
Leveraging Compiler Alias Analysis To Free
Accelerators from Load-Store Queues

by

Naveen Vedula

B.Tech, National Institute of Technology Warangal, India 2010

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Naveen Vedula 2016
SIMON FRASER UNIVERSITY

Fall 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced

without authorization under the conditions for “Fair Dealing.” Therefore, limited
reproduction of this work for the purposes of private study, research, education, satire,
parody, criticism, review and news reporting is likely to be in accordance with the law,

particularly if cited appropriately.



Approval

Name: Naveen Vedula

Degree: Master of Science (Computing Science)

Title: Leveraging Compiler Alias Analysis To Free Accelerators
from Load-Store Queues

Examining Committee: Chair: Ryan Shea
Research Assosiate

Arrvindh Shriraman
Senior Supervisor
Associate Professor

William N. Sumner
Supervisor
Assistant Professor

Jiangchuan Liu
Internal Examiner
Professor
School of Computing Science
Simon Fraser University

Date Defended: December 6, 2016

ii



Abstract

Hardware accelerators are an energy efficient alternative to general purpose processors for specific

program regions. They have relied on the compiler to extract instruction level parallelism but

may waste significant energy in memory disambiguation and discovering memory level parallelism

(MLP). Currently, accelerators either i) Define the problem away, and rely on massively parallel

programming models [1, 48] to extract MLP. ii) Reuse the Out of Order (OoO) processor [7, 28],

and rely on power hungry load-store queues (LSQs) for memory disambiguation, or iii) Serialize –

some accelerators [47] focus on program regions where MLP is not important and simply serialize

memory operations.

We present NACHOS, a compiler assisted energy efficient approach to memory disambiguation,

which completely eliminates the need for an LSQ. NACHOS classifies memory operations pairwise

into those that don’t alias (i.e., independent memory operations), must alias (i.e., ordering is required

between memory operations), and may alias (i.e., compiler is unsure). To enforce program order

between must alias memory operations, the compiler inserts ordering edges that are enforced as

def-use data dependencies. When the compiler is unsure (i.e., may alias) about a pair of memory

operations, the hardware checks if they are independent. We demonstrate that compiler alias analysis

with additional refinement can achieve high accuracy for hardware accelerated regions.

In our workload suite comprising of SPEC2k, SPEC2k6, and PARSEC workloads; Across 15

applications NACHOS imposes no energy overhead over the function units (i.e., compiler resolves all

dependencies), and in another 12 applications NACHOS consumes '17% of function unit energy

(max: 53% in povray). Overall NACHOS achieves performance similar to an optimized LSQ and

adds an overhead equal to 2.3× of compute energy.

Keywords: Dataflow architectures; Alias analysis; Accelerators; Load Store queues;
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Chapter 1

Introduction

Memory disambiguation is required to detect and parallelize memory operations accessing different

memory locations and enforce program order between memory operations to the same location.

Existing accelerator studies have focused extensively on compute specialization and have left memory

disambiguation unexplored. In many cases, hardware accelerators target conventional algorithms

or specific loop patterns, and the hardware designer has manually disambiguated the memory

locations [23, 49]. Interestingly, much of the energy efficiency gain in these accelerators comes from

recognizing nearby store-load dependencies and localizing the communication [10]. Systems such as

Altera’s FPGA-OpenCL [1] use a massively parallel programming model and rely on thread level

parallelism (TLP) to extract memory level parallelism (MLP); hence they serialize accesses from each

thread (like a Graphic Processing Unit). Memory disambiguation is a critical challenge for hardware

accelerators that target a broad range of program behavior (e.g., Coarse-Grained Reconfigurable

Architectures (CGRAs) [31], Dyser [7], BSA [29], Compound function units [9], Big-Little [30])

and is required to ensure utility within existing applications.

Many hardware accelerators [7, 28, 30] repurpose the Out of Order processor’s (OoO) load-store

queue (LSQ) for memory disambiguation. Figure 1.1 highlights the trade-offs in LSQs. In a Dyser-

like CGRA accelerator, we find that the OoO’s LSQ dominates overall energy consumption (since

other overheads are minimal); the LSQ energy is '2.6× the function unit energy. It is also unclear

if the LSQ ports and entries can be scaled to match the MLP available in hardware accelerators.

Research on LSQs have focused on hierarchical designs to filter accesses from the LSQ and reduce

energy consumption [2, 36–39, 44]. We find that even highly optimized LSQs (Tiered [36] and

Partitioned [37]) impose overhead of 2.3×. In Chapter 4.1.1, we analyze the integration of LSQs

with the accelerator. Another challenge with LSQs is area; distributed processors (e.g., TRIPS [34],

CoreFusion [16]) investigated partitioned LSQ; unfortunately in TRIPS [34] each had to be worst

case sized and occupied area comparable to an 8KB L1 cache bank; a 48 entry LSQ would be

equivalent to 50 integer ALUs.
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Figure 1.1: Optimized LSQ designs vs NACHOS. Arrows indicate the parameters that are targeted
and improved.

Our Approach: We propose NACHOS, a compiler-assisted approach to memory disambiguation

for hardware accelerators. We eliminate the LSQ by restricting the scope of alias analysis to the

offloaded acceleration region and improving the overall quality of the alias analysis. NACHOS is

an LLVM-based prototype compiler that analyzes memory operations in the accelerated region to

find independent memory operations– to parallelize, and memory dependencies– to enforce program

order.

NACHOS’s compiler enforces ordering between aliasing memory operations with a def-use

edge, a memory dependency edge (MDE) between them. Hardware accelerator enforces MDE

ordering, similar to ordering instruction data dependencies. In cases when operations don’t alias,

the compiler inserts no dependency, and the memory operations can proceed in parallel. In cases

when the compiler is unsure, it adds a may alias dependency edge between two memory operations.

NACHOS compares the addresses in hardware (part of the dataflow fabric) to determine if the two

operations can run in parallel. NACHOS enforces ordering between operations pairwise, instead

of LSQ’s centralized approach; Chapter 3 provides an overview and Chapter 5 elaborates on the

overall design.

NACHOS is more scalable and efficient than an LSQ. The compiler has access to more contextual

information related to objects, stack vs. heap, and memory allocation, enabling it to achieve good

accuracy. We describe stages of alias analysis in Chapter 5.2. It incorporates standard, advanced

alias analysis and our extensions and refinement techniques. Accuracy improves since NACHOS
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only targets a fixed window of instructions offloaded to the accelerator as opposed to the entire

program [18].

We have analyzed a total of 135 accelerator regions across 27 complete workloads from 4

benchmark suites (PARSEC, PERFECT, SPEC2000, SPEC2006) and studied the potential for

NACHOS memory disambiguation. Our software approach accrues no energy overhead for memory

disambiguation in 15 of the 27 workloads. In these workloads, the compiler was able to accurately

identify all the memory orderings required and uncover the MLP available. Compared to an optimized

LSQ, NACHOS saves 53% of energy for SPEC2K, 50% of energy for SPEC2K6, and 19% of energy

for PARSEC and other workloads. We achieve performance comparable to the LSQ by not enforcing

any more dependencies than an LSQ and show that runtime checks in hardware are necessary when

the compiler is unsure of the aliasing relationship.
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Chapter 2

Background

2.1 Architecture

Processors: Memory disambiguation is an important function of the LSQ. The LSQ typically

provides the following four functions: 1) buffering store addresses and values for in-order retirement

(ST-ST ordering), 2) forwarding in-flight store values to loads ( ST-LD forwarding), 3) detection

of load and store ordering violations (LD-ST ordering ), and 4) detection of memory consistency

violations. Most LSQ designs use a pair of age-ordered queues – content addressable memories

(CAMs). One each for loads and stores that can be associatively searched by the memory address.

