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Abstract

Outliers are anomalous and interesting objects that are notably different from the rest of

the data. The outlier detection task has sometimes been considered as removing noise from

the data. However, it is usually the significantly interesting deviations that are of most

interest.

Different outlier detection techniques work with various data formats. The outlier detec-

tion process needs to be sensitive to the nature of the underlying data. Most of the previous

work on outlier detection was designed for propositional data. This dissertation focuses on

developing outlier detection methods for structured data, more specifically object-relational

data. Object-relational data can be viewed as a heterogeneous network with different classes

of objects and links.

We develop two new approaches to unsupervised outlier detection; both approaches

leverage the statistical information obtained from a statistical-relational model. The first

method develops a propositionalization approach to summarize information from object-

relational data in a single data table. We use Markov Logic Network (MLN) structure

learning to construct the features for the single data table and to mitigate the loss of infor-

mation that usually happens when features are generated by manual aggregation. By using

propositionalization as a pipeline, we can apply many previous outlier detection methods

that were designed for single-table data.

Our second outlier detection method ranks the objects as potential outliers in an object-

oriented data model. Our key idea is to compare the feature distribution of a potential outlier

object with the feature distribution of the objects class. We introduce a novel distribution

divergence concept that is suitable for outlier detection. Our methods are validated on

synthetic datasets and on real-world data sets about soccer matches and movies.
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“I wish I had an answer to that question because I’m tired of answering that question”.

– Yogi Berra
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Chapter 1

Introduction

Detection of outliers is an essential part of knowledge discovery in databases (KDD) and has

been used to identify anomalous entities from data for decades. System faults or changes,

human or mechanical error, or any sort of deviations in population may result in outliers in

the data [37].

Many techniques have been employed in Data Mining, Machine Learning, and Statistics

to find outliers in different domains such as Network Performance, Motion Segmentation,

Medical Condition Monitoring and Pharmaceutical Research. Demand for efficient analy-

sis methods to detect outliers has increased due to the large amount of data collected in

databases. In this dissertation, we developed two generative model-based methods for the

case of object-relational data.

1.1 Outlier Definition

Many definitions have been proposed for an outlier and there is no generally accepted defini-

tion. Grubbs et al. define an outlier as an observation that appears to deviate considerably

from other members of the sample in which it occurs [33]. Hawkings et al. describe an

outlier as an observation which deviates so much from the other observations as to arouse

suspicions that it was generated by a different mechanism [35]. These are only a few exam-

ples of definitions proposed in the previous outlier detection work. Essentially, the outlier

definition is context-related and depends on the type of the application that employs the

outlier detection. For example, Akoglu et. al define outliers in graphs as rare graph objects

that differ significantly from the majority of the reference objects in the graph [5]. This

1



CHAPTER 1. INTRODUCTION 2

definition is the basis of our proposed outlier detection methods.

The output of an outlier detection algorithm can be one of these two types [3]:

1. Outlier score assigned to each individual that shows the degree of “outlierness” of each

data point.

2. A binary label indicating whether a data point is an outlier or not. By imposing

thresholds on outlier scores, based on their statistical distribution, the outlier scores

can be converted into binary labels.

1.1.1 Outlier Detection Challenges

Outlier Detection applications must overcome many challenges. For example:

• Modeling normality is hard: there is not often a clear line separating data normality

and abnormality since it is hard to define all possible normal behaviours. Therefore,

many outlier techniques measure the degree of outlierness of each data point instead

of firmly labelling it as either outlier or normal.

• Designing an outlier detection method depends on the type of application: one of

the earliest steps in designing a model to identify outliers is choosing a similarity or

distance measure. However, different applications require different sensibility in terms

of similarity or difference. For example, in medical data analysis, a tiny deviation may

be a sign of an outlier; while marketing analysis, for example, allows larger fluctuations

between its normal data points.

• Separating noise and error from the outliers: outliers and noise are different, however,

they are similar in the sense that they both deviate from the normal behaviour. This

similarity can make the distinction between normal and outlier and noise objects even

harder.

• Understandability and interpretability: in some applications, detected outliers should

be justified and the features that moved the data points from normal to outlier should

be identified. In this case, outlier detection methods must provide explanations.

• Class imbalance: the imbalanced nature of outlier detection makes accurate detection

hard to achieve.
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1.1.2 Approach

Many outlier detection methods have been developed for data that are represented in a

propositional format (i.e., as a flat feature vector) or unstructured data.

Related Work

Outlier Detection 
in Static Data

Outlier Detection 
in Dynamic Data

Input Format:
Propositional Data 

Input Format:
Structured Data 

Plain Attributed Plain  Attributed

● Probabilistic, Generative model-based and Statistic-based Methods  
● Proximity-based Methods and Feature-based Methods
● Community-based
● Relational Learning-based

Out of Scope of this Dissertation 

Figure 1.1: Categorization of outlier detection methods. The bold font indicates where our
methods stand in this categorization.

In a propositional data table, a row represents a data point, a column represents an

attribute of a data point, and a table entry represents an attribute value for a data point.

This dissertation extends unsupervised statistical outlier detection to the case of structured

data, more specifically object-relational data. Object-relational data represents a complex

heterogeneous network [29], which comprises objects of different types, links among these

objects, also of different types, and attributes of these links. Given the prevalence of object-

relational data in organizations, outlier detection for such data is an important problem in

practice. However, applying standard outlier detection methods designed for single data

tables on object-relational data runs into impedance mismatch, since object-relational data

are represented in multiple interrelated tables.

In order to detect outliers in object-relational data, we have developed two generative
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model-based approaches. The advantages of employing a model-based approach for outlier

detection are as follows: 1) We can apply many statistical relational learning methods for

building the model. 2) We can leverage statistical concepts such as divergence metrics to

measure outlierness of the data points. 3) We can employ outlier detection methods de-

signed for the propositional data.

A disadvantage of using a generative model is the possibility that model overfits the data,

meaning that the model has low error on the training data but poor predictive performance

on unobserved data. To avoid overfitting, the Bayesian network learning algorithm that

we use in this work utilize a standard complexity penalty. Furthermore, poor predictions

are not an issue in our specific task as we employ the generative model for the descriptive

statistics and not for a specific prediction task. According to Aggarwal [3], if a generative

model overfits the data it will also find a way to fit the outliers. The performance of our

outlier detection methods shows that overfitting did not happen in our experiments.

Based on the categorization of Figure 1.1, our proposed outlier detection methods fall

into the category of unsupervised, relational learning-based, attributed models which can

be applied to both static and dynamic datasets. The two methods are:

1. In chapter 4 a model-based method is proposed to generate conjunctive features for

outlier detection. This method leverages outlier detection tools that are designed for

a single table via a pipeline data preprocessing approach by converting the object-

relational data into a single attribute-value table, then applying the data analysis

tools. Since the attribute value representation corresponds to propositional logic, the

conversion is called propositionalization. Propositionalization has been used to detect

outliers in the literature. For example, a technique called ODDBALL introduced by

Akoglu et al. extracts graph-centric features to detect anomalies in graph structure [5].

However, to the best of our knowledge, our work is the first model-based propositional-

ization approach for outlier detection. In Chapter 4 we show that conjunctive features

for outlier detection can be learned from data by using statistical-relational meth-

ods. Specifically, we apply the Markov Logic Network structure learning method to

construct the features. Compared to baseline propositionalization methods, Markov

Logic propositionalization produces the most compact data tables, whose attributes
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capture the most complex relational correlations. We apply three representative out-

lier detection methods (LOF , KNNOutlier , OutRank) to the data tables constructed

by propositionalization.

This research was published in the proceedings of the Florida Artificial Intelligence

Association (FLAIRS2016) conference [26].

2. Chapter 5 introduces a model-based method to define an outlierness metric. We

first apply state-of-the-art probabilistic modelling techniques for object-relational data

that construct a graphical model (Bayesian network), which compactly represents

probabilistic associations in the data. We propose a new metric, based on the learned

object-relational model, that quantifies the extent to which the individual association

pattern of a potential outlier deviates from that of the whole population. The metric

is based on the likelihood ratio of two parameter vectors: One that represents the

population associations, and another that represents the individual associations. Our

method is validated on synthetic datasets and on real-world datasets about soccer

matches and movies. Compared to the baseline methods, our novel likelihood-based

model achieved the best detection accuracy on all datasets except one.

Model-based methods have been previously used for outlier detection tasks. Loglike-

lihood has been used to identify outliers [14]. Rule mining and sub-group mining

are other examples of model-based outlier detection [4, 47]. However, none of these

methods are based on a joint distribution distance metric.

This work was published in the proceedings of IEEE Symposium series on Computa-

tional Intelligence (SSCI 2015) conference and won the best student paper award [76].

In chapter 6 we compare the log-likelihood distance to metrics of success for a given do-

main. Success rankings are one of the most interesting features to users. Our reasoning

is that high success is an independent metric that indicates an unusual individual. So

a correlation between log-likelihood distance and success is an independent validation

of the log-likelihood distance, and also shows that this metric points to meaningful

and interesting outliers. A version of this work has been submitted to the Journal of

Data mining and Knowledge discovery.

Figure 1.2 provides a tree diagram of where our methods are situated with respect to other

outlier detection methods and other data models.
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Outlier Detection 

Out of scope of this thesis 

Object-relational 

Association Rules 

Density-based 
Distance-based 

Subspace Clustering 
Contextual Outliers 

Community Discovery 

Novelty Diagram 

Outlier Score =log-likelihood distance 

Chapter 5 

Data Model 

i.i.d. 
“Flattening” Aggregation 

Outlier score =log-likelihood 

Chapter 4 

Figure 1.2: A tree structure for research on outlier detection for structured data. A path
specifies an outlier detection problem, the leaves list major approaches to the problem.

1.1.3 Contributions

The main contributions of this dissertation are the following:

1. The first approach to outlier detection for structured data that is based on a proba-

bilistic model.

2. A new model-based outlier score based on a novel model likelihood comparison, the

log-likelihood distance.

3. A novel task for relational learning: MLN-propositionalization for outlier detection.

This facilitates leveraging standard single-table outlier analysis methods for object-

relational data. This task is also a novel application of Markov Logic Network structure

learning.

4. A novel task for relational learning: propositionalization for outlier detection. This fa-

cilitates leveraging standard single-table outlier analysis methods for object-relational

data. We use Markove Logic Network (MLN) structure learning for propositionaliza-

tion. This is a novel application of MLN structure learning.

1.1.4 Limitations and Directions for Future Work

The main limitations of the work presented in this dissertation are the following:
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1. Limitation of Approach:

(a) Our proposed methods rank potential outliers, but do not set a threshold for a

binary identification of outlier vs. non-outlier.

(b) Our current Bayesian Network Learning method can only be applied to discrete

data. Prior to learning the model, we take an extra step in data preprocessing and

convert continuous data into discrete, which naturally causes some information

loss.

(c) Our generative model-based methods learn a generic Bayesian network structure

for the entire population, ignoring the subgroups that inherently exist in the real

datasets, as a result, the detected outliers are global outliers. However, there

are more complex outliers that locally deviate from their subgroups and can be

detected only by subgroup comparison. One direction for future work is to first

detect subgroups in the population and then perform the outlier detection task.

2. Limitation of Data Analysis:

In this dissertation, to simplify the outlier detection task, we used only part of the full

information available in our rich datasets. The model-based outlier detection can be

extended in future work to take advantage of the full information.

(a) In the Premier League dataset, players are naturally related to one another and

modelling the interaction between players can be another way to detect anoma-

lous players. The graph-based features, such as detecting near-clique nodes and

star nodes, proved to be efficient in discovering patterns for anomaly detection

task as shown in ODDBALL [5].

(b) In this dissertation we did not use the temporal information available in the data.

In the learning process we do not give a higher weight (importance) to the more

recent action (performance) of an individual. This point is especially important

when applying the methods to dynamic data or the data that are collected from

long periods of time.

(c) In the datasets that we used for the experiments, we did not have the missing

value problem. Therefore, we did not incorporate ways to estimate missing values

in our modeling. However, real-world datasets may involve arbitrary pattens of
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missing data. Maximum likelihood density estimation is a way to estimate such

values. We leave this feature for future work.



Chapter 2

Literature Review

This chapter provides a literature review of the state-of-the-art methods in the field of outlier

detection. Outlier detection is a very well-explored area and there are many surveys to

overview the state-of-the-art methods. Each survey categorized these methods differently [6,

3, 37]. The categorization can be based on datatype (e.g. graph data) or type of methods

that have been used to detect outliers (e.g. structured-based methods). In this chapter

we group outlier methods based on the format of the input data, whether it is presented

in a single data table or it has a higher level of organization such as data presented in a

relational database, or XML format or OLAP. Since the focus of our work is on structured

data, we mainly concentrate on the methods designed for that data format .

We conclude this chapter with section 2.5 which addresses the limitations of current outlier

detection methods. Figure 2.1 shows the organization of this chapter.

Outlier Detection in 
Propositional Data

Outlier Detection 
in Structured Data

Relational Data 
Propositional 
Approach

Non-Relational Data- 
Propositional 
Approach

Relational Data- 
Non-propositional 
approach

Other type of Structure: 
XML-OLAP:Non-proposition
al approach

Figure 2.1: Related work categorization

9
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2.1 Outlier Detection Methods for Propositional Data

In this section we explore outlier detection methods that take propositional data. One inter-

pretation of propositional data is that the attributes describe characteristics of one object-

class. For example, shotEfficiency(Player) shows shot efficiency of a player in general, while

in the structured data the attributes are more complex; for example in the Object-relational

data model, the attributes are shown in this format: shotEfficiency(Player ,Match) which

represents shot efficiency of a player in a match and involves two object-classes. Throughout

this dissertation, we refer to the methods designed for a single data table as propositional

methods. In this section, we further categorize these methods into supervised and unsu-

pervised based on whether the sample of data has been provided with labels and domain

expert information to build an outlier detection model.

2.1.1 Supervised Methods for Propositional Data

These methods model both normality and abnormality and require pre-labelled data. Nor-

mal points may belong to a single class or be divided among different classes. Supervised

outlier detection is a special case of the classification where the labels are extremely un-

balanced in terms of occurrence [15]. Normal data points are easily available while outlier

examples are very sparse and it is the rarity that makes these data points outliers. In this

sense, outlier detection can also be viewed as rareclass detection problem. The imbalanced

nature of outlier detection makes the accurate classifications quite hard to achieve and might

result in over-training [3].

When the purpose of classification is outlier detection, cost-sensitive variations of ma-

chine learning algorithms can be used in order to make the classification of anomalies more

accurate [3]. Class imbalance is one of the common problems in supervised outlier detection.

The standard evaluation techniques in classification cannot simply be applied to outlier de-

tection. For example, in the case of breast cancer, where 99% of scans are identified to

be normal and only 1% abnormal, the trivial classification algorithm, which returns all the

instances in the test cases as normal, would have a high accuracy of 99%. However, it is not

useful in the context of detecting breast cancer. Cost-sensitive learning is one way that has

been used to handle the class imbalance problem in outlier detection. The objective func-

tion of the classification in this type of learning has been designed in a way that it weights

the errors in classification differently for different classes. In this case, classifiers are tuned
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so the errors in classification of outliers are more penalized compared to the misclassified

normal classes [25]. In other words, methods are forced to predict the outlier class far better

than the normal class. This trade-off is characterized either by the precision-recall curve or

a receiver operating characteristics (ROC) curve.

Active re-sampling is another way to tackle the class imbalance problem. The relative

proportion of the rare classes is magnified through re-sampling. This approach can be con-

sidered as an indirect form of cost-sensitive learning.

Classification outlier methods can be grouped into two categories:

• Multi-class: Training data in this group contains the instances from multiple normal

classes [84]. First, a classifier is learned to distinguish between instances from different

normal classes. If a test instance is not classified as normal by any of the classifiers,

then it is labeled as an outlier.

• One-class: All training instances belong to a single class label. If any test case does not

fall into the normal boundary, it is identified as an outlier. Examples of well-known

algorithms are:

– One-class SVMs [80]

– One-class Kernel Fisher Discriminant [78]

In the following subsections, we provide examples of supervised methods in different

areas.

Neural Network

Neural networks are applied to outlier detection in one-class learning as well as multi-class

scenarios. At the first step, a neural network is trained on normal training data in order

to learn the normal behavior of data points. Then, test instances are presented to the

neural network. If the test is accepted, the data point is normal, otherwise, it is an out-

lier. Different neural network techniques have been proposed to tackle the outlier detection

problem. Ghosh et al. [32] apply multi-layered perceptrons and focus on detecting attacks

on computer systems. They perform intrusion detection on software programs instead of

what most intrusion detection systems do by analyzing network traffic and host system

logs. They build a profile of software behaviour to distinguish between a normal software

behaviour and a malicious one.
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Support Vector Machine

Support Vector Machines have been applied to outlier detection mostly in a one-class setting.

