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Abstract

There is a tremendous demand for increasingly efficient ways of both capturing and pro-
cessing high-dimensional datasets of large size. When capturing such datasets, a promising
recent trend has developed based on the recognition that, many high-dimensional datasets
have low-dimensional structures. For example, the notion of sparsity is a requisite in the
compressed sensing (CS) field, which allows for accurate signal reconstruction from sub-
Nyquist sampled measurements given certain conditions. When processing such datasets,
the recently developed deep learning is a powerful tool, able to extract high-level and com-
plex abstractions from massive amounts of data.

CS has a wide range of applications that include imaging, radar and many more. Much
effort has been put on developing more accurate and efficient reconstruction algorithms.
In this thesis, first, we are interested in how to incorporate the side information into CS
reconstruction when there is an initial estimation of the sparse signal available from other
sources. Rigorous theoretical analysis was proposed for the first time in this field. Sufficient
number of measurements is required for accurate CS reconstruction. We may have to wait
for a long time to do the reconstruction until we receive enough measurements, which could
incur undesired delays. Moreover, state-of-the-art CS reconstruction algorithms are still
inefficient for signals of large size, e.g., images. Inspired by the multi-resolution or scalable
reconstruction in multimedia transmission, such as JPEG 2000 and H.264/SVC, in the
second part of this thesis, we analyzed scalable CS reconstruction problem and proposed to
reconstruct a low-resolution signal if the number of measurements is too small.

Deep learning or deep neural networks (DNNs) has evolved into the state-of-the-art tech-
nique for many artificial intelligence tasks including computer vision, speech recognition and
natural language processing. However, DNNs generally involve many layers with millions
of parameters, making them difficult to be deployed and updated on devices with limited
resources such as mobile phones and other smart embedded systems. Moreover, if the DNN
needs to be updated, usually via wireless communications, downloading the large amount of
network parameters will cause excessive delay. In the final part of this thesis, we propose a
scalable representation of the network parameters, so that different applications can select
the most suitable bit rate of the network based on their own storage constraints.
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Chapter 1

Introduction

In recent years, there have been massive increases in both the dimensionality and sample
sizes of data due to ever-increasing demand coupled with relatively inexpensive sensing
technologies. As of March 2014, it was estimated that 90 % of all data was generated
over the course of past two years [102]. Without question, society has entered the era
of "Big Data". These high-dimensional datasets bring challenges, along with numerous
opportunities.

One critical challenge concerns the acquisition of such data. Many camera systems
are capable of generating gigabytes of raw data in a short period of time-data which is
then immediately compressed in order to discard unnecessary and redundant information.
In some applications, this sample-then-compress paradigm is acceptable, while in others,
where hardware costs dominate, it is much more preferable to compress while sampling,
that is, collect only the truly necessary information. Compressed sensing (CS) is such kind
of technique that combines sampling with compression and can sample the signal at a rate
much lower than Nyquist sampling rate.

With "Big Data" also comes many opportunities. "Big Data" has become important
as many organizations both public and private have been collecting massive amounts of
domain-specific information, which can contain useful information about problems such as
national intelligence, fraud detection, marketing, and medical informatics. Deep neural
networks (DNNs) or deep learning have become ubiquitous in applications ranging from
computer vision [60] to speech recognition [5] and natural language processing [20]. A key
benefit of Deep Learning is the analysis and learning of massive amounts of data, making it
a valuable tool for Big Data Analytics. One key factor that makes deep learning so powerful
is large dataset. Take ImageNet [82], which is one of the most famous datasets in computer
vision community, as an example. It has 1.3M training images and 50K validation images.
Large dataset makes deep learning be able to extract high-level, complex abstractions.

In this thesis, we put our focus on two compression concepts in "Big Data", one is about
the data acquisition and compression in "Big Data", closely related to CS, and the other
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one is about the deep learning model compression in "Big Data". Our main goal is to tackle
some important topics in these two compression concepts from image/vide coding’s point of
view. The first topic is side information-aided compressed sensing problem where a sparse
signal is sampled via a noisy underdetermined linear observation system, and an additional
initial estimation of the signal is available during the reconstruction. Our goal here is to
take advantage of this side information and improve the CS reconstruction performance.
There is plenty of work in this area, but only loose theoretical bounds are provided and
rigorous theoretical analysis is missing. Motivated by distributed source coding, we model
this initial estimation as the side information for the decoder if we treat CS as a coding
problem. Then we incorporate this prior information into CS reconstruction, and present
theoretical analysis to measure the gain brought by the side information. More details can
be found in Chapter 2 and 3.

The next two topics, scalable compressed sensing and scalable compression of deep
neural networks, are motivated by scalable image/video coding.

The first one is scalable compressed sensing. According to CS theory, in order to get
bounded reconstruction error, the number of samples has to be larger than a minimal re-
quirement. For high-resolution images, a large number of CS samples are stilled needed. In
applications composed of transceivers, undesired delay is inevitable since the receiver has
to wait for a long time to start the reconstruction. If we turn to recover the corresponding
low-resolution preview instead of original high-resolution image, can we get bounded recon-
struction error? And how can we determine the resolution of this low-resolution preview?
Chapter 4 is devoted to answer these questions. A multi-resolution CS problem is formu-
lated and a multi-resolution algorithm is developed. More importantly, strong theoretical
guarantees are presented to prove the efficiency of proposed multi-resolution algorithm.

Next, current deep learning model compression methods can only achieve single com-
pressed bit rate. However, different devices have different bit constraints. To take every
device’s constraint into consideration, a scalable compression pipeline is needed to make
the compression scalable and flexible. Motivated by scalable image/video coding, a scalable
compression method of deep neural networks is proposed in Chapter 5. Similar to base layer
and enhancement layer in scalable image/video coding, we introduce hierarchical quantiza-
tion, composed of base quantization layer and enhancement quantization layers, to quantize
the weights in DNN models. Next, motivated by the layer formulation in JPEG2000 scal-
able image compression, we design backward search bit allocation scheme to select the bits
for each network layer based on the bit constraints.
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1.1 Background

To facilitate the understanding of our contributions, we review some important background
knowledge that is closely related to the work in this thesis, including compressed sensing,
multiview image and video, and deep learning.

1.1.1 Compressed Sensing

Shannon-Nyquist theory informs us that sample acquired uniformly in time or space at twice
the highest signal bandwidth (or desired resolution) can be used to accurately reconstruct
the signal through a simple, computationally inexpensive process known as sinc interpo-
lation. CS differs from Shannon-Nyquist sampling in several important respects. First,
it is primarily studied as a finite-dimensional,digital-to-digital sampling scheme, although
continuous-time sampling is possible within the theory [4]. Second, CS requires a more
complex sampling process; rather than acquiring point samples uniformly in time/space,
CS collects samples in the form of inner products between the complete signal and a series
of "test waveforms." Third, unlike sinc interpolation, the CS inverse problem is highly non-
linear in nature, requiring more complex reconstruction algorithms. In exchange for these
trade-offs, CS offers the ability to dramatically reduce the number of samples that must be
acquired without sacrificing reconstruction fidelity.

Mathematically, CS is the problem of reconstructing a sparse signal from its noisy un-
derdetermined linear measurement. In this case, the observations y ∈ Rm can be written
as

y = Ax + w, (1.1)

where x ∈ Rn is a k-sparse signal, i.e., with k nonzero entries (k � n). A ∈ Rm×n is a
known linear measurement matrix, and w ∈ Rm is an additive white Gaussian noise with
variance σ2, i.e., w ∼ N (0, σ2I).

In this thesis, the following ratios are frequently used:

δ = m/n, ε = k/n, ρ = ε/δ = k/m. (1.2)

Whenm < n, the problem is underdetermined and has been studied extensively recently
via the compressed sensing (CS) theory. It is shown in [15] that when A satisfies certain
condition and m is larger than some bound, `1-based algorithms can successfully recover
the sparse signal, written as

arg min
x

‖x‖1, s.t. y = A x. (1.3)
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Many reconstruction algorithms have been developed to estimate the sparse signal x from
y, including, e.g., convex optimization [15], greedy method [95], and iterative thresholding
algorithm [11].

Estimation theory can also be used to analyse the performance of CS. In [78], with the
help of the replica method from statistical physics, a sharp prediction is derived for the
performance of the LASSO or Basis Pursuit Denoising method (BPDN) [18,93]

arg min
x

(1
2 ‖y−Ax‖22 + τ‖x‖1

)
, (1.4)

where τ is a weighting parameter that enforces the sparsity constraint, which is an `1-
regularized least-square optimization problem. However, the replica assumption is not rig-
orous and it cannot be checked for specific problems.

In [31, 32, 68, 72], an approximate message passing (AMP) algorithm is developed for
Gaussian sampling matrices, which reduces the complexity of classic message passing [61].
More importantly, the AMP is rigorous and can predict the final reconstruction performance
accurately. Some generalizations of AMP have been developed. For example, in [76], a
generalized AMP (GAMP) is developed to handle arbitrary noise distributions and arbitrary
prior distributions. In [100], the Gaussian mixture model and expectation-maximization
(EM) algorithm are used to learn the distribution of the signal’s nonzero coefficients.It
is also shown empirically and theoretically that AMP-type solvers work well with various
types of matrices, such as Rademacher matrices and Fourier matrices [10,78,100].

1.1.2 Multiview Image and Video

In the past decade, multiview imaging (MVI) has attracted increasing attention, thanks
to the rapidly dropping cost of digital cameras. This opens a wide variety of interesting
research topics and applications, such as virtual view synthesis, 3DTV, and Free Viewpoint
TV (FTV) [62]. Conventional two-dimensional (2D) video provides a fixed viewpoint of
recorded objects where viewers can only watch a video playback passively, as the viewpoint
remains the same throughout video playback. In contrast, multiview video (MMV) consists
of video sequences of the same scene captured time-synchronously by multiple closely spaced
cameras from different observation viewpoints. This means that each viewer of the same
video content can observe various viewpoints of a scene from different angles and locations,
which further generate a free viewpoint video (FVV) or create realistic three-dimensional
(3D) perceptions.

Several prototypes of such MMV systems have demonstrated a much improved viewing
experience compared to 2D video. As seen in the movie The Matrix [3], successive switch-
ing of multiple real images captured at different angles can give the sensation of a flying
viewpoint. In addition, MMV system EyeVision [1] was used for broadcasting Super Bowl
XXXV, in which 33 cameras were arranged around the stadium and the camera directions
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were controlled mechanically to track the target scene. In these systems, no new virtual
images are generated, and the movement of the viewpoint is limited to the predefined orig-
inal camera positions. However, some MMV systems, such as FTV, do not impose the
constraint that a selected viewpoint corresponds to one existing camera, but instead, allows
the selection of an arbitrary viewpoint within 3D scene. New virtual views are generated
from neighbouring captured views using 3D geometry.

1.1.3 Deep Learning

Deep learning is a branch of machine learning based on a set of algorithms that attempt to
model high-level abstractions in data by using a deep graph with multiple processing layers,
composed of multiple linear and non-linear transformations [43]. Deep learning has evolved
into the state-of-the-art technique for many artificial intelligence tasks including computer
vision [49,50,60,86], speech recognition [5] and natural language processing [20]. For 1000-
class ImageNet image classification challenge [82], the top-5 error has been reduced from
25.7% with hand-crafted features to 17.0% with AlexNet in 2012 and more recently, 4.94%
with ResNet in 2015 [49], which has surpassed human-level performance. For spontaneous
speech recognition, the word error rate is decreased from nearly 25% with Hidden Markov
Models to almost 5% with deep neural network in 2012 [23].

In this thesis, we focus on the convolutional neural network (CNN), the most widely
used DNN, which was originally developed in 1998 by LeCun et al. [63] with less than 1M
parameters to classify handwritten digits. CNN has attracted much attention since 2012
when AlexNet [60], the winner of ILSVRC2012 (Large Scale Visual Recognition Challenge
2012), was first proposed and outperformed the second place where hand-crafted feature
extraction was used significantly. To name a few, CNN-based architectures have become the
state-of-the-art in object detection [39,40,79], face recognition [75] and image segmentation
[67]. The filters in the first convolution layer of AlexNet is visualized in Figure 1.1. We can
see that edge and color information are well captured.

Different from the traditional model of pattern recognition where hand-crafted feature
extractor and trainable classifier are used, deep learning is end-to-end learning, where the
features and the classifier are automatically learned and trained simultaneously. CNN
models usually consist of several convolutional (CONV) layers , pooling layers and fully
connected (FC) layers, which are stacked up with one on top of another. There are five
CONV layers and three FC layers in AlexNet [60]. The second place of ILSVRC2014, VGG-
16 [86], has thirteen CONV layers and three FC layers. The recent winner of ILSVRC2015,
ResNet [49] has more than one hundred layers.

Besides CNN, there are some other basis deep learning architectures, e.g., auto-encoder
[101], RBM (Restricted Boltzmann Machine) [83], and LSTM (long short-term memory)
[51], which are beyond the scope of this thesis.
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Figure 1.1: Visualization of filters in CONV1 of AlexNet

1.2 Related Work

In this thesis, some novel and not well-understood topices for CS and DNN are studied. For
CS, we focus on side information (SI)-aided CS reconstruction and scalable CS reconstruc-
tion. For DNN, we are interested in the scalable compression of DNN models. Scalability
idea, which is originally inspired by multi-resolution or scalable reconstruction in multi-
media transmission, e.g., JPEG2000 [92] and H.264/SVC [85], is applied to both CS and
DNN.

1.2.1 Side Information-Aided Compressed Sensing

There have been some efforts on exploiting various initial estimations in CS. One example
is the CS problem with partially known support [97], which shows that by finding the signal
that satisfies the measurement constraint and is the sparsest outside the partially known
support, the CS reconstruction can be improved, and bounds on the reconstruction error
are derived. However, the method is time-consuming. Another relevant approach is to
recover the estimation error instead of the sparse signal [94], based on the assumption that
the prediction error between the initial estimation and the sparse signal is sparser than the
signal itself, and is thus easier to be recovered, but this method lacks theoretical analysis.
It is also possible that the prediction error is denser than the original sparse signal, if the
initial estimation has poor quality.

In [12], the belief-propagation-based CS framework (BPCS) in [9] is used to exploit the SI
from neighboring cameras in multiview imaging systems, where the SI is used as the starting
point for belief propagation. In [103], a squared-error-constrained penalty term is added to
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the CS of multiview images. It also considers a more general case, where the variances of
the prediction errors are different at different entries. A fast solution is developed based on
the Gradient Projection for Sparse Reconstruction (GPSR) algorithm [35].

The sparsity-constrained dynamic system estimation scheme proposed in [17] and the
dynamic compressed sensing via approximate message passing (DCS-AMP) proposed in
[108,109] are closely related to our framework. In [17], a prediction of the signal is obtained
from the state evolution model, and the norm of the prediction error is added as a penalty
term in the objective function of LASSO or BPDN method. In [108,109], the sparse signal
is modeled as the Bernoulli-Gaussian distribution and the correlation between the active
amplitudes in different time slots is assumed to be a stationary steady-state Gaussian-
Markov process. The EM and AMP are applied to learn the hidden parameters and perform
the inference. Although the model in [108,109] is similar to ours, it relies on sequential data
to learn the hidden parameters, and cannot be applied to solve the problem discussed here
directly. In fact, it is not clear how to extend the method in [109] to solve the problem in
this paper.

Several papers have also studied the theoretical contribution of the prior knowledge
[54, 97]. In [97], the authors have provided some sharp bounds on the necessary number
of CS measurements to successfully reconstruct the original sparse signal, based on null
space property and geometry interpretations. However, it is mainly on the noiseless case.
The performance of noisy case remains unknown. Kamilov et al. have taken the first step
towards a theoretical understanding of EM-based algorithms [54, 108, 109], although the
complete analysis is still not available.

1.2.2 Scalable Compressed Sensing

It is proven in [15], [95] and [31] that a minimum number of samples is required to ensure
stable and accurate CS reconstruction. Therefore, in applications in which a large number
of CS samples need to be transmitted to a receiver, undesired delay is inevitable. Although
the need for multi-resolution (MR) or scalable reconstruction has been well recognized in
multimedia transmission, leading to the development of standards such as JPEG 2000 and
H.264/SVC [85,92], the problem has received little attention in CS.

In [53], some rules are proposed to design efficient up-/down-sampling matrices for MR
reconstruction, and the number of nonzero entries of the LR image in the transform domain
is shown to be no larger than that of the HR image. Therefore, the required sampling rate
for stable LR image reconstruction is less than that of HR reconstruction. However, the
analysis in [53] is qualitative, and only some loose bounds are provided. Moreover, the
impact of the MR design on the quality of the measurement matrix, which can be measured
by, e.g., the restricted isometry property (RIP) constant [15] and mutual coherence [95], is
not studied. Moreover, only the noiseless case is considered in [53].
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A similar problem is studied in [107], where two solutions are proposed. In the first
method, the sampling matrix is designed to have non-uniform sampling, which is quite
restrictive because the matrix should be redesigned whenever a new result with a different
resolution is needed. The second method modifies the sampled data of the HR image to
be similar to the data acquired directly from the target LR image. Although it works
empirically, there is no theoretical guarantee of its performance. In addition, although it
is mentioned in [107] that the CS sampling rate for the LR reconstruction is increased,
the change in the sparsity rate is not considered. Recently, a special two-resolution CS
reconstruction scheme was proposed in [41], where the sampling matrix is designed such
that an LR reconstruction can be obtained via direct matrix inversion.

The MR concept has also been used in certain CS schemes, such as [16, 52, 74, 90, 96],
with different purposes from ours. In [52], Bayesian CS is used to detect the primary user in
cognitive radio. The method first performs the detection in LR and then refines the signal
around the detected primary user spectrum. In [96], a CS-based two-layer scalable image
coding is proposed, where the encoder employs two measurement matrices with different
sizes, and inter-layer prediction is used to reduce the bit rate. In [16], the authors extended
the Kronecker CS [33] to MR measurements such that the sensing is performed on the LR
image, and the goal is to recover the HR signal from LR measurements. In [74], a multiscale
framework is proposed for the CS of videos. The motion vectors are estimated at different
resolutions and serve as the input to higher resolution frame recovery. The sensing is applied
to different resolutions for the same frame.

1.2.3 Compression of Deep Neural Networks

Although DNNs have recently led to significant improvement in countless areas of machine
learning, its application in low-end devices such as mobile phones or smart hardware faces
some challenges. For example, many devices have limited storage spaces. Therefore storing
millions of DNN parameters on these devices could be a problem. If the DNN network
needs to be updated, usually via wireless communications, downloading the large amount
of network parameters will cause excessive delay. Moreover, running large-scale DNNs with
floating-point parameters could consume too much energy and slow down the algorithm.
Therefore, efficient compression of the DNN parameters without sacrificing too much the
performance becomes an important topic.

There have been some recent works on the compression of neural networks. Vanhoucke
et al. [65] proposed a fixed-point implementation with 8-bit integer (vs 32-bit floating-point)
activations. Denton et al. [25] exploited the linear structure of the neural network by finding
an appropriate low-rank approximation of the parameters and keeping the accuracy within
1% of the original model. Kim et al. [58] applied tensor decomposition to the network
parameters and proposed an one-shot whole network compression scheme that can achieve
significant reductions in model size, runtime and energy consumption.
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Much work has been focused on binning the network parameters into buckets, and
only the values in the bucket need to be stored. HashedNets [19] is a recent technique
to reduce model size by using a hash function to randomly group connection weights, so
that all connections within the same hash bucket share a single parameter value. Gong et
al. [42] compressed deep convnets using vector quantization, which resulted in 1% accuracy
loss. Both methods studied the fully-connected (FC) layer in the CNN, but ignored the
convolutional (CONV) layers. Recently, Han et al. [45] introduced a deep neural network
compression pipeline by combining pruning, quantization and Huffman encoding, which can
reduce the storage requirement of neural network by 35 × or 49 × without affecting their
accuracy.

1.2.4 Sparsity-Constrained Deep Learning

It has been shown that current state-of-the-art deep CNN models are redundant [24]. Many
researchers have tried to reduce this redundancy with sparsity constraint. In [46], small
weights in the pretrained models are pruned to zero without any accuracy loss after fine-
tuning. In [66], maximum sparsity is obtained by exploiting both inter-channel and intra-
channel redundancy. More than 90% of parameters are zeroed out with less than 1% accu-
racy drop on the ILSVRC2012 dataset. Moreover, an efficient sparse matrix multiplication
algorithm on CPU is proposed. Structured sparsity learning for structures of filters, chan-
nels, filter shapes and depth in DNNs is proposed in [105]. First, a compact structure from
a bigger DNN is learned. Second, a great speedup of CONV layer computation is achieved.
Finally, regularizing the DNN structure with structured sparsity can improve classification
accuracy. In [104], deep double sparsity encoder is developed to simultaneously sparsify the
output features and the learned model parameters. Also, a compact model size and low
complexity is achieved.

1.3 Contributions

The contributions of this thesis include:

• the design of new recovery algorithms for SI-aided CS problem that an initial estima-
tion of the sparse signal is available;

• the analysis of these new SI-based recovery algorithms to provide performance guar-
antees, as related to the distortion of the recovered signal, the number of linear mea-
surements required for recovery and the quality of SI;

• the design of new recovery algorithms for multi-resolution CS problem that prefer to
recover the LR preview of the target signal, rather than the original HR signal, when
the number of linear measurements is insufficient for HR signal recovery;
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• the analysis of new multi-resolution CS recovery algorithms, and provide performance
guarantees about the distortion of the recovered LR signal and the number of linear
measurements;

• the design of scalable compression framework of DNNs that represents the DNN pa-
rameters in a scalable fashion such that we can easily update the representation of
the network according to the storage constraint.

1.4 Outline

This thesis is organized as follows.
Chapter 2 describes initial work on the use of side information in hybrid multi-view

imaging system to improve the performance of CS. We provide algorithms that exploit the
view interpolation confidence map generated by view interpolation algorithms, incorporate
this information into CS reconstruction and present experimental evidence of the advantage
by the use of this side information.

Chapter 3 builds on the work in Chapter 2 by presenting a theoretical and algorith-
mic framework for the use of initial estimation in CS. We derive the rigorous theoretical
analysis on the reconstruction performance bound with respect to the number of linear
measurements required for recovery and the quality of side information, and show this new
bound outperforms the one corresponding to the scenario that either linear measurements
or the initial estimation exist. Moreover, we also present a parameterless version of pro-
posed algorithm that no parameters need to be manually tuned. Extensive applications of
the proposed algorithm are discussed.

Chapter 4 introduces the multi-resolution CS problem and provides a theoretical and
algorithmic framework to solve this problem. In addition to the reduced complexity, our
method can choose to recover an LR signal of a proper resolution stably based on the number
of linear CS measurements at hand, even when the reconstruction of HR signal is unstable.
We then apply the algorithm to image reconstruction using either soft-thresholding or a total
variation denoiser and develop three pairs of up/down-sampling operators in the transform
or spatial domain. We also present experimental results that validate the advantages of
these algorithms for synthetic datasets and for the real-word data.

Chapter 5 provides a scalable compression framework of DNN. We represent the DNN
parameters in a scalable fashion so that different applications can select the most suitable
bit rate of the network based on their own storage constraints. Moreover, when a device
needs to upgrade to a high-rate network, the existing low-rate network can be reused, and
only some incremental data are needed to be downloaded. Experimental results on various
DNNs show that our method can achieve scalable compression with graceful degradation in
the performance.
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Finally, we conclude with a summary of our findings and a discussion of future work in
Chapter 6.

This PhD research study resulted in the following publications:
Conference Papers:

1. X. Wang and J. Liang, View interpolation confidence-aided compressed sensing of
multiview images, IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 1651-1655, May 2013.

2. X. Wang and J. Liang, Side information-aided compressed sensing reconstruction via
approximate message passing, IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 3354-3358, May 2014.

3. X. Wang and J. Liang, Multi-resolution compressed sensing reconstruction via approx-
imate message passing, in Proc. IEEE Conf. on Image Proc. (ICIP), pp. 4352-4356,
Sept. 2015.

4. X. Wang and J. Liang. Scalable compression of deep neural networks. In ACM
Multimedia Conference (ACM MM), Oct. 2016

Journal Papers:

1. X. Wang and J. Liang, Approximate message passing-based compressed sensing recon-
struction with generalized elastic net prior, Signal Processing: Image Communication,
vol. 37, pp. 19-33, Sep. 2015.

