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ABSTRACT

The goals of this paper are: (1) to provide a statistical analysis approach that is appropriate

for data from an interlaboratory study where responses are measured in discrete

percentages and are subject to multiple sources of random variability, and (2) to apply this

model to data on wood-failure percentages from block-shear tests on structural wood

adhesives. We treat percentage responses measured in 5-point intervals as having arisen

from observing 20 independent binary responses on different parts of the observed wood

blocks. The overdispersion that is likely to result from the practical inadequacy of this

assumption is overcome empirically by the inclusion of a random effect for blocks. We

propose an analysis based on a parametric bootstrap to provide sampling distributions for

statistics that regulators might wish to use in setting standards for acceptance of wood

adhesives. Similar computational methods are developed to assess the fit of the model. This

model is shown to provide a reasonably good fit for actual data in many of the cases to

which it was applied.
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Introduction

Structural wood adhesives (SWAs) are used to create engineered

wood products, such as laminated wood, plywood, I-joists, and

finger-jointed lumber [1]. Before an adhesive can be used in

such products, it must meet laboratory testing standards based

on protocols that vary by country. For example, in Canada,

SWAs are subject to testing according to CSA O112.9-10 [2] or

CSA O112.10-08 [3], whereas in the United States ASTM

D2559-10a [4] applies. In both Canada and the United States,

it is not uncommon for product specifications to reference

additional standards to assess other attributes of the adhesives.

For example, ASTM D7247-07a [5] provides additional require-

ments for assessing the adhesive’s high-temperature perfor-

mance in certain applications. These protocols, and several

others mentioned in the Discussion and Conclusions section,

specify several tests that are used to assess the suitability of an

adhesive for use in a structural wood product (i.e., a wood prod-

uct that can bear load in a building structure). Among these

tests is a block shear test. ASTM D905-08 [6] provides a

detailed description of the adhesive block shear test. In the

block shear test, flat surfaces from pairs of wood blocks are

glued together under pressure. A smaller sample (typically

called a “shear block”) is cut from this glued assembly in such a

way that it can be placed in a specialized test jig that induces

shear on the glued interface. The loading is such that the forces

are applied parallel to the wood grain, which produces the high-

est shear forces before either the wood fails or the adhesive fails.

An increasing load is applied to the shear block until it fails; at

that point, it is possible to separate the specimen along the for-

merly glued interface. Optionally, the shear block may be

exposed to some predefined conditions to simulate aging after

the adhesive has cured or set and before the shear force is

applied.

If the SWA is strong and durable, then it is likely that the

separation occurs mainly cohesively within the wood. On the

other hand, with a weak or nondurable SWA, the separation

occurs cohesively within the adhesive and/or at the interface

between the wood and the adhesive layer. The force required to

achieve separation is recorded along with a trained technician’s

subjective assessment of the percentage of the block face that

shows wood failure rather than adhesive failure. A practice for

estimating the percentage of wood failure in wood-adhesive

bonds is given in ASTM D5266-99 [7]. The wood failure per-

centage (WF%) is recorded in five-unit increments, i.e., WF%

takes a value 0, 5, 10,…, 95, or 100. A set of 30 blocks is tested

in this way, and the median and first quartile of WF% are used

to summarize the results. High values of these quartiles indicate

a strong and durable SWA.

It is recognized that laboratory test measurements like

WF% are subject to numerous sources of variability, including

variability among trained evaluators and laboratories [8]. The

latter source is important, because (1) manufacturers of SWAs

may contract with any of a number of accredited laboratories to

perform the tests on their adhesives, and (2) regulators need to

be reasonably certain that results are representative of the true

potential for both performing and non-performing SWAs,

regardless of the laboratory undertaking the test. To determine

an acceptance criterion for measures from tests that can be

conducted in different laboratories, the repeatability and repro-

ducibility of the test must be understood [8]. In essence, repeat-

ability relates to the variability of a given test result upon

repeated tests under the same conditions within the same labo-

ratory, whereas reproducibility relates to the additional variabil-

ity that is imparted when the same test is conducted in different

laboratories. Because these effects are random and tend to be

difficult to isolate and replicate, they are best quantified in an

interlaboratory study by a representative sample of “qualified”

laboratories all following their interpretation of the same test

standard.