Loads search the store queue while stores search both the queues. CAMS are expensive regarding

energy, to reduce the energy overhead of searching through these CAMs, filtering techniques are

used to filter independent memory addresses and store them in additional buffers (Random Access

Memory - RAM). Traditional LSQs are age ordered and thus need to keep an entry in the LSQ

from the decode stage, before the address is even known, until the commit of the instruction. This

leads to unnecessary high occupancy time and a number of entries. Late Binding allows unordered

execution on age and allocates entries during issue time. Filtering addresses which are independent

is a widely used strategy for reducing the number of LSQ accesses. The main focus of these works is

to reduce or eliminate the CAM searches in LSQs and by filtering out accesses that do not require

checks. Note that filters only minimize accesses to the LSQs to save energy; an LSQ is still needed

to handle misses in the filter. Filtering addresses however, requires extensive support structures for

filtering, prediction, and data forwarding and add additional complexity and area. Sha et al. [38] have

proposed to employ memory dependence prediction. They pairwise match up potentially aliasing

loads and stores to eliminate the power-hungry searches. In this proposal, the associative CAMs of

LSQs are replaced with large multi-ported RAM structures (10s of KB). Hardware accelerators have

minimal complexity (a 64 function unit fabric is approximately the size of the L1 cache); it is unclear

whether it would be feasible to incorporate an area-hungry LSQ. Fire-and-Forget [44] and NoSQ [39]

both proposed methods for eliminating the store queue by forwarding values to the loads through the

register file or load queue respectively. Both proposals use sophisticated dependence predictors (store

4



sets [4]) that require additional area. Pericas et al. proposed the use of two level LSQs [2] in which

an L0 or L1 LSQ filters accesses. The challenge with the filtering approach is that it does not reduce

the size of the original LSQ. All active loads and stores still need to have an entry in the LSQ to

handle the cases when the filter misses. Prior work has proposed a variety of filters including bloom

filters [37] and even two-level LSQs [2]. One approach to reduce LSQ energy is an address-based

banking [37, 43]. This optimizes for latency and power, but not area since the total capacity across

all the banks must match the capacity of a centralized LSQ. Furthermore, additional flow control is

required to handle cases when a bank overflows. Perhaps the most closely related approach to our

work is from Huang and Huang [14]. They use binary instrumentation to filter out loads from the

LSQ that were guaranteed to be safe. They only save energy and continue to require the LSQ, since

the binary instrumentation is best-effort. Furthermore, their technique seeks to estimate which loads

are safe but does not provide a mechanism to enforce ordering amongst unsafe operations.

Accelerators: Accelerator architecture research has focused extensively on compute specialization.

In most cases, they rely on the LSQ of the host processor to enforce the appropriate semantics and

interface with memory. Dataflow accelerators like DySER [7], leverage the Host core to take care of

memory operations for accelerators. The host core fills the scratchpad of accelerators with data, and

then execution starts. Whenever the accelerator hits a memory operation, it has to stall and notify the

host core. There is a high overhead of context switch, and the accelerator cannot proceed without

the data being present in the scratchpad, which limits the acceleratable program regions to a class

of applications with access and execute patterns. In the presence of irregular memory operations or

limited compute, architectures like DySER is not feasible.

Dynaspam [21] is also tightly integrated with OoO processor and uses reorder buffer (ROB)

entries of the OoO processor to determine the age of memory operations. It aggressively does

memory dependence prediction (like store sets) and does rollback in case of memory order violations

for re-execution. The memory order violations are detected by OoO pipeline at retirement stage

from ROB. It deals with similar problems as DySER. Architectures like DySER and Dynaspam have

high area overhead, since they can only afford one accelerator per OoO core. Given a fixed area

budget and data parallel applications, it is desirable to have more accelerators per chip, but that is not

possible with high area overhead architecture designs.

Architectures like SEED [28] are loosely coupled with OoO core and provide a low-overhead

interface to switch between the host core and the accelerator. SEED can calculate addresses for

memory operations but depends on the store buffer of the host core for memory disambiguation.

Thus, the overhead for switching between OoO and accelerator is low, and SEED does not need to

depend on OoO to fetch data. However, Store buffers are designed based on the number of memory

operations in an instruction window of an OoO core. On the other hand, dataflow accelerators can

have a wide range of MLP, from as low as a few operations to greater than the instruction window

size of an OoO core, and it depends on the program behavior. If OoO and the accelerator are running

at the same time, adding memory addresses from the accelerator region to the OoO store buffers will
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increase contention. This situation gets worse from the fact that addresses need to keep an entry in

store buffers, at the decode stage of the processor until the commit of the corresponding instruction.

Power gating either the OoO processor or the SEED is the chosen approach to tackle the above

problem. However, various energy hungry structures of OoO still needs to be active. Note that there

are LSQ designs like Late Binding [37] which do not create an entry in the LSQ until the issue stage.

However, even in the case of Late Binding the LSQ size has to be designed for the worst case i.e.

equal to all memory operations in the dataflow graph like the TRIPS architecture [34].

SGMF [48] maps a compute kernel represented as a dataflow graph on to a Coarse-grained

Reconfigurable Fabric (CGRA). SGMF is composed of a grid of interconnected functional units and

allow streaming data of multiple threads through these units. It runs several LSQ units, which use a

CAM structure to select the thread running on the LSQ unit. It can issue only one memory operation

per thread per LSQ unit, and also due to the CAM structure it cannot run many threads in parallel

like Graphic Processing Units (GPUs). SGMF exploits thread level parallelism (TLP) but does not

exploit available MLP per thread.

In Wavescalar [45], all memory instructions are statically identified by two Ids: 1) the sequence

number of the instruction within the wave (trace) and, 2) a wave number indicating the wave (trace)

invocation. All issued memory instructions from the fabric are reassembled in the memory system

and executed in total load store order. Similarly, Conservation Cores [47] issue memory operations

sequentially. These architectures trade-off low energy with performance. Again, architectures like

wave scalar exploit the available TLP, but both Wavescalar and Conservation Cores fail to exploit the

available MLP in data parallel programs.

To exploit MLP in workloads with defined memory access regions and execute regions, a

specialized data fetch engine like MAD [13] is used in lock step with accelerators to prefetch data

to the accelerator data storage unit. MAD prefetches data to the storage region of an accelerator,

and signals to the accelerator to start execution. MAD aids architectures like DySER, to improve

performance, but it still has to deal with the overhead of context switches.

There are classes of applications, which have frequently executed program regions, with irregular

memory accesses and sometimes lots of available MLP. It is challenging to realize such applications

in accelerators. This brings us to think about how the decades of research in memory interfaces for

an OoO core is useful in the context of accelerators. A good start is to understand the challenges

in designing memory interfaces for accelerators, and how they are different from OoO memory

interfaces. Then, use this information to augment existing designs to fit the context of accelerators.

2.2 Alias Analysis in Compilers

The relationships between pointers in a program have been extensively examined in compiler and

software engineering research. Static alias analysis determines whether two different pointers in

a program may point to the same object when a program executes. In contrast, pointer analysis

or points-to analysis determines the set of objects to which a pointer may point. By helping to
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determine which operations on pointers may affect each other, these analysis provide a foundation for

many other optimizations and program analysis [3, 41]. Computing perfectly precise alias analysis is

impossible/undecidable in general, so substantial work has explored the trade-offs between efficiency

and precision in alias analysis to derive pragmatic solutions [12].

Identifying pointers that must not alias is key to pruning potential conflicts between memory

operations using those pointers. This same notion of pruning conflicting accesses via must-not-alias

information has also been used for precise data race detection by Naik and Aiken [27]. While prior

work uses must-not-alias analysis to detect bugs in software, we instead use the absence of conflicting

accesses to improve efficiency when accelerating a target region of code. Must-not-alias analysis has

also been used to improve the general efficiency of CFL-based alias analysis [50].

