM SUSAN [FILTER HIST FFT | DISP | TRACK ADPCM SUSAN FILTER HIST

(a) Energy (b) Execution Time
3.0 ~ o
OLIX—LOXDATA [5}} _f. = '~
OLOX—LIXMSG [[- L
T | ®L2 SLIXDATA 1] o =
= B LIX—L2MSG] " -
g 20 B o
; -
a -
4
<
T
| 8
0.0 g i .- . I
QERRE2352952832352952
FFT | DISP |TRACK ADPCM SUSAN FILTER| HIST
(c) Bandwidth Breakdown
Energy | WSet(kB) | # DMA | DMA #lines | DMA(kB) | DMA / WSet

FFT ve 15 640 79550 2486 165.0

DISP. ve 163 963 130164 4067 25.0

TRACK. v 371 524 67450 2107 5.7

ADPCM Ve 28 7508 7508 234 8.3

SUSAN — 21 3466 3466 108 5.1

FILT. - 21 15034 15034 470 22.0

HIST. — 1191 95613 95613 2988 2.5

(d) DMA Breakdown

Figure 5.6: Design tradeoffs in the accelerator cache hierarchy. X-Axis SC: SCRATCH, SH:
SHARED, FU: FUSION. Y-Axis: All plots/fusion, lower is better and values are normalized
to SCRATCH system. Note for the SHARED design, the LIX—LOXDATA represents
response from shared L1X to AXC and LOX—L1XMSG represents requests from AXC to
the shared L1X. For the SCRATCH design, there is only one link for data from L2 to the
local scratchpad.

86

between the host CPU and accelerator tile. Furthermore, it may even miss in the shared
cache which means a long latency operation which loads data from DRAM. However, we find
that this is not a first order concern for the workloads we study. We observe that there are
negligible misses incurred by requests issued from the accelertor tile at the shared last level
cache. In FUSION, we accelerate routines which share data with other routines executed on
the host CPU (see Table 5.1). This often implies that the data is present in the shared cache
when the accelerator is invoked. In this work we do not model cache contention due to other
processes. Current generation server chips include mechanisms to partition and prioritize
allocation in the shared last level cache, eg. Intel Cache Allocation Technology [178]. Such
mechanisms can be used to alleviate contention and ensure that the accelerator execution is

not stalled on memory accesses which miss in the shared cache.

5.5.2 Energy

The energy breakdown of the benchmarks are presented in Figure 5.6a. We observe that
the energy tradeoffs of pull-based cache architectures are different from that of push-based
DMA execution models. The results in this subsection indicate that when optimizing for
energy, a single architectural paradigms does not fit all applications.

For the SCRATCH system, FFT and DISP. are dominated by the L2 access energy due
to repeated inter-AXC DMA transfers (963 and 640 respectively, see Table 5.6d). The large
ratio of data transferred via DMA, column DMA (kB), compared to working set size, column
WSet(kB), is an indicator of such pathological behaviour (165 for FFT). The SHARED
system caches the AXC shared working set, eliminates spurious L2 accesses and reduces
energy consumption by 10.6x and 7.6x for FFT and DISP.

Lesson 3: Small private caches (L0X) also improve energy. The FUSION system
further reduces energy by introducing a 4K LOX which is 1.5x more energy efficient than
even a heavily banked L1X and filters out 83% and 80% of the accesses (effect seen in
Figure 5.6¢) to the L1X for FFT and DISP. respectively significantly reducing the LOX-L1X
link energy. TRACK. also spends a large fraction of energy in L.2 accesses due to a large
working set (371kB). Function imgResize, shares 99% of its data access (173 kB), triggering
inter-AXC DMA transfers. The SHARED system and the FUSION system do not incur

this overhead.

Lesson 4: The L1X filters accesses to the L2 but LOX—L1X coherence message
overhead is significant. FILT. has a large ratio of DMA data transferred with respect
to working set size and SHARFED and FUSION designs save energy by eliminating L2
accesses (filtered by shared L1X). This can be seen as the diminished L2 stack of Figure 5.6a.

However these gains are lost to repeated thrashing behaviour of the LOX as the benchmark

iterates over each pixel in the image. This increases coherence request messages between L0OX

87

and L1X (see Figure 5.6¢), expending significant energy. Similar behaviour is also observed in
SUSAN and HIST. HIST. incurs additional penalty of coherence request messages (L1X—L2)
for the SHARED and FUSION designs; large working set (1191kB) does not fit in L1X. The
FUSION design mitigates some of the degradation observed in the SHARED system (see
Figure 5.6¢), but not enough to provide an overall energy benefit for HIST.

ADPCM sees a modest improvement of 4% as most of what is gained from the reduction
in L2 accesses is lost in repeated L1X accesses. Overall FUSION reduces energy consumption
by 2.4x, however for HIST, SUSAN and FILT., FUSION increases energy consumption by
10% (improves performance by 67%). The SHARED system performs poorly in general due
to the higher penalty of link energy for a) messages from AXC—L1X (see Figure 5.6¢) b)
data from L1X—AXC and c) access energy for the shared L1X cache.

5.5.3 Writeback vs Write-Through at LOX

Lesson 5: Write-through caches are expensive in terms of energy. Recent
work [158, 72] have studied the effect of writes in data parallel accelerators and highlights
their “bursty” behavior in GPGPU applications. For such applications, the contention
introduced by writeback operations may evict freshly read data. We find that in fixed-
function accelerators, write caching at the LOX is an important requirement to exploit the
inherent data locality of the ofloaded functions. Write-through adds energy overhead due
to data transfers on the LOX—L1X link and L1X data access energy. In Table 5.4 we list
the bandwidth consumption of both write-through and writeback models. We find that
fixed-function accelerators that offload functions from existing programs reflect the locality

behavior of the original program although the memory level parallelism may increase.

Table 5.4: Bandwidth in Flits (8bytes/flit)

Write-Through | Writeback | % Dirty Blocks
FFT 230232 6642 39.5
DISP. 142656 40896 37.7
TRACK. 2266764 19428 45.3
ADPCM 3188262 14100 46.9
SUSAN 13973187 81600 35.1
FILT. 5728776 12096 51.3
HIST. 18575484 194316 46.4

5.5.4 FUSION-Dz: Write Forwarding

Lesson 6: Protocol extensions can exploit inter-AXC producer consumer rela-

tionships. Optimized hardware realizations of large functions are often split into smaller

88

FWD Blocks | AXC Cache | AXC Link
FFT 4309 6.4% 16.9%
TRACK. 4582 1.5% 5.7%

Table 5.5: Inter-AXC forwarded blocks and percentage reduction in energy consumption per
component

blocks[66]. Using a shared cache introduces writebacks for data which is written by an
accelerator and read by the next, effectively creating a producer-consumer relationship.
FUSION-Dzx optimizes for such relationships as described in Section 5.3.2. For each block
forwarded from an LOX, the FUSION-Dzx system saves energy spent by the FUSION system
in 1 WriteBack to L1X, 1 Read from L1X and 1 request from LOX—L1X, while incurring the
significantly lower cost of a LOX—LO0X transfer (0.1pJ/byte). Table 5.5 enumerates the total
number of blocks forwarded between AXC’s of FFT and TRACK. and the corresponding

savings in energy for the AXC component.

5.5.5 Larger AXC caches

Lesson 7: Larger may not be better. We experimented with a larger AXC cache
configuration (AXC-Large) where the LOX was 8KB (2x) in size while the L1X was 256KB
(4x) in size. The working set sizes of the workloads were such that only 1 benchmark (DISP.)
fit into the Large-L1X (163kB footprint, see Table 5.6d) amongst the ones which did not
fit into the Small-L1X (TRACK., HIST. and DISP.). For ADPCM, SUSAN and FILT.
(working set sizes smaller than 30kB), the severe degradation seen in Figure 5.7 is due to
the higher L1X access energy (2x as much as L1X-Small). There were negligible drops in
miss rate for DISP. and TRACK. (less than 10 blocks) at the LOX. DISP. experienced 22%
drop in L1X misses, which translated to a 3% reduction in cycle time (mostly obviated by

the increased L1X access latency; 2 cycles more than L1X-Small).

5.5.6 Address Translation

Bench AX-TLB | AX-RMAP
FFT 514 41
DISP. 4243 589
TRACK. 3237 831
ADPCM 1447 948
SUSAN 671 6
FILT. 668 18
HIST. 60K 20

Table 5.6: Virtual memory table look up count

89

1.2

n [ee] N~ ©
OLARGE o o i o
mSMALL
0.9
>
2
X 0.6
Z
w
0.3

oo ! Cm [1 r

FFT DISP TRACK ADPCM SUSAN FILTER HIST

Figure 5.7: Comparing the benefits of LARGE (LOX:8KB,L1X:256KB) vs SMALL
(LOX:AKB,L1X:64KB)

Lesson 8: Address translation overheads need to be mitigated. The address
translation energy is an important consideration in coherent cache hierarchies [92]. FUSION
places the TLB off the critical path and on the shared L1X’s miss path where the request
has to transition into the physical address space. Here we illustrate the benefits by listing
the number of look ups in the TLB for the baseline (64KB shared L1X). FUSION also needs
reverse map look ups on forwarded requests from the host’s shared L2. The host’s directory
tracks the accelerator tile in the sharer list and only forwards requests to lines cached in
the accelerator tile. Table 5.6 lists the number of look ups to the AX-RMAP and AX-TLB.
Overall, we expend less than 1% of the energy on the AX-RMAP and AX-TLB; workloads

that overflow the shared L1X and generate more misses, could possibly expend more energy.

5.6 Related Work

System-On-Chips: Chip designers have recognized the need for reducing the overhead
of communication between the accelerator and the host processor. Current ARM multicores
include an AXI bus [62] that snoops the shared L2 on the multicore; similarly IBM’s Power
processor [24] includes a Powerbus that ensures the most-up-to-date data is read from
the processor. Both systems are similar to the SCRATCH configuration we study. The
host processor and DMA is required to move in and out of the scratchpad and between
the accelerators. The DMA overheads are minimal when accelerators are computationally
intensive and read few data elements (e.g., cryptographic units) or have minimal interaction
with each other (e.g., XML and cryptographic accelerators in PowerEN [27]). Past work [79,
104] have also studied the benefits of integrating network cards with the last level cache

of the chip. The type of accelerators we study in this work are functions extracted from

90

a sequential program that have plenty of read-write sharing. In such cases, involving the
DMA controller for moving shared data expends energy in the memory hierarchy and adds
latency to the critical path of the accelerator. The FUSION designs we study in this work
implicitly move data between the accelerators directly and minimizes the overheads of the

locality lost as a result of the execution migration between the different accelerators.

In-core Accelerators: Recent research from academia [171, 64, 139] has extracted
accelerators from sequential programs and have proposed to integrate these accelerators
at- the-core and leverage the host processor’s L1 cache. Integrating tightly with the L1
cache enables the accelerators to maintain coherence. Unfortunately, the load-to-use latency
of the L1 cache shared between the accelerators may introduce a performance overhead.
A pertinent example is the demosaic benchmark [139] which does not see as much of a
performance gains as the other workloads due to the abundance of loads and stores. The
SHARED configuration is a representative design and our analysis reveals that using a 64K
shared cache to supply the accelerators results in a 2.7x energy overhead compared to using
a cache hierarchy for HIST., FILT., SUSAN and ADPCM while saving 83% of energy for
FFT, DISP. and TRACK. [50] proposes an interesting design where the accelerator-cache
interface is configurable. The accelerator may choose to share the L1 data cache of the core
or use it’s own private data cache. The coprocessor dominated architecture proposal [187],
ensures that accelerators with higher memory traffic are placed closer to the shared L1 data
cache of the host to reduce energy consumption. However typical L1 caches are designed to
meet the strict cycle-time constraints of the host processor and supplying data to accelerators
with much higher memory level parallelism (up to 6x) is challenging. FUSION manages
the cache hierarchy between un-core accelerators using a lightweight hardware coherence
protocol and we have also explored the benefits of actively forwarding data between the

accelerators.

Coherence Forwarding: Past work in academia[l177, 160] have extensively studied the
benefits of proactively forwarding and streaming data in multiprocessors to reduce cache
misses and improve performance. Current multicores[61] have also included coherence states
to help with forwarding data between caches directly. Herein we have studied the benefits of
proactively pushing data to save energy. While past work studied the addition of forwarding
support to lazy coherence protocols [91] we have shown the benefit of adding forwarding to

a time-stamp based protocol [155, 158].

Un-core Accelerators: Vuleti¢ et al. [174] propose a hardware memory management
unit (WMU) to allow accelerators to operate in the virtual address space of the invoking
process. DASX (data structure accelerator) [98] leverages LLC TLBs present in modern

multicores to issue accesses to memory and maintains coherence at kernel boundaries. Recent

91

research [33, 180] incorporates application specific streaming frameworks independent of
the host processor’s cache hierarchy. FUSION allows accelerators to issue virtual memory
addresses while removing address translation from the critical path; it also supports a flat

coherence model.

5.7 Summary

The design tradeoffs for a coherent cache hierarchy for fixed-function accelerators have been
evaluated. With the increasing energy cost of interconnects and caches relative to compute,
it is imperative to optimize data movement to retain the energy benefits of accelerators.
We develop FUSION, a lightweight multi-level cache hierarchy for accelerators and study
the tradeoffs compared to a scratchpad-based architecture. FUSION leverages proposed
time-stamp based coherence [155, 158, 121] to maintain coherency efficiently amongst the
accelerator caches as well as integrating them with the MESI protocol. We find that i) small
L0 private caches are essential to retain the energy benefit of accelerators and ii) shared L1
caches help optimize data movement between the functions offloaded from the same program
and minimize host-accelerator data transfers. A comprehensive toolchain was developed
for modelling fixed-function accelerators in a cycle accurate manner and used to study the
tradeoffs compared to optimized DMA code. We study multiple facets of the cache hierarchy
including write optimizations and evaluate the tradeoffs between the pull-based model of
the cache hierarchy and push-based model of the DMA.

92

Chapter 6

Integration — Adaptive Granularity
Caching

In this chapter, we describe mechanisms to support variable sized blocks in the cache
hierarchy. With such a mechanism in place, unused data can be eliminated from the cache
hierarchy. This reduces energy consumption for data transfers as well as showing improved

performance due to greater effective cache capacity.

6.1 Introduction

A cache block is the fundamental unit of space allocation and data transfer in the memory
hierarchy. Typically, a block is an aligned fixed granularity of contiguous words (1 word =
8bytes). Current processors fix the block granularity largely based on the average spatial
locality across workloads, while taking tag overhead into consideration. Unfortunately,
many applications (see Section 6.2 for details) exhibit low— moderate spatial locality and
most of the words in a cache block are left untouched during the block’s lifespan. Even
for applications with good spatial behavior, the short lifespan of a block caused by cache
geometry limitations can cause low cache utilization. Technology trends make it imperative
that caching efficiency improves to reduce wastage of interconnect bandwidth. Recent
reports from industry [3] show that on-chip networks can contribute up to 28% of total chip
power. In the future an L2 — L1 transfer can cost up to 2.8x more energy than the L2
data access [80, 102]. Unused words waste ~ 11% (4%—21% in commercial workloads) of
the cache hierarchy energy.

Figure 6.1 organizes past research on cache block granularity along the three main
parameters influenced by cache block granularity: miss rate, bandwidth usage, and cache
space utilization. Sector caches have been used to [150, 24] minimize bandwidth by fetching
only sub-blocks but miss opportunities for spatial prefetching. Prefetching [93, 136] may help

reduce the miss rate for utilized sectors, but on applications with low—moderate or variable

93

Bandwidth Bandwidth

Sector
caches e.g.,
[29][31]

Cache Filtering

————— e.g.,[30] -
Space Miss Space Miss
Utilization Rate Utilization Rate
Bandwidth

Amoeba
.~ Cache -.__
Space -~ “a\Miss
Utilization Rate

Figure 6.1: Cache designs optimizing different memory hierarchy parameters. Arrows
indicate the parameters that are targeted and improved compared to a conventional cache.

spatial locality, unused sectors due to misprediction, or unused regions within sectors, still
pollute the cache and consume bandwidth. Line distillation [141] filters out unused words
from the cache at evictions using a separate word-granularity cache. Other approaches
identify dead cache blocks and replace or eliminate them eagerly [101, 100, 78, 106]. While
these approaches improve utilization and potentially miss rate, they continue to consume
bandwidth and interconnect energy for the unutilized words. Word-organized cache blocks
also dramatically increase cache associativity and lookup overheads, which impacts their
scalability.

Determining a fixed optimal point for the cache line granularity at hardware design time
is a challenge. Small cache lines tend to fetch fewer unused words, but impose significant
performance penalties by missing opportunities for spatial prefetching in applications with
high spatial locality. Small line sizes also introduce high tag overhead, increase lookup
energy, and increase miss processing overhead (e.g., control messages). Larger cache line
sizes minimize tag overhead and effectively prefetch neighboring words but introduce the
negative effect of unused words that increase network bandwidth. Prior approaches have
proposed the use of multiple caches with different block sizes [169, 59]. These approaches
require word granularity caches that increase lookup energy, impose high tag overhead (e.g.,
50% in [169]), and reduce cache efficiency when there is good spatial locality.