These techniques first learn a region that includes the training data points. If a test instance

falls into the learned region, it is considered as normal, otherwise, it is an outlier [18, 73].

2.1.2 Unsupervised Methods for Propositional Data

In the datasets where data points are not labeled, unsupervised approaches make some

assumptions about the behaviour of outliers. These methods can be categorized based on

the assumptions they make.

Probabilistic and Statistical Methods

In the probabilistic and statistical methods, the data is assumed to be derived from a closed

form of probability distribution and the goal is to learn the parameters of this model. There-

fore, the main challenge is to choose the data distribution. The parameter of the distribution

can be learned by using different algorithms, such as Expectation Maximization. The key

output of this method is the membership probability of data points to the distribution; the

ones that have a very low fit will be considered as outliers. The most popular methods of

statistical modeling is detecting extreme values that determine data values at the tails of

a uni-variate distribution. However, these methods were not designed to focus on issues

such as data representation or computational efficiency. Also, most of the multidimensional

outliers cannot be determined through extreme data values and are usually defined by the

relative positions of data points with respect to each other. While extreme value analysis

may be applicable to only a specific type of data, they have many applications beyond the

univariate case since the final step in most outlier detection methods is to identify extreme

values to assigned scores. Gao et al. have worked on the problem of identifying extreme

values from the outlier scores [30].

Laurikkala et al. describe one of the simplest statistical outlier detection methods where

an information box plot has been used to identify outliers in both uni-variate and multi-

variate datasets [51]. For multivariate datasets the authors claimed that there is no clear

ordering, but they suggested using reduced sub-ordering based on the generalized distance

metric using the Mahalanobis distance. Mahalanobis distance is similar to the Euclidean

distance, except that it normalizes the data on the basis of the inter-attribute correlation
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and scales the distance values by local cluster variances along the directions of correlation.

Consider a dataset containing k clusters. Assume that the rth cluster in d-dimensional space

has a corresponding d-dimensional mean vector µ̄r and a d× d co-variance matrix Σr. The

(i, j) entry of this matrix is the co-variance between dimension i and j in that cluster. Then,

the Mahalanobis distance MB(X̄, µ̄r) between a data point X̄ and the cluster centroid µ̄r

is:

MB(X̄, µ̄r) = (X̄ − µ̄r) · Σ−1r · (X̄ − µ̄r)T . (2.1)

Intuitively, this metric scales the square distances by the cluster variances along the different

directions of correlation.

Bayesian Network

In order to detect disease outbreak early, Wong et al. [93] compared the distribution of data

against a baseline distribution. A different environmental attribute, such as trends caused

by the day of week and by seasonal variations in temperature and weather, makes defining

such a baseline hard, if not impossible. By using a Bayesian network that takes the joint

distribution of the data and conditioning on attributes that are responsible for the trends,

they were able to define such a baseline.

Babbar et al. [11] used a joint probability distribution and knowledge of the domain

driven by a Bayes net to identify low probable data points with intrinsic anomalous patterns

and they treat them as potential outliers.

Cansado et al. [14] followed a probabilistic approach and modeled the joint probability

density function of the attributes of data points in the database and ranked the records

according to their oddness. They used Bayesian Networks in order to estimate the joint

probability density function.

Proximity-based Models

Proximity-based approaches are based on the calculation of the distances between all records

and make no assumptions about the data distribution. The most common approaches for

defining proximity for outlier detection are:
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Figure 2.2: The Mahalanobis distance function can detect better outliers: When using
Euclidean distance, the distance between data point B and the closest cluster centroid will
be smaller than A and its cluster centroid; while data point ‘B’ is more obviously an outlier
than data point ‘A’, because it does not follow the direction of the correlation of its cluster.

1: Cluster-Based methods These methods score outliers based on whether they belong

to any predefined cluster and also the distance of the data points from clusters. There-

fore, the performance of these methods has a high correlation with the efficiency of the

clustering algorithm that they use [3]. Outliers that are chosen based on their comple-

mentary membership to a cluster are often weak outliers or noise and not necessarily

interesting to analyze. For example, a data point that is located at the margin of a

large cluster is very different from a point that is completely away from all other clus-

ters. Further, all data points in a small cluster may sometimes actually be outliers [3].

Therefore, a measure is needed to quantify the degree of abnormality of data points.

Many cluster-based methods try to assign a score to the outliers, mostly by a simple

definition as the distance of data points to cluster centroids. As clusters may have

different shapes, Mahalanobis Distance is the best way to compute the distance that

scales the square distances by the cluster variances along the different directions of

correlation and it is used for effective statistical normalization. In other words, large

distances in clusters with high variance may not be statistically significant within that

data locality. It is possible that a data point that is closer to one of the clusters has

a higher Mahalanobis distance than a data point which is far away on the basis of
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Euclidean distance. In Figure 2.2 data point ‘B’ is more obviously an outlier than

data point ‘A’.

Mahalanobis distance can be used as distance measure in many clustering algorithms,

such as k-means algorithm [92, 16].

One advantage of cluster-based outlier detection methods is that they are based on

global analysis of the data and small groups that do not fit within the major patterns

can be easily detected using cluster-based methods.

Muller et al. propose a novel outlier scoring concept based on subspace clustering [61].

Their hypothesis is that regular objects show clustered behaviour in multiple subspaces

even if the subspaces are very dissimilar to each other. On the other hand, outliers

are clustered in some subspaces but deviate from these clusters if one considers other

subspaces. Figure 2.3 shows that object o2 is clustered in two views, but not in the

social view. Although there is a very similar clustering structure of the black objects in

the “Sports View”, we see that this object deviates from its common grouping. Their

outlier score, outrank, takes the similarity of subspaces into account and computes the

outlierness degree based on the information available from subspace analysis. They

rely on the general assumption that outliers are objects that do not agree with other

data in at least a few of the attributes:

1. Outliers may be regular in some subspaces

2. They deviate in at least some subspaces.

They provide an abstract definition of a scoring function, given a subspace clustering

as follows: let SCR = (C1, S1), ..., (Ck, Sk) be a subspace clustering, a set of clusters

Ci in their associated subspaces Si. A scoring function on SCR is then defined as:

score(o) =
∑

{C,S)∈SCR|o∈C}

evidence(o, (C, S), SCR) (2.2)

where evidence computes a value of regularity for o being clustered in subspace cluster

(C, S) given the entire subspace clustering result SCR. In their paper, they introduce

three instantiations for the evidence function of equation 2.2.

2: Distance-based methods In order to define proximity, distance-based methods use
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Figure 2.3: Outliers with respect to subspace views.
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the distance of a data point and other data points in the dataset (or k-nearest neigh-

bour of each point) and the most isolated data points are considered as outliers.

However, they suffer from computational growth. The complexity of computation is a

function of the dimensionality of the data (m) and the number of records(n). There-

fore, methods such as k-nearest-neighbours with O(n2m) runtime are not feasible for

high-dimensionality datasets.

However, many approaches have been proposed in order to optimize k-nearest-neighbours

and to produce a ranked list of potential outliers in a less complex way. Ramaswamy et

al. [72] introduced a technique for speeding the k-nearest-neighbours algorithm. They

partitioned the data into cells and only considered a cell and its directly adjacent

neighbours. If that cell contains more than k points then the cell is located in a dense

area and it is not likely to contain any outlier. By using this efficient indexing structure

with linear running time, they improved the running speed of k-nearest-neighbours.

3: Density-based methods Local density is defined as the number of other points within

a specified region of a data point. The difference between clustering and density-based

methods is that clustering methods partition data points, while density-based methods

partition data space [3]. Figure 2.4 illustrates the cases that cannot be discovered
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Figure 2.4: Impact of local density on outliers. If the threshold of a chosen distance-based
methods is larger than the distance of A and the cluster centroid then the data point A will
not be chosen as an outlier. If it is smaller then most of the points in the sparse cluster will
be identified as outliers.

by distance-based outlier techniques unless a small threshold is used. However, the



CHAPTER 2. LITERATURE REVIEW 18

smaller distance threshold may result in incorrectly identifying many data points as

outliers in the sparser clusters. It means that ranking returned by a distance-based

method might be incorrect if there is significant heterogeneity in the local distribution

of data.

The most popular density-based outlier methods are as follows:

• LOF : The Local Outlier Factor was originally presented in [12] as a measure to

quantify the outlierness of the data points relative to regions of different densi-

ties. Therefore, the score is defined based on local density instead of the nearest

neighbour distance. In simple words, LOF compares the density of area around

an object to the densities of the areas of the surrounding objects. However, LOF

defines density as the inverse of the average of the smoothed reach-ability dis-

tances in a neighbourhood; this definition is not the precise definition of density

in terms of the number of data points within a specific region. Furthermore, LOF

is only sensitive to the density of the area and ignores the orientation and the

shape of the area [40]. Figure 2.5 shows the basic idea of LOF .

A 

Figure 2.5: Point A has a high LOF score because its density is lower than its neighbours
densities. Dotted circles show the distance to each point’s third nearest neighbour.

• LOCI: Local Correlation Integral is a density-based method that uses the precise

definition of density M(x̄, ε) of a data point x̄ in terms of the number of data

points within a predefined radius epsilon around a point. In other aspects, this

method is similar to LOF in terms of using the local relations while defining the

score of a data point [64].
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The difference between proximity-based methods is the way proximity is defined. How-

ever, the main difference between distance-based and the other two methods is the

level of granularity of analysis [3]. In particular, clustering and density-based methods

abstract the data by different forms of summarization; in order to compute the outlier

score, only the distance of a point from its cluster centroid or the points in its local

density area is computed. On the other hand, a distance-based algorithm with full

granularity computes the distance of a point from all other points in the dataset.

In clustering and density-based methods, the partitioning of the points and space is

predefined and data points are compared with these predefined aggregations. This

makes distance-based methods more fit to distinguish between noise and anomalies

because the noisy data points will be included in the distance evaluations, rather than

the cluster centroids. However, it is possible to modify cluster-based approaches to

include the effects of noise. When it is done, the two approaches have very similar

schemes.

2.2 Methods for Structured Data with Propositional Approach

The data used in this type of method is structured and the idea is to extract structured

features and employ those features in a propositional outlier detection.

2.2.1 Feature-based Methods

Feature-based Methods use the graph representation of data to extract graph-centric features

for outlier detection. An example of this type is a technique called ODDBALL, introduced

by Akoglu et al. [5]. In this work they define an egonet as the immediate neighbourhood

around a node, in other words, an egonet is the induced 1-step sub-graph for each node

as shown in Figure 2.6. They extract egonet-based features to discover patterns from the

graph structure in order to define normality. Outliers are the nodes that deviate from those

patterns.
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ego
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Figure 2.6: ego and ego-net in a toy graph.

2.3 Outlier Detection Methods for Relational Data with non-

propositional Approach

In the previous section, we explored a few of the many outlier detection methods that are

designed for “flat” data. However, many real-world datasets have some sort of a structure.

For example, social network data consists of individuals of different types where each indi-

vidual is characterized by various sets of attributes. There are many applications of outlier

detection that have a structured characteristic where the data consist of several interrelated

data types. Therefore, instead of looking for individuals with values that deviate from spe-

cific variables, the focus is to find individuals with deviating structures. This section focuses

on methods that have been designed for relational data.

2.3.1 Supervised

The main idea in these methods is to use the structure of the data to assign objects to

normal and abnormal classes. In the following we review a few examples of this type of

methods.

Relational Classifier

By extending Markov networks to the relational setting, Taskar et al. drive a conditional

distribution over the labels of all the individuals given the relational structure and the

content attributes [89]. By using the conditional likelihood of the labels given the features

they were able to improve the classification accuracy compared to the baseline methods.
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Rule-Based Classifiers

Rule-based outlier detection methods extract rules that define the normal behaviour of the

general population. At a given level of support and confidence, a test instance not consistent

with any of the rules is identified as an outlier. An associated confidence is assigned to each

rule which is proportional to the ratio between the number of correctly classified training

instances and the total number of training instances. Decision Trees are commonly used for

rule learning [24].

Mahoney et al. try to overcome the common problem of intrusion detection techniques:

the inability to detect novel attacks. They use an adaptive statistical data compression

technique based on context modeling and prediction to model normal behavior from attack-

free network traffic [56] and extract a set of attributes for each event. They then induce a

set of conditional rules that have a very low probability of being violated, according to a

model learned from normal traffic in the training data.

2.3.2 Unsupervised

Maervoet et al. applied a relational frequent pattern miner to automatically discover a set

of rules from data; exceptions from these rules are considered potential outliers and are

passed to the next step for human expert evaluation [55]. They built a tool to look for

regularities in geographical data using the WARMR algorithm [20]. WARMR is based on

a breath-first search of the pattern space and searches the space beginning from the most

general patterns. First, it searches for rules that describe the regularities and all violations

are defined as outliers.

There is other research that employs rule mining to identify outliers. The rule X → Y holds

in the transaction set D with confidence c% if c% of transactions in D that contain X also

contain Y . The rule X → Y has support of s% in transaction set D, if s% of transactions

in D contain X ∪ Y .

Based on the way they use the identified rules they can be categorized as follows:

• Rules with minimum support, minimum confidence : Agrawal et al. find all

sets of items (itemsets) that have the support above minimum support. They refer to

itemsets with minimum support as large itemsets. Then, they use the large itemsets

to generate the desired rules. For every large itemset l, they find all non-empty subsets
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of l. For every such subset a, output a rule of the form a ⇒ (l − a) if the ratio of

support(l) to support(a) is at least minconf. Therefore, in order to generate the rules

that have low support minsup must be set very low, this increases the running time

of the algorithm and generates a lot of redundant rules [4].

• Rules with low support but high confidence [47] define sporadic rules to be

the ones with low support and high confidence to find a rare, but strong association.

For example, a rare association of two symptoms indicating a rare fatal disease. In

order to do so they adopt an Apriori-Inverse approach which is similar to the Apriori

algorithm and is based on a level-wise search. However, they invert the downward-

closure principle of the Apriori algorithm and instead of all subsets of rules being over

minsup and return all subsets that are under maxup.

• Exception rule mining: There are many of methods to extract exceptional rules

from data. Suzuki et al., propose a method to discover a set of interesting rule pairs

from a dataset [88]. Hussain et al. define interestingness with respect to already mined

rules and evaluate a rule’s interestingness with respect to its support and confidence.

Similar to [4], this work has an efficiency problem due to the low support[38].

Outlier Detection in ILP

Inductive Logic Programming is an important field at the intersection of machine learning

and logic programming. Its goal is to induce relational descriptions of data in the form of

logic programs. ILP has been used for relational outlier detection. One approach views

an example as anomalous if it is not covered by a learned set of rules [10]. It logically

harmonizes the background theory with the observations at hand and the main interest is

singling out the set of observations that do not behave as predicted from the background

knowledge. Their definition of the outlier is based on a set of observations rather than a

single observation. They defined outliers as given a set of P rls rules that encode the general

knowledge about the world and a set P obs of facts encoding some observed aspects of the

current status of the world. The structure P is defined as P =< P rls, P obs >. A set of

O of observations is anomalous according to the general theory P rls and the other facts in

P obs\O.

Another work measures the difference in generality between a rule set learned with the

anomalous examples and a rule set learned without [9]. Intuitively, if a subset of examples
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does not comply with a background theory and the whole set of examples, then this means

that the hypothesis induced in the absence of this subset is significantly more general than

the hypothesis induced when the examples are seen. Given a subset of examples O of ε,

they argue that the compliance of these examples with ε ∪ β and ε̄ ∪ β can be exploited in

order to understand if the set O contains abnormal observation.

Community-based methods

Community-based methods are based on finding well-connected groups of individuals. Out-

liers are the individuals that do not clearly belong to any community. Sun et al. use

proximity of nodes in the graph to detect anomalies in bipartite graphs. They define out-

liers as “bridge” nodes and edges that do not fit into any community. They first find the

community of a node, also referred to as the “neighbourhood” of a node, by using the

random-walk-with-restart Personalized PageRank (PPR) score. The neighbourhood of the

given node consists of nodes with high PPR scores and then they define a metric to quantify

the level of a given node to be a bridge node [86].

Gao et al. proposed a probabilistic model to interpret normal objects and outliers

where the object information is described by some generative mixture model. They use k

components to describe the normal behaviour and one component for outliers. Community

components are assumed to be drawn from Gaussian or multinomial distribution, while the

distribution for the outlier component is uniform [29].