2. X. Wang and J. Liang, Multi-resolution compressed sensing via approximate message
passing, IEEE Trans. on Computational Imaging, vol. 2, no. 3, pp. 218-234, Sep.
2016.

1.5 Acronyms and Notations

In this section, we summarize the acronyms and some common notations used throughout
this thesis.
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1D one-dimensional
2D two-dimensional
CS compressed sensing

GPSR gradient projection for sparse reconstruction
LASSO least absolute shrinkage and selection operator
BPDN basis pursuit denoising method
AMP approximate message passing
EM expectation-maximization
SI side information

PTC phase transition curve
ST soft-thresholding denoiser
TV total variation denoiser

GENP generalized elastic net prior
MR multi-resolution
HR high-resolution
LR low-resolution

TVAL3 TV Minimization by Augmented Lagrangian and Alternating Direction Algorithms
PSNR peak-signal-to-noise ratio
MSE mean-squared-error
DCT discrete cosine transform
SURE Stein’s unbiased risk estimate
DL deep learning
DNN deep neural network
CNN convolutional neural network
CONV convolutional layer
FC fully-connected layer

ILSVRC Large Scale Visual Recognition Challenge

Table 1.1: Lists of acronyms.

12



Chapter 2

View Interpolation
Confidence-Aided Compressed
Sensing

Multiview images are captured by a group of cameras from slightly different locations.
Together with new display technologies such as free view-point TV and autostereoscopic
displays, an immersive viewing experience can be achieved. However, multiview systems
require higher costs for data acquisition, storage and transmission. Fortunately, in most
multiview applications, there exist strong correlations between neighboring views. Therefore
view-interpolation-based methods can be used to improve the compression efficiency [47,
106]. It can also be used to reduce the acquisition cost. In this paper, a hybrid multiview
imaging system is considered, where traditional high-resolution cameras and emerging low-
cost compressed sensing (CS) cameras are interleavingly placed. The key idea of the CS
theory is that if a signal is sparse in some basis, it can be reconstructed with high quality
via simple random sampling at the encoder and `1-norm optimization at the decoder [27].
Therefore the cost of the CS cameras can be lower than traditional cameras.

However, existing multiview imaging systems in [12, 94] have not fully exploited all
information in view interpolation. First, it is known that view interpolation quality is highly
dependent on the scene composition. Therefore, based on the overall frame-level confidence
of the interpolated image provided by the view interpolation algorithm, we should have a
mechanism to adjust the influence of the view interpolation result on the CS reconstruction.

Secondly, many view interpolation algorithms also provide confidence information at
pixel level [47], in terms of the number of matching points a pixel of the interpolated
view can have in the two neighboring views. Usually, pixels with two matching points
have higher reconstruction quality. Pixels with only one matching point are occluded in
one neighboring view, thereby having lower interpolation quality. For pixels without any
correspondence in the neighboring views (corresponding to holes in the initial interpolated
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image), various impainting methods have to be used to estimate their values. Therefore
these pixels generally have the lowest confidence.

If these issues are not addressed properly, existing view interpolation-aided multiview
CS reconstruction methods could perform even worse than direct CS reconstruction. In this
part, we propose a modified GPSR algorithm by adding another term to the objective func-
tion. The term measures the squared error between the CS-based and view-interpolation-
based reconstructions. The weighting parameters of this term are determined by both
the frame-level and pixel-level confidences of the view interpolation result. We show that
the modified method can still be converted to the GPSR framework. Simulation results
demonstrate that the framework is very flexible and can outperform existing methods.

2.1 Background of CS and GPSR

The problem of reconstructing x from y is underdetermined. However, since x is sparse, the
`1 optimization can be used. The problem can be efficiently solved via linear programming.
However, for large-scale applications, the speed of the optimization algorithms can be very
slow. Recently, a fast Gradient Projection for Sparse Representation (GPSR) algorithm has
been developed [35], which starts with the unconstrained convex optimization problem in
Eq. (1.4).

To solve this, it first decomposes x into its positive and negative parts.

x = u− v,u ≥ 0,v ≥ 0. (2.1)

The problem can then be converted to the following bound-constrained quadratic program-
ming (BCQP) formulation of basis pursuit or similar problems [27].

min
z

cT z + 1
2zTBz ≡ F (z),

s. t. z ≥ 0,
(2.2)

where

z =
[

u
v

]
, b =ATy, c =τ12N +

[
−b
b

]
,

B =
[

ATA −ATA
−ATA ATA

]
.

(2.3)

The solution to (2.2) is equal to the solution of (1.4) if the free parameter τ is much less
than 1.
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It is shown in [35] that good solutions can be obtained very fast by using gradient
projection, special line search and termination techniques, making the GPSR method very
attractive.

2.2 Generalized GPSR with View Interpolation Confidence

In this section, we propose a generalized optimization framework to consider the occlusions
and holes in the interpolated image. We then show that the framework can be converted
into the standard BCQP format, which can be efficiently solved by the GPSR algorithm.

2.2.1 Generalized Optimization Framework

Our goal is to reconstruct the middle image Ij from its linear CS measurements y, with
the help of the interpolated middle image

_

I j generated from the left and right reference
images Ij−1, Ij+1 (given by conventional cameras). Due to the strong correlation between
images in multi-view image system, the final reconstructed image should be generally close
to the interpolated image. However, the quality of the interpolated image

_

I j is affected by
the number of occlusion pixels and the size of the holes in it. Hence, if we reconstruct the
difference image between Ij and

_

I j and add it back to
_

I j to get the reconstructed image,
the performance could be even worse than directly reconstructing the middle image from
its CS measurement, because the sparsity of the difference image could be larger than the
sparsity of the original middle image in this case.

To resolve this potential issue, we propose the following generalized optimization frame-
work.

arg min
x

(
1
2 ‖y−AX‖22 + τ‖x‖1 + µ

2

N∑
i=1

wi
(
Ii,j −

_

I i,j
)2
)
, (2.4)

where x is the sparse representation of Ij in basis Ψ, i.e., Ij = Ψx. The last squared-error
term is new compared to the original GPSR in (1.4). Ii,j and

_

I i,j denote the i-th pixel of
the target image Ij and the interpolated image

_

I j , respectively. µ is a weighting parameter
that is determined by the overall frame-level confidence of the view-interpolation algorithm,
and wi is the weighting parameter for the i-th pixel, which is determined by the pixel-level
view interpolation confidence.

A larger value of µ can be used if the overall view interpolation has higher quality.
In this case, the view interpolation is more trustworthy. On the other hand, µ should be
smaller if there are many occlusion pixels and holes in the view interpolation; hence the CS
reconstruction should rely more on the linear measurement from the CS camera.

Similarly, the pixel-level weighting parameter wi should be larger when a pixel in the
middle view has two point correspondences in the neighboring views. A smaller wi should
be used when there is only one point correspondence, i.e., the pixel is occluded in one view.
Finally, the smallest wi should be used when no point correspondence can be found, as the
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pixel is in a hole in the initial view interpolation. The occluded pixels and holes usually
occur near the edges of objects in an image.

The impacts of µ and wi will be studied in Sec. 2.3.

2.2.2 Conversion to the Standard BCQP Format

Let _x be the sparse representation of the interpolated image
_

I j in basis Ψ, ψi the i-th row
of Ψ, and Ri = ψTi ψi, which is a symmetric matrix. Each squared error in the last term
of (2.4) can be written as

(Ii,j −
_

I i,j)2 = (x− _x)TRi(x− _x) . (2.5)

As in (2.1), we split x and _x into their positive and negative parts. The generalized
framework in (2.4) can thus be converted to the standard BCQP format in (2.2), with the
following definitions:

z =
[

u
v

]
, b =ATy + µ

N∑
i=1

wiRi(_u − _v),

c =τ12N +
[
−b
b

]
,

B =

 ATA + µ
N∑
i=1

wiRi −(ATA + µ
N∑
i=1

wiRi)

−(ATA + µ
N∑
i=1

wiRi) ATA + µ
N∑
i=1

wiRi

 .
(2.6)

The GPSR algorithm can then be used to solve this BCQP problem.

2.3 Simulation Results

In this section, we present some simulation results to compare our proposed algorithm with
other GPSR-based algorithms. The orthonormal basis in the CS is chosen as the DCT. In
the image acquisition step of compressed sensing, the scrambled block Hadamard ensemble
(SBHE) method proposed in [37] is used. The size B and free parameter τ are chosen
according to [37]. The view interpolation method in [106] is used.

In the following experiments, View-Interp represents the view interpolation result given
by the method in [106], which will be included in the figures as a reference. Direct-GPSR
refers to a method similar to the scheme in [56], where the view interpolation result _x is
directly used as the initial value of GPSR reconstruction. Diff-GPSR is the generalization
of [26] to multiview image systems, where the GPSR method is used to recover the residual
frame, which is then added back to the interpolated image to get the final reconstruction.
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VIC-GPSR denotes the proposed view interpolation confidence aided GPSR method.
Its initial value is also chosen as _x. The frame-level weighting parameter µ is selected
for each multiview image data set, as will be described below. The pixel-level weighting
parameter wi is chosen to be 1, 0, and 0 respectively, if a target pixel has two, one or zero
point correspondence in view interpolation. That is, in the interpolated image, we only
trust the pixels with two point correspondences when evaluating the CS reconstruction.

FVIC-GPSR is another special case of the proposed method, where all wi’s are fixed
to be 1. In this case, the pixel-level confidence information is not exploited, and only the
frame-level weighting parameter µ is in effect.

In the following, the multiview video datasets Akko & Kayo, Christmas and Teddy are
used, with frame size of 640×480, 640×480, and 448×352, respectively. The first and third
views of each dataset are assumed to be given by traditional cameras, and the second view
is assumed to be sampled by a CS camera and reconstructed by different CS algorithms.
Only the first frame of each view is tested.

Fig. 2.1 (a) shows the reconstruction PSNR versus CS sampling subrate M/N of dif-
ferent methods with the multiview image dataset Akko & Kayo. The view interpolation
result shows that the number of target pixels with two, one and zero point correspondences
is 285879, 20317, and 1004, respectively. The weight parameter µ is chosen to be 1.

Some observations can be made from Fig. 2.1 (a). First, at low subrate, Direct-GPSR is
much worse than other methods. As the number of samples M increases, Direct-GPSR can
get close to and eventually outperform other methods, including our proposed VIC-GPSR.
The reason is that the parameter µ is fixed to 1, which essentially gives the same weight to
the first and the last term in Eq. (2.4).

Secondly, the proposed VIC-GPSR and FVIC-GPSR, as well as Diff-GPSR can always
have better results than the interpolated view. Our methods also always achieve better
results than Diff-GPSR, and the gain increases with the subrate (more than 3 dB when the
subrate is greater than 0.3), which shows the power of considering the view interpolation
confidence information.

Third, VIC-GPSR has better performance than FVIC-GPSR, thanks to the contribution
of the pixel-level confidence information. The gain also increases with the subrate.

Fig. 2.1 (b) are the results using the dataset Christmas. The view interpolation result
shows that the number of target pixels with two, one and zero point correspondences is
272428, 31029, and 3743, respectively. This means that the view interpolation of this
dataset is not as good as that in Akko & Kayo, as indicated by the PSNRs of the view
interpolation method in Fig. 2.1 (a) and Fig. 2.1 (b). In our methods, µ is set to be 1.

Fig. 2.1 (b) shows that Direct-GPSR is worse than View-Interp when subrate is less than
about 0.33. This verifies that if the view interpolation does not have good quality, directly
using it as the initial value of GPSR could lead to even worse result than the interpolated
view. Our methods and Diff-GPSR can still outperform the view interpolation. Note that
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Diff-GPSR only has limited gain over the view interpolation method, and the gain of our
methods over Diff-GPSR can be more than 4 dB when the subrate is greater than 0.3.

Fig. 2.1 (c) shows the results with the Teddy dataset. The number of target pixels with
two, one and zero point correspondences is 141946, 15289, and 461, respectively. Therefore,
we choose the weighting parameter µ to be 5.

It can be seen from Fig. 2.1 (c) that Diff-GPSR achieves almost the same result as
View-Interp, sometimes even worse when the subrate is low, because the subrate is not
enough to recover the difference image accurately, and fails to capture the edges in the
middle image. Our proposed algorithm always achieves the best performance.

Fig. 2.2 shows portions of the final reconstruction errors using different CS methods.
The proposed method has much smaller errors near the edges in the images. This verifies
that our method can avoid the adverse impact of the occlusion and holes in view interpo-
lation.

2.4 Summary

In this part, we consider view interpolation-aided compressed sensing of multiview images.
Different from existing methods, we exploit the knowledge of occlusions and holes in the
interpolated view when performing the CS reconstruction, by assigning more weights to
the view interpolation result when its quality is satisfactory, and vice versa. Experimental
results show that our method outperforms existing CS-based multiview image systems.
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Figure 2.1: PSNRs versus sampling subrate of different methods. (a) Akko & Kayo. (b)
Christmas. (c)Teddy.

19



(a) (b) (c)

(d) (e) (f)

Figure 2.2: Portions of the reconstruction errors of Akko & Kayo (a), (b) and Christmas
(d), (e), with subrate=0.4 using different methods. (a), (d) Diff-GPSR. (b), (e) VIC-GPSR
and their corresponding confidence map, (c) Akko & Kayo, (f) Christmas.
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Chapter 3

Approximate Message
Passing-based Compressed Sensing
Reconstruction with Generalized
Elastic Net Prior

In Chapter 2, we discussed the view interpolation confidence-aided compressed sensing prob-
lem. There are some questions remain to be answered. First, the regularization parameter
τ in Eq. (2.4) is strongly correlated to the quality of interpolated middle image and plays an
important role in the final reconstruction performance. In Chapter 2, we set τ empirically
for the test images. It is unclear how to adjust τ adaptively based on the quality of view
interpolation. Next, there is no theoretical analysis to prove the image reconstructed by
solving the optimization problem in Eq. (2.4) has better quality than the one for Eq. (1.4).
This chapter is devoted to answer these questions and generalize the conclusions made in
Chapter 2.

In this chapter, we study the compressed sensing reconstruction problem with general-
ized elastic net prior (GENP), where a sparse signal is sampled via a noisy underdetermined
linear observation system, and an additional initial estimation of the signal (the GENP)
is available during the reconstruction. We first incorporate the GENP into the LASSO
and the approximate message passing (AMP) frameworks, denoted by GENP-LASSO and
GENP-AMP respectively. We then investigate the parameter selection, state evolution,
and noise-sensitivity analysis of GENP-AMP. We show that, thanks to the GENP, there is
no phase transition boundary in the proposed frameworks, i.e., the reconstruction error is
bounded in the entire plane. The error is also smaller than those of the standard AMP and
scalar denoising. A practical parameterless version of the GENP-AMP is also developed,
which does not need to know the sparsity of the unknown signal and the variance of the
GENP. Simulation results are presented to verify the efficiency of the proposed schemes.
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Throughout this chapter, we model the initial estimation or SI of the signal as a noisy
version of the unknown sparse signal, and modify the LASSO and AMP frameworks to
incorporate the initial estimation. After developing the frameworks of GENP-LASSO and
GENP-AMP, we focus on the GENP-AMP, and investigate its parameter selection, state
evolution, asymptotic prediction performance and noise-sensitivity analysis. We show that
there is no phase transition boundary in our scheme, i.e., the mean-squared error (MSE)
of the reconstruction is bounded in the entire plane, thanks to the generalized elastic net
prior. As far as the authors’ knowledge, this is the first result that demonstrates that a
CS scheme could have such a property. Moreover, the MSE of GENP-AMP is smaller than
those of the standard AMP and scalar denoising.

The theoretical analyses require the knowledge of the sparsity of the unknown sparse
signal and the variance of the generalized elastic net prior. In practices, these parameters
have to be estimated. In [73], a parameterless AMP is developed using Stein’s unbiased risk
estimate (SURE). Inspired by [73], we apply the SURE theory to GENP-AMP and develop
a parameterless version of GENP-AMP.

The rest of this chapter is organized as follows. Sec. 4.1 reviews the necessary back-
ground of minimax MSE of soft thresholding algorithm. Sec. 3.2 formulates the GENP-
LASSO problem. Sec. 3.3 formulates GENP-AMP, studies its connection with GENP-
LASSO, and presents its parameter selection and state evolution. In Sec. 3.4, we derive the
noise sensitivity analysis of the GENP-AMP. The parameterless GENP-AMP is developed
in Sec. 3.5. Simulation results with both 1-D data and multiview images are presented in
Sec. 3.6, and the proofs of some main results are given in the Appendix.

3.1 Background: Minimax MSE of Soft Thresholding Algo-
rithm

In this section, we briefly review the minimax MSE of the soft thresholding algorithm [29,32],
which plays an important role in AMP. Suppose we need to recover a k-sparse n-vector
x0 = (x0(i) : i ∈ [n]) (where [n] ≡ {1, . . . , n}) contaminated by a Gaussian white noise, i.e.,

y(i) = x0(i) + z0(i), i ∈ [n],

where z0(i) ∼ N (0, σ2) is independent and identically distributed. One way to estimate the
signal is to solve the following LASSO or `1-regularized least-square problem,

x̂λ = arg min
x

1
2 ‖y− x‖22 + λ‖x‖1. (3.1)
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An important fact is that the solution of this problem is equivalent to that of the well-known
soft thresholding algorithm in wavelet denoising [29],

x̂λ(i) = η(y(i);λ), i ∈ [n],

where the soft thresholding operation with threshold θ is

η(x; θ) =


x− θ if x > θ,

0 if − θ 6 x 6 θ,

x+ θ if x < −θ.

(3.2)

A reasonable choice of the threshold λ in (3.1) is a scaled version of the noise standard
deviation, i.e., λ = ασ. The MSE of the soft thresholding algorithm can thus be written as

mse(σ2; p, α) ≡ E{[η(X + σZ;ασ)−X]2}, (3.3)

where the expectation is with respect to independent random variables Z ∼ N (0, 1) and
X ∼ p.

The soft thresholding method is scale-invariant [32], i.e.,

mse(σ2; p, α) = σ2mse(1; p1/σ, α), (3.4)

where ps is a scaled version of p, ps(S) = p({x : sx ∈ S}). Therefore we only need to focus
on σ = 1, and the notation mse(1; p, α) can be simplified into mse(p, α).

Since x0 is k-sparse, we can define the following set of probability measures with small
non-zero probability,

Fε ≡ {p : p is a probability measure with p({0}) > 1− ε}, (3.5)

where ε = k/n is defined in (1.2).
The minimax threshold MSE is thus defined as [32]

M±(ε) = inf
α>0

sup
p∈Fε

mse(p, α), (3.6)

which is the minimal MSE of the worst distribution in Fε, where ± means a nonzero
estimand can take either sign.

For a given α, the worst case MSE in (3.6) is given by [32]

sup
p∈Fε

mse(p, α) = ε(1 + α2) + (1− ε)[2(1 + α2)Φ(−α)− 2αφ(α)], (3.7)
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with φ(z) = exp(−z2/2)/
√

2π being the standard normal density, and Φ(z) =
∫ z
−∞ φ(x)dx

the Gaussian cumulative distribution function. Moreover, the supremum can be achieved
by the following three-point probability distribution on the extended real line R∪{−∞,∞}

p∗ε = (1− ε)δ0 + ε

2δ∞ + ε

2δ−∞,

where δt is a Dirac delta function at t. In practice, we are more interested in the near-worse-
case signals with finite values. It is known that the following c-least-favorable distribution
can achieve a MSE that is a fraction of (1− c) of the worst case,

pε,c = (1− ε)δ0 + ε

2δh±(ε,c) + ε

2δ−h±(ε,c), (3.8)

where h±(ε, c) ∼
√

2log(ε−1) as ε→ 0.

3.2 GENP-aided LASSO

In this chapter, we study the generalized elastic net prior (GENP)-aided CS reconstruction,
where in addition to the CS sampling as in (1.1), an initial estimation of x, denoted by x̃,
is available during reconstruction, which can be seen as a noisy version of x. The error of
this estimation, e = x̃ − x, is assumed to be i.i.d. additive white Gaussian with variance
σ2
s , i.e., e ∼ N (0, σ2

sI). This Gaussian noise model is decently accurate in applications such
as image acquisition with poor illumination, high temperature, or transmission error, and
has been widely used in image denoising [22]. The ratio between the noise variance of the
GENP and that of the compressed sampling noise in Eq. (1.1) will be used later for noise
sensitivity analysis.

γ2
s = σ2

s/σ
2. (3.9)

In this section, we formulate the GENP-aided reconstruction from estimation theory,
in particular, the maximum a posteriori (MAP) criterion, and develop an GENP-LASSO
framework. In Sec. 3.3, based on the results in this section, a fast GENP-aided AMP
algorithm is developed to reduce the complexity of recovering the signal.

By the Bayesian rule, the posterior probability is proportional to

p(x|y, x̃) ∝ p(x)p(y, x̃|x)
(a)= p(x)p(y|x)p(x̃|x), (3.10)

where (a) is due to the conditional independence of x̃ and y given x. The simplest choice
for the prior p(x) is a product of identical factors p(x) =

n∏
i=1

p(xi), which can be easily

generalized, e.g., a non-uniformly sparsity model is considered in [87], where different co-
efficients have different nonzero probabilities. Based on the assumption that p(x̃|x) is the
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product of identical factors, i.e., p(x̃|x) =
n∏
i=1

p(x̃i|xi), the posterior pdf can be written as

pσ,σs(x|y, x̃) =
exp(− 1

2σ2 ‖y−Ax‖22)
n∏
i=1

p(xi)p(x̃i|xi)

Z(y, x̃) , (3.11)

where Z(y, x̃) is the normalization constant. We call
n∏
i=1

p(xi)p(x̃i|xi) the joint prior, which
includes contributions from both the source and the initial estimation. By the MAP crite-
rion, we have

x̂ = arg min
z∈Rn

(1
2 ‖y−Az‖22 +

n∑
i=1

g(zi) +
n∑
i=1

f(x̃i, zi)
)
. (3.12)

When g is convex, (3.12) can be easily solved. In particular, if g(zi) = λ|zi|, and
f(x̃i, zi) = τs

2 (x̃i − zi)2, we have

x̂(λ, τs) = arg min
z∈Rn

(1
2 ‖y−Az‖22

+λ‖z‖1 + τs
2 ‖x̃− z‖22

)
,

(3.13)

which is a generalized version of the LASSO in (3.1) with an additional `2 penalty term
caused by the initial estimation x̃. When x̃ = 0, the problem reduces to the elastic net-
regularized LASSO in [110]. Therefore we call x̃ generalized elastic net prior (GENP), and
the problem in Eq. (3.13) generalized elastic net prior-aided LASSO (GENP-LASSO).

In LASSO, the ratio ρ in Eq. (1.2) cannot be larger than 1, i.e., the number of selected
atoms is bounded by the number of samples, whereas it is shown in [110] that in the
elastic net-regularized LASSO, the quadratic penalty term removes this limitation. Our
noise sensitivity analysis in Sec. 3.4 will show that ρ < 1 is also not necessary in the
GENP-LASSO.

The parameters λ and τs in Eq. (3.13) are closely related to σ2
s , the noise variance

of the GENP. How to tune the two parameters λ and τs will be addressed later in this
chapter. The proposed GENP-LASSO in (3.13) is a convex optimization problem and can
be solved by, e.g., the interior point methods (as used in the CVX package [44]) and the
gradient methods. For example, to incorporate the GENP into the Orthant-Wise Limited-
memory Quasi-Newton (OWLQN) algorithm [7], which is a popular gradient-based method
for large-scale LASSO problems, we can replace the `2 regularization term ‖z‖22 in it by the
quadratic penalty term ‖x̃− z‖22. However, both interior point and gradient methods are
quite slow for large-scale problems.
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In this chapter, we solve the GENP-LASSO problem by modifying the fast AMP algo-
rithm, which enjoys several advantages, e.g., low complexity and the capability of predicting
the final performance accurately.

3.3 GENP-aided Approximate Message Passing

In this section, we present the formulae of GENP-AMP, study its connections with the
GENP-LASSO, and derive its corresponding parameter selections and state evolution.

3.3.1 The Formula of GENP-AMP

In [72], the following iterative formulas of AMP are obtained after simplifying the traditional
min-sum-based message passing algorithm using the quadratic approximation.

x̂t0 = xt + AT rt,

xt+1 = η(x̂t0; θt),
(3.14)

bt = 1
m

∥∥∥xt∥∥∥
0
, (3.15)

rt = y−Axt + btrt−1. (3.16)

Each iteration of AMP only needs to update the estimate xt in (3.14) and the residual rt

in (3.16), which have onlym+n entries. The complexity is thus much lower than traditional
message passing methods that need 2mn updates. Note that the AMP is parameterized
by two sequences of scalar parameters: the thresholds {θt}t≥0 and the forgetting factors
{bt}t≥0.