The standard practice for conducting interlaboratory

studies is given in ASTM E691-09 [9], and specifies running

some number of replicate tests at each of several laboratories.

An analysis of the results should provide enough information to

reliably interpret the outcome of a single test run at a single lab-

oratory. Specifically, the goal of any acceptance criterion is to

ensure that, across all qualified laboratories, poor-performing

products are designated as not acceptable and good performing

products are accepted, while still keeping the testing as practical

and cost effective as possible. The analysis of the interlaboratory

study should therefore be able to set limits such that a product

with a given level of performance should equal or surpass the

limit with probability that is easily computed. This implies that

it is necessary to be able to estimate the sampling distribution of

the statistic on which the criterion is based. The ASTM E691-09

[9] standard specifies that statistical analysis of the test results

is conducted using a one-way random-effects model. The

standard assumes that the summary measure for each labora-

tory is the mean response of all tests conducted there, and thus

it provides calculation formulas that can be performed using a

spreadsheet to provide estimates of the repeatability and repro-

ducibility. From these, limits can be constructed within which

acceptable products should fall with prescribed probability

when they are tested at a random laboratory that follows the

protocol correctly.

Although the one-way random-effects model is appropriate

for normally distributed data [10], it has several flaws when an

interlaboratory test is done to set standards for WF% and simi-

lar percentage-based subjective assessments. First, measure-

ments like WF% are discrete. In particular, for a strong and

durable SWA, the WF% values often take on only a few of the

largest possible values. It is not unusual that conducting 30 sep-

arate block shear tests on a good adhesive results in a majority

of measurements at 100 %, with a few values of 95 % and 90 %.
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With such a skewed distribution and so few unique values in

the data, the justification of a normal-based random-effects

model is questionable.

Second, data from very good SWAs (means near 100 %) or

very poor SWAs (means near 0 %) exhibit block-to-block vari-

ability that is much smaller than what is observed when the

mean WF% is more intermediate. Furthermore, in standards

such as CSA O112.9-10 [2] or CSA O112.10-08 [3], quartiles

are used to summarize WF% data from a given laboratory,

rather than the means that a standard one-way random-effects

model assumes are to be used. Although ASTM E691-09 [9]

does indicate that caution is needed with discrete data, it offers

no alternative analysis. Unfortunately, the sampling distribu-

tions of quartiles of data from skewed, discrete distributions

with random effects are not known and are not easy to derive

exactly.

The goal of this paper is to provide a statistical analysis

approach that is appropriate for data from an interlaboratory

study where responses are measured in discrete percentages.

This analysis approach can then be used to create acceptance

criteria for measurements like WF%. We first transform the

data so that they may take on values from the consecutive

integers 0, 1, 2,…, 20. We then argue that these data can be

modeled approximately using an overdispersed binomial distri-

bution, which is described in the next two sections. Accounting

for the laboratory effects results in a model from the class of

generalized linear mixed models [11,12]. We show how this

model can be fit and use a parametric bootstrap [13] to estimate

limits of repeatability and reproducibility. We then describe a

pilot interlaboratory study designed to examine the impacts of

repeatability and reproducibility on the acceptance or rejection

of performing or non-performing SWAs. We analyze these data

and assess whether the proposed model provides a reasonable

fit to the data using parametric bootstrap techniques.

Mixed Model Analysis of Discrete

Percentage Data

BINOMIAL APPROXIMATION TOWOOD FAILURE

PERCENTAGE

To start, we fix some notation. Suppose that B blocks are tested

in each of L laboratories. Let Yik represent the response mea-

surement on block k in laboratory i, for i ¼ 1;…; ; k ¼ 1;…;b.

These random variables are assumed to be supported on the

equally spaced values 0, 5, 10,…, 100.

Let Wik ¼ Yik=5, so that Wik is supported on 0,1,2,., 20.