Some analysis instead exploit the dynamic aliasing relationships present in the executing software,

in contrast to the static relationships that alias analysis can derive. Mock et al. determined that most

dynamic points-to sets were small in practice (of size 1, 98% of the time) and that optimizing based

on the dynamic alias relationships can improve performance [25]. The predictability of aliasing

behavior from profiles has led to other works that speculatively exploit likely aliasing relationships,

with rollback when speculation fails [5, 20].

7



Chapter 3

Scope of the Work

NACHOS is independent of the micro-architecture of the hardware accelerator. It is suited for

hardware accelerators that implement the dataflow graph of the offloaded region and enforce data

dependencies either with custom net-list [40, 47] or as a spatial fabric [7]. Please see Chapter

4.1 for our compiling and acceleration infrastructure; simulation infrastructure is described in the

Chapter 5.7.

Memory disambiguation requires the following i) ST-ST ordering: in-order retirement of stores to

the same address to ensure the correctness of final value in a location, ii) ST-LD ordering, to forward

in-flight values from older stores to younger loads, and iii) LD-ST ordering, to ensure that stores do

not corrupt the values of older loads. LD-LD ordering to conflicting addresses is only required in

parallel programs that share memory regions across threads and can have data races (we address this

in Chapter 5.6).

1. Store *
2. Load B
3. Store A
4. Load A
5. Store A

AG
E

OOO
(LSQ Disambiguation)

2 B
4 A

LQ

*
3 A

SQ

Scheduler: HW
Inorder frontend

1

5 A

HW Accelerators
(NACHOS Disambiguation)

1

2
4

3

5

Store *

Load B

Store A

Load A

Store A

Scheduler: SW
Compiler

lo
ad

 
& 

st
or

e

st
or

es

Program
Order

Order enforced by 
1-to-many checks

Order enforced  
1-to-1 (if required)

==?

NACHOS enforces the memory dependencies explicitly as def-use dependencies. * (1): indicates an address unknown

until execution which conflicts with all memory operations in an LSQ until the address is known. NACHOS can use alias

analysis to restrict potential conflicts for *. When the compiler is unsure it inserts a == hardware check e.g., between 1

and 2

Figure 3.1: Memory disambiguation. LSQ vs NACHOS.
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Figure 3.1 illustrates an LSQ interface; A CAM queue each for load and store operations. Loads

(© in the figure) check for matches in the store queue, and stores (•) check for matches in both

queues. Each check is an energy hungry 1-to-many CAM entry check. A key challenge with

incorporating LSQ based approaches is scaling up and down with the number of memory operations

and MLP in the accelerated region. As we show, programs can contain between 10—50% memory

operations in the accelerated region and MLP between 2—32 operations (see Table 4.1). Both of these

impact energy and area. Many hardware accelerators assume a dataflow based execution model, and

the accelerator cannot reconstruct program order due to the lack of a front end. The age is required to

be encoded in operation and mapped a priori to LSQ entries, making LSQs over-provisioned [16, 34]

and have increased occupancy [11].

Figure 3.1 also demonstrates how NACHOS handles memory disambiguation and can accommo-

date varying degrees of MLP and number of memory operations. NACHOS leverages compiler alias

analysis and uses dataflow dependencies to specify the ordering between memory operations. For

instance, here it determines that 1 , 2 do not alias with any of the 3 , 4 , 5 , in which case in the

dataflow graph there are no dependency edges inserted between these operations (permitting them to

proceed in parallel). In the case of ST-LD dependencies, the compiler uses instruction dependencies

to forward values ( 3 — 5 ), while in the case of ST-ST and LD-ST dependencies the dataflow

edge ensures ordering. When the compiler is unsure it sets up a may alias edge ( 1 ==?..−→ 2 ), and

additional hardware in the dataflow fabric compares the addresses to check if they alias. We describe

our stage wise analysis and refinement approach in Chapter 5.2.

9



Chapter 4

Motivation

For 27 chosen benchmarks, we select the function that consumes the largest amount of time (profiled

via gprof). We profile all dynamic memory operations within the function (see Table 4.1, C2). The

memory operations were segregated on whether they refer to locations on the stack or the heap.

When a program allocates memory dynamically (using malloc or new), it is reserved on the heap.

Calling glibc’s alloca() allocates memory from the stack. However, the primary use of stack

memory is to provide programmer transparent temporary storage. The compiler uses the stack to

store local variables with limited scope, pass function arguments and supplement the lack of registers

(register spilling).

In 7 of 28 applications, the number of memory operations which access stack locations account for

75% of all memory operations. To determine the primary cause of stack operations, we analyze each

workload starting at the selected function. Our search is inter-procedural and recursively analyses all

functions called from the selected function. We find that only 9 of 28 workloads have function-local

data allocated on the stack. Of these, the average is seven variables. The highest number of variables

is 69 for 401.bzip2, due to a lot of temporary integer buffers used in the compression algorithm. The

dynamic behavior is profiled on a 64-bit system. Unlike 32-bit architectures, 64-bit architectures

like the Microsoft X64, System V calling conventions, and Linux allow passing of parameters in

registers. In the workloads we study, this covers all call sites of interest. Thus stack memory is

primarily referenced due to register spills. This problem is particularly acute in x86 systems which

have eight and sixteen registers in 32-bit and 64-bit flavors. Dataflow oriented hardware accelerators,

unlike Von-Neumann architectures, are not constrained by a fixed number of registers. Thus all stack

operations can be converted to local references which could be issued to the memory system.

4.1 Baseline Hardware Accelerators

How are acceleratable regions identified? The baseline we evaluate; models accelerators which

explicitly embed the operations of a dataflow graph in a grid of function units and closely integrated

with the OoO processor [7, 9, 21, 28]. Such accelerators statically map the instructions to function
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units using a compiler. The accelerator we model is a grid of reconfigurable function units (256 units).

See Chapter 5.7 for our simulation infrastructure. The accelerator can autonomously issue memory

operations independent of the Out of Order (OoO). Note that the accelerator hardware by itself

cannot determine program order for memory operations since it lacks instruction fetch. The compiler

thus exposes total memory order through the form of explicit IDs [42]. The explicit ID (8 bits; max

of 256 memory operations in offload) directly maps the memory operations to LSQ entries [11].

We use NEEDLE to identify hot paths [17, 18] to be offloaded to the accelerator. We select the

hottest path (i.e., highest % of dynamic instructions) with the largest number of memory operations

for this study. Similar to prior work [9, 21], the profiled paths are converted into superblocks [15].

Superblock formation is a static compiler analysis that groups together program basic blocks with

a high likelihood of executing one after another. This gives the compiler opportunity to perform

optimizations on a larger window of instructions.

The accelerator paths we study were recently released at IISWC. [18]1

Program

NEEDLE [26]

CPU Path Acc. Path
HW Accelerator

OOO
CPU

Cache Hierarchy
Memory

LSID
assign [25]

Extract
Dataflow

Banked [14]
Filtered [20] 

LSQ 

Figure 4.1: Overview of NACHOS framework. We used NEEDLE [17] for extracting hot paths to
run on the accelerator. LSID Assign [42]: The compiler indicates total memory order to the dataflow
graph.

Workload Characteristics: Table 4.1 describes the features of the accelerated program paths.

We profile all dynamic memory operations within the function (see Table 4.1, C2). The memory

operations were segregated on whether they refer to locations on the stack or the heap. When a

program allocates memory dynamically (using malloc or new) it is reserved on the heap. The

compiler uses the stack to store local variables with limited scope, pass function arguments and

supplement the lack of registers (register spilling).

In many applications, the maximum amount of memory dependency checks is caused by the

stack due to register refills. Hardware accelerators typically use a fixed-size local SRAM to replace

the stack. In 12 of 28 applications, the number of memory operations which access stack locations

account for 20%+ of all memory operations (50%+ in 2 applications). Note that in a conventional

OoO the LSQs and caches do not distinguish stack from heap operations. Hardware accelerators

do not rely on the stack; they use local custom storage and transform stack memory accesses into

1https://github.com/sfu-arch/pdws
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local accesses [7, 17, 40, 47], which helps restrict the scope of compiler alias analysis to only heap

operations in hardware accelerators. To determine the primary cause of stack operations, we analyzed

the function and found that principal cause of stack related memory traffic is register spills. We find

that only 9 of 28 workloads have function-local data that allocated on the stack. Of these, the average

is seven variables (max:69 in bzip2). Note that such memory traffic will be eliminated entirely from

the LSQ if a custom number of registers or local RAM is used, like in a hardware accelerator (GPUs

make similar tradeoffs2).