To incorporate the GENP into AMP, we modify the local message of each AMP variable
node from λ‖z‖1 to λ‖z‖1 + τs

2 ‖x̃− z‖22. By the same simplifications and derivations in [72],
we can get the following iterative estimate of the n-vector signal x. The details are skipped
due to space limitation.

x̂t0 = ut
1 + ut

x̃ + 1
1 + ut

(xt + AT rt), (3.17)

xt+1 = η(x̂t0; θt), (3.18)

bt = 1
1 + ut−1

∥∥xt∥∥0
m

, (3.19)

rt = y−Axt + btrt−1. (3.20)

Compared to AMP, x̂t0 in our scheme is a linear combination of xt + AT rt and the GENP,
adaptively controlled by a new sequence of scalar parameters, {ut}t≥0. The forgetting
factor bt is also affected by ut−1. When ut = 0, x̃ has no contribution, and the proposed
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framework reduces to the standard AMP in [31,32,68,72]. The iteration is applied to each
entry. Hence, if the variances of different x̃i are different, the method can still be applied
by changing the scalar ut to vector ut = [ut,1, ut,2, ..., ut,n] and the scalar θt to its vector
case.

3.3.2 Connections to GENP-LASSO

As shown in [72], the parameters {θt}t>0 and {bt}t>0 are constrained by its connection
with the min-sum algorithm. This is also true for the new parameter {ut}t>0. However,
the following proposition shows that GENP-AMP provides a very general solution for the
GENP-LASSO problem in Eq. (3.13). When there is no GENP (ut = 0), the proposition
reduces to Prop. 5.1 in [72] for LASSO.

Proposition 3.3.1. Let (x∗, r∗) be the fixed point of the GENP-AMP algorithm given by
(3.17) and (3.20) for fixed θt = θ, ut = u, and bt = b. Then x∗ is also a minimum of the
GENP-LASSO problem in (3.13) with

λ = (1 + u)θ(1− b), (3.21)

τs = u(1− b). (3.22)

Proof. The fixed-point condition of Eq. (3.17) is

x∗ = u

1 + u
x̃ + 1

1 + u
(x∗ + AT r∗)− θv∗, (3.23)

where v∗i = sign(x∗i ) if x∗i 6= 0 and v∗i ∈ [−1,+1] otherwise. Similarly, from (3.20), we get
(1− b)r∗ = y−Ax∗, or r∗ = (y−Ax∗)/(1− b). Plugging into the equation above, we get

(1 + u)θ(1− b)v∗ + u(1− b)(x∗ − x̃) = AT (y−Ax∗).

On the other hand, in Eq. (3.13), by setting the derivative of the GENP-LASSO objec-
tive function with respect to z to zero, we get the stationary condition

λv∗ + τs(x∗ − x̃) = AT (y−Ax∗). (3.24)

Comparing the two equations above leads to the conclusion.

3.3.3 GENP-AMP State Evolution and Parameter Selection

In this part, we derive the state evolution of GENP-AMP and investigate its parameter
selection. The state evolution was first developed to describe the asymptotic limit of the
AMP estimates as m,n → ∞ for any fixed t, but with the same sample ratio δ = m/n, as
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defined in (1.2) [72]. It enables the accurate prediction of the MSE of AMP by solving a
fixed-point equation. This part is based on Sec. IV of [32].

First, we define the MSE map Ψ as

Ψ(q2, u, δ, σ, σs, α, p) ≡ mse(npi(q2, u; δ, σ, σs); p, α),

which is the MSE of the soft thresholding as defined in (3.3) with npi (noise-plus inter-
ference) as the noise variance, where q2 is the variance of the thresholded estimator, and
npi is the variance of the un-thresholded estimator in (3.17), which can be written as (see
Appendix A for the derivation)

npi(q2, u; δ, σ, σs) = ( u

1 + u
)2σ2

s + ( 1
1 + u

)2(σ2 + q2

δ
). (3.25)

As pointed out in [72], the choice of the AMP parameter θt can be quite flexible. A good
option is θt = αξt, where α > 0, and ξt is the root MSE of the un-thresholded estimation x̂t0
in (3.17). From this, based on the i.i.d. normalized distribution of A and the large system
limit [32], it can be shown that

ξ2
t = npi(q2

t , u
2
t ; δ, σ, σs) ≈

(
ut

1 + ut

)2
σ2
s +

( 1
1 + ut

)2 ∥∥rt∥∥2
2

m
. (3.26)

Besides, we have
∥∥xt∥∥0/n ≈ E{η′(x0 + σtZ;ασt)}. According to Eq. (3.19, 3.21, 3.22),

Prop. 3.3.1 can be rewritten as

λ = (1 + u∗)αξ∗
[
1− 1

1 + u∗

E{η′(x0 + ξ∗Z;αξ∗)}
δ

]
,

τs = u∗

[
1− 1

1 + u∗

E{η′(x0 + ξ∗Z;αξ∗)}
δ

]
,

(3.27)

where ξ∗ = limt→∞ξt. Since the computation of q2 is nontrivial, Eq. (3.26) is useful for
practical algorithm design, whereas Eq. (3.25) is mainly for theoretical analysis.

The state of GENP-AMP is defined as a 7-tuple (q2, u; δ, σ, σs, α, p). The state evolution
follows the rule

(q2
t , ut; δ, σ, σs, α, p) 7→ (Ψ(q2

t , ut),Υ(q2
t , ut); δ, σ, σs, α, p),

t 7→ t+ 1,

where q2
t and ut are the MSE and the weighting parameter in the t-th iteration, and Ψ and

Υ are the evolution functions of q2
t and ut, respectively. As (δ, σ, σs, α, υ) are fixed during

the evolution, we only need the following state evolutions of q2
t and ut (See Appendix A.1
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for the derivation).

q2
t 7→ q2

t+1 ≡ Ψ(q2
t ,
σ2 + q2

t /δ

σ2
s

),

ut 7→ ut+1 = Υ(q2
t , ut) = σ2 + Ψ(q2

t , (σ2 + q2
t /δ)/σ2

s)/δ
σ2
s

,

(3.28)

where the formula for ut is the result of the following proposition.

Proposition 3.3.2. The optimal weighting parameter ut that combines the GENP x̃ and
the previous iteration result in the GENP-AMP is given by

ut = σ2 + q2
t /δ

σ2
s

. (3.29)

Proof. The optimal ut should minimize the MSE between the original sparse signal and the
un-thresholded estimation x̂t0 in (3.17), which can be obtained by minimizing ( ut

1+ut )
2σ2
s +

( 1
1+ut )

2(σ2 + q2
t
δ ) over ut.

Replacing u in Eq. (3.25) by Eq. (3.29), npi(q2, u; δ, σ, σs) can be simplified into

npi(q2) = σ2
s(σ2 + q2/δ)

σ2
s + σ2 + q2/δ

. (3.30)

The fixed point condition of the state evolution is

q2
∗ = Ψ(q2

∗,
σ2 + q2

∗/δ

σ2
s

) = mse(npi(q2
∗); p, α). (3.31)

If we treat ξ2 = npi(q2
∗) as an unknown variable, plugging (3.31) into (3.30) yields a

fixed-point equation for ξ2,

ξ2 = σ2
s(σ2 + mse(ξ2; p, α)/δ)

σ2
s + σ2 + mse(ξ2; p, α)/δ ≡ F (ξ2, α). (3.32)

The following result shows that with an appropriate choice of α, the fixed-point equation
has a unique solution, from which we can predict the final MSE performance of the GENP-
AMP algorithm.

Proposition 3.3.3. Let αmin = αmin(δ, γs) be the unique non-negative solution of the
equation

(1 + α2)Φ(−α)− αφ(α) = δ

2
(γ2
s + 1)2

γ4
s

, (3.33)

where φ(z) and Φ(z) are defined after Eq. (3.7), and γ2
s is defined in Eq. (3.9). Then

for any α > αmin(δ, γs), the fixed-point equation ξ2 = F (ξ2, α) in (3.32) admits a unique
solution ξ∗ = ξ∗(α), and limt→∞ξt = ξ∗(α).
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Proof. This proof is an extension of Case χ = ± in Appendix C of [31]. It is easy to find
that if γ2

s goes to ∞, the whole equation is exactly the one in [72].
Since we want to have F < ξ2, following the same setup as the one in Case χ = ± in

Appendix C of [31], we need to consider the boundary point, which can be found by solving
the boundary condition dF

dξ2 |ξ2=0 = 1. This leads to σ4
sd(Ψ/δ)/dξ2

(σ2
s+σ2+Ψ/δ)2 |ξ2=0 = 1. If ξ2 → 0, we

know that q2/δ = 0, and the expression of d(q2/δ)
dξ2 can be obtained as in [31]. Then the

problem is transformed into

d(q2/δ)
dξ2 |ξ2=0 = (1 + γ2

s )2

γ4
s

. (3.34)

The numerator of Eq. (3.34) becomes (1+γ2
s )2

γ4
s

(1− γ4
s

(1+γ2
s )2

2
δ [(1+α2)Φ(−α)−αφ(α)]) instead

of 1 − 2
δ [(1 + α2)Φ(−α) − αφ(α)] as in the classical case in Eq. (6.6) of [72]. Comparing

these two expressions, from Proposition 6.2 in [72], we can reach the conclusion.

If the threshold α and the distribution p0 of X0 are given, we can obtain the fixed point
ξ∗ by solving Eq. (3.32). Therefore, the MSE performance of the GENP-AMP algorithm
can be predicted.

Based on Prop. 3.3.1, λ and τs can be determined if the necessary parameters are
known. Conversely, if either λ or τs is given, combining Eq. (3.33) with Eq. (3.27), we can
get the corresponding α and ξ∗. Thus the other parameter can be uniquely determined.

3.4 Noise Sensitivity Analysis of GENP-AMP

The noise sensitivity phase transition is a curve in the (ρ, δ) plane [32], where ρ = k/m and
δ = m/n, as defined in (1.2). For many classical compressed sensing algorithms, the MSE
is bounded below the phase transition curve, and unbounded above the curve. It is known
that `1-based methods (such as the CVX package [44]) enjoys the best phase transition
performance, and the fast AMP can achieve the same phase transition performance [32].
For large-scale problems, the OWLQN algorithm in [7] has similar empirical phase transition
boundary to `1 methods, but its complexity is higher.

In this section, we show that there is no phase transition boundary for GENP-AMP, i.e.,
its MSE is bounded in the entire plane, thanks to the GENP. We also prove that ρ < 1 is no
longer needed, which agrees with Lemma 1 in [110] for the elastic net-regularized LASSO.

First, for the GENP-LASSO problem in (3.13), we define the MSE per entry when the
empirical distribution of the signal converges to p0:

MSE(σ2;σ2
s , p0, λ, τs) = lim

n→∞
1
n
E{‖x̂(λ, τs)− x0‖22}, (3.35)
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where the limit is taken along a converging sequence. Since the class Fε in (3.5) is scale-
invariant, where ε = k/n = ρδ according to (1.2), the minimax risk of the GENP-LASSO
can be written as

inf
λ,τs

sup
p0∈Fρδ

MSE(σ2;σ2
s , p0, λ, τs) = M∗(δ, ρ, γ2

s )σ2, (3.36)

which indicates the sensitivity of the GENP-LASSO to the noise variance in the measure-
ments, where γ2

s is defined in Eq. (3.9), and the expression of noise sensitivity M∗(δ, ρ, γ2
s )

is given by the following proposition. We also give closed-form expressions of the tuning
parameters λ and τs that achieve the minimax risk bound.

Before presenting the proposition, we first define the formal mean square error (fMSE)
and formal noise-plus interference level (fNPI), following Definitions 3.1−3.4 in [32]. fMSE is
defined as the MSE of an observable in a large system framework LSF(δ, ρ, σ, γs, p), where
LSF(δ, ρ, σ, γs, p) denotes a sequence of problem instances (y; A,x)m,n as per Eq. (1.1)
indexed by the problem sizes, and m and n grow proportionally such that m/n = δ. fNPI
is expressed as

fNPI = ( u∗

1 + u∗
)2σ2

s + ( 1
1 + u∗

)2(σ2 + fMSE/δ),

u∗ = σ2 + fMSE/δ
σ2
s

.

Its minimax value is NPI∗(δ, ρ, γ2
s ) ≡ γ2

sσ
2(1+M∗(δ,ρ,γ2

s )/δ)
γ2
s+1+M∗(δ,ρ,γ2

s )/δ by replacing fMSE in the equation
above with its minimax risk M∗(δ, ρ, γ2

s ).

Proposition 3.4.1. (1) For any point in the surface, i.e., ρ 6 1/δ (since δρ = ε 6 1), the
minimax risk of GENP-LASSO is bounded, and M∗(δ, ρ, γ2

s ) is given by

M∗(δ, ρ, γ2
s ) =

−G(δ, ρ, γ2
s ) +

√
G(δ, ρ, γ2

s )2 + 4δγ2
sM

±(δρ)
2 , (3.37)

where G(δ, ρ, γ2
s ) = δγ2

s + δ − γ2
sM

±(δρ).
(2)For c > 0, define

h∗(δ, ρ, γ2
s ; c) ≡ h±(δρ, c) ·

√
NPI∗.

Then similar to Eq. (3.8), the distribution p ∈ Fδρ with a fraction (1 − δρ) of its mass at
zero and the remaining mass equally at ±h∗(δ, ρ, γ2

s ; c) is c-nearly-least-favorable, i.e., the
formal noise sensitivity of x̂(λ, τs) is

−G(δ, ρ, γ2
s ; c) +

√
G(δ, ρ, γ2

s )2 + 4(1− c)δγ2
sM

±(δρ)
2 , (3.38)

where G(δ, ρ, γs; c) = δγ2
s + δ − (1− c)M±(δρ)γ2

s .
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(3) The formal minimax parameters are given by

λ(υ; δ, ρ, σ, σs) ≡ (1 + u∗) · α±(δρ) ·
√
fNPI(α±; δ, ρ, σ, σs, υ)

× (1− 1
1 + u∗

EqDR(υ;α±(δρ))/δ),

τs(υ; δ, ρ, σ, σs) ≡ u∗(1−
1

1 + u∗
EqDR(υ;α±(δρ))/δ),

(3.39)

where EqDR is the equilibrium detection rate, i.e., the asymptotic fraction of coordinates
that are estimated to be nonzero, i.e., EqDR = P{η(x∞; θ∞) 6= 0}, as in Eq. (4.5) in [32].

Proof. The proof is given in Appendix A.2.

To show that the noise sensitivity analysis presented here is indeed a generalized result,
we next discuss three special cases and show that the result here degrades to the existing
known conclusions. First, let γ2

s = ∞. In this case, Eq. (3.37) degrades to the formulae
of the bounded MSE below the phase transition boundary of AMP, i.e., Eq. (4.8) in [32] .
The phase transition boundary only exists in this extreme case for GENP-AMP. Second, if
γ2
s = 0, i.e., x̃ = x, we do not need to run the AMP; hence the MSE is 0, which coincides with

Eq. (3.37) when γ2
s = 0. Last, if δ = 0, which means there is no compressed measurement,

solving the minimization problem in Eq. (3.13) is equivalent to scalar denoising, and the
minimax MSE is M±(ρδ)σ2

s , which also agrees with the denoising of scalars introduced in
Sec. 4.1.

When there is no initial estimation x̃, the formal MSE noise sensitivity above the phase
transition is infinite. However, this is no longer the case in the presence of the GENP,
as we can at least assign τs to ∞ while keeping λ to be finite, and the formal MSE noise
sensitivity is thus bounded by γ2

s . We can do even better by exploiting the measurement
and the sparsity of the original signal, as shown below.

It is easy to verify that ∂M∗(δ, ρ, γ2
s )/∂γ2

s is positive, so M∗(δ, ρ, γ2
s ) is a monotonically

increasing function of γ2
s . Since GENP-AMP reduces to AMP when γ2

s = ∞, this means
that the minimax bound of GENP-LASSO is no greater than that of LASSO, i.e.,

M∗(δ, ρ, γ2
s ) 6M b(δ, ρ), (3.40)

where M b(δ, ρ) = M±(δρ)
1−M±(δρ)/δ is the bound of LASSO minimax risk.

Besides, we can also verify that for a fixed sparsity, i.e., ε = δρ is a constant, ∂M∗(δ, ρ, γ2
s )/∂δ

is non-positive (only equal to 0 when δ = 0), and M∗(δ, ρ, γ2
s ) is a monotonically decreasing

function of δ. Since GENP-AMP reduces to denoising via soft-thresholding described in
Sec. 4.1 when δ = 0, we conclude that the minimax bound of GENP-LASSO is no greater
than that of scalar denoising,

M∗(δ, ρ, γ2
s ) 6M±(δρ)γ2

s . (3.41)
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In fact, Eq. (3.40) and (3.41) have proved that GENP-AMP outperforms AMP and the
scalar denoising via soft-thresholding. More importantly, Eq. (3.40) measures the benefit
brought by the generalized elastic net prior while Eq. (3.41) measures the benefit brought
by the linear CS measurements.

We can find more properties of this minimax risk bound. For a fixed δ, the only function
of ρ is M±(δρ). From [32], we know that M±(δρ) is monotonically increasing with respect
to ρ, and M±(0)→ 0, M±(1)→ 1. Besides, we can find that M∗(δ, ρ, γ2

s ) is monotonically
increasing with respect to M±(δρ). The maximum value of M±(δρ) is 1. The maximum
value of M∗(δ, ρ, γ2

s ) is thus

max
M±(δρ)

M∗(δ, ρ, γ2
s )

=

√
(δγ2

s − γ2
s + δ)2 + 4δγ2

s − (δγ2
s − γ2

s + δ)
2 ,

(3.42)

where the maximum is achieved at ρ = 1/δ.

3.5 Parameterless GENP-AMP

In the GENP-AMP proposed above, two parameters need to be known in advance: (1) the
sparsity of the signal, ε = k/n, in order to select the appropriate thresholding parameter
in soft thresholding function in Sec. 4.1; (2) the variance of the prior x̃, σ2

s , in order
to determine the weighting parameter ut as in Prop. 3.3.2. This makes the algorithm
impractical.

The original AMP also needs to know the sparsity. However, recently two types of
parameterless AMP algorithms have been developed in [73] and [99, 100]. In [73], Stein’s
unbiased risk estimate (SURE) framework is used to automatically determine the optimal
thresholding parameter in AMP using the gradient descent method. The methods in [99,100]
are both based on the GAMP [76], and try to approximate the MMSE result by learning the
prior distribution of the sparse signal through Expectation Maximization (EM) method.

In this part, we follow the approach in [73] due to its theoretical guarantee, since the
complete analysis of the EM algorithm used in [99, 100] is still not available. However,
the method in [73] cannot be applied in this chapter directly since it does not consider
the GENP. In the following proposition, using the SURE theory, we develop a practical
parameterless version of the GENP-AMP (P-GENP-AMP) that can simultaneously select
the thresholding parameter and estimate the variance of the GENP.

Proposition 3.5.1. The variance of the GENP x̃ can be approximated by

σ2
s ≈
‖x̃− xAMP‖22 − lim

t→∞
r̂(θt)

n
, (3.43)
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where xAMP is the sparse signal estimated by the AMP with the same setup (fixed A, δ, and
ρ), lim

t→∞
r̂(θt)/n is the MSE of AMP predicted by the SURE method in [73], and

r̂(θt)
n

= 1
n

∥∥∥η(x̂t0; θt)− x̂t0
∥∥∥2

2
+ σ2

t + 1
n
σ2
t [1T (η′(x̂t0; θt)− 1)] (3.44)

is Eq. (13) in [73], in which σ2
t is the noise-plus interference level in the t-th iteration of

the standard AMP.

Proof. The proof is given in Appendix A.3.

In fact, thanks to the state evolution analysis, the choice of xAMP can be quite flexible.
Another good choice is x̂∗0, the un-thresholded estimator in the last iteration of AMP, whose
variance is σ2

∗, mentioned in Eq. (3.14). Then, σ2
s can also be approximated by

σ2
s ≈
‖x̃− x̂∗0‖

2
2 − σ2

∗
n

. (3.45)

Note that as shown in Prop. 3.5.1 and its proof in Appendix A.3, the approximation of
σ2
s relies on the approximation of the standard AMP. Therefore, above the phase transition

boundary of AMP, the AMP approximation is unstable since the MSE is unbounded, making
the approximation lim

t→∞
r̂(θt)/n unbounded. A tiny mismatch between lim

t→∞
r̂(θt)/n and MSE

of AMP will cause large error when estimating σ2
s . On the other hand, below the phase

transition boundary, the MSE of AMP is bounded. The approximation is very stable.
Once σ2

s is estimated, the remaining problem is to determine the thresholding parameter
in Eq. (3.17). Since the iteration formulae and the state evolutions of GENP-AMP are
similar to those of AMP, we only need to replace the explicit expressions of σ2

t in Eq. (3.44)
with npi(q2

t ) in Eq. (3.30). The subsequent steps are exactly the same as those in [73],
i.e., determining the thresholding parameter θt using gradient descent, and updating the
estimator and the residual according to Eq. (3.17) and (3.20).

3.6 Numerical Experiments

In this section, we present simulation results with both 1-D data and multiview images to
demonstrate the performances of the proposed GENP-LASSO and GENP-AMP. Compar-
isons with some other methods are also included.

3.6.1 Performance of GENP-LASSO

We first compare the predicted and empirical MSEs of GENP-LASSO and LASSO. Note
that GENP-LASSO reduces to LASSO when γ2

s =∞. We generate the signal vector x0 by
randomly choosing each entry from {+1, 0,−1} with probabilities P (x0,i = +1) = P (x0,i =
−1) = 0.064. The entries of the measurement matrix A are drawn from the i.i.d. Gaussian
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Figure 3.1: The predicted and actual MSEs of LASSO and GENP-LASSO with different
regularization parameter λ. The sample rate is δ = 0.64.

δ ρ h∗ λ∗ τ∗ fMSE eMSE eMSE fMSE eMSE eMSE fMSE eMSE
(GENP (GENP- (GENP (AMP) (OWLQN) (AMP) (DN) (DN)
-AMP) OWLQN) -AMP)

0.100 0.095 2.828 2.585 0.995 0.033 0.032 0.033 0.136 0.119 0.128 0.058 0.062
0.100 0.142 2.807 2.359 0.993 0.047 0.044 0.048 0.380 0.394 0.430 0.079 0.081
0.100 0.170 2.801 2.256 0.992 0.055 0.057 0.056 1.045 1.199 1.089 0.090 0.093
0.100 0.180 2.799 2.223 0.992 0.058 0.058 0.058 2.063 1.958 3.159 0.094 0.103
0.100 1.900 2.656 0.919 0.951 0.405 0.405 0.406 UB UB UB 0.486 0.479
0.250 0.134 2.581 2.025 0.995 0.086 0.091 0.088 0.374 0.369 0.366 0.150 0.151
0.250 0.201 2.547 1.796 0.994 0.120 0.121 0.123 1.028 1.213 1.137 0.201 0.203
0.250 0.241 2.533 1.694 0.993 0.139 0.137 0.139 2.830 2.708 2.910 0.228 0.226
0.250 0.254 2.529 1.663 0.992 0.145 0.145 0.148 5.576 6.665 5.680 0.236 0.236
0.250 1.900 2.276 0.511 0.973 0.619 0.625 0.626 UB UB UB 0.797 0.790
0.500 0.193 2.362 1.512 0.995 0.182 0.184 0.184 0.853 0.845 0.856 0.315 0.316
0.500 0.289 2.314 1.279 0.992 0.245 0.245 0.245 2.329 2.343 2.412 0.410 0.415
0.500 0.347 2.291 1.172 0.993 0.280 0.275 0.280 6.365 7.232 6.312 0.459 0.465
0.500 0.366 2.285 1.140 0.993 0.291 0.296 0.290 12.427 15.665 12.165 0.475 0.476
0.500 1.900 1.253 0.047 0.986 0.689 0.689 0.696 UB UB UB 0.978 0.972

Table 3.1: Empirical and predicted MSEs of different methods for different points in the
sampling space.

distribution N (0, 1/m). The sampling noise w are drawn from N (0, 0.2), and the noise e of
the GENP x̃ are drawn from N (0, 0.2γ2

s ). The simulation setup is the same as that in [72],
except for the GENP.