Notice that this structure suggests that we might approximate

the distribution of Wik with a binomial distribution with 20 tri-

als and probability of success p, denoted Binð20; pÞ [12]. In fact,

this distribution would be correct if the face of each block were

divided into 20 regions of equal size; if each region were

assigned a 1 or a 0 according to whether the wood either did or

did not fail, and the recorded response represented the sum of

these indicators; if the probability of failure were constant in

each region; and if the regions were independent of one

another. Although this is not at all how the responses are

obtained—they are merely discrete visual approximations of the

proportion of the block face that has experienced wood fail-

ure—we nonetheless consider Binð20;pÞ to be the starting point

for an empirical working model that may provide a reasonable

fit for the data.

To develop this model further, refer to the 20 hypothetical

regions on the block face as “pseudo-trials.” Note that neighbor-

ing pseudo-trials would be expected to respond more similarly

to one another than to those on distant regions of the same

block, because the tearing of wood fiber does not respect the

hypothetical boundaries between pseudo-trials. This creates a

positive spatial correlation among the binary responses on the

pseudo-trials, thus violating the assumption of independent tri-

als. Positive correlation among trials causes the counts to have

more variability relative to what is expected under a binomial

distribution [12]. That is, the counts are “overdispersed.”

Because the bond performance depends on a number of

complex factors (wood, adhesive, and interphase regions of

wood and adhesive) [1], it is possible that properties of wood

strength and wood-adhesive bonding vary randomly within a

block, causing different regions of the block to be more or less

likely to experience wood failure. This variability in probabilities

of success would also cause overdispersion of the resulting

counts [12]. Thus, whereas the Binð20; pÞ working model does

not perfectly represent WF% counts, the main consequences of

its two primary defects both lead to the same result. Therefore,

an overdispersed binomial model might provide a very reason-

able approximation to the distribution of Wik: We show in the

section, Assessing the Model Fit, that this model often provides

a reasonable fit for real data from a pilot study.

GENERALIZED LINEAR MIXED MODEL FOR

INTERLABORATORY STUDY DATA

Overdispersion can be incorporated into a binomial model in

several ways [11,12]. The model can be changed to one that

allows extra-binomial variability, such as a beta-binomial; the

likelihood function can be empirically adapted to allow extra

variability using quasi-likelihood; or random effects can be

added to the model, creating a generalized linear mixed model

(GLMM). Because the ASTM E691-09 [9] standard uses a

random-effects linear model to account for interlaboratory vari-

ability when data are assumed to arise from a normal distribu-

tion, we take the parallel approach here by using a GLMM.

To construct a model for WF% from a particular SWA, let

pik be the probability of wood failure in each pseudo-trial from

block k in laboratory i, for k ¼ 1;…;B and i ¼ 1;…; L. We

model the transformed responses asWik � Bin 20; pikð Þ; with
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log
pik

1� pik

� �
¼ aþ li þ bik (1)

where:

a¼ the unknown average log-odds (logit) of wood failure

among all possible laboratories and blocks,

li � 0;r2
L

� �
; i ¼ 1;…; L;¼ independent random effects

representing the deviation of laboratory i from the average logit,

and

bik � 0; r2
B

� �
; k ¼ 1;…;B¼ independent random effects

representing the deviation of block k from the average logit

among all possible blocks in laboratory i [11,12].

The anticipated overdispersion of block responses within a

laboratory is accounted for by block random effects, whereas

the inter-laboratory variability is accounted for by the labora-

tory random effects. As is customary, it is assumed that all li
and bik are independent. The mean logit, a, and the variance

components, r2
L and r2

B, are unknown and must be estimated

from the data. The standard method is maximum likelihood

(ML) estimation using computational approximations outlined

in Ref 12 and described in more detail in Ref 11.

ANALYSIS OF THE MODEL

Recall that the acceptance criteria for WF% are based on the

first two sample quartiles, Q̂1 and Q̂2, from a set of 30 tested

blocks at a single laboratory. Unfortunately, the sampling distri-

butions of quartiles from a binomial GLMM are not known and

not easy to derive exactly. A parametric bootstrap [13] is used

instead to approximate the required sampling distributions.