We propose a novel cache architecture, Amoeba-Cache, to improve memory hierarchy
efficiency by supporting fine-grain (per-miss) dynamic adjustment of cache block size and
the # of blocks per set. To enable variable granularity blocks within the same cache, the

tags maintained per set need to grow and shrink as the # of blocks/set vary. Amoeba-Cache

94

eliminates the conventional tag array and collocates the tags with the cache blocks in the
data array. This enables us to segment and partition a cache set in different ways: For
example, in a configuration comparable to a traditional 4-way 64K cache with 256 sets (256
bytes per set), we can hold eight 32-byte cache blocks, thirty-two 8-byte blocks, or any other
collection of cache blocks of varying granularity. Different sets may hold blocks of different
granularity, providing maximum flexibility across address regions of varying spatial locality.
The Amoeba-Cache effectively filters out unused words in a conventional block and prevents
them from being inserted into the cache, allowing the resulting free space to be used to hold
tags or data of other useful blocks. The Amoeba-Cache can adapt to the available spatial
locality; when there is low spatial locality, it will hold many blocks of small granularity and
when there is good spatial locality, it can adapt and segment the cache into a few big blocks.

Compared to a fixed granularity cache, Amoeba-Cache improves cache utilization by 90%
- 99% for most applications, saves miss rate by up to 73% (omnetpp) at the L1 level and up
to 88% (twolf) at the LLC level, and reduces miss bandwidth by up to 84% (omnetpp) at the
L1 and 92% (twolf) at the LLC. We compare against other approaches such as Sector Cache
and Line distillation and show that Amoeba-Cache can optimize miss rate and bandwidth
better across many applications, with lower hardware overhead. Our synthesis of the cache
controller hit path shows that Amoeba-Cache can be implemented with low energy impact
and 0.7% area overhead for a latency- critical 64K L1.

This chapter is organized as follows: Section 6.2 provides quantitative evidence for
the acuteness of the spatial locality problem. Section 6.3 details the internals of the
Amoeba-Cache organization and Section 6.4 analyzes the physical implementation overhead.
Section 6.5 deals with wider chip-level issues (i.e., inclusion and coherence). Section 6.6
— Section 6.10 evaluate the Amoeba-Cache, commenting on the optimal block granularity,
impact on overall on-chip energy, and performance improvement. Section 6.11 outlines

related work.

6.2 Motivation for Adaptive Blocks

In traditional caches, the cache block defines the fundamental unit of data movement and
space allocation in caches. The blocks in the data array are uniformly sized to simplify
the insertion/removal of blocks, simplify cache refill requests, and support low complexity
tag organization. Unfortunately, conventional caches are inflexible (fixed block granularity
and fixed # of blocks) and caching efficiency is poor for applications that lack high spatial
locality. Cache blocks influence multiple system metrics including bandwidth, miss rate,
and cache utilization. The block granularity plays a key role in exploiting spatial locality by
effectively prefetching neighboring words all at once. However, the neighboring words could

go unused due to the low lifespan of a cache block. The unused words occupy interconnect

95

bandwidth and pollute the cache, which increases the # of misses. We evaluate the influence

of a fixed granularity block below.

6.2.1 Cache Utilization

In the absence of spatial locality, multi-word cache blocks (typically 64 bytes on existing
processors) tend to increase cache pollution and fill the cache with words unlikely to be used.
To quantify this pollution, we segment the cache line into words (8 bytes) and track the words
touched before the block is evicted. We define utilization as the average # of words touched
in a cache block before it is evicted. We study a comprehensive collection of workloads
from a variety of domains: 6 from PARSEC [21], 7 from SPEC2006, 2 from SPEC2000, 3
Java workloads from DaCapo [22], 3 commercial workloads (Apache, SpecJBB2005, and
TPC-C [107]), and the Firefox web browser. Subsets within benchmark suites were chosen
based on demonstrated miss rates on the fixed granularity cache (i.e., whose working sets did
not fit in the cache size evaluated) and with a spread and diversity in cache utilization. We
classify the benchmarks into 3 groups based on the utilization they exhibit: Low (<33%),

Moderate (33%—66%), and High (66%+) utilization (see Table 6.1).
Table 6.1: Benchmark Groups

Group | Utilization % | Benchmarks
Low 0 — 33% |art, soplex, twolf, mcf, canneal, lbm, omnetpp
Moderate | 34 — 66% |astar, h2, jbb, apache, x264, firefox, tpc-c, freqmine,
fluidanimate
High 67 — 100% | tradesoap, facesim, eclipse, cactus, milc, ferret

Figure 6.2 shows the histogram of words touched at the time of eviction in a cache line
of a 64K, 4-way cache (64-byte block, 8 words per block) across the different benchmarks.
Seven applications have less than 33% utilization and 12 of them are dominated (>50%) by
1-2 word accesses. In applications with good spatial locality (cactus, ferret, tradesoap, milc,
eclipse) more than 50% of the evicted blocks have 7-8 words touched. Despite similar average
utilization for applications such as astar and h2 (39%), their distributions are dissimilar;
~70% of the blocks in astar have 1-2 words accessed at the time of eviction, whereas ~50%
of the blocks in h2 have 1-2 words accessed per block. Utilization for a single application
also changes over time; for example, ferret’s average utilization, measured as the average
fraction of words used in evicted cache lines over 50 million instruction windows, varies from

50% to 95% with a periodicity of roughly 400 million instructions.

6.2.2 Effect of Block Granularity on Miss Rate and Bandwidth

Cache miss rate directly correlates with performance, while under current and future wire-

limited technologies [3], bandwidth directly correlates with dynamic energy. Figure 6.3

96

ml-2 WOde M 3- ords

[N e)] o
o N~ o
—_ c
82]
g2t g
&
S

Figure 6.2: Distribution of words touched in a cache block. Avg. utilization is on top.
(Config: 64K, 4 way, 64-byte block.)

SN

Words m5-6 Words m7-8

=

B 29

x264 I N 6

100

Words Accessed (%)
c 8 & 8 3

apache NN N 45

art I . 20
canneal NN N 30
eclipse I N 30
facesim Il N 77
ferret I N, 32
firefox NN N 49
fluid. I . 62
freq. I . 55
h2 I . 38
job I . 40
lbm I . 32
mcf NN W
milc I 51
omnet. NN N 33
soplex I 21
tpc-c. NN D 53
trade. NN . 73

twolf I

shows the influence of block granularity on miss rate and bandwidth for a 64K L1 cache and
a 1M L2 cache keeping the number of ways constant. For the 64K L1, the plots/amoeba
highlight the pitfalls of simply decreasing the block size to accommodate the Low group of
applications; miss rate increases by 2x for the High group when the block size is changed
from 64B to 32B; it increases by 30% for the Moderate group. A smaller block size decreases
bandwidth proportionately but increases miss rate. With a 1M L2 cache, the lifetime of the
cache lines increases significantly, improving overall utilization. Increasing the block size
from 64— 256 halves the miss rate for all application groups. The bandwidth is increased by
2x for the Low and Moderate.

Since miss rate and bandwidth have different optimal block granularities, we use the

following metric: 57— RatexlBan i to determine a fixed block granularity suited to an
application that takes both criteria into account. Table 6.2 shows the block size that
maximizes the metric for each application. It can be seen that different applications have
different block granularity requirements. For example, the metric is maximized for apache
at 128 bytes and for firefox (similar utilization) at 32 bytes. Furthermore, the optimal block
sizes vary with the cache size as the cache lifespan changes. This highlights the challenge of
picking a single block size at design time especially when the working set does not fit in the

cache.

97

6.2.3 Need for adaptive cache blocks

Our observations motivate the need for adaptive cache line granularities that match the

spatial locality of the data access patterns in an application. In summary:

e Smaller cache lines improve utilization but tend to increase miss rate and potentially

traffic for applications with good spatial locality, affecting the overall performance.

e Large cache lines pollute the cache space and interconnect with unused words for

applications with poor spatial locality, significantly decreasing the caching efficiency.

e Many applications waste a significant fraction of the cache space. Spatial locality
varies not only across applications but also within each application, for different data

structures as well as different phases of access over time.

Table 6.2: Optimal block size. Metric: Miss—rate><1Bandwidth

64K, 4-way

Block | Benchmarks

32B | cactus, eclipse, facesim, ferret, firefox, fluidanimate,freqmine, mile, tpc-c, tradesoap
64B | art

128B | apache, astar, canneal, h2, jbb, Ibm, mcf, omnetpp, soplex, twolf, x264

1M, 8-way

Block | Benchmarks

64B | apache, astar, cactus, eclipse, facesim, ferret, firefox, freqmine, h2, 1bm, milc,
omnetpp, tradesoap, x264

128B | art

256B | canneal, fluidanimate, jbb, mcf, soplex, tpc-c, twolf

6.3 Amoeba-Cache: Architecture

The Amoeba-Cache architecture enables the memory hierarchy to fetch and allocate space
for a range of words (a variable granularity cache block) based on the spatial locality of the
application. For example, consider a 64K cache (256 sets) that allocates 256 bytes per set.
These 256 bytes can adapt to support, for example, eight 32-bytes blocks, thirty-two 8-byte
blocks, or four 32-byte blocks and sixteen 8-byte blocks, based on the set of contiguous
words likely to be accessed. The key challenge to supporting variable granularity blocks is
how to grow and shrink the # of tags as the # of blocks per set vary with block granularity?
Amoeba-Cache adopts a solution inspired by software data structures, where programs hold
meta-data and actual data entries in the same address space. To achieve maximum flexibility,
Amoeba-Cache completely eliminates the tag array and collocates the tags with the actual

data blocks (see Figure 6.4). We use a bitmap (T? Bitmap) to indicate which words in the

98

2 2 A256
270 4128 Cas
i i
o 6.0 o 4.0
X X
=50 AG4 S35 Al2s
5 4.0 3 3.0
% ' A32 % ' AbB4
C C
3 3.0 = 2.5
10 26 42 58 74 90 10 26 42 58 74 90
Miss Rate (Misses/1K ins) Miss Rate (Misses/1K ins)
(a) 64K - Low (b) 1M - Low
§2.5 A128 ,gl.o A256
v 2.2 « 0.9
i —
o 19 0.8
L <
< 1.6 A64 < 0.7 A128
2 S
% 1.3 A32 % 0.6 e
§1.0 §05 =
2 6 10 14 18 22 2 6 10 14 18 22
Miss Rate (Misses/1K ins) Miss Rate (Misses/1K ins)
(¢) 64K - Moderate (d) 1M - Moderate
~1.00 ~0.65
< @ A256
¢ 0.96 A128 2 0.60
i i
m 0.92 3055
X X
= 0.88 =0.50 A128
5 A32 T AB4
E 0.84 A64 E 0.45
- c
50.80 8040
0 3 6 9 12 15 0 3 6 9 12 15
Miss Rate (Misses/1K ins) Miss Rate (Misses/1K ins)
(e) 64K - High (f) 1M - High

Figure 6.3: Bandwidth vs. Miss Rate. (a),(c),(e): 64K, 4-way L1. (b),(d),(f): 1M, 8-way
LLC. Markers on the plot indicate cache block size. Note the different scales for different
groups.

data array represent tags. We also decouple the conventional valid/invalid bits (typically
associated with the tags) and organize them into a separate array (V7 : Valid bitmap) to

simplify block replacement and insertion. V7 and T? bitmaps both require 1 bit for very

99

word (64bits) in the data array (total overhead of 3%). Amoeba-Cache tags are represented
as a range (Start and End address) to support variable granularity blocks. We next discuss

the overall architecture.

6.3.1 Amoeba Blocks and Set-Indexing

The Amoeba-Cache data array holds a collection of varied granularity Amoeba-Blocks that
do not overlap. Each Amoeba-Block is a 4 tuple consisting of <Region Tag, Start, End,
Data- Block> (Figure 6.4). A Region is an aligned block of memory of size RMAX bytes.
The boundaries of any Amoeba-Block block (Start and End) always will lie within the
regions’ boundaries. The minimum granularity of the data in an Amoeba-Block is 1 word
and the maximum is RMAX words. We can encode Start and End in logas(RM AX) bits. The
set indexing function masks the lower logs(RM AX) bits to ensure that all Amoeba-Blocks
(every memory word) from a region index to the same set. The Region Tag and Set-Index
are identical for every word in the Amoeba-Block. Retaining the notion of sets enables
fast lookups and helps elude challenges such as synonyms (same memory word mapping to
different sets). When comparing against a conventional cache, we set RMAX to 8 words (64
bytes), ensuring that the set indexing function is identical to that in the conventional cache

to allow for a fair evaluation.

V? T? N

Bitmap Bitmap words > o Address space
i €gion RMAX
T T [T T Z[T E’ I
~ - T T BT * -
I START END
< Amoeba Block

b Address
Region Set q>
| Tag jndex Word &

loggRM AX 3b

~——— & (words) |

Left: Cache Layout. Size: $N_sets*N_words*8 bytes$. T7 (Tag map) 1 bit/word. Is
word a tag? Yes(1). V? (Valid map): 1 bit/word. Is word allocated? Yes(1). Total overhead:
3%. Right: Address space layout: Region: Aligned regions of size RMAX words (x8 bytes).
Amoeba-Block range cannot exceed Region boundaries. Cache Indexing: Lower logo RM AX
bits masked and set index is derived from remaining bits; all words (and all Amoeba-Blocks)
within a region index to the same set.

Figure 6.4: Amoeba-Cache Architecture.

100

6’ B Z Data Array ’

Region| Set |Word
Tag |[ndex| (W)

Output buffer

’ Nwords + +
— 2
Tag EER EEE +Tag
. ’____/—""//(\:ETa;% €Ta
__,h—.:.:'?_’.:.": el * Hit? _
RegioniStart<< Wi 7 < Crifjcal
. == |End >Wi L@Word Selector path
50 bits 3 bits J

Lookup steps. @ Mask lower logo RM AX bits and index into data array.
@ Identify tags using T? bitmap and initiate tag checks (€) operator
(Region tag comparator ==7 and < range comparator). & Word selection
within Amoeba-Block.

Figure 6.5: Lookup Logic

6.3.2 Data Lookup

Figure 6.5 describes the steps of the lookup. @ The lower logs(RM AX) bits are masked
from the address and the set index is derived from the remaining bits. @ In parallel with
the data read out, the T? bitmap activates the words in the data array corresponding to
the tags for comparison. Given the minimum size of a Amoeba-Block is two words (1 word
for the tag metadata, 1 word for the data), adjacent words cannot be tags. We need %
2-1 multiplexers that route one of the adjacent words to the comparator (€ operator). The
comparator generates the hit signal for the word selector. The € operator consists of two
comparators: a) an aligned Region tag comparator, a conventional == (64 - logaNgess -
loggRM AX bits wide, e.g., 50 bits) that checks if the Amoeba-Block belongs to the same
region and b) a Start <= W < END range comparator (logogRM AX bits wide; e.g., 3
bits) that checks if the Amoeba-Block holds the required word. Finally, in @, the tag match

activates and selects the appropriate word.

6.3.3 Amoeba Block Insertion

On a miss for the desired word, a spatial granularity predictor is invoked (see Section 6.5.1),
which specifies the range of the Amoeba-Block to refill. To determine a position in the set

to slot the incoming block we can leverage the V? (Valid bits) bitmap. The V? bitmap

101

has 1 bit/word in the cache; a “1” bit indicates the word has been allocated (valid data
or a tag). To find space for an incoming data block we perform a substring search on
the V7 bitmap of the cache set for contiguous Os (empty words). For example, to insert
an Amoeba-Block of five words (four words for data and one word for tag), we perform a
substring search for 00000 in the V? bitmap / set (e.g., 32 bits wide for a 64K cache). If
we cannot find the space, we keep triggering the replacement algorithm until we create the
requisite contiguous space. Following this, the Amoeba-Block tuple (Tag and Data block)
is inserted, and the corresponding bits in the T? and V7 array are set. The Os substring
search can be accomplished with a lookup table; many current processors already include a
substring instruction [55, PCMISTRI].

6.3.4 Replacement: Pseudo LRU

To reclaim the space from an Amoeba-Block the tag bits T? (tag) and V7 (valid) bits
corresponding to the block are unset. The key issue is identifying the Amoeba-Block to
replace. Classical pseudo-LRU algorithms [90, 90] keep the metadata for the replacement
algorithm separate from the tags to reduce port contention. To be compatible with pseudo-
LRU and other algorithms such as DIP [140] that work with a fixed # of ways, we can
logically partition a set in Amoeba-Cache into Nyqys. For instance, if we partition a 32 word
cache set into 4 logical ways, any access to an Amoeba-Block tag found in words 0 —7 of
the set is treated as an access to logical way 0. Finding a replacement candidate involves
identifying the selected replacement way and then picking (possibly randomly) a candidate
Amoeba-Block . More refined replacement algorithms that require per-tag metadata can
harvest the space in the tag-word of the Amoeba-Block which is 64 bits wide (for alignment
purposes) while physical addresses rarely extend beyond 48 bits.

