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Abstract

In many applications, the governing PDE to be solved numerically will contain a stiff
component. When this component is linear, an implicit time stepping method that is unen-
cumbered by stability restrictions is preferred. On the other hand, if the stiff component is
nonlinear, the complexity and cost per step of using an implicit method is heightened, and
explicit methods may be preferred for their simplicity and ease of implementation. In this
thesis, we analyze new and existing linearly stabilized schemes for the purpose of integrating
stiff nonlinear PDEs in time. These schemes compute the nonlinear term explicitly and, at
the cost of solving a linear system with a matrix that is fixed throughout, are uncondition-
ally stable, thus combining the advantages of explicit and implicit methods. Applications
are presented to illustrate the use of these methods.

Keywords: Stiff nonlinear PDEs; time stepping; stability; IMEX methods; exponential
time differencing
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Chapter 1

Introduction

In this thesis, we propose and analyze some new linearly stabilized schemes for the time
integration of stiff nonlinear PDEs. A linearly stabilized scheme of first order has been
used in a number of areas, with the first known example being from a paper by Douglas
and Dupont [8] where this technique was used for the solution to a variable coefficient heat
equation on rectangular domains. In subsequent years, the idea has been rediscovered by
Smereka [31], and Eyre [10], who first used the name “linearly stabilized”. Others have
gone on to apply these schemes to Hele-Shaw flows, interface motion, image processing, and
solving PDEs on surfaces [10, 25, 11, 26, 19].

In each of the references mentioned in the previous paragraph, the authors have suc-
ceeded in implementing only a first order time stepping method. Recently in [9], Duchemin
and Eggers consolidated the approach and produced a second order linearly stabilized
scheme they refer to as the explicit-implicit-null (EIN) method. Their method attains
second order accuracy by extrapolating the first order results. Moreover, they identified
that the key principle for the success of any linearly stabilized scheme is unconditional sta-
bility. Indeed, a significant section of their paper is devoted to showing that their method
is unconditionally stable under only a mild condition on a parameter that is introduced.

Our derivations for new linearly stabilized schemes also begin by ensuring that the
newly derived schemes are in fact unconditionally stable. The techniques we employ in our
stability analysis are those of a standard linear stability analysis and are reviewed first. A
brief discussion of order of accuracy and Richardson extrapolation are also included before
an overview of the thesis is given.
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1.1 Linear Stability Analysis

1.1.1 Stability and the scalar test equation

Linear stability analysis is a method of analysis predicated on requiring that the numerical
solution replicates properties inherent in the exact solution to the test equation,

u′ = λu, λ < 0. (1.1)

Over one time step, the exact solution is

u(tn + ∆t) = eλ∆tu(tn). (1.2)

Observe that, in general, the exact solution satisfies∣∣u(tn + ∆t)
∣∣∣∣u(tn)

∣∣ =
∣∣∣eλ∆t

∣∣∣ < 1, for all λ∆t < 0. (1.3)

The analogous property for numerical methods is what we will refer to as linear stability.
For example, applying the forward Euler method to the test equation (1.1), yields

un+1 − un

∆t = λun ⇐⇒ un+1 = (1 + λ∆t)︸ ︷︷ ︸
=ξF E

un, (1.4)

where un is an approximation to u(tn). Then imposing |ξFE | < 1, we get

|1 + λ∆t| < 1 ⇐⇒ −2 < λ∆t < 0, (1.5)

which implies that ∆t < 2/ |λ| must be satisfied for stability. As the time step-size, ∆t, is
constrained, we say forward Euler is conditionally stable.

As another example, we may apply the backward Euler method to the test equation.
This yields

un+1 − un

∆t = λun+1 ⇐⇒ un+1 = 1
1− λ∆t︸ ︷︷ ︸

=ξBE

un. (1.6)

This time, imposing |ξBE | < 1 adds no new constraint to the time step-size. When no
additional constraints are imposed on the time step-size, we say the numerical method is
unconditionally stable.

More generally, to determine the stability constraint of any one-step method, we apply
the method to the test equation, rearrange as un+1 = ξ(λ∆t)un, and impose

∣∣ξ(λ∆t)
∣∣ < 1.

The quantity ξ(λ∆t) is commonly referred to as the amplification factor, and the region,

2



{λ∆t ∈ C |
∣∣ξ(λ∆t)

∣∣ < 1}, the stability region. A numerical method is unconditionally
stable if its stability region contains the entire negative real axis. It is conditionally stable
otherwise.

1.1.2 Stability contours

A stability contour plot is a graphical device for understanding the stability constraint of
a method. It offers a way for us to verify calculations done analytically, or to visualize the
stability region of a numerical method where an analytic solution is infeasible. Stability
contour plots in this thesis all show contours of the amplification factor ξ(λ∆t) plotted over
a subset of the region {λ∆t ∈ C | Im(λ∆t) ≥ 0}, with a focus on the left half plane and the
negative real line. Fig. 1.1 shows stability contours of the forward Euler and the backward
Euler method. Note that the regions are symmetric with respect to the real axis and thus
only Im(λ∆t) ≥ 0 will be plotted.
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Figure 1.1: On the left is the stability contour plot for forward Euler. The stability region is
the interior of the 1-contour. On the right is the stability contour plot for backward Euler.
The stability region is the region outside the 1-contour.

1.1.3 Relation to stiff PDEs

Recall that our motivation is to develop methods suited to the time integration of stiff
nonlinear PDEs. So how does the time step restriction of a numerical method derived from
application to the test equation relate to time step selection for a stiff nonlinear PDE? The
relation is as follows. Suppose the PDE has been discretized in space and we are to advance
the solution of the resulting large system of ODEs, u′ = F (u), by one time step, i.e. advance
the numerical solution un to un+1. Over just one time step, it may be reasonable to consider
the linearization,

u′ = un + ∂F

∂u

∣∣∣∣∣
u=un

(u− un) = ū+A(u− un),

3



or setting v = u − un, v′ = Av. Further assuming that A is diagonalizable, A = T−1DT ,
where D = diag(λ1, . . . , λN ), we get

v′ = T−1DTv ⇐⇒ (Tv)′ = D(Tv) (1.7)

⇐⇒ (Tv)′k = λ(Tv)k, k = 1, . . . , N. (1.8)

In other words, under appropriate conditions, it may be fair to analyze the dynamics of the
nonlinear system by inspecting the eigenvalues of the Jacobian from its linearized state. By
requiring that the computation is stable for each eigenmode, the time step constraint will
then be dictated by the largest absolute eigenvalue.

For instance, suppose we found, from a linearized system of ODEs, the eigenvalues to be
2(cos(k∆x)− 1)/∆x2, k = 1, . . . , N . Then the largest absolute eigenvalue can be bounded
as ∣∣∣∣ 2

∆x2 (cos(k∆x)− 1)
∣∣∣∣ ≤ 4

∆x2 , (1.9)

and stable time step-sizes for forward Euler must then satisfy ∆t < ∆x2/2. On the other
hand, unconditionally stable methods such as backward Euler, maintain stability irrespec-
tive of the grid size ∆x.

That unconditionally stable methods maintain stability irrespective of the grid size is
crucial for the solution to stiff problems. In Chapter 5, we will solve problems in 2D
and 3D where the largest absolute eigenvalues scale like O(h2) and O(h4), where h is
the spatial grid size. In those cases, a conditionally stable method such as forward Euler
requires ∆t = O(hk), k = 2 or 4, and would give unnecessarily fine temporal resolution.
More critically, this would greatly increase the cost of computation, or else, to combat this
deficiency, have low spatial resolution.

1.2 Order of Accuracy

If two competing numerical methods, consume similar levels of resources (e.g., CPU time,
or memory) but one gives more accurate approximations, then likely it would be deemed
superior to the other.

For a time stepping method applied to the initial value problemu
′ = F (u), 0 ≤ t ≤ T,

u(0) = u0,
(1.10)

4



with step-size ∆t, we will say that the method is convergent of order k (or kth order
accurate) if the global error behaves as

∥∥un − u(tn)
∥∥ = O(∆tk), as ∆t→ 0. (1.11)

This points to a preference for high order accurate methods. Intuitively, in order to
achieve some desired level of accuracy, a low order method will require a finer time step-size
than a method of higher order accuracy. Then if each time step had comparable costs, the
higher order method will require less resources overall to compute the solution.

Finally, we note that familiar methods such as forward Euler and backward Euler are
first order accurate.

1.2.1 Richardson extrapolation

One of the methods under consideration relies on Richardson extrapolation, so we include
here a brief note on this technique. A comprehensive text discussing its validity can be
found in [28].

Suppose we are approximating some quantity, q, via a rule q̄ that is dependent on the
step-size h and that the error is of the form

q − q̄(h) = C1h
k + C2h

k+1 + · · · . (1.12)

Observe that if we evaluate both q̄(h) and q̄(h/2), then we can eliminate the leading order
error term,

q − q∗(h) = q − 2kq̄(h/2)− q̄(h)
2k − 1 = Chk+1 + · · · , (1.13)

to achieve higher order accuracy.

1.3 Overview

In Chapter 2, we formally introduce the notion of linear stabilization. Motivation for this
technique is supplied by the need to handle a stiff nonlinear PDE describing axisymmetric
mean curvature flow and leads us to the well-known first order linearly stabilized scheme
and the EIN method of Duchemin and Eggers. Following that, the framework in which we
analyze the stability of linearly stabilized schemes is set.

In Chapter 3 we investigate implicit-explicit (IMEX) linear multistep methods within
the linear stabilization framework. A detailed comparison of the schemes based on IMEX
methods and the EIN method is conducted. Our experiments suggest criteria in addition to
unconditional stability are necessary for practical linearly stabilized schemes. This in turn
eliminates third and higher order multistep-based linearly stabilized schemes from use.

5



In Chapter 4, we explore the use of exponential Runge-Kutta methods to mend this
deficiency. A second order and a fourth order exponential Runge-Kutta method are verified
to exhibit unconditional stability over an unbounded parameter range. However, the error
constant of both these schemes scales unfavourably in p, and this narrows their range of
applicability.

In Chapter 5, application of our linearly stabilized schemes to a number of 2D and 3D
problems is presented. Not surprisingly, our second order schemes offer improvements over
the commonly used first order linearly stabilized scheme. The experiments show that our
schemes provide substantial efficiency improvement yet the complexity of its implementation
is no greater than solving a heat equation with standard implicit methods.