The bootstrap is a computational statistical procedure that

can be applied to many problems to estimate various properties

of a statistic, such as its standard error. The essential idea is to

mimic what one would like to do in an ideal world—take sam-

ple after sample from the population, compute the statistic on

each sample, and use the distribution of these statistics to infer

properties of the statistic on the original sample. However,

because one cannot collect endless amounts of data in real life, a

model of the population is constructed and the new samples

(called “resamples”) are drawn from this model. In particular, a

parametric bootstrap begins with a model for the distribution of

the data. The model contains unknown parameters that are esti-

mated by the data. The resampling process is then a simple

computational process that draws a large number of resamples,

each containing the same number of observations as in the orig-

inal sample. The statistic is computed on each resample, and

the resulting distribution of these statistics provides information

regarding the properties of the original statistic.

In the present context, let â; r̂2
L; and r̂2

B be the ML estimates

of their respective parameters from model. Alternatively, â

might be derived from a specific expected performance level of

a product, Ŷ ; via â ¼ logðŶ=ð100� ŶÞÞ. The parametric boot-

strap simply substitutes these estimates for their parameters in

Model 1, and uses the estimated form of the model to simulate

data for a test of a SWA at a single laboratory. This simulated

data set is summarized into a sample first quartile and median.

Repeating this process a large number of times provides a large

number of simulated laboratory results for each statistic. The

empirical distribution of estimates for each quartile approxi-

mates the sampling distribution of each quartile under Model 1.

The step-by-step process for an adhesive with average logit

â is as follows:

1. Select a random laboratory effect l�r from N 0; r̂2
L

� �
.

2. Select 30 random block effects b�rk; k ¼ 1;…; 30, indepen-
dently from N 0; r̂2

B

� �
.

3. Compute 30 logits, according to Model 1: c�rk ¼ âþ l�r
þ b�rk

4. Transform the logits into probabilities, p�rk ¼ exp
ððc�rkÞ=ð1þ exp c�rk

� �
Þ

5. For each probability, generate one observation
W�

rk � Bin 20;prkð Þ; and set Y�rk ¼ 5W�
rk.

6. Compute Q�r1 and Q�r2 from Y�r1…Y�r;30.
7. Repeat for r ¼ 1; 2;…;R for some large number R.

Appropriate limits and acceptance criteria can be derived from

the estimated sampling distributions of Q̂1 and Q̂2, which con-

sist of the empirical distributions of Q�r1 ; r ¼ 1;…;R and

Q�r2 ; r ¼ 1;…;R.

The method above produces limits for reproducibility; that

is, it takes into account the variability imparted upon the test by

the different conditions in the different laboratories. To produce

limits that reflect repeatability, simply set r2
L ¼ 0 in Step 1, or

equivalently fix l�r ¼ 0, so that there is no variation in laboratory

effects.

Example: Interlaboratory Study of

Structural Wood Adhesives

A “round-robin” test was conducted to collect data toward

establishing the reproducibility and repeatability limits for

selected tests in the first edition of the CSA O112.9-10 [2]. Six

laboratories participated by testing block shear specimens pre-

pared centrally by FPInnovations in Vancouver, BC, Canada.

Specimens consisted of lumber cut from Douglas fir meeting

the wood quality characteristics as specified in CSA O112.9-10

[2]. Specimens were glued using one of four adhesives: one

known to pass the new standard (labeled “W”), one near the

border (“X”), and two failing the standard (“Y” and “Z”). Speci-

mens were labeled and sent to laboratories, where each speci-

men was subjected to one of three different treatments: “dry”

(or untreated), “vacuum pressure” (VP), or multiple cycles of

“boil–dry–freeze” (BDF). Specimens were then shear-tested

until failure. For each combination of adhesive and treatment,

each laboratory tested 32 blocks, which were scored by a desig-

nated trained reader for that laboratory. The measurements
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from the first 30 blocks represented the primary test results,

whereas those on the last two were held in reserve in case a

problem developed in testing one or two primary specimens.