Muller et al. developed an outlier detection technique called GOutRank for heteroge-

neous databases and attributed graphs [62]. Their main insight is that complex anomalies

could be revealed in a subset of relevant attributes. Their previous work, OutRank, focused

on high dimensional data and did not take into account graph substructure in assigning

outlierness scores to the nodes. However, GOutRank extracts the hidden potential of graph

clustering and detects complex outliers which deviate only with respect to a local sub-graph

and subset of relevant attributes.
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2.4 Outlier Detection Methods for Other Types of Struc-

tured Data

Multi-dimensional OLAP

The multi-dimensional data model defines numeric measures for a set of dimensions. A

seminal approach to explore a multi-dimensional data-cube was presented by Sarawagi et

al. They perform an analyst’s search for anomalies guided by pre-computed indicators of

exceptions at various levels of detail in the cubes [79]. This enables users to notice abnormal

patterns in the data at any level of aggregation. They annotate every cell in all possible

aggregations of a data cube with a value that shows the degree of surprise that the quantity

in the cell holds. They define a different degree of surprise with respect to the position of

the cells and find exceptions at all levels of aggregation.

Attribute Outlier

Koh et al. introduce the notion of correlated subspaces that leverage the hierarchical struc-

ture of XML to derive groups of attributes that are logically correlated in XML [46]. In

order to define the extent of outlierness of a target attribute, they define two correlation-

based outlier metrics. One metric quantifies the co-occurrence of a target attribute relative

to its neighbours and the co-occurrence of its neighbours in its absence. The lower the value

of this metric is, the higher the degree of outlierness will be. The other metric measures the

conditional probability: given the neighbours of a target attribute the probability that the

target value is introduced in the dataset is computed. Depending on the metric specification

of users, the outlier score is computed based on the first or second metric.

2.5 Limitations of Current Outlier Detection Methods

Parametric models assume a specific distribution of the data and then learn the parameters

to fit the data. Most of the time one of two scenarios occurs: The assumed generative

model is too restrictive and the data do not fit the model well, therefore, many data points

will be reported as outliers. The second scenario occurs when the model is too complex

and the number of parameters is large. This case often results in overfitting the data.

Parametric methods are not efficient when datasets are large since these methods use the
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iterative EM algorithm that scans the entire data in each iteration of E (expectation ) and

M (maximization) steps.

Most of the parametric methods lack interpretability, however, this issue may not be a

problem for all parametric methods. For example, a simple version of Gaussian model

may be described simply and intuitively in terms of features of the original data. Most

proximity-based methods use distance to define outliers. Methods that summarize the data

will not perform well in identifying true anomalies from noisy regions with low density.

These methods need to combine global and local analysis in order to find the true outliers.

In proximity-based methods particularly, the higher level of granularity results in greater

accuracy. However increasing the granularity causes curse of dimensionality and makes the

algorithm inefficient (in the worst case distance-based methods with full granularity can

require Ω(N2) in a dataset with N records). Indexing can be used in order to prune the

search for the outliers but it cannot be very effective when data is sparse. Another limitation

of these methods is the quality of the outlier detection in high dimensional data where all

points become almost equidistant from one another and contrast in distance is lost [36].



Chapter 3

Background, Data Model and

Statistical Models

In this chapter we first provide an introduction to the object-relational data model, which is

one of the main data models for structured data and is used to represent our data throughout

this dissertation. In section 3.3 we discuss three synthetic and two real-world datasets

that have been designed to evaluate the performance of our outlier detection methods. In

section 3.5 we review the necessary background on statistical models that are employed in

this dissertation. Section 3.6 explains the evaluation techniques we have utilized to examine

the outlier detection methods that will be introduced in chapter 4 and 5.

3.1 Notation and Definition

We adopt a term-based notation for combining logical and statistical concepts [69, 45]. A

functor is a function or a predicate symbol. Each functor has a set of values (constants)

called the domain of the functor. The domain of a predicate is {T ,F}. Predicates

are usually written with uppercase Roman letters, other terms with lowercase letters. A

predicate of arity at least two is a relationship functor. Relationship functors specify which

objects are linked. Other functors represent features or attributes of an object or a tuple

of objects (i.e., of a relationship). A population is a set of objects. A term is of the form

f(τ1, . . . , τk) where f is a functor and each τi is a first-order variable or a constant denoting

an object. A term/literal/formula is ground if it contains no first-order variables, otherwise

26
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Table 3.1: Notation and Definition
Symbol Definition

a, b, a1, b1, . . . Constant

A,B,T ,M , . . . First-order variable

f, g, . . . , Functor, function symbol

f(A, . . . , Ak) First-order term

f(A = a1, . . . , Ak = ak) Ground term

D Relational database

DC Database for the entire class of objects

Do Restriction of the input database to the target object

f(A, ..., B) A parametrized random variable

V A set of first-order random variable

V = v Joint assignment of values to a set of PRVs

P (V = v) ≡ P (v) Joint probability that each variable fi takes on value vi
#D(V = v) Count of groundings that satisfy the assignment

A\v Ground a first-order variable

PD(V = v) Grounding count divided by the number of all possible groundings

B A Bayesian network structure

BC A Bayesian network structure learned with DC as the input database

θC Parameters learned for BC using Dc as the input database

θo Parameters learned for BC using Do as the input database

φ A Formula generated by MLN

w Weight of a formula

pai Parent of node i

it is a first-order term. In the context of a statistical model, we refer to first-order terms as

Parametrized Random Variables (PRVs) [45]. A grounding replaces each first-order

variable in a term/literal/formula by a constant, the result is a ground term. A grounding

may be applied simultaneously to a set of terms. A relational database D specifies the values

of all ground terms.

Consider a joint assignment (also known as conjunctive formula or conjunction in logic)

P (V = v) of values to a set of PRVs V . The grounding space of the PRVs is the set

of all possible grounding, each applied to all PRVs in V . The count of groundings that

satisfy the assignment with respect to a database D is denoted by #D(V = v). The

database frequency PD(V = v) is the grounding count divided by the number of all

possible groundings.
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Example The Opta dataset represents information about Premier League data (Sec. 3.4).

The basic populations are teams, players, and matches with corresponding first-order vari-

ables T ,P ,M . As shown in Table 3.2, the groundings count can be visualized in terms of

a groundings table [82], also called a universal schema [77]. The first three column headers

show first-order variables ranging over different populations. The remaining columns repre-

sent terms. Each row represents a single grounding and the values of the ground terms are

defined by the grounding. In terms of the grounding table, the grounding count of a joint

assignment is the number of rows that satisfy the conditions in the joint assignment. In the

network view representation of data, a grounding count is the number of subgraphs that

satisfy a given conjunction as shown in Figure 3.2. The database frequency is the grounding

count divided by the total number of rows in the groundings table. Counts are based on

the 2011-2012 Premier League Season. We count only groundings (team,match) such that

team plays in match. Each team, including Wigan Athletics, appears in 38 matches. The

total number of team-match pairs is 38× 20 = 760.

Example Figure 3.1 shows an example database. The ground literal

(ShotEff (P ,M ) = Low){P\123,M\1} = (ShotEff (123 , 1 ) = Low)

evaluates to true in this database. For the grounding count we have

#D(ShotEff (P ,M ) = Low){P\123}) = 2.

Table 3.2: Sample population data table (Soccer).
MatchId M TeamId T PlayerId P First goal(P,M) TimePlayed(P,M) ShotEff(T,M) result(T,M)

117 WA McCarthy 0 90 0.53 win

148 WA McCarthy 0 85 0.57 loss

15 MC Silva 1 90 0.59 win

. . . . . . . . . . . . . . . . . .

Table 3.3: Sample object data table, for team T = WA.
MatchId M TeamId T = WA PlayerId P First goal(P,M) TimePlayed(P,M) ShotEff(WA,M) result(WA,M)

117 WA McCarthy 0 90 0.53 win

148 WA McCarthy 0 85 0.57 loss

. . . WA . . . . . . . . . . . .

3.2 Object-relational Data Model

The main characteristics of objects that we utilize in this dissertation are the following:
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Player ID 

112 

232 

123 

PlayeID MatchID ShotEff(P,M) TackleEff(P,M) 

112 1 Med. High 

112 2 High High 

123 1 Low Low 

123 2 Low Med 

Player 

Team 

AppearsPlayerInMatch 

Team  ID 

1 

12 

20 

Match 

Match ID 

1 

2 

4 

TeamID MatchID ShotEff(T.M) TackleEff(T,M) 

20 1 Med. Med. 

20 2 Med. Med. 

1 1 Low Low 

1 2 Low Med 

AppearsTeamInMatch 

Figure 3.1: An example database

Table 3.4: Example of grounding count and frequency in the Premier League, for the con-
junction passEff (T ,M ) = high∧ shotEff (T ,M ) = high∧Result(T ,M ) = win.

Database Count or #D(V = v) Frequency or PD(V = v)

Population 76 76/760 = 0.10

Wigan Athletics 7 7/38 = 0.18

Table 3.5: Instances of the conjunction: passEff (T ,M ) = high∧ shotEff (T ,M ) = high∧
Result(T ,M ) = win in the network representation of Figure 3.2.

Team Player MatchID shotEff (T ,M ) passEff (T ,M ) Result(T ,M )

Manchester United Javier Hernandez 119 high high win

Manchester United Anderson 119 high high win
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Match

Player

ShotEff(P,M)
PassEff(P,M)

Result(T,M)

Team

Wayne Rooney

Match

Javier Hernandez

ShotEff(P,M)=high
PassEff(P,M)=high

ShotEff(P,M)=high
PassEff(P,M)=high

Result(T,M)=Win

Manchester United

Figure 3.2: Example of two instances of conjunction: passEff (T ,M ) = hi ,
shotEff (T ,M ) = hi , Result(T ,M ) = win, in the network representation. We use the con-
junctions to define subgraphs.

1. Object Identity. Each object has a unique identifier that is the same across contexts.

For example, a player has a name that identifies him in different matches.

2. Class Membership. An object is an instance of a class, which is a collection of similar

objects. Objects in the same class share a set of attributes. For example, van Persie is

a player object that belongs to the class striker, which is a subclass of the class player.

3. Object Relationship. Objects are linked to other objects. Both objects and their links

have attributes. A common type of object relationship is a component relationship

between a complex object and its parts.

For example, a match links two teams, and each team comprises a set of players for that

match. A difference between relational and vectorial data is that an individual object is

characterized not only by a list of attributes but also by its links and by attributes of the

object linked to it. We refer to the substructure comprising this information as the object

data. Object-relational data can be represented as a network as shown in Figure 3.2.

Example A query for computing object data for the soccer team Arsenal includes the

selection condition TeamID = Arsenal. Note that object data features all the data of the

object as well as the data from more complex objects within that object.
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The appropriate object data table is formed from the population data table by restrict-

ing the relevant first-order variable to the target object. For example, the object database

for target Team WiganAthletic forms a subtable of the data table of Table 3.2 that contains

only rows where TeamID = WA; see Table 3.3. In database terminology, an object database

is like a view centered on the object.

3.3 Synthetic Datasets

The main goal of designing synthetic experiments is to test the methods on easy to detect

outliers. We generated three synthetic datasets with normal and outlier players using the

distributions represented in the three Bayesian networks of Figure 3.3. Each player partic-

ipates in 38 matches, similar to the real-world data. Each match assigns a value to each

feature Fi, i = 1, 2 for each player.

These datasets are as follows:

High Correlation Normal individuals exhibit a strong association between their fea-

tures, outliers have no association. Both normals and outliers have a close to uniform

distribution over single features. See Figure 3.3(a).

Low Correlation Normal individuals exhibit no association between their features, out-

liers have a strong association. Both normals and outliers have a close to uniform

distribution over single features. See Figure 3.3(b).

Single features Both normal and outlier individuals exhibit a strong association between

their features. In normals, 90% of the time feature 1 has value 0. For outliers, feature

1 has value 0 only 10% of the time. See Figure 3.3(c).

We used the mlbench package in R to generate synthetic features in matches and followed

these distributions for 240 normal players and 40 outliers. We followed the real-world Opta

data in terms of number of normal and outlier individuals.

3.4 Real-world Datasets

In this dissertation, real world data tables are prepared from Opta data [57] and IMDb [39].Table 3.6

lists the populations and features. Table 3.7 shows summary statistics for the datasets.
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F1=Shot_Efficiency F2=Match_Result 

P(F1=1)= % 50 P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

Normal=Striker 

P(F1=1)= % 50 
P(F2=1)= % 50 

Outlier=Mid Fielder 

P(F1=1)= % 50 

P(F1=1)= % 50 

P(F1=1)= % 90 P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

P(F1=1)= % 10 

(a) (b) (c) 

P(F2=1)= % 50 

P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

F1=Shot_Efficiency F2=Match_Result 

Normal=Striker 

F1=Tackle_ 
Efficiency F2=Match_Result 

F1=Tackle_ 
Efficiency 

F2=Match_Result 

Normal=Striker 

F1=Shots On 
Target 

F2=Match_Result 

F1=Shots On 
Target 

F2=Match_Result 

Outlier=Mid Fielder Outlier=Mid Fielder 

Figure 3.3: Illustrative Bayesian networks. The networks are not learned from data, but
hand-constructed to be plausible for the soccer domain. (a) High Correlation; (b) Low
Correlation; (c) Single Attributes.

Individuals Features

Soccer-Player
per Match

TimePlayed ,Goals,SavesMade,
ShotEff ,PassEff ,WinningGoal ,
FirstGoal ,PositionID ,
TackleEff ,DribbleEff ,
ShotsOnTarget

Soccer-Team
per Match

Result ,TeamFormation,∑
Goals,µShotEff ,µPassEff ,

µTackleEff ,µDribbleEff .

IMDb-Actor Quality , Gender

IMDb-Director Quality ,avgRevenue

IMDb-Movie year ,isEnglish,Genre,Country ,
RunningTime, Rating by
User

IMDb-User Gender , Occupation.

Table 3.6: Attribute features.



CHAPTER 3. BACKGROUND, DATA MODEL AND STATISTICAL MODELS 33

Premier League Statistics IMDb Statistics

Number Teams 20 Number Movies 3060

Number Players 484 Number Directors 220

Number Matches 380 Number Actors 98690

avg player per match 26.01 avg actor per movie 36.42

Table 3.7: Summary statistics for the IMDb and the Premier League datasets

Soccer Data The Opta data were released by Manchester City. It lists all the ball actions

within each game, by each player, for the 2011-2012 season. Number of goals, passes, fouls,

tackles, saves and blocks, and also the position assigned to a player in a match, are examples

of the information associated with each player. For each player in a match, our dataset

contains eleven player features. For each team in a match, there are five features computed

as player feature aggregates, as well as the team formation and the result (win, tie, loss).

There are two relationships, Appears Player(P ,M ), Appears Team(T ,M ). We refer to the

Premier League data as the Soccer dataset. Table 3.7 shows summary statistics for the

datasets.

IMDb Data The Internet Movie Database (IMDb) is an on-line database of information

related to films, television programs and video games. The IMDb website offers a dataset

containing information on cast, crew, titles, technical details and biographies in a set of

compressed text files. We preprocessed the data similar to Peralta et. al approach [67],

to obtain a database with seven tables, one for each population and one for the three

relationships: Rated(User ,Movie), Directs(Director ,Movie), and ActsIn(Actor ,Movie).

In real-world data there is no ground truth about which objects are outliers. To address

this issue we employ a one-class design: we learn a model for the class distribution, with

data from only that class. We then rank all individuals from the normal class, together

with all objects from a contrast class treated as outliers, in order to test whether an outlier

score recognizes objects from the contrast class as outliers. Table 3.8 shows the normal

and contrast classes for three different datasets. In-class outliers are possible, e.g. unusual

strikers are still members of the striker class. Chapter 5 describes a few in-class outliers. In

the soccer data we considered only individuals who played more than 5 matches out of a

maximum 38.
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Table 3.8: Outlier/normal objects in real-world datasets.
Normal #Normal Outlier #Outlier

Striker 153 Goalie 22

Midfielder 155 Striker 74

Drama 197 Comedy 47

3.5 Statistical Models

We use notation and terminology from previous work [69, 17, 54, 22]. While we do not

introduce any new terminology, we combine concepts from different areas, such as proposi-

tionalization and log-linear models.

3.5.1 Bayesian Network

We adopt the Parametrized Bayes net (PBN) formalism [69] that combines Bayes nets with

logical syntax for expressing relational concepts.