Table 4.1: Workload Characteristics

C1 C2 C3 C4 C5 C6 C7 C8 C9
Heap Depend. Function

App Function Cov% #OP #M MLP S-S S-L L-S %STACK
6*SPEC2k gzip longest... 59 64 4 4 . . . 21

art match ... 11 100 36 4 6 6 10 0
181mcf price ... 10 29 2 2 . . . 5
equake smvp ... 53 559 215 16 . . 12 2
crafty Evaluat... 3 72 7 8 . . . 40
parser table ... 51 81 12 4 . . 2 34

10*SPEC2k6 bzip2 BZ2 co... 5 501 110 128 3 . 3 27
gcc bitmap.̇. 67 47 2 2 . . . 26
429mcf price ... 10 30 3 4 . . . 24
namd Compute... 44 527 100 16 6 6 30 41
soplex CLUFact... 12 140 32 4 . . 8 19
povray All Sp... 1 223 74 32 4 21 24 95
sjeng gen ... 5 99 11 8 . . . 33
h264ref dct lu... 19 224 42 8 . . 5 27
lbm LBM pe... 96 427 57 32 . . . 12
sphinx3 vector.̇. 40 133 20 32 . . . 0

10*PARSEC+Others blacks. BlkSchl... 8 297 0 0 . . . 4
bodytr. ImageMe... 2 285 42 4 30 30 42 10
dwt53 . dwt53 ... 37 106 16 16 . . . 11
ferret. image ... 3 185 0 2 . . . 29
fft-2d. fft ... 22 314 80 4 . . 48 18
fluida. Compute... 4 229 28 8 . . . 14
freqmi. FPArray...n 3 109 32 4 . . 8 17
sar-back sar ba... 1 151 7 8 . . . 64
sar-pfa. sar in... 7 500 32 16 12 20 12 19
stream. pgain ... 41 210 32 16 . . . 0.5
histog. rgb2hsl... 70 522 48 16 . . . 0

C2:Cov%: Fraction of dynamic instructions accelerated. C4:#M: Number of mem ops. C5:MLP:
Number of parallel ops the memory system had to issue for optimal performance; we varied from
2—128. e.g. 16 means MLP is between 8 to 16

There is little aliasing behavior on the heap, which implies that the majority of the LSQ checks

are empirically for operations that may execute in parallel with each other. Our hypothesis is that

if a compiler can identify much of this parallelism, then hardware cost would be less to enforce

the dependencies between actual aliasing operations. Table 4.1 (C6, C7, C8) shows the breakdown

of aliasing behavior in accelerator friendly regions of the workload. The memory dependencies

were collected from a dynamic run of the program. Column C6 illustrates the number of aliasing

2http://docs.nvidia.com/cuda/cuda-c-programming-guide/
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addresses between store operations. C7 shows stores which alias with existing loads and C8 shows

loads which alias with existing stores. These counts represent the number of aliasing operations for

each execution of the path.

4.1.1 Hardware Accelerator with LSQ

The baseline LSQ design we assume is address partitioned [35]. These designs interleave LSQ banks

based on cache-line addresses, and deal with the resultant overflow challenges by prioritizing older

instructions and occasionally rejecting younger instructions using flow-control techniques. This LSQ

design creates opportunities for scaling. The energy-efficiency of the small address interleaved LSQ

banks can be improved further by the addition of simple Bloom filters [36]. See Chapter 5.7 for

simulator details.

Challenge 1: Area of LSQ

A key concern when incorporating LSQs in accelerators is the area. Unlike an OoO core, hard-

ware accelerators strip out all extraneous structures. Thus provisioning an LSQ for an accelerator

constitutes a significant fraction. For instance a 48 entry, 2-ported LSQ is equivalent in area to 50

integer ALUs. LSQ structures for TRIPs [34] occupy more than 50% of the data tile; Banking and

reorganization [37] will improve scalability but will not impact area.

The number of entries in the LSQ predetermines how many independent memory operations can

be issued (effectively regulating MLP [37]), and the number of ports in the LSQ determines overall

instruction throughput.

Accelerators tend to have irregular memory access behavior with variations both in the number

of memory operations and amount of MLP (see Table 4.1). Accelerators also seek to achieve high

peak instruction throughput since they dedicate most of the hardware for function units. These design

issues make it more challenging to design LSQ size and ports. Overall, we find that 11 workloads

have up to 20 memory operations but six workloads have 50+ memory operations. The MLP can

also vary significantly (Table 4.1:C5); 16 apps <8ops and 4 apps >32 ops.

Challenge 2: Energy Efficiency

We find that even for an optimized LSQ design (i.e., Partitioned + Bloom filter) LSQs impose a

geomean of 2.3× energy overhead relative to the compute. For the LSQ design without the Bloom

filter, LSQs impose a geomean of 2.6× energy overhead relative to compute.

We show the dynamic energy overhead of the LSQ relative to the compute energy (i.e., function

unit energy) of the accelerator [7]. The LSQ is partitioned (48 entries/bank), and the number of

banks activated for a particular application depends on the proportion of memory operations in the

accelerated region. Our energy cost model is adopted from McPAT [19]; Table 5.4 lists the parameters

and simulation infrastructure (in Chapter 5.7 ). The breakdown of energy consumed by compute

operations (INT/FP) and memory operations (LSQ energy) is shown in Figure 4.2. The number
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above each stack represents the fraction of memory operations in the accelerator. Overall, the LSQ

constitutes the dominant overhead: geomean 64% of total energy. We find that for two workloads

(blackscholes and ferret) the accelerated region does not include memory operations; a compiler-

based approach would recognize the opportunity to get rid of memory disambiguation completely.

Only in floating point, heavy workloads does compute dominate as expected, e.g. 470.lbm.
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Figure 4.2: Energy Breakdown (INT/FP, LSQ)

LSQ-Opt (Partitioned and Filtered [36]) Bloom filters have been shown by Sethumadhavan et

al. [36] to reduce the number of LSQ checks and save energy. We study the potential design space

of a Bloom filter to reduce the overall LSQ access energy.

The Bloom filter summarizes entries in the LSQ and acts as a filter. All memory operations check

the Bloom filter. When a memory operation accesses a Bloom filter, it either gets a response of "yes –

the memory operation is present in the LSQ", or it gets a response of "no – the memory operation is

not present in the LSQ". A Bloom filter has zero false negatives, i.e. if the Bloom filter says no, it is

definitely true. However, it can have false positives, i.e Bloom filter hits (cases when Bloom filter

says yes) can be false. In case of Bloom filter hits, the memory operation also needs to check the

LSQ, consuming LSQ access energy. Thus, it is required that Bloom filter has low false positive (FP)

rate (i.e. FP
FP+T N ).

Figure 4.3 plots the FP rate while varying the size of the filter by a factor of two from 32

entries to 512 entries. Each entry corresponds to a 6-bit saturating counter (empirically determined

to not overflow for our workloads). Two different types of hashing functions are studied a) LSB
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hashing [36] (◦) and b) Knuth’s Multiplicative Hash (KMH)(N). Each workload is represented as

two scatter points, one for each type of hash.

Increasing the size of the filter often implies a commensurate decrease in FP rate. For the 27

workloads we study, we found that KMH had 5 workloads with non-zero FP rate and LSB had 2

non-zero FP rate, when the size of the filter was increased to 512 entries. Thus we select Bloom filter

with 512 entries (375 bytes) and LSB Hashing.
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Figure 4.3: Bloom Hash Function

The primary energy cost of a Bloom filter is that spent in the memory core [22, 33]. Our energy

model indicates that probing the selected Bloom filter configuration is 30− 50% of the cost of

probing the LSQ.