The data for each combination of adhesive and treatment

therefore consist of 30 WF% measurements from each labora-

tory: Yik; i ¼ 1;…; 6; k ¼ 1;…; 30: The data for the best adhe-

sive under the most strenuous treatment (nine cycles of BDF)

are shown in Fig. 1. From these data it is clear that models based

on normal distributions within each laboratory are inappropri-

ate. Furthermore, it appears that, whereas the adhesive performs

well in all laboratories, there is some variation in the shapes,

spreads, and central tendencies of the distributions across

laboratories. In particular, the spread of the distribution in each

laboratory tends to be narrower when the center lies closer to

100 % than when it is more toward 50 %. These are all expected

properties of our binomial-based GLMM. A detailed description

of the methodology used in the study is available in the original

report [14].

PARAMETER ESTIMATION

We applied Model 1 to the transformed responses Wik ¼ Yik=5

separately for each combination of adhesive and treatment.

Models were fit using the glmer function from the lme4

package in R [15]. This function uses a Laplace approximation

to the integrated log-likelihood from the binomial model when

there is more than one random effect [12]. The parameter esti-

mates are shown in Table 1. For reference, the values of p̂, which

are the inverted logits of â for each adhesive under each treat-

ment—p̂ ¼ eâ=ð1þ eâÞ—are also given in the table. To inter-

pret a p̂, recall that a is the unknown average logit of wood

failure among all possible laboratories and blocks. Because the

distribution of random effects is symmetric on the logit scale, a

also represents the median log-odds of wood failure among all

possible laboratories and blocks. Thus, each p̂ represents the

estimated median wood failure proportion for its adhesive and

treatment across all possible laboratories and blocks.

The parameter estimates for a and p confirm expectations

that adhesive W performs well (has high proportions of wood

failure) after any of the three treatments. It is the only adhesive

that performs well under the BDF treatment, whereas all adhe-

sives do well under Dry. Results for VP are mixed, with the

known worst adhesive, Z, performing poorly after this

treatment.

Variance components for block effects and for laboratory

effects take a variety of different values for different cases.

Indeed, likelihood ratio tests for equality of the block and/or

laboratory variance components across the 12 models reject the

null hypothesis of equality strongly. Similarly, tests show that

the variance components within a given treatment or within a

given adhesive are not all equal. This is a disappointing result,

FIG. 1

Histograms of wood failure percentage

(WF%) measurements in each laboratory

for the best adhesive under the most severe

treatment.

TABLE 1 Parameter estimates from Model 1 for each combination of

treatment and adhesive.

Adhesive Treatment â p̂ r̂2
B r̂2

L

W BDF 3.35 0.97 0.51 0.65

W Dry 3.29 0.96 1.17 0.06

W VP 3.21 0.96 0.20 0.94

X BDF �2.34 0.09 3.17 0.57

X Dry 2.09 0.89 1.17 0.08

X VP 2.65 0.93 0.80 0.10

Y BDF �3.33 0.03 2.29 1.29

Y Dry 4.49 0.99 1.73 0.24

Y VP 4.85 0.99 2.38 0

Z BDF �2.24 0.10 3.44 0.07

Z Dry 2.77 0.94 2.02 0.66

Z VP �0.82 0.40 0.68 0.34
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but not unexpected because of the use of deliberately disparate

adhesives. It suggests that it may not be possible to run a single

interlaboratory test to set criteria that apply simultaneously to

both performing and non-performing adhesives. That is, it may

be that the higher-quality adhesives that manufacturers might

actually consider testing for acceptance could have more similar

variance components than what are shown here. Examining this

issue further is beyond the scope of the present work.

To demonstrate the use of the model to derive acceptance

limits for a future SWA, we consider further the results of the

good adhesive, W, and the most difficult treatment, BDF. Sup-

pose that we wish to set an acceptance criterion corresponding

to a true median WF% of 85 % under this treatment. We

address the question, “What results might we expect from dif-

ferent laboratory tests of a particular SWA whose median lies at

this boundary?” This allows us to assess the role that chance

plays in determining whether such an adhesive is deemed

acceptable. Note that this is a question about reproducibility of

the test.