6.3.5 Partial Misses

With variable granularity data blocks, a challenging although rare case (5 in every 1K
accesses) that occurs is a partial miss. It is observed primarily when the spatial locality
changes. Figure 6.6 shows an example. Initially, the set contains two blocks from a region
R, one Amoeba-Block caches words 1 -3 (Region:R, START:1 END:3) and the other holds
words 5 —6 (Region:R START:5 END:6). The CPU reads word 4, which misses, and the
spatial predictor requests an Amoeba-Block with range START:0 and END:7. The cache has
Amoeba-Blocks that hold subparts of the incoming Amoeba-Block, and some words (0, 4,
and 7) need to be fetched.

Amoeba-Cache removes the overlapping sub-blocks and allocates a new Amoeba-Block.
This is a multiple step process:@ On a miss, the cache identifies the overlapping sub-blocks
in the cache using the tags read out during lookup. N # NULL is true if START e,y <
ENDrug and EN Dy > START T4 (New = incoming block and T'ag = Amoeba-Block in

102

set). @ The data blocks that overlap with the miss range are evicted and moved one-at-a-
time to the MSHR entry. @ Space is then allocated for the new block, i.e., it is treated like
a new insertion. @ A miss request is issued for the entire block (START:0 — END:7) even
if only some words (e.g., 0, 4, and 7) may be needed. This ensures request processing is
simple and only a single refill request is sent.@® Finally, the incoming data block is patched
into the MSHR; only the words not obtained from the L1 are copied (since the lower level
could be stale).

Identify Sub-Blocks P
ar < Lna!
R| 0-7 Endypy > Start
R|5--6
MSHR GD,J 4’///

Insert New-Block

o (0--7)

X|1--3 X[5--6 X

Miss Patch Xs
(0:7) Refill (0:7)

@ Identify blocks overlapping with New block. @ Evict overlapping blocks
to MSHR. @ Allocate space for new block (treat it like a new insertion).
@ Issue refill request to lower level for entire block. @ Patch only newer
words as lower-level data could be stale.

Figure 6.6: Partial Miss Handling. Upper: Identify relevant sub-blocks. Useful for other
cache controller events as well, e.g., recalls. Lower: Refill of words and insertion.

6.4 Hardware Complexity

We analyze the complexity of Amoeba-Cache along the following directions: we quantify the
additions needed to the cache controller, we analyze the latency, area, and energy penalty,

and finally, we study the challenges specifically introduced by large caches.

103

\

Evict

I
> 7 @ &
il o dl S
2.5) a1 1 N

N > "o

ID \/L

Load Data IV C

al \ "7

Cache controller states
State | Description
NP Amoeba-Block not present in the cache.
\% All words corresponding to Amoeba-Block
present and valid (read-only)

D Valid and atleast one word in Amoeba-

Block is dirty (read-write)

IV_B |Partial miss being processed (blocking

state)

IV _Data | Load miss; waiting for data from L2

ID_Data | Store miss; waiting for data. Set dirty bit.
IV_C | Partial miss cleanup from cache completed

(treat as full miss)

Amoeba-specific Cache Events
Partial miss: Process partial miss.
Local_L1_Evict: Remove overlapping Amoeba-
Block to MSHR.
Last_L1_Evict: Last Amoeba-Block moved to
MSHR. Convert to full miss and process load
or store.
Bold and Broken-lines: Amoeba-Cache addi-
tions.

Figure 6.7: Amoeba Cache Controller (L1 level).

6.4.1 Cache Controller

The variable granularity Amoeba-Block blocks need specific consideration in the cache
controller. We focus on the L1 controller here, and in particular, partial misses. The cache

controller manages operations at the aligned RMAX granularity. The controller permits only

104

one in-flight cache operation per RMAX region. In-flight cache operations ensure no address
overlap with stable Amoeba-Blocks in order to eliminate complex race conditions. Figure 6.7
shows the L1 cache controller state machine. We add two states to the default protocol,
IV_B and IV_C, to handle partial misses. IV_B is a blocking state that blocks other cache
operations to RMAX region until all relevant Amoeba-Blocks to a partial miss are evicted
(e.g., 0-3 and 5-7 blocks in Figure 6.6). IV_C indicates partial miss completion. This enables
the controller to treat the access as a full miss and issue the refill request. The other stable
states (I, V, D) and transient states (IV_Data and ID_Data) are present in a conventional
protocol as well. Partial-miss triggers the clean-up operations (1 and 2 in Figure 6.6).
Local_L1_Evict is a looping event that keeps retriggering for each Amoeba-Block involved
in the partial miss; Last_L1_Evict is triggered when the last Amoeba-Block involved in
the partial miss is evicted to the MSHR. A key difference between the L1 and lower-level
protocols is that the Load/Store event in the lower-level protocol may need to access data
from multiple Amoeba-Blocks. In such cases, similar to the partial-miss event, we read out

each block independently before supplying the data (more details in Section 6.5.2).

6.4.2 Area, Latency, and Energy Overhead

The extra metadata required by Amoeba-Cache are the T? (1 tag bit per word) and V? (1
valid bit per word) bitmaps. Table 6.3 shows the quantitative overhead compared to the
data storage. Both the T7? and V? bitmap arrays are directly proportional to the size of
the cache and require a constant storage overhead (3% in total). The T?7 bitmap is read
in parallel with the data array and does not affect the critical path; T? adds 2%—3.5%
(depending on cache size) to the overall cache access energy. V7 is referred only on misses

when inserting a new block.

Table 6.3: Amoeba-Cache Hardware Complexity.

Cache configuration
| 64K (256by /set) [1IMB (512by/set) [AMB (1024by/set)
Data RAM parameters
Delay 0.36ns 2ns 2.5 ns
Energy 100pJ 230pJ 280pJ
Amoeba-Cache components (CACTI model)

T?/V? map 1KB 16KB 64KB
Latency 0.019ns (5%) 0.12ns (6%) 0.2ns (6%)
Energy 2pJ (2%) 8pJ (3.4%) 10pJ (3.5%)

LRU 1KB 2KB 8KB
Lookup Overhead (VHDL model)
Area 0.7% 0.1%
Latency 0.02ns 0.035ns \ 0.04ns

% indicates overhead compared to data array of cache. 64K cache operates in Fast mode;
1MB and 4MB operate in Normal mode. We use 32nm I'TRS HP transistors for 64K and
32nm ITRS LOP transistors for 1IMB and 4MB.

105

We synthesized! the cache lookup logic using Synopsys and quantify the area, latency, and
energy penalty. Amoeba-Cache is compatible with Fast and Normal cache access modes [125,
-access-mode config], both of which read the entire set from the data array in parallel with
the way selection to achieve lower latency. Fast mode transfers the entire set to the edge
of the H-tree, while Normal mode, only transmits the selected way over the H-tree. For
synthesis, we used the Synopsys design compiler (Vision Z-2007.03-SP5).

Figure 6.5 shows Amoeba-Cache$ lookup hardware on the critical path; we compare it
against a fixed-granularity cache’s lookup logic (mainly the comparators). The area overhead
of the Amoeba-Cache includes registering an entire line that has been read out, the tag
operation logic, and the word selector. The components on the critical path once the data is
read out are the 2-way multiplexers, the € comparators, and priority encoder that selects
the word; the T? bitmap is accessed in parallel and off the critical path. Amoeba-Cache is
made feasible under today’s wire-limited technology where the cache latency and energy is
dominated by the bit/word lines, decoder, and H-tree [125]. Amoeba-Cache’s comparators,
which operate on the entire cache set, are 6x the area of a fixed cache’s comparators. The
data array occupies 99% of the overall cache area. The critical path is dominated by the
wide word selector since the comparators all operate in parallel. The lookup logic adds 60%
to the conventional cache’s comparator time. The overall critical path is dominated by the
data array access and Amoeba-Cache’s lookup circuit adds 0.02ns to the access latency and
~ 1pJ to the energy of a 64K cache, and 0.035ns to the latency and ~2pJ to the energy
of a 1IMB cache. Finally, Amoeba-Cache amortizes the energy penalty of the peripheral
components (H-tree, Wordline, and decoder) over a single RAM.

Amoeba-Cache’s overhead needs careful consideration when implemented at the L1 cache
level. We have two options for handling the latency overhead a) if the L1 cache is the critical
stage in the pipeline, we can throttle the CPU clock by the latency overhead to ensure that
the additional logic fits within the pipeline stage. This ensures that the number of pipeline
stages for a memory access does not change with respect to a conventional cache, although
all instructions bear the overhead of the reduced CPU clock. b) we can add an extra pipeline
stage to the L1 hit path, adding a 1 cycle overhead to all memory accesses but ensuring
no change in CPU frequency. We quantify the performance impact of both approaches in
Section 6.6.

6.4.3 Tag-only Operations

Conventional caches support tag-only operations to reduce data port contention. While
the Amoeba-Cache merges tags and data, like many commercial processors it decouples

the replacement metadata and valid bits from the tags, accessing the tags only on cache

We do not have access to an industry-grade 32nm library, so we synthesized at a higher 180nm node size
and scaled the results to 32 nm (latency and energy scaled proportional to Vdd (taken from [44]) and Vdd>
respectively).

106

lookup. Lookups can be either CPU side or network side (coherence invalidation and
Whack /Forwarding). CPU-side lookups and writebacks (~ 95% of cache operations) both
need data and hence Amoeba-Cache in the common case does not introduce extra overhead.
Amoeba-Cache does read out the entire data array unlike serial-mode caches (we discuss this
issue in the next section). Invalidation checks and snoops can be more energy expensive
with Amoeba-Cache compared to a conventional cache. Fortunately, coherence snoops are
not common in many applications (e.g., 1/100 cache operations in SpecJBB) as a coherence

directory and an inclusive LLC filter them out.

6.4.4 Tradeoff with Large Caches

® Latency mEnergy

Normal vs Serial Mode

Baseline: Serial. <1 Normal is bet-
ter. 32nm, ITRS LOP.

Figure 6.8: Serial vs Normal mode cache.

Large caches with many words per set (= highly associative conventional cache) need
careful consideration. Typically, highly associative caches tend to serialize tag and data
access with only the relevant cache block read out on a hit and no data access on a miss. We
first analyze the tradeoff between reading the entire set (normal mode), which is compatible
with Amoeba-Cache and only the relevant block (serial mode). We vary the cache size from
2M—8M and associativity from 4(256B/set) — 32 (2048B/set). Under current technology
constraints (Figure 6.8), only at very high associativity does serial mode demonstrate a
notable energy benefit. Large caches are dominated by H-tree energy consumption and
reading out the entire set at each sub-bank imposes an energy penalty when bitlines and
wordlines dominate (2KB+ # of words/set).

Amoeba-Cache can be tuned to minimize the hardware overhead for large caches. With
many words/set the cache utilization improves due to longer block lifetimes making it feasible

to support Amoeba-Blocks with a larger minimum granularity (> 1 word). If we increase

107

Table 6.4: % of direct accesses with fast tags

64K (256by /set) | IMB(512by /set) | 2MB(1024 by/set)

2 4 4 8 8 16
Tags/set

Overhead | IKB| 2KB |2KB| 16KB |16KB| 32KB
Benchmarks

Low 30% | 45% | 42% | 64% 55% 74%
Moderate |24% | 62% [46% | 70% 63% 85%
High 3% | 9% |67%| 95% 75% 96%

minimum granularity to two or four words, only every third or fifth word could be a tag,

meaning the # of comparators and multiplexers reduce to Nworgs/ L or Nworgs/ st When the
minimum granularity is equal to max granularity (RMAX), we obtain a fixed granularity
cache wWith Nyopds/set/ RM AX ways. Cache organizations that collocate all the tags together
at the head of the data array enable tag-only operations and serial Amoeba-Block accesses
that need to activate only a portion of the data array. However, the set may need to be
compacted at each insertion. Recently, Loh and Hill [108] explored such an organization for
supporting tags in multi-gigabyte caches.

Finally, the use of Fast Tags help reduce the tag lookups in the data array. Fast tags use
a separate traditional tag array-like structure to cache the tags of the recently-used blocks
and provide a pointer directly to the Amoeba-Block. The # of Fast Tags needed per set is
proportional to the # of blocks in each set, which varies with the spatial locality in the
application and the # of bytes per set (more details in Section 6.6.1). We studied 3 different
cache configurations (64K 256B/set, 1M 512B/set, and 2M 1024B/set) while varying the
number of fast tags per set (see Table 6.4). With 8 tags/set (16KB overhead), we can filter
64—95% of the accesses in a 1IMB cache and 55— 75% of the accesses in a 2MB cache.

6.5 Chip-Level Issues

6.5.1 Spatial Patterns Prediction

Amoeba-Cache needs a spatial block predictor, which informs refill requests about the range
of the block to fetch. Amoeba-Cache can exploit any spatial locality predictor and there
have been many efforts in the compiler and architecture community [37, 93, 136, 34]. We
adopt a table-driven approach consisting of a set of access bitmaps; each entry is RMAX
(maximum granularity of an Amoeba-Block) bits wide and represents whether the word was
touched during the lifetime of the recently evicted cache block. On a miss, the predictor
will search for an entry (indexed by either the miss PC or region address) and choose
the range of words to be fetched on a miss on either side (left and right) of the critical

word. The PC-based indexing also uses the critical word index for improved accuracy. The

108

PCorRegion| r-r=r-r-r-r-r-r-i
Tag > 1010111
PCorRegion| - o __ 2"

Tag |_1_______________

‘ >Miss Word
N D
PC: Read Oxaddr 1110 _0_1_01_1_1_1_1_'

@ Block <Start, End>

Figure 6.9: Spatial Predictor invoked on a Amoeba-Cache miss

predictor optimizes for spatial prefetching and will overfetch (bring in potentially untouched
words), if they are interspersed amongst contiguous chunks of touched words. We can
also bypass the prediction when there is low confidence in the prediction accuracy. For
example, for streaming applications without repeated misses to a region, we can bring in a
fixed granularity block based on the overall global behavior of the application. We evaluate

tradeoffs in the design of the spatial predictor in Section 6.6.2.

6.5.2 Multi-level Caches

We discuss the design of inclusive cache hierarchies including multiple Amoeba-Caches; we
illustrate using a 2-level hierarchy. Inclusion means that the L2 cache contains a superset of
the data words in the L1 cache; however, the two levels may include different granularity
blocks. For example, the Sun Niagara T2 uses 16 byte L1 blocks and 64 byte L2 blocks.
Amoeba-Cache permits non-aligned blocks of variable granularity at the L1 and the L2, and
needs to deal with two issues: a) L2 recalls that may invalidate multiple L1 blocks and
b) L1 refills that may need data from multiple blocks at the L2. For both cases, we need
to identify all the relevant Amoeba-Blocks that overlap with either the recall or the refill
request. This situation is similar to a Nigara’s L2 eviction which may need to recall 4 L1
blocks. Amoeba-Cache’s logic ensures that all Amoeba-Blocks from a region map to a single
set at any level (using the same RMAX for both L1 and L2). This ensures that L2 recalls or
L1 refills index into only a single set. To process multiple blocks for a single cache operation,
we use the step-by-step process outlined in Section 6.3.5 (@ and @ in Figure 6.6). Finally,
the L1-L2 interconnect needs 3 virtual networks, two of which, the L2—L1 data virtual
network and the L1—L2 writeback virtual network, can have packets of variable granularity;

each packet is broken down into a variable number of smaller physical flits.

109

6.5.3 Cache Coherence

There are three main challenges that variable cache line granularity introduces when inter-
acting with the coherence protocol: 1) How is the coherence directory maintained? 2) How
to support variable granularity read sharing? and 3) What is the granularity of write invali-
dations? The key insight that ensures compatibility with a conventional fixed-granularity
coherence protocol is that a Amoeba-Block always lies within an aligned RMAX byte region
(see Section 6.3). To ensure correctness, it is sufficient to maintain the coherence granularity
and directory information at a fixed granularity < RMAX granularity. Multiple cores can
simultaneously cache any variable granularity Amoeba-Block from the same region in Shared
state; all such cores are marked as sharers in the directory entry. A core that desires
exclusive ownership of an Amoeba-Block in the region uses the directory entry to invalidate
every Amoeba-Block corresponding to the fixed coherence granularity. All Amoeba-Blocks
relevant to an invalidation will be found in the same set in the private cache (see set indexing
in Section 6.3). The coherence granularity could potentially be < RMAX so that false
sharing is not introduced in the quest for higher cache utilization (larger RMAX). The core
claiming the ownership on a write will itself fetch only the desired granularity Amoeba-Block,

saving bandwidth.