We extend our baseline partitioned LSQ with a Bloom filter (512 entries; 6-bit counters). Fig-

ure 4.4 shows the energy breakdown for compute, LSQ and Bloom-512 (normalized to Figure 4.2).

We observe that the geomean energy reduction of Bloom+LSQ compared to the LSQ-only is 18.5%.

Ten benchmarks have perfect Bloom filter behavior, i.e., 0 hits and no LSQ checks. Note that the

Bloom filter is strictly an energy optimization; a full capacity LSQ is still needed to handle all the

in-flight memory operations in case the Bloom filter hits. For these workloads, we see a geomean

18.5% (max 30.4%, 429.mcf) reduction in energy consumption compared to an LSQ baseline. In

fft-2d (103%) and sar-pfa-interp1 (102%), the Bloom filter+LSQ combination is more energy hungry

than only an LSQ. The reason being high Bloom filter hit rate. The hit rate of fft-2d (63.4%) and

sar-pfa-interp1 (52.9%) is top two amongst the workloads we study. In case of Bloom filter hits,

the LSQ-Opt design incurs the cost of Bloom Filter checks as well as LSQ checks whereas, the

15



g
zi

p
a
rt

1
8
1
.m

cf
e
q

u
a
k
e

cr
a
ft

y
p

a
rs

e
r

b
zi

p
2

g
cc

4
2
9
.m

cf
n

a
m

d
so

p
le

x
p

o
vr

a
y

sj
e
n

g
h

2
6
4
re

f
lb

m
sp

h
in

x3
b

o
d

yt
ra

d
w

t5
3

ff
t-

2
d

fl
u

id
a
n

fr
e
q

m
in

sa
r-

b
a
c

sa
r-

p
fa

st
re

a
m

c
h

is
to

g
r0

20

40

60

80

100
E

n
e
rg

y 
B

re
a
k
 D

o
w

n
 (

%
)

COMPUTE BLOOM LSQ

Hits (%) Mean Workloads
0 0 gzip, mcf, crafty, gcc, mcf, lbm, sphinx3, fluidanimate, streamcluster
0 – 10 2.5 art, bzip2, soplex, sjeng, h264ref
10 – 20 12.6 equake, parser, namd, povray, dwt53, sar-backprojection
20+ 28 bodytrack, fft-2d, freqmine, sar-pfa-interp1, histogram

Figure 4.4: LSQ-Opt Energy Breakdown (INT/FP, LSQ, Bloom-512) - Normalized to Figure 4.2

LSQ baseline only incurs the cost of LSQ checks. The geomean hit rate for non zero (seventeen)

benchmarks is 23.3%.

Challenge 3: Scaling LSQs with #Memory operations and MLP

LSQ size must scale with the increase in number of memory operations and also has to have fixed

Low overheads for handling compute-intensive accelerators. For instance, TRIPS adopted LSQ

designs from traditional OoO cores. However, the structure was scaled up in size to accommodate the

potentially larger number of in-flight memory operations. For the regions that we focus on, we find

that the number of memory operations can vary a lot. Table 4.1 shows the number of static memory

operations. While the median is 32, it ranges from zero (ferret) to 215 (183.equake). Accounting

for the worst case size for an LSQ may lead to overall increased static power, due to large CAM

structures.
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Chapter 5

NACHOS: Compiler Assisted Memory
Disambiguation

An age-ordered LSQ answers the following question: For a memory operation X, what are the

in-flight memory operations that overlap with X and what is the program order between X and

the overlapping memory operations ?. The LSQ answers this question by maintaining all in-flight

addresses of memory operation, and when a memory operation arrives it checks against all in-flight

memory addresses. NACHOS answers the question: Given two memory operations X and Y do

they alias or overlap and what is the program order between them. The key difference is that

NACHOS performs most of the alias checks statically ahead-of-time and saves dynamic energy.

NACHOS does use a hardware assistant to check aliasing at runtime to discover parallel memory

operations, but only when the compiler is unsure. Compiler alias analysis can emulate LSQ-based

memory disambiguation by considering all memory operations pairwise in the program region. While

considering all pairs of operations may seem daunting, it is tractable for accelerators, which only

focus on a fixed window of instructions(see C1:Table 4.1). Additionally, the compiler uses program

characteristics such as type information to eliminate alias candidate pairs quickly. Overall, we find

performing pairwise alias analysis checks takes less than one second for each acceleration region.

5.1 Dataflow Accelerator with Memory Dependencies

NACHOS can be adapted to work with any dataflow-based accelerator. NACHOS only relies on

the accelerator to enforce ordering between memory operations similar to data dependencies and

is independent of the particular alias analysis. The input to NACHOS is the dataflow graph of the

program region to be offloaded and the program order of all operations. NACHOS’s output is an

augmented dataflow graph which includes memory dependence edges (MDEs) to ensure correctness

in the absence of an LSQ. Following this, the back-end of the compiler can then generate a static

schedule [7,29,47] to map the operations to dataflow functional units and enforce MDEs in a fashion

similar to instruction dependencies. NACHOS (see Figure 5.1) processes the dataflow graph of the
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Figure 5.1: Memory disambiguation using NACHOS. Forwarding, May and Order edges are intro-
duced to eliminate LSQs. LD: Load operation, ST: Store operation, INT: Integer operation, and FP:
Floating point operation

accelerated region and performs pairwise alias checks for all memory operations (indicated by the ?

in the figure). The compiler can provide three types of responses for each alias check – NO, MUST

and MAY. For NO aliasing memory operation pairs, the compiler does not add any dependency edges

allowing them to execute in parallel. For MUST aliasing memory operation pairs, NACHOS ensures

the correct order of memory operations by introducing two types of MDEs in the dataflow graph –

ORDER(O) and FORWARD(F). Finally for MAY aliasing memory operation pairs (i.e., when the

compiler is unsure whether two operations alias), NACHOS inserts a special MAY(M) MDE between

the memory operations which leverage hardware assistance for checking. Note the dataflow graph is

a directed acyclic graph. The source and sink memory operations between the edges are decided

based on the LSIDs passed to NACHOS by the NEEDLE [17] framework (see figure 4.1). LSIDs are

derived based on the program order, thus the source memory operation is the older (or lower LSID)

of the two memory operations and the the sink memory operation is the younger (higher LSID) of

the two memory operations.

• ORDER (O) Edges (1 bit valid): The oreder dataflow edges are inserted between a load

operation and a store operation (LD-ST), and between a store operation and a store operation

(ST-ST) (e.g., 2 – 8 ) that must alias with each other. ORDER edges do not carry values

between the two memory operations. They ensure that the operations to the same memory

location are executed in program order. ORDER edges are enforced similar to instruction

dependencies. Additionally, note the edge 2 – 7 . This edge is interesting from the

perspective that an existing instruction dependence through non-memory operations already
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ensures ordering between 2 and 7 . An MDE is redundant, and we exploit this information

in Section 5.2.3.

• FORWARD (F) Edges (72 bits – 64 bit value, #Bitmap): The order dataflow edges are inserted

between a store operation and a load operation (ST-LD) that the compiler deems must alias

with each other. FORWARD edges pass values between the older store and a younger load. The

bitmap indicates which bytes were written so that partial forwarding can be supported. When

the number of store operations (STs) which forward partial values to a younger load operations

(LD) exceed two, we convert the ST-LD pairs to ORDER edges. Thus the LD proceeds only

after the STs complete. Most popular hardware LSQ do not support partial forwarding. Unlike

a hardware LSQ, the compiler can make the decision on when to FORWARD and when to

ORDER individually for each memory operation pair.