A Bayesian Network (BN) structure B is a directed acyclic graph (DAG) whose

nodes comprise a set of random variables [65]. Depending on the context, we interchangeably

refer to the nodes and variables of a BN. Fix a set of variables V = {f1, . . . , fn}. The

possible values of fi are enumerated as {vi1, . . . , viri}. The notation P (fi = v) ≡ P (v)

denotes the probability of variable fi taking on value v. We also use the vector notation

P (V = v) ≡ P (v) to denote the joint probability that each variable fi takes on value vi.

The conditional probability parameters of a Bayesian network specify the distribution of

a child node given an assignment of values to its parent node. For an assignment of values

to its nodes, a BN defines the joint probability as the product of the conditional probability

of the child node value given its parent values, for each child node in the network. This

means that the log-joint probability can be decomposed as the node-wise sum

lnP (V = v;B,θ) =

n∑
i=1

ln θ(vi|vpai
) (3.1)

where vi resp. vpai
is the assignment of values to node fi resp. the parents of fi

determined by the assignment v. To avoid difficulties with ln(0), here and below we assume

that joint distributions are positive everywhere. Since the parameter values θ for a Bayes net

define a joint distribution over its nodes, they therefore entail a marginal, or unconditional,

probability for a single node. We denote the marginal probability that node f has
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ShotEff(T,M) PassEff(T,M) 

Result(T,M) 

P(Result=Win|shotEff=high, passEff=high)=0.44 
 P(Result=Win|shotEff=high, passEff=low)=0.22 
 P(Result=Win|shotEff=low, passEff=low)=0.18 
 P(Result=Win|shotEff=low, passEff=high)=0.06 
  

71.2)43.0ln()38.0ln()44.0ln(

)passEff,shotEff,(Resultln



 hihiwinP

P(shotEff=high)=0.38 
P(shotEff=low)=0.62 
 

P(passEff=high)=0.43 
P(passEff=low)=0.57 
 

19.0)Result(  winP

ShotEff(WA,M) PassEff(WA,M) 

Result(WA,M) 

P(Result=Win|shotEff=high, passEff=high)=0.53 
 P(Result=Win|shotEff=high, passEff=low)=0.35 
 P(Result=Win|shotEff=low, passEff=low)=0.01 
 P(Result=Win|shotEff=low, passEff=high)=0.11 
  

26.0)Result(

82.1)61.0ln()50.0ln()53.0ln(

)passEff,shotEff,Result(ln







winP

hihiwinP

P(shotEff=high)=0.50 
P(shotEff=low)=0.50 
 

P(passEff=high)=0.61 
P(passEff=low)=0.39 

Figure 3.4: Example of joint and marginal probabilities computed from a toy Bayesian
network structure. The parameters were estimated from the Premier League dataset. (left):
A class model Bayesian network Bc for all teams with class parameters θc. (right): The
same Bayesian network structure with object parameters θo learned for Wigan Athletics
(T = WA).

value v as P (f = v;B,θ) ≡ θ(v). In the following chapters, we use the term Bayesian

network model to refer to a network structure with parameters (i.e., a pair (B,θ)); for

brevity, we also use the terms “Bayesian network” or “model”. A Parametrized Bayesian

Network Structure (PBN) is a Bayesian network structure whose nodes are PRVs [69].

The relationships and features in an object database define a set of nodes for Bayes net

learning; see Figure 3.4.

Example. Figure 3.4 shows an example of a Bayesian network model and associated joint

and marginal probabilities.

3.5.2 Markov Logic Network

A Markov Logic Network (MLN) [22] is a set {(φ1, w1), . . . , (φm, wm)} where φi is a formula,

and each wi is a real number called the weight of φi. The MLN semantics views a formula

with logical variables as a feature template that is instantiated by ground formulas. The

number m of formulas is independent of the size of the instantiated MLN. The log-linear
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Table 3.9: MLN formulas derived from the toy Bayesnet shown in Figure 3.4
Formula

Result(T ,M ) = win ∧ ShotEff (P ,M ) = high ∧ PassEff (P ,M ) = high

Result(T ,M ) = win ∧ ShotEff (P ,M ) = high ∧ PassEff (P ,M ) = low

Result(T ,M ) = win ∧ ShotEff (P ,M ) = low ∧ PassEff (P ,M ) = low

Result(T ,M ) = win ∧ ShotEff (P ,M ) = low ∧ PassEff (P ,M ) = high

ShotEff (P ,M ) = high

ShotEff (P ,M ) = low

PassEff (P ,M ) = high

PassEff (P ,M ) = low

likelihood of a possible database is proportional to the weighted sum, over all formulas, of

the grounding count of each formula in the given database:

P (D) ∝ exp(
m∑
i=1

wi ·#D(φi)) (3.2)

This semantics defines a joint distribution over descriptive attributes of entities, links

between entities, and attributes of those links. Domingos et al. discuss the representational

power of this semantics [22].

3.5.3 Structure Learning

In this dissertation, for Bayesian network structure learning we employ the Learn-and-Join

(LAJ) algorithm. This is a state-of-the-art structure learning algorithm, especially well-

suited for datasets with many descriptive attributes such as those we used in our evaluation

[43, 82].

The LAJ algorithm employs an iterative deepening strategy, which can be described as

follows for object data. The algorithm learns a set of interrelated BNs. The initial step is

to learn one BN for each object class. The BN for one class represents associations among

the features of the objects in the class only. The algorithm then learns a BN for each pair

of linked components, such that the BN for the pair inherits the edges of the BNs for the

objects. Next, the algorithm learns a BN for each triple of objects related by a path of

length 2, where edges are inherited from the BNs for the relevant pairs, etc. The algorithm

stops when increasing the path length leads to no new edges being learned. The multiple

Bayesian networks are then merged into complete Bayesian networks for all objects. The
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MLN learning

DataSet Bayes net
Markov 
Logic 
Network

Learn-and-Join Moralization

Figure 3.5: Learning an Markov Logic Network from an input relational database.

LAJ algorithm takes as input a relational database and outputs a Parametrized Bayes net

structure.

The Parametrized Bayes net learned from LAJ algorithm can then be converted to an

MLN set of clauses using the moralization method described by Domingos and Richard-

son [23]. Moralization converts the probabilistic clauses defined by a Bayes net to con-

junctions of literals as shown in Figure 3.5. An example of this conversion is shown in

Table 3.9.

The general problem of finding an optimal model structure for an input database is NP-

hard. The LAJ algorithm leverages efficient heuristic search methods for Bayesian networks

to achieve scalability [82].

3.6 Evaluation Techniques in Outlier Detection

Measuring the effectiveness of outlier detection methods is not often an easy task. Most of

the time ground truth information, that shows which data points are outliers, is unavailable.

Several techniques have been employed in literature to evaluate the performance of outlier

detection methods:

1. Intuitive evaluation: case studies have been extensively used in literature to evaluate

outliers [3]. In chapter 4 we use this method of evaluation for top n ranked detected

outliers and we try to explain and make sense of the detected outliers.

2. Synthetic data generation: another approach to evaluate anomaly detection methods

is generating synthetic data and inject synthetic outliers into the data [3]. We have

designed and developed three synthetic datasets as discussed in section 3.3.

3. Anomaly injection: anomalies are injected into real-world datasets. Outlier detection

methods are expected to detect the injected data points as outliers [6]. We employ
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this approach in our real world datasets. The disadvantage of this evaluation metric

is that the real world data may also contain anomalies, known as in-class outliers.

However, this metric treats only the injected data points as true positive and will

score anything other than those as false positives.



Chapter 4

Propositionalization for

Unsupervised Outlier Detection in

Object-relational Data

In this chapter we develop a novel propositionalization approach to unsupervised outlier

detection for object-relational data. Propositionalization summarizes the information from

relational data, that is typically stored in multiple tables, into a single data table. An

advantage of propositionalization is that it facilitates leveraging the many previous outlier

detection methods that were designed for single-table data. Previous work has employed

propositionalization for various applications; Anderson et. al [8] use propositionalization to

apply clustering algorithms, like KMeans, to multi-relational data. Propositionalization for

classification has been extensively explored [48, 68, 52, 50]. ODDBALL extracts patterns

from large weighted graphs and then uses those patterns as features to discover anomalous

nodes in graph [5].

In this work we develop propositionalization for outlier detection for the case of object-

relational data. A novel application of Markov Logic Network structure learning is the basis

of our propositionalization method for outlier detection. Alternative propositionalization

methods that we evaluate in this work are based on enumerating all conjunctive formulas

with, at most, two literals (unigrams and bigrams). Compared to baseline propositional-

ization methods, Markov Logic propositionalization produces the most compact data tables

whose attributes capture the most complex object-relational correlations. (More complex

39
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correlations are represented by longer logical formulas). We apply three representative out-

lier detection methods (LOF , KNNOutlier , OutRank) to the data tables constructed by

propositionalization. For each outlier detection method, Markov Logic propositionalization

provided the best average accuracy over all datasets compared to the baseline proposition-

alization methods.

4.1 Introduction

Many outlier detection methods have been developed for data that is represented in an

attribute-value format [3]. This work addresses outlier detection for object-relational data.

In a single data table a row represents a data point, a column represents an attribute of a

data point, and a table entry represents an attribute value for a data point. Data analysis

tools that are built for single data tables, can be leveraged for multiple relational data

tables via a pipeline approach: first, convert the object-relational data to a single attribute-

value table, then apply the data analysis tool. Since the attribute value representation

corresponds to propositional logic, the conversion process is called propositionalization [48].

While propositionalization for classification has been extensively explored [48, 68, 52, 50],

to our knowledge propositionalization for outlier detection is a new research problem.

Approach. We use Markov Logic Network (MLN) structure learning to construct a single

data table from object-relational data. This is a novel application of MLN learning. The

format of the resulting data table is an individual-centric representation [54, 68]: we assume

that there is a target class of individuals to be ranked as potential outliers (e.g. soccer

players or movies). A row in the data table represents the attributes of an individual.

Attributes are defined by logical first-order formulas [54]. The more complex the formula,

the more relational information is represented by the formula. A feature function maps an

individual and a first-order formula to a real value that is the value of the attribute for the

individual. For example, we use the number of instantiations or groundings of a formula as

such a function.

A Markov Logic Network structure is a set of formulas. Our Markov Logic proposition-

alization method applies the MLN structure learning method, introduced in chapter 3, to

produce a set of formulas, these formulas define attributes for propositionalization. Our

approach can be summarized by this equation:
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Markov Logic Network Structure = Set of Formulas = Set of Attributes (4.1)

One potential way to convert an Object-Relational dataset to a single data table is to

follow the Universal Relation assumption and place all the attributes into a single data table.

This conversion is not suitable for outlier detection because the generated single table will

have more than one instance for each target individual. For example, in Figure 3.1 Player

112 appears in two rows. However, the single data table that outlier detection methods

require must have a single row for each target individual. Raedt et. al have an expanded

discussion on the disadvantages for learning tasks, of transforming the Multi-relational data

into a single table using universal relation [71].

To apply standard outlier detection methods, the information about a single individual that

is distributed in different rows must be combined or aggregated. In this chapter we em-

ploy MLN and develop a method for achieving this combination. A baseline comparison

method is to enumerate all the conjunctive formulas up to a fixed length n as attributes

for propositionalization. This is an instance of the recent Wordification approach to propo-

sitionalization [68]. Wordification is based on an analogy between text data and relational

data, where an n-gram in text data corresponds to a conjunctive formula with n literals.

In text analysis, n-grams are often treated as features of a document. Analogously, wordifi-

cation uses conjunctive formulas up to a fixed length n as features for propositionalization.

The disadvantage of this approach is that the number of such formulas grows exponentially

with n.

Evaluation. We use synthetic and real-world datasets that were introduced in chapter 3.

Markov Logic propositionalization produces significantly fewer attributes, leading to much

smaller data tables for outlier analysis compared to the baseline wordification approach.

The MLN attributes capture more complex relational associations (with over 3 literals on

average compared to 2 literals for wordification). MLN propositionalization is competitive

with wordification: for a given outlier analysis method, the average Area Under Curve

(AUC ) score over all datasets is best for MLN propositionalization.

We believe that propositionalization for outlier detection is a fruitful application area for

other statistical-relational learning generative models in addition to Markov Logic Networks.

Our approach can utilize any model class whose structure is represented by logical formulas,
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or can be easily converted to logical formulas, which includes many statistical-relational

models [74, 7, 42, 31].

Contributions. The contributions of this chapter may be summarized as follows.

1. A novel task for relational learning: propositionalization for outlier detection. This fa-

cilitates leveraging standard single-table outlier analysis methods for object-relational

data.

2. A novel application of Markov Logic Network structure learning to perform this task.

MLN structure learning generates a compact yet expressive set of features from object-

relational data.

4.2 Propositionalization, Pseudo-iid Data Views, and Markov

Logic Networks

Figure 4.1 provides an overview of our propositionalization system. Lippe et al. [54] describe

propositionalization in terms of a pseudo-iid (p-iid ) data view. A p-iid data view is a data
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Table 4.1: An example pseudo-iid data view. For definitions please see text.
Formula →

SavesMade(P,M) = med∧shotsOnTarget(P,M) = lo∧ShotEff (P ,M ) = lo SavesMade(P,M) = med∧shotsOnTarget(P,M) = hi∧ShotEff (P ,M ) = hi
Feature Function
→
Player ↓

TF TF-IDF TF TF-IDF

Wayne Rooney 4 1.99 12 33.83

David Silva 6 2.99 19 53.57

Robin VanPersie 2 0.99 24 67.67

table in which one row specifies attribute values for one example. Statistical analysis tools,

such as outlier analysis methods, that take as input single-table data are applied to the

p-iid data view. Since in the relational case the attribute values in different rows are often

not independent, Lippi et al. coined the term “pseudo-iid ”.

Definition 1 (based on [54]). Let D be a relational database. A pseudo-iid (p-iid ) data

view of D comprises

1. a logical variable E, called the example variable

2. a set of examples, where each example consists of a constant in the domain of E

3. a set of attributes F1 ,F2 , . . . ,Fd . An attribute specifies a real number given an

example and the database D.

Lippi et al. give a more general definition of p-iid views where examples may consist

of tuples rather than a single constant. In our experiments we used only single individual

examples (=constants). In the framework of Lippi et al., an attribute is derived from two

components. (1) A conjunctive formula, called a query. The formula can be viewed as

a template that can be instantiated multiple times for a single example. (2) A function

that aggregates the multiple instantiations to derive a real number that is the value of the

attribute. Lippi et al. introduce two basic feature functions: the instantiation count (how

many times the query formula is instantiated) and existence, a 0/1-valued attribute that

indicates whether there is some instantiation of the feature for the given individual.

Propositionalization via Markov Logic Networks. Propositionalization is usually

applied as a technique for discriminative learning in relational data [48]. A new idea in

this work is that pseudo-iid data views can also be derived from generative models. The

generative model we employ is Markov Logic Networks [22]. Markov Logic Network learning

provides a way to learn formulas for constructing pseudo-iid views, we refer to this as MLN
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propositionalization. For each example individual, the value of an attribute is determined

by a feature function that aggregates the multiple instantiations of the attribute query for

the individual in order to derive a real number.

Formula + Feature Function = Attribute Values

The motivation for Markov Logic propositionalization is as follows.

1. Constructing a generative model is one of the major approaches to unsupervised outlier

detection [3]. Intuitively, the generative model represents normal behavior in the

population.

2. The formulas in the MLN indicate which relations are normally associated and which

are normally independent of each other.

3. Relevant formulas are learned from the data, rather than constructed from a fixed a

priori set of templates.

One of the limitations of MLN is that it only considers log linear format for combining

the information from different instances. However it is possible to utilize other aggregators

such as noisy-or and arithmetic mean. Buchman et. al investigates the effects of various

aggregators on the performance of MLN [13].

Algorithm 1 describes how this propositionalization schema can be applied with Markov

Logic Networks.

Algorithm 1: Markov Logic Network Propositionalization

Input: An MLN {(φ1, w1), . . . , (φm, wm)}; Database D; Example logical variable E.
Output: A data matrix D. (Pseudo-iid data view.)

Calls: Feature Function F . F (a, φ,D) returns a number.

1: For each individual a1, . . . , an in the domain of the example variable E, add a row to the data matrix
D.

2: For each formula φ1, . . . , φm in the MLN that contains the example variable, add a column to the
data matrix D.

3: for all individuals ai and formulas φj do
4: Dij := F (ai , φj ,D).
5: end for

6: Return D.
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4.3 Wordification: n-gram Methods

As a baseline for empirical comparison, we present an alternative approach to generating

formulas in a pseudo-iid view based on the wordification analogy between relational and

text data that is introduced by Lavrac et al. [68]. The wordification analogy is as follows:

• A document corresponds to an example individual.