6.6 FEvaluation

Framework We evaluate the Amoeba-Cache architecture with the Wisconsin GEMS
simulation infrastructure [115]; we use the in-order processor timing model. We have replaced
the SIMICS functional simulator with the faster Pin [111] instrumentation framework to
enable longer simulation runs. We perform timing simulation for 1 billion instructions. We
warm up the cache using 20 million accesses from the trace. We model the cache controller
in detail including the transient states needed for the multi-step cache operations and all the
associated port and queue contention. We use a Full— LRU replacement policy, evicting
Amoeba-Blocks in LRU order until sufficient space is freed up for the block to be brought
in. This helps decouple our observations from the replacement policy, enabling a fairer
comparison with other approaches (Section 6.9). Our workloads are a mix of applications
whose working sets stress our caches and includes SPEC- CPU benchmarks, Dacapo Java
benchmarks [22], commercial workloads (SpecJBB2005, TPC-C, and Apache), and the
Firefox web browser. Table 6.1 classifies the application categories: Low, Moderate, and
High, based on the spatial locality. When presenting averages of ratios or improvements, we

use the geometric mean.

110

6.6.1 Improved Memory Hierarchy Efficiency

Result 1: Amoeba-Cache increases cache capacity by harvesting space from unused words
and can achieve an 18% reduction in both L1 and L2 miss rate.

Result 2: Amoeba-Cache adaptively sizes the cache block granularity and reduces L1<>L2
bandwidth by 46% and L2<>Memory bandwidth by 38%.

In this section, we compare the bandwidth and miss rate properties of Amoeba-Cache
against a conventional cache. We evaluate two types of caches: a Fixed cache, which
represents a conventional set-associative cache, and the Amoeba-Cache. In order to isolate
the benefits of Amoeba-Cache from the potentially changing accuracy of the spatial predictor
across different cache geometries, we use utilization at the next eviction as the spatial
prediction, determined from a prior run on a fixed granularity cache. This also ensures that
the spatial granularity predictions can be replayed across multiple simulation runs. To
ensure equivalent data storage space, we set the Amoeba-Cache size to the sum of the tag
array and the data array in a conventional cache. At the L1 level (64K), the net capacity of
the Amoeba-Cache is 64K + 8*4*256 bytes and at the L2 level (1M) configuration, it is 1M
+ 8%*8%2048 bytes. The L1 cache has 256 sets and the L2 cache has 2048 sets.

Figure 6.10 plots/amoeba the miss rate and the traffic characteristics of the Amoeba-
Cache. Since Amoeba-Cache can hold blocks varying from 8B to 64B, each set can hold
more blocks by utilizing the space from untouched words. Amoeba-Cache reduces the 64K
L1 miss rate by 23%(stdev:24) for the Low group, and by 21%(stdev:16) for the moderate
group; even applications with high spatial locality experience a 7%(stdev:8) improvement
in miss rate. There is a 46%(stdev:20) reduction on average in L1«L2 bandwidth. At the
1M L2 level, Amoeba-Cache improves the moderate group’s miss rate by 8%(stdev:10) and
bandwidth by 23%(stdev:12). Applications with moderate utilization make better use of the
space harvested from unused words by Amoeba-Cache. Many low utilization applications
tend to be streaming and providing extra cache space does not help lower miss rate. However,
by not fetching unused words, Amoeba-Cache achieves a significant reduction (38%(stdev:24)
on average) in off-chip L2++>Memory bandwidth; even High utilization applications see a
17%(stdev:15) reduction in bandwidth. Utilization and miss rate are not, however, always
directly correlated (more details in Section 6.8).

With Amoeba-Cache the # of blocks/set varies based on the granularity of the blocks
being fetched, which in turn depends on the spatial locality in the application. Table 6.5
shows the avg.# of blocks/set. In applications with low spatial locality, Amoeba-Cache
adjusts the block size and adapts to store many smaller blocks. The 64K L1 Amoeba-Cache
stores 10 blocks per set for mcf and 12 blocks per set for art, effectively increasing associativity
without introducing fixed hardware overheads. At the L2, when the working set starts to
fit in the L2 cache, the set is partitioned into fewer blocks. Applications like eclipse and

omnetpp hold only 3—5 blocks per set on average (lower than conventional associativity)

111

£ Fixed A

= AmoebaA

20 26 32 38 44

Miss Rate (Misses/1K ins)
(a) 64K - Low

~2.00
2
2 1.60
L]
~1.20
X
0.0
©
2 0.40
2
5 0.00
M9 3 6 9 12

Miss Rate (Misses/1K ins)
(c¢) 64K - Moderate

Amoeba A

~0.90
g
2 0.84
i
5 0.78

Fixed A

X
Z072
o
< 0.66
2
S 0.60
@ 3 4 5 6 7

Miss Rate (Misses/1K ins)
(e) 64K - High

Amoeba 5

50

FixedA

15

8

2 = Fixed

2., AAmoeba

20 26 32 38 44
Miss Rate (Misses/1K ins)

(b) 1M - Low

50

~U.60
[%2]
c

055 AFixed

5 0.50
<
045
-S040
£ AAmoeba
=
$0.35

o 3 6 9 12

Miss Rate (Misses/1K ins)
(d) 1M - Moderate

1£

~0U.50
(%2}
c

2 0.48
i

- A Fixed
o 0.46

<
= 0.44

O

'S 0.42 Amoeba

5 A

< 0.40

3 4 5 6 1 ¢
Miss Rate (Misses/1K ins)

(f) 1M - High

Figure 6.10: Fixed vs. Amoeba (Bandwidth and Miss Rate). Note the different scale for

different application groups.

due to their low miss rates (see Table 6.6). With streaming applications (e.g., canneal),

Amoeba-Cache increases the # of blocks/set to >15 on average. Finally, some applications

like apache store between 6—7 blocks/set with a 64K cache with varied block sizes (see

112

Table 6.5: Avg. # of Amoeba-Block | Set

Blocks/Set | 64K Cache, 288 B/set

4—5 ferret, cactus, firefox, eclipse, facesim, freqmine, milc, astar
6—7 tpc-c, tradesoap, soplex, apache, fluidanimate
8—9 h2, canneal, omnetpp, twolf, x264, lbm, jbb

10—12 mcf, art

1M Cache, 576 B/set

3—5 eclipse, omnetpp

8—9 cactus, firefox, tradesoap, freqmine, h2, x264, tpc-c
10—11 facesim, soplex, astar, milc, apache, ferret

12—13 twolf, art, jbb, Ibm , fluidanimate

15—18 canneal, mcf

Figure 6.11): approximately 50% of the blocks store 1-2 words and 30% of the blocks store
8 words at the L1. As the size of the cache increases and thereby the lifetime of the blocks,
the Amoeba-Cache adapts to store larger size blocks as can be seen in Figure 6.11.

Utilization is improved greatly across all applications (90%+ in many cases). Figure 6.11
shows the distribution of cache block granularities in Amoeba-Cache. The Amoeba-Block
distribution matches the word access distribution presented in Section 6.2). With the 1M
cache, the larger cache size improves block lifespan and thereby utilization, with a significant
drop in the % of 1—2 word blocks. However, in many applications (tpc-c, apache, firefox,
twolf, Ibm, mcf), up to 20% of the blocks are 3-6 words wide, indicating the benefits of
adaptivity and the challenges faced by Fixed.

6.6.2 Overall Performance and Energy

Result 3: Amoeba-Cache improves overall cache efficiency and boosts performance by 10%

2 saving up to 11% of the energy of the on-chip memory hierarchy.

on commercial applications
Off-chip L2<>memory energy sees a mean reduction of /1% across all workloads (86% for
art and 93% for twolf) .

We model a two-level cache hierarchy in which the L1 is a 64K cache with 256 sets (3
cycles load-to-use) and the L2 is 1M, 8192 sets (20 cycles). We assume a fixed memory
latency of 300 cycles. We conservatively assume that the L1 access is the critical pipeline
stage and throttle CPU clock by 4% (we evaluate an alternative approach in the next
section). We calculate the total dynamic energy of the Amoeba-Cache using the energy #s
determined in Section 6.4 through a combination of synthesis and CACTI [125]. We use 4
fast tags per set at the L1 and 8 fast tags per set at the L2. We include the penalty for all
the extra metadata in Amoeba-Cache. We derive the energy for a single L1—L2 transfer

((6.8pJ per byte) from [3, 125].The interconnect uses full-swing wires at 32nm, 0.6V.

2«Commercial” applications includes Apache, SpecJBB and TPC-C.

113

H 3-4 vworas H 5-b vworas m /-8 woras

W 1-Z2 wWOords

oc I . UCoW
T6 I N 707X
O/ N . |0
L6 I . ODe)
Tc I 0-0C)
76 I I % 2|dloS
O I 15UWO
00T I . O|!W
collT T I O

6o I I L)|

6o I I
Y I

v6 I . Do)
00T I .. PNy
o, I . X051}
66 I . 10.19)
oo I 9Ot
6 I 5sd1]08
NN T
00T I . SN10ED
86 I N ©)Se
08 I). °

zc TN . ©Uoede

o o o o o o
o oo © < N

- S)90|g ega0WY/ JO 0

(a) 64K L1 cache

M 5-b woras m /-8 Woras

= 3-4 woras

W 1-Z woras

76 I . UeoW
06 I W 797X
O/ I . |0
L6 I ope.)
6 I .. 0-00)
L8 I %3] d oS
6 I . 15U WO
00T I . O|!W
26 I [JE

co I LU

6 I [

Zc I . 0

L6 I D))
00T I PNy
6. I . X0J0.1)
66 I 15..15)
oo I | ©Ot)
6 I oS08
CONMMENN " I UCO
00T I S108D
L6 I . 0)Se
76 I).

s I . 0y oede

o o o o o o
o [ee) © < N

- S)90|g e(go0WY/ JO 04

(b) 1M L2 cache

Figure 6.11: Distribution of cache line granularities in the 64K L1 and 1M L2 Amoeba-Cache.

Avg. utilization is on top.

Figure 6.12 plots/amoeba the overall improvement in performance and reduction in on-

chip memory hierarchy energy (L1 and L2 caches, and L1<+L2 interconnect). On applications

114

10 1503 - 10 40 25
- TP O 0On-Chip Energy A Perf. = - =
= A 5} .

S8 Ng[|E A 8 283 a S 20 £
5. &]]2 S § a 3 5
& Tlslls Sz - £ 15 3
3 =||e S A 5] &
E4 TNE EEIG - - 10 E
= % A G > e
=2 BB A A 26 B gl B0 T A1 A N B 5
g0 5| 8 A A s & 8 “ A 5 0
5 (=} = A A A g A o
50 ‘U:J‘L;“-‘m‘d‘&)":“‘s‘x"j‘ c"“ 0= o ’:“_D‘E“*—‘o‘ ‘x"—A.—“r—A.—\‘LH"—:—“O X

= s B 2 = X = B ¢ 9 =
= $°F58E25%E&8 S S22 EEFTEL LY LS

=9 S B} = 5 ¥ E o B 5 & ¥

< [} = o @

Figure 6.12: % improvement in performance and % reduction in on-chip memory hierarchy
energy. Higher is better. Y-axis terminated to illustrate bars clearly. Baseline: Fixed, 64K
L1, 1M L2.

that have good spatial locality (e.g., tradesoap, milc, facesim, eclipse, and cactus), Amoeba-
Cache has minimal impact on miss rate, but provides significant bandwidth benefit. This
results in on-chip energy reduction: milc’s L1<+L2 bandwidth reduces by 15% and its on-chip
energy reduces by 5%. Applications that suffer from cache pollution under Fixed (apache,
jbb, twolf, soplex, and art) see gains in performance and energy. Apache’s performance
improves by 11% and on-chip energy reduces by 21%, while SpecJBB’s performance improves
by 21% and energy reduces by 9%. Art gains approximately 50% in performance. Streaming
applications like mcf access blocks with both low and high utilization. Keeping out the
unused words in the under-utilized blocks prevents the well-utilized cache blocks from being

evicted; mef’s performance improves by 12% and on-chip energy by 36%.

Extra cache pipeline stage. An alternative strategy to accommodate Amoeba-Cache’s
overheads is to add an extra pipeline stage to the cache access which increases hit latency
by 1 cycle. The cpu clock frequency entails no extra penalty compared to a conventional
cache. We find that for applications in the moderate and low spatial locality group (for 8
applications) Amoeba-Cache continues to provide a performance benefit between 6—50%.
milc and canneal suffer minimal impact, with a 0.4% improvement and 3% slowdown
respectively. Applications in the high spatial locality group (12 applications) suffer an
average 15% slowdown (maximum 22%) due to the increase in L1 access latency. In these
applications, 43% of the instructions (on average) are memory accesses and a 33% increase
in L1 hit latency imposes a high penalty. All applications continue to retain the energy
benefit. The cache hierarchy energy is dominated by the interconnects and Amoeba-Cache
provides notable bandwidth reduction. While these results may change for an out-of-order,
multiple-issue processor, the evaluation suggests that Amoeba-Cache if implemented with

the extra pipeline stage is more suited for lower levels in the memory hierarchy other than
the L1.

Off-chip L2+ Memory energy The L2’s higher cache capacity makes it less susceptible

to pollution and provides less opportunity for improving miss rate. In such cases, Amoeba-

115

Cache keeps out unused words and reduces off-chip bandwidth and thereby off-chip energy.
We assume that the off-chip DRAM can provide adaptive granularity transfers for Amoeba-
Cache’s L2 refills as in [183]. We use a DRAM model presented in a recent study [42]
and model 0.5nJ per word transferred off-chip. The low spatial locality applications see
a dramatic reduction in off-chip energy. For example, twolf sees a 93% reduction. On
commercial workloads the off-chip energy decreases by 31% and 24% respectively. Even for

applications with high cache utilization, off-chip energy decreases by 15%.

6.7 Spatial Predictor Tradeoffs

We evaluate the effectiveness of spatial pattern prediction in this section. In our table-
based approach, a pattern history table records spatial patterns from evicted blocks and is
accessed using a prediction index. The table-driven approach requires careful consideration
of the following: prediction index, predictor table size, and training period. We quantify
the effects by comparing the predictor against a baseline fixed-granularity cache. We use a
64K cache since it induces enough misses and evictions to highlight the predictor tradeoffs
clearly.

6.7.1 Predictor Indexing

A critical choice with the history-based prediction is the selection of the predictor index. We
explored two types of predictor indexing a) a PC-based approach [34] based on the intuition
that fields in a data structure are accessed by specific PCs and tend to exhibit similar spatial
behavior. The tag includes the PC and the critical word index: ((PC >> 3) << 3)+w.
and b) a Region-based (REGION) approach that is based on the intuition that similar data
objects tend to be allocated in contiguous regions of the address space and tend to exhibit
similar spatial behavior. We compared the miss rate and bandwidth properties of both the
PC (256 entries, fully associative) and REGION (1024 entries, 4KB region size) predictors.
The size of the predictors was selected as the sweet spot in behavior for each predictor type.
For all applications apart from cactus (a high spatial locality application), REGION-based
prediction tends to overfetch and waste bandwidth as compared to PC-based prediction,
which has 27% less bandwidth consumption on average across all applications. For 17 out of
22 applications, REGION-based prediction shows 17% better MPKI on average (max: 49%
for cactus). For 5 applications (apache, art, mcf, lbm, and omnetpp), we find that PC
demonstrates better accuracy when predicting the spatial behavior of cache blocks than

REGION and demonstrates a 24% improvement in MPKI (max: 68% for omnetpp).

6.7.2 Predictor Table

We studied the organization and size of the pattern table using the REGION predictor. We

evaluated the following parameters a) region size, which directly correlates with the coverage

116

of a fixed-size table, and b) the size of the predictor table, which influences how many unique
region patterns can be tracked, and c) the # of bits required to represent the spatial pattern.

Large region sizes effectively reduce the # of regions in the working set and require a
smaller predictor table. However, a larger region is likely to have more blocks that exhibit
varied spatial behavior and may pollute the pattern entry. We find that going from 1KB
(4096 entries) to 4KB (1024 entries) regions, the 4KB region granularity decreased miss rate
by 0.3% and increased bandwidth by 0.4% even though both tables/amoeba provide the same
working set coverage (4MB). Fixing the region size at 4KB, we studied the benefits of an
unbounded table. Compared to a 1024 entry table (FINITE in Figure 6.13), the unbounded
table increases miss rate by 1% and decreases bandwidth by 0.3% . A 1024 entry predictor
table (4KB region granularity per-entry) suffices for most applications. Organizing the 1024
entries as a 128-set x 8-way table suffices for eliminating associativity related conflicts (<0.8%

evictions due to lack of ways).