Using the estimated variance components for this case, we

simulated 10,000 data sets, each consisting of 30 randomly

selected blocks tested at a randomly selected laboratory, using

the seven steps outlined in the previous section. The parameter

values for the simulation were â ¼ logð85=ð100� 85ÞÞ ¼ 1:73,

r̂2
L ¼ 0:65, and r̂2

B ¼ 0:51. From each data set, we computed

the sample median and first quartile of the 30 simulated WF%

measurements. The estimated sampling distributions of these

two quartiles are shown in Fig. 2. Vertical lines indicate the

2.5th, 50th, and 97.5th percentiles of the respective distribu-

tions. Note that the alternating pattern of high-low bars is

because of the discreteness of the WF% measurements. Quar-

tiles calculations are more likely to fall on values that can be

observed directly than on those in between.

The histograms show a considerable amount of variability

in both statistics. If adhesive W had true median performance

level right at the hypothetical boundary of 85 %, then with

probability approximately 0.95 it would provide a test median

ranging between 52.5 % and 97.5 %. Similarly, the first quartile,

which was not directly specified in the simulations, would range

between 40 % and 95 % with a median value of 75 %. Setting

the laboratory variance component to zero for repeatability lim-

its results in a much narrower spread of resulting medians and

first quartiles, as one would expect (plots not shown). The

median WF% ranges from 80 % to 90 % with probability

0.95 with a median value of 85 %, whereas the first quartile’s

corresponding limits are 62.5 % and 85 % with a median value

of 75 %.

Assessing the Model Fit

It is important to examine whether the binomial mixed model

provides a reasonable representation for the data on which it is

fit. We address this by evaluating whether the models produce

simulated data whose distribution is consistent with the actual

data from the examples. We provide this assessment separately

for each of the 12 combinations of adhesive and treatment using

a parametric bootstrap goodness-of-fit test.

To begin, we are testing the null hypothesis that the

observed data were generated by the statistical model repre-

sented in Eq 1. That is, WF% values generated by each model

should follow a probability distribution that is “similar” to the

relative frequencies observed in the actual data. Thus, for each

combination of adhesive and treatment we need to perform

three tasks: (1) establish the probability distribution of WF% for

the estimated model, (2) compute an appropriate test statistic to

compare the empirical distribution of the data to this distribu-

tion, and (3) compute a p-value for the test from the sampling

distribution of the test statistic under the null hypothesis.

Unfortunately, there is no simple way to obtain the mar-

ginal probability distribution of responses from a binomial

mixed model exactly. We, therefore, use massive simulation

from the estimated model to provide a very close approximation

to the true distribution. We simulated WF% values for 30 blocks

from each of 1,000,000 laboratories, and used these 30,000,000

FIG. 2

Estimated sampling distributions of median

and first quartile wood failure percentages

for adhesive W and treatment BDF based

on 10,000 randomly selected laboratories

with 30 blocks per laboratory. Also included

on each plot are the median value of each

distribution and the limits within which 95 %

of test results would be expected to fall.
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samples to estimate the probabilities of each possible response

value. Refer to these estimated response probabilities as

P0;…;P20, and let C0;…;C20 be the corresponding cumulative

probabilities, Ch ¼
P h

g¼0Pg ; for h ¼ 0;…; 20.

Next we require a test statistic that is appropriate for testing

fit for a discrete probability distribution. Several such statistics

are discussed in Ref 16. These statistics are based on comparing

the cumulative distribution of the data to the true cumulative

distribution, which in this case is estimated by C0;…;C20. Fol-

lowing the authors’ recommendation, we use the Cramér–von

Mises A2 statistic, which for our data has the form:

A2 ¼ 180
X19
h¼0

PhðCh � chÞ2

Chð1� ChÞ

where:

ch¼ cumulative relative frequency of the observed data, i.e.,

the proportion of observed WF% values data at or below 5h.