Finally, some concluding remarks are presented in Chapter 6.

6



Chapter 2

Adding Zero, Unconditional
Stability and a Modified Test
Equation

To construct time integration schemes for stiff, nonlinear PDEs, we set out two key design
principles. Firstly, we want to handle the nonlinearity simply and inexpensively. Secondly,
we must be free to select time step-sizes reflecting the accuracy requirement, rather than
step-sizes that are primarily constrained by stability. Linearly stabilized schemes, as we will
see, adhere to both principles and are remarkably easy to implement.

2.1 Prototype 1D Problem

As a prototype, let us consider the following 1D axisymmetric mean curvature motion
problem [9]:

ut = uxx
1 + u2

x

− 1
u
, 0 < x < 10, t > 0, (2.1a)

with initial and boundary conditions

u(x, 0) = 1 + 0.10 sin
(
π

5x
)
, (2.1b)

u(0, t) = u(10, t) = 1. (2.1c)

A time evolution of this problem is plotted in Fig. 2.1.
The presence of the uxx guarantees that (2.1) is stiff, suggesting that an implicit time

stepping scheme would prove more efficient. However, having to additionally handle the
factor of (1 + u2

x)−1 complicates the linear algebra. Rather than a static linear system for
which we could preprocess and solve efficiently, at each time step it is necessary to solve a

7
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Figure 2.1: Time evolution for solution to (2.1). The black curve is the initial state. The
gray dashed curve at the bottom is the final state at T = 0.35.

nonlinear system. Thus we are presented with a scenario where neither an implicit nor an
explicit approach proves particularly palatable.

2.1.1 A first order linearly stabilized scheme

As demonstrated in Duchemin and Eggers [9] as well as in an earlier paper by Smereka [31],
an efficient method for handling (2.1) is to add and subtract a linear Laplacian term to the
right-hand side,

ut = uxx
1 + u2

x

− 1
u
− uxx︸ ︷︷ ︸

N (u)

+ uxx︸ ︷︷ ︸
Lu

, (2.2)

and then time step as

un+1 − un

∆t = N (un) + Lun+1. (2.3)

Since this is our first instance of a linearly stabilized scheme, we remark on some of the
key properties. We first note that in the continuous case, the modified equation (2.2) is
unchanged from (2.1a). Next, note in the discrete case (2.3), the nonlinear term is evaluated
explicitly, and ignoring the Lun+1 term, it is a forward Euler step. Over on the linear term,
the implicit solve in this time stepping procedure is a backward Euler step. This method of
time stepping is known as implicit-explicit (IMEX) or semi-implicit Euler [2, 31]. As it is
a combination of explicit and implicit Euler steps, the accuracy is first order. We also note

8



that the simplicity of the implicit term means that the related linear algebra is efficient
and easy to implement. Lastly, as a result of the implicit solution to the Lu term, we may
expect this scheme to have improved stability compared to a purely explicit scheme, and
indeed this is the case. Discretizing with second order centred differences in space, we will
show next that this scheme is unconditionally stable.

2.1.2 A von Neumann stability analysis

With the prescribed spatial-temporal discretization, we have at the interior nodes,

un+1
j − unj

∆t = 4
unj+1 − 2unj + unj−1

4∆x2 + (unj+1 − unj−1)2 −
1
unj
−
unj+1 − 2unj + unj−1

∆x2 +
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2 .

(2.4)

The von Neumann stability analysis then proceeds by writing the numerical solution as the
exact solution to the difference equation (2.4) perturbed by a single Fourier mode,

unj = ū(j∆x, n∆t) + ξneikj∆x = ūnj + ξneikj∆x. (2.5)

Recording the result term-by-term, we have

un+1
j − unj

∆t =
ūn+1
j − ūnj

∆t + (ξ − 1)ξneikj∆t

∆t , (2.6a)

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2 =
ūn+1
j+1 − 2ūn+1

j + ūn+1
j−1

∆x2 + 2
∆x2

(
cos(k∆x)− 1

)
ξn+1eikj∆x, (2.6b)

unj+1 − 2unj + unj−1
∆x2 =

ūnj+1 − 2ūnj + ūnj−1
∆x2 + 2

∆x2
(
cos(k∆x)− 1

)
ξneikj∆x, (2.6c)

1
unj

= 1
ūnj + ξneikj∆x

≈ 1
ūnj
− ξneikj∆x 1

(ūnj )2 , (2.6d)

9



and

4
unj+1 − 2unj + unj−1

4∆x2 + (unj+1 − unj−1)2 = 4
ūnj+1 − 2ūnj + ūnj−1 + 2(cos(k∆x)− 1)ξneikj∆x

4∆x2 + [ūnj+1 − ūnj−1 − 2i sin(k∆x)ξneikj∆x]2

= 4
2(cos(k∆x)− 1)[ ū

n
j+1−2ūn

j +ūn
j−1

2(cos(k∆x)−1) + ξneikj∆x]

4∆x2 + (2i sin(k∆x))2[ ū
n
j+1−ū

n
j−1

2i sin(k∆x) − ξneikj∆x]2

≈ 4
ūnj+1 − 2ūnj + ūnj−1

4∆x2 + (ūnj+1 − ūnj−1)2

+ 8(cos(k∆x)− 1)ξneikj∆x 1
4∆x2 + (ūnj+1 − ūnj−1)2

− 8i sin(k∆x)ξneikj∆x(ūnj+1 − ūnj−1)(ūnj+1 − 2ūnj + ūnj−1)

≈ 4
ūnj+1 − 2ūnj + ūnj−1

4∆x2 + (ūnj+1 − ūnj−1)2

+ 2
∆x2 (cos(k∆x)− 1)ξneikj∆x 1

1 + (D1ūnj )2 ,

(2.6e)

where D1ū
n
j = (ūnj+1 − ūnj−1)/(2∆x). Combining, (2.6) simplifies to

ξ − 1
∆t = 2

∆x2
cos(k∆x)− 1
1 + (D1ūnj )2 + 1

(ūnj )2 + 2
∆x2 (cos(k∆x)− 1)(ξ − 1), (2.7)

from which we can then isolate the amplification factor,

ξ = 1 + ∆t
2

∆x2
cos(k∆x)−1
1+(D1ūn

j )2 + 1
(ūn

j )2

1− 2∆t
∆x2 (cos(k∆x)− 1)︸ ︷︷ ︸

=w

. (2.8)

In the next steps, we will show |ξ| < 1 for all ∆t > 0, i.e. stability is unconditional. We
show the equivalent statement −2 < w < 0. First, w < 0. As the denominator is positive,
w > 0 will hold true so long as the numerator is negative,

2
∆x2

cos(k∆x)− 1
1 + (D1ūnj )2 + 1

(ūnj )2 < 0 ⇐⇒
(

∆x
ūnj

)2

<
2(1− cos(k∆x))

1 + (D1ūnj )2 . (2.9)

This last relation is satisfied on the assumption that ∆x � ūnj . Next, we examine the
numerator of w + 2,

2∆t
∆x2

cos(k∆x)− 1
1 + (D1ūnj )2 + ∆t

(ūnj )2 + 2− 4 ∆t
∆x2 (cos(k∆x)− 1)

= 2 ∆t
∆x2 (cos(k∆x)− 1)

(
1

1 + (D1ūnj )2 − 2
)

+ 2 + ∆t
(ūnj )2 .

(2.10)
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Since each term is positive without restriction, we have that w+ 2 > 0, and thus |ξ| < 1 for
all ∆t > 0.

2.1.3 Second order by Richardson extrapolation

As stated at the outset, the time stepping procedure in (2.3) is only first order. The work
of Duchemin and Eggers [9] (and as was suggested but not implemented in [31]) extends
the method to second order by Richardson extrapolation. Moreover, they generalized the
approach with a free parameter, p, i.e.,

ut = uxx
1 + u2

x

− 1
u
− puxx + puxx, (2.11)

and derived restrictions to p on the condition that the resulting scheme be unconditionally
stable. With the semi-implicit Euler approach, they found p ≥ 0.5/(1 + (D1ū

n
j )2) to be

sufficient. With the additional Richardson extrapolation, the restriction is p ≥ (2/3)/(1 +
(D1ū

n
j )2).

2.2 A Modified Test Equation

This method of linear stabilization would be extremely cumbersome if in each case we had
to perform a von Neumann analysis to determine the stability. Thankfully, there is an
alternative. To begin, let us now consider the more general problem, u′ = F (u), which
may be from a spatial discretization of some nonlinear PDE, and we assume F (u) is a stiff,
nonlinear term. We can modify, in a way analogous to (2.2), by subtracting and adding a
linear term that “resembles” F (u),

ut = (F (u)− pLu)︸ ︷︷ ︸
N (u)

+ pLu︸︷︷︸
Lu

, (2.12)

and demand unconditionally stable time stepping. This last request we now address.
To progress, we abandon (2.12) and instead examine a related, but simplified scenario

that we will refer to as the modified test equation:

u′ = (1− p)λu+ pλu, where λ < 0, p > 0. (2.13)

In (2.13), the quantity λ captures the character of F (e.g. the eigenvalues of the Jacobian
of the linearized F ), and the quantity pλu represents the linear component that closely
resembles F (u). Note that when p = 0, the modified test equation reduces to the standard
test equation, u′ = λu.

We will discuss next the stability properties of three time stepping methods as applied
to the modified test equation (2.13).

11



2.2.1 Forward Euler

Forward Euler is a first order time stepping method that treats the right-hand side explicitly.
Application to (2.13) is therefore no different than to the standard test equation. Thus there
is no hope of unconditional stability.

2.2.2 Linearly stabilized semi-implicit Euler

Semi-implicit Euler time stepping was demonstrated on the 1D curvature motion problem
(2.1) via (2.2) and (2.3), and its stability further analyzed [31, 9]. In the case of the modified
test equation, we identify N (un) = (1− p)λun and Lun+1 = pλun+1, to get

un+1 − un

∆t = (1− p)λun + pλun+1 ⇐⇒ un+1 =
(

1 + λ∆t
1− pλ∆t

)
︸ ︷︷ ︸

=ξE

un. (2.14)

Enforcing stability, i.e. |ξE | < 1, for all λ∆t < 0, we find

|ξE | < 1 ⇐⇒ −2 < λ∆t
1− pλ∆t < 0 ⇐⇒ p > 0 and (2p− 1)λ∆t < 2. (2.15)

Thus unconditional stability is guaranteed if p ≥ 1/2.
Going forward, we shall refer to this scheme as SBDF1.