As shown in Sec. 3.3, the MSE of GENP-LASSO is controlled by two regularization
parameters λ and τs, but they are connected by the hidden parameter u. If one of them
is given, using Prop. 3.3.1, Prop. 3.3.2, and Prop. 3.3.3, the other parameters can be
uniquely determined.

Fig. 3.1 shows the predicted and the empirical MSEs of LASSO and GENP-LASSO
with different λ. Three γ2

s are tested, each with two different values of n. In this example,
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Figure 3.2: Performances of parameterless algorithms with δ = 0.5 and ε = 0.2. First row
(from left to right): (a) Estimated σ2

s with SNR=20 dB. The confidence level of the error
bar is 0.95. (b) MSEs with SNR=20 dB. Second row: (c) Estimated σ2

s with SNR=5 dB.
The confidence level of the error bar is 0.95. (d) MSEs with SNR=5 dB.

the predicted MSEs of GENP-LASSO are given by the state evolution of GENP-AMP. The
empirical results of LASSO and GENP-LASSO for n = 200 are obtained by the Matlab-
based CVX package [44]. The empirical results of LASSO for n = 2000 are obtained by the
OWLQN algorithm [7], which is written in C++. The empirical results of GENP-LASSO
for n = 2000 are obtained by modifying the OWLQN to incorporate the GENP, as described
in Sec. 3.2. We denote this as GENP-OWLQN.

It can be seen from Fig. 3.1 that the predicted MSE is quite accurate in both LASSO
and GENP-LASSO. The result of LASSO (with γ2

s = ∞) is the same as Fig. 9 in [72].
When γ2

s = 4 or γ2
s = 1, the minimal MSE of GENP-LASSO can be reduced by about 20%

and 50%, respectively, compared to the standard LASSO without any prior.
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3.6.2 Comparison of AMP, GENP-AMP and Denoising

We now compared the performances of AMP, GENP-AMP and scalar denoising via soft
thresholding of the initial estimation when they are operated at different points of the
sampling plane, including points below and above the phase transition boundary of the
standard AMP. We will compare the predicted and empirical MSEs of GENP-AMP and
AMP using the nearly-least-favorable signal generated by Eq. (3.8). We also use OWLQN
and GENP-OWLQN to find the LASSO solution x̂(λ) and the GENP-LASSO solution
x̂(λ, τs) for Eq. (3.13), but OWLQN-based methods could not predict the MSE, and the
regularized parameters need to be chosen manually. The number of iterations of GENP-
AMP and AMP for empirical results is fixed as 60.

We generate in each case 20 random realizations of size n = 2000, with parameters ,
γ2
s = 1, σ2 = 1, δ ∈ {0.10, 0.25, 0.50}, ρ ∈ {1

2ρ(δ), 3
4ρ(δ), 9

10ρ(δ),
19
20ρ(δ), 1.9}, where ρ(δ) represents the phase transition boundary of the standard AMP. The
results are summarized in Table 3.1, where eMSE and fMSE denote the empirical MSE and
predicted formal MSE respectively. DN denotes the denoising method, and UB represents
unbounded MSE.

Some observations can be drawn from Table 3.1. First, the MSE of GENP-AMP is much
lower than those of AMP and denoising. Secondly, the fMSE and eMSE of GENP-AMP
match very well, even when the number of measurements is smaller than the sparsity. For
example, for ρ = 1.9, the fMSE of GENP-AMP is still very close to eMSE. For AMP, this
ρ is much higher than its phase transition boundary. Its MSE is thus unbounded. Thirdly,
since the denoising method is equivalent to GENP-AMP with δ = 0, the performance
difference between GENP-AMP and denoising shows the contribution of the CS measure-
ments. Finally, although the empirical MSE of GENP-OWLQN is very similar to that of
GENP-AMP, GENP-OWLQN is much slower, since it needs to calculate the gradients in
each iteration. For example, on a computer with Intel Core i7 3.07GHz CPU and 6.00 GB
memory, our Matlab implementation of GENP-AMP is about 10 times faster than the C++
implementation of GENP-OWLQN.

3.6.3 Performance of the Parameterless GENP-AMP

In the previous two simulations, the sparsity ε and the variance σ2
s of the prior x̃ are assumed

to be known. In this subsection, we show the performance of the parameterless GENP-AMP
(P-GENP-AMP), which can estimate σ2

s . A similar setup to the previous experiments is
used, except for the following. The non-zero coefficients of the sparse signal x follow i.i.d.
N (0, 100). The sampling noise w are drawn from N (0, σ2) where the variance σ2 is set
according to signal-to-noise ratio (SNR) defined as SNR = 10log10( 1

m ‖Ax‖22 /σ2), and the
noise e of the GENP x̃ are drawn from N (0, σ2

s). The number of Monte-Carlo simulations
is 100.
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For comparison purpose, we also estimate σ2
s using the following method

σ2
s ≈

1
n
‖x̃− xAMP‖22 , (3.46)

i.e., we first reconstruct the sparse signal using standard CS reconstruction methods such
as AMP, and then use the reconstructed signal and x̃ to estimate σ2

s . And we name such
kind of algorithm as Parameterless GENP-AMP with faked variance (P-GENP-AMP-FK).
In fact, the only difference between Eq. (3.43) and Eq. (3.46) is the term lim

t→∞
r̂(θt)/n, the

estimated MSE by the SURE framework proposed in [73].
We also compare with the method in [100], denoted as EMGMAMP, using its source

code from [77]. We modify its source code to incorporate the GENP, and treat the variance
of GENP as an additional hidden parameter, which can also be updated by the Expectation-
Maximization algorithm in [100]. This algorithm is denoted as EMGMAMP-GENP in the
following figures. The updating rule follows

σ2
s(t) = 1

n

n∑
i=1

[(x̃i − x̂i(t))2 + µxi (t)2], (3.47)

where x̂i(t) and µxi (t) is the approximate MMSE result, and its standard deviation in the
t-th iteration, respectively.

In the first experiment, we consider a high SNR of 20 dB. From Fig. 3.2(a), we can
see that P-GENP-AMP, and P-GENP-AMP-FK can both provide good approximations of
the variance σ2

s while the gap between the ones estimated by P-GENP-AMP and GENP-
AMP is exactly the MSE of AMP shown in Fig. 3.2 (b). It can also be seen from Fig.
3.2 (b) that all GENP-based algorithms achieve better performances. EMGMAMP-GENP
outperforms the others, since it can learn the prior distribution of the sparse signal through
EM and thus achieves near MMSE result. Although the full understanding of EM algorithm
is still not available, its efficiency can be proven empirically in this high SNR example. On
the other hand, both P-GENP-AMP and P-GENP-AMP-FK perform almost the same as
GENP-AMP with known GENP variance. The reason is that at high SNR, the MSE of
AMP is very small. Therefore Eq. (3.43) and Eq. (3.46) are very similar.

Fig. 3.2 (c) and (d) show the results with a low SNR of 5 dB. In this case, EMGMAMP-
GENP no longer achieves an accurate estimate of σ2

s , whereas the proposed P-GEMP-AMP
still performs well. Moreover, P-GENP-AMP and GENP-AMP are still very close and are
much better than other algorithms. The failure of EMGMAMP-GENP is because there
are many approximations in EMGMAMP, e.g., using the GAMP approximated posterior
as the true one and learning the hidden parameters through EM. At low SNRs, these
approximations are not accurate, and the method cannot achieve near MMSE result. Its
performance can be even worse than the AMP.
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Test sequence σ2, σ2
s δ Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8

Balloons

1e2, 1e2 1/5 31.27 33.72 33.72 32.65 34.50 27.25 32.04 32.31
1/2 34.71 35.63 35.79 30.41 30.65 28.04 32.04 35.62

1e2, 1e3 1/5 31.27 32.71 32.61 32.65 33.20 18.02 28.69 14.28
1/2 34.71 35.07 35.10 30.43 30.20 19.45 28.69 32.91

1e3, 1e3 1/5 27.83 30.36 30.42 27.08 25.70 18.01 28.69 15.38
1/2 29.06 30.87 30.94 21.17 20.60 18.52 28.69 29.81

Kendo

1e2, 1e2
1/5 33.08 35.88 35.82 34.37 35.56 27.57 33.51 34.77
1/2 36.22 37.05 37.04 30.79 30.89 28.28 33.51 37.33

1e2, 1e3
1/5 33.08 34.73 34.76 34.37 35.20 18.07 30.20 16.77
1/2 36.22 36.63 36.64 30.77 30.59 19.50 30.20 35.11

1e3, 1e3
1/5 28.15 31.86 32.00 28.07 25.98 18.04 30.20 22.30
1/2 30.26 32.20 32.31 21.32 20.64 18.57 30.20 31.04

Pantomime

1e2, 1e2
1/5 31.65 34.41 34.20 33.42 33.51 27.43 31.93 24.79
1/2 36.46 36.24 36.36 30.89 30.29 28.20 31.93 37.62

1e2, 1e3
1/5 31.65 33.73 33.77 33.42 34.40 18.06 29.77 24.58
1/2 36.46 36.62 36.66 30.88 30.57 19.48 29.77 34.41

1e3, 1e3
1/5 28.50 31.39 31.49 28.01 25.74 17.63 29.77 26.38
1/2 30.32 31.86 32.01 21.34 20.66 18.56 29.77 31.11

Table 3.2: PSNRs of different methods for multiview images. For σ2
s = 1e3, the PSNRs of

the corrupted virtual middle views are all 18.03 dB, whereas when σ2
s = 1e2, the PSNRs

are 26.96 dB for "Balloons", 27.35 dB for "Kendo", and 27.20 dB for "Pantomime".

3.6.4 Application in Natural Imaging

In this section, we consider a two-dimensional image compressive sensing example. The
target signal in this case is the image "Lena" with resolution 512 × 512. There is also a
128× 128 low-resolution version of the same subject. Gaussian noises of different variances
are added to the low-resolution version to imitate the noises in poor illumination, high
temperature or transmission error. Then, this noisy low-resolution version is upsampled to
the resolution of the target signal and served as the initial estimation.

The full size image is partitioned into overlapped blocks of size 48 × 48 pixels, with
an overlap of 6 pixels vertically and horizontally to reduce the blocking artifacts. And we
choose DCT as the sparsifying basis. The same i.i.d. Gaussian sensing matrix is applied on
each block to obtain the linear CS measurements.

3.6.5 Application in Hybrid Multi-View Imaging System

We next apply the GENP-AMP to the hybrid multi-view imaging system [12,94,103], where
a group of cameras capture the scene from different locations. Some cameras are traditional
cameras, and others are low-cost CS cameras such as the single pixel cameras [34]. For each
CS camera, we assume its left and right neighbouring cameras are traditional cameras. To
help the reconstruction from CS sampling, the left and right views are used to generate
a virtual view, which serves as the initial estimate or the GENP of the middle view. To
simulate the noises in poor illumination, high temperature, or transmission error, we add
Gaussian noises of different variances to the CS samples and the virtual views.
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In [94], after generating the virtual view from neighboring views, the method recovers
the error image between the virtual middle image and the unknown middle image using CS
methods, instead of recovering the middle image directly, assuming that the error image
is sparser than the original image. However, in the presence of noises, the sparse error
assumption could be invalid and this method might be inefficient.

We test the multiview image sequences "Balloons", "Kendo", and "Pantomime" under
various channel noise levels. Eight algorithms are compared: AMP (denoted as Alg1), P-
GENP-AMP (Alg2), GENP-AMP (Alg3), EMGMAMP (Alg4), EMGMAMP-GENP(Alg5),
the residual AMP according to the scheme in [94] (Alg6), denoising of the corrupted virtual
middle view via soft-thresholding (Alg7), and the modified CS [97] (Alg8), which finds
the sparsest signal outside the support set detected from the prior x̃. For the denoising
algorithm, the parameterless SURE framework in [73] is applied to automatically choose
the tuning parameter, and σ2

s is assumed to be known.
We partition each image into overlapped blocks of size 48 × 48 pixels, with an overlap

of 6 pixels vertically and horizontally to reduce the blocking artifacts. The DCT is used
as the sparsifying basis, and the linear CS measurements are obtained using the same i.i.d.
Gaussian sensing matrix on each block. The virtual middle image is generated by Version
3.5 of the MPEG view synthesis reference software (VSRS) [91], and the test sequences are
downloaded from [2].

Table 3.2 reports the PSNRs (dB) of the reconstructions given by the eight methods
under different σ2, σ2

s , and δ. The top-two results in each case are highlighted in bold.
The following can be observed. First, almost all the top-two results are P-GENP-AMP and
GENP-AMP, and there is no noticeable gap between them, verifying the efficiency of the
proposed algorithms. In particular, when σ2 = 1e3 and σ2

s = 1e3, i.e., both the CS samples
and GENP have low quality, our algorithms always perform the best. Second, when the
channel noise level is low and sampling rate is high, i.e., σ2 = 1e2, σ2

s = 1e2, and δ = 1/2,
the modified CS (Alg6) is comparable to or even better than the proposed methods Alg2 and
Alg3. This is as expected, since detecting the support of the virtual view x̃ is easier under
low noise levels. However, as the noise level increases, the performance of the modified CS
degrades quickly. It also requires the knowledge of σ2, which is not needed in AMP-based
algorithms. Third, at high SNR (σ2 = 1e2), EMGMAMP-GENP outperforms the proposed
P-GENP-AMP. However, at low SNR (σ2 = 1e3), the performance of EMGMAMP-GENP
is quite poor. Finally, Our methods are also about 20 times faster than the CVX-based
modified CS and comparable to EMGMAMP and EMGMAMP-GENP.

Some examples of the reconstructed images are shown in Fig. 3.3. Our P-GENP-AMP
and GENP-AMP provide the best visual quality. All other methods have some limita-
tions. For example, some artifacts exist in the AMP and EMGMAMP. Blurs happen when
thresholding-based denoising is used, and Gaussian noises cannot be removed by the resid-
ual AMP. Although some parts can be well recovered by the modified CS, it also introduces
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severe artifacts in certain areas, due to its poor detection rate of the support set in high
noise levels.

3.7 Summary

This chapter studies the generalized elastic net prior (GENP)-aided compressed sensing
problem, where an additional noisy version of the original signal is available for CS re-
construction. We develop a GENP-aided approximate message passing algorithm (GENP-
AMP), and study its parameter selection, state evolution, and noise sensitivity. The contri-
bution of the GENP is also examined. We also develop a parameterless GENP-AMP that
does not need to know the sparsity of the unknown signal and the variance of the GENP.
Simulation results with 1-D data and multiview images demonstrate the performances of
the proposed methods.
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(a) original (b) AMP (PSNR: 27.83dB)

(c) P-GENP-AMP (30.36dB) (d) GENP-AMP (30.42dB)

(e) EMGMAMP-GENP (25.70dB) (f) Residual AMP (18.02dB)

(g) Denoising (28.69dB) (h) Modified CS (14.28dB)

Figure 3.3: The reconstructed "Balloons" with σ2 = 1e3, σ2
s = 1e3, δ = 1/5.
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Chapter 4

Multi-Resolution Compressed
Sensing Reconstruction via
Approximate Message Passing

The phase transition theory [32] in CS states that when the undersampling rate is below a
certain threshold, the CS algorithm will fail to recover the signal with high probability even
if there is no sampling noise. In the noisy case, the noise sensitivity, which is the minimax
mean squared error (MSE) of the reconstruction, is unbounded. This is analogous to the
rate-distortion bound in information theory. Therefore, in applications in which a large
number of CS samples need to be transmitted to a receiver, the receiver has to wait until it
receives enough samples before it can recover the signal. This can incur undesired delays.

This chapter is motivated by the following fundamental question: if in the case above
we are allowed to reconstruct low-resolution (LR) previews instead of the original high
resolution (HR) signal, can we recover high-quality LR signals so that we can enlarge the
feasible operating region of the system? We call this framework CS with multi-resolution
reconstructions, or MR-CS for short. This framework opens up many questions. For exam-
ple, how does one design the sampling and reconstruction algorithms? What is the highest
resolution that can be reconstructed at each sampling rate? What are the expressions of the
phase transition curves for different LR reconstructions? A straightforward approach is to
first reconstruct a HR signal using existing reconstruction methods and then downsample
the signal. Therefore, another question is how much gain we can obtain over this simple
method? Note that a carefully designed LR reconstruction algorithm should at least have
lower complexity than this simple method because it can reconstruct the LR signal directly.

To answer these questions, in this chapter, we develop a general theory for MR-CS
reconstruction, and propose a MR-AMP algorithm to reconstruct an LR signal if the sam-
pling rate is too low. Our method does not impose any constraint on the measurement
matrix. Therefore, it enables more LR reconstruction choices. In addition, theoretical anal-
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ysis can still be obtained. Instead of having only one phase transition curve (PTC), we
obtain a family of PTCs that specify the sampling rate thresholds to obtain bounded noise
sensitivity with different resolutions. Moreover, the noise sensitivity is derived explicitly.
The performance of the proposed scheme is verified using both synthetic data and natural
images.

The remainder of this chapter is structured as follows: Sec. 4.1 presents the mathe-
matical model of the MR-CS problem and provides the necessary conditions that the MR
up/down-sampling matrices should satisfy. Sec. 4.2 is devoted to the MR-AMP algorithm
and its updating rule. Sec. 4.3 establishes the theoretical analysis of MR-AMP. Sec. 4.4 dis-
cusses the application of MR-AMP to images and develops three sets of up/down-sampling
matrices. Sec. 4.5 presents simulation results, validates the state evolution of MR-AMP,
and gives guidelines on tuning the parameters of the algorithm. The section also compares
the performance of MR-AMP to that of the original HR-AMP with different denoisers in
terms of reconstruction quality and algorithm complexity.

4.1 Formulation and Conditions of MR-CS Reconstruction

The goal of the classical CS is to recover a n1× 1 vector x from a m× 1 noisy measurement
y with m < n1, i.e.,

y = Ax + w. (4.1)

In this chapter, entries of the m× n1 measurement matrix A are i.i.d. Gaussian with zero
mean and a variance of 1/m, denoted by N(0, 1/m). Each entry of the noise vector w
also follows i.i.d. Gaussian distributions with zero mean and a variance of σ2

w. The CS
undersampling ratio is defined as δ1 = m/n1.

Because the system is underdetermined, it cannot be solved without exploiting the
special structure of x. Some examples of structured signals are given in [28], including simple
sparse signals, block sparse signals, mostly constant non-decreasing signals, and piecewise
constant signals. Following the notations in [28], the family of probability distributions for
a particular type of structured signals over Rn1 is denoted as Fn1,ε1 , where ε1 ≤ 1 is a
constant sparsity ratio, and the expected amount of useful structured information in the
signals is at most k1 = n1ε1. The definition of the useful structured information depends
on the nature of the structure. Let υn1 denote a distribution in Fn1,ε1 , and let x be a signal
with distribution υn1 . In this paper, we focus on the following two families of structured
sparsity.

Definition 4.1.1. The family of distributions that generates simple sparse signals is defined
as (Eq. (1.2) in [28])

FSSn1,ε1 ≡
{
υn1 : Eυn1

{‖x‖0} 6 n1ε1
}
, (4.2)
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where the `0 norm ‖x‖0 denotes the number of nonzero entries of the vector x. Therefore,
the expected number of non-zero entries of signals in this family is at most n1ε1.

Definition 4.1.2. The family of distributions that generate piecewise constant signals is
defined as (Sec. V in [28])

FPCn1,ε1 ≡{
υn1 : Eυn1

{# {t ∈ [1, n1 − 1] : xt+1 6= xt}} 6 n1ε1
}
,

(4.3)

where #{·} denotes the number of times the condition in the operator is true. Therefore,
the expected number of change points within signals of this family is at most n1ε1.

In the proposed MR-CS reconstruction framework, instead of always recovering the
signal with the original resolution n1, we allow the reconstruction of various lower resolution
signals nd (nd < n1) when the number of available CS samples is too small.

The MR downsampling factor is defined as

d = n1/nd. (4.4)

Note that this MR downsampling factor should not be confused with the CS under-
sampling ratio δ1 = m/n1. In this paper, we are interested in the case m < nd, i.e., the
recovery of the LR signal remains an underdetermined CS problem. The equivalent CS
undersampling ratio for the LR reconstruction is δd = m/nd = dδ1 > δ1. Let kd be the
expected amount of useful information contained in the LR signal. The expected sparsity
ratio of the LR signal is εd = kd/nd. We also define another factor ρd = εd/δd = kd/m.
Clearly, a signal with larger ρd needs more measurements (larger δd) to recover.

Let Dd be a nd × n1 downsampling matrix, Ud be an n1 × nd upsampling matrix, and
xd = Ddx be the nd× 1 downsampled version of x. The LR-CS problem can be formulated
as [53]

y = Ax + w = A(Udxd + x−Udxd) + w

= AUdxd + A(I−UdDd)x + w,
(4.5)

where AUd is the equivalent measurement matrix for the LR signal xd and A(I−UdDd)x
is the additional approximation error term when xd is the target signal to be recovered.
Note that this error term depends on the signal x.

The downsampling and upsampling matrices Dd and Ud play an important role in the
MR-CS. In this paper, we require them to satisfy three conditions.

Condition 4.1.1. The downsampling and upsampling matrices Dd and Ud should be chosen
such that, if we first upsample an LR signal and then downsample the signal to the original
resolution, we can retrieve the original LR signal without any error. Specifically,

DdUd = Ind . (4.6)
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Because Ud is a tall matrix, this mild condition can be easily satisfied. In [41], the
authors designed a special two-resolution CS system such that a m × 1 LR signal can be
recovered directly from the m× 1 CS sample y. This can be considered as a special case of
our setup.

The second condition concerns the quality of the measurement matrix for the LR recon-
struction.

Condition 4.1.2. The quality of the equivalent measurement matrix for the LR reconstruc-
tion should be no worse than that of the HR reconstruction.

For different reconstruction algorithms, different criteria are used to evaluate the quality
of the measurement matrix, e.g., the RIP constant for the basis pursuit algorithm [15] and
the mutual coherence for the orthogonal matching pursuit algorithm [95]. The solution in
this paper is based on the AMP algorithm; hence, we follow the requirement in [28,31,32,70]
that each entry of the LR measurement matrix should be i.i.d. Gaussian with zero mean
and a variance of 1/m.

Because m < nd in our case, the MR-CS problem here cannot be solved directly without
exploiting the structure of xd. Moreover, the LR signal should be easier to recover than the
HR signal, i.e., the amount of useful information kd contained in xd should be no more than
the amount k1 in the original HR signal x. We therefore also require the downsampling
matrix Dd to satisfy the following condition.

Condition 4.1.3. If x belongs to the family Fn1,ε1 in the basis Ψ, the downsampling matrix
Dd should be chosen such that xd = Ddx belongs to the family Fnd,εd in the basis Ψd =
{DdΨ} − {0} with εd 6 dε1.

Some results similar to Cond. 4.1.3 were reported in [53] for simple sparse vectors, which
is a special case of Cond. 4.1.3, as summarized below.

Condition 4.1.4. If x is sparse in the basis Ψ, then xd = Ddx is sparse in the non-zero
projected low-dimension basis Ψd = {DdΨ} − {0}. The sparsity kd of xd is no larger than
k, the sparsity of x, if the columns of Ψd are linearly independent.

Our condition in Cond. 4.1.3 is not restricted to simple sparse vectors and can be used
for other special structures that x follows such as piecewise constancy.

In Sec. 4.4, we will design three pairs of up-/down-sampling matrices for images that
satisfy the three conditions above perfectly or approximately. One pair of these matrices
is for simple sparse signals, and the other two pairs are for piecewise constant signals.
The conditions listed above can also be used to design matrices for the multi-resolution
reconstructions of other types of structured sparse signals.

Note that the term "multi-resolution" in our paper is slightly different from that in the
wavelet transform literature because our method only reconstructs each of these LR signals
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independently, and how to use an LR reconstruction to assist in HR reconstruction is not
addressed in this paper. Nevertheless, we will show in Table 4.8 that we can sometimes
provide a better HR image compared to when reconstructing the HR image directly from
the measurements by simply upsampling the recovered LR image to the target HR.

4.2 Multi-Resolution Approximate Message Passing

In this section, we propose an approximate message passing (AMP)-based algorithm to
solve the MR-CS problem. Without loss of generality, we assume that the signal belongs to
the structured sparse family Fn1,ε1 in the canonical basis.