• MAY (M) Edges (64 bit address, 1 bit valid): MAY edges have no equivalence in LSQ parlance;

they are an artifact of compiler alias analysis. For a pair of memory operations, the compiler

may be unable to ascertain a strict must or must-not alias relationship. In such cases, NACHOS

inserts a MAY edge between the pair of memory operations. At runtime, the memory address

is passed from the source memory operation to the sink memory operation. The sink memory

operation uses a comparator (==?) to determine if two addresses overlap i.e, if the memory

regions conflict which is determined by assuming a fixed eight byte memory region. For

instance, consider the two operations 2 and 8 . At runtime, the hardware function unit

assigned to sink will compare 8 ’s address with the address passed from 2 and determine

if they overlap (i.e., they alias). If they alias, then 8 stalls until 2 completes execution

i.e., MAY converted into an ORDER edge. If the addresses do not overlap, then the younger

operation is allowed to proceed, i.e., MAY turned to an NO case.

The key challenge to NACHOS are the compiler-introduced MAY edges. MAY edges require

additional hardware checks, thus increasing energy consumption. Note that these checks are pairwise

between memory operations as opposed to centralized checks. Hence a memory operation that may

alias with many operations could potentially be an energy hog. We elaborate on the alias analysis

strategies and refinement to reduce the number of MAY alias cases in Section 5.2.

Ground Truth: Do memory operations conflict or alias? Two memory operations require

ordering when they access the same memory location and at least one of the operations is a store 1.

Figure 5.2 shows the breakdown of aliasing memory operations at runtime observed in our workload

suite. We instrumented and collected the addresses for every heap memory access within frequently

executed, accelerator friendly regions. An accelerator does not include any stack operations since the

stack in the original function is replaced with custom local scratchpad into which map all stack and

temporary data [40, 47].
1LD-LD ordering is needed for enforcing consistency; discussed in Chapter 5.6
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Figure 5.2: Pairwise alias checks (top five accelerated paths).

Most pairwise heap address checks in the frequently executed regions of the workload do not

alias. We found that 10 out of 27 workloads do not have memory accesses which alias. The bodytrack

has the most (292) pairs of memory operations which alias at runtime in the top five frequently

executed regions. An average of 27 pairs of memory operations alias, amongst benchmark with such

behavior.

Our profile also revealed that pairs of memory operations seem to exhibit stable aliasing behavior,

which means that if two memory operations alias in the first dynamic instance, then they alias for

every dynamic instance of those operations. It indicates that the hardware LSQ often performs

redundant checks for each subsequent dynamic instance of the operations. In this work, we endeavor

to determine the exact aliasing relationship between memory alias pairs at compile time itself.

Alias Analysis 6= LSQ address checks: Compilers can reason abstractly about the possible

relationships between pointers. The structure of the program provides static guarantees about the

program behavior even without knowing any of the memory addresses involved and in general uses a

rich array of contextual program information (both control and dataflow). Consider the operations

in Figure 5.3. In this case, compiler alias analysis would identify that pointers p and q must hold

different addresses, so the stores cannot alias. Two different pointers are computed, p and q, at two

dynamically computed offsets into two different arrays (A and B) at offsets x and y respectively. If

we consider only the relationship between two stores to memory performed by *p=. . . and *q=. . . ,
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the compiler may observe that both p and q points to entirely different arrays; and no aliasing is

possible. Note if the arrays are not in bounds then that is undefined behaviour.

A[4] = B[4] =

p=A[x] q=B[y]

*p=... *q=...

Figure 5.3: Analysis can prove p and q do not alias if x and y can be proven to be within bounds of
allocated memory.

5.2 NACHOS analysis

The techniques described in this section allow us to improve accuracy and prune the number of

memory orderings to enforce for correctness. Figure 5.4 summarizes the three stages of NACHOS

analysis. The first stage employs standard alias analysis passes in the compiler to label each pair of

operations as MUST, MAY or NO Alias relations. The second stage uses inter-procedural information

to further resolve MAY alias relations to NO alias relations if possible. Finally, the third stage

leverages existing data dependencies to trim the number of MUST and MAY relationships that need

memory dependence edges (MDEs).

Summary
• Stage 1 adds no MDE for seven workloads; of the remaining 20, a geomean of 10% of alias

relations can be determined to be MUST or NO.

• Stage 2 further converts a geomean of 11% of MAY→NO alias relations for 10 workloads. Of

these, it is particularly effective for five workloads where 22%–80% of MAY are converted to

NO.

• Stage 3 removes 40%–84% of alias relations which do not need to be enforced due to transitive

data dependencies within the dataflow graph.

• Across all our workloads, Out of a total of nC2 pairs of memory operations, we require MDEs

for a geomean ' 25% of memory operation pairs. Overall added MDEs incur 30%–70% lower

energy (potentially due to link energy, bytes transfer, and comparator checks) compared to

an LSQ (which checks all in-flight memory addresses). The details of which can be found in

Chapter 5.3

5.2.1 Stage 1: Off-the-shelf Alias Analysis. Assigning MAY, MUST and NO labels

NACHOS analyzes memory operations pairwise and assigns a label to each pair of memory operations

which indicates their aliasing relationship. In the first stage, NACHOS uses advanced compiler alias

analysis passes in a production compiler (LLVM 3.8). Table 5.1 enumerates the list of analysis.
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Figure 5.4: Stage-wise pruning and refinement of alias relations into MDEs to be enforced. Refer to
Figure 5.1 for MAY Edge ( M−→) and MUST Edge ( O−→ or F−→)

For each pair, three types of alias labels are possible MUST, MAY, and NO. The MUST result

from memory operations that provably identify to the same location. Similarly, NO result from

memory operations that identify to independent memory locations according to alias analysis. The

MUST label results in either an ORDER edge between ST-ST and LD-ST pairs or a FORWARD edge

between ST-LD operations. Memory operation pairs with a NO alias relationship can be executed in

parallel. However, because alias analysis is undecidable [32], it can also give up and say that two

accesses may or may not alias (i.e., MAY alias relation). Stage 1 alias analysis efficacy is limited

in workloads where the accelerator regions are composed of complex program paths (i.e., not just

simple loops or array accesses). In most workloads, 19 of 27, the dominant form of relationship is

the MAY alias.
Table 5.1: Stage 1: Alias Analysis Passes

Name Description
Basic Stateless checks, eg. Base pointers, constant

pointers
TypeBased Uses object types
Globals Tracks global variables and function purity
SCEV Limited pointer arithmetic to handle loop ac-

cesses
ScopedNoAlias Uses variable scope information
CFL Targets data structures ( [52, 53])

Figure 5.5 summarizes the impact of applying standard alias analysis (see Table 5.1) on all

pairs of memory operations in the top five frequently executed accelerator friendly regions. Some

benchmarks (see 1 in Figure 5.5) have no stores among the memory operations in these regions, i.e.

gzip, mcf, crafty, and blackscholes. The benchmark sjeng has store and load operations 2 , however

alias relationships between all pairs are perfectly identified by this stage. Overall, 7 of 27 workloads
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Figure 5.5: MAY and MUST alias relationships between memory operation pairs identified by Stage
1. MAY and MUST require MDEs. NOs do not and not shown in plot. Top 5 paths.

need no further analysis. Of the remaining 20 workloads, the stage 1 can classify on average 3% of

pairwise checks as MUST alias and 7% as NO alias relations per workload.

5.2.2 Stage 2: MAY→ NO using inter-procedural analysis

Note that the standard alias analysis presently in LLVM 3.8 (see Table 5.1) cannot reason across

function boundaries to determine aliasing relationships between pointers. While investigating the

sources of the MAY alias relationships in the benchmarks, we observed that some of the pointers

were derived from global or local variables whose addresses were taken and passed as function

arguments to the accelerated region. Furthermore, we observed these could be resolved to NO alias

relationships by tracing the provenance of the pointers back across one function call boundary to the

source global or local variable. This simple analysis takes as input the MAY alias relations from the

previous stage and attempts to trace the data-dependence of the pointer back into the function call to

a source object. When two memory operations have their pointers traced back to different source

objects, those pointers can be safely classified as NO alias.