2.2.3 Explicit-implicit-null

In [9], Duchemin and Eggers extended the SBDF1 approach to second order by using
Richardson extrapolation, and they referred to their methodology as explicit-implicit-null
(EIN). For their method, the amplification factor, ξEIN , can be expressed in terms of ξE ,

ξEIN = 2ξ2
E(∆t/2)− ξE(∆t) = 1 +

z
(
p(3p− 2)z2 + 2(1− 4p)z + 4

)
(1− pz)(2− pz)2︸ ︷︷ ︸

=w

, (2.16)

where z = λ∆t. Similar to before, we enforce |ξEIN | < 1, or equivalently −2 < w < 0, for
all z < 0 to derive a restriction on p. We first observe that since p > 0, the denominator
of w is positive for all z < 0. Thus a necessary condition is 3p − 2 > 0 ⇐⇒ p > 2/3, as
we require the quadratic in the numerator to be positive for all z < 0. Further, the roots
of that quadratic are positive whenever they are real,

1
2p(3p− 2)

(
2(4p− 1)± 2

√
(4p− 1)2 − 4p(3p− 2)

)
> 0. (2.17)
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Therefore, p > 2/3 is necessary and sufficient for w < 0. Next, we show w + 2 > 0. The
numerator of w + 2 can be simplified to

−p(2− 3p+ 2p2)z3 + (2− 8p+ 10p2)z2 + 4(1− 4p)z + 8. (2.18)

The coefficients of the powers of z have the property

[z] = 4(1− 4p) > 0 whenever p > 1/4,

[z2] = 2− 8p+ 10p2 > 0 since its discriminant 82 − 4(2)(10) < 0,

[z3] = −p(2− 3p+ 2p2) > 0 since its discriminant (−3)2 − 4(2)(2) < 0,

for all z < 0, thus guaranteeing the numerator is positive. And since the denominator, as
stated previously, is positive, we are guaranteed w+ 2 > 0, and thus unconditional stability
is guaranteed if p > 2/3.

Remark 1. It is perhaps more faithful to write the restrictions as pλ/λ > 2/3 rather than
simply p > 2/3, as it is necessarily the ratio of the two that must satisfy the restriction, and
not the parameter p. This distinction is vital for any problem beyond a simple test equation,
where the largest absolute eigenvalue of the nonlinear operator, λF , and the largest absolute
eigenvalue of the linear operator, λL, may follow the same scaling, e.g. λF , λL = O(∆x−2),
but the actual values may be far apart, e.g. λF ≈ 100λL.

Remark 2. What we now understand is that in order to linearly stabilize effectively, we
need the ratio of the eigenvalues to meet a specific bound. This bound, if we assume a
fixed and reasonable choice of a linear operator L, however, is specific to the time stepping
procedure, and is met by choosing a sufficiently large value of p.

Remark 3. Finally, we must mention that this provides us with a simple avenue to selecting
p without a von Neumann analysis, as the latter in many cases may be infeasible. For
example, the analysis in (2.6) reveals that

λF = 2
∆x2

cos(k∆x)− 1
1 + (D1ūnj )2 and λL = 2

∆x2 (cos(k∆x)− 1). (2.19)

So then to apply, e.g. EIN, to (2.11) with centred differences, we would select p to satisfy

2
3 <

pλL
λF

= p(1 + (D1ū
n
j )2) ⇐⇒ p >

2
3(1 + (D1ū

n
j )2)−1. (2.20)

2.3 Numerical Results

We present in this section some numerical tests to support our claims.
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2.3.1 Stability contours

Stability contour plots (see Section 1.1.2) are shown in Figs. 2.2 and 2.3 as a verification of
the earlier analysis of SBDF1 and the EIN method. In the first case, we found the parameter
restriction to be p ≥ 0.5, and this is in agreement with Fig. 2.2. When we set p = 0.45, the
stable range along the negative real axis is clearly bounded. But at p = 0.50 and greater,
its stability region includes the entirety of the negative real axis.
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Figure 2.2: Stability contours for SBDF1 at various p

The same is demonstrated for the EIN method in Fig. 2.3. Again we see that below the
derived threshold, the stability region is bounded. But beyond that, the stability region
contains the entire negative real axis.

2.3.2 Numerical convergence test

The convergence of SBDF1 and EIN are demonstrated next on (2.1) with (2.2) in place of
(2.1a). We solve to time T = 0.35 with N = 2048 spatial grid nodes. As a reference solution,
we use an explicit third order Runge-Kutta method with time step-size ∆t = 1.46× 10−5.
(Typical explicit methods demand step-sizes comparable for stability.) With the linearly
stabilized schemes, we will solve (2.1) with step-sizes as large as ∆t = 2.09× 10−2. We
show the max norm relative error.

Results of the numerical convergence study are shown in Fig. 2.4. Both schemes converge
with the expected order of accuracy. No issues with stability are observed.
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Figure 2.3: Stability contours for EIN at various p.
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Figure 2.4: Result of numerical convergence study to (2.1) with SBDF1 and EIN. Values
p = 0.50 and p = 0.70 were chosen for SBDF1 and EIN respectively.
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Chapter 3

IMEX Linear Multistep Methods

For equations whose right-hand side is comprised of a stiff linear component and a nonstiff
nonlinear part, a popular class of methods to apply are the implicit-explicit linear multistep
methods1. The simplest of these is the semi-implicit Euler – forward Euler to the nonlinear
component and backward Euler to the linear, stiff component – a scheme that we reviewed
in Chapter 2.

In this chapter, we investigate the use of IMEX methods within the linear stabilization
framework. Implicit solution of the added linear term provides the needed stability, and
the remaining terms, including the stiff nonlinear term, are solved explicitly.

3.1 IMEX Formulas

In [2], IMEX schemes up to order four are investigated and a select number are singled
out for their extensive use in the literature or for desired properties such as strong high
frequency damping. As we are familiar with the first order variant, we begin by listing the
second order methods of interest. These, and the higher order variants, are presented as
applied to the ODE

u′ = f + g,

where f we identify as the nonlinear/nonstiff component and g the stiff linear component.
Second order methods
CNAB:

un+1 − un

∆t = 3
2f

n − 1
2f

n−1 + 1
2(gn+1 + gn), (3.1)

1We will refer to these simply as IMEX methods.
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mCNAB:

un+1 − un

∆t = 3
2f

n − 1
2f

n−1 + 9
16g

n+1 + 3
8g

n + 1
16g

n−1, (3.2)

CNLF:

un+1 − un−1

2∆t = fn + 1
2(gn+1 + gn−1), (3.3)

SBDF2:

3un+1 − 4un + un−1

2∆t = 2fn − fn−1 + gn+1. (3.4)

Third order methods
SBDF3:

1
∆t

(11
6 u

n+1 − 3un + 3
2u

n−1 − 1
3u

n−2
)

= 3fn − 3fn−1 + fn−2 + gn+1. (3.5)

Fourth order methods
SBDF4:

1
∆t

(25
12u

n+1 − 4un + 3un−1 − 4
3u

n−2 + 1
4u

n−3
)

= 4fn − 6fn−1 + 4fn−2 − fn−3 + gn+1.

(3.6)

In the next section, we will apply these IMEX schemes to the modified test equation to
determine for each scheme the range of p suitable for linear stabilization.

3.2 Analysis of the Amplification Polynomials

Let us restate here the modified test equation and the basic assumptions we make. The
modified test equation is

u′ = (1− p)λu+ pλu, where λ < 0, p > 0.

The goal is, for each IMEX scheme, to identify the restriction on the parameter p such that
when satisfied, we may freely choose the time step-size without being subject to a stability
constraint.
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3.2.1 Schur and von Neumann polynomials

The resulting polynomial from applying an nth order IMEX method to the modified test
equation will be a degree n polynomial in the amplification factor, ξ. The tool of choice for
analyzing these amplification polynomials is the theory of von Neumann polynomials [32,
Chapter 4]. Below we give the relevant definitions and theorems.

Definition 3.1. The polynomial φ is a Schur polynomial if all its roots, rq, satisfy
∣∣rq∣∣ < 1.

Definition 3.2. The polynomial φ is a von Neumann polynomial if all its roots, rq, satisfy∣∣rq∣∣ ≤ 1.

Definition 3.3. The polynomial φ is a simple von Neumann polynomial if φ is a von
Neumann polynomial and its roots on the unit circle are simple roots.

Definition 3.4. For any polynomial φ(ξ) =
∑n
j=0 ajξ

j , we define the polynomial φ∗ by
φ∗(ξ) =

∑n
j=0 a

∗
n−jξ

j , where ∗ on the coefficient denotes the complex conjugate.

Definition 3.5. For any polynomial φn(ξ) =
∑n
j=0 ajξ

j , we define recursively the polyno-
mial φn−1 by

φn−1(ξ) = φ∗n(0)φn(ξ)− φn(0)φ∗n(ξ)
ξ

. (3.7)

Theorem 3.6. φn is a simple von Neumann polynomial if and only if either

(a)
∣∣φn(0)

∣∣ < ∣∣φ∗n(0)
∣∣ and φn−1 is a simple von Neumann polynomial or

(b) φn−1 is identically zero and φ′n is a Schur polynomial.

3.2.2 Amplification polynomials of second order IMEX methods

We start by applying CNAB (3.1) to the modified test equation (2.13). Combined with the
ansatz un = ξn and setting z = λ∆t, we get the amplification polynomial

Φ2(ξ) =
(

1− 1
2zp

)
ξ2 −

(
1 + z

(3
2 − p

))
ξ + 1

2z(1− p). (3.8)

The next series of steps will show that for all z < 0 (i.e. λ∆t < 0,) (3.8) is a simple von
Neumann polynomial if and only if p ≥ 1. We do so by showing that Theorem 3.6 holds for
Φ2. This will imply that the amplification factor satisfies |ξ| < 1 for all λ∆t < 0.