The main idea of the original AMP is to transform the CS reconstruction problem into a
denoising problem [28], i.e., estimating xo from its noisy observations xo+σe, where entries
of e are i.i.d. Gaussian with zero mean and unit variance, and σ is a constant. In each
iteration of AMP, pseudo-data zt = xt + AT rt are first formed. They are then denoised
by a denoising function ησt(zt; τ), where σt is the standard deviation (std) of zt and τ is
the tuning parameter of the denoiser. Finally, the residual of the measurements is updated.
Specifically,

zt = xt + AT rt,

xt+1 = ησt(zt; τ),

rt+1 = y−Axt+1 + btrt,

(4.7)

where bt is the Onsager term, which is related to the divergence of the denoiser by

bt = 1
m
divησt−1(u; τ)|u=zt−1

d
= 1
m

n1∑
i=1

∂ησt−1(u; τ)
∂u[i] |u=zt−1 . (4.8)

For different structured signals, different denoisers ησt(·) should be used. For example,
for simple sparse signals, the well-known soft-thresholding should be used, whereas a total
variation (TV) denoiser is more appropriate for piecewise constant signals [28].

To apply AMP to the MR-CS problem in Eq. (4.5), we propose the following multi-
resolution approximate message passing algorithm (MR-AMP):

ztd = xtd + AT
d rtd,

xt+1
d = ησt

d
(ztd; τ),

rt+1
d = y−Adxt+1

d + btdrtd,

(4.9)

where Ad = AUdΛ is the corresponding measurement matrix for the LR reconstruction,
with Λ being a diagonal matrix determined by the upsampling matrix Ud to normalize the
columns of AUd. btd is similar to Eq. (4.8) except that n1 becomes nd. Instead of estimating
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xo, we attempt to estimate xd,o = Ddxo from the pseudo-data ztd with std σtd using the
denoising function ησt

d
(·).

The original AMP in Eq. (4.7) is a special case of MR-AMP in Eq. (4.9) with d = 1.
In this paper, we denote the original AMP as high-resolution approximate message passing
(HR-AMP) and MR-AMP with d > 1 as low-resolution approximate message passing (LR-
AMP). Because the dimensions of Ad and xd are smaller than those of A and x, the
complexity of LR-AMP is thus lower than HR-AMP. Note that the proposed MR-AMP
does not impose any additional constraint on the measuring matrix A in the original AMP.
It only modifies the reconstruction algorithm to obtain different LR estimates of the signal.

4.3 State Evolution and Phase Transition of MR-AMP

In this section, we analyze the theoretical performance of the proposed MR-AMP in terms
of its state evolution, phase transition, and noise sensitivity.

4.3.1 State Evolution

The availability of the state evolution analysis represents an important advantage of AMP
over many other CS algorithms. Empirical findings show that the MSEs of AMP with
various denoisers can be predicted accurately by its state evolution [28,70], which describes
the asymptotic limit of the AMP estimates in Eq. (4.7) when m, n1 → ∞, for any fixed
t [31]. Starting from θ0 = ‖xo‖22/n1, the state evolution generates a sequence of numbers
through the following iterations.

(σt)2 = 1
δ1
θt(xo, δ1, σ

2
w, τ) + σ2

w,

θt+1(xo, δ1, σ
2
w, τ) = 1

n1
E
∥∥∥ησt(xo + σte; τ)− xo

∥∥∥2

2
,

(4.10)

where the expectation is with respect to e ∼ N(0, I). For large values of m and n1, the
state evolution predicts the MSE of the AMP algorithm in Eq. (4.7), i.e., θt(xo, δ1, σ

2
w, τ) ≈

1
n1

∥∥xt − xo
∥∥2

2.
To obtain the state evolution of the proposed MR-AMP, we start from θ0

d = ‖xd,o‖22/nd,
where xd,o is the target LR signal. Let σ2

d,w denote the variance of the MR-AMP noise in
Eq. (4.5), including contributions from the approximation error and measurement noise,
which is equal to (σ2

w + 1/m ‖(I−UdDd)x‖22), as will be shown in Sec. 4.3.3. The state
evolution of the MR-AMP is thus given by the following iterations.

(σtd)2 = 1
δd
θtd(xd,o, δd, σ2

d,w, τ) + σ2
d,w,

θt+1
d (xd,o, δd, σ2

d,w, τ) = 1
nd

E
∥∥∥ησt

d
(xd,o + σtde; τ)− xd,o

∥∥∥2

2
,

(4.11)
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where σtd is the predicted std of the estimate ztd in Eq. (4.9). If d = 1, Eq. (4.11) reduces
to that of AMP in Eq. (4.10).

Note that the state evolution of AMP is only proved rigorously for scalar denoisers and
not for non-scalar denoisers such as total-variation-based denoisers and other more advanced
denoisers [8,70,90]. However, similar to observations in these papers, the empirical findings
in Sec. 4.5 show that, in all cases studied in this paper, the MSEs of the MR-AMP can be
predicted accurately using the state evolution above.

4.3.2 Noiseless Phase Transition of LR-AMP

In CS reconstruction without sampling noise, the phase transition curve (PTC) defines the
minimum number of CS measurements required to perfectly recover xo, i.e., θ∞(xo, δ1, 0, τ)→
0 [28]. In this part, we investigate the noiseless phase transition of MR-AMP, where we
assume both σ2

w = 0 and ‖A(I−UdDd)x‖22 = 0 in Eq. (4.5). The latter is possible for
some special signals, and an example will be given in Sec. 4.5. We will show that by al-
lowing LR reconstruction, the MR-AMP admits a family of PTCs, thereby enabling perfect
reconstruction of an LR signal in the infeasible region of the original HR-AMP. This is an
important generalization of the AMP theory.

The family Fn,ε is scale invariant [28], i.e., ησ(y; τ) = ση1(y/σ; τ). Therefore, we only
need to consider σ = 1, and we can simplify the notation ησ(y; τ) as η(y; τ). We then
define the following asymptotic minimax MSE when a denoiser η with parameter τ is used
to recover signals in the structured sparse family Fn1,ε1 [28].

M(ε1|η) ≡ lim
n1→∞

1
n1

inf
τ

sup
vn1∈Fn1,ε1

Evn1
‖η(xo + e; τ)− xo‖22 , (4.12)

In words, M(ε1|η) is obtained by tuning the denoiser parameter to minimize the MSE
per coordinate of the least favorable distribution in the family. The tuning rules of the
parameters τ are provided in Sec. 4.5.1.

The minimax MSE has some basic properties [28, 32]. First, because the denoising can
improve the reconstruction, we have 0 ≤ M(ε1|η) ≤ 1. Moreover, M(ε1|η) → 0 when
ε1 → 0, and M(ε1|η)→ 1 when ε1 → 1. Second, M(ε1|η) is monotonically increasing with
respect to ε1 [28] because the reconstruction difficulty increases with ε1.

The detailed expression of M(ε1|η) for AMP with various denoisers is derived in [28,
31,32]. More importantly, it is shown in [28] that M(ε1|η) defines the minimum CS under-
sampling ratio δ1 for perfect reconstruction, i.e., it describes the phase transition curve of
AMP as follows.
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Theorem 4.3.1. In the noiseless case, when using AMP with denoiser η to reconstruct
signals in Fn1,ε1, the AMP succeeds with high probability if

δ1 > M(ε1|η). (4.13)

Vice versa, AMP fails with high probability for δ1 < M(ε1|η).

Combining Theorem 4.3.1 and the conditions in Sec. 4.1, we obtain the following gen-
eralized phase transition result for MR-AMP, which specifies the minimum sampling ratio
to perfectly recover an LR signal. When d = 1, the result reduces to Theorem 4.3.1.

Corollary 4.3.2. When Cond. 4.1.1, 4.1.2 and 4.1.3 are satisfied, if a signal x ∈ Fn1,ε1 is
sampled according to Eq. (4.1) and if σ2

w = 0 and ‖(I−UdDd)x‖22 = 0 in Eq. (4.5), then
an LR signal xd ∈ Fnd,εd with εd 6 d ε1 can be reconstructed perfectly with high probability
via the LR-AMP in Eq. (4.9) when the CS undersampling ratio satisfies

δ1 > M(dε1|η)/d, (4.14)

where M(ε1|η) is the minimax MSE of the original HR-AMP. On the other hand, the LR-
AMP fails with high probability for δ1 < M(dε1|η)/d.

Proof. As mentioned above, δd = dδ1. Because there is no approximation error in Eq. (4.5),
Theorem 4.3.1 can be applied directly to the LR-AMP. Therefore, the LR-AMP succeeds
with high probability if the CS sampling ratio satisfies

δd = dδ1 > M(εd|η).

If Cond. 4.1.3 is satisfied, we have εd 6 dε1. Eq. (4.14) can thus be obtained using the
property that M(εd|η) is monotonically increasing with respect to εd.

The next result shows that the LR reconstruction requires a lower sampling rate than
does the HR-AMP. Specifically, the LR-AMP has a larger feasible operating region than
the original HR-AMP under certain conditions.

Corollary 4.3.3. If M(ε1|η) is a concave function of ε1, then we have M(dε1|η)/d ≤
M(ε1|η).

Proof. It is known that if a function f is concave and f(0) ≥ 0, then f is subadditive, i.e.,
f(x+y) ≤ f(x)+f(y). From this, we can obtain f(tx) ≤ tf(x) for t ≥ 1. It is clear from the
definition that M(ε1|η) ≥ 0. Therefore, if M(ε1|η) is concave, then, by the subadditivity
property, we can obtain M(dε1|η) ≤ dM(ε1|η), i.e., M(dε1|η)/d ≤M(ε1|η).

The concavity condition of M(ε1|η) is satisfied for many families of structured signals.
In particular, this is proved in [30] for simple sparse signals in Eq. (4.2) when the soft-
thresholding denoiser is used. It is also confirmed in [28] for block-sparse signals with a
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block soft-thresholding denoiser. In the Appendix, we prove that it is satisfied for piecewise
constant signals. Finally, we also show in Sec. 4.4 that the concavity condition holds for
2D images in both the simple sparse and piecewise constant families.

Corollary 4.3.3 confirms the motivation discussed in the introduction of the paper, i.e.,
if the CS sampling rate is too low, although the full-resolution reconstruction will fail, we
can still reconstruct an LR version of the signal. Moreover, in the noiseless case, given δ1,
ε1, we can precisely determine the critical downsampling factor d by solving the equation
δ1 = M(dε1|η)/d.

4.3.3 Noise Sensitivity of MR-AMP

The noiseless case studied above is quite restrictive. In practice, we are more interested in
the performance of the algorithm in the presence of noise. In this part, we study the noise
sensitivity of LR-AMP when the noises w and A(I−UdDd)x in Eq. (4.5) are not zero. As
in [32,70], the noise sensitivity of HR-AMP is defined as

NS(σ2
w, δ1) = inf

τ
sup

vn1∈Fn1,ε1

Evn1
{θ∞(xo, δ1, σ

2
w, τ)},

which is the minimax MSE per coordinate of the HR-AMP output when the iteration
number goes to ∞ in Eq. (4.10). It is shown in [32, 70] that, when the undersampling
ratio meets the same phase transition condition as in Theorem 4.3.1, the structured sparse
signal can be recovered with a bounded noise sensitivity.

When studying the noise sensitivity of the LR-AMP, we use NS(σ2
d,w, δd) to represent

the noise sensitivity of LR-AMP, where σ2
d,w is the variance of the LR-AMP noise. The next

result shows that, when the undersampling ratio meets the same condition as in Corollary
4.3.2, we can also recover the LR signal xd with a bounded noise sensitivity.

Corollary 4.3.4. When Cond. 4.1.1, 4.1.2 and 4.1.3 are satisfied, if the undersampling
ratio satisfies Eq. (4.14), i.e., δ1 > M(dε1|η)/d in the compressed sensing of x ∈ Fn1,ε1 in
Eq. (4.1) with noise variance σ2

w, an LR version of the signal xd ∈ Fnd,εd with εd 6 dε1

can be reconstructed via LR-AMP with the downsampling matrix Dd and the upsampling
matrix Ud. In addition, the noise sensitivity is bounded by

NS(σ2
d,w, δd)

6
M(dε1|η)

1−M(dε1|η)/(dδ1)(σ2
w + 1

m
‖(I−UdDd)x‖22).

(4.15)

Proof. According to Prop. 2 in [70], the noise sensitivity of AMP with various denoisers is
bounded by

NS(σ2
w, δ1) 6 M(ε1|η)

1−M(ε1|η)/δ1
σ2
w.
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Replacing δ1, ε1 and σ2
w by δd, εd and σ2

d,w in the formula above, respectively, we have

NS(σ2
d,w, δd) ≤

M(εd|η)
1−M(εd|η)/δd

(σ2
w + σ2

d,w).

Because M(εd|η) is monotonically increasing with εd, it is clear that M(εd|η)
1−M(εd|η)/δd is also

monotonically increasing. Together with εd ≤ dε1, we can obtain

NS(σ2
d,w, δd) ≤

M(dε1|η)
1−M(dε1|η)/(dδ1)(σ2

w + σ2
d,w).

By the central limit theorem, if the entries of A follow a i.i.d. N(0, 1/m) distribution and
if Dd and Ud are deterministic, then for a given x, each entry of A(I−UdDd)x converges
to an i.i.d. Gaussian distribution with zero mean and variance 1/m ‖(I−UdDd)x‖22. There-
fore, the equivalent noise variance σ2

d,w for the LR-AMP problem is (σ2
w+1/m ‖(I−UdDd)x‖22),

which proves the result.

In contrast to the original AMP, the upper bound of the LR-AMP noise sensitivity
NS(σ2

d,w, δd) is conditional because it depends on the approximation error term (I−UdDd)x,
which varies for different input signals. Therefore, it is crucial to design good up-/down-
sampling matrices to reduce the LR reconstruction error, which will be studied in Sec. 4.4.
It should be noted that the upper bound is finite in many applications. Moreover, we can
sometimes further derive a signal-independent upper bound. For example, in 8-bit images,
the pixel value ranges from 0 to 255. Therefore, the worst value of each entry in (I−UdDd)x
is 255, and the worst value of ‖(I−UdDd)x‖22 is thus 2552n1. The upper bound in Eq.
(4.15) can be further bounded by

NS(σ2
d,w, δd) ≤

M(dε1|η)
1−M(dε1|η)/(dδ1)(σ2

w + 2552

δ1
)

≤ M(dε1|η)
1−M(dε1|η)/(dδ1)(σ2

w + 2552d

M(dε1|η)).
(4.16)

The upper bound above is overly pessimistic because the LR approximation UdDdx usually
has a much smaller approximation error than 255. The upper bound can be reduced if a
more accurate estimate of ‖(I−UdDd)x‖22 is known.

Corollary 4.3.4 is more general than Corollary 4.3.2 because it allows for sampling noise
and LR approximation noise. The corollary gives further affirmative answers to the ques-
tions raised in the introduction of the paper, i.e., if the CS sampling rate is too low for the
full-resolution signal recovery, we can reconstruct an LR version of the signal with bounded
noise sensitivity. The noisy case shares the same PTC as the noiseless case, as in the original
AMP, which serves as a guideline for determining the critical resolution under which the
noise sensitivity of the LR signal recovery is bounded.
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4.4 Design of Downsampling and Upsampling Matrices for
MR-AMP

In this section, we give examples of the design of the up-/down-sampling matrices that
satisfy the three conditions in Sec. 4.1 perfectly or approximately so that they can be used
in MR-AMP-based image reconstruction. Three pairs of matrices will be designed. The
first pair is in the DCT or wavelet transform domain and is designed for the simple sparse
family. The other two pairs are in the spatial domain and are suitable for piecewise constant
signals.

In [53], DCT-based and total-variation (TV)-based up-/down-sampling matrices are
designed for videos such that the downsampling matrix Dd satisfies Cond. 4.1.4 and the
upsampling matrix Ud satisfies Cond. 4.1.1. However, the proof in that reference mainly
concerns TV-based up-/down-sampling matrices. Moreover, the impact of MR design on
the quality of the measurement matrix is not considered, i.e., it is not clear whether Cond.
4.1.2 holds.

4.4.1 Transform-Domain Downsampling and Upsampling

Natural images are approximately sparse in the DCT or wavelet domain. The sparse rep-
resentation of a n1×n1 image X thus belongs to the simple sparse family in Eq. (4.2), and
the soft-thresholding denoiser can be used in the transform domain. To apply CS sampling
and reconstruction to images, we need to introduce the transform basis to Eq. (4.1) and
Eq. (4.5).

For an n1×n1 image X, an nd×nd LR image Xd can be obtained via transform-domain
downsampling by first applying an HR 2D transform, extracting the nd× nd low-frequency
coefficients, and then applying the LR 2D inverse transform [36,84].

Let Ψn1 and Ψnd represent the n1 × n1 and nd × nd DCT or orthogonal multiple-level
wavelet transform, respectively. We use the following 1D transform-domain downsampling
operator [84]

Dd =
√

1
d

ΨT
nd

Ind×n1Ψn1 . (4.17)

where the fat identity matrix Ind×n1 serves as a truncation operator because it only keeps
the first nd coefficients of the input after being transformed by Ψn1 .

Given the downsampling matrix, one way to satisfy Cond. 4.1.1, i.e., DdUd = I, is to
use transform-domain zero-padding. The corresponding upsampling matrix Ud is

Ud =
√
dΨT

n1In1×ndΨnd . (4.18)
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The 2D downsampling and upsampling can thus be represented as

Xd = DdXDT
d ,

X̂ = UdXdUT
d .

(4.19)

It should be noted that, according to the definitions in [36], for the downsampling in
the DCT domain, we can achieve a non-integer downsampling ratio because we simply
take the top left nd × nd low-frequency coefficients and apply the LR 2D inverse DCT
transform. However, for the downsampling in the wavelet domain, we can only obtain an
integer downsampling ratio that is a power of 2 because the LR image is the appropriately
scaled low-pass subband in the multi-level wavelet transform.

Let x, xd, and x̂ be the vectorized versions of X, Xd, and X̂, respectively, by concate-
nating the columns of each matrix together. Let ⊗ denote the Kronecker product. The 2D
downsampling and upsampling can be converted to the following 1D formulas.

xd = (Dd ⊗Dd)x,

x̂ = (Ud ⊗Ud)xd.
(4.20)

Similarly, let S1 = Ψn1XΨT
n1 and Sd = Ind×n1S1In1×nd be the 2D transform of X

and its low-frequency part, and let s1 and sd be their vectorized versions. The 2D inverse
transform can be represented by a 1D transform as follows:

x = (ΨT
n1 ⊗ΨT

n1)s1,

xd = 1
d

(ΨT
nd
⊗ΨT

nd
)sd,

(4.21)

where the two matrices remain orthogonal. Note that the corresponding 1D downsampling
ratio is n2

1/n
2
d = d2. Clearly, the concavity condition in Corollary 4.3.3 holds here because

the 1D sparse representation of a 2D image is simply the vectorized version of its 2D
representation.

We next show that the transform-domain up-/down-sampling operators defined above
satisfy Cond. 4.1.2 and Cond. 4.1.3.

First, we assume s1 ∈ FSS
n2

1,ε1
. Because the transform-domain downsampling operator

simply extracts the low-frequency components of s1, the number of nonzero entries in sd is
certainly no more than that in s1; hence, εd ≤ n2

1ε1/n
2
d = d2ε1, and sd ∈ FSS

n2
d
,d2ε1

. Cond.
4.1.3 is thus satisfied.

To check Cond. 4.1.2, note that the equivalent 1D measurement matrix for the HR
signal is Φ1 = A(ΨT

n1 ⊗ ΨT
n1), whereas the equivalent 1D measurement matrix for the
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LR-CS problem in Eq. (4.5) is

Φd = 1
d
A(Ud ⊗Ud)(ΨT

nd
⊗ΨT

nd
)

= A(ΨT
n1In1×nd)⊗ (ΨT

n1In1×nd).
(4.22)

Clearly, Φd is the first n2
d columns of Φ1. Because our proposed algorithms are based

on AMP, where each entry of the measurement matrix A follows an i.i.d. N(0, 1/m) dis-
tribution, it can be shown that, given Ψn1 , each entry of Φ1 and Φd also follows an i.i.d.
N(0, 1/m) distribution. Therefore, with the proposed transform-domain up-/down-sampling
method, the quality of the measurement matrix for the LR-AMP is the same as that of the
HR-AMP.

4.4.2 Spatial-Domain Downsampling and Upsampling

We next develop two pairs of spatial-domain up-/down-sampling matrices for MR-AMP. In
this part, we assume that images are piecewise constant and belong to the family FPCn1,ε1 in
Eq. (4.3), which has a small number of change points.

Solution 1

We first design the operators for 1D signals and then extend them to 2D images. For 1D
piecewise constant signals, to satisfy Cond. 4.1.3, the first downsampling matrix Dd we use
is the row-decimated identity matrix, i.e., a matrix whose (i, di)-th entries are 1 for all i,
and all other entries are zero. The downsampled signal can be written as

xd = Ddx =
[
x[d] x[2d] . . . x[ndd]

]T
, (4.23)

where x[i] represents the i-th entry of x.
The corresponding upsampling matrix Ud used in this part is the repetition operator,

which duplicates each input sample d times.

Ud =


1d×1

. . .
1d×1

 , (4.24)

where 1d×1 is an all-one vector. Clearly, Dd and Ud satisfy DdUd = I in Cond. 4.1.1.
Next, we show that the spatial-domain up-/down-sampling matrices also satisfy Cond.

4.1.3.

Lemma 4.4.1. If x is a piecewise constant signal generated from the family FPCn1,ε1 in Eq.
(4.3), then the downsampled signal xd in Eq. (4.23) belongs to FPCnd,εd with εd 6 dε1.
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Proof. An n1 × 1 piecewise constant signal x is sparse in the differential domain.

s1 =


−1 1

. . . . . .
−1 1

x ≡ Ψn1x =


x[2]− x[1]
x[3]− x[2]

...
x[n1]− x[n1 − 1]

 . (4.25)

Similarly, the representation of the downsampling signal in the differential domain can
be written as

sd = Ψndxd

=
[
x[2d]− x[d], . . . , x[ndd]− x[(nd − 1)d]

]T
.

(4.26)

Therefore, calculating the number of change points in xd is equivalent to counting the
number of nonzero entries in sd.

To facilitate the proof, we construct two new vectors s∗1 =
[
x[1] sT1

]T
and s∗d =[

x[d] sTd
]T

, i.e., adding the first entry of x and xd to s1 and sd, respectively. If we add
d consecutive entries of s∗1, we can obtain one entry of s∗d. For example, (x[d+ 1]− x[d]) +
(x[d+ 2]−x[d+ 1]) + ...+ (x[2d]−x[2d−1]) = x[2d]−x[d]. In matrix form, this means that
s∗d = UT

d s∗1. If x is generated from FPCn1,ε1 , the maximum expected number of nonzero entries
in s∗1 will be n1ε1 + 1 due to the extra x[1] in it. According to s∗d = UT

d s∗1, the maximum
expected number of nonzero entries in s∗d is still n1ε1 +1. This occurs when there is at most
one nonzero entry in every d entries in s∗1; hence, εd ≤ (n1ε1 + 1)/nd = dε1 + 1/nd → dε1

when n1 →∞.

We next extend the above results to 2D images. The 2D nd × nd LR image Xd can
be written as Eq. (4.19) with Dd in Eq. (4.23). If an image is piecewise constant, its 2D
gradient is sparse, where the 2D gradient at each pixel is given by

(∇X)i,j = [Xi+1,j −Xi,j , Xi,j+1 −Xi,j ]. (4.27)

The number of change points in a 2D piecewise constant signal X equals the number
of nonzero entries in ∇X, where (∇X)i,j is counted as one nonzero entry if one or two
of its components are nonzero. Therefore, we can also vectorize the 2D ∇X into a 1D
vector and apply the method in the Appendix to prove the concavity in Corollary 4.3.3
for 2D piecewise constant signals. Additionally, the vertical differences and the horizontal
differences are disjoint. By Lemma 4.4.1, the number of horizontal or vertical change points
of Xd is no larger than that of X; thus, Cond. 4.1.3 is true for 2D images.