• A word in a document corresponds to a literal.

• An n-gram in a document (i.e., a sequence of n words) corresponds to a conjunction

of n literals. However, unlike n-gram in a documents, order is not important in a

conjunction. In our datasets this was computationally feasible for n < 3.

• The term frequency (TF) of an n-gram in a document corresponds to the conjunction

grounding count.

Just as a formula can have multiple groundings for an individual in a database, an n-

gram can occur multiple times in a document. The wordification analogy suggests using the

analog of n-grams in text mining. A range of functions for defining attribute values have

been explored in Natural Language Processing research; perhaps the most widely used is

term frequency (TF) and term frequency-inverse document frequency (TF − IDF ), which

down-weights terms that are frequent across documents [68]. The two feature functions we

employ in this paper are analogs of TF and TF − IDF . For a given w in document d from

corpus D, the TF − IDF measure is defined as follows:

TF − IDF (w , d) = TF (w , d)× log
|D |

d ∈ D : w ∈ d
(4.1)

4.4 Propositionalization methods and Feature functions

In sum, we use the following methods for generating formulas in a p-iid data view. All

generated formulas are constrained to contain the example variable.

MLN Learn a Markov Logic Network for the given database, then use the learned formulas.

Unigram All single literals.
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Table 4.2: Generating pseudo-iid data views using Feature Functions and Formulas

Feature Function
→
Formula ↓

TF TF-IDF

Unigram Unigram-TF Unigram-IDF

Bigram Bigram-TF Bigram-IDF

MLN MLN-TF MLN-IDF

Bigram All conjunctions of two literals that share at least one first-order variable.

Combining our three formula generating methods with two feature functions defines a

space of six methods for constructing a p-iid data view for outlier detection, as illustrated

in Table 4.2. Table 4.1 presents an example of a pseudo-iid view with two trigram formulas

learned from data and attribute values computed from the real-world data.

4.5 Experimental Design: Methods Used

We evaluate the six methods shown in Table 4.2. The Unigram-IDF approach produced

substantially weaker results than Unigram-TF on all datasets, so we omit this method to

simplify the presentation. Generating unigrams and bigrams is straightforward given a pred-

icate language. Instantiation counts for term frequencies and inverse document frequencies

were computed using MySQL Server version 5.5.34.. The most complex computation is

structure learning for MLNs. We use a previously existing algorithm that we briefly review.

MLN Structure Learning. In principle, our propositionalization method can employ

any MLN structure learning algorithm. In this work we employ the Learn-and-Join (LAJ)

algorithm that was discussed in chapter 3. This is a state-of-the-art MLN structure learning

algorithm, especially well-suited for datasets with many descriptive attributes such as those

in our empirical evaluation [43, 82]. Our emphasis is on comparing learning formulas with

the baseline of enumerating all n-grams, so we leave evaluating other MLN structure learning

algorithms, such as MLN-Boost [44], for future work.

Outlier Analysis Methods. We applied the following three standard matrix-based out-

lier analysis methods to the pseudo-iid data views: LOF , KNNOutlier and OutRank . These

methods were explained in detail in Chapter 2.
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These methods represent three fundamental approaches to outlier detection. Both LOF

and KNNOutlier require specifying the value of a k parameter. Following the recommenda-

tion of the LOF creators [12], we employed the three k-values 10, 15, 20. Our experiments

report the best results. The OutRank research suggests using DISH or PRO-CLUS as

clustering subroutines [61]. In our experiments we used DISH [1]. Outrank requires three

parameters to be specified: α, ε and µ. For these parameters we tested different values in the

suggested range and the experiments report the best results. We used the available imple-

mentation of all three data matrix methods from the state-of-the-art data mining software

ELKI [2].

4.6 Evaluation Results

4.6.1 Performance Metrics Used

We report several properties of the pseudo-iid data views produced by the different methods.

Dimensionality The number of attributes in the pseudo-iid data view.

Attribute Complexity The length of the conjunctions that define the attributes.

Outlier Analysis Run Time How long it takes each outlier method to rank outliers,

given the pseudo-iid data view.

Attribute Construction Time How long it takes to build the pseudo-iid view from an

input relational database.

Our performance accuracy score for outlier rankings is the area under curve (AUC ) of

the well-established receiver operating characteristic ROC curve. This has been widely used

to measure the performance of outlier ranking methods [61]. The relationship between false

positive rate (1- Specificity) and true positive rate (Sensitivity) is captured by the ROC

curve. Ideally, the best performance is achieved when we have the highest sensitivity and

the highest specificity. The maximum value for AUC is 1.0, indicating a perfect ranking

with 100% sensitivity and 100% specificity. In order to compute the AUC value, we used

the R package ROCR [83]. Given a set of outlier scores, one for each object, this package

returns an AUC value.

The summary of our findings is that MLN propositionalization shows the following ad-

vantages and disadvantages. The details follow.
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• For a fixed outlier detection method, competitive accuracy over all datasets (the best

for LOF and KNNOutlier tie with Bigram-idf for OutRank).

• Compact pseudo-iid data views: substantially fewer attributes (columns) than bi-

grams, yet average formula length 3.27 or greater.

• Faster outlier analysis due to this compactness.

• There is learning overhead for discovering relevant formulas, but it is small (e.g. 5

minutes for MLN learning vs. 1 minute for bigram construction).

4.6.2 Dimensionality of Pseudo-iid Data Views

Figure 4.2 provides information about the formulas constructed by the different proposi-

tionalization methods and the size of the resulting data table. For unigram resp. bigram

methods, the formulas have length 1 resp. 2 by definition. The average formula length for

MLNs is above 3 for the soccer data, for the IMDb data above 4. This shows that MLN

structure learning finds more complex formulas beyond length 2. For the dimensionality of

the resulting pseudo-iid views, there is a big increase from unigrams to bigrams (e.g. from

63 to 1825 for Strikers vs. Goalies). The dimensionality of MLN pseudo-iid data views lies

between that of unigrams and bigrams (e.g. 331 for Strikers vs. Goalies). This shows that

MLN structure learning can find complex longer formulas with a relatively small increase in

the dimensionality of the resulting pseudo-iid data view, compared to bigrams. The trade-

off is that learning a compact set of relevant formulas takes more time than enumerating all

formulas up to a fixed length. However, the learning overhead is small (e.g. 5.24 min vs. 1.2

min for Strikers vs. Goalies). The smaller dimensionality can decrease the running time of

the outlier detection methods, as shown in Table 4.3. For example, the running time of the

Outrank method for Strikers vs. Goalies is 861,870 ms given the Bigram TF − IDF data

view, vs. 64,837 for the MLN TF − IDF data view. For the other two outlier detection

methods the run-time difference was negligible.

4.6.3 Accuracy

Figures 4.3 and 4.4 present detailed measurements of the AUC-ROC for different outlier

propositionalization methods. There is no single propositionalization method that always

leads to the best accuracy for all three outlier analysis methods. MLN propositionalization
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Figure 4.2: Comparison of complexity, dimensionality and construction time (min) for the
attributes produced by different propositionalization methods
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Table 4.3: OutRank running time (ms) given different attribute vectors. Running time for
other outlier analysis methods were very similar.

Dataset Unigram− TF Bigram− TF Bigram− IDF MLN − TF MLN − IDF

Drama vs. Comedy 945 855,714 898,438 389,765 397,371

MidFielders vs. Strikers 486 642,261 631,813 18,737 21,466

Strikers vs. Goalies 578 814,807 861,870 55,448 64,837

Table 4.4: Summarizing the accuracy results of Figures 4.4 and 4.3: A propositionalization
method is scored 1 point if it produces the best accuracy on a dataset, and 0.5 points if it
ties. The table shows the total number of wins and average of AUC over all datasets.

Propositionalization →
Outlier Detection
Method ↓

MLN-
TF

Bigram-
IDF

Unigram-
TF

Wins µ(AUC) σ(AUC) Wins µ(AUC) σ(AUC) Wins µ(AUC) σ(AUC)

OutRank 2.50 0.79 0.018 2.50 0.70 0.019 1.00 0.64 0.054

KNN 3.50 0.78 0.025 1.50 0.67 0.024 1.50 0.67 0.04

LOF 4.00 0.63 0.006 1.00 0.55 0.014 1.00 0.61 0.017

produces the best results on two datasets. It is always close to the maximum AUC score

(never less than 0.1 AUC units away). Table 4.4 summarizes the performance of the propo-

sitionalization methods for a fixed outlier detection algorithm. The µ(AUC) column reports

the average AUC score over different datsets. The σ(AUC) column reports the variance

of AUC score over different dataset. The lower variance value shows less variability in the

performance of the propositionalization method. A propositionalization method “wins” on

a dataset if its AUC is at least 0.01 greater than that of others. A “tie” for first place earns

0.5 points. The total number of points is shown in the Wins columns. MLN-TF is revealed

to be the best method in terms of average AUC, for all outlier detection methods. TF is,

in a sense, the natural feature function for MLNs since the likelihood function of MLNs is

defined in terms of formula grounding counts (equation 4.1). MLN-TF propositionalization

scores the most wins when applied with LOF or KNNOutlier and a tie when applied with

OutRank . Thus, methods that tend to treat attributes independently, such as LOF and

KNNOutlier , benefit from being provided complex attributes that summarize complex asso-

ciations. Subspace analysis can utilize complex associations from bigram data, but requires

much more time to do so than MLN propositionalization (see Table 4.3).
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Figure 4.3: Accuracy for different Methods and Attribute Vector in the Synthetic datasets
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Figure 4.4: Accuracy for different Methods and Attribute Vector in the Real World datasets
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4.7 Comparison With Propositionalization for Supervised Out-

lier Detection and Log-Likelihood

In this section we compare our novel MLN propositionalization method with a previ-

ous propositionalization method that was developed for supervised classification problems.

Since, to our knowledge, all previous propositionalization methods are for classification

problems, in this section only we consider supervised outlier detection, where examples are

labelled as “normal” and “abnormal”. Given the ground truth labels, supervised outlier

detection can be treated as a special case of classification [37]. Supervised outlier detection

serves as a benchmark of the accuracy of unsupervised outlier detection: if the unsuper-

vised method comes close to the accuracy of the supervised method, this indicates good

performance of the unsupervised method.

We report experiments with the state-of-the-art Treeliker propositionalization method

[50]. We used the implementation of Treeliker available in the ClowdFlows platform [49],

which supports the MySQL data format. The HiFi algorithm from [50] has been used with

minimum frequency specified as 0.2, maximum size of features to be 10 and sample size as

5. We train and test Treeliker on the same dataset with ground truth labels as classification

target. So the way we use Treeliker gives it two advantages over MLN propositionalization:

It sees the ground truth labels, and it is tested on the training data. On almost all real-world

datasets, this translates into a higher AUC score, except for the Striker-Midfielder problem

using LOF (0.61 for MLN vs. 0.56 for Treeliker). MLN propositionalization comes close to

the Treeliker score, the only substantial difference occurs with LOF on the Striker-Goalie

problem (0.76 for MLN vs. 0.84 for Treeliker). On the synthetic data, the MLN method

performs even better, beating the Treeliker propositionalization by a substantial margin.

Given the advantages for the supervised setting, this is very good performance for MLN

propositionalization. We emphasize that this is not a criticism of Treeliker as a proposi-

tionalization method, because it is not designed for outlier detection problems. Rather, our

conclusion is that new methods provide value for the problem of propositionalization for

outlier detection.
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Database
Outlier
Method

Treeliker
AUC
value

MLN-
TF
AUC
value

Single Attribute KNN 0.65 0.86

Single Attribute LOF 0.53 0.63

High Correlation KNN 0.66 0.97

High Correlation LOF 0.57 0.68

Low Correlation KNN 0.65 0.97

Low Correlation LOF 0.56 0.58

Striker Goalie KNN 0.6 0.58

Striker Goalie LOF 0.84 0.76

Midfielder Striker KNN 0.65 0.63

Midfielder Striker LOF 0.56 0.61

Table 4.5: Accuracy of Treeliker for different databases and outlier techniques. Bold values
represent the cases where Treeliker outperforms other methods.

4.8 Conclusion

In this chapter we developed a pipeline propositionalization approach where the information

from multiple data tables is summarized in a single data table. The key step is to find a set

of relevant logical formulas that define conjunctive attributes of potential outlier individuals

as sum. We utilized Markov Logic Network learning for this task. In an empirical compar-

ison with the baseline wordification approach of enumerating all conjunctive formulas up

to length 2, Markov Logic propositionalization showed several advantages: 1) The set of

formulas learned was substantially smaller, leading to smaller data tables and faster outlier

detection. 2) The formulas learned were longer, representing more complex relational pat-

terns. 3) For a fixed single-table outlier analysis method, the average detection accuracy

was higher.

We view this work as an initial step in the topic of propositionalization for outlier de-

tection. There are several fruitful directions for future work. While Markov Logic networks

are a prominent generative model class for relational data, our approach can be used with

other generative models; this opens a new application area for statistical-relational learning.

Dimensionality reduction techniques can be employed after propositionalization to reduce

the size of the data tables before outlier detection methods are used. Propositionalization

algorithms that were developed for classification could be adapted for unsupervised outlier

detection by using a feature selection score that is relevant for outlier detection, rather than

supervised classification.
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Another direction for future work is to leverage graph-based descriptive features in our

generative model learning process. These features proved to be useful in discovering patterns

for anomaly detection in ODDBALL [5]. Examples of such features in our datasets include:

number of matches a player has played, number of reviews a movie has received, and features

related to the extent of interaction between players.



Chapter 5

Metric-based Outlier Detection

In chapter 4 we introduced a pipeline propositionalization method to convert object-relational

data to a single data table. By summarizing the information from relational data in one

data table, we showed that we can leverage the many previous outlier detection methods

that were designed for single data table. The goal of this chapter is to introduce an unsu-

pervised statistical outlier detection method for the case of object-relational data without

converting the data to i.i.d. propositional format. For each object there is a probability

distribution over the features of related objects. For example, for each soccer team there

is a distribution over the features of its players. This special structure prohibits a direct

vectorial data representation. We apply state-of-the-art probabilistic modelling techniques

for object-relational data that construct a graphical model (Bayesian network), which com-

pactly represents probabilistic associations in the data. We propose a new metric, based on

the learned object-relational model, that quantifies the extent to which the individual asso-

ciation pattern of a potential outlier deviates from that of the whole population. The metric

is based on the likelihood ratio of two parameter vectors: One that represents the popula-

tion associations, and another that represents the individual associations. The likelihood

ratio can be improved for outlier detection by applying two transformations: (1) a mutual

information decomposition and (2) replacing log-likelihood differences by log-likelihood dis-

tances. Our method is validated on synthetic datasets and on real-world data sets about

soccer matches and movies. Compared to baseline methods, our novel transformed likeli-

hood ratio achieved the best detection accuracy on all datasets.

56
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5.1 Introduction

Outlier detection is an important data analysis task in many domains. Statistical approaches

to unsupervised outlier detection are based on a generative model of the data [3]. The

generative model represents normal behavior. An individual object is deemed an outlier if

the model assigns sufficiently low likelihood to generating it. We propose a new method

for extending statistical outlier detection to the case of object-relational data using a novel

likelihood-ratio comparison for probabilistic models.

Approach Figure 5.1 illustrates these concepts and the system flow for computing an

outlier score. A class-model Bayesian network (BN) structure is learned with data for the

entire population. The nodes in the BN represent attributes for links, of multiple types, and

attributes of objects, also of multiple types. To learn the BN model, we apply techniques

from statistical-relational learning, a recent field that combines AI and machine learning

[31, 82, 22]. Given a set of parameter values and an input database, it is possible to

compute a class model likelihood that quantifies how well the BN fits the object data. The

class model likelihood uses BN parameter values estimated from the entire class data. This

is a relational extension of the standard log-likelihood method for i.i.d. vectorial data, which

uses the likelihood of a data point as its outlier score.

While the class model likelihood is a good baseline score, it can be improved by com-

paring it to the object model likelihood, which uses BN parameter values estimated from the

object data. The model log-likelihood ratio (LR) is the log-ratio of the object model likeli-

hood to the class model likelihood. This ratio quantifies how the probabilistic associations

that hold in the object substructure deviate from the associations in the general popula-

tion. While the likelihood ratio discriminates relational outliers better than the class model

likelihood alone, it can be improved further by applying two transformations: (1) a mutual

information decomposition, and (2) replacing log-likelihood differences by log-likelihood dis-

tances. We refer to the resulting novel score as the log-likelihood distance.