We first give Φ∗2 and Φ1 as defined by the processes in Definitions 3.4 and 3.5,

Φ∗2(ξ) = 1
2z(1− p)ξ

2 −
(

1 + z

(3
2 − p

))
ξ + 1− 1

2zp, (3.9)
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and

Φ1(ξ) =
(

1− zp+ z2
(1

2p−
1
4

))
ξ − 1− z(1− p) + z2

(3
4 −

1
2p
)
. (3.10)

Next, we verify that if p ≥ 1, then
∣∣Φ2(0)

∣∣ < ∣∣Φ∗2(0)
∣∣. Reformulating the expression as

∣∣Φ2(0)
∣∣ < ∣∣Φ∗2(0)

∣∣ ⇐⇒ 0 <
(
Φ∗2(0)

)2 − Φ2
2(0) = 1− zp− 1

2z
2
(1

2 − p
)
,

(and keeping in mind that we ask this inequality to hold only for z < 0,) we find that the
contribution from each term in the rightmost quadratic is positive, thus verifying the claim.
Finally, we show that Φ1 is simple von Neumann directly. Denoting the root of Φ1 as ξ1,

|ξ1| < 1 ⇐⇒
∣∣∣∣∣(2p− 3)z − 2
(2p− 1)z − 2

∣∣∣∣∣ < 1 ⇐⇒ 0 < 8z((p− 1)z − 1),

which holds for all z < 0 if and only if p ≥ 1.
Other IMEX schemes are analyzed in the same way. The amplification polynomials of

the second order schemes are recorded for reference in Table 3.1, along with the parameter
restriction for which we observe unconditional stability.

Table 3.1: Amplification polynomial of second order IMEX methods. The rightmost column
is the guide for choosing p.

Method Amplification Polynomial pλ/λ ∈

CNAB
(
1− 1

2zp
)
ξ2 −

(
1 + z

(
3
2 − p

))
ξ + 1

2z(1− p) [1,∞)

mCNAB
(
1− 9

16zp
)
ξ2 −

(
1 + z

(
3
2 −

9
8p
))

ξ + 1
2z
(
1− 9

8p
)

[8/9,∞)
CNLF (1− pz) ξ2 − 2z(1− p)ξ − (1 + pz) [1/2,∞)
SBDF2

(
3
2 − zp

)
ξ2 − 2

(
1 + z(1− p)

)
ξ + 1

2 + z(1− p) [3/4,∞)

3.2.3 Amplification polynomials of third and fourth order IMEX methods

We continue with the analysis for higher order IMEX schemes. Again, amplification poly-
nomials and parameter restrictions are derived. Because the expressions and manipulations
quickly become cumbersome and tedious for higher order methods, the computer algebra
system, MapleTM, was used for the majority of the calculations.

Listed in Table 3.2 are respectively the amplification factor and the parameter restriction
for SBDF3 and SBDF4. We must point out a crucial difference. In contrast to the second
order methods, the derived parameter restriction leaves only a finite interval. This will

19



Table 3.2: Amplification polynomial and choice of parameter when applying high order
IMEX methods to the modified test equation for unconditional stability.

Method Amplification Polynomial pλ/λ ∈

SBDF3
(

11
6 − zp

)
ξ3 − 3

(
1 + z(1− p)

)
ξ2 + 3

2
(
1 + 2z(1− p)

)
ξ [7/8, 2]

−1
3
(
1 + 3z(1− p)

)
SBDF4

(
25
12 − zp

)
ξ4 − 4

(
1 + z(1− p)

)
ξ3 + 3

(
1 + 2z(1− p)

)
ξ2 [15/16, 5/4]

−4
3
(
1 + 3z(1− p)

)
ξ + 1

4
(
1 + 4z(1− p)

)

be addressed further in Section 3.3.3 where it is demonstrated that this detail renders the
linearly stabilized SBDF3 and SBDF4 ineffective.

3.3 Convergence of Linearly Stabilized IMEX Methods

We present in this section numerical tests to support our claims. Stability contours are
shown and a numerical convergence test to (2.1) is conducted. We then provide an answer
as to why linearly stabilized SBDF3 and SBDF4 fail.

3.3.1 Stability contours

Presented in Figs. 3.1 to 3.4 are stability contours for the second order IMEX schemes,
(3.1) to (3.4), applied to the modified test equation, (2.13). For each, we provide stability
contours with p set at 0.95p0, p0, 1.5p0, where p0 is the minimum required for unconditional
stability (Table 3.1, rightmost column).

In Fig. 3.5 are stability contours for SBDF3 (3.5), and in Fig. 3.6 are stability contours
for SBDF4 (3.6). In each, we plot four instances to capture the transitions from conditional
to unconditional stability and from unconditional stability back to conditional stability.

3.3.2 Numerical convergence test

Convergence of the proposed schemes will be tested on the 1D curvature motion problem,
which we restate below:

ut = uxx
1 + u2

x

− 1
u
− puxx + puxx, 0 < x < 10, t > 0, (3.11a)

with initial and boundary conditions

u(x, 0) = 1 + 0.10 sin
(
π

5x
)

(3.11b)

u(0, t) = u(10, t) = 1. (3.11c)
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Figure 3.1: Stability contours for CNAB at various p.
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Figure 3.2: Stability contours for mCNAB at various p.

As in Section 2.3.2, we solve to time T = 0.35 with N = 2048 spatial grid nodes. A
reference solution is generated using Heun’s third order Runge-Kutta method [17] with time
step-size ∆t = 1.46× 10−5, and a max norm relative error is measured. Starting values
necessary for the multistep methods are found using the same third order Runge-Kutta
method. The values of p used for each scheme are as indicated in Fig. 3.7.
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Figure 3.3: Stability contours for CNLF at various p.
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Figure 3.4: Stability contours for SBDF2 at various p.

Results of the numerical convergence study are shown in Fig. 3.7. Each of the second
order methods converge with the expected order of accuracy, with SBDF2 having the largest
errors, followed by CNAB/mCNAB (identical performance), CNLF, and finally EIN. SBDF3
converges nicely with p = 0.875. SBDF4 does not exhibit fourth order convergence and in
fact fails at both ∆t = 6.84× 10−4 and ∆t = 3.42× 10−4. We discuss next why SBDF4
fails, and show also that SBDF3 suffers from the same defect.
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Figure 3.5: Stability contours for SBDF3 at various p.
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Figure 3.6: Stability contours for SBDF4 at various p.

3.3.3 Failure with high order IMEX methods

First, let us tabulate the observed (non)convergence of SBDF3 at various values of p. In
Table 3.3, we document three cases. The first case is the one shown in Fig. 3.7. The second
case exhibits a drastic drop in the observed convergence rate and in the third case the
method diverges as the time step-size is reduced. We attribute the divergence of SBDF3 and
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Figure 3.7: Numerical convergence study to (3.11) with IMEX methods. Convergence of
EIN is also included for comparison. The test with mCNAB is omitted, but would otherwise
overlap with CNAB.

SBDF4 to the fact that their parameter restriction is a bounded, rather than an unbounded,
interval.

Table 3.3: (Non)convergence of SBDF3 at various p.

Observed convergence rate
∆t p = 0.875 p = 1.475 p = 1.675

2.19× 10−2 – – –
1.09× 10−2 2.39 2.39 2.39
5.47× 10−3 2.64 2.64 1.23
2.73× 10−3 2.80 2.80 −1.51
1.37× 10−3 2.90 2.90 −3.95
6.84× 10−4 2.95 2.95 diverge
3.42× 10−4 2.97 2.08 diverge

To see this, recall the parameter restrictions listed in Table 3.2 and the relation (2.19).
Combining, the parameter restriction for SBDF3 reads as

7
8(1 + (D1ūnj )2) ≤ p ≤

2
1 + (D1ūnj )2 , j = 1, . . . , N, (3.12)

or equivalently

max
1≤j≤N

7
8(1 + (D1ūnj )2) ≤ p ≤ min

1≤j≤N

2
1 + (D1ūnj )2 . (3.13)
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Failure of the method is due to being unable to satisfy the parameter constraint at every
grid node simultaneously. From Fig. 2.1, we see that maxj(D1ū

n
j )2 is increasing as the

solution evolves and occurs near the boundaries. Thus we expect instabilities to develop,
and to develop in those regions first. This analysis is corroborated by Fig. 3.8, where we
see instabilities developing near the right-hand boundary.
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Figure 3.8: Instabilities using linearly stabilized SBDF3. With p = 1.675 and ∆t =
9.2× 10−4, we observe instabilities developing near the right-hand boundary of the gray
dashed curve. The figure on the right is a zoom-in to the right-hand boundary.

With SBDF4, the issue is worse as the restriction is tighter. The result in Fig. 3.7 only
appeared acceptable at coarse step-sizes because the low number of time steps did not allow
for the instabilities to amplify to the extent that they dominate the solution. We conclude
that linear stabilization with SBDF3 and SBDF4 is not recommended.

A natural follow-up to ask is if all third and fourth order IMEX schemes are unsuited
for combination with linear stabilization. To this we provide a partial answer. Third order,
three step schemes form a three parameter family, and fourth order, four step schemes form
a four parameter family [2]. An extensive search through the parameter space so far has
yielded no evidence of schemes with an unbounded p-parameter restriction.

This leaves us a number of competing second order methods to consider. Our next task
is to compare the performance of our IMEX based schemes and the EIN method of [9].

3.4 Comparison of the Second Order Methods

Of the methods that we have proposed, only the second order variants allow for uncondi-
tionally stable time stepping. Along with the EIN method, we have a total of five second
order linearly stabilized schemes to consider. We now proceed with a comparison of the
methods.
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3.4.1 A 2D test problem

Let us consider as a test problem, the following nonlinear PDE from [34]:

ut = ∆(u5), 0 ≤ x, y ≤ 1, t > 0, (3.14a)

with initial and boundary conditions set so that the exact solution is

u(x, y, t) =
(4

5(2t+ x+ y)
)1/4

. (3.14b)

Further assuming a uniform grid and second order centred differences in space, the eigen-
values of the linearized operator are estimated to be in the interval(

−64
h2 (1 + t),−16π2(t+ h)

)
. (3.15)

To solve (3.14), we propose stabilization with p∆u, i.e., replace (3.14a) with

ut = ∆(u5)− p∆u+ p∆u, 0 ≤ x, y ≤ 1, t > 0. (3.16)

The parameter p will then be chosen according to the ratio

pλL
λF
≈ −8p/h2

−64(1 + t)/h2 = p

8(1 + t) . (3.17)

Let us remark on the importance of this test problem. In the analysis of (2.11), we performed
a von Neumann analysis to obtain precise eigenvalue estimates that are independent of t.
On the other hand, for this problem, the interval (3.15) grows with t. Nevertheless, p is
never updated; it is chosen once and fixed at that value as we time step. Consequently at
early times, p may be substantially greater than necessary. Moreover, to compensate for the
fact that the operator we introduced to stabilize is less stiff than the nonlinear term, we are
forced to select a relatively large value for p. Such situations are common in applications
making this an interesting problem to investigate the behaviour of discretization errors.