The remaining problem is to choose the appropriate denoiser for 2D piecewise constant
signals. In this paper, instead of using the denoisers discussed in [70,90], such as NLM (non-
local means) and BM3D (3D block matching), we use a 2D-TV-based denoiser in ησt

d
(ztd)

of Eq. (4.9). Our method is denoted as AMP-TV-2D.
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The TV norm of 2D piecewise constant signals is defined as

‖X‖TV =
∑
i,j

√
|Xi+1,j −Xi,j |2 + |Xi,j+1 −Xi,j |2, (4.28)

which is isotropic and un-differentiable. This norm will be used by the 2D-TV-based de-
noiser. Additional details are given in Sec. 4.5.1. This is different from the 1D TV de-
noiser in [28], where the TV norm for 1D piecewise constant signals is written as ‖x‖TV =
n1−1∑
i=1
|xi+1 − xi|.
In Sec. 4.5.4, we compare the performance of our AMP-TV-2D with the state-of-the-art

algorithm TVAL3 (TV minimization by Augmented Lagrangian and ALternating direction
ALgorithms) in [53], [64]. Note that TVAL3 depends on two slack parameters, which
have to be manually tuned for each image and each measurement rate. In contrast, the
thresholding parameters in our AMP-TV-2D are automatically tuned in each iteration,
as will be discussed in Sec. 4.5.1. Recently, an algorithm similar to our AMP-TV-2D,
the dual-constraints AMP (DC-AMP) (Sec. 8.1 of [8]), was developed for 2D piecewise
smooth signals and can achieve similar performance to TVAL3. However, it also includes a
smoothness parameter that needs to be manually tuned. Moreover, no theoretical analysis
of DC-AMP has been performed.

Given the spatial-domain up-/down-sampling matrices, to satisfy Cond. 4.1.2, i.e., the
quality of the measurement matrix for LR-AMP is no worse than that of HR-AMP, we need
to normalize the measurement matrix for LR-AMP, i.e.,

Φd = 1
d
A(Ud ⊗Ud), (4.29)

such that each entry of Φd follows an i.i.d. N(0, 1/m) distribution.

Solution 2

In addition to the simple up-/down-sampling matrices in Eq. (4.23) and Eq. (4.24), we
also develop a pair of bicubic up/-downsampling matrices and evaluate them in Sec. 4.5.4.
In bicubic downsampling, each pixel in the LR image is the weighted average of sixteen
pixels in the HR image, which has been known to produce smoother LR images than Eq.
(4.23), i.e., with fewer change points in Xd. Therefore, Cond. 4.1.3 holds for bicubic down-
sampling. On the other hand, the upsampling first inserts d− 1 zeros between neighboring
samples of the LR image and then performs bicubic interpolation. However, it can be ver-
ified that the corresponding product DdUd is not an identity matrix, although it is very
close. Therefore, strictly speaking, Cond. 4.1.2 does not hold for bicubic matrices, and the
simple scaling matrix Λ cannot make each entry of Φd exactly follow an i.i.d. N(0, 1/m) dis-
tribution. Nevertheless, this remains approximately true, and the efficiency of this scheme
will be verified empirically in Sec. 4.5.4. Moreover, according to Corollary 4.3.4, the condi-
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tional upper bound of the noise sensitivity is proportional to the LR approximation error
‖(I−UdDd)x‖22. Therefore, for images, in terms of LR approximation error, the bicubic
up-/down-sampling matrices remain better than the simple matrices in Eq. (4.23) and Eq.
(4.24).

Finally, we note the differences with our methods compared to the methods in [53,107].
In [53], a similar spatial-domain up-/down-sampling framework was proposed; however, the
proof in the reference was implicit. In addition, TVAL3 was chosen as the reconstruction
algorithm, which requires manual tuning of two parameters. Moreover, the reconstruction
performance cannot be predicted. Our AMP-TV-2D does not include a manually tuned
parameter, and its performance can be accurately predicted via state evolution. In [107],
the same piecewise constancy model and up-/down-sampling matrices as in Eq. (4.23)
and (4.24) are used. The algorithm first reconstructs the original HR image and uses this
estimated HR image to reduce the approximation error A(I −UdDd)x. However, there is
no theoretical guarantee that such an operation can reduce the approximation error, and
the algorithm only works when the undersampling rate δ1 is sufficiently large, at least larger
than 10%. Moreover, the complexity of this approach is higher than reconstructing the LR
image directly.

4.5 Experimental Results

In this section, we demonstrate the performance of the proposed MR-AMP with both
transform- and spatial-domain up-/down-sampling, denoted by AMP-ST (soft threshold-
ing) and AMP-TV (total variation), respectively. The empirical results will also be shown
to verify some theoretical results. In each method, to facilitate comparison with the con-
ventional approach, we use LR-AMP-ST and LR-AMP-TV to denote the proposed LR
reconstruction schemes and HR-AMP-ST and HR-AMP-TV to denote the original AMP
with HR reconstruction. In addition, H2L-AMP-ST and H2L-AMP-TV represent the naive
solutions that are first used to reconstruct the HR signal and then downsample to the LR
signal.

All tests in this paper use a column-normalized i.i.d. Gaussian measurement matrix A.
All simulations are conducted on a PC with a 3.4 GHz Intel Core i7 quad-core processor and
64 GB of memory. The utilized testing images include the popular images Lena, Barbara,
Boat, House, and Peppers as well as some land remote sensing images, including Memorial
Stadium at the University of Nebraska-Lincoln (Cornhuskers) and Sea World in San Diego.
We follow the setup in [70] to rescale all images to 128 × 128. This enables the entire
measurement matrix A to be stored in memory. We also include some experiments of
larger 256 × 256 images to demonstrate the visual comparison, following the same setup
in [70]. We have posted our code online1.

1https://github.com/xingwangsfu/MR-AMP
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Figure 4.1: Empirical intermediate MSE and predicted state evolution of HR-AMP-ST and
LR-AMP-ST for the Barbara image with d = 4.

4.5.1 Parameter Tuning

One of the main challenges in implementing different MR-AMP algorithms is the tuning
of each algorithm’s free parameters. Many techniques exist to estimate the noise variance
in an image. In this paper, we use the following convenient feature of AMP algorithms:∥∥rtd∥∥2

2 /m ≈ (σtd)2 [68].
For MR-AMP-ST, we set its threshold using three methods. For the 1D synthetic

examples in Sec. 4.5.3, we assume that the sparsity rate is known and set the thresholding
parameter according to the minimax rule in [31]. For the 2D imaging examples in Sec.
4.5.4, because images are not exactly sparse in the transform domain, we have to estimate
the sparsity rate. For a sufficiently large CS undersampling rate δ1, such as 10% and 20%,
we use the SURE (Stein’s unbiased risk estimate)-based method in [73] to decide on the
thresholding parameter in each iteration. For very small δ1, such as 3% and 4%, SURE
does not perform well because it is based on a large system limit. We choose the max-min
optimal threshold as determined by [69].

For AMP-TV, we use different tuning methods for 1D and 2D signals. For 1D signals,
we use the source code from [55] directly. For 2D images, there are many methods for
adaptively choosing the regularization parameter in TV-based image denoising, e.g., [48]
and [38]. In this paper, we use Algorithm 6 in [38] due to its simplicity and efficiency. In
each iteration of AMP-TV-2D, a Lagrangian optimization problem whose constraint is the
TV of the solution is solved, and the Lagrangian parameter can be adaptively determined
analytically.

In AMP-ST, the Onsager term is obtained by Eq. (4.1) in [32]. For AMP-TV-1D, the
Onsager term is calculated by Eq. (5.11) in [28]. For AMP-TV-2D, it is difficult to obtain
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an exact expression of the divergence. We thus apply the Monte Carlo method in [70] to
find a good approximation of the divergence.

4.5.2 State Evolution in MR-AMP

In this part, we compare the predicted and observed performances of MR-AMP with dif-
ferent denoisers. Recall that the state evolution of MR-AMP is given in Eq. (4.11). To
compute this value, at every iteration, we add white Gaussian noise with standard deviation
σtd to xd,o, denoise the signal with denoiser ησt

d
(:, τ), and then compute the MSE.

Fig. 4.1 compares the empirical MSE and predicted state evolution of MR-AMP-ST
for the test image Barbara with a size 128× 128, with DCT being the sparsifying basis. It
can be observed that the state evolution is quite accurate. Moreover, the converged MSE
per entry of the LR image is approximately 50% smaller than that of the HR image, which
verifies the motivation of this paper, i.e., we can recover an LR signal with smaller MSE
when the MSE of the HR signal is too high. Note that the LR reference image is obtained
via the DCT-domain downsampling in Sec. 4.4.1, and the corresponding MSE is the MSE
between the LR image reconstructed by LR-AMP-ST and the LR reference image.

Fig. 4.2 shows the state evolution performance of MR-AMP-TV. Two different upsam-
pling matrices are compared: the repetition interpolator in Eq. (4.24) (MR-AMP-TV-2D-R)
and the bicubic interpolator (MR-AMP-TV-2D-B). The reference LR image is obtained us-
ing Matlab’s imresize(x,1/d) command with a bicubic interpolator. There is a near-perfect
correspondence between the predicted and true MSEs for the repetition interpolation. For
the bicubic interpolator, a slight mismatch exists because the entries of the new measure-
ment matrix are not exactly independent. The figures also show that a lower resolution
provides a smaller MSE, and the bicubic interpolator outperforms the repetition operator.

Note that the denoiser in the AMP-TV-2D is essentially a non-scalar denoiser, similar
to [8,70,90]. Although the state evolution for AMP with non-scalar denoisers has not been
proved rigorously, the results in Fig. 4.2 suggest that the state evolution derived in our
paper is quite accurate.

4.5.3 Performance with Synthetic 1D Signals

In this part, we demonstrate the performance of the proposed scheme for synthetic 1D
signals, which can verify the theoretical noiseless phase transition curve (PTC) and noise
sensitivity.

Transform Domain Approach

To obtain the empirical noiseless PTC of HR-AMP-ST, we fix n1 = 2000 and take 30
equally spaced values of δ1 = m/n1 in the range of [0.05, 0.95] and 30 equally spaced values
of ρ1 = k1/m in [0.05, 0.95]. For each combination of (δ1, ρ1), a 1D Bernoulli-Gaussian
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γ HR-AMP-ST HR-AMP-ST LR-AMP-ST LR-AMP-ST
Bound Empirical Bound Empirical

0.95 3.80 3.06 5.23 2.78
0.98 9.80 7.47 5.23 4.12
0.99 19.80 14.62 5.23 4.15
0.998 39.80 28.89 5.23 4.79

Table 4.1: Noise sensitivity of MR-AMP-ST with δ1 = 0.2 and ρ1 = 0.3.

signal and its CS samples are generated before applying the HR-AMP-ST. The empirical
PTCs are obtained by connecting operating points with a 50% signal recovery success rate,
where the recovery is considered successful when the normalized MSE (NMSE) satisfies
‖xo − x̂‖22 /‖xo‖

2
2 6 10−6.

To study the empirical noiseless PTC of LR-AMP-ST, we generate a special n1 × 1
sparse signal, whose first nd = n1/d entries are Bernoulli-Gaussian distributed, and all
other entries are 0. According to Eq. (4.5), the truncation operator does not introduce
any approximation error A(I−UdDd)x. We then run the HR-AMP-ST and LR-AMP-ST
algorithms to recover the target HR and LR signals respectively. Note that we are interested
in the case m/n1 < 1/d; otherwise, the setup is no longer a CS problem. Although the
procedure for generating the HR signal here is different from that in the above simulation
of empirical HR-AMP-ST, both signals belong to the same class of probability distributions
if the numbers of nonzero coefficients are the same, and the experimental results show that
these two empirical PTCs for HR-AMP-ST coincide with each other.

The theoretical noiseless PTC in Eq. (4.14) and the empirical noiseless PTC of LR-
AMP-ST are shown in Fig. 4.3 for simple sparse signals with different d. The two sets of
curves agree perfectly. It can be shown that, as d increases, the PTC curve shifts to the
left, which means that the LR-AMP can recover the signal even when the HR-AMP fails.

The example above does not have an approximation error. Next, we construct a special
case to show that the noise sensitivity of HR-AMP-ST is unbounded above the PTC, whereas
the noise sensitivity of the LR-AMP-ST remains bounded. The setup is similar to that
in [32], where a special 3-point distribution of x is constructed in Lemma 4.4, whose MSE
above the phase transition boundary is given by δ1γ/(1 − γ). Therefore, the MSE can go
to infinity when γ is close to 1. We present the noise sensitivity of MR-AMP-ST in Table
4.1 with n1 = 2000, δ1 = 0.2, ρ1 = 0.3 and σ2

w = 1. As shown in Fig. 4.3, this setup is
above the PTC of d = 1 but below the PTC of d = 2. The non-zero locations of x are
chosen with probability 1.8ε1 from the first n2 entries to generate the 3-point distribution
and with probability 0.2ε1 to generate Bernoulli-Gaussian signals for the second n2 entries
to fix the approximation error in Eq. (4.9) for different γs. We then apply HR-AMP-ST
and LR-AMP-ST to reconstruct x and xd.
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It can be observed from Table 4.1 that, as γ approaches 1, the noise sensitivity bound of
HR-AMP-ST continues increasing; however, the noise sensitivity bound of LR-AMP-ST is
stable because all parts in Eq. (4.15) are fixed. This verifies the advantage of our LR-AMP.
The empirical results of both methods are also below their noise sensitivity bounds.

Spatial Domain Approach

It is difficult to reproduce the theoretical noiseless PTC of HR-AMP-TV-1D in [28] be-
cause it relies on complicated numerical optimization, and no open source code is available.
Instead, we study the empirical noiseless PTC of HR-AMP-TV-1D by replicating an experi-
ment from [55] using their source code. We fix n1 = 628 and consider a 30×30 uniform grid
in the range of δ1 = m/n1 ∈ [0.05, 0.95] and ρ1 = k1/m ∈ [0.05, 0.95]. The corresponding
HR Bernoulli-Gaussian 1D finite-difference signal is then generated. The empirical noiseless
PTC of HR-AMP-TV-1D is shown in Fig. 4.4 (a) (with d = 1).

To obtain the empirical noiseless PTCs of LR-AMP-TV-1D, we first generate the LR
signal xd that yields a 1D Bernoulli-Gaussian finite-difference sequence with sparsity rate
dε1. We then duplicate each entry d times to obtain the HR piecewise constant signal with
sparsity rate ε1 according to Dd and Ud in Eq. (4.23) and (4.24). From the analysis in Sec.
4.4.2, the approximation error is zero. Successful recovery is declared when the NMSE is
less than 10−4. The results with d = 2 and d = 4 are also shown in Fig. 4.4 (a).

To study the noise sensitivity of MR-AMP-TV-1D, we recover the target HR and LR
piecewise constant signals after introducing additional white Gaussian noise (AWGN) with
SNR , ‖Ax‖22 /‖w‖

2
2 = 60dB in the measurement. Fig. 4.4 (b) shows the median NSNR

defined as NSNR , ‖xo‖22 /‖xo − x̂‖22 versus the sampling ratio δ1 = m/n1 at the fixed spar-
sity rate ε1 = 0.05, as in [14]. This shows that the LR-AMP-TV-1D obtains a lower NMSE
than does the HR-AMP-TV-1D. This verifies Corollary 4.3.4, i.e., the LR reconstruction
obtains a better performance than the HR reconstruction.

4.5.4 Performance with 2D Images

In this part, we apply the MR-AMP theory to MR 2D image reconstruction. All reported
experimental results are the averages of 20 Monte Carlo simulations.

Target LR image

The target LR images are different when different downsampling matrices are used. For the
transform-domain approach, the target LR image Xd is represented by Eq. (4.19). Both
DCT and the Daubechies-8 (D8) wavelet are tested. For the spatial-domain approach,
although the simple matrix in Eq. (4.23) can be applied, we choose to use the bicubic
downsampling matrix because it leads to a better LR image. As discussed before, Cond.
4.1.3 still holds in this case. Given the bicubic downsampling matrix, we test the repetition

62



d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2

5%
HR-AMP-ST 16.75 15.96 17.60 18.21 15.53 15.86 14.39
H2L-AMP-ST 17.40 16.48 18.30 18.58 15.93 16.49 15.10
LR-AMP-ST 18.02 17.11 18.77 19.13 16.68 16.89 15.33

10%
HR-AMP-ST 18.50 17.79 18.94 19.71 17.35 16.95 15.17
H2L-AMP-ST 19.43 18.56 19.97 20.34 18.19 18.05 16.10
LR-AMP-ST 20.82 19.94 21.07 21.72 19.43 18.71 16.79

20%
HR-AMP-ST 21.28 20.36 21.08 22.31 19.93 18.69 16.60
H2L-AMP-ST 22.58 21.69 22.61 23.46 21.27 20.13 18.06
LR-AMP-ST 24.90 24.25 24.46 26.34 23.76 21.89 19.72

4

3%
HR-AMP-ST 15.37 14.76 16.54 17.09 14.33 14.96 13.51
H2L-AMP-ST 16.98 16.33 18.55 18.86 15.91 17.24 15.97
LR-AMP-ST 18.22 17.66 18.92 19.58 17.02 17.13 15.59

4%
HR-AMP-ST 16.03 15.24 16.95 17.56 14.87 15.27 13.75
H2L-AMP-ST 17.81 16.91 19.09 19.46 16.65 17.71 16.39
LR-AMP-ST 19.21 18.42 19.63 20.31 17.78 17.66 15.76

5%
HR-AMP-ST 16.52 15.74 17.24 17.97 15.91 15.52 13.95
H2L-AMP-ST 18.44 17.54 19.57 20.04 17.29 18.13 16.72
LR-AMP-ST 19.66 18.90 19.67 20.60 18.45 17.48 15.72

Table 4.2: PSNRs (dB) of 128×128 image reconstructions with DCT-domain MR-AMP-ST.

upsampling matrix in Eq. (4.24) as well as the bicubic upsampling matrix. It can be verified
that Cond. 4.1.1 DdUd = I holds approximately between these two upsampling matrices
and the bicubic downsampling matrix.

In this paper, we use the Peak SNR (PSNR) to measure the objective quality of a recon-
structed image, which is defined as 10log10(2552/MSE(X − X̂)), where X is the reference
image and X̂ is the test image.

Scaling Matrix Λ

During the reconstruction of the LR image, to ensure that Cond. 4.1.2 in Sec. 4.3 is
satisfied, we need to scale its corresponding measurement matrix AUd into Ad = AUdΛ
to obtain normalized columns, as shown in Eq. (4.22) and Eq. (4.29). Because no specific
entries in the target LR image are preferred, the scaling matrix Λ should be a diagonal
matrix with equal diagonal entries. For LR-AMP-ST in the DCT and wavelet domain,
the diagonal entry is the inverse of the downsampling factor d, according to Eq. (4.22).
For LR-AMP-TV-2D in the TV domain, things are slightly different. For the repetition
operator that replaces each pixel in the LR image with a d × d block of pixels in the HR
image, the diagonal entry in the scaling matrix remains 1/d. For bicubic interpolation, we
empirically set the diagonal entry in the scaling matrix to be 1/2.68 for d = 2 and 1/5 for
d = 4. Although this approach cannot exactly normalize the columns and although there
remain some correlations between entries in the new measurement matrix, the approach
works quite well in practice.
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d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2

5%
HR-AMP-ST 16.58 15.84 17.81 17.66 15.31 15.94 14.33
H2L-AMP-ST 16.85 16.46 18.55 18.30 15.83 16.86 15.04
LR-AMP-ST 17.35 17.01 19.13 18.95 16.67 17.28 15.38

10%
HR-AMP-ST 18.20 17.47 19.29 19.56 17.14 16.99 15.05
H2L-AMP-ST 19.13 18.25 20.53 20.43 18.05 18.18 15.98
LR-AMP-ST 20.62 19.72 21.46 21.97 19.46 19.02 16.79

20%
HR-AMP-ST 21.27 20.15 21.62 22.68 20.04 18.86 16.60
H2L-AMP-ST 22.98 21.59 23.53 24.47 21.61 20.64 18.11
LR-AMP-ST 24.98 23.89 25.02 26.44 23.51 22.05 19.80

4

3%
HR-AMP-ST 15.14 14.67 16.66 16.41 14.26 15.01 13.54
H2L-AMP-ST 16.83 16.40 18.90 18.31 15.95 17.45 16.19
LR-AMP-ST 17.83 17.24 19.31 19.28 16.93 17.33 15.52

4%
HR-AMP-ST 15.62 15.16 17.09 17.08 14.70 15.40 13.69
H2L-AMP-ST 17.47 17.04 19.53 19.21 16.63 18.07 16.50
LR-AMP-ST 18.73 18.09 19.70 19.78 17.60 17.74 15.78

5%
HR-AMP-ST 15.99 15.58 17.50 17.52 15.19 15.66 13.90
H2L-AMP-ST 17.99 17.63 20.18 19.81 17.25 18.51 16.87
LR-AMP-ST 19.00 18.47 19.65 20.14 17.84 17.55 15.60

Table 4.3: PSNRs (dB) of 128×128 image reconstructions with wavelet-domain MR-AMP-
ST.

Noiseless image recovery

Tables 4.2, 4.3 and 4.4 compare the performances of DCT-domain MR-AMP-ST, wavelet-
domain MR-AMP-ST, and spatial-domain MR-AMP-TV when there is no measurement
noise. In each case, we compare our proposed LR-AMP, which recovers the LR image
directly; the conventional HR-AMP, which reconstructs the HR image; and the naive H2L-
AMP, which recovers the HR image first and then downsamples it to obtain the LR image
with the corresponding downsampling matrix. The highest PSNR in each case is highlighted.

From Tables 4.2 and 4.3, we can see that LR-AMP-ST almost always outperforms the
other two algorithms, except when d = 4 for HuskerStadium and SeaWorld. This is partially
due to two reasons. First, land remote sensing images contain more details compared to
natural images. Second, the suboptimal thresholding rule in [69] is used for d = 4, whereas
the optimal SURE-based thresholding method in [73] is used for d = 2.

In the spatial-domain approach, LR-AMP-TV-2D-B and H2L-AMP-TV-2D are the top
two algorithms. Their reconstruction performances are comparable, and the PSNR dif-
ference between them is less than 1 dB. However, H2L-AMP-TV-2D is much slower than
the proposed LR-AMP-TV-2D, as will be detailed in the computational complexity part.
Because the reference HR image is the same for the three approaches listed in Tables 4.2,
4.3 and 4.4, it can be observed that the TV-based approach yields higher PSNR than do
the transform-domain approaches.

Fig. 4.5 and Fig. 4.6 illustrate the visual quality of the recovered 256×256 Barbara and
Stadium images under different methods. It can be observed that transform-domain and
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d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2

5%

HR-AMP-TV-2D 20.88 19.66 20.67 22.85 19.60 18.36 16.13
H2L-AMP-TV-2D 22.55 21.09 22.51 24.53 21.07 20.27 17.93
LR-AMP-TV-2D-R 21.79 20.25 22.17 23.80 20.13 19.95 17.75
LR-AMP-TV-2D-B 22.68 21.17 22.67 25.07 21.13 20.33 17.87

10%

HR-AMP-TV-2D 23.62 22.18 22.80 26.55 22.51 20.20 17.64
H2L-AMP-TV-2D 25.83 24.08 25.35 28.91 24.63 22.70 19.97
LR-AMP-TV-2D-R 23.83 22.32 24.07 26.42 22.31 21.64 19.16
LR-AMP-TV-2D-B 25.66 24.18 25.24 28.82 24.33 22.63 19.95

20%

HR-AMP-TV-2D 26.51 25.05 25.02 30.91 25.70 22.15 19.31
H2L-AMP-TV-2D 29.49 27.65 28.39 34.11 28.49 25.38 22.26
LR-AMP-TV-2D-R 26.24 24.83 26.19 29.23 24.60 23.60 20.85
LR-AMP-TV-2D-B 28.92 27.63 27.99 32.44 27.51 25.28 22.34

4

3%

HR-AMP-TV-2D 18.69 17.90 18.89 20.32 17.71 16.77 15.08
H2L-AMP-TV-2D 21.75 20.80 22.29 23.55 20.70 20.26 18.71
LR-AMP-TV-2D-R 20.73 19.63 22.10 23.59 19.33 20.22 18.80
LR-AMP-TV-2D-B 21.95 20.49 23.02 24.47 20.46 20.92 19.22

4%

HR-AMP-TV-2D 19.89 18.89 19.84 21.64 18.83 17.66 15.65
H2L-AMP-TV-2D 23.43 22.21 23.77 25.39 22.26 21.62 19.75
LR-AMP-TV-2D-R 21.53 20.28 22.75 24.19 20.31 20.81 19.35
LR-AMP-TV-2D-B 22.99 21.54 23.93 25.55 21.66 21.64 19.93

5%

HR-AMP-TV-2D 20.88 19.66 20.67 22.85 19.60 18.36 16.13
H2L-AMP-TV-2D 24.86 23.24 25.07 27.05 23.40 22.74 20.49
LR-AMP-TV-2D-R 22.24 20.86 23.41 25.09 20.75 21.51 19.66
LR-AMP-TV-2D-B 23.97 22.32 24.80 26.58 22.52 22.54 20.30

Table 4.4: PSNRs (dB) of 128×128 image reconstructions with spatial-domain MR-AMP-
TV-2D.

spatial-domain approaches produce different types of reconstruction artifacts. The former
approach preserves more details but also contains more high-frequency noises, whereas the
latter approach is blockier, despite the higher PSNRs.