The sampling distribution of A2 is not known when the

true distribution follows a complex form such as our binomial

mixed model. We therefore once again use a parametric boot-

strap to estimate its distribution under the null hypothesis. The

goal of the simulation is to estimate the p-value of the test,

which is the probability that a value of A2 would occur that is at

least as large as the one observed with the original data, when

data sets of the same size and structure as the original data are

generated from the estimated binomial mixed model. This

requires the following steps:

1. Compute A2 on the original data. Call this A2
0.

2. Simulate data for six randomly drawn laboratories using
Steps 1–5 of the algorithm given in the Analysis of the
Model subsection.

3. Use these parametrically resampled data to compute a
new test statistic, A2� by following exactly the same steps
that led to A2

0 from the original data:
a. Fit Model 1 to the parametrically resampled data to

estimate model parameters.
b. Use massive simulation with this newly estimated

model to estimate its response probabilities and
cumulative response probabilities, say P�1 ;…; P�21 and
C�1 ;…;C�21, respectively.

c. Compute A2 on the parametrically resampled data and
its estimated response probabilities. Call the result A2�.

4. Repeat Steps 2 and 3 a large number of times.
5. Compute the p-value for the test as the proportion of

parametrically resampled data sets for which A2� � A2
0.

Note that, whereas Step 3 of this algorithm is extremely

computationally intensive, it is necessary to prevent the poten-

tial tautology that would arise from using the same data to

estimate a model and assess its fit to the data. Although A2
0

does, indeed, compare observed data to a model estimated from

the same data, Step 3 provides an estimate of the sampling dis-

tribution that a test statistic would have when it is calculated in

exactly this way. Thus, any biases that would be inherent in

such a statistic are explicitly incorporated into the estimated

sampling distribution.

The results of this procedure as applied to each adhesive

and treatment are given in Table 2. It is clear from this table

that the model provides a reasonable fit for some of the data

sets, but not all of them. Three cases have their null hypotheses

rejected at the 0.05 level, and four others have p-values between

0.05 and 0.10. However, in only one case is the null hypothesis

of an adequate model fit soundly rejected: adhesive Z under the

dry treatment.

In Fig. 3, the histograms of observed responses and simu-

lated model probabilities are shown for this worst case and for

the case with the largest p-value, adhesive Y under VP treat-

ment. In the latter case, the fit of the model is seen to be nearly

perfect. The poor fit in the former case is caused mainly by the

substantially higher numbers of blocks with WF% below 25 %.

Because the estimated model places very small probabilities on

such values, any observed blocks there are unusual, and there-

fore the corresponding terms in the test statistic are very large.

However, this adhesive is known to be a poor performer, as

seen from its median probabilities for the VP and BDF treat-

ments in Table 1, and would be unlikely to pass a test based on

any reasonable standards. It is perhaps not a serious concern

that the model does not fit this case.

Looking at the best adhesive, W, an interesting pattern is

seen in the histograms (not shown). There is a tendency to have

substantially more WF% values of 95 and fewer 100s than the

model predicts. An example of this feature is shown in Fig. 4.

We wonder whether this could indicate a reluctance on the

part of the trained evaluators to assign a value of 100 % to

blocks where there appears to be a very small amount of flat

surface remaining on the block, even though it may not be close

to 5 % of the total area. It is conceivable that evaluators may be

uncomfortable giving “perfect” scores when there is slight

TABLE 2 p-Values from goodness-of-fit tests for Model 1 from each

combination of treatment and adhesive.

Adhesive Stress p-value

W BDF 0.072

W Dry 0.024

W VP 0.072

X BDF 0.016

X Dry 0.080

X VP 0.852

Y BDF 0.276

Y Dry 0.612

Y VP 0.976

Z BDF 0.064

Z Dry 0.000

Z VP 0.204
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evidence of imperfection. Whereas this is speculation whose

investigation is beyond the scope of this paper, it raises the

possibility that the model could be used to identify possible

unintended evaluator biases if it is found to be otherwise satis-

factory in broader application.