Figure 5.6 presents the results of applying the inter-procedural analysis to the previous MAY

alias relations obtained in stage 1. Ten workloads with MAY alias relations were refined by stage

2 of NACHOS analysis. Where the inter-procedural analysis was useful, it converted a geomean

of 11% of MAY alias relations to NO alias relations. In parser 1 , we find that stage 1 introduces

MAY alias relations as it cannot reason about the equivalence of local pointers with a global pointer
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Figure 5.6: Stage 2 : Refinement of MAY alias from Stage 1 using inter-procedural object equivalence.
% of MAY + MUST in Stage 2 shown as a fraction of all alias relationships. MAY converted to NO
only in this stage. Top 5 paths.

variable – Table_connector ** table. Stage 2 is able to convert 29% of MAY alias relations

to NO alias relations in parser. Similarly, inter-procedural checks are particularly effective in gcc,

sar-pfa-interp1, sar-backprojection and histogram. In all these workloads, upto 82% of MAY alias

relations are converted to NO alias relations.

5.2.3 Stage 3: Removing redundant MAY and MUST

The MUST alias results from stage 1 combined with the refined MAY alias results from stage 2

identify the memory operations whose execution order must be constrained in order to ensure correct

program execution. However, not all of the alias relations identified by stage 1 and 2 need to be

enforced in the dataflow graph. We often find that there already exists a transitive data dependence

relation between a pair of memory operations in the dataflow graph which impose an ordering.

Consider Figure 5.7. The pairs 1 – 5 and 2 – 6 are identified as aliasing memory accesses.

However the existing dataflow constraints (via 3 ) ensure that 1 must finish before 5 begins, so

there is no need to enforce an explicit ordering between them. Similarly, 2 must complete before

6 can execute – due to transitive constraints by 3 and 4 . Simplification is critical because it

reduces the number of links that must be added to memory operations and can thus reduce overhead

while maintaining program correctness. The output of stage 3 is an augmented dataflow graph which
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Figure 5.7: Implicit data dependencies eliminate the need to explicitly enforce ordering.

includes MDEs in addition to original data dependence edges. The MDEs serve to ensure correct

ordering of memory operations without the need for an LSQ.

To remove these redundant aliasing relations, stage 3 performs a simplification pass. Note that

the dataflow graphs of the regions we consider are directed and acyclic in nature. Checking for

reachability between two vertices (memory operations) is sufficient to determine the need to enforce

ordering. The offload region in the program is traversed in reverse topological order (postorder

traversal of the dataflow graph). For each alias relation where the current node is the source, we

check if the destination is reachable. If it is reachable, then we discard the alias relation as there

exists an implicit data dependence. If it is not reachable, then we add an MDE to the dataflow

graph. The nature of the MDE depends on the memory operation pair (see Section 5.1 for details).

Additionally, all MUST alias relations are enforced prior to MAY alias relations. Once all alias

relations are processed for a node, we proceed to the next node in reverse topological order.

Figure 5.8 shows the fraction of alias relations retained after simplification in stage 3 with respect

to all alias relations determined in stage 1. Each bar is divided into the MUST alias and MAY alias

relations which need to be enforced. Overall, we find that stage 3 can remove the need to enforce

68% of alias relations (MUST and MAY). The least amount of redundant relations was 40% in

sar-backprojection and the largest in fft-2d, 84%. Removing redundant alias relations is critical to

NACHOS as enforcing ORDER, FORWARD or MAY MDEs incurs energy overhead.

5.2.4 Polyhedral analysis: Multidimensional loops (MAY to NO)

Using standard alias analysis for 5 of the 27 workloads failed to provide meaningful alias information

to minimize the addition of MDEs. We leverage Polly, an LLVM project which uses a mathematical

representation based on integer polyhedra to analyze and optimize memory access patterns [8].

Stencil codes are a class of iterative kernels which update array elements according to some fixed

pattern called stencil. The Polly project is suitable for analyzing the stencil based inner-loop patterns

observed in the workloads where standard alias analysis fail. We find that applying polyhedral alias

analysis locally to the specialized region was successful.

Polly provided comprehensive information on MAY aliases within the stencil pattern loops

in 5 applications and managed to detect all the MAYs to be NO alias successfully. We manually
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Figure 5.8: Stage 3 : Impact of simplification on alias dependencies for top five accelerated paths.
Top 5 paths.

inspected the source of the accelerator region with the highest coverage to understand the reason

for poor aliasing information. We found that for those workloads the standard alias analysis is

confounded by multi-dimensional indexing into arrays. We list the code locations and the respective

files: [equake equake.c:1212], [lbm, lbm.c:175], [namd, ComputeNonbo.h:14] 2, [bodytrack, Im-

ageMeasure:108], [dwt53, dwt.c:179]. The specific code example in equake would be w[col][0]

+= A[Anext][0][0]*v[i][0] + A[Anext][1][0]*v[i][1]...

5.3 NACHOS: Energy Efficient Memory Disambiguation

In this section we apply NACHOS to the accelerated region (path) with highest dynamic coverage

and evaluate the energy benefits relative to an optimized LSQ (LSQ-OPT in Figure 4.4). Table 4.1

lists the features of the accelerated path.

NACHOS imposes 17% overhead on compute energy for 12 workloads. For 15 workloads it

imposes no overhead on the compute energy. Overall, NACHOS achieves 50% energy efficiency

over an optimized LSQ implementation. NACHOS achieves energy efficiency by

• eliminating LSQ checks for alias relations when ordering MUST be enforced. It uses an

ORDER edge (single bit) instead of hardware disambiguation.

2444.namd required minor modifications to the source.
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• eliminating checks entirely when the compiler proves memory operations can be run in parallel

• eliminating checks entirely when data dependencies ensure the operations cannot be run in

parallel,

• decomposing memory disambiguation into pairwise checks that can be achieved in a distributed

fashion.
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Figure 5.9: Number of alias relations which need to be enforced to maintain memory ordering. The
percentage is relative to all pairwise alias relationships. Every MAY relation enforced as MDE
expends energy at runtime; hardware comparator checks if memory addresses overlap; every MUST
edge incurs link energy for ordering the two operations.

Figure 5.9 shows the pairwise alias relations which need to be enforced as a fraction of all

pairwise alias relations. Each bar is segmented into MUST and MAY relations. The final aliasing

relations obtained employ the three stage NACHOS analysis as well as the polyhedral alias analysis

for workloads with stencil memory access patterns. In the workloads where MDEs were introduced,

between 7–296 new edges were added. Three workloads, povray, bzip2 and fft-2d – 1 – required
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more than 250 MDEs. For fft-2d and povray, this represents enforcing less than 20% of all pairwise

alias relationships. Overall a average of 54 MDEs were added to workloads where they were required.

We also summarize the introduction of MDEs as a fraction of existing data dependencies for the

workloads we study. We find that in most workloads, 16 of 27, the number of edges introduced to

enforce memory dependencies represents less than 1% percent of existing data dependence edges. In

7 workloads the percentage of MDEs added vary from 1–25%. For the remaining four workloads,

we augment the dataflow graph with 25%–87% extra edges to enforce memory ordering.

NACHOS vs LSQ-OPT: Figure 5.10 shows the overall energy breakdown of the NACHOS

architecture. Each workload bar is normalized to the energy consumption of the LSQ-OPT hardware

memory disambiguation approach (see Figure 4.4). We describe our overall simulation infrastructure

in Chapter 5.7.