14 mAligned m®Finite @ Infinite OFinite+FT @ History
12
X 10
a g -
S 6 -
4] ﬂ:[a
2] H
o TR, i i . . HIA HIT s
5 g ¢ & ¢ B § 2 g 2 e
€ 8 5 8 g &8 & & ¥ E
(a) Low MPKI Group
1800 = 10000
1500 | M®Aligned ®Finite @Infinite OFinite+FT & History n 8000
%1588 1 i 6000 H
'é 600 | [4000 iy i
S 300 ' 2000 HHEEE .
o 0] FiT, Bl 0 i H i HIE K
5 % § o 2 S EE 233
= = g - S 2

- : b
= (5 o (7]
g g 2 £ g £
c [&]
@ o g S R 8

SO

(c) Low Bandwidth Group (d) High Bandwidth Group
ALIGNED: fixed-granularity cache (64B blocks). FINITE: Amoeba-Cache with a REGION
predictor (1024 entry predictor table and 4K region size). INFINITE: Amoeba-Cache with
an unbounded predictor table (REGION predictor).FINITE+FT is FINITE augmented with
hints for predicting a default granularity on compulsory misses (first touches). HISTORY:
Amoeba-Cache uses spatial pattern hints based on utilization at the next eviction, collected
from a prior run.

Figure 6.13: Spatial Predictor Performance Comparison

Focusing on the # of bits required to represent the pattern table, we evaluated the use
of 4-bit saturation counters (instead of 1-bit bitmaps). The saturation counters seek to
avoid pattern pollution when blocks with varied spatial behavior reside in the same region.
Interestingly, we find that it is more beneficial to use 1-bit bitmaps for the majority of the
applications (12 out of 22); the hysteresis introduced by the counters increases training

period. To summarize, we find that a REGION predictor with region size 4KB and 1024

117

entries can predict the spatial pattern in a majority of the applications. CACTT indicates

that the predictor table can be indexed in 0.025ns and requires 2.3pJ per miss indexing.

6.7.3 Spatial Pattern Training

A widely-used approach to training the predictor is to harvest the word usage information
on an eviction. Unfortunately, evictions may not be frequent, which means the predictor’s
training period tends to be long, during which the cache performs less efficiently and /or that
the application’s phase has changed in the meantime. Particularly at the time of first touch
(compulsory miss to a location), we need to infer the global spatial access patterns. We
compare the finite region predictor (FINITE in Figure 6.13) that only predicts using eviction
history, against a FINITE+FT: this adds the optimization of inferring the default pattern
from a prior run when there is no predictor information. FINITE+FT demonstrates an avg.
1% (max: 6% for jbb) reduction in miss rate compared to FINITE and comes within 16%
the miss rate of HISTORY. In terms of bandwidth FINITE+FT can save 8% of the bandwidth
(up to 32% for Ibm) compared to FINITE. The percentage of first-touch accesses is shown in
Table 6.6.

Table 6.6: Amoeba-Cache Performance. Absolute #s.

MPKI || BW bytes/1K | cpI Predictor Stats |
L1 L2 L1+—L2 |L2+—Mem First Touch | Evict Win.
MPKI | MPKI || #Bytes/1K | #Bytes/1K | Cycles/Ins. | % Misses | # ins./Evict
apache || 64.9 19.6 5,000 2,067 8.3 0.4 17
art 133.7 | 53.0 5,475 1,425 16.0 0.0 9
astar 0.9 0.3 70 35 1.9 18.0 1,600
cactus 6.9 4.4 604 456 3.5 7.5 162
canne. 8.3 5.0 486 357 3.2 5.8 128
eclip. 3.6 <0.1 433 <1 1.8 0.1 198
faces. 5.5 4.7 683 632 3.0 41.2 190
ferre. 6.8 1.4 827 83 2.1 1.3 156
firef. 1.5 1.0 123 95 2.1 11.1 727
fluid. 1.7 1.4 138 127 1.9 39.2 629
freqm. 1.1 0.6 89 65 2.3 17.7 994
h2 4.6 0.4 328 46 1.8 1.7 154
jbb 24.6 9.6 1,542 830 5.0 10.2 42
Ibm 63.1 42.2 3,755 3,438 13.6 6.7 18
mcf 55.8 40.7 2,519 2,073 13.2 0.0 19
milc 16.1 16.0 1,486 1,476 6.0 2.4 66
omnet. 2.5 <0.1 158 <1 1.9 0.0 458
sople. 30.7 4.0 1,045 292 3.1 0.9 35
tpce 5.4 0.5 438 36 2.0 0.4 200
trade. 3.6 <0.1 410 6 1.8 0.6 194
twolf 23.3 0.6 1,326 45 2.2 0.0 49
x264 4.1 1.8 270 190 2.2 12.4 274

MPKI : Misses / 1K instructions. BW: # words / 1K instructions

CPI: Clock cycles per instruction.

Predictor First touch: Compulsory misses. % of accesses that use default granularity.
Evict window: # of instructions between evictions.

Higher value indicates predictor training takes longer.

118

6.7.4 Predictor Summary

e For the majority of the applications (17/22) the address-region predictor with region
size 4KB works well. However, five applications (apache, Ibm, mcf, art, omnetpp) show
better performance with PC-based indexing. For best efficiency, the predictor should

adapt indexing to each application.

e Updating the predictor only on evictions leads to long training periods, which causes
loss in caching efficiency. We need to develop mechanisms to infer the default pattern

based on global behavior demonstrated by resident cache lines.

e The online predictor reduces MPKI by 7% and bandwidth by 26% on average relative
to the conventional approach. However, it still has a 14% higher MPKI and 38% higher
bandwidth relative to the HISTORY-based predictor, indicating room for improvement

in prediction.

e The 1024-entry (4K region size) predictor table imposes ~0.12% energy overhead on

the overall cache hierarchy energy since it is referenced only on misses.

6.8 Amoeba-Cache Adaptivity

We demonstrate that Amoeba-Cache can adapt better than a conventional cache to the

variations in spatial locality.

Tuning RMAX for High Spatial Locality A challenge often faced by conventional
caches is the desire to widen the cache block (to achieve spatial prefetching) without wasting
space and bandwidth in low spatial locality applications. We study 3 specific applications:
milc and tradesoap have good spatial locality and soplex has poor spatial locality. With
a conventional 1M cache, when we widen the block size from 64 to 128 bytes, milc and
tradesoap experience a 37% and 39% reduction in miss rate. However, soplex’s miss rate
increases by 2x and bandwidth by 3.1x.

With Amoeba-Cache we do not have to make this uneasy choice as it permits Amoeba-
Blocks with granularity 1—RMAX words (RMAX: maximum block size). When we increase
RMAX from 64 bytes to 128 bytes, miss rate reduces by 37% for milc and 24% for tradesoap,
while simultaneously lowering bandwidth by 7%. Unlike the conventional cache, Amoeba-
Cache is able to adapt to poor spatial locality: soplex experiences only a 2% increase in

bandwidth and 40% increase in miss rate.
Predicting Strided Accesses Many applications (e.g., firefox and canneal) exhibit

strided access patterns, which touch a few words in a block before accessing another block.

Strided accesses patterns introduce intra-block holes (untouched words). For instance,

119

9]
)
1

B Miss Rate Bandwidth

o

>

q [

o 25 en

.Q .

E &

S 0

~ = é = é
-25 g) = S

B B

-50 Fixed Amoeba

Figure 6.14: Effect of increase in block size from 64 to 128 bytes in a 1 MB cache

canneal accesses ~10K distinct fixed granularity cache blocks with a specific access pattern,

[--x--x--] (x indicates i'"

word has been touched). Any predictor that uses the access
pattern history has two choices when an access misses on word 3 or 6 a) A miss oriented
policy (Policy-Miss) may refill the entire range of words 3—-6 and eliminate the secondary
miss but bring in untouched words 4-5, increasing bandwidth, and b) a bandwidth focused
choice (Policy- BW) that refills only the requested word but will incur more misses. Table 6.7
compares the two contrasting policies for Amoeba-Cache (relative to a Fixed granularity
baseline cache). Policy-BW saves 9% bandwidth compared to Policy-Miss but suffer 25-30%

higher miss rate.

Table 6.7: Predictor Policy Comparison

canneal ‘ firefox
Miss Rate BW Miss Rate BW
Policy-Miss | 10.31% 81.2% 11.18% 47.1%
Policy-BW | —20.08% | 88.09% | —13.44% | 56.82%
Spatial Pat-| [--x--%--] [X--X----] | [-X--X---] [x---X---]
terns
—: indicates Miss or BW higher than Fixed.

6.9 Amoeba-Cache vs other approaches

We compare Amoeba-Cache against four approaches.

e Fixed-2x: Our baseline is a fixed granularity cache 2x the capacity of the other
designs (64B block).

e Sector is the conventional sector cache design (as in IBM Power7 [24]): 64B block
and a small sector size (16bytes or 2 words). This design targets optimal bandwidth.

120

On any access, the cache fetches only the requisite sector, even though it allocates

space for the entire line.

e Sector-Pre adds prefetching to Sector. This optimized design prefetches multiple

sectors based on a spatial granularity predictor to improve the miss rate [93, 136].

e Multi$ combines features from line distillation [141] and spatial-temporal caches [59].
It is an aggressive design that partitions a cache into two: a line organized cache
(LOC) and a word-organized cache (WOC). At insertion time, Multi$ uses the spatial
granularity hints to direct the cache to either refill words (into the WOC) or the entire
line. We investigate two design points: 50% of the cache as a WOC (Multi$-50) and
25% of cache as a WOC (Multi$-25).

Sector, Sector-Pre, Multi$, and Amoeba-Cache all use the same spatial predictor hints.
On a demand miss, they prefetch all the sub-blocks needed together. Prefetching only
changes the timing of an access; it does not change the miss bandwidth and cannot remove

the misses caused by cache pollution.

Energy and Storage The sector approaches impose low hardware complexity and energy
penalty. To filter out unused words, the sector granularity has to be close to word granularity;
we explored 2words/sector which leads to a storage penalty of ~64KB for a 1MB cache. In
Multi$, the WOC increases associativity to the number of words/block. Multi$-25 partitions
a 64K 4-way cache into a 48K 3-way LOC and a 16K 8-way WOC, increasing associativity to
11. For a 1M cache, Multi$-50 increases associativity to 36. Compared to Fixed, Multi$-50
imposes over 3x increase in lookup latency, 5x increase in lookup energy, and ~4x increase
in tag storage. Amoeba-Cache provides a more scalable approach to using adaptive cache
lines since it varies the storage dedicated to the tags based on the spatial locality in the

application.

Miss Rate and Bandwidth Figure 6.15 summarizes the comparison; we focus on the
moderate and low utilization groups of applications. On the high utilization group, all
designs other than Sector have comparable miss rates. Amoeba-Cache improves miss rate to
within 5%—6% of the Fixed-2x for the low group and within 8%—17% for the moderate
group. Compared to the Fixed-2x, Amoeba-Cache also lowers bandwidth by 40% (64K
cache) and 20% (1M cache). Compared to Sector-Pre (with prefetching), Amoeba-Cache
is able to adapt better with flexible granularity and achieves lower miss rate (up to 30%
@ 64K and 35% @ 1M). Multi$’s benefits are proportional to the fraction of the cache
organized as a WOC; Multi$-50 (18-way@64K and 36-way@1M) is needed to match the
miss rate of Amoeba-Cache. Finally, in the moderate group, many applications exhibit
strided access. Compared to Multi-$’s WOC, which fetches individual words, Amoeba-Cache

121

1.0 ——
o LO @ Lixed-2X 2 Fixed-2X
(v Q)
207 \ 207 A Multig:2
ks 0.6 N>IK ti$-25 (x1.8)Q §06 X Sector-Pre
1¢
10 11 12 13 14 15 16 1.0 11 12 13 14 15 16
Miss Rate Ratio Miss Rate Ratio
(a) 64K - Low (b) 64K - Moderate
Joe sector® 10 ®Fixed-2x% Sector®
= Fixed-2X @) 06| o (x:3.9
500 x_ Sector-Pre (X262 A oy
= Multi$-50 yil2) o Amdeba 4
2038 50.8
S Multi-25 2 Sector-Pre
So7 A XHE 507 | Multis-50 O
Amoeba X .
X Multi$-25
0.6 0.6
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.0 1.1 1'2 1.3 1.4 1.5 1.6
Miss Rate Ratio Miss Rate Ratio
(¢) IM - Low (d) 1M - Moderate

Figure 6.15: Relative miss rate and bandwidth for different caches. Baseline (1,1) is the
Fixed-2x design. Labels: @ Fixed-2x, o Sector approaches. *: Multi$, A Amoeba. (a),(b)
64K cache (c),(d) 1M cache. Note the different Y-axis scale for each group.

increases bandwidth since it chooses to fetch the contiguous chunk in order to lower miss

rate.

6.10 Multicore Shared Cache

We evaluate a shared cache implemented with the Amoeba-Cache design. By dynamically
varying the cache block size and keeping out unused words, the Amoeba-Cache effectively
minimizes the footprint of an application. Minimizing the footprint helps multiple applica-
tions effectively share the cache space. We experimented with a 1M shared Amoeba-Cache
in a 4 core system. Table 6.8 shows the application mixes; we chose a mix of applications
across all groups. We tabulate the change in miss rate per thread and the overall change in
bandwidth for Amoeba-Cache with respect to a fixed granularity cache running the same

mix. Minimizing the overall footprint enables a reduction in the miss rate of each application

122

in the mix. The commercial workloads (SpecJBB and TPC-C) are able to make use of
the space available and achieve a significant reduction in miss rate (avg: 18%). Only two
applications suffered a small increase in miss rate (x264 Mix#2: 2% and ferret Mix#3: 4%)
due to contention. The overall L2 miss bandwidth significantly improves, showing 16%—39%
reduction across all workload mixes. We believe that the Amoeba-based shared cache can
effectively enable the shared cache to support more cores and increase overall throughput.

We leave the design space exploration of an Amoeba-based coherent cache for future work.

Table 6.8: Multiprogrammed Workloads on 1M Shared Amoeba- Cache% reduction in miss
rate and bandwidth. Baseline: Fixed 1M.

Miss Miss Miss Miss BW

Mix T1 T2 T3 T4 (Al
jbbx2, tpc-cx2 12.38% | 12.38% | 22.29% | 22.37% 39.07%
firefoxx2, x264x2 3.82% 3.61% | —2.44% | 0.43% 15.71%
cactus, fluid., omnet., sopl. | 1.01% | 1.86% | 22.38% | 0.59% 18.62%
canneal, astar, ferret, mile | 4.85% | 2.75% | 19.39% | —4.07% | 17.77%

— indicates Miss or BW higher than Fixed. T1—T4, threads in the mix; in the
order of applications in the mix

6.11 Related Work

Burger et al. [30] defined cache efficiency as the fraction of blocks that store data that is
likely to be used. We use the term cache utilization to identify touched versus untouched
words residing in the cache. Past works [34, 136, 141] have also observed low cache utilization
at specific levels of the cache. Some works [100, 101, 78, 106] have sought to improve cache
utilization by eliminating cache blocks that are no longer likely to be used (referred to
as dead blocks). These techniques do not address the problem of intra-block waste (i.e.,
untouched words).

Sector caches [144, 150] associate a single tag with a group of contiguous cache lines,
allowing cache sizes to grow without paying the penalty of additional tag overhead. Sector
caches use bandwidth efficiently by transferring only the needed cache lines within a sector.
Conventional sector caches [144] may result in worse utilization due to the space occupied
by invalid cache lines within a sector. Decoupled sector caches [150] help reduce the number
of invalid cache lines per sector by increasing the number of tags per sector. Compared
to the Amoeba cache, the tag space is a constant overhead, and limits the # of invalid
sectors that can be eliminated. Pujara et al. [136] consider a word granularity sector cache,
and use a predictor to try and bring in only the used words. Our results (see Figure 6.15)
show that smaller granularity sectors significantly increase misses, and optimizations that

prefetch [136] can pollute the cache and interconnect with unused words.

123

Line distillation [141] applies filtering at the word granularity to eliminate unused words in
a cache block at eviction. This approach requires part of the cache to be organized as a word-
organized cache, which increases tag overhead, complicates lookup, and bounds performance
improvements. Most importantly, line distillation does not address the bandwidth penalty
of unused words. This inefficiency is increasingly important to address under current and
future technology dominated by interconnects [80, 125]. Veidenbaum et al. [169] propose
that the entire cache be word organized and propose an online algorithm to prefetch words.
Unfortunately, a static word-organized cache has a built-in tag overhead of 50% and requires
energy-intensive associative searches.

Amoeba-Cache adopts a more proactive approach that enables continuous dynamic block
granularity adaptation to the available spatial locality. When there is high spatial locality,
the Amoeba-Cache will automatically store a few big cache blocks (most space dedicated for
data); with low spatial locality, it will adapt to storing many small cache blocks (extra space
allocated for tags). Recently, Yoon et al. have proposed an adaptive granularity DRAM
architecture [183]. This provides the support necessary for supporting variable granularity
off-chip requests from an Amoeba-Cache-based LLC. Some research [47, 38] has also focused
on reducing false sharing in coherent caches by splitting/merging cache blocks to avoid
invalidations. They would benefit from the Amoeba-Cache design, which manages block
granularity in hardware.

There has a been a significant amount of work at the compiler and software runtime level
(e.g. [37]) to restructure data for improved spatial efficiency. There have also been efforts
from the architecture community to predict spatial locality [136, 175, 93, 184], which we can
leverage to predict Amoeba-Block ranges. Finally, cache compression is an orthogonal body
of work that does not eliminate unused words but seeks to minimize the overall memory

footprint [2].