3.4.2 Loss of accuracy with EIN

We test our second order methods on (3.16) with initial and boundary conditions set by
(3.14b). We solve to time T = 0.40 with spatial grid size ∆x = ∆y = h = 0.015. To
generate a reference solution, we use Heun’s third order method with time step-size ∆t =
6.25× 10−6. (Typical explicit methods demand comparable step-sizes for stability.) With
the linearly stabilized schemes, we will solve (3.16) with a variety of time step-sizes up to
∆t = 1.25× 10−2 and compute the max norm relative error.
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Figure 3.9: Numerical convergence study comparing second order methods. Test with
mCNAB (p = 9.97) is omitted, but would otherwise overlap with CNAB.

Results of the numerical convergence test are plotted in Fig. 3.9. These paint an un-
favorable picture for the EIN method and for CNLF. We will first discuss the mediocre
performance of the EIN method, after which we comment on the relative performance of
the IMEX based schemes.

Comparing the performance of EIN in Fig. 3.7 and Fig. 3.9, we observe a drastic reduc-
tion in the order of accuracy. In the former, EIN converged with second order accuracy and
recorded, amongst the second order methods, the lowest error at any fixed ∆t (although an
analysis of error vs. computing time would treat it less favorably). In the plot for the latter
problem, we do not (yet) observe second order convergence. Indeed, further testing shows
that the EIN method only begins to demonstrate full second order rate of convergence for
time steps ∆t below 1× 10−5.

In fact, we argue that this behaviour can already be observed in the original paper by
Duchemin and Eggers [9]. In their experiments with Hele-Shaw interface flows and with
the Kuramoto-Sivashinsky equation, they fail to accurately reproduce the reference figures
taken from prior publications [16, 18]. In both cases, a large value of p was necessary to
obtain unconditional stability.

We offer an explanation. In the simple case of the modified test equation (2.13), we
can apply the EIN method and derive the amplification factor (2.16). A series expansion
at z = 0 yields

ξEIN = 1 + z + z2

2 + 1
2(p− p2)z3 +O(p3z4). (3.18)
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This expression deviates from the exact solution, exp(z), in the z3 term and exhibits a
quadratic dependence on p. Thus, the leading error term will be large if p is large and ∆t
is not sufficiently small to control the error. That is exactly what is observed in Fig. 3.9.

On the other hand, the new multistep-based methods we have proposed all show only a
linear dependence on p under the same analysis, and do not suffer catastrophically when p
is large.

3.4.3 Amplification factors at infinity

In the last section, we discovered a deficiency of the EIN method. The leading error term,
which is O(∆t3), has a coefficient that is quadratic in p, which degrades the observed order
of accuracy. Thus an effective linearly stabilized time stepping scheme should have an error
coefficient that is linear with respect to p.

The form of the error constant does not explain the miserable performance of CNLF or
the sharp dip in the observed convergence of CNAB near ∆t = 1× 10−2 (see Fig. 3.9). To
posit an explanation, we think back to our discussion on stability and amplification factors.
In that discussion, explicit schemes were said to be ill-suited to stiff problems because they
are conditionally stable which imposes a severe step-size restriction. Although we have now
guaranteed that our schemes are stable, the accumulation of slow decaying high frequency
error modes can drive up the error and force us to use smaller time steps to adequately
damp and get the expected convergence order.

To explore this aspect, we consider each method’s amplification factor as z = λ∆t →
−∞. For example, with the EIN method, consider the amplification factor in (2.16). As
z → −∞, we find

lim
z→−∞

|ξEIN | =
∣∣∣∣∣p2 − 3p+ 2

p2

∣∣∣∣∣ . (3.19)

For the multistep schemes, we first find the limiting expression of the amplification poly-
nomial, and then take the larger of the absolute value of the two roots. For instance, with
CNAB, we start from (3.8) and compute

lim
z→−∞

Φ2
z

= −1
2pξ

2 −
(3

2 − p
)
ξ − 1

2p+ 1
2 . (3.20)

The amplification factor for CNAB is thus

max


∣∣∣p− 1 +

√
−2p+ 1

∣∣∣
p

,

∣∣∣1− p+
√
−2p+ 1

∣∣∣
p

 (3.21)

Fig. 3.10 shows the amplification factor (as z → −∞) for all of our second order schemes
as well as SBDF1, and explains the behaviour of CNLF. It is known that CNLF is weakly
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damping at high frequencies and should not be used for diffusive problems [2]. This is
equally true in the linear stabilization framework. Unless very small time steps are taken
with this scheme, it gives very poor damping of high frequency error modes.
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Figure 3.10: Amplification factors as z → −∞. The normalization along the horizontal axis
is with respect to the lower limit of the parameter restriction of each scheme. Note that
CNAB and mCNAB overlap exactly.

Of the second order IMEX methods, SBDF2 provides the most damping. CNAB (and
mCNAB) may suffer from large errors at the coarsest time steps, but remains a useful
alternative to SBDF2 as it has a smaller error constant as ∆t→ 0. The scheme mCNAB was
derived in [2] as an alternative to CNAB with stronger high frequency damping; however,
in our framework, both schemes perform identically. Thus there is little reason to consider
mCNAB over CNAB.

Finally, let us remark on the plotting range along the horizontal axis and how it pertains
to the implementation of linearly stabilized schemes. First note that we have chosen to plot
in a normalized parameter space. There are several reasons for this, but the most compelling
arises from how we use these schemes. Implementation of linearly stabilized schemes start
by choosing p to satisfy the constraint

pλL
λF
≥ p0 ⇐⇒

p

p0
≥ λF
λL

, (3.22)

where p0 is the lower limit of the parameter restriction that guarantees unconditional stabil-
ity, and where λL, λF are the largest absolute eigenvalues of linear and nonlinear operators.
The quantity λF /λL is independent of the choice of time stepping method and if this quan-
tity were overestimated in our solution procedure, the effect on p/p0 is equal irrespective
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of the scheme. Note also that we have plotted over a large range of parameter values. The
reason is again rooted in the implementation. In our derivations, we operate as if we can
access the exact eigenvalues at every time step. This is impractical and impossible. In
practice, the ratio of the eigenvalues will be an overestimate, and the value of p is fixed
throughout the time evolution (or at least for a great number of time steps.) Therefore,
in order to understand the behaviour of these methods in practice, it is necessary to assess
this property over a wide range of p.
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Chapter 4

Higher Order with Exponential
Integrators

The investigation with IMEX methods left us with a major question. Since the linearly
stabilized schemes based on SBDF3 and SBDF4 were shown to be unsuitable for practical
use, is it possible to construct practical high order linearly stabilized time stepping methods?
In this chapter, we consider two methods coming from the class of exponential integrators.
We will demonstrate that the second and fourth order exponential Runge-Kutta from Cox
and Matthews [7] work well within our linear stabilization framework.

4.1 Exponential Runge-Kutta

Consider the ODE

u′ = N (u) + Lu. (4.1)

Exponential time differencing, or exponential integrators, is a family of time stepping meth-
ods that treats the linear part exactly, and approximates the nonlinear part by some suitable
quadrature formula. As an example, the exponential Euler method has the formula

un+1 = e∆tLun + L−1(e∆tL − 1)N (un). (4.2)

This is a first order accurate exponential integrator.
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Our investigation covers explicit exponential Runge-Kutta methods only. This family
of one-step methods have the form

un+1 = e∆tLun + ∆t
s∑
i=1

bi(∆tL)N (Un,i) (4.3a)

Un,i = eci∆tLun + ∆t
i−1∑
j=1

aij(∆tL)N (Un,j), (4.3b)

and can be presented in the familiar Butcher tableau:

c1

c2 a21
...

... . . .
cs as1 · · · as,s−1

b1 · · · bs−1 bs
.

(4.4)

Note that we have suppressed the argument, but these are indeed functions of ∆tL. In
particular, we focus on the second and fourth order exponential Runge-Kutta formulas of
Cox and Matthews [7];

0
1 ϕ1,2

ϕ1 − ϕ2 ϕ2
, (4.5)

0
1/2 1

2ϕ1,2

1/2 0 1
2ϕ1,3

1 1
2ϕ1,3(ϕ0,3 − 1) 0 ϕ1,3

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 4ϕ3 − ϕ2
,

(4.6)

where

ϕk+1(z) = ϕk(z)− 1/k!
z

, ϕ0(z) = exp(z), and ϕi,j(z) = ϕi(cjz). (4.7)

We refer to this pair of exponential Runge-Kutta methods as ETDRK2 and ETDRK4,
respectively.
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4.2 Linearly stabilized ETDRK2 and ETDRK4

In the last chapter, we identified some useful criteria for quickly assessing the practicality
of newly constructed linearly stabilized methods.

First, we apply the schemes (4.5) and (4.6) to the modified test equation (2.13) and
imposed unconditional stability. We are only interested in schemes with an unbounded
parameter restriction. For ETDRK2 and ETDRK4, with the help of the computer algebra
system, MapleTM , we determined the parameter restriction to be [1/2,∞) in both cases.
In Figs. 4.1 and 4.2 are stability contour plots that support this claim.
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Figure 4.1: Stability contours for ETDRK2 at various p.