Across workloads, we find a geomean reduction in energy of 50.4%. The largest improvement in

energy occurs for freqmine – 1 – with a reduction of 70%. For freqmine, NACHOS can determine

NO alias relations for more than 70% of all memory operations, adding only 77 MDEs for 32

memory operations. The MDE’s impose a 44% overhead on existing compute operations. Ferret

and blackscholes – 2 – have no memory operations in the selected path. While they have the same

dynamic energy consumption of the LSQ-OPT approach, NACHOS incurs no extra area or static

power overheads. Overall, NACHOS is 31–70% more energy efficient than the LSQ-OPT approach.
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Figure 5.10: NACHOS Energy Breakdown (COMPUTE, MDE). Normalized to total energy of
LSQ-OPT (Figure 4.4)
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We choose three workloads to illustrate how the different stages of alias analysis and simplifica-

tion lead to the minimal addition of MDEs. We also indicate the related workloads, where a similar

effect is observed.

sjeng (Efficacy of Stage 1) : sjeng has 99 ops (11 memory) in the specialized region. Of the

11 memory operations, only a single operation is a store. The stage 1 of NACHOS analysis can

reason about the memory location of the store operation and deduce no alias relationships for all

pairs of memory operations. NACHOS reduces energy consumption by 66%, by enforcing exactly

the dependencies which need to be enforced. Figure 5.5 shows the same trend true for not just the

most frequently executed region ( 11% of dynamic executed operations), but also for the top five

most frequently executed regions. In all they account for 10% of the dynamic executed operations.

Related : gzip, mcf, crafty, mcf, fft-2d

fluidanimate (Efficacy of Stage 2) :

We find a 33% reduction in energy as no MDEs are added to the dataflow graph for the most

frequently executed region; 28 of 229 operations are memory operations. Stage 2 of NACHOS

can reason about the objects in the parent context of the specialized region using inter-procedural

alias analysis checks. An examination of the source serial.cpp:40 shows the usage of global

variables which are involved in pointer aliasing checks. Related : gcc, parser, h264ref, sar-*,

histogram, freqmine

Histogram (Efficacy of Stage 3) :

Stage 1 pairwise alias analysis potentially introduces a significant number of MAY edges. Many

of these edges need not be enforced due to the existing dependence relationships which exist in

the dataflow graph. We analyze the transitive relationships between edges. Figure 5.9 includes the

absolute number of pairwise edges which need to be enforced. The simplification pass removes

1293 of 1404 (93%) potential MDEs for the most frequently executed region (represents 70% of the

dynamically executed code); This amounts to adding an extra 43% additional edges with respect to

the original dataflow graph. Related : art, bzip2, soplex, povray, h264ref, sphinx3, ferret, fft-2d,

freqmine, sar-backprojection, sar-pfa-interp1, streamcluster

Polly analysis :

For 5 of 27 workloads, we use polyhedral alias analysis from LLVM 3.8. This is useful when

the standard alias analysis are confounded by multidimensional array accesses. In this section, the

workloads that require polyhedral analysis are equake, lbm, namd, bodytrack and dwt53.
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5.4 NACHOS-Conservative: Is compiler-only disambiguation sufficient?

Compiler only alias analysis is insufficient in many workloads. If we simply enforced all com-

piler specified orderings (i.e., treat MAYs as MUST) 9 workloads experienced a slowdown > 2×.

Hardware-based checks of MAY alias edges is essential to improve MLP. In NACHOS all MAY

MDEs perform runtime memory disambiguation using pairwise comparator checks which require

energy but ensure performance is competitive with an LSQ-based approach. In some workloads,

such pairwise checks are energy intensive compared to compute energy (even if overall NACHOS is

more efficient than an LSQ) (e.g., bzip2: 30% of compute energy; povray: 2×; equake: 50%).

We perform an experiment in which we convert all MAY edges to ORDER edges and enforce

ordering assuming the operations alias; This will eliminate the runtime checks and NACHOS will

impose no energy overhead for memory disambiguation. However, the extra ordering edges may

increase the critical path of the accelerator leading to a performance degradation. We compare against

the performance of the original dataflow graph with only the minimum memory orderings enforced.

Table 5.2 summarizes the results. For 18 out of 25 workloads, we do not increase the latency of the

critical path. We find that for these workloads, the critical path does not contain any MDEs. Though

some MDEs may have been added to the workload’s dataflow graph (e.g., sar-backprojection 3%

extra edges) they did not feature in the critical path. In these applications, there is little energy gain

as well, since the compiler has managed to determine both non-aliasing and aliasing operations.
Table 5.2: Performance. NACHOS-conservative (vs Ideal DFG)

Perf.
Drop
(Cycles)

App # MDEs
/Path

Crit. Path
#ops ×

% MDE

0 gzip, 181.mcf, crafty, parser, gcc, 429.mcf, sjeng, sphinx3,
blacksch, ferr, fluidani, sar-back, streamclu, namd, lbm,
bodytr., dwt53, equake

'0 0 0

5× sar-pfa, bzip2, h264ref, art, soplex, freqmine, histogr, 7% 4× 12%
19× fft, povray 22 11× 35%
% MDEs: Fraction of memory dependencies in overall dataflow graph which includes memory and
instruction dependencies.
# MDEs/Path: Number of memory dependencies in the critical path

For seven workloads (e.g., art, bzip2), the increase in critical path latency due to enforcing all

the MDEs as ORDER edges was severe; critical path length increased by 4×. Overall performance

(cycle time) reduced by a factor of 5×. For these applications, the MDEs represent 12% of the

dataflow edges (which includes memory and instruction dependencies). At least one or more MDE is

part of the critical path and enforcing these orderings leads to a multiplicative effort that the overall

length of critical path increases; latency increase is worse since the memory operations latency will

delay the non-memory operations. Even enforcing a few MDEs can dramatically increase the length

of the critical path. In art and h264ref, only three occur on the critical path. However, this led to a

critical path increase of 3.1× and 3.9× respectively. For freqmine, the length of the critical path is

29 operations out of which enforcing unnecessary dependencies meant 19 operations were memory

operations.
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In 2 workloads (fft-2d, povray) with many memory operations and MAY edges, 296 and 250

respectively (Figure 5.9), the critical path increased by 11× and overall performance dropped by

20×. In such workloads memory dependencies account for over '35% of total dependencies. The

severe degradation is caused due to repeated memory indirect addressing. For example, in povray

(sphere.cpp:297) it is not feasible for the compiler to reason about aliasing statically. Additionally,

the operations contained within the MDE chains formed by NACHOS were long latency floating

point operations or other memory operations. For povray, the length of the critical path was 92

operations where the number of MDEs in the path was 30. On average, there were two floating point

operations and one memory operation between each MDE. Similarly, for fft-2d, there were four

floating point operations and one memory operation between memory operations.

5.5 NACHOS and NACHOS-Conservative: Number of Fan-ins to a
memory node

Since, NACHOS compiler alias analysis performs a pairwise check between each memory operation,

there can be cases where there are a lot of MDEs incident to a memory operation in the worst case

scenario. If these MDEs are true dependencies, then the hardware can do a sequential check to each

MDE to reduce energy cost. However, this can be an issue if most of the dependencies issued by

MDEs are false dependencies. Introducing false dependencies can degrade performance as well as

increase energy costs. To get an idea of the number of MDEs incident to a memory operation, we

create a histogram of MDEs and bin them based on the logarithmic value of 2 of the number of

MDEs ( i.e., log2(#MDE) ). In Table 5.3, for example, bin-2 is the bin which contains all the nodes

which had less than 4 MDEs and greater than 2 MDEs incident. Across 27 benchmarks of varying

memory operations in an offloaded function, most of the memory operations are incident to less than

2 MDEs. In the worst case, out of 110 memory operations of bzip only one memory operation has

more than 64 incident edges. Similarly, out of 215 memory operations in equake only one memory

operation is incident to a maximum of 32 MDEs.

5.6 Memory consistency in NACHOS

Interestingly, LSQs in conventional processors have also been the sites for enforcing memory

consistency. For strong consistency models such as TSO (total store order), NACHOS would simply

enforce MDEs between the sequence of stores in the program order ensuring that stores are all

ordered. Note that in such