6.12 Conclusion

We propose a cache design, Amoeba-Cache, that can dynamically hold a variable number of
cache blocks of different granularities. The Amoeba-Cache employs a novel organization that
completely eliminates the tag array and collocates the tags with the cache block in the data
array. This permits the Amoeba-Cache to trade the space budgeted for the cache blocks for
tags and support a variable number of tags (and blocks). For applications that have low
spatial locality, Amoeba-Cache can reduce cache pollution, improve the overall miss rate,
and reduce bandwidth wasted in the interconnects. When applications have moderate to
high spatial locality, Amoeba-Cache coarsens the block size and ensures good performance.
Finally, for applications that are streaming (e.g., Ibm), Amoeba-Cache can save significant

energy by eliminating unused words from being transmitted over the interconnects.

124

Chapter 7

Software Release

This chapter details the release of software developed to conduct the research presented
herein. All code is distributed via repositories on github under the Simon Fraser University
Architecture Group organization. All code is released under the Community Research and

Academic Programming License (CRAPL) [120] unless otherwise specified.

7.1 Path Profiling

This is an implementation of Efficient Path Profiling [15]. It also incoporates the Optimal
Event Counting [13] to reduce the overhead of instrumentation. The optimization merges
multiple instrumentation points to yield the same net effect. The implementation incoporates
128 bit counters (64 bit in 32-bit mode), ensuring scalability of the tool up to 128 branches
in the control flow graph of the profiled functions. We implement another optimization
called “segmentation” where the acyclic paths are terminated at loop entry as well as loop
exit. The original Ball-Larus definition terminated paths only on backedges and function
exits. This ensures better interoperability with the rest of the tool chain while also reducing

complexity at negligible loss of information.

Language: C++
Infrastructure: LLVM
Release: github.com/sfu-arch/epp

License: University of Illinois/NCSA Open Source License

7.2 Path Derived Workload Suite

A workload suite which outlines the “hot” paths in each workload. Paths are identi-
fied using Ball-Larus path profiling [15]. Original workloads are derived from SPEC2000,
SPEC2006 [124], PARSEC 3.0 [21] and PERFECT [17]. 29 workloads were selected from

125

the four suites. Each workload is compiled into a single bitcode file. All dependencies are
statically linked in. The function consuming the largest amount of time on a real machine is
identified using gprof. All called functions from the identified functions are inlined into their
parents in a bottom-up recursive manner. The top five highest ranked paths by coverage
(fraction of dynamic instructions executed) are outlined and presented as separate bitcode

modules.

Language: LLVM Intermediate Representation
Release: github.com/sfu-arch/pdws

License: Workload specific license derived from their original open source license.

7.3 Needle

The tool serves three goals. They are:

1. Construct Abstraction: The tool constructs “Braids” (see section 4.4.2) from the
dynamic path profile of an application. Braids are constructed from by merging paths.
The create a single-entry, single-exit region with assertions to trigger rollback in case

an infrequent path is executed.

2. Outlining: Once the abstraction is constructed the original CFG is instrumented.
All basic blocks which are part of the abstraction are merged and outlined into a new
function. Live in values for the abstraction (defined outside the region and used inside)
are passed in as function arguments whereas live out values (defined inside and used
outside) are returned in a packed struct. Returned values are selected at merge points

in the CFG for the original vs the outlined abstraction version.

3. Software Speculation: Software speculative frames are created by the compiler
tool chain as offload targets. They may span many branches to encompass a large
number of basic blocks. Side exits due to control flow assertion fail, may be taken
for some inputs. The compiler instruments writes to memory to checkpoint state.
Each write is preceded by a read to the same location which logs the value along with
the address. When a control flow assertion fails, the logged values are restored and

execution resumes from the original control flow graph.

Language: C++
Infrastructure: LLVM

Release: github.com/sfu-arch/needle

126

7.4 Fusion Simulator

Simulates the FUSION protocol, a hybrid coherence protocol tailored for accelerator archi-
tectures. The simulator modifies MacSim [81] to add support for the Ruby [115] memory
system. MacSim is a trace driven simulator where traces are collected from Intel Pin [111].
The simulator provided implements a hybrid MESI+Temporal [158] coherence protocol for
specialized functions.

Language: C++

Infrastructure: Pin, MacSim, GEMS (Ruby)

Release: github.com/sfu-arch/fusion

7.5 Amoeba Simulator

Simulates the Amoeba Cache architecture. It implements variable granularity caching with
online predictors. The implementation uses a MESI four hop protocol as base. The Ruby
infrastructure is extended to support variable granularity caching. The simulator is driven
by memory access traces derived from Intel Pin.

Language: C++

Infrastructure: Pin, GEMS (Ruby)

Release: github.com/sfu-arch/amoeba

127

Chapter 8

Future Work and Conclusion

In this chapter we review the contributions of this dissertation and provide insights for
future work. We also discuss how recent advances in compiler engineering can enable energy
efficient Von-Neumman execution models 8.1.1 and simplify memory access interfaces for
specialized units 8.1.2. We discuss the potential of software specialized regions where JI'T-
like optimizations are performed apriori using profile guided information 8.1.3. Generating
independent micro-benchmarks from the path profiles may be useful in synthesizing stress
tests or performance analysis of existing systems. Section 8.1.4 discusses the challenges and

potential for such an approach. Finally, we summarize the contributions made by this thesis.

8.1 Concurrent and Future Work

8.1.1 Macro Instructions from Sequentially Dependent Operations

In chapter 4 we demonstrated the utility of building specialized units for BL-Paths and
Braids. While beneficial, we find there is little overlap in frequently executed BL-Paths and
Braids across workloads. This leads to concerns about reusability and cost of reconfiguration
in a scenario where multiple workloads are executed on the same machine. This is stark
contrast to the general purpose processor. Furthermore, the use of spatial architectures for
specialization introduces inefficiencies. The lack of temporal reuse of each functional unit
on the spatial fabric and energy cost of data migration can lead to increased overall power
consumption.

To address these shortcomings, we study the construction of macro operation chains.
Sequentially dependent operations are “chained” together to form macro-instructions. Within
each macro instruction, data values are bypassed. Using a lane based execution model and
static chain instruction scheduling enables reuse of functional units. Parallelism present in
the dataflow graph of the specialized region is expressed at the macro-instruction granularity.
Using multiple chain execution lanes allows for the extraction of chain level parallelism. The

chain abstraction for macro-instructions is enabled by software speculatioan. This allows us

128

to construct coarse enough regions across basic blocks to make it profitable. Research which
investigates the chain based abstraction for efficient execution using the Von-Neumman model
has been published at the 49" IEEE/ACM International Symposium on Microarchitecture

with co-authors Amirali Sharifian, Apala Guha and Arrvindh Shriraman.

8.1.2 Eliminating the Load-Store Queue for Specialized Units

Specialized architectures often rely on the Load-Store Unit of the processor to disambiguate
conflicting memory addresses at runtime [127, 68] others may serialize accesses [171, 32].
Compiler based alias analyses can reason about abstract memory locations in order to
determine whether a pair of memory operations can dynamically issue addresses that conflict.
Using this information, a compiler targeting a spatial fabric can introduce dependency edges
where necessary while eliding edges where it can be proved that no conflicts can exist. In
cases where it cannot be proved that a conflict does not exist a dependency edge can be
inserted in the dataflow graph. This ensures correct execution at the expense of performance.
While the techniques are generalized, software speculation and simplified control flow allow

for more robust alias analyses.

8.1.3 Software specialization based on dynamic profiling

Just-In-Time (JIT) compilers often perform simple optimizations to frequently executed code
traces prior to execution. These techniques have been integrated in modern JIT compilers
such as Java Virtual Machines from IBM [165]. A priori path profiling can determine the
hot code segments in a program. We hypothesize that software based instrumentation
for runtime path profiling may be too heavy weight for JIT compiled or even interpreted
languages. Tracing JIT’s such as PyPy (for Python) or TraceMonkey (Javascript) use low
overhead techniques which track looping traces (sequences of basic blocks). Our optimized
implementation of path profiling adds 20-40% runtime overhead. Additionally, dynamically
typed languages executed on tracing JITs include added checks to ensure type matches
before executing an optimized trace. Such “versioning” may lead to multiple variants of
the same path; paths are determined by control flow only. Due to these reasons, we believe
runtime path profiling for dynamically compiled languages has limited scope to improve
performance.

We conducted an experiment to determine the effectiveness of standard compiler opti-
mizations of frequently executed paths and “Braids”. Specialized paths consist of control
flow assertions only. They do not contain branches. Braids include only those branches
which lead to blocks identified in the profiling phase as “hot”. The simplification of control
flow allows for deeper compiler optimizations above those applied already. In practice,
compiler optimization heuristics are limited to simple control flow scenarios as it becomes

harder to reason about multiple conditions and their flows of control. Techniques such

129

as predication [5] convert control flow to data flow so that they can be reasoned about
within a single heuristic. These techniques have been known to produce better instruction
schedules for VLIW processors. Figure 8.1 shows our observations on the impact of compiler

optimizations once control flow has been simplified or eliminated altogether.

30
25
20
15
10
HEPYH O PRENOY X oS g nMdm (O)
%Q;oxﬂﬁwgoog@mw?ggxo%mgﬁuggagg
52 S ECd R OE A E0SaEgEEELEEE g0 S
SORHEEEANG e EROS e ESEEES ST
© o O TGP - Fooo S i kae) o=>= 9 ®
ST T e oY ¥IQmgn ST 2k SEHQwE 2
00 — <f wwmmﬁ*ﬁ* N O o = O, © »n
= — < <f © Q © = ~ 0
ToTA = E5a
an
=
]
%]

Figure 8.1: % Reduction in IR Instructions

Using the tool chain for software speculation described in section 4.5, we construct
frames which contain the hottest braid. We then apply standard compiler optimizations
(O2) available in LLVM. The original control flow graph was optimized with O2 prior to
profiling and analyses. The impact of compiler optimizations is quantified by the removal
of IR instructions. Overall, we find that many benchmarks see significant reduction in the
number of operations. The median percent reduction in ops for the braids was 6% with a
maximum of 28% (186.crafty). We only study Braids as we find that the cost of rollback for
paths is prohibitive. Braids reduce the possibility of side exits as then incorporate all the
frequently executed basic blocks in the dynamic profile of the workloads.

Speculatively executing the optimized version of a hot region on a general purpose
processor may lead to overall program speedup. However, the cost of restoring program
state when a side exit is taken can be prohibitive. Fortunately, we can borrow from existing
work in transactional memory. Modern microprocessors from Intel (post Haswell) and IBM

(Power8 onwards) incorporate hardware support for transactional memory. Using these can

130

provide low cost rollback mechanisms. Thus for certain programs, we hypothesize that an

overall speedup can be achieved via software specialization of frequently executed regions.

8.1.4 Micro-Workload Generation

To understand the behaviour of complex workloads, often computer architects reconstruct
a synthetic micro benchmark. The goal is to isolate the behaviour of the workload to be
able to study it in greater detail. Often more computationally intensive tools are brought
to bear on the micro-benchmark which previously was not possible. This task has usually
been performed manually. We hypothesize that automated construction of functionally
identical micro-benchmarks can help architecture studies. We have implemented a value
profiling framework at the path and Braid granularity. Coupled with a harness which
repeatedly invokes a path with the profiled values will create a synthetic micro-benchmark
which replicates the functional behaviour dominant in the program. A key challenging
issue is the replication of memory access behaviour. There are a few options to consider
in the replication of memory system behaviour. One can profile the values which each
memory instruction reads or writes in the original program to construct a shadow map, a
data structure which will serve as a look up table instead of accessing memory. However,
this may require runtime checks for operations which cannot be identified as accessing a
unique location statically using alias analysis. Thus there may be significant perturbation in
the overall behaviour of the benchmark depending on the number of memory operations.
Alternatively, the proposed harness can allocate memory which the operations can access at
runtime. The memory needs to be initialized to the values profiled at runtime. The memory
state needs to be represented in an abstract manner with the pointers to relative offsets.
Memory operations within the region may need to be rewritten to point to new locations
allocated by the harness. System features like Address Space Layout Randomization may

further complicate the issues with replaying memory behaviour.

8.2 Summary of contributions

This dissertation describes generalized methods for application specific hardware specializa-
tion. We leverage program paths as a useful abstraction to reason about specialization. We
have built an LLVM based tool-chain to profile applications with low overhead. From the
profile we further extract and characterize paths and assess their amenability for specializa-
tion. We have released a workload suite (SPEC-AX) derived from well known microprocessor
benchmarks. They highlight the hot paths within the program so that computer architects
can easily target the dominant behaviour that manifests in the program for specialization.

We build further transformation passes which merge paths based on their control flow to
create “Braids”. This allows for fine-grained control of application specific specialization

with strong guarantees on the amount of work offloaded.

131

We develop hardware mechanisms which mitigate integration issues with respect to data
movement. The Fusion coherence protocol eliminates redundant data movement within
the accelerator domain. A time-stamp based protocol is used in the accelerator domain to
reduce the overhead of message which allowing for fine-grained data sharing with ease.

Finally, the Amoeba cache architecture uses adaptive granularity cache blocks to eliminate
waste. Only data predicted to be used by the workload is fetched into the cache increasing

utilization, thus improving hit rate and lowering energy consumption.

132

Bibliography

1]

[10]

Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas F Wenisch, John Danskin,
and Stephen W Keckler. Selective gpu caches to eliminate cpu-gpu hw cache coherence.

In 2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 494-506. IEEE, 2016.

Alaa R Alameldeen. Using compression to improve chip multiprocessor performance.
PhD thesis, UNIVERSITY OF WISCONSIN-MADISON, 2006.

David Albonesi, Kodi A, and Stojanovic V. Proceedings of the nsf workshop on emerging
technologies for interconnects(WETI). NSF workshop on emerging technologies for
interconnects(WETI), 2012.

Alan Allan. The international technology roadmap for semiconductors 2.0. 2015.

J R Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of control
dependence to data dependence. In POPL ’83: Proceedings of the 10th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. Rice University, ACM,
January 1983.

Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483-485. ACM, 1967.

Anandtech. Tick-tock on the rocks. http://www.anandtech.com/show/9447/
intel-10nm-and-kaby-lake.

Akhil Arunkumar, Shin-Ying Lee, and Carole-Jean Wu. Id-cache: Instruction and
memory divergence based cache management for gpus. In Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC’16).

David I August, Daniel A Connors, Scott A Mahlke, John W Sias, Kevin M Crozier,
Ben-Chung Cheng, Patrick R Eaton, Qudus B Olaniran, and Wen-mei W Hwu.
Integrated predicated and speculative execution in the IMPACT EPIC architecture.
In Proceedings of the 25th Annual International Symposium on Computer Architecture,
1998.

David I August, Wen-mei W Hwu, and Scott A Mahlke. A framework for balanc-
ing control flow and predication. In Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture, 1997.

133

http://www.anandtech.com/show/9447/intel-10nm-and-kaby-lake
http://www.anandtech.com/show/9447/intel-10nm-and-kaby-lake

[11]

[20]

[21]

[22]

Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and Venkatanand
Venkatachalapathy. Microarchitectural wire management for performance and power
in partitioned architectures. In 11th International Symposium on High-Performance
Computer Architecture, pages 28-39. IEEE, 2005.

James Balfour. EFFICIENT EMBEDDED COMPUTING. http://cva.stanford.
edu/publications/2010/jbalfour-thesis.pdf.

Thomas Ball. Efficiently counting program events with support for on-line queries.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5):1399—
1410, 1994.

Thomas Ball. The concept of dynamic analysis. In Software Engineering FSE’99,
pages 216-234. Springer, 1999.

Thomas Ball and James R. Larus. Efficient Path Profiling. In Proceedings of the 1996
Annual IEEE/ACM International Symposium on Microarchitecture, 1996.

Nagesh Bangalore Lakshminarayana. Efficient graph algorithm execution on data-
parallel architectures. 2014.

Kevin Barker, Thomas Benson, Dan Campbell, David Ediger, Roberto Gioiosa,
Adolfy Hoisie, Darren Kerbyson, Joseph Manzano, Andres Marquez, Leon Song,
Nathan Tallent, and Antonino Tumeo. PERFECT (Power Efficiency Revolution
For Embedded Computing Technologies) Benchmark Suite Manual. Pacific North-
west National Laboratory and Georgia Tech Research Institute, December 2013.
http://hpc.pnnl.gov/projects/PERFECT/.

Robert H. Bell and Lizy K. John. Efficient power analysis using synthetic testcases.
In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC05), pages 110-118, October 2005.

J Benson, R Cofell, C Frericks, Chen-Han Ho, V Govindaraju, T Nowatzki, and
K Sankaralingam. Design, integration and implementation of the DySER hardware
accelerator into OpenSPARC. pages 1-12, 2012.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: characterization and architectural implications. In Proceedings of
the 17th Parallel Architectures and Compilation Techniques, 2008.