Evaluation Our code and datasets are available on-line at [75]. Our performance eval-

uation follows the design of previous outlier detection studies [29, 3], where the methods

are scored against a test set of known outliers. We use three synthetic and two real-world

datasets, from the UK Premier Soccer League and the Internet Movie Database (IMDb).

On the synthetic data we have known ground truth. For the real-world data, we use an
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Figure 5.1: Computation of outlier score.

anomaly injection method discussed in chapter 2, where one object class is designated as

normal and objects from outside the class are the outliers. For example, we compare goalies

as outliers against the class of strikers as normal objects. On all datasets the log-likelihood

distance metric achieves the best detection accuracy compared to baseline methods.

We also present case studies where we assess whether individuals that our score ranks as

highly unusual in their class are, indeed, unusual. The case studies illustrate that our outlier

score is easy to interpret, because the Bayesian network provides a sum decomposition of

the data distributions by features. Interpretability is very important for users of an outlier

detection method as there is often no ground truth to evaluate outliers suggested by the

method.

Contributions Our main contributions in this chapter may be summarized as follows.

1. The first approach to outlier detection for structured data that is based on a proba-

bilistic model.

2. A new model-based outlier score based on a novel model likelihood comparison, the

log-likelihood distance.
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Figure 5.2: A tree structure for related work on outlier detection for structured data. A
path specifies an outlier detection problem, the leaves list major approaches to the problem.
Approaches in italics appear in our experiments.

Table 5.1: Example of grounding count and frequency in the Premier League data, for the
conjunction passEff (T ,M ) = hi , shotEff (T ,M ) = hi ,Result(T ,M ) = win.

Database Count or #D(V = v) Frequency or PD(V = v)

A novel aspect of our paper is that we learn model Population 76 76/760 = 0.10

A novel aspect of our paper is that we learn model Wigan Athletics 7 7/38 = 0.18

5.2 Related Work

In chapter 2 we reviewed some outlier detection methods designed for the structured data.

Our method falls in the category of unsupervised statistical model-based approaches. To

our knowledge, ours is the first model-based method tailored for object-relational data.

Figure 5.2 (which was also introduced in the introduction) provides a tree picture of where

our method is situated with respect to other outlier detection methods and other data

models. In the following we review a generative model-based method that has been used as

a baseline to our work.

Model Likelihood for Parametrized Bayesian Networks

A standard method for applying a generative model assumes that the generative model

represents normal behavior since it was learned from the entire population. An object is

deemed an outlier if the model assigns sufficiently low likelihood to generating its features
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[14]. This likelihood method is an important baseline for our investigation. Defining a

likelihood for relational data is more complicated than for i.i.d. data because an object

is characterized not only by a feature vector, but by an object database. We employ the

relational pseudo log-likelihood [81], which can be computed as follows for a given Bayesian

network and database.

LOG(D,B ,θ) =
n∑

i=1

ri∑
j=1

∑
pai

PD(vij ,pai) ln θ(vij |pai) (5.1)

Equation (5.1) represents the standard BN log-likelihood function for the object data [19],

except that parent-child instantiation counts are standardized to be proportions [81]. The

equation can be read as follows.

1. For each parent-child configuration, use the conditional probability of the child given

the parent.

2. Multiply the logarithm of the conditional probability by the database frequency of the

parent-child configuration.

3. Sum this product over all parent-child configurations and all nodes.

The maximum of the pseudo-likelihood (5.1) is given by the empirical database fre-

quencies [81, Prop.3.1.]. In all our experiments we use these maximum likelihood parameter

estimates.

Example. The family configuration

passEff (T ,M ) = hi , shotEff (T ,M ) = hi ,Result(T ,M ) = win

contributes one term to the pseudo log-likelihood for the BN of Figure 3.3 of Chapter 3.

For the population database, this term is 0.1× ln(0.44) = −0.08. For the Wigan Athletics

database, the term is 0.18× ln(0.44) = −0.14.

5.3 Likelihood-Distance Object Outlier score

We introduce a novel model-based outlier score, that extends the log-likelihood (5.1), using

the following notation.
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• DC is the database for the entire class of objects; cf. Table 3.1 of chapter 3. This

database defines the class distribution PC ≡ PDc .

• Do is the restriction of the input database to the target object; cf. Table 3.2 of

chapter 3. This database defines the object distribution Po ≡ PDo .

• BC is a Bayesian network structure learned with DC as the input database; cf. Figure

3.3(a) of chapter 3.

• θC resp. θo are parameters learned for BC using Dc resp. Do as the input database.

Figure 5.1 illustrates these concepts and the system flow for computing an outlier score.

First, we learn a Bayesian network structure BC for the entire population using a previous

learning algorithm (see section 5.6.1 below). We then evaluate how well the class model fits

the target object data. For vectorial data, the standard model fit metric is the log-likelihood

of the target datapoint. For relational data, the counterpart is the relational log-likelihood

(5.1) of the target database:

LOG(Do ,BC ,θC ). (5.2)

While this is a good baseline outlier score, it can be improved by considering scores

based on the likelihood ratio, or log-likelihood difference:

LR(Do ,BC ,θo) ≡ LOG(Do ,BC ,θo)− LOG(Do ,BC ,θC ). (5.3)

The log-likelihood difference compares how well the class-level parameters fit the object

data, vs. how well the object parameters fit the object data. In terms of the conditional

probability parameters, it measures how much the log-conditional probabilities in the class

distribution differ from those in the object distribution. Note that this definition applies

only for relational data where an individual is characterized by a substructure rather than a

“flat” feature vector. Assuming maximum likelihood parameter estimation, LR is equivalent

to the Kullback-Leibler divergence between the class-level and object-level parameters [19].

While the LR score provides more outlier information than the model log-likelihood, it can

be improved further by two transformations as follows. (1) Decompose the joint probability

into a single-feature component and a mutual information component. (2) Replace log-

likelihood differences by log-likelihood distances. The resulting score is the log-likelihood
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distance (ELD), which is the main novel score we propose in this paper. Formally, it

is defined as follows for each feature i. The total score is the sum of feature-wise scores.

Section 5.5 below provides example computations.

ELD i =

ri∑
j=1

Po(vij)

∣∣∣∣ln θo(vij)

θC(vij)

∣∣∣∣+ (5.4)

ri∑
j=1

∑
pai

Po(vij ,pai)

∣∣∣∣ln θo(vij |pai)

θo(vij)
− ln

θC(vij |pai)

θC(vij)

∣∣∣∣ . (5.5)

The first sum (5.4) is the single-feature component, where each feature is considered

independently of all others. It computes the expected log-distance with respect to the

singe feature value probabilities between the object and the class models. The second ELD

sum (5.5) is the mutual information component, based on the mutual information

among all features; it computes the expected log-distance between the object and the class

models with respect to the mutual information of feature value assignments. Intuitively, the

first sum measures how the models differ if we treat each feature in isolation. The second

sum measures how the models differ in terms of how strongly parent and child features are

associated with each other.

5.3.1 Motivation

The motivation for the mutual information decomposition is two-fold.

(1) Interpretability, which is very important for outlier detection. The single-feature com-

ponents are easy to interpret since they involve no feature interactions. Each parent-child

local factor is based on the average relevance of parent values for predicting the value of the

child node, where relevance is measured by

ln
θ(vij |pai)

θ(vij)
.

This relevance term is basically the same as the widely used lift measure [91], therefore

an intuitively meaningful quantity. The ELD score compares how relevant a given parent

condition is in the object data with how relevant it is in the general class.

(2) Avoiding cancellations. The mutual information decomposition shows that each

term in the log-likelihood difference (5.3) decomposes into a relevance difference and a

marginal difference:
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ln
θo(vij |pai)

θC(vij |pai)
= ln

θo(vij |pai)

θo(vij)
− ln

θC(vij |pai)

θC(vij)
+ ln

θo(vij)

θC(vij)
. (5.6)

These differences can have different signs for different child-parent configurations and

cancel each other out; see Table 5.2 below for an example. Since our goal is to assess

the distinctness of an object, we do not want differences to cancel out. Taking distances

as in Equations (5.4) and (5.5), avoids the undesirable cancellation. The general point

is that averaging differences is appropriate when considering costs, or utilities, but not

appropriate for assessing the distinctness of an object. For instance, the average component-

wise difference of the vectors (0,0) and (1,-1) is 0, but their distance is not.

5.3.2 Comparison Outlier Scores

Our lesion study compares our log-likelihood distance ELD score to baselines that are

defined by omitting a component of ELD . In this section we define these scores. The

scores increase in sophistication in the sense that they apply more transformations of the

log-likelihood ratio. More sophisticated scores provide more information about outliers.

Table 5.2 defines local feature scores; the total score is the sum of feature-wise scores. All

metrics are defined such that a higher score indicates a greater anomaly. The metrics are

as follows.

Feature Divergence FD is the first component of the ELD score. It considers each fea-

ture independently (no feature correlations).

Log-Likelihood Score LOG is the standard model-based outlier detection score using

data likelihood.

Log-Likelihood Difference LR is the log-likelihood difference (5.3) between the class-

level and object-level parameters.

Log-Likelihood Difference with absolute value |LR| replaces differences in LR by dis-

tances.

The next proposition shows that the outlier scores have the standard properties of a

divergence measure between probability distributions: they are nonnegative, and 0 if and

only if the class and object distributions are the same. Also, the triangle inequality entails
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Table 5.2: Baseline comparison outlier scores

Method Formula

FD i
∑n

i=1

∑ri
j=1 Po(vij)

∣∣∣ln θo(vij)
θC(vij)

∣∣∣
−LOG i −

∑n
i=1

∑ri
j=1

∑
pai

Po(vij ,pai) ln θC(vij |pai)

LRi
∑ri

j=1

∑
pai

Po(vij ,pai) ln
θo(vij |pai)
θC(vij |pai)

.

|LRi |
∑ri

j=1

∑
pai

Po(vij ,pai)| ln
θo(vij |pai)
θC(vij |pai)

|.

that the scores can be ordered by dominance: one is guaranteed to be at least as great as an-

other. Dominance means that a divergence potentially provides more discrimination among

objects as it maps the set of objects onto a larger range of scores. Our ELD score dominates

all others. We provide empirical evidence that dominance leads to greater discrimination.

Proposition 1. The following hold for any class and object distributions, and each node

vi.

1. For any class and object distribution, we have ELD i ≥ |LRi | ≥ LRi = LR+
i ≥ 0 .

Also, ELD i ≥ FD i .

2. All divergences ELD i , |LRi |,LRi ,LR+
i ,FD i are nonnegative. The divergences are 0 if

and only if the object parameters θo and class parameters θC are the same.

These properties also hold for the divergences ELD , |LR|,LR,LR+,FD summed over all

nodes.

Proof. (Part 1) It is immediate that ELD i ≥ FD i . We show that LR = LR+. Using the

marginalization

Po(vij) ln
θo(vij)

θC(vij)
=
∑
pai

Po(vij ,pai) ln
θo(vij)

θC(vij)
(5.7)

and the mutual information decomposition (5.6) it is easy to verify that LR+
i implies to

LR. Next, |LRi | ≥ LRi holds because a− b ≤ |a− b| for any numbers a, b. The inequality

ELD i ≥ |LRi | is established as follows.
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ELD =

ri∑
j=1

∑
pai

Po(vij ,pai)

∣∣∣∣ln θo(vij)

θC(vij)

∣∣∣∣+

ri∑
j=1

∑
pai

Po(vij ,pai)

∣∣∣∣ln θo(vij |pai)

θo(vij)
− ln

θC(vij |pai)

θC(vij)

∣∣∣∣
=

ri∑
j=1

∑
pai

Po(vij ,pai)

∣∣∣∣ln θo(vij)

θC(vij)

∣∣∣∣+

∣∣∣∣ln θo(vij |pai)

θo(vij)
− ln

θC(vij |pai)

θC(vij)

∣∣∣∣ (5.8)

≥
ri∑
j=1

∑
pai

Po(vij ,pai)

∣∣∣∣ln θo(vij)

θC(vij)
+ ln

θo(vij |pai)

θo(vij)
− ln

θC(vij |pai)

θC(vij)

∣∣∣∣ (5.9)

=

ri∑
j=1

∑
pai

Po(vij ,pai) |ln θo(vij |pai)− ln θC(vij |pai)| (5.10)

= |LRi | (5.11)

Here Equation (5.8) follows from Equation (5.7), inequality 5.9 follows from the triangle

inequality |a|+ |b| ≥ |a+ b|, and Equation (5.10) from Equation (5.6).

(Part 2) The claim is immediate for FD i . We show that LRi is nonnegative and 0 only

if the object and class parameters associated with node i are the same. Consider a simple

Bayes net structure B′ comprising the parents of node i, node i, and no other nodes or links.

Then LRi is the log-likelihood difference

LRi = LOG(Do ,B
′,θo)− LOG(Do ,B

′,θC ).

The empirical frequency parameters θo uniquely maximize the function LOG(Do ,B
′, ·) [82],

so the difference LRi is nonnegative, and equals 0 if and only if θC = θθ.

5.4 Comparison with Other Dissimilarity Metrics

The Mahalanobis distance is one of the frequently used distance metrics for the outlier

detection methods in the literature. This metric is similar to the ELD in a way that both

metrics incorporate the spatial statistics of the data. The Mahalanobis distance gives a

greater weight to the points that are not in the direction of the correlation distribution and

that is similar to the effect of mutual divergence component in the ELD .

The term ln | θo(vij)θC(vij)
| in the ELD distance can be interpreted as L1 distance. In contrast,

the Mahalanobis distance is based on the L2 Euclidean distance.

At a conceptual and motivational level, the ELD and the Mahalanobis distance have

a few fundamental differences. The ELD is an asymmetric divergence metric between two
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probability distributions. On the other hand, the Mahalanobis distance is a symmetric

metric and represents the distance between the points and not the distance between the

distributions of the points. The best way to compare ELD and Mahalanobis is to think

of ELD as comparing the probability vector of an individual object to a probability vector

that represents the mean of the probability vectors in the reference class.

In computing distance, the Mahalanobis metric takes variability of the points into account.

This is a very useful characteristic that can be incorporated in the ELD in two ways: 1) by

capturing the variability of the feature. However, the features in our domain are discrete,

and the variability is minimal in the discrete domains. 2) Or we can capture the variability

in the probability distribution level. We explain this in the following example.

Suppose we have a dataset with two features f1 and f2. In the normal community P (f1 = 1)

is 0.5. In half of the normal community P (f2 = 1) is 1 and in the other half P (f2 = 0) is 1.

Therefore, in the entire population P (f2 = 1) and P (f2 = 0) are the same and equal to 0.5.

However, these two distributions are very different. By taking the variance into account

Mahalanobis distance can capture this difference. The effect of variance in the probability

distribution can be incorporated in the ELD .We leave this feature as a potential future

work.

5.5 Two-Node Examples

We provide three simple examples with only two features that illustrate the computation

of the outlier scores. They are designed so that outliers and normal objects are easy to

distinguish and so that it is easy to trace the behavior of an outlier score. The examples,

therefore, serve as thought experiments that bring out the strengths and weaknesses of

model-based outlier scores. Figure 3.3 describes the BN representation of the examples.

For intuition, we can think of a soccer setting, where each match assigns a value to each

attribute Fi, i = 1, 2 for each player.

5.5.1 Computations

Table 5.3 provides the computation of the scores. Scores for the F2 feature are computed

conditional on F1 = 1. Expectation terms are computed first for F2 = 1, then F2 = 0.

The single feature distributions are uniform, so the feature component (5.4) is 0 for each

node in both examples. The table illustrates the undesirable cancelling effects in LR. In the
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Table 5.3: Example computation of different outlier scores for outliers given the distributions
of Figure 5.3 (a),(b).

Score F1 = 1 Computa-
tion

F2|F1 = 1 Computation Result

LR
1/2 ln(0.5/0.5) =
0

1/4 ln(0.5/0.9) + 1/4 ln(0.5/0.1) 0.36

|LR| 0 (no parents)
1/4| ln(0.5/0.9)| +
1/4| ln(0.5/0.1)| 0.79

FD | ln(0.5/0.5)| = 0
1/2| ln(0.5/0.5)| +
1/2| ln(0.5/0.5)| 0

ELD 0 (no parents)

1/2| ln(0.5/0.5)| +
1/2| ln(0.5/0.5)| +
1/4| ln(0.5/0.5) −
ln(0.9/0.5)| +
1/4| ln(0.5/0.5)− ln(0.1/0.5)|

0.79

(a) High Correlation Case. Figure 5.3(a).