Comparison between AMP-TV-2D-B and optimal TVAL3 [53,64]

In Table 4.5, we compare the results of TVAL3 with optimized slack parameters [53, 64]
and our parameter-free AMP-TV-2D-B for the MR-CS problem in Eq. (4.5). For the
original HR image reconstruction, the performance of HR-AMP-TV-2D-B is comparable to
the optimized HR-TVAL3. However, for the LR image reconstruction, our LR-AMP-TV-2D
outperforms the optimized LR-TVAL3 in almost all cases by up to 1 dB. More importantly,
the theoretical analyses developed in Sec. 4.3 and 4.4 are applicable for MR-AMP-TV,
whereas there are only some qualitative analyses in [53].

Comparison between LR-AMP-TV-2D-B and [107]

The authors in [107] study a similar problem as ours and modify the sampled data to reduce
the approximation error level A(I−UdDd)x in Eq. (4.5). For a fair comparison, we change
the bicubic downsampling matrix in the previous parts to the decimation downsampling
matrix in Eq. (4.23) used in [107] and choose AMP-TV-2D as the reconstruction algorithm
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d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2

10%

HR-AMP-TV-2D 23.62 22.18 22.80 26.55 22.51 20.20 17.64
HR-TVAL3 23.36 21.80 22.94 26.21 21.89 20.32 17.71

LR-AMP-TV-2D-B 25.66 24.18 25.24 28.82 24.33 22.63 19.95
LR-TVAL3 25.44 24.05 25.09 28.60 23.98 21.94 19.24

20%

HR-AMP-TV-2D 26.51 25.05 25.02 30.91 25.70 22.15 19.31
HR-TVAL3 26.80 25.22 25.49 31.79 25.65 22.42 19.62

LR-AMP-TV-2D-B 28.92 27.63 27.99 32.44 27.51 25.28 22.34
LR-TVAL3 28.58 27.45 27.59 31.67 27.02 24.19 21.38

4

4%

HR-AMP-TV-2D 19.89 18.89 19.84 21.64 18.83 17.66 15.65
HR-TVAL3 19.69 18.77 20.21 21.43 18.48 18.21 16.02

LR-AMP-TV-2D-B 22.99 21.54 23.93 25.55 21.66 21.64 19.93
LR-TVAL3 22.77 21.31 23.85 25.19 21.56 20.95 19.80

5%

HR-AMP-TV-2D 20.88 19.66 20.67 22.85 19.60 18.36 16.13
HR-TVAL3 20.58 19.29 20.94 22.57 19.15 18.70 16.38

LR-AMP-TV-2D-B 23.97 22.32 24.80 26.58 22.52 22.54 20.30
LR-TVAL3 23.80 21.85 24.40 26.15 22.46 21.45 20.45

Table 4.5: Comparison of the final reconstruction results in PSNR between TVAL3 and
AMP-TV-2D.

d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2
5% LR-AMP-TV-2D-B 20.88 19.83 20.92 23.34 19.56 18.55 16.26

[107] 19.59 18.53 20.17 21.77 18.25 18.00 16.03

10% LR-AMP-TV-2D-B 22.79 21.77 22.34 25.64 23.31 19.96 17.48
[107] 22.81 21.25 22.47 26.26 21.29 19.95 17.31

4
3% LR-AMP-TV-2D-B 18.34 17.48 19.01 20.98 16.84 17.42 15.27

[107] 16.90 16.39 18.31 19.54 15.76 16.50 14.79

4% LR-AMP-TV-2D-B 18.67 17.77 19.28 21.48 17.17 17.78 15.47
[107] 17.86 17.14 18.96 20.51 16.64 17.09 15.27

Table 4.6: Comparison of the final reconstruction results in PSNR between LR-AMP-TV-
2D-B and [107].

for [107]. For the upsampling matrix, the duplication upsampling matrix in Eq. (4.24) is
used in [107], whereas we still use the bicubic upsampling matrix here. In Table 4.6, we
compare the results of AMP-TV-2D-B with the algorithm proposed in [107]. The approach
in [107] only works when δ1 is sufficiently large, e.g., δ1 should be at least greater than 10%
for d = 2. Moreover, there is no theoretical guarantee involved in [107].

Imaging in the presence of measurement noise

Table 4.7 shows the performance of MR-AMP in different domains when various amounts
of measurement noise are added. The proposed LR-AMP still outperforms the HR-AMP
and H2L-AMP in almost all cases.
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AWGN with a standard deviation of 20

DCT d = 2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-ST 16.00 17.70 19.92 HR-AMP-ST 14.74 15.22 15.73
H2L-AMP-ST 16.45 18.43 21.08 H2L-AMP-ST 16.32 16.90 17.53
LR-AMP-ST 17.12 19.65 22.88 LR-AMP-ST 17.56 18.37 18.71

Wavelet d=2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-ST 15.80 17.47 19.64 HR-AMP-ST 14.65 15.14 15.56
H2L-AMP-ST 16.44 18.33 21.02 H2L-AMP-ST 16.38 17.04 17.61
LR-AMP-ST 16.85 19.56 22.79 LR-AMP-ST 17.20 17.98 18.29

TV d=2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-TV-2D 19.59 21.84 23.93 HR-AMP-TV-2D 17.82 18.85 19.59
H2L-AMP-TV-2D 21.00 23.68 26.24 H2L-AMP-TV-2D 20.72 22.13 23.09
LR-AMP-TV-2D-R 20.20 22.08 24.17 LR-AMP-TV-2D-R 19.60 20.25 20.80
LR-AMP-TV-2D-B 21.05 23.70 26.31 LR-AMP-TV-2D-B 20.45 21.48 22.22

AWGN with a standard deviation of 40

DCT d = 2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-ST 15.89 17.37 19.06 HR-AMP-ST 14.67 15.16 15.59
H2L-AMP-ST 16.34 18.03 19.94 H2L-AMP-ST 16.26 16.96 17.43
LR-AMP-ST 17.00 19.11 21.21 LR-AMP-ST 17.41 18.09 18.24

Wavelet d=2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-ST 15.68 17.19 18.72 HR-AMP-ST 14.61 15.08 15.42
H2L-AMP-ST 16.21 17.87 19.75 H2L-AMP-ST 16.37 17.00 17.49
LR-AMP-ST 16.81 18.95 21.10 LR-AMP-ST 17.00 17.76 17.93

TV d=2

δ1 5% 10% 15%

d=4

δ1 3% 4% 5%
HR-AMP-TV-2D 19.36 21.13 22.52 HR-AMP-TV-2D 17.75 18.70 19.36
H2L-AMP-TV-2D 20.70 22.80 24.51 H2L-AMP-TV-2D 20.62 21.94 22.75
LR-AMP-TV-2D-R 20.02 21.58 23.05 LR-AMP-TV-2D-R 19.55 20.16 20.61
LR-AMP-TV-2D-B 20.73 22.81 24.44 LR-AMP-TV-2D-B 20.35 21.31 21.91

Table 4.7: PSNRs (dB) of the reconstruction of the 128× 128 Barbara image with varying
amounts of additive Gaussian measurement noise.

LR approximation

Another important problem in MR-CS is how to use an LR image recovered by LR-AMP
to facilitate the reconstruction of a higher resolution image. As an initial attempt, we
show in Table 4.8 some results obtained by simply upsampling the recovered LR image
with the upsampling matrix to obtain an HR image, named L2H-AMP. As shown by the
table, even this simple method can sometimes provide better HR images than HR-AMP.
For example, L2H-AMP-ST can outperform HR-MP-ST in almost all cases. However, HR-
AMP-TV-2D-B outperforms L2H-AMP-TV-2D-B when d = 4 and δ1 = 0.05, which implies
that L2H-AMP is far from optimal. This is because high-frequency information can be
captured in CS measurements y; however, L2H-AMP is based on LR-AMP. It thus treats
the high-frequency information as approximation errors, and the upsampling matrix cannot
estimate such information from LR images.

Computational complexity

The computational complexities of various methods are reported in Table 4.9, which shows
that when d = 2, the proposed LR-AMP is approximately 2 times faster than the HR-AMP
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d δ1 Algorithm Lena Barbara Boat House Peppers HuskerStadium SeaWorld

2 10%

HR-AMP-ST 18.50 17.79 18.94 19.71 17.35 16.95 15.17
L2H-AMP-ST 20.14 19.46 20.18 21.25 19.02 18.03 16.07

HR-AMP-TV-2D-B 23.62 22.18 22.80 26.55 22.51 20.20 17.64
L2H-AMP-TV-2D-B 23.65 22.52 22.86 26.21 22.30 20.25 17.79

4 5%

HR-AMP-ST 16.52 15.74 17.24 17.97 15.91 15.52 13.95
L2H-AMP-ST 18.76 17.85 19.05 20.00 17.65 16.38 11.93

HR-AMP-TV-2D-B 20.88 19.66 20.67 22.85 19.60 18.36 16.13
L2H-AMP-TV-2D-B 20.47 19.39 20.56 22.25 19.10 18.23 16.11

Table 4.8: PSNRs (dB) of the 128 × 128 image reconstructions with HR-AMP and L2H-
AMP. The transform domain in AMP-ST is DCT.

d=2 for LR-AMP-ST d=2 for LR-AMP-TV-2D
δ1% HR-AMP-ST LR-AMP-ST δ1% HR-AMP-TV-2D LR-AMP-TV-2D-R LR-AMP-TV-2D-B

5 10.8969 3.7318 5 9.9753 2.4964 2.3032
10 11.5907 3.9249 10 6.9049 2.2856 2.0812
20 12.5869 4.1898 20 5.7327 2.6401 2.4869

d=4 for LR-AMP-ST d=4 for LR-AMP-TV-2D
δ1% HR-AMP-ST LR-AMP-ST δ1% HR-AMP-TV-2D LR-AMP-TV-2D-R LR-AMP-TV-2D-B

3 0.2489 0.0075 3 14.4794 0.8791 0.8486
4 0.3205 0.0080 4 11.8068 0.8831 0.8594
5 0.3937 0.0107 5 9.9753 0.9104 0.9005

Table 4.9: CPU running time in seconds for different methods for the 128 × 128 Barbara
image.

(the H2L-AMP is even slower than HR-AMP due to the additional downsampling), and
the spatial-domain method is faster than the transform-domain method. However, when
d = 4 (the size of the LR image is 1/16 that of the HR image), the thresholding rule in
the soft-thresholding denoiser is changed from the time-consuming optimal SURE method
in [73] for d = 2 to the fast suboptimal max-min method in [69]. Thus, the LR-AMP-ST is
approximately 36 times faster than HR-AMP-ST, the latter being approximately 25 times
faster than the HR-AMP-TV, and LR-AMP-ST is approximately 100 times faster than LR-
AMP-TV. Moreover, LR-AMP-TV is approximately 13 times faster than HR-AMP-TV.
This provides some guidelines on how to choose the appropriate method according to the
value of d when the complexity is a primary concern.

4.6 Summary

In this chapter, we systematically study the multi-resolution compressed sensing reconstruc-
tion problem, which can stably recover a low-resolution signal when the sampling rate is
too low to recover the full resolution signal. We develop an AMP-based solution and study
its theoretical performance. We also develop the appropriate up-/down-sampling operators
in both the transform and spatial domains. The performance of the proposed scheme is
demonstrated via simulation results.
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Figure 4.2: State evolutions of MR-AMP-TV with a CS sampling rate of 5% and no
measurement noise for the 128 × 128 Barbara image. (a) Repetition interpolator. (b)
Bicubic interpolator.
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Figure 4.3: The theoretical and empirical PTCs of MR-AMP-ST.
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Figure 4.4: (a) The empirical PTCs of MR-AMP-TV-1D for Bernoulli-Gaussian finite-
difference signals. (b) MR recovery of Bernoulli-Gaussian finite-difference signals with
sparsity rate ε1 = 0.05 and SNR of 60 dB in the measurement.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Reconstruction of 10% sampled 256× 256 Barbara image with downsampling
factor d = 2 and DCT as the sparsifying basis for MR-AMP-ST. (a) HR-AMP-ST (20.32
dB). (b) H2L-AMP-ST (21.31 dB). (c) LR-AMP-ST (22.72 dB). (d) HR-AMP-TV-2D (25.06
dB). (e) H2L-AMP-TV-2D (27.75 dB). (f) LR-AMP-TV-2D-B (27.54 dB).
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Reconstructions of 20% sampled 256× 256 HuskerStadium image with down-
sampling factor d = 2 and D8 wavelet as the sparsifying basis for MR-AMP-ST. (a) HR-
AMP-ST (18.65 dB). (b) H2L-AMP-ST (20.22 dB). (c) LR-AMP-ST (21.05 dB). (d) HR-
AMP-TV-2D (21.66 dB). (e) H2L-AMP-TV-2D (24.52 dB). (f) LR-AMP-TV-2D-B (24.38
dB).
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Chapter 5

Scalable Compression of Deep
Neural Networks

Deep neural networks (DNNs) have shown great success in versatile high level vision prob-
lems such as image classification [49, 60], face recognition [6], object detection [40], and
image captioning [57]. However, DNNs generally involve multiple layers with millions of
parameters, making them difficult to be deployed and updated on devices with limited re-
sources such as mobile phones and other smart embedded systems. For image classification
task, the winner of ILSVRC2012, AlexNet, has 60M parameters and needs 240 MB of stor-
age space. The second place of ILSVRC2014, VGG-16, has 138M parameters and needs 530
MB of storage space. To make things worse, various high level vision tasks need different
DNN models, e.g., the model used for face recognition [6] is different from the model used
for image classification. We need to store both models in embedded systems if we plan to
perform image classification and face recognition.

In this chapter, motivated by the successful applications of scalable coding in various
image and video coding standards such as JPEG 2000, H.264, and H.265/HEVC [85,88,92],
we propose a scalable compression framework for DNNs, which has not been addressed
before. Our goal is to represent the DNN parameters in a scalable fashion such that we
can easily truncate the representation of the network according to the storage constraint
and still get near-optimal performance at each rate. Moreover, if the network needs to be
upgraded with higher rate and better performance, the existing low-rate network can be
reused, and only some incremental data are needed. This is better than recompressing and
re-transmitting the network as in [45,58].

To achieve this goal, we propose a three-stage pipeline. First, a hierarchical represen-
tation of weights in DNNs is developed. Second, we propose a backward greedy search
algorithm to adaptively select the bits assigned to each layer given the total bit budget.
Finally, we fine-tune the compressed model.
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The rest of the chapter is organized as follows. Sec. 5.1 is devoted to hierarchical
quantization of the DNN parameters. In Sec. 5.2 we formulate the bit allocation as an
optimization problem and propose a backward search solution. A fine-tuning method is
presented in Sec. 5.3. Experimental results on MNIST, CIFAR-10 and ImageNet datasets
are reported in Sec. 5.4, followed by conclusions in Sec. 5.5.

5.1 Hierarchical Quantization

The K-means clustering-based quantization is a popular technique in the compression of
DNN [42], [45]. Therefore, in this chapter, we also choose K-means clustering with linear
initialization [45] to compress the weights in DNN. However, the framework developed in
this chapter is quite general and can also be applied to other quantization techniques,
e.g., the fixed-point quantization in [65] and other similar tasks besides classification, e.g.,
regression problems.

In [45], the authors quantize the weights to enforce weight sharing with K-means cluster-
ing, e.g., they assign 8 bits (256 shared weights) to each CONV layer and 5-bits (32 shared
weights) to each FC layer. However, every time a CONV layer is assigned a different bit, the
K-means clustering has to be performed again, rendering scalable compression infeasible.
On the other hand, some DNN layers have a large number of weights, e.g., the number of
weights in the fc6 layer of AlexNet is 38M. Therefore the K-means clustering can be quite
slow, even with the help of GPU.

To address this problem, we adopt the scalable coding concept in image/video coding
[85, 88, 92], and represent the weights hierarchically, i.e., each weight is represented by a
base-layer component and several enhancement-layer components; hence, we only need to
perform the quantization step once during the entire scalable compression process, which
also benefits the adaptive bit allocation in Sec. 5.2. Note that there are two different kinds
of layers in this chapter: the network layers in DNN, and the hierarchical quantization
layers in the scalable representation of the weights.

Suppose we want to allocate n bits to each weight in a pre-trained DNN layer. We
first perform K-means clustering of all weights with K = 2 (1-bit quantization), and record
the corresponding cluster indices and centroids. We also record the corresponding quan-
tization error. This yields the 1-bit base-layer approximations of all weights. Next, we
perform another K-means clustering with K = 2 on all quantization errors, and record the
corresponding cluster indices, centroids, and quantization errors. The gives us the 1-bit
first-enhancement-layer representations of all weights. By repeating this procedure, we can
obtain a n-layer hierarchical representation of a weight, i.e.,

w ≈ b1 + e1 + ...+ en−1, (5.1)
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where w is a uncompressed weight, b1 and ei are the centroid of the base layer and the i-th
enhancement layer respectively.

This hierarchical quantization only needs to be performed once, which facilitates future
network updating, as we only need to add or delete certain quantization layers to meet the
new bit rate constraint. For the tradition K-means clustering used in [42] and [45], we have
to perform K-means clustering every time a new bit budget is required.

After the hierarchical quantization, we can build a codebook that stores the centroid
and cluster index information of all quantization layers. For a network layer of DNN with
N weights, there are 2n centroids, and the number of cluster indices is Nn. If each uncom-
pressed weight or centroid is represented by b bits (b=32 for single-precision floating-point
number), the compression rate of the n-bit hierarchical quantization scheme is

r = Nb

Nn+ 2nb. (5.2)

In contrast, in the conventional K-means method [45], given the same n-bit quantization,
the compression rate is

r = Nb

Nn+ 2nb . (5.3)

Note that the storage cost is dominated by Nn, compared to 2nb or 2nb, because the
number of connections N in a DNN is usually very large.

5.2 Adaptive Bit Allocation

In DNN, the redundancies in different network layers are different [45, 65]. Therefore it is
necessary to design an optimal bit allocation algorithm, i.e., given a bit budget, how to
allocate the bits to different network layers in order to get the best performance. In this
part, we formulate the following optimization problem.

arg min
{n,C,G}

f(n,C,G)

s.t.
L∑
i=1

Nini + 2nib ≤ µ.
(5.4)

where n =
[
n1 ... nL

]
is a vector containing the bits allocated to L network layers, C

is the centroid vector, G is the cluster-by-index matrix for the network layers, Ni is the
number of weights in the i-th network layer, and µ is the bit budget. We use the cross
entropy between the pdf of the predicted labels and true labels as the cost function f(·),
which is frequently used in classification tasks.

It is hard to solve the combinatorial optimization in Eq. (5.4), since the number of
bits assigned to each network layer ni has to be integer and the number of entries in the

cluster-by-index matrix G is
L∑
i=1

Nini, even larger than the number of weights
L∑
i=1

Ni in
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the pre-trained DNN. Therefore, we use a similar method to [45] to first approximate the
original uncompressed weights with high-rate quantized weights. More specifically, we first
use the hierarchical method in Sec. 5.1 to assign M bits to each CONV layer weight and
P bits to each FC layer weight. This is used as the initialization step. The centroid vector
C and the cluster-by-index matrix G are then determined and fixed. We use E to denote
the number of bits to store this initial network.

Next, we adaptively allocate bits to network layers such that u < E. The problem in
Eq. (5.4) is simplified to

arg min
{n}

f(n)

s.t. B =
L∑
i=1

(Ni + 2b)ni ≤ µ.
(5.5)

For small-scale problems, the optimization above can be solved by exhaustive grid search,
where configurations that violate the bit constraint are skipped, and the others are evaluated
to find the best solution. The process can be accelerated by parallel computing, since
different configurations are independent. However, for large-scale problems, exhaustive
search becomes infeasible, as the number of configurations grows exponentially with the
number of bits. For example, in AlexNet, there are 5 CONV layers and 3 FC layers. If 10
bits are assigned to each CONV layer and 5 bits are assigned to each FC layer, the total
number of configurations would be 105 × 53 = 12.5M.

One way to speed up the process is to use random search [13], since the number of
bits assigned to each network layer can be treated as a hyper-parameter for the DNN.
Theoretical analysis in [13] shows that randomly selecting 60 configurations can ensure that
the top 5% result can be achieved with a probability of 0.95. For the bit allocation problem
here, we should randomly select a number of configurations that satisfy the bit constraint.
In Sec. 5.4, random search is used as a baseline algorithm for comparison.

In this part, we propose a backward greedy search algorithm to address the bit con-
straint explicitly and solve the problem in Eq. (5.5). We start from the initial high-rate
quantized network as discussed above. Denote the bit allocation in the t-th iteration as
nt = [nt1, . . . , ntL], whose corresponding total bit cost is Bt. To find nt+1 at iteration
t + 1, we follow the spirit of the gradient descent method by assigning one less bit to
each network layer respectively, calculating the corresponding gradient of the total bit
cost, and choosing the configuration that has the maximum gradient. In other words,
let nt,j = [nt1, . . . , ntj−1, n

t
j − 1, ntj+1, . . . , n

t
L], the bit allocation in the (t+ 1)-th iteration is

obtained by
arg max

nt,j
f(nt,j)−f(nt)
Bt,j−Bt

s.t. nt,j ⊂ {nt,1,nt,2, ...,nt,L},

Bt,j =
L∑
i=1

(Ni + 2b)nt,ji .

(5.6)
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The iteration terminates until the bit constraint is satisfied. The entire backward greedy
search algorithm is summarized in Alg. 1. The intuition behind the gradient defined above
is twofold. First, if two bit allocations have the same cost function value, the one with
smaller total bit cost should be chosen. Second, if two bit allocations have the same total
bit cost, we should choose the one with lower cost function value and use the maximum
function in Eq. (5.6) due to Bt,j < Bt.

Algorithm 1 Backward Greedy Search Algorithm
1: Initialization: Quantize the network with M bits for each CONV layer and P bits for

each FC layer. Let t = 0.
2: while Bt > µ do
3: for each network layer j ≤ L do
4: nt,jj ← ntj − 1, nt,jp ← ntp for p 6= j.
5: Update the weights of DNN based on the hierarchical framework in Sec. 5.1
6: Test with the validation data and record Bt,j and f(nt,j)
7: end for
8: Select nt+1 based on Eq. (5.6)
9: t← t+ 1

10: end while

5.3 Fine Tuning

It is shown in [45,65] that fine-tuning (FT) of the centroids after the quantization of DNN
can significantly improve the classification performance. In this chapter, we also perform
fine-tuning after the adaptive bit allocation to update the centroids similar to Eq. (3)
in [45].

Denote the loss by f , the weight in i-th column and j-th row by Wij , the cluster index
of weight Wij by Gij , and the k-th centroid in the m-th quantization layer by Cmk. With
the indicator function I(·), the gradient of the centroids is calculated as

∂f

∂Cmk
=
∑
i,j

∂f

∂Wij

∂Wij

∂Cmk
=
∑
i,j

∂f

∂Wij
I(Gij = mk) (5.7)

where mk is the index k in the m-th quantization layer.
The advantage of the proposed scalable compression of the DNN is that for each target

bit rate, we can find a near-optimal bit allocation. If later on the DNN bit rate on a device
needs to be updated, instead of re-transmitting a new set of the DNN parameters, we only
need to transmit some incremental data, including the centroid vector C and cluster-by-
index matrix G. The required bit rate is thus much lower than replacing the entire network.

During the update, some additional bits caused by the fine-tuning are needed to update
the centroids of the previous compressed model. However, according to the analysis in Sec.
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5.1, the centroid update will cost 2b
L∑
i=1

ni at most, while the minimal bits needed to update

the cluster-by-index matrix are min{N1, N2, ...., NL}. The storage cost is dominated by
the cluster indices instead of centroids; hence the overhead introduced by the fine-tuning
is negligible. Take AlexNet as an example, if we use 10 bits to quantize CONV layers and
5 bits for FC layers, at most 0.52KB are needed to update these centroids, while we may
use at least 5KB to update the cluster-by-index matrix every time a different bit budget is
given.