Christian Bienia and Kai Li. Benchmarking modern multiprocessors. 2011.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications, pages 169-190,
New York, NY, USA, October 2006. ACM Press.

134

http://cva.stanford.edu/publications/2010/jbalfour-thesis.pdf
http://cva.stanford.edu/publications/2010/jbalfour-thesis.pdf
http://hpc.pnnl.gov/projects/PERFECT/

23]

[32]

Geoffrey Blake, Ronald G Dreslinski, Trevor Mudge, and Krisztidn Flautner. Evolution
of thread-level parallelism in desktop applications. In ACM SIGARCH Computer
Architecture News, volume 38, pages 302-313. ACM, 2010.

B. Blaner, B. Abali, B.M. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauricella, R. Leavens,
J.J. Reilly, and P.A. Sandon. Ibm power7+ processor on-chip accelerators for cryp-
tography and active memory expansion. IBM Journal of Research and Development,
57(6):3:1-3:16, Nov 2013.

M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-State
Circuits Society Newsletter, 12(1):11-13, Winter 2007.

Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67-77, May 2011.

Jeffrey Brown, Sandra Woodward, Brian Bass, and Charlie Johnson. IBM Power Edge
of Network Processor: A Wire-Speed System on a Chip. IEEE Micro, 31(2):76-85,
2011.

Stephen D Brown, Robert J Francis, Jonathan Rose, and Zvonko G Vranesic. Field-
programmable gate arrays, volume 180. Springer Science & Business Media, 2012.

Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein.
Spatial computation. In ACM SIGARCH Computer Architecture News, volume 32,
pages 14-26. ACM, 2004.

Doug Burger, James R Goodman, and Alain Kagi. The declining effectiveness of
dynamic caching for general-purpose microprocessors. University of Wisconsin-Madison.
Computer Sciences Department, 1995.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level
synthesis for fpga-based processor/accelerator systems. In Proceedings of the 19th

ACM/SIGDA international symposium on Field programmable gate arrays, pages
33-36. ACM, 2011.

Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar,
Marcel Gort, Jia Jun Qin, Mark Aldham, Tomasz Czajkowski, Stephen Brown, and
Jason Anderson. From software to accelerators with LegUp high-level synthesis. In
2018 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), pages 1-9. IEEE.

Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin AuYoung, Parthasarathy
Ranganathan, and Martin Margala. An FPGA memcached appliance. http://dl.
acm.org/citation.cfm?id=2435264.2435306, 2013.

Chi F Chen, S-H Yang, Babak Falsafi, and Andreas Moshovos. Accurate and complexity-
effective spatial pattern prediction. In Software, IEE Proceedings-, pages 276—287.
IEEE, 2004.

135

http://dl.acm.org/citation.cfm?id=2435264.2435306
http://dl.acm.org/citation.cfm?id=2435264.2435306

[35]

[43]

[44]

[45]

[46]

Fred Chen, Matthew Spencer, Rhesa Nathanael, Chengcheng Wang, Hossein Fari-
borzi, Abhinav Gupta, Hei Kam, Vincent Pott, Jaeseok Jeon, Tsu-Jae King Liu,
et al. Demonstration of integrated mico-electro-mechanical switch circuits for vlsi
applications. Institute of Electrical and Electronics Engineers, 2010.

Tao Chen and G Edward Suh. Efficient data supply for hardware accelerators with
prefetching and access/execute decoupling. In Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on, pages 1-12. IEEE, 2016.

Trishul M Chilimbi, Mark D Hill, and James R Larus. Cache-conscious structure
layout. In ACM SIGPLAN Notices, volume 34, pages 1-12. ACM, 1999.

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand,
Sarita V Adve, Vikram S Adve, Nicholas P Carter, and Ching-Tsun Chou. Denovo:
Rethinking the memory hierarchy for disciplined parallelism. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on, pages 155-166.
IEEE, 2011.

Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and Krisztian
Flautner. Application-Specific Processing on a General-Purpose Core via Transpar-
ent Instruction Set Customization. In Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture, 2004.

Charlie Curtsinger and Emery D Berger. Stabilizer: statistically sound performance
evaluation. ACM SIGARCH Computer Architecture News, 41(1):219-228, 2013.

Hamed F Dadgour and Kaustav Banerjee. Design and analysis of hybrid nems-cmos
circuits for ultra low-power applications. In 2007 44th ACM/IEEE Design Automation
Conference, pages 306-311. IEEE, 2007.

Bill Dally. Power, programmability, and granularity: The challenges of exascale
computing. In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 878-878. IEEE, 2011.

WJ Dally and B Towles. Route packets, not wires. In Proceedings of the Design
Automation Conference (DAC), pages 18-22.

Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark Horowitz.
Cpu db: recording microprocessor history. Communications of the ACM, 55(4):55-63,
2012.

Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. Coarse-grained reconfig-
urable array architectures. In Handbook of signal processing systems, pages 553—-592.
Springer, 2013.

Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions. I[EFEE
Journal of Solid-State Circuits, 9(5):256-268, 1974.

Czarek Dubnicki and Thomas J LeBlanc. Adjustable block size coherent caches. ACM
SIGARCH Computer Architecture News, 20(2):170-180, 1992.

136

[48]

Lieven Eeckhout, Robert H Bell, Bastiaan Stougie, Koen De Bosschere, and Lizy K
John. Control flow modeling in statistical simulation for accurate and efficient processor
design studies. In Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pages 350-361. IEEE, 2004.

Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium on, pages 365-376. IEEE, 2011.

Amin Farmahini-Farahani, Nam Sung Kim, and Katherine Morrow. Energy-efficient
reconfigurable cache architectures for accelerator-enabled embedded systems. In
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on, pages 211-220. IEEE, 2014.

Muhammad Umar Farooq, Lizy John, and Margarida F Jacome. Compiler Controlled
Speculation for Power Aware ILP Extraction in Dataflow Architectures. In HiPEAC
’09: Proceedings of the 4th International Conference on High Performance Embedded
Architectures and Compilers. University of Texas at Austin, Springer-Verlag, December
2008.

Tom Feist. Vivado design suite. White Paper, 5, 2012.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: a study of emerging scale-out workloads
on modern hardware. In Proceedings of the seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2012.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319-349,
July 1987.

Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus. Copenhagen University College of
Engineering, 2011.

C Frericks, R Cofell, and K Sankaralingam. Performance evaluation of a DySER
FPGA prototype system spanning the compiler, microarchitecture, and hardware
implementation. ... Software (ISPASS), 2015.

Saturnino Garcia, Donghwan Jeon, Chris Louie, and Michael Bedford Taylor. Kremlin:
Rethinking and rebooting gprof for the multicore age. In PLDI ’11: Proceedings of
the Conference on Programming Language Design and Implementation, 2011.

Mark Gebhart, Bertrand A Maher, Katherine E Coons, Jeff Diamond, Paul Gratz,
Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James Burrill,
Stephen W Keckler, Doug Burger, and Kathryn S McKinley. An evaluation of
the TRIPS computer system. In PROC of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems, 2009.

137

[59]

[65]

[66]

Antonio Gonzélez, Carlos Aliagas, and Mateo Valero. A data cache with multiple
caching strategies tuned to different types of locality. In ACM International Conference
on Supercomputing 25th Anniversary Volume, pages 217-226. ACM, 2014.

Cecilia Gonzalez-Alvarez, Jennifer B Sartor, Carlos Alvarez, Daniel Jiménez-Gonzélez,
and Lieven Eeckhout. Automatic design of domain-specific instructions for low-power
processors. 2015 IEEFE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 1-8, 2015.

James Goodman. Source Snooping Cache Coherence Protocols. Science, 2009.

Goodridge. The effect and technique of system coherence in arm multicore technology.
2008.

Google. Google performance tools. https://github.com/gperftools/gperftools.

Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur
Satish, Karthikeyan Sankaralingam, and Changkyu Kim. Dyser: Unifying functionality
and parallelism specialization for energy-efficient computing. IEEE Micro, 32(5):0038—
51, 2012.

Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof: A call graph
execution profiler. In ACM Sigplan Notices, volume 17, pages 120-126. ACM, 1982.

Yakun Sophia Shao Brandon Reagen Gu and Yeon Wei David Brooks. Aladdin: A pre-
rtl, power-performance accelerator simulator enabling large design space exploration
of customized architectures.

Nagendra Gulur, Mahesh Mehendale, R Manikantan, and R Govindarajan. Bi-modal
dram cache: Improving hit rate, hit latency and bandwidth. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 38-50. IEEE, 2014.

Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David August.
Bundled execution of recurring traces for energy-efficient general purpose process-
ing. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011.

Diana Guttman and Mahmut Taylan Kandemir. Performance and energy evaluation of
data prefetching on intel xeon phi. In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, pages 288—-297. IEEE, 2015.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Un-
derstanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th
Annual International Symposium of Computer Architecture, 2010.

L Hammond, BA Hubbert, M Siu, MK Prabhu, M Chen, and K Olukotun. The stanford
hydra microprocessor. In Proceedings of the 23th Annual International Symposium on
Computer Architecture, pages 6777, 1996.

Joel Hestness, Stephen W. Keckler, and David A. Wood. A comparative analysis
of microarchitecture effects on cpu and gpu memory system behavior. In IFEE
International Symposium on Workload Characterization, 2014.

138

https://github.com/gperftools/gperftools

73]

[77]

78]

[79]

Joel Hestness, Stephen W Keckler, and David A Wood. Gpu computing pipeline
inefficiencies and optimization opportunities in heterogeneous cpu-gpu processors. In
Workload Characterization (IISWC), 2015 IEEFE International Symposium on, pages
87-97. IEEE, 2015.

Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia,
Louis-NoAnl Pouchet, Atanas Rountev, and P. Sadayappan. Dynamic trace-based
analysis of vectorization potential of applications. In PLDI, pages 371-382. ACM,
2012.

Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and Shekhar Borkar. A
5-ghz mesh interconnect for a teraflops processor. IEEE Micro, 27(5):51-61, 2007.

Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K John,
and Koen De Bosschere. Performance prediction based on inherent program similarity.
In Proceedings of the 15th international conference on Parallel architectures and
compilation techniques, pages 114-122. ACM, 2006.

Cheng-Ta Hsieh and M. Pedram. Microprocessor power estimation using profile-
driven program synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 1998.

Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping in the memory
system: predicting and optimizing memory behavior. In Computer Architecture, 2002.
Proceedings. 29th Annual International Symposium on, pages 209-220. IEEE, 2002.

Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct Cache Access for High Bandwidth
Network 1/0. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture, 2005.

Christopher J Hughes, Changkyu Kim, Yen-Kuang Chen, et al. Performance and
energy implications of many-core caches for throughput computing. IFEE micro,
30(6):25-35, 2010.

Nagesh B. Lakshminarayana Hyesoon Kim, Jaekyu Lee. Macsim : Simulator for
heterogeneous architecture - https://code.google.com/p/macsim/. https://code.
google.com/p/macsim/.

IEEE. Ieee jun-ichi nishizawa medal. http://ethw.org/IEEE_Jun-ichi_Nishizawa_
Medal.

Intel. Xeon chip with integrated fpga. 2014.

Adrian M Ionescu and Heike Riel. Tunnel field-effect transistors as energy-efficient
electronic switches. Nature, 479(7373):329-337, 2011.

Intel James R. Intel processor tracing. https://software.intel.com/en-us/blogs/
2013/09/18/processor-tracing, 2014.

Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor. Kismet:
parallel speedup estimates for serial programs. In ACM SIGPLAN Notices, volume 46,
pages 519-536. ACM, 2011.

139

https://code.google.com/p/macsim/
https://code.google.com/p/macsim/
http://ethw.org/IEEE_Jun-ichi_Nishizawa_Medal
http://ethw.org/IEEE_Jun-ichi_Nishizawa_Medal
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing

[87]

[38]

[89]

[90]

[91]

[92]

[93]

[95]

[96]

[97]

Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi. Unison cache:
A scalable and effective die-stacked dram cache. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 25-37. IEEE, 2014.

Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram caches for servers:
hit ratio, latency, or bandwidth? have it all with footprint cache. ACM SIGARCH
Computer Architecture News, 41(3):404-415, 2013.

A Joshi, L. Eeckhout, R H Bell, and L John. Performance Cloning: A Technique for
Disseminating Proprietary Applications as Benchmarks. October 2006.

K Kamil, Miquel Moreto, Francisco J Cazorla, Mateo Valero, et al. Adapting cache
partitioning algorithms to pseudo-lru replacement policies. In Parallel € Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1-12. IEEE, 2010.

S. Kaxiras and G. Keramidas. Sarc coherence: Scaling directory cache coherence in
performance and power. Micro, IEEE, 30(5):54-65, Sept 2010.

Stefanos Kaxiras and Alberto Ros. A new perspective for efficient virtual-cache
coherence. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, pages 1-12, April 2013.

Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in data caches
using spatial footprints. In ACM SIGARCH Computer Architecture News, volume 26,
pages 357-368. IEEE Computer Society, 1998.

Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. Fusion : Design Tradeoffs
in Coherence Hierarchies for Accelerators. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA 2015, New York, NY, USA, jun
2015. ACM.

Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. Fusion: Design tradeoffs
in coherent cache hierarchies for accelerators. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA 15, pages 733-745, New
York, NY, USA, 2015. ACM.

Snehasish Kumar, Nick Sumner, and Arrvindh Shriraman. SPEC-AX : Extracting Ac-
celerator Benchmarks from Microprocessor Benchmarks. In Workload Characterization
(IISWC), 2016 IEEE International Symposium on, IISWC 2016, September 2016.

Snehasish Kumar, Nick Sumner, Vijayalakshmi Srinivasan, Steve Margerm, and
Arrvindh Shriraman. Needle : Leveraging program analysis to extract accelerators
from whole programs. In Proceedings of the 23rd ACM International Conference on
High Performance Computer Architecture, HPCA 2017, feb 2017.

Snehasish Kumar, Naveen Vedula, Arrvindh Shriraman, and Vijayalakshmi Srinivasan.
DASX : Hardware accelerator for software data structures. In Proceedings of the 29th
ACM International Conference on Supercomputing, ICS 2015, june 2015.

Snehasish Kumar, Hongzhou Zhao, Arrvindh Shriraman, Eric Matthews, Sandhya
Dwarkadas, and Lesley Shannon. Amoeba-Cache : Adaptive Blocks for Eliminating
Waste in the Memory Hierarchy. In Proceedings of the 45th Annual IEEE/ACM

140

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

International Symposium on Microarchitecture, MICRO 2012, Washington, DC, USA,
dec 2012. IEEE Computer Society.

An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-invalidation
using last-touch prediction. In Computer Architecture, 2000. Proceedings of the 27th
International Symposium on, pages 139-148. IEEE, 2000.

Alvin R Lebeck and David A Wood. Dynamic self-invalidation: Reducing coherence
overhead in shared-memory multiprocessors. In ACM SIGARCH Computer Architecture
News, volume 23, pages 48-59. ACM, 1995.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, 2009.

Zhen Li, Ali Jannesari, and Felix Wolf. Discovery of potential parallelism in sequential
programs. In 2013 42nd International Conference on Parallel Processing, pages
1004-1013. IEEE, 2013.

Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy Ranganathan, and Thomas F
Wenisch. Thin servers with smart pipes: designing SoC accelerators for memcached.

In Proceedings of the 40th Annual International Symposium on Computer Architecture,
2013.

Feng Liu, Heejin Ahn, Stephen R Beard, Taewook Oh, and David I August. Dynaspam:
dynamic spatial architecture mapping using out of order instruction schedules. In
2015 ACM/IEEE }2nd Annual International Symposium on Computer Architecture
(ISCA), pages 541-553. IEEE, 2015.

Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency. In Proceedings
of the 41st annual IEEE/ACM International Symposium on Microarchitecture, pages
222-233. IEEE Computer Society, 2008.

Diego R Llanos and Belén Palop. Tpcc-uva: an open-source tpc-c implementation for
parallel and distributed systems. In Proceedings 20th IEEE International Parallel €
Distributed Processing Symposium, pages 8—pp. IEEE, 2006.

Gabriel H Loh and Mark D Hill. Efficiently enabling conventional block sizes for
very large die-stacked dram caches. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 454-464. ACM, 2011.

Robert Love. Linuz Kernel Development (Novell Press). Novell Press, 2005.

P Geoffrey Lowney, Stefan M Freudenberger, Thomas J Karzes, W D Lichtenstein,
Robert P Nix, John S O’Donnell, and John Ruttenberg. The multiflow trace scheduling
compiler. The Journal of Supercomputing, 7(1-2), May 1993.

Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI, 2005.

141

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. Interconnect-power
dissipation in a microprocessor. In Proceedings of the 200/ international workshop on
System level interconnect prediction, pages 7-13. ACM, 2004.

Scott A Mahlke, Richard E Hank, James E McCormick, David I August, and Wen-
mei W Hwu. A comparison of full and partial predicated execution support for ILP
processors. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture, 1995.

Scott A Mahlke, David C Lin, William Y Chen, Richard E Hank, and Roger A
Bringmann. Effective compiler support for predicated execution using the hyper-
block. In Proceedings of the 25th Annual IEEE/ACM International Symposium on
Microarchitecture, 1992.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (gems) toolset. SIGARCH Comput.
Archit. News, 33(4):92-99, November 2005.

Daniel S McFarlin, Charles Tucker, and Craig Zilles. Discerning the dominant out-
of-order performance advantage: is it speculation or dynamism? In Proceedings of
the eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2013.

Wen mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.
Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara,
Grant E. Haab, John G. Holm, and Daniel M. Lavery. The superblock: An effective
technique for vliw and superscalar compilation. THE JOURNAL OF SUPERCOM-
PUTING, 7:229-248, 1993.

Jiayuan Meng, Xingfu Wu, Vitali Morozov, Venkatram Vishwanath, Kalyan Kumaran,
and Valerie Taylor. SKOPE. In Proceedings of the 11th ACM Conference on Computing
Frontiers, 2014.

R Merritt. ARM CTO: Power surge could create “dark silicon”. EE Times, Oct, 2009.

Matt Might. The community research and academic programming license. http:
//matt.might.net/articles/crapl/.

S. L. Min and J. L. Baer. Design and Analysis of a Scalable Cache Coherence Scheme
Based on Clocks and Timestamps. IEEE Trans. Parallel Distrib. Syst., 3(1), 1992.

Gordon Moore. Cramming more components onto integrated circuits. FElectronics,
pages 114-117, 1965.

Gordon E Moore. No exponential is forever: but "forever' can be delayed! In
Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE
International, pages 20-23. IEEE, 2003.

Matthias S. Muller, John Baron, William C. Brantley, Huiyu Feng, Daniel Hackenberg,

Robert Henschel, Gabriele Jost, Daniel Molka, Chris Parrott, Joe Robichaux, Pavel
Shelepugin, Matthijs Waveren, Brian Whitney, and Kalyan Kumaran. Spec omp2012

142

http://matt.might.net/articles/crapl/
http://matt.might.net/articles/crapl/

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

— an application benchmark suite for parallel systems using openmp. In OpenMP in
a Heterogeneous World, volume 7312 of Lecture Notes in Computer Science, pages
223-236. Springer Berlin Heidelberg, 2012.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2007.

Bradford Nicbols, Dick Buttlar, and PJ FARRELL. Pthread programming, 1996.

Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. Exploring the
potential of heterogeneous von neumann/dataflow execution models. IEEE Computer
Architecture Letters, 2015.

Tony Nowatzki, Venkatraman Govindaraju, and Karu Sankaralingam. A Graph-Based
Program Representation for Analyzing Hardware Specialization Approaches. IEFEE
Computer Architecture Letters, 2015.

Lena E Olson, Jason Power, Mark D Hill, and David A Wood. Border control:
sandboxing accelerators. In Proceedings of the 48th International Symposium on
Microarchitecture, pages 470-481. ACM, 2015.

Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, Randy
Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. Triggered instructions: a
control paradigm for spatially-programmed architectures. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, pages 1-12, April 2013.

Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic pipeline array: a
flexible multicore accelerator with virtualized execution for mobile multimedia applica-
tions. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009.

Yongjun Park, Hyunchul Park, and Scott Mahlke. CGRA express: accelerating
execution using dynamic operation fusion. accelerating execution using dynamic
operation fusion. ACM, New York, New York, USA, October 2009.

Editor Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson,
William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon
Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards,
Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, and
Katherine Yelick. ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems. In DARPA IPTQO, September 2008.

Christian Pilato and Fabrizio Ferrandi. Bambu: A free framework for the high-level
synthesis of complex applications. University Booth of DATE, 2012.

D N Pnevmatikatos and G S Sohi. Guarded execution and branch prediction in
dynamic ILP processors. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, 1994.

143

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Prateek Pujara and Aneesh Aggarwal. Increasing the cache efficiency by eliminating
noise. In The Twelfth International Symposium on High-Performance Computer
Architecture, 2006., pages 145-154. IEEE, 2006.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth, Gopal Jan,
Gray Michael, Haselman Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim,
Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi, and Xiao Doug Burger. A reconfigurable fabric for accelerating large-scale
datacenter services. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, 2014.

Andrew Putnam, Susan Eggers, Dave Bennett, Eric Dellinger, Jeff Mason, Henry
Styles, Prasanna Sundararajan, and Ralph Wittig. Performance and power of cache-
based reconfigurable computing. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, 2009.

Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, C Kozyrakis,
and M Horowitz. Convolution Engine: Balancing Efficiency & Flexibility in Specialized
Computing. Proceedings of the 40th Annual International Symposium on Computer
Architecture, pages 1-12, April 2013.

Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer.
Adaptive insertion policies for high performance caching. In ACM SIGARCH Computer
Architecture News, volume 35, pages 381-391. ACM, 2007.

Moinuddin K Qureshi, M Aater Suleman, and Yale N Patt. Line distillation: Increasing
cache capacity by filtering unused words in cache lines. In 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, pages 250-259. IEEE, 2007.

Brandon Reagen, Robert Adolf, Sophia Yakun Shao, Gu-Yeon Wei, and David Brooks.
Machsuite: Benchmarks for accelerator design and customized architectures. In IEEE
International Symposium on Workload Characterization (IISWC), 2014.

Scott Ricketts. Efficient Cache-Coherent Migration for Heterogeneous Coprocessors in
Dark Silicon Limited Technology.

Jeffrey B Rothman and Alan Jay Smith. The pool of subsectors cache design. In
Proceedings of the 13th international conference on Supercomputing, pages 31-42. ACM,
1999.

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven
Swanson, and Michael Bedford Taylor. Efficient complex operators for irregular codes.
In Proceedings of the 17th High Performance Computer Architecture, 2011.

Steven S Lumetta Sanjay J Patel. rePLay: A Hardware Framework for Dynamic
Program Optimization. IEEE Transactions on Computers archive. Volume 50, 1999.

SeekingAlpha. Brian krzanich on q2 2015 - earnings call transcript. http://
seekingalpha.com/article/3329035.

144

http://seekingalpha.com/article/3329035
http://seekingalpha.com/article/3329035

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

[158]

[159]

[160]

Charles L. Seitz. Let’s route packets instead of wires. In Proceedings of the Sizth
MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90, pages 133-138,
Cambridge, MA, USA, 1990. MIT Press.

SemiWiki. Are 28nm transistors the cheapest .. forever? https://www.semiwiki.
com/forum/content/2768-28nm-transistors-cheapest-forever.html.

André Seznec. Decoupled sectored caches: conciliating low tag implementation cost.
In ACM SIGARCH Computer Architecture News, volume 22, pages 384-393. IEEE
Computer Society Press, 1994.

Yakun Sophia Shao and David Brooks. ISA-independent workload characterization and
its implications for specialized architectures. In 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 245-255. IEEE,
April 2013.

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David M Brooks. Aladdin:
A pre-RTL, power-performance accelerator simulator enabling large design space
exploration of customized architectures. In Proceedings of the 41st Annual International
Symposium on Computer Architecture, pages 97-108, 2014.

Yakun Sophia Shao, Sam Likun Xi Vijayalakshmi Srinivasan, and Gu-Yeon Wei David
Brooks. Co-designing accelerators and soc interfaces using gem5-aladdin. In Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

Amirali Sharifian, Snehasish Kumar, Apala Guha, and Arrvindh Shriraman. Chainsaw:
Von-neumann accelerators to leverage fused instruction chains. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pages
454-464. ACM, 2016.

Keun Sup Shim et al. Library Cache Coherence. Csail technical report mit-csail-tr-
2011-027, May 2011.

Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. Efficient gpu synchronization
without scopes: saying no to complex consistency models. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 647-659. ACM, 2015.

H Singh, Ming-Hau Lee, Guangming Lu, F' J Kurdahi, N Bagherzadeh, and E M Chaves
Filho. MorphoSys: an integrated reconfigurable system for data-parallel and

computation-intensive applications. IEEE Transactions on Computers, 49(5):465—
481, May 2000.

Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and Tor M
Aamodt. Cache coherence for gpu architectures. In HPCA, pages 578-590, 2013.

Aaron Smith, Jon Gibson, Bertrand A Maher, Nicholas Nethercote, Bill Yoder, Doug
Burger, Kathryn S McKinley, and James H Burrill. Compiling for EDGE Architectures.
CGO, pages 185-195, 2006.

Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak Falsafi. Spatio-
temporal memory streaming. In Proceedings of the 36th Annual International Sympo-
stum on Computer Architecture, 2009.

145

https://www.semiwiki.com/forum/content/2768-28nm-transistors-cheapest-forever.html
https://www.semiwiki.com/forum/content/2768-28nm-transistors-cheapest-forever.html

[161]

[162]

163]

[164]

[165]

[166]

167]

[168]

169

[170]

[171]

[172]

[173]

E. S. Sorenson and J. K. Flanagan. Evaluating synthetic trace models using locality
surfaces. In Workload Characterization, 2002. WWC-5. 2002 IEEE International
Workshop on, pages 23-33, Nov 2002.

Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1-212, 2011.

SPEC. 429.mcf - SPEC CPU2006 Benchmark Description. https://www.spec.org/
cpu2006/Docs/429 .mcf .html.

D Stasiak, R Chaudhry, D Cox, S Posluszny, J Warnock, S Weitzel, D Wendel, and
M Wang. Cell processor low-power design methodology. In Micro, ieee, Nov-Dec. 2005.

Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi, Toshiaki Yasue, Motohiro
Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshio Nakatani. Overview of the
ibm java just-in-time compiler. IBM systems Journal, 39(1):175-193, 2000.

Michael B Taylor. Is dark silicon useful?: harnessing the four horsemen of the
coming dark silicon apocalypse. In Proceedings of the 49th Annual Design Automation
Conference, pages 1131-1136. ACM, 2012.

Sid-Ahmed-Ali Touati and Denis Barthou. On the decidability of phase ordering
problem in optimizing compilation. In Proceedings of the 3rd conference on Computing
frontiers, pages 147-156. ACM, 2006.

SMP Variable. A multi-core cpu architecture for low power and high performance.
Whitepaper-http://www. nvidia. com, 2011.

Alexander V Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and
Xiaomei Ji. Adapting cache line size to application behavior. In Proceedings of the
13th international conference on Supercomputing, pages 145-154. ACM, 1999.

Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher
Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-VBS: The
San Diego Vision Benchmark Suite. IEEE, October 2009.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Conser-
vation cores: reducing the energy of mature computations. In Proceedings of the 15th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2010.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota Venkata,
Michael Bedford Taylor, and Steven Swanson. Qscores: Trading dark silicon for
scalable energy efficiency with quasi-specific cores. In Proceedings of the J4th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 163-174. ACM,
2011.

Stavros Volos, Javier Picorel, Babak Falsafi, and Boris Grot. Bump: Bulk memory
access prediction and streaming. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 545-557. IEEE Computer Society,
2014.

146

https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.spec.org/cpu2006/Docs/429.mcf.html

[174]

[175]

176

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

Miljan Vuletic, Paolo Ienne, Christopher Claus, and Walter Stechele. Multithreaded
virtual-memory-enabled reconfigurable hardware accelerators. In Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on, pages 197-204. IEEE,
2006.

Matthew A Watkins, Sally A McKee, and Lambert Schaelicke. Revisiting cache
block superloading. In International Conference on High-Performance Embedded
Architectures and Compilers, pages 339-354. Springer, 2009.

Matthew A Watkins, Tony Nowatzki, and Anthony Carno. Software transparent
dynamic binary translation for coarse-grain reconfigurable architectures. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
138-150. TEEE, 2016.

Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anastassia
Ailamaki, and Babak Falsafi. Temporal Streaming of Shared Memory. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture, 2005.

Intel Whitepaper. Improving real time performance by utilizing cache allocation
technology. http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/cache-allocation-technology-white-paper.pdf, 2015.

Wikipedia. Program analysis. https://en.wikipedia.org/wiki/Program_
analysis.

Lisa Wu, Raymond J Barker, Martha A Kim, and Kenneth A Ross. Navigating big
data with high-throughput, energy-efficient data partitioning. In Proceedings of the
40th Annual International Symposium on Computer Architecture, 2013.

Lisa Wu and Martha A Kim. Acceleration targets: A study of popular benchmark
suites. In The First Dark Silicon Workshop, DaS%, 2012.

Luke Yen, Stark C Draper, and Mark D Hill. Notary: Hardware techniques to
enhance signatures. In Microarchitecture, 2008. MICRO-41. 2008 /1st IEEE/ACM
International Symposium on, pages 234-245. IEEE, 2008.

Doe Hyun Yoon, Min Kyu Jeong, and Mattan Erez. Adaptive granularity memory
systems: A tradeoff between storage efficiency and throughput. In ACM SIGARCH
Computer Architecture News, number 3, pages 295-306. ACM, 2011.

Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez. The dy-
namic granularity memory system. In ACM SIGARCH Computer Architecture News,
number 3, pages 548-559. IEEE Computer Society, 2012.

Ning Zhang and Bob Brodersen. The cost of flexibility in systems on a chip design for
signal processing applications. University of California, Berkeley, Tech. Rep, 2002.

Hongzhou Zhao, Arrvindh Shriraman, Snehasish Kumar, and Sandhya Dwarkadas.
Protozoa: Adaptive granularity cache coherence. In ACM SIGARCH Computer
Architecture News, number 3, pages 547-558. ACM, 2013.

147

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://en.wikipedia.org/wiki/Program_analysis
https://en.wikipedia.org/wiki/Program_analysis

[187] Qiaoshi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson, Michael Bed-
ford Taylor, and Jack Sampson. Exploring energy scalability in coprocessor-dominated
architectures for dark silicon. ACM Trans. Embed. Comput. Syst., 13(4s):130:1-130:24,
April 2014.

148

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The breakdown of technology scaling
	Challenges
	Approach
	Dissertation Organisation

	Background
	Application Specific Hardware Specialization
	Challenges
	Challenge 1: What to specialize?
	Challenge 2: How to specialize?
	Challenge 3: Integration

	Thesis Contributions
	Relationship to published work

	What to specialize – Extracting Accelerator Benchmarks from Microprocessor Benchmarks
	Introduction
	Motivation & Methodology
	Acyclic Program Paths larus-micro-1996
	Selecting Paths to Characterize
	Extracting identified paths
	Metrics & ISA-independence
	Characterizing at the Path Level
	Benchmarks

	Characterization
	Making a case for Path-based Acceleration
	Characteristics Summary

	Path Characteristic Variability
	Path Derived Workload Suite
	Memory Address Entropy Analysis

	Related Work
	Conclusion

	How to specialize – Leveraging Program Analysis to Extract Accelerators from Whole Programs
	Introduction
	Scope and Related Work
	Hardware Accelerator Perspective
	Compilers for VLIW processors

	BL-Path Accelerators
	Path Ranking
	BL-Path Properties

	BL-Path Expansion and Braids
	BL-Path Target Expansion
	Braids – Merging BL-Paths

	Execution Model
	Evaluation
	Performance
	Energy Evaluation

	Conclusion

	Integration – Coherent Cache Hierarchies for Accelerators
	Introduction
	Background and Motivation
	Baseline Architectures

	FUSION: A Coherent Accelerator Cache Hierarchy
	Design Overview
	FUSION Architecture

	Toolchain and Benchmarks
	Evaluation
	Performance
	Energy
	Writeback vs Write-Through at L0X
	FUSION-Dx: Write Forwarding
	Larger AXC caches
	Address Translation

	Related Work
	Summary

	Integration – Adaptive Granularity Caching
	Introduction
	Motivation for Adaptive Blocks
	Cache Utilization
	Effect of Block Granularity on Miss Rate and Bandwidth
	Need for adaptive cache blocks

	Amoeba-Cache: Architecture
	Amoeba Blocks and Set-Indexing
	Data Lookup
	Amoeba Block Insertion
	Replacement: Pseudo LRU
	Partial Misses

	Hardware Complexity
	Cache Controller
	Area, Latency, and Energy Overhead
	Tag-only Operations
	Tradeoff with Large Caches

	Chip-Level Issues
	Spatial Patterns Prediction
	Multi-level Caches
	Cache Coherence

	Evaluation
	Improved Memory Hierarchy Efficiency
	Overall Performance and Energy

	Spatial Predictor Tradeoffs
	Predictor Indexing
	Predictor Table
	Spatial Pattern Training
	Predictor Summary

	Amoeba-Cache Adaptivity
	Amoeba-Cache vs other approaches
	Multicore Shared Cache
	Related Work
	Conclusion

	Software Release
	Path Profiling
	Path Derived Workload Suite
	Needle
	Fusion Simulator
	Amoeba Simulator

	Future Work and Conclusion
	Concurrent and Future Work
	Macro Instructions from Sequentially Dependent Operations
	Eliminating the Load-Store Queue for Specialized Units
	Software specialization based on dynamic profiling
	Micro-Workload Generation

	Summary of contributions

	Bibliography