Two other factors were considered that affect the performance. One is the amplification
factor as z → −∞, and the other is a proxy to the error constant of the numerical scheme.
The former is plotted in Fig. 4.3 for both ETDRK2 and ETDRK4. It shows that the
ETDRK schemes provide strong damping as z → −∞ for a wide range of p and may be a
good candidate for taking large time steps. For the proxy to the error constant, we have
previously considered series expansion at z = 0 of the amplification factors:

ξETDRK2 = 1 + z + z2

2 +
(
−1

4p
2 + 5

12p
)
z3 + · · · , (4.8)

ξETDRK4 = exp(z) +
( 1

576p
4 − 11

576p
3 + 29

720p
2 − 1

32p+ 1
120

)
z5 + · · · . (4.9)
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Figure 4.2: Stability contours for ETDRK4 at various p.

Let us take this one step further by taking the difference with the exact solution, exp(z).
We find

δ1(p) =
∣∣exp(z)− ξETDRK2

∣∣ =
∣∣∣∣14p2 − 5

12p+ 1
6

∣∣∣∣ , (4.10)

δ2(p) =
∣∣exp(z)− ξETDRK4

∣∣ =
∣∣∣∣ 1
576p

4 − 11
576p

3 + 29
720p

2 − 1
32p+ 1

120

∣∣∣∣ , (4.11)

and for the EIN method we have

δ3(p) =
∣∣exp(z)− ξEIN

∣∣ =
∣∣∣∣12p2 − 1

2p+ 1
6

∣∣∣∣ . (4.12)

Recall from before that the observed convergence rate of EIN was less than we expected
from the truncation error. We reasoned that the source of this discrepancy was that the
error constant is large whenever p is large. Thus, the step-size had to be chosen to be very
small before observing second order convergence.

The situation is similar with the ETDRK schemes. The error term has quadratic and
quartic polynomials in p for ETDRK2 and ETDRK4, respectively, and thus we expect these
schemes to fare poorly when p is large. Nonetheless, experiments in Chapter 5 demonstrates
that these schemes can outperform SBDF2 and CNAB when p is small and the step-size is
large. To this end, Fig. 4.4 provides a plot that shows δ1, δ2, and δ3 against p. Also plotted
are the analogous expressions for SBDF2 and CNAB. As was suggested, there may be a
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Figure 4.3: Amplification factors as z → −∞ with ETDRK schemes. Included also for
the purpose of comparison are some second order schemes from the last chapter. The
normalization along the horizontal axis is with respect to the lower limit of the parameter
restriction of each scheme.

range of values of p for which these ETDRK schemes are viable. A complete error analysis
on fully nonlinear problems would be of some interest and is left as future work.
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Figure 4.4: Error constant and its dependence on p.

35



4.2.1 Stable evaluation of the matrix exponential and related functions

Finally, we wish to discuss briefly the matter of implementing ETDRK schemes.
Section 4.1 presents two exponential Runge-Kutta methods in tableau form. The entries

of these tableaus are functions of the operator, ∆tL. For example, to implement ETDRK2,
we must compute the functions

ϕ1(∆L) = (∆tL)−1(exp(∆tL)− 1), (4.13)

ϕ2(∆L) = (∆tL)−2(exp(∆tL)− 1−∆tL), (4.14)

or be able to efficiently evaluate the related matrix-vector multiplications without explicit
construction.

Difficulties with the evaluation of the matrix exponential and related functions of the
form (4.7) are well-known and well-studied, eg. [20, 13, 14, 15]. Thus widespread adoption
of exponential time differencing methods requires the development of stable and efficient
algorithms for computing the matrix exponential.

In our examples, we follow the direction of Kassam and Trefethen [18]. They take a
contour integral approach to the evaluation of functions in the form of (4.7) coupled with the
trapezoidal rule for fast, accurate, and stable computations. To avoid the unpleasantness
of boundary conditions (and the subsequent complications), we choose our domain to be
periodic when using ETDRK2 or ETDRK4.

Lastly, let us mention that there are other popular approaches. Amongst these are
methods based on scaling and squaring, Padé approximants [20, 14], and Krylov subspace
methods [15, 29, 30].
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Chapter 5

Numerical Experiments

This chapter is entirely devoted to solving stiff PDEs prevalent in a number of fields. The
experiments we demonstrate will fall under three categories: image inpainting, interface
motion, and phase separation. For each type of problem, we will give PDE models and
then discuss how we stabilize and select the parameters. Our experiments will show the
feasibility of these schemes in 2D and 3D.

Before proceeding further, we would like to make a few notes on our implementation
of these schemes. As stated from the outset, our goal is to provide simple, accurate, and
efficient time stepping methods for nonlinear PDEs. Too often, new efficient methods are
sufficiently complicated that users resort to simple explicit schemes that require lengthy
computing time rather than invest an indeterminate amount of time understanding, imple-
menting, and debugging.

In our implementation, the choice of p is fixed throughout the time evolution. Alter-
nately, one may want to adapt p as the solution evolves to avoid overestimates of p that
could lead to larger errors. However, we do not pursue this here. So while our theory speaks
of approximating the eigenvalues of the linearized system, we do not incur this cost in our
computations.

Note that a static value of p offers the advantage that the linear system to be solved
is the same at each time step, i.e. the matrix to be inverted is static. Any expensive
preprocessing/factorizing of this matrix needs only to be done once.

5.1 Image Inpainting

Image inpainting is the task of repairing corrupted images and damaged artwork [3]. In the
inpainting examples to follow, the user identifies in the image the region to be inpainted, and
from there, a PDE model is evolved to fill-in the inpainting region using the neighbouring
information.
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Two PDE models are selected. The first is a second order model from Shen and Chan
[27], and the second is a recent fourth order model from Schönlieb and Bertozzi [26],

ut = ∇ ·

 ∇u√
|∇u|2 + ε2

+ λD(u0 − u), (5.1)

ut = −∆∇ ·

 ∇u√
|∇u|2 + ε2

+ λD(u0 − u). (5.2)

We refer to these as TV inpainting and TV-H−1 inpainting.
In these two inpainting models, the solution, u, is the restored image, the quantity, u0, is

the initially corrupted image, and ε > 0 is a regularization parameter. Denoting the image
domain Ω, and the inpainting region D, λD is then defined as

λD(x) =

λ0, x ∈ Ω \D

0, otherwise,
(5.3)

for some λ0 > 0.
As for initial conditions, we have two vandalized images to be restored. The first is

Fig. 5.1 where we have overwritten with text a photograph of a sea turtle. We would like to
restore the photograph by removing the text. The second is Fig. 5.2, where the fox figure
requires removal. Although the latter may look simpler, it is in fact a more challenging
scenario because the thickness of the inpainting region requires correctly extending level
lines over long distances [26].

The image is restored in a channel-by-channel manner. As a stopping criterion, we
choose to iterate until the difference in successive images falls below a certain threshold,∥∥∥un+1 − un

∥∥∥
2∥∥un+1

∥∥
2

< tol. (5.4)

For the experiments below, tol = 9× 10−5. In addition, we also set a maximum of 500
iterations per channel. We report the time step-size and the total number of iterations used
for each scheme.

Finally, we note that the spatial discretization is by second order centred differences
with uniform spacing, h, in both x and y.
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Figure 5.1: Photograph of a sea turtle overwritten with text.

Figure 5.2: Photograph of a bullfinch vandalized with a cartoon fox.

5.1.1 TV inpainting

We first show that the TV inpainting model can easily be handled by our methods. In this
model, there are two terms on the right-hand side, both potentially stiff. The second term
is stabilized by adding and subtracting −p0λ0u, where p0 is the minimum value required
for unconditional stability from applying the time stepping method to the modified test
equation. For the first term, we stabilize by adding and subtracting p1∆u. To determined
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p1, we bound the first term as

∇ ·

 ∇u√
|∇u|2 + ε2

 =
uxx(u2

y + ε2) + uyy(u2
x + ε2)

(u2
x + u2

y + ε2)3/2 − 2uxuyuxy
(u2
x + u2

y + ε2)3/2

≤
(uxx + uyy)(u2

x + u2
y + ε2)

(u2
x + u2

y + ε2)3/2 +
(u2
x + u2

y + ε2)uxy
(u2
x + u2

y + ε2)3/2

= uxx + uyy + uxy√
u2
x + u2

y + ε2
.

(5.5)

We then consider the auxiliary equation ut = uxx + uyy + uxy discretized by centred
differences in space and forward Euler in time and apply a von Neumann analysis with
unjk = ξn exp(iω1jh) exp(iω2kh) to get

ξ − 1
∆t = 1

h2 (−4 + 2 cos(ω1h) + 2 cos(ω2h)− sin(ω1h) sin(ω2h)) ≥ − 8
h2 . (5.6)

Combined with the assumption of the extreme case,
√
u2
x + u2

y + ε2 ≥ ε, we set p1 according
to

p1
8/h2

8/(εh2) ≥ p0 ⇐⇒ p1 ≥
1
ε
p0. (5.7)

The images restored by TV inpainting and SBDF1, SBDF2, and CNAB are shown in
Fig. 5.3. Parameters were set as ε = 0.10 and λ0 = 20. Table 5.1 provides the total number
of iterations required with each method. We observe lower iteration counts and better
efficiency with second order methods.

Table 5.1: Iteration counts for TV image restoration.

Sea Turtle Bullfinch
∆t Iterations ∆t Iterations

SBDF1 0.50 141 0.33 393
SBDF2 0.18 115 0.22 168
CNAB 0.16 104 0.18 195

5.1.2 TV-H−1 inpainting

For TV-H−1 inpainting, we stabilize (5.2) using

ut = −∆∇ ·

 ∇u√
|∇u|2 + ε2

+ λD(u0 − u) + p1∆2u+ p0λ0u− p1∆2u− p0λ0u. (5.8)
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Figure 5.3: Image restoration by TV inpainting using a second order linearly stabilized time
stepping method.

We note p0 is chosen exactly as in TV inpainting. Determination of p1 applies the bound
set in (5.5) and (5.6) to get

p1
(8/h2)2

(8/h2)(8/(εh2)) ≥ p0 ⇐⇒ p1 ≥
1
ε
p0, (5.9)

which is also the same as TV inpainting.
Interestingly, in the same paper where they propose (5.2) for image inpainting, the

authors offer exactly (5.8) and time stepping with SBDF1 as the solution algorithm. In
Table 5.2, we chart the iteration counts required for each of SBDF1, SBDF2, CNAB, with
parameters ε = 0.10 and λ0 = 30. Once again, the second order methods are an improve-
ment over the first order method, with the improvement especially notable in the more
difficult example with the bullfinch.
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As a final note, we mention other interesting developments [4, 22, 23]. In these papers,
a number of image restoration models have been proposed involving high order derivatives
interacting nonlinearly. It would be of interest to compare the effectiveness of our schemes
with the methods proposed in these papers.