Discussion and Conclusions

We have proposed a statistical model for wood failure measure-

ments that are subject to multiple sources of random variability.

We treat the 5-point interval percentage responses as having

arisen from observing 20 independent binary responses on dif-

ferent parts of the block. The overdispersion that is likely to

result from the practical inadequacy of this assumption is over-

come empirically by the inclusion of a random effect for blocks.

We have demonstrated parametric-bootstrap-based analysis of

the model to provide sampling distributions for statistics that

regulators might wish to use in setting standards for acceptance

of wood adhesives. We provide procedures that address both

repeatability and reproducibility of the test results. Similar com-

putational methods are developed to assess the fit of the model.

This model provides a reasonably good fit for actual data in

many of the cases to which it was applied.

The model can be easily modified to account for other ran-

dom effects besides block and laboratory effects. For example,

one could run a study that considers different technicians

within laboratories, different sources of wood, and so forth.

Although we have not explored such extensions of the model,

they are straightforward conceptually. The logic behind the

parametric bootstraps also extends directly to more complex

cases. All that is required is the ability to simulate data from the

model for the logit, and subsequently use the simulated logits as

the basis for generating random binomial responses.

In particular, other standards employ wood failure as an

indicator of wood-adhesive bond quality, including ASTM

D3931-08 [17] for gap-filling adhesives; ASTM D7247-07a [5]

for adhesive bonds in laminated wood products at elevated

temperatures; ASTM D7469-12 [18] for end joints in struc-

tural wood products; and ASTM D906-98 [19], PS 1-09 [20],

CSA O121-08 [21] and CSA O151-09 [22] for adhesives in

plywood type construction. A number of international wood

adhesive standards also use wood failure as an indicator of

bond quality. Most of these standards are based on average

WF%, rather than median or first quartile, but this poses no

problem for our analysis approach. It is straightforward to

change the summary statistic on which distributions and

intervals are based. What is needed are data sets of WF% for

performing and non-performing adhesives, particularly when

the test involves a different wood species, treatment (such as

ASTM D7247-07a), and/or test specimen (such as ASTM

D7469-12 or D906-98).

FIG. 3

Comparison of observed and model-

simulated marginal distributions for data

from the cases with the smallest and largest

goodness-of-fit test p-values.

FIG. 4 Comparison of observed and model-simulated marginal distributions

for a case showing more recordings of 95 % and fewer than 100 %

expected under the model.
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More generally, this model can be used to represent any

discretely measured percentage responses that are subject to

random effects from any identifiable sources. The crux of the

model is the assumption that the discrete percentages can be

transformed into consecutive integer values, which can then be

viewed as having arisen from binomial pseudo-trials. Including

a random effect for the subjects within which the pseudo-trials

are measured should compensate for the overdispersion that

results from this assumption.

Finally, from a practical perspective the model allows us

to demonstrate clearly the properties that we may expect

among wood adhesive tests run in different laboratories. The

example shows that the variability inherent in wood failure

tests of SWAs, especially the variability between test laborato-

ries, has a considerable effect on the potential outcome of an

adhesive test, even though all facilities use the same testing

protocol. The plots shown in Fig. 1 suggest that setting accep-

tance limits for adhesives may therefore be a challenge, given

the amount of variability that is induced upon the required

quartiles. We reran the simulations using the same variance

components as in the original example, but using adhesives

whose true median performance was allowed to vary between

50 % and 99 %. The model-estimated probability that such

an adhesive would pass a hypothetical standard on the

median set at 85 % is given in Fig. 5. This figure suggests

some concerning features about the testing process. For

example, about one in five adhesives with true median WF%

of 70 % would pass a test based on an 85 % limit, whereas

one in five with a true median of 91 % would fail in a test,

merely because of the inter- and intralaboratory variability

inherent in the testing process. Of course, these results should

be taken as tentative, and could change in a much larger

study aimed at estimating the required variance components

with more certainty. The indication is clear that differentiat-

ing between adhesives that are truly above the standard and

those below it is a difficult task.
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