5.4 Experimental Results

We test the proposed scalable compression on 3 networks designed for the MNIST [63],
CIFAR-10 [59] and ImageNet [81] datasets respectively. We implement the network training
based on the CNN toolbox MatConvNet [98] with our own modifications. The training is
done on a desktop with a NVIDIA TIAN X GPU with 12GB memory.

5.4.1 Implementation Details

For the fine-tuning part, the initial learning rate for LeNet-5, CIFAR-10-quick and AlexNet
is 1e-6, 1e-5 and 1e-8, respectively. The reason why the initial learning rate is so small is
the gradient of a certain centroid is the sum of the gradients of weights that share the same
centroid, which would be rather large in each iteration. We drop the learning rate by 10
when the loss begins to reach an apparent plateau, repeating this several times.

5.4.2 LeNet-5 for MNIST

We use the cnn_mnist_experiment.m function in MatConvNet to train LeNet-5 for MNIST
dataset. There are 2 CONV layers and 2 FC layers. The pre-trained model can achieve
0.88% Top-1 error and needs a storage of 1720KB. We use 8 bits to hierarchically quantize
each CONV layer and 5 bits for each FC layer. The initial quantized model can achieve
0.97% Top-1 error, and the corresponding storage cost is 279KB. In Fig. 5.1(a), we compare
the proposed backward greedy search method (BS) with the exhaustive grid search method
(GS). We also present the number of configurations tested on the validation set in Table 5.1
to compare the computational complexity. We can see that our proposed backward search
algorithm can achieve comparable compression performance to the grid search with much
smaller computational complexity. The only exception happens when the compression rate
is extremely large, e.g., 28.67 in Fig. 5.1(a). However, after fine tuning, the performance is
still very close to the original one.
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LeNet-5 for MNIST
Bit Budget (KB) 200 150 80 60
Compression Rate 8.60 11.47 21.50 28.67

BS Number 26 51 101 115
GS Number 960 640 320 79

CIFAR-10-quick for CIFAR-10
Bit Budget (KB) 120 100 50 30
Compression Rate 4.85 5.82 11.64 19.40

BS Number 26 51 101 115
RS Number 120

Table 5.1: Number of configurations tested on MNIST and CIFAR-10 validation set v.s.
compression rate.

5.4.3 CIFAR-10-quick for CIFAR-10

We use the provided cnn_cifar.m in MatConvNet to train CIFAR-10-quick for CIFAR-10
dataset. There are 3 CONV layers and 2 FC layers in the network. The reference model
can achieve 19.97% Top-1 error and needs a storage space of 582KB. We use 10 bits to
quantize each CONV layer and 5 bits for each FC layer. The initial quantized model can
achieve 22.70% Top-1 error and needs 141KB storage space. Since there are at most 25K
configurations which takes too much time to evaluate, instead of using grid search as a
comparison, we use the random search method (RS) [13]. In each trial, we randomly choose
120 configurations that satisfy the bit constraint from the configuration pool.

The compression performance is shown in Fig. 5.1(b) and the computational complexity
is presented in Table 5.1. It can be seen that the proposed backward search algorithm
can achieve similar or even better performance than random search with much smaller
computational complexity, especially when the bit rate is close to that of the initial quantized
network. The only exception happens when the compression rate is extremely large, e.g.,
20 in Fig. 5.1(b). For the fine-tuning in the random search method, we fine-tune the result
that achieves the median classification accuracy in the 10 trials.

5.4.4 AlexNet for ILSVRC12

We use the provided cnn_imagenet.m to train AlexNet for ILSVRC12. The reference model
is slightly different from that of the original AlexNet in [60], where the order of pooling layer
and norm layer are swapped. It contains 5 CONV layers and 3 FC layers. This reference
model can achieve 41.39% Top-1 error, 18.85% Top-5 error, and needs 240 MB to store.
We use 10 bits to quantize each CONV layer and 5 bits for each FC layer. This initial
quantized model can achieve 56.09% Top-1 error, 31.63% Top-5 error, and needs 39.5 MB
to store. The number of configurations in each trial of RS is 150. The number of trials is 5
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Bit Budget (MB) 35 20 15 10
Compression Rate 6.86 12 16 24

BS Number 25 81 89 126
RS Number 150

Table 5.2: Number of configurations tested on ILSVRC12 validation set v.s. compression
rate.

in order to get 0.95 confidence interval. The result that achieves the median classification
accuracy in the 5 trials is fine-tuned.

The compression performance is shown in Fig. 5.2, and the computational complexity
is shown in Table 5.2. We can see that with much smaller computational complexity, the
proposed backward search can achieve better compression performance than random search.
Moreover, the classification performance of proposed scalable compression framework drops
little when the compression rate is within 10.

5.5 Summary

In this chapter, we discuss the scalable compression of deep neural networks, and propose
a three-stage pipeline: hierarchical quantization of weights, backward greedy search for bit
allocation, and fine-tuning. Its efficacy is tested on three different DNNs.
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Figure 5.1: Top-1 accuracy loss of compressed DNNs under different bit allocation methods.
(a) LeNet-5 and (b) CIFAR-10-quick.
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Figure 5.2: Accuracy loss of compressed AlexNet v.s. compression rate.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we investigate some novel topics on two different compression concepts in
"Big Data", compressed sensing in data compression and deep learning model compression.

Although compressed sensing and deep learning are relatively new, compared to im-
age/video coding, in this thesis, we show that some old techniques and ideas in image/video
coding which has been studied extensively, can inspire and solve new problems in CS and
DL. In the first topic of this thesis, side information-aided compressed sensing is modelled as
a distributed source coding problem. The next two topics, scalable compressed sensing and
scalable compression of deep neural networks are both motivated by scalable image/video
coding.

More specifically, in the first topic of this thesis, we study side information-aided com-
pressed sensing, where an additional noisy version of the original signal is available for
CS reconstruction. We model this problem from the setup of distributed source coding,
incorporate the side information into the decoding process and formulate the correspond-
ing optimization problem. Next, we develop a GENP-aided approximate message passing
algorithm (GENP-AMP), and study its parameter selection, state evolution, and noise sen-
sitivity. The contribution of the GENP is also examined. We also develop a parameter-
less GENP-AMP that does not need to know the sparsity of the unknown signal and the
variance of the GENP. Simulation results with 1-D synthetic data and multiview images
demonstrate the performances of the proposed methods.

Motivated by the quality scalability in scalable image/video coding, the second topic of
this thesis, multi-resolution compressed sensing, tries to answer the following question: if
the number of CS samples is not sufficient to reconstruct the target high-resolution image,
is it possible to stably recover the corresponding low-resolution preview ? We systemat-
ically study the multi-resolution compressed sensing reconstruction problem, develop an
AMP-based solution and study the theoretical performance. Moreover, we also develop
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the appropriate up-/down-sampling operators in both transform and spatial domains. The
performance of proposed scheme is demonstrate on both synthetic 1-D data and 2-D images.

A key benefit of deep learning is the analysis and learning of massive amounts of data,
making it a valuable tool for Big Data Analytics. However, DNNs generally involve multiple
layers with millions of parameters, making them difficult to be deployed and updated on
devices with limited resources such as mobile phones and other smart embedded systems.
Motivated by scalable image/video coding, where scalability is achieved by the hierarchical
representation of bitstream, we hierarchically quantize the weights in DNNs and adaptively
select the subsets of output from hierarchical quantization based on user specified bit con-
straint. Finally, we fine tune the centroids from hierarchical quantization step to improve
the final performance. Experimental results on several famous deep learning models are
also presented.

6.2 Future Work

In this thesis, we show that some old ideas and techniques in image/video coding can solve
and inspire new problems in new areas, i.e., compressed sensing and deep learning. We
hope this thesis can inspire the readers with image/video coding background to contribute
more in this direction. Some interesting future work include, but not limited to :

6.2.1 Side Information-aided Multiview Video CS Reconstruction

For the future work of GENP-AMP as presented in Chapter 3, a parameterless GENP-AMP
algorithm that can accurately work in the whole plane need to be developed. According
to the noise sensitivity analysis in Sec. 3.4, there is no phase transition boundary, and the
MSE is bounded in the whole plane. However, the parameterless GENP-AMP proposed in
Sec. 3.5 only works well below the phase transition boundary of the standard AMP, due to
the unbounded MSE above the phase transition boundary of the standard AMP and the
approximation accuracy of SURE.

The original AMP is based on the simple soft thresholding in each iteration. Recently,
it is found in [71, 89] that other denoising methods can be employed in AMP to further
improve the reconstruction. For example, using the BM3D denoising algorithm [22], state-
of-the-art CS reconstructions can be achieved in imaging applications. This approach can
also be adopted into the GENP-AMP framework in this paper.

Applying the proposed schemes to multiview videos instead of multiview images is an-
other attractive topic, where the approaches in [108, 109] could be useful. Since there is a
third temporal dimension in videos, compared to images, it will be quite interesting if we
borrow some ideas from video coding and fuse them into the proposed schemes to improve
the video CS reconstruction performance.
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6.2.2 Multi-Resolution Video CS Reconstruction

Scalable image CS reconstruction in Chapter 4 is motivated by the quality scalability in
scalable image/video coding. Actually, there are three scalability concepts in scalable video
coding: temporal (frame rate) scalability, spatial (picture size) scalability and quality scal-
ability [85]. It remains unknown how we can achieve temporal and spatial scalability under
CS setup. It is pretty exciting if we can extend current multi-resolution image CS reconstruc-
tion method to multi-resolution video CS reconstruction by taking these three scalability
concepts into consideration.

6.2.3 Compression of Deep Neural Networks

We are currently considering the following for future work. In [45], the authors can compress
AlexNet from 240 MB to 6.9 MB without loss of accuracy, which is much smaller than what
is achieved in this paper. The reason is that network pruning is used [46], which removes
many small-weight connections from the network. This not only compresses the network,
but also reduces the complexity of the implementation. In addition, entropy coding is used
in [45]. However, the quantization in [45] is fixed and not scalable. This paper focuses
on the scalable quantization and adaptive bit allocation. It is also shown from Fig. 7
in [45] that pruning does not hurt quantization. Therefore the pruning and entropy coding
can also be used in our scheme to further improve the performance. Moreover, Huffmann
coding is the entropy coding method used in [45]. There are many more advanced entropy
coding methods than Huffmann coding in image/video coding, e.g., Golomb-Rice coding,
and arithmetic coding. Higher compression rate can be expected if we include pruning and
more advanced coding methods into our scalable compression scheme. Moreover, It is of
great importance to provide theoretical analysis on the compression performance of DNNs.
There is plenty of theoretical work on image/video coding performance. If the readers are
interested, they can try to extend the rate-distortion theory in image/video coding, e.g., [21]
to the compression of DNNs and get some theoretical results.

6.2.4 Sparsity-Constrained Deep Learning

The number of neurons in the human brain is close to 2e10. Each neuron is only connected
to about 1e4 other neurons on average though [4]. In deep learning, we see this in CNN.
Each neuron receives input only from a very small patch in the layer below. Unfortunately,
so far, learning weights that are sparse has not really paid off. Although there are some
work on sparsity-constrained deep learning [66, 105], they are built on pre-trained CNN
models. Developing other deep learning models besides CNN, whose weights are sparse,
is still of great interest. In the future, we will focus on building sparse deep models from
scratch instead of pre-trained CNN models. We also note that sparsity plays an important
role in the transcoding of image/video coding that images are sparse in transform domain.
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There have been some preliminary results on training deep learning models from scratch
in frequency domain [80]. More effort is needed in this area to build a connection between
deep learning in transform domain and sparsity.
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Appendix A

Proofs in Chapter 3

A.1 A heuristic derivation of the state evolution of GENP-
AMP

In this section, we derive the state evolution of GENP-AMP in Eq. (3.28) of Sec. 3.3.3. The
derivation is generalized from that in [72] for AMP. We start from the GENP-AMP iteration
in (3.17) and (3.20), but introduce the following three modifications: (i) The random matrix
A is replaced by a new i.i.d. A(t) at each iteration t, where Aij(t) ∼ N(0, 1/m); (ii) The
corresponding observation becomes yt = A(t)x + w; (iii) The last term in the update
equation for rt is eliminated. We thus get the following dynamics:

xt+1 = η( ut
1 + ut

x̃ + 1
1 + ut

(xt + A(t)T rt); θt), (A.1)

rt = yt −A(t)xt. (A.2)

Eliminating rt, the first equation becomes:

xt+1 = η( ut

1 + ut
x̃ + 1

1 + ut
(A(t)T yt + (I−A(t)T A(t))xt; θt)

= η(x + ut

1 + ut
(x̃− x) + 1

1 + ut
(A(t)T w + B(t)(xt − x)); θt),

(A.3)

where B(t) = I−A(t)TA(t).

Since the large system limit is assumed here, similar to [32], q2
t in Sec. 3.3.3 can be ap-

proximated by lim
n→∞

∥∥xt − x
∥∥2

2 /n. It can be shown using the central limit theorem that
B(t)(xt−x) converges to a vector with i.i.d. normal entries, and each entry has zero mean
and variance q2

t /δ. In addition, the entries of A(t)Tw have zero mean and variance of
σ2, and they are independent of B(t)(xt − x). Therefore, each entry of the vectors in the
argument of η in Eq. (A.3) converges to X0 + ξtZ with Z ∼ N(0, 1) independent of X0, and

ξ2
t =

(
ut

1 + ut

)2
σ2
s +

( 1
1 + ut

)2
(σ2 + 1

δ
q2
t ). (A.4)
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On the other hand, by Eq. (A.3), each entry of xt+1−x converges to η(X0 + ξtZ; θt)−X0.
Therefore

q2
t+1 = lim

n→∞
1
n

∥∥∥xt+1 − x
∥∥∥2

2
= E{[η(X0 + ξtZ; θt)−X0]2}. (A.5)

From Eq. (A.4) and Eq. (A.5), we can obtain the state evolution in Eq. (3.28).

This is a heuristic proof, more rigorous proof can be achieved following the proof in [10].

A.2 Proof of Proposition 3.4.1

In this part, we prove Prop. 3.4.1, which studies the bound of the MSE of the GENP-AMP
in the (ρ, δ) plane.

Proof. Consider p0 ∈ Fδρ, σ2 = 1 and let α∗(δ, ρ) = α±(δρ) minimax the MSE. To simplify
the notation, we define

Ψ(q2, u; p) = Ψ(q2, u, δ, σ = 1, σs, α∗, p)
= mse(npi(q2, u, 1, σs, δ); p, α∗).

(A.6)

Then, by the definition of fixed point, we get

q2
∗ = Ψ(q2

∗, u
∗; p),

u∗ =
1 + q2

∗
δ

γ2
s

.

Using the scale invariance, we have mse(σ2; p, α∗) = σ2mse(1; p̃, α∗), where p̃ is a rescaled
probability measure, p̃{x · σ ∈ B} = p{x ∈ B}. For p ∈ Fδρ, we have p̃ ∈ Fδρ as well.
Therefore,

q2
∗ = mse(npi(q2

∗, u
∗, 1, σs, δ); p, α∗)

= mse(1; p̃, α∗) · npi(q2
∗, u
∗, 1, σs, δ)

6M±(δρ) · npi(q2
∗, u
∗, 1, σs, δ)

Hence,
q2
∗

npi(q2
∗, u
∗; 1, σs, δ)

6M±(δρ),

where we use the fact that σ = 1 and γs = σs.

By the definition of npi in Eq. (3.25), we have

q2
∗

( u∗

1+u∗ )2
γ2
s + ( 1

1+u∗ )2(1 + q2
∗
δ )

6M±(δρ).
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Replacing u∗ by (3.29), we get

q2
∗ 6
−G(δ, ρ, γ2

s ) +
√
G(δ, ρ, γ2

s )2 + 4δγ2
sM

±(δρ)
2 (A.7)

where G(δ, ρ, γ2
s ) = δγ2

s + δ − γ2
sM

±(δρ).

It is easy to verify that the phase transition boundary only exists when γ2
s = ∞ from the

inequality above. If we let (γ2
s + 1)δ < γ2

sM
±(δρ), G(δ, ρ, γ2

s ) in the right hand side of Eq.
(A.7) is positive. In such case, if γ2

s goes to ∞, then δ < M±(δρ), we can get q2
∗ 6∞, i.e.,

the mean square error is unbounded, corresponding to the classical AMP phase transition
boundary.

To prove the second part of Prop. 3.4.1, we make a specific choice p̄ of p, and fix a small
constant c > 0.

Now for ε = δρ, define h = h±(ε, c) ·
√
NPI∗. Let p̄ = (1−ε)δ0 +(ε/2)δ−h+(ε/2)δh, similar

to (3.8). Denote q2
∗ = q2

∗(p̄) the highest fixed point corresponding to the signal distribution.
Again, by the scale invariance, we have

q2
∗ = mse(npi(q2

∗, u
∗, 1, γs, δ); p̄, α∗)

= mse(1; p̃, α∗) · npi(q2
∗, 1, γs, δ),

where p̃ is a scaled probability measure, and p̃{x ·
√
npi(q2

∗, 1, γs, δ) ∈ B} = p̄{x ∈ B}. Since
q2
∗ 6M∗, we have npi(q2

∗, 1, γs, δ) 6 NPI∗ and hence

h√
npi(q2

∗, 1, γs, δ)
= h±(ε, c) ·

√
NPI∗

npi(q2
∗, 1, γs, δ)

> h±(ε, c).

Note that mse(q; (1 − ε)δ0 + (ε/2)δ−x + (ε/2)δx, α) increases monotonically in |x|. Recall
that pε,c = (1−ε)δ0 +(ε/2)δ−h±(ε,c) +(ε/2)δh±(ε,c) is nearly-least-favorable for the minimax
problem. Consequently,

mse(1; p̃, α∗) > mse(1; pδρ,c, α∗) = (1− c) · M±(δ, ρ).

By the scale-invariant property, we conclude that

q2
∗

npi(q2
∗, 1, γs, δ)

> (1− c) · M±(δρ).

Then, we can get the inequality

(q2
∗)2 + [δ(γ2

s + 1)− (1− c)M±(δ, ρ)γ2
s ]q2
∗

− (1− c)M±(δρ)γ2
sδ > 0.
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Therefore,
fMSE(α∗; δ, ρ, 1, γ2

s , p̄) >
−[δ(γ2

s + 1)− (1− c)M±(δ, ρ)γ2
s ]

2

+

√
[δ(γ2

s + 1)− (1− c)M±(δ, ρ)γ2
s ]2 + 4(1− c)M±(δρ)γ2

sδ

2 ,

where fMSE(α; δ, ρ, σ, γ2
s , p) is the equilibrium formal MSE for GENP-AMP (λ, τs) for the

large system framework [32].

As c > 0 is arbitrary, we conclude

sup
p∈Fδρ

fMSE(α∗; δ, ρ, 1, γ2
s , p) >

−[δ(γ2
s + 1)−M±(δ, ρ)γ2

s ]
2

+

√
[δ(γ2

s + 1)−M±(δ, ρ)γ2
s ]2 + 4M±(δρ)γ2

sδ

2 .

Also, following the same procedure as Prop. 4.2 in [32], it can be shown that M∗ =
inf
α

sup
p∈Fδρ

fMSE(α;δ,ρ,σ = 1,γ2
s , p).

The last part of Prop. 3.4.1 can be proven by simply substituting the fixed point results in
the second part of Prop. 3.4.1 for the ones in Eq. (3.27).

A.3 Proof of Proposition 3.5.1

In this part, we prove Prop. 3.5.1, which provides an accurate estimation of the variance of
the prior x̃, i.e., σ2

s . This is an important step of the parameterless GENP-AMP.

Proof. From the definition of the GENP x̃, we get

σ2
s = E[(X̃ −X0)2]

= E[(X̃ −Xpos −X0 +Xpos)2]

= E[(X̃ −Xpos)
2]︸ ︷︷ ︸

(a)

+E[(X0 −Xpos)2]︸ ︷︷ ︸
(b)

− 2E[(X̃ −Xpos)(X0 −Xpos)]︸ ︷︷ ︸
(c)

(A.8)

where Xpos is the estimated sparse signal by GENP-AMP based on an postulated variance
σ2

s-pos. X̃ and Xpos can be explicitly expressed as follows.

X̃ = X0 + e, e ∼ N(0, σ2
s)

Xpos = η(X0 + σ∗Z; θ), Z ∼ N(0, 1),
(A.9)

where σ2
∗ is the variance of the unthresholded estimator in the last iteration of GENP-AMP.
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Next, we look at each part of Eq. (A.8). Part (c) can be rewritten as

E[(X̃ −Xpos)(X0 −Xpos)] = E[(X0 −Xpos)2] + E[e(X0 −Xpos)]. (A.10)

Thus Eq. (A.8) becomes

σ2
s = E[(X̃ −Xpos)2]− E[(X0 −Xpos)2]− 2E[e(X0 −Xpos)]. (A.11)

If σ2
s-pos is set to ∞, GENP-AMP degrades to AMP, which does not use x̃. This implies

that a perfect candidate of Xpos is the signal recovered by AMP, XAMP. Therefore, the two
Gaussian noises σ∗Z and e are uncorrelated. As a result, E[e(X0 − XAMP)] = 0, and σ2

s

can be further represented as

σ2
s = E[(X̃ −XAMP)2]− E[(X0 −XAMP)2]. (A.12)

Part (a) can be rewritten as E[(
_

X − η(
_

X + σ∗Z − e; θ))2] This term can exactly be seen as
a denoising operator. According to the large system limit [32], when n is sufficiently large,

E[(X̃ −XAMP)2] ≈ ‖x̃− xAMP‖22
n

. (A.13)

Next, E[(X0 −XAMP)2] can be estimated by the method proposed in [73], inspired by the
SURE theory. According to Theorem 4.3 and Theorem 4.7 in [73], it can be predicted
by lim

N→∞

_
r t(τ t)
N when t → ∞, where t is the inner iteration index of AMP. Usually it will

converge in a few iterations.

Summarizing the analyses above, we can prove Prop. 3.5.1.
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Appendix B

Proofs in Chapter 4

In this appendix, we prove that the condition in Corollary 4.3.3, i.e., M(ε1|η) is a concave
function of ε1, holds for the piecewise constant family in Eq. (4.3).

We start by defining a special family of distributions for simple sparse signals:

FSS∗n1,ε1 ≡
{
υn1 : Eυn1

{‖s[2 : n1]‖0} 6 n1ε1
}
, (B.1)

where s[2 : n1] refers to the subvector of a signal s from the second entry to the last entry.

Consider a signal x in the piecewise constant signal family FPCn1,ε1 in Eq. (4.3), and define
s as follows.

s = [x[1], x[2]− x[1], . . . , x[n1]− x[n1 − 1]]T .

It is clear that s ∼ vn1 , where vn1 ∈ FSS∗n1,ε1 . Therefore, a bijection relationship holds
between FPCn1,ε1 and FSS∗n1,ε1 because every signal generated from a distribution in FPCn1,ε1 is
paired with exactly one signal from FSS∗n1,ε1 , and every signal from FSS∗n1,ε1 is paired with
exactly one signal from FPCn1,ε1 . As a result, the proof in [28] for the concavity of M(ε1|η)
for block-sparse signals is applicable to the piecewise constant family. However, the proof
in [28] (at the end of Page 3406) was very brief. Therefore, we include the following details
for completeness.

The goal of the concavity proof is to show that

M(qε1 + (1− q)ε2|η) ≥ qM(ε1|η) + (1− q)M(ε2|η). (B.2)

First, from Eq. (4.2) and (4.3), if a distribution υ1 ∈ Fn1,qε1+(1−q)ε2 , then we have υ1 =
qυ2 + (1 − q)υ3, where υ2 ∈ Fn1,ε1 and υ3 ∈ Fn1,ε2 because any measure in Fn1,qε1+(1−q)ε2
can be written as a convex combination of measures in Fn1,ε1 and measures in Fn1,ε2 [28].
Next, note that M(ε1|η) in Eq. (4.12) is obtained by tuning the denoising parameters
to minimize the MSE of the least favorable distribution in the family. Eq. (B.2) can be
proved by combining the two facts because each term on the right-hand side can be tuned
independently to minimize its own least favorable MSE, whereas there is only one set of
tuning parameters on the left-hand side, leading to larger minimax MSE.
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