Figure 5.4: Image restoration by TV-H−1 inpainting using a second order linearly stabilized
time stepping method.

Table 5.2: Iteration counts for TV-H−1 image restoration.

Sea Turtle Bullfinch
∆t Iterations ∆t Iterations

SBDF1 0.65 143 0.30 1002
SBDF2 0.12 119 0.54 401
CNAB 0.10 108 0.64 347

42



5.2 Motion by Mean Curvature

In this section, we study the problem of interface evolution under mean curvature flow. The
level set equation for motion by mean curvature is

ut = κ |∇u| = |∇u| ∇ ·
(
∇u
|∇u|

)
. (5.10)

Our interest is in the time evolution of the interface, Γ = Γ(t), described by the zero level
set of the function u,

Γ(t) = {x ∈ Rd | u(x, t) = 0}. (5.11)

We will demonstrate the effectiveness of our schemes on examples similar to that of
Smereka [31]. In [31], he uses what we call linearly stabilized SBDF1 to take large, stable
time steps. Further, in the same paper, it was also suggested that Richardson extrapolation
may be used to attain second order convergence, but was not implemented. We follow the
example set in [31] and stabilize (5.10) with a Laplacian term, p∆u, to get

ut = κ |∇u| − p∆u+ p∆u. (5.12)

An analysis similar to (5.5) and (5.6) yields p ≥ p0 to be sufficient for unconditional stability.
Let us point out a key difference between this problem and the inpainting problem of

the previous section. In the inpainting problem, the system was to be driven to steady
state. As such, we were afforded a range of time step-sizes where the solution method
was computationally efficient. Indeed, the step-size did not affect the visual quality. For
mean curvature flow, computing time and accuracy are directly related to the choice of
step-size. Thus we are interested in large step-sizes only if an acceptable level of accuracy
is maintained.

5.2.1 Shrinking dumbbell in 2D and 3D

Our first example is the evolution of a dumbbell-shaped curve in 2D. Fig. 5.5 plots the
motion of this curve under mean curvature flow. From the initial dumbbell shape, the
corners smooth out and then the curve shrinks as shown, until it eventually collapses down
to a point. These reference solutions were generated to time T = 1.25 with an explicit
Runge-Kutta method and a small time step-size. On a periodic grid of size 256× 512 and
approximating the spatial derivatives using second order centred differences, the number of
time steps needed for stability is O(104).

In Fig. 5.6, we show the convergence of SBDF1, SBDF2, CNAB, EIN, ETDRK2, ET-
DRK4 for the same problem at T = 1.25, but plotting in the positive quadrant only. As
shown, each scheme is stable and convergent using much fewer than 104 time steps. How-
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Figure 5.5: Mean curvature flow of a dumbbell-shaped curve in 2D. From the top left to
the bottom right, the plots show the evolution at times t = 0, 0.01, 0.50, 1.25.

ever, it is important to note that amongst the schemes, the number of time steps needed to
achieve an acceptable level of accuracy ranges from 50 to 800.
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Figure 5.6: Convergence of various linearly stabilized time stepping schemes to the problem
of a dumbbell-shaped curve in 2D evolved under mean curvature flow. In the column to the
left from top to bottom, we have SBDF1, SBDF2, and CNAB. In the column to the right
from top to bottom, we have EIN, ETDRK2, and ETDRK4. Within each plot, each curve
is the solution using the number of time steps, n, as indicated.

The most disappointing of these is CNAB, for which a minimum of 400 time steps was
needed to get a solution profile that fits within the frame we have chosen. Furthermore, it
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needs close to 800 time steps to present a solution competitive with the other methods in
accuracy. SBDF2 likewise fared poorly in that regard, needing close to 800 time steps for
a solution competitive with the other methods in accuracy.

We now take a more careful look at the ETDRK schemes and the EIN method. Recall
that these are the schemes that have strong damping as z → −∞ (see Fig. 4.3). Zoom-
ins to the solution by these methods are presented in Figs. 5.7 and 5.8. These show that
the ETDRK schemes offer good accuracy and convergence using just 50 time steps. The
EIN method, however, is again hampered by slow convergence. This is especially clear in
Fig. 5.7. If we further factor in computing time, then both CNAB and SBDF2 outperform
the EIN method.
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Figure 5.7: Zoom-in over [0.0, 0.20] × [0.475, 0.54]. From top to bottom we have the EIN
method, ETDRK2, and ETDRK4. We see slow convergence of the EIN method, and good
convergence of the ETDRK schemes.

Next, we take this example into 3D. Here, the advantages of our schemes are further
magnified. In 2D, one could argue that the computations can be completed using standard
explicit schemes within reasonable computing times. In 3D, doing so may require trade offs
in the grid size, or computing only over short time periods.

Setting the initial condition to be the dumbbell-shaped curve of the top left image in
Fig. 5.9, the curve is then evolved under mean curvature flow. We use a periodic grid of size
256×128×128 and solve to time T = 0.75. With forward Euler, we needed 3000 time steps
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Figure 5.8: Zoom-in over [1.30, 1.41] × [0.0, 0.30]. From left to right we have the EIN
method, ETDRK2, and ETDRK4. We see slow convergence of the EIN method, and good
convergence of the ETDRK schemes.

for stability, which corresponds to over 28 minutes in Matlab 2014b on an Intel R©CoreTM i5-
4570 CPU@3.20GHz workstation running Linux. With the linearly stabilized ETDRK2, we
solved the same problem using 75 time steps in 103 seconds.

5.2.2 Anisotropic mean curvature motion

So far, the motion law considered may be more appropriately stated as isotropic mean
curvature motion. In [21], Oberman et al., present a method for anisotropic mean curvature
flow:

ut = (γ(ω) + γ′′(ω)) |∇u| ∇ ·
(
∇u
|∇u|

)
, (5.13)

where ω = arctan(uy/ux), and

γ(ω) = γn(ω) = 1
n2 + 1(n2 + 1− sin(nω)), for n = 0, 2, 4, 8. (5.14)

46



Figure 5.9: Mean curvature flow of a dumbbell-shaped curve in 3D. From the left to right,
top to bottom, the plots show the evolution at times t = 0, 0.10, 0.30, 0.525, 0.55, 0.75.

Under isotropic mean curvature motion, a simple closed contour in 2D has a circular limiting
shape as it reduces to a point. Under (5.13) and (5.14), the limiting shape will have n-fold
rotational symmetry.

For our methods, the added factor of γ(ω) + γ′′(ω) presents no additional difficulty.
Again, we can stabilize with p∆u, setting p = (1 + (n2− 1)/(n2 + 1))p0. Shown in Fig. 5.10
is an example with n = 4. The solution is generated on a 256 × 256 periodic grid using
linearly stabilized ETDRK2 with 500 time steps.
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Figure 5.10: Anisotropic mean curvature flow in 2D. The plots show the evolution of the
curve at times t = 0, 0.01, 0.06, 0.16. The initial curve smooths and shrinks to a curve
exhibiting four-fold symmetry as it collapses to a point.
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5.3 Phase Separation

For our last batch of experiments, we will define and evolve phase separation models on
rectangular grids in 2D, and on surfaces in 3D using the closest point method [24, 19].

5.3.1 Cahn-Hilliard on surfaces using the closest point method

In this section, the model equation is

ut = −ε2∆2
Su+ ∆S(u3 − u), (5.15)

where ε > 0 is a small parameter that determines interfacial thickness, S is a surface in R3,
and the solution u indicates the domains of the separating binary fluid.

We assume initially that the solution is well-mixed and thus the initial conditions are
chosen uniformly at random from [−ε, ε]. As time progress, the initially well-mixed solution
aggregates into homogeneous zones separated by transition layers of thickness O(ε). Within
the homogeneous zones, u takes on the value 1 or −1.

To discretize the surface operators, we use the closest point method of Ruuth and Mer-
riman [24]. Their approach is to extend the solution off the surface and into the embedding
space at each time step in a way that allows them to replace the surface operators with
their Cartesian analogs. It then becomes a matter of selecting from standard finite differ-
ence methods for the discretization of the spatial operators. We also mention the work of
Macdonald and Ruuth [19] that provides for implicit time stepping with the closest point
method. See [1] for open access closest point method software.

To use a linearly stabilized method for time stepping, we must determine p. To determine
p, we linearize (5.15). Substituting with u = un + δv, we have

(un + δv)t = −ε2∆2
S(un + δv) + ∆S((un + δv)3 − un − δv)

= −ε2δ∆2
Sv + δ3∆Sv3 + 3δ2un∆Sv2 + 3δ(un)2∆Sv − δ∆Sv.

(5.16)

Differentiating with respect to δ and then setting δ = 0, we arrive at the linearized equation

vt = −ε2∆2
Sv + (3(un)2 − 1)∆Sv. (5.17)

Thus if we are to stabilize with p∆Su, then we may choose p as

p ≥ (3ū2 − 1)p0, (5.18)

where ū = supS |un|. For simplicity, we set p = 2p0 since u takes values in [−1, 1].
Figs. 5.11 and 5.12 show the solution to (5.15) on two different surfaces at time T = 100.

In both examples, the spatial grid is uniform, with h = 0.14 for the torus and h = 0.075 for
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the cow. We then set ε = 2h. Time stepping is done with SBDF2 and for the time step-size,
we have chosen ∆t = 0.5h for the torus and ∆t = 1 for the cow.

The latter ∆t = 1 condition is chosen to emphasize that we may choose the step-size
independent of stability concerns. For the Cahn-Hilliard equation, the dynamics may be
broadly split into two stages [33]. The first is a fast coarsening stage in which a pattern of
internal layers is formed from the initial state over an O(1) time interval. This is followed
by an exponentially slow coarsening during which the internal layers may collapse together
to reach a stable/energy minimizing state. It is during this slow phase that our schemes
provide the greatest benefit.

Figure 5.11: Cahn-Hilliard on a torus.