Score F1 = 1 Computa-
tion

F2|F1 = 1 Computation Result

LR 1/2 ln(0.5/0.5) =
0

0.5 · 0.9 ln(0.9/0.5) + 0.5 ·
0.1 ln(0.1/0.5)

0.26

|LR| 0 (no parents) 0.5 · 0.9| ln(0.9/0.5)| + 0.5 ·
0.1| ln(0.1/0.5)|

0.50

FD | ln(0.5/0.5)| = 0 1/2| ln(0.5/0.5)|+ 1/2| ln(0.5/0.5)| 0

ELD 0 (no parents)

1/2| ln(0.5/0.5)| +
1/2| ln(0.5/0.5)| + 0.5 ·
0.9| ln(0.9/0.5) − ln(0.5/0.5)| +
0.5 · 0.1| ln(0.1/0.5)− ln(0.5/0.5)|

0.50

(b): Low Correlation Case. Figure 5.3(b).
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F1=Shot_Efficiency F2=Match_Result 

P(F1=1)= % 50 P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

Normal=Striker 

P(F1=1)= % 50 
P(F2=1)= % 50 

Outlier=Mid Fielder 

P(F1=1)= % 50 

P(F1=1)= % 50 

P(F1=1)= % 90 P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

P(F1=1)= % 10 

(a) (b) (c) 

P(F2=1)= % 50 

P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

P(F2=0|F1=0)= % 90 
P(F2=1|F1=1)= % 90 

F1=Shot_Efficiency F2=Match_Result 

Normal=Striker 

F1=Tackle_ 
Efficiency F2=Match_Result 

F1=Tackle_ 
Efficiency 

F2=Match_Result 

Normal=Striker 

F1=Shots On 
Target 

F2=Match_Result 

F1=Shots On 
Target 

F2=Match_Result 

Outlier=Mid Fielder Outlier=Mid Fielder 

Figure 5.3: Illustrative Bayesian networks with two nodes. The networks are not learned
from data, but hand-constructed to be plausible for the soccer domain. (a) High Correlation:
Normal individuals exhibit a strong association between their features, outliers have no
association. Both normals and outliers have a close to uniform distribution over single
features. (b) Low Correlation: Normal individuals exhibit no association between their
features, outliers have a strong association. Both normals and outliers have a close to
uniform distribution over single features. (c) Single Attributes: Both normal and outlier
individuals exhibit a strong association between their features. In normals, 90% of the time,
feature 1 has value 0.

high correlation scenario 3.3(a), the outlier object has a lower probability than the normal

class distribution of Match Result = 0 given that Shot Efficiency = 1 . Specifically, 0.5 vs.

0.9. The outlier object exhibits a higher probability Match Result = 1 than the normal class

distribution, conditional on Shot Efficiency = 1 ; specifically, 0.5 vs. 0.1. In line 1, column

2 of Table 5.3 the log-ratios ln(0.5/0.9) and ln(0.5/0.1) therefore have different signs. In the

low correlation scenario 3.3(b), the cancelling occurs in the same way, but with the normal

and outlier probabilities reversed. The cancelling effect is even stronger for attributes with

more than two possible values.

5.5.2 Visualization

Figure 5.4 provides scatter plots for each synthetic dataset and each comparison outlier

metric. The figure is best viewed on screen. As entailed by Proposition 1(Part 1), the

ELD metric maps players to the largest range of outlier scores. It also provides the best

separation of normal from abnormal players: The normal players receive low anomaly scores

and hence are clustered to the left of the ELD scatter plot, whereas the abnormal players

receive high scores and hence are clustered on the right. The |LR| metric also shows a larger

range of scores and a better discrimination compared to the LR metric. This illustrates the

value of using distances rather than differences.
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(a) Distribution of different outlier scores in Syn-
thetic Dataset- Single Feature.
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(b) Distribution of different outlier scores in Synthetic
Dataset- Low correlation
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(c) Distribution of different outlier scores in Synthetic
Dataset- High correlation

Figure 5.4: Visualizing likelihood-based outlier metrics on our three synthetic datasets. We
employed a log scale to show the score values of different ranges in a single plot. To avoid
the negative numbers for the values between 0 and 1, we used metric+1. The figure is best
viewed in color. Score values are shown on the x-axis; higher values should indicate more
anomalous players. For each dataset and each metric, we provide a 1D scatterplot of the
280 synthetic player scores. In the scatterplot, blue dots represent normal players, and red
dots represent anomalous players.
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5.6 Experimental Design

All the experiments were performed on a 64-bit Centos machine with 4GB RAM and an

Intel Core i5-480 M processor. The likelihood-based outlier scores were computed with SQL

queries using JDBC, JRE 1.7.0. and MySQL Server version 5.5.34.

5.6.1 Methods Compared

We compare two types of approaches, and within each approach several outlier detection

methods. The first approach evaluates the likelihood-based outlier scores described in sec-

tion 5.3. For relational Bayesian network structure learning we utilize the previous learn-

and-join algorithm (LAJ) that was introduced in chapter 3.

The second approach is to compare the loglikelihood metric with some of the stan-

dard matrix-based outlier analysis methods. One way to convert relational data to a sin-

gle data matrix is to first “flattens” the structured data into a matrix of feature vectors,

then apply standard matrix-based outlier detection methods. We refer to such methods

as propositional-based (cf. Figures 5.2). For example, this was the approach taken by

Breunig et al. for identifying anomalous players in sports data [12]. However, as discussed

in chapter 4, aggregation tends to lose information about correlations and MLN proposi-

tionalization is a better candidate for this conversion. Therefore, instead of aggregating

over features, we used features generated by MLN-TF. In chapter 4 we showed that in

most datasets, MLN-TF produced better quality features compare to the other proposi-

tionalization methods. We evaluated three standard propositional-based outlier detection

methods: Density-based LOF [12], distance-based KNNOutlier [72] and subspace analysis

OutRank [61]. These represent common, fundamental approaches for propositional data.

5.7 Empirical Results

We present results regarding computational feasibility, predictive performance, and case

studies.

Computational Cost of the ELD Score.

Table 5.4 shows that the computation of the ELD value for a given target object is feasible.

On average, it takes a quarter of a minute for each soccer player, and one minute for each
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movie. This includes the time for parameter learning from the object database. Learning the

class model BN takes longer, but needs to be done only once for the entire object class. The

BN model provides a crucial low-dimensional representation of the distribution information

in the data. Table 5.5 compares the number of terms required to compute the ELD score

in the BN representation to the number of terms in an unfactored representation with one

parameter for each joint probability.

In terms of theoretical complexity, the cost of evaluating the ELD score for an object is

dominated by the cost of computing the sufficient statistics that determine the object distri-

bution. There are efficient algorithms available for this task , whose worst-case complexity

is polynomial in the number of first-order variables [70].

Table 5.4: Time (min) for computing the ELD score.

Dataset Class Model Average per Object

Strikers vs. Goalies 4.14 0.25

Midfielder vs. Goalies 4.02 0.25

Drama vs. Comedy 8.30 1.00

Table 5.5: The Bayesian network representation decreases the number of terms required for
computing the ELD score.

Dataset
#Terms

Using BN
#Terms

without Using BN

Strikers vs. Goalies 1,430 114,633,792

Midfielders vs. Goalies 1,376 43,670,016

Drama vs. Comedy 50,802 215,040,000

Detection Accuracy

Our experiments provide empirical evidence that in practice ELD generally works better

than other scores for object outlier detection.

Our performance score for outlier rankings is the area under curve (AUC ) of the well-

established receiver operating characteristic ROC curve [27]. This has been widely used

to measure the performance of outlier ranking methods [14, 61]. The relationship between
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Dataset ELD |LR| LR FD LOG

High Correlation 1.00 0.99 0.97 0.89 0.99

Low Correlation 1.00 0.99 0.99 0.42 0.97

Single Feature 1.00 1.00 1.00 1.00 0.79

Strikers vs. Goalies 0.89 0.77 0.65 0.71 0.61

Midfielders vs. Strikers 0.66 0.62 0.55 0.59 0.45

Drama vs. Comedy 0.70 0.68 0.66 0.64 0.66

Table 5.6: AUC of ELD vs. other probabilistic scores.

Dataset ELD LOF OutRank
KNN

Outlier

High Correlation 1.00 0.68 0.99 0.97

Low Correlation 1.00 0.58 0.83 0.97

Single Feature 1.00 0.63 0.88 0.86

Strikers vs. Goalies 0.89 0.61 0.60 0.61

Midfielders vs. Strikers 0.66 0.76 0.71 0.58

Drama vs. Comedy 0.70 0.51 0.68 0.68

Table 5.7: AUC of ELD vs. propositional-based outlier detection methods. The single
table used as input for OutRank , LOF and KNNOutlier was generated using the MLN-TF,
a propositionalization approach introduced in chapter 3.

false positive rate (1- Specificity) and true positive rate (Sensitivity) is captured by the ROC

curve. Ideally, the best performance is achieved when we have the highest sensitivity and

the highest specificity. The maximum values for AUC is, 1.0 indicating a perfect ranking

with 100% sensitivity and 100% specificity. In order to compute the AUC value, we used

the R package ROCR [83]. Given a set of outlier scores, one for each object, this package

returns an AUC value.

Probabilistic Structured methods: Table 5.6 shows the AUC values for each prob-

abilistic ranking. On the synthetic data, it ought to be easy to distinguish the outliers.

Single feature is the easiest dataset and most metrics except log are successful in perfectly

detecting outliers. However, ELD is the only score that achieves perfect detection across all

three synthetic datasets.

Propositionalization-Based Methods vs. ELD Table 5.7 shows the precision val-

ues for propositional-based methods compared to ELD . Our ELD score outperforms all
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Propositional-based methods on all datasets, except for one real-world dataset that LOF

outperform ELD and that is with the help of conjunctive features generated by the proposi-

tionalization method introduced in chapter 4. If we use aggregated features the performance

of LOF drops to 0.53. In general, if we use aggregated features, as used in the literature to

generate features for the baseline methods, the performance of propositional-based methods

are most like that of the probabilistic score FD , which does not consider the correlation

among the features.

Case Studies

For a case study, we examine three top outliers as ranked by ELD , shown in Table 5.8. The

aim of the case study is to provide a qualitative sense of the outliers indicated by the scores.

Also, we illustrate how the BN representation leads to an interpretable ranking. Specifically,

we employ a feature-wise decomposition of the score combined with a drill down analysis:

1. Find the node fi that has the highest ELD i divergence score for the outlier object.

2. Find the parent-child combination that contributes the most to the ELD i score for

that node.

3. Decompose the ELD score for the parent-child combination into feature and mutual

information component.

We present strong associations—indicated by the ELD ’s mutual information component—

in the intuitive format of association rules.

Strikers vs. Goalies ELD separates goalies from strikers better than the other methods.

In real-world data, a rare object may be a within-class outlier, i.e., highly anomalous even

within its class. In an unsupervised setting without class labels, we do not expect an outlier

score to distinguish such an in-class outlier from outliers outside the class. An example is the

striker Edin Dzeko. He is a highly anomalous striker who obtains the top ELD divergence

score among both strikers and goalies. His ELD score is highest for the Dribble Efficiency

feature. The highest ELD score for that feature occurs when Dribble Efficiency is low,

and its parents have the following values: Shot Efficiency high, Tackle Efficiency medium.

Looking at the single feature divergence, we see that Edin Dzeko is indeed an outlier in the

Dribble Efficiency subspace: His dribble efficiency is low in 16% of his matches, whereas a
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randomly selected striker has low dribble efficiency in 50% of his matches. Thus, Edin Dzeko

is an unusually good dribbler. Looking at the mutual information component of ELD , i.e.,

the parent-child correlations, for Edin Dzeko the confidence of the rule

ShotEff = high,TackleEff = medium → DribbleEff = low

is 50%, whereas in the general striker class it is 38%. The LR divergence also ranks Edin

Dzeko as unusual. But because it allows feature and joint information divergence to cancel,

his rank is somewhat lower. The likelihood metric does not recognize him as unusual at all.

The next two outliers according to ELD are goalies Paul Robinson and Michel Vorm.

Their rank is based only on feature divergence, with zero mutual information distinction.

The maximum feature divergence is obtained by the SavesMade feature. This makes intu-

itive sense since strikers basically never make saves. In other words, feature divergence with

respect to SavesMade is a good way to distinguish goalies from strikers.

The ELD divergence also ranks Paul Robinson and Michel Vorm as clear goalies. The

likelihood metric does not recognize Paul Robinson as unusual at all.

Midfielders vs. Strikers The ELD metric separates midfielders from strikers better

than the other methods. The single feature divergence does not discriminate these two

classes of objects. Intuitively, this is because strikers and midfielders are generally similar

with respect to single features.

The decomposition analysis for the top three ELD outliers proceeds as follows. For

the single feature score, Robin van Persie is recognized as a clear striker because of the

ShotsOnTarget feature. It makes sense that strikers shoot on target more often than mid-

fielders. Robin van Persie achieves a high number of shots on targets in 34% of his matches,

compared to 3% for a random midfielder. The mutual information component shows that

he also exhibits unusual correlations. For example, the confidence of the rule

ShotEff = high,TimePlayed = high → ShotsOnTarget = high

is 70% for van Persie, whereas for strikers overall it is 52%.

Wayne Rooney is recognized as a striker for similar reasons, but less clearly because he

achieves a high number of ShotsOnTarget less frequently. The most anomalous midfielder

is Scott Sinclair. His most unusual feature is DribbleEfficiency : For feature divergence, he

achieves a high dribble efficiency 50% of the time, compared to a random midfielder with

30%.
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Drama vs. Comedy As with the other datasets, the ELD metric separates normal

objects from the contrast class better than the other methods. The top outlier rank is

assigned to the within-class outlier BraveHeart . Its most unusual feature is ActorQuality :

In a random drama movie, 42% of actors have the highest quality level 4, whereas for

BraveHeart 93% of actors achieve the highest quality level.

The ELD score identifies the comedies BluesBrothers and AustinPowers as the top out-

of-class outliers. In a random drama movie, 49% of actors have casting position 3, whereas

for AustinPowers 78% of actors have this casting position, and for BluesBrothers 88% of

actors do.

5.8 Conclusion

In this chapter, we presented a new approach for applying Bayes nets to object-relational

outlier detection. The key idea is to learn one set of parameter values that represent class-

level associations, another set to represent object-level associations, and compare how well

each parametrization fits the relational data that characterize the target object. The classic

metric for comparing two parametrized models is their log-likelihood ratio; we refined this

concept to define a new relational log-likelihood distance metric via two transformations:

(1) a mutual information decomposition, and (2) replacing log-likelihood differences by log-

likelihood distances. This metric combines a single feature component, where features are

treated as independent, with a correlation component that measures the deviation in the

features’ mutual information.

In experiments on three synthetic and three real-world outlier sets, the log-likelihood

distance achieved the best detection accuracy except for one dataset. The alternative of

converting the structured data to a flat data matrix via Propositionalization had a negative

impact. Case studies showed that the log-distance score leads to easily interpreted rank-

ings. Overall, our new log-likelihood distance metric provides a promising new approach

for applying machine learning techniques to outlier detection for object-relational data, a

challenging and practically important topic.

There are several avenues for future work. (i) A limitation of our current approach is

that it ranks potential outliers, but does not set a threshold for a binary identification of

outlier vs. non-outlier. (ii) Our divergence uses expected L1-distance for interpretability,

but other distance scores like L2 could be investigated as well. (iii) Extending the expected
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L1-distance for continuous features would be useful.

In summary, outlier metrics based on model likelihoods are a new type of structured

outlier score for object-relational data. Our evaluation indicates that this model-based score

provides informative, interpretable, and accurate rankings of objects as potential outliers.



Chapter 6

Success and Outlierness

In chapter 5 we introduced the ELD metric that quantifies the extent to which the individual

association pattern of a potential outlier deviates from that of the whole population. The aim

of this chapter is to compare the ELD metric with other meaningful metrics for comparing

individuals. The goal is to use the ELD to estimate the value of the individuals and rank

them. An empirical evaluation on soccer and movie data shows a strong correlation between

the ELD score and success metrics: individuals that our metric identifies as unusual tend

to have unusual success.

6.1 Introduction

The appearance of professional soccer statistics websites has made it possible to extend

statistical studies to the sports domain. One of the interesting problems in this domain

is predicting success and providing true estimates of players’ abilities. An intuitive way

to estimate the value of the players is to manually aggregate information about features

of individuals over time and then rank them based on their performance with respect to

those features. For example, we can compare players based on the total number of goals

they have scored or the average of their shot efficiency. However, this comparison may be

unfair to most players because not all players are in the position to shoot or score a goal

(e.g. goalies or defenders). One may argue that defenders (or goalies) have some other

characteristics that are a lot stronger in their group compared to other groups. However,

detecting important and distinctive features of each group of individuals requires domain

knowledge and it is not often an easy task.

78
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Another disadvantage of ranking based on manual aggregation of features is that it causes

loss of information.

In Chapter 4 and 5 we showed the advantage of using a generative model is to learn com-

plex, and at the same time, informative features for individuals. In this chapter we propose

a method to rank individuals which is based on the ELD metric introduced in chapter 5. We

compare the ELD metric to other metrics of success for a given domain. Our reasoning is

that high success is an independent metric that indicates an unusual individual. Therefore,

a correlation between log-likelihood distance and success is an independent validation of the

log likelihood distance and shows that it points to meaningful and interesting outliers.

Approach Individuals are grouped into categories. A class-model Bayesian network (BN)

structure is learned with data for the entire category of the individuals. An individual-

model Bayesian network structured is learned from the individual data. The ELD metric is

computed based on the approach introduced in Chapter 5 and is used to rank the individuals.

Evaluation We analyze two real-world data sets, from the UK Premier League and the

Internet Movie Database (IMDb). Success metrics, such as the player’s salary, provide an

independent score for comparison with the ELD score. The empirical distributions of the

ELD metric show a strong correlation with independent success metrics.

6.2 Preliminary Analysis

The market value of a player is not solely based on the player’s performance and is often

influenced by some other factors, such as the player’s age and nationality.

In this section we study a few of these factors that are known to affect the market value of

soccer players in the literature. We manually collected salary, nationality and age of 120

players of the Premier League in order to investigate the effect of each of these factors on

the success of players.

Fact #1: Some teams tend to pay more: Table 6.1 shows the average salaries of

players of different teams in the Premier League. Some teams have much larger budgets

and are able to pay higher wages compared to less wealthy teams. A player in Manchester

United may not necessarily be performing substantially better than a player in the same

position in Tottenham, while there is a substantial difference between the average salary of
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players in Tottenham and Manchester United. For this reason, we normalize the salaries of

the player in order to decrease this effect.

Fact #2: Player’s nationality has little effect on player’s salary: Previous research

on soccer shows that the nationality of a player sometimes affects his salary, regardless of

his performance [94].

“The phrase ‘Brazilian soccer player’ is like the phrase ‘French chef’ or ‘Tibetan monk.’

The nationality expresses an authority, an innate vocation for the job, whatever the natural

ability.” [63]

We investigated this phenomenon in our domain and showed that it has very little effect

on the player’s market value. Figure 6.1(a) shows the distribution of salaries of the players

across different nationalities.

Team µ(Salary of the players of PL teams in e)

Arsenal 82307.69

Aston Villa 23625.00

Chelsea 88500.00

Everton 44090.91

Fullham 30372.57

Liverpool 66666.67

Manchester City 111076.90

Manchester United 81384.62

New Castle 41000.00

Sunderland 31857.14

Tottenham 65428.57

Table 6.1: Average salary of players in different teams .

Fact #3: Player’s salary increases as age increases: Older players, from ages 30

to 33, tend to earn higher wages compared to other age groups because it takes time to

accumulate fame and experience. A famous older player and a young player may play

equally well, but the famous player may have a higher salary due to his reputation.

For each player salary distribution has a different peak, but it is between 30-33 for most

players [90]. Figure 3.8 shows the salary of the players in different age groups.

Based on the points discussed above, we know that a method that is solely based on

players’ performance will not be 100% successful in ranking the players.



CHAPTER 6. SUCCESS AND OUTLIERNESS 81

0.
00

0.
05

0.
10

0.
15

0.
20

A
fr

ic
a

F
ra

nc
e

Ir
el

an
d

O
th

er

S
ou

th
−

A
m

er
ic

a

S
pa

in

U
ni

te
d 

K
in

gd
om

(a) Salaries of players of different nationalities.

20 22 24 26 28 30 32 34 37

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

age

N
or

m
al

iz
ed

 S
al

ar
y

(b) Salaries of players of different age group.

Figure 6.1: Salary comparison of Premier League Players

6.3 Related Work

6.3.1 Analyzing Sports Data

Analyzing sports data can make a significant difference in scoring players, signing contracts

and preventing injuries. Pei et al.[66] propose a reference-based method that uses relative

degree of density with respect to a fixed set of reference points to calculate the neighbour-

hood density of a data point. They aim to find outstanding players based on two test

settings: 1) The total number of games played, goals scored and shooting percentages. 2)

The total number of points they scored or plus/minus statistics and penalty minus.

Schwartz [90] et al. focused on the valuation of draft order in the SuperDraft. The valu-

ation of draft order was first introduced in the National Football League and proved very

useful to the coaches in trading players. They first estimate career trajectories of players

and then assess the value of the draft position by introducing some performance measure.

They used time played and salary of the player as ground truth in order to validate their

method.
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6.3.2 Ranking system in Sports Domain

Ranking individuals is a useful task for many applications in Information Retrieval, Natural

Language Processing and Data mining. In sports, performance is usually interpreted as a

rating system or ranking system. Ranking players is particularly important in this domain

because teams with lower budgets are usually looking for ways to detect undervalued players

to be able to compete with wealthier teams for lower costs. Lewis et. al [53] used a

quantitative analysis to evaluate the value of baseball players.

In individual sports (e.g. tennis), ranking is relatively straightforward and can be driven

from the results of past tournaments, as it has been done for years by the Association of

Tennis Professionals (ATP). However, this simple framework for ranking has been questioned

and claimed to perform poorly in predicting the results of future games [59]. Other sports

associations, such as those for soccer and cricket, also have official rankings of teams and

players, which is the basis of many important decisions. For example, FIFA’s world ranking

plays an important part in awarding work permits to players outside the European Union

in the Premier League [60]. The problem of ranking teams and players is not trivial and the

need for a better analytical system should not be understated. Although the world ranking

performs poorly in predicting match outcomes, it has been used to determine qualifications

for tournaments [58].

In team sports, rating individuals is a more complex task due to team structure; players

have different positions. Keri et. al have developed a rating system for each speciality in

baseball [41].

The analysis becomes more complicated when the goal is to compare players with dif-

ferent specialities. Goldman et al. investigates the metrics that attempt such an analysis

in baseball and value players regardless of their position [85]. McHale et. al developed an

index to rate players regardless of their playing speciality, based on their contributions to

wining performances [60].

6.4 Correlation with Success

The aim of this section is to compare the ELD metric with other meaningful metrics for

comparing individuals. Our reference metrics are success rankings of individuals selected

for a specific domain, shown in table 6.2. We use the same data as in our other experiments,

as described in chapter 3.
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Success rankings are one of the most interesting features to users. Strong correlations

between the ELD metric and meaningful success metrics provide evidence that the ELD

metric is also meaningful. We measure correlation strength by the standard correlation

coefficient ρ. The coefficient ranges from -1 to 1, where 0 means no correlation and 1 or -1

indicates maximum strength [28].

The observed correlations are remarkable in at least two respects: 1) The strength of

the correlation between the ELD metric and the success ranking are high; coefficients range

from 0.45 to 0.82. 2) We observe this phenomenon across different domains, different types

of individuals and different success metrics.

Dataset Success Metric Min Max Standard Dev. Mean

IMDb Sum of Rating 1 14795 1600.22 1057.58

Soccer-Player TimePlayed 5.0 3420 1015.69 1484.0

Soccer-Player Normalized Salary 0.007 0.28 0.620 0.100

Soccer-Player Sum of Shot Efficiency 0 82 9.87 6.53

Soccer-Team Standing 1.0 20 5.91 10.5

Table 6.2: Success metrics and their distributions.

For a population with a diverse set of skills and resources, being different from the generic

class can be interpreted as both exceptionally better or worse than normal population. In

the domains we study in this data, we found that higher ELD scores indicate exceptionally

good individuals. Our interpretation of this positive correlation between ELD and success

is that our domains featured skilled individuals, such that the average is already quite

successful. For example, in the Premier League we expect most players to be in the range of

good players. Therefore, deviating from the rest of the population is a signal for detecting

exceptionally good players. Our ELD-success scatterplots below provide empirical evidence

for this interpretation; we typically see a large cluster of individuals around the origin,

meaning that their success is normal and their ELD score is low.

6.4.1 Methodology

We report the correlations between the ELD metric and metrics of success for a specific

domain. We also focus on some unusually successful individuals as case studies. In con-

sidering the correlation between ELD and success, it is useful to investigate subgroups of

individuals to ensure an apples-to-apples comparison [87]. For instance, the attributes that

lead to success are different for strikers and goalies. Accordingly, we report correlations for
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Table 6.3: Correlation between ELD metric and success metric of Movies.
Genre Sum of Rating Average of Rating Number of Rating

Action 0.68 0.30 0.72

Drama 0.76 0.32 0.77

Comedy 0.85 0.41 0.84

All Movies 0.56 0.17 0.60

Table 6.4: Correlation between ELD metric and standing of Teams. The best standing is
place 1.

Team Standing

Top Teams -0.71

Bottom Team -0.33

All Team -0.20

subgroups as well as entire classes of individuals.

6.4.2 Correlations between the ELD outlier metric and success

The next three tables summarize the observed correlations between success and ELD met-

rics: Teams in Table 6.4, Players in Table 6.5, Movies in Table 6.3.

Teams

Team Standing The most successful team has Standing=1 and the least successful team

has Standing=20 in the 2011-2012 Season. For the top teams, a very strong negative

correlation emerges between ELD and standing: teams with higher ELD achieve a better

(lower) standing.

Figure 6.2 shows the correlation of ELD with team success metrics in a scatter plot.

Table 6.5: Correlation between ELD metric and success metrics of Players.

Class TimePlayed Salary SavesMade ShotsOntarget Passeff

Strikers 0.76 0.79 NA 0.72 NA

Midfielders 0.73 0.45 NA NA 0.89

Goalies 0.69 NA 0.71 NA NA

All players 0.81 0.56 NA NA NA
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Figure 6.2: Team Standing vs. ELD for the top teams in the Premier League.

The top two teams, Manchester City and Manchester United, stand out strongly in terms

of the ELD metric (bottom right corner).

Players

Players Time Played is the total time that a player played over all matches in the

season. This metric was shown to correlate strongly with other success metrics, such as

salary, on MLS soccer data [90]. For each subgroup there is a strong positive correlation

with ELD , meaning that atypical players with higher ELD tend to play more minutes.

Salary is probably the most obvious, and at the same time often the most misleading way

to measure success of the players. Previous studies suggest that salary of the players does

not always follow their performance in many sports, such as baseball and soccer [34, 21].

They show that pay cannot be explained only by past performance and there are other

factors that are hard to quantify and have a great effect on the salaries.

We manually collected the salaries of 120 players that we could find on-line. Table 6.5

and Figures 6.3 and 6.4 show the correlation between ELD and this success metric. The

correlation is high, especially for Strikers. We discuss the relatively weaker salary correlation

for midfielders in more detail below.
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Shots on Target applies to strikers only. This is defined as any shot attempt that would,

or does, enter the goal if left unblocked. We record the total number of these shots over all

matches of the strikers only. This metric was shown to correlate strongly with ELD (see

Table 6.5, Figure 6.3(b)).

Figure 6.3 plots ELD against striker success metrics. We observe a large cluster around

the origin, which points to a large base of normal strikers with both salaries and low ELD

scores.

Saves Made applies to goalies only; it is defined as the total number of saves that goalies

made over all the matches. This metric shows a strong correlation with ELD as well (see

Table 6.5, Figure 6.4(b)).

Figure 6.4 shows the correlation of ELD with goalie success metrics in a scatter plot.

Goalies do not vary much in terms of the time they play. Wayne Hennessey has the highest

number of Saves Made and also an unusually high ELD score, although not the highest.

Midfielder Salary We omit a scatterplot for midfielder salary vs. ELD because it is less

informative due to the weaker correlation (0.45). To investigate the reason for the weaker

correlation, we chose two midfielders: 1) Stephane Sessegnon who has been ranked second

in the ELD ranking but does not draw a large salary and 2) Steven Gerrard is a very well

known player and ranked second in the Salary ranking, but according to the ELD score, he

has been ranked 21. Based on domain knowledge, we chose some of the features from the

raw data that are relevant to midfielder performance and compared the feature statistics

for these two players. Table 6.6 shows the details of their appearances in different matches.

Sessegnon scored higher than Gerrard in three out of the four categories (Passes and Time

Played). However, his salary was much lower than Gerrard’s. This is an example of how

weak the correlation is between salary and the observed box scores, which is the basis for

the ELD metric.

Name Team age
Salary

Ranking
ELD

Ranking
Time

Played
Unsuccessful

Passes
Successful

Long Passes
Successful

corners

Steven Gerrard Liverpool 31 2 21 1212 min 244 52 25

Stephane Sessegnon Sunderland 26 22 2 3133 min 231 82 15

Table 6.6: Comparison of two midfielders.
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(a) Strikers: Salary vs ELD .
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(c) Strikers: Time played vs ELD .

Figure 6.3: Correlations in the strikers population
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Figure 6.4: Correlations in the goalies population

Movies

Movie Sum of Ratings is the number of user ratings of a movie. Table 6.3 shows a

high correlation with the ELD metric. The highest correlation obtained is for the Comedy

genre (0.85). The correlation between a movie and the sum of its ratings is equally strong,

but the correlation with its average rating is much weaker. Thus, the ELD score is mainly

related to how many users have rated the movie rather than with how they have rated it.

The number of ratings is a meaningful success metric as it indicates the number of people

who have gone to see a movie.

Figure 6.5 shows the correlation of ELD with movie success metrics in a scatter plot. We

again observe a large cluster of movies around the origin. For drama and comedy movies,

the top rated movies are (“American Beauty” resp. “Being John Malkovich”); these also

stand out in the ELD metric.

6.5 Conclusion

In this chapter we used the ELD metric, that was introduced in chapter 5, to rank the

individuals. We compared the ELD metric to other metrics of success for a given domain.
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(a) Action movies: sum of ratings by users vs ELD .
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(b) Comedy movies: sum of ratings by users vs ELD
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Figure 6.5: Correlation in the movies population
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In our experimental results we showed that the ELD metric correlates with success metrics,

to a surprising degree, across different domains and classes of individuals. Since high success

is an independent metric that indicates an unusual individuals, this correlation shows that

ELD marks meaningful and interesting outliers.

We investigated some independent factors that affect the success of individuals in the

Premier League. We showed that there are factors other than the performance of players

that affect their ranking and for this reason the methods that are solely based on evaluation

of the performance of players can never achieve 100% accuracy in predicting the ranking.



Chapter 7

Summary and Conclusion

Outlier detection is an important task in data mining and has many applications in areas

such as health care, security and finance. While many outlier analysis techniques have been

developed for i.i.d. propositional data, there are not many methods designed for structured

data. In this dissertation, we developed two model-based outlier detection methods for

object-relational data model.

In Chapter 4 we developed a pipeline propositionalization approach where the informa-

tion from multiple data tables is summarized in a single data table. We utilized Markov Logic

Network learning for this task. In an empirical comparison with the baseline wordification

approach of enumerating all conjunctive formulas up to length 2, Markov Logic proposi-

tionalization showed several advantages: 1) The set of formulas learned was substantially

smaller, leading to smaller data tables and faster outlier detection. 2) The formulas learned

were longer, representing more complex relational patterns. 3) For a fixed single-table outlier

analysis method, the average detection accuracy was higher.

In Chapter 5 we presented a new approach for applying Bayes nets to object-relational

outlier detection. The key idea is to learn one set of parameter values that represent class-

level associations, another set to represent object-level associations, and compare how well

each parametrization fits the relational data that characterize the target object. The classic

metric for comparing two parametrized models is their log-likelihood ratio; we refined this

concept to define a new relational log-likelihood distance metric via two transformations:

(1) A mutual information decomposition, and (2) replacing log-likelihood differences by log-

likelihood distances. This metric combines a single feature component, where features are

treated as independent, with a correlation component that measures the deviation in the

91



CHAPTER 7. SUMMARY AND CONCLUSION 92

features’ mutual information.

In Chapter 6 we used the ELD metric, that was introduced in Chapter 5, to rank the

individuals. We compared the ELD metric to other metrics of success for a given domain. In

our experimental results we showed that the ELD metric corretelates to a surprising degree

with success metrics across different domains and classes of individuals. Since high success

is an independent metric that indicates an unusual individual, this correlation shows that

ELD marks meaningful and interesting outliers.
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