5.3.2 A modified Cahn-Hilliard with nonlocal interactions

For our last example, we solve

ut = −ε2∆2u+ ∆(u3 + 3mu2 − (1− 3m2)u)− u, (x, y) ∈ [−2π, 2π]2, t > 0, (5.19)

with periodic boundary conditions and uniform random perturbations in [−ε, ε] for the initial
condition. In this model, ε > 0,m ≥ 0 are parameters that characterize the steady state
behaviour of the solution [6, 5]. As described in [6], (5.19) is of interest for its connections
to the self-assembly of diblock copolymers. In the model (5.19), different regions in the
parameter space (ε,m) dictate the formation of distinct energy minimizing patterns from
an initial well-mixed state. Numerically, one expects difficulties generating these energy
minimizing states. As in the previous example, we consider our methods for handling the
exponentially slowing dynamics that take place as the solution inches toward steady state.
We will show that our methods are stable and can quickly advance the solution to the
energy minimizing state.
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Figure 5.12: Cahn-Hilliard on a cow-shaped surface.

To stabilize (5.19), we first linearize the equation to obtain an estimate for p. Proceeding
as in (5.16), we find the linearized equation to be

vt = −ε2∆2v − v + (3(un)2 + 6mun − (1− 3m2)∆v. (5.20)

Thus if we stabilize with p∆u, choosing p ≥ (2 + 6m+ 3m2)p0 will be sufficient to guaran-
teeing unconditional stability.

Fig. 5.13 gives experiments showing that our methods can be used to access the energy
minimizing states of (5.19). As a final note, we mention that we adopt the strategy of
spectral filtering that was proposed in [5].
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Figure 5.13: Energy minimizing patterns of the nonlocal Cahn-Hilliard (5.19). Left: Lamel-
lae, with (ε,m) = (0.10, 0). Right: Hexagonally packed spots, with (ε,m) = (0.10, 0.40).
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Chapter 6

Conclusion

In this thesis, we gave details of a framework for developing effective linearly stabilized
time stepping methods. As was already known, unconditional stability is required. In our
work, we further deduced that the restriction on the parameter p, over which we enjoy
unconditional stability, must be unbounded.

Alongside stability, there is the matter of accuracy. As the former dictated the range
from which one can select p, it was then natural to explore how the discretization error
behaves as a function of p. The simple procedure of applying the numerical method to the
modified test equation and examining the series expansion at ∆t = 0 was recommended.
When the coefficient of the leading order error term is a degree two or higher polynomial
in p, the schemes fared poorly for p large.

We also addressed the feasibility of taking large time step-sizes. The schemes that
perform well possess strong damping as z → −∞. Similar to the previous two qualities, we
have shown that this quality is easy to check for any time stepping method.

We have proposed a number of new methods based on IMEX multistep methods and
exponential Runge-Kutta methods that perform exceptionally well on at least two of the
three aforementioned properties, but it remains to develop higher order variants that excel
in all three.

We recommend SBDF2 for its ease of use and its superior damping to CNAB, although
CNAB remains a useful alternative as it has a smaller error constant as ∆t→ 0. We have
shown that implementing these schemes require no more expertise than applying an implicit
method to solve a constant coefficient heat equation. Experiments in image processing,
interface motion, and phase separation demonstrate the effectiveness of these schemes.

For problems where the domain is periodic and p can be chosen quite small, one may
consider ETDRK2 and ETDRK4. The superior performance of these two methods at large
step-sizes more than offsets the higher per step cost when compared to the multistep-based
methods. These methods are less conventional but the Matlab code provided in Appendix
A.1 should be sufficient to get an interested user started.
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Of the existing linearly stabilized methods, none are competitive with our schemes.
SBDF1 is only first order accurate. The EIN method, although formally second order
accurate, exhibited a reduced order of accuracy in many of our numerical experiments
due to a large error constant, and its cost per step is also nearly three times that of our
multistep versions. These shortcomings were examined in Chapters 3 and 5, and substantial
improvements in accuracy and efficiency were made by using our methods.

A number of questions have been raised throughout this thesis and are worthy of further
consideration.

We have identified three properties critical to effective linearly stabilized schemes. SBDF2,
as we have shown, is a strong candidate, yet it is only second order. The derivation of third
and higher order methods excelling in all three remain open. Moreover, as non-periodic
boundary conditions are not well-handled by exponential time differencing methods, higher
order methods that do not require the matrix exponential would be the most compelling.

A study of the discretization error of linearly stabilized schemes on fully nonlinear
problems would also be of interest. While the metrics we supplied are simple to construct
and instructive, such a study may provide sharper insight as to when it is advantageous to
apply a particular scheme, e.g., ETDRK2.

Adaptivity also could be investigated. Both the time step-size and the parameter p are
candidates for adaptivity in time, although doing so may cost us the efficiency of prepro-
cessing only once. The analysis of test problem (2.1) also suggests adaptivity of p in space
may lead to interesting results, although such a procedure likely does not fit within our
framework.

Finally, it would be of interest to assess the performance of our methods against popular
algorithms for the solution to stiff nonlinear PDEs. We have already shown that our second
order methods outperform the first order method proposed in [26] for image inpainting.
A more challenging test would be to compete against the split Bregman algorithm [12]
implemented in [22, 23] for first and second order variational image reconstruction models.
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Appendix A

Code

A.1 Time integration of the Cahn-Hilliard equation using
linearly stabilized time stepping schemes

function[]=CHp_2D()
% Solve the Cahn-Hilliard in 2d,
% u_t = -ep^2*L^2(u) + L(u^3-u), (x,y)\in [0,2*pi]^2, t>0,
% with spectral method in space and a linearly stabilized method in time.
% For 3d, change wave numbers to the commented line. Adjust LR and the
% means in the ETDRK schemes. Adjust visualization commands.

%% Parameters: spatial, temporal, model, visualization
N=256; L=2*pi;
T0=0; Tf=10; nt=400; dt=(Tf-T0)/nt; meth=’cnab’; meth=upper(meth);
epsilon=0.1; ep2=epsilon^2;
vis_update=40;

%% Initial condition and storage
rng(’default’); u=2*epsilon*(rand(N,N)-0.50); v=fftn(u);

%% System for inversion
% Wave numbers

k=[0:N/2-1 0 -N/2+1:-1]’*(2*pi/L); k=-k.^2;
k=bsxfun(@plus,k,k’);

% k=bsxfun(@plus,bsxfun(@plus,k,k’),reshape(k,1,1,N));
kdt=dt*k;

% Choose method
switch meth

case ’SBDF1’
fignum=1; p=1.0; A=1-p*kdt+(dt*ep2)*k.^2;

case ’SBDF2’
fignum=2; p=1.5; A=1+(2/3)*(-p*kdt+(dt*ep2)*k.^2);
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case ’CNAB’
fignum=3; p=2; A=1+(0.5)*(-p*kdt+(dt*ep2)*k.^2);
B=(1-0.5*(-p*kdt+(dt*ep2)*k.^2))./A;

case ’ETDRK4’
fignum=4; p=1.0;
Ln=p*kdt-(dt*ep2)*k.^2; E=exp(Ln); E2=exp(0.5*Ln);
M=16; r=exp(1i*pi*((1:M)-0.5)/M);
LR=bsxfun(@plus,Ln(:,:,ones(M,1)),reshape(r,1,1,M));
A=kdt.*real(mean((exp(0.5*LR)-1)./LR,3));
b1=kdt.*real(mean((-4-LR+exp(LR).*(4-3*LR+LR.^2))./LR.^3,3));
b2=2*kdt.*real(mean((2+LR+exp(LR).*(-2+LR))./LR.^3,3));
b4=kdt.*real(mean( (-4-3*LR-LR.^2+exp(LR).*(4-LR))./LR.^3,3));

case ’ETDRK2’
fignum=5; p=1.0;
Ln=p*kdt-(dt*ep2)*k.^2; E=exp(Ln);
M=16; r=exp(1i*pi*((1:M)-0.5)/M);
LR=bsxfun(@plus,Ln(:,:,ones(M,1)),reshape(r,1,1,M));
A1=kdt.*real(mean((exp(LR)-1)./LR,3));
A2=kdt.*real(mean((exp(LR)-LR-1)./LR.^2,3));

end
fg=figure(100+fignum);

%% Begin time stepping
for kt=1:nt,

switch meth
case ’SBDF1’

rhs=v+kdt.*fftn(u.^3-(1+p)*u); v=rhs./A;

case ’SBDF2’
if kt==1,

v1=v; f1=kdt.*fftn(u.^3-(1+p)*u);
v=(v1+f1)./(1-p*kdt+(dt*ep2)*k.^2);

else
f=kdt.*fftn(u.^3-(1+p)*u);
u=((4/3)*v-(1/3)*v1+(2/3)*(2*f-f1))./A;
v1=v; f1=f; v=u;

end

case ’CNAB’
if kt==1,

f1=kdt.*fftn(u.^3-(1+p)*u);
v=(v+f1)./(1-p*kdt+(dt*ep2)*k.^2);

else
f=kdt.*fftn(u.^3-(1+p)*u);
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v=B.*v+0.5*(3*f-f1)./A;
f1=f;

end

case ’ETDRK4’
f=fftn(u.^3-(1+p)*u); a=E2.*v+A.*f; ar=real(ifftn(a));
fa=fftn(ar.^3-(1+p)*ar); b=E2.*v+A.*fa; br=real(ifftn(b));
fb=fftn(br.^3-(1+p)*br); c=E2.*a+A.*(2*fb-f); cr=real(ifftn(c));
fc=fftn(cr.^3-(1+p)*cr);
v=E.*v + b1.*f + b2.*(fa+fb) + b4.*fc;

case ’ETDRK2’
f=fftn(u.^3-(1+p)*u); a=E.*v+A1.*f; ar=real(ifftn(a));
fa=fftn(ar.^3-(1+p)*ar);
v=a+A2.*(fa-f);

end
u=real(ifftn(v));

% Plots
if kt==nt || mod(kt,vis_update)==0,

set(0,’currentfigure’,fg); drawnow;
pcolor(u); shading(’interp’); axis(’equal’,’off’);
title([’CH by ’,meth,’ with dt=’,num2str(dt,’%10.2g’), ...

’ at T=’,num2str(dt*kt,’%10.2g’)]);
end

end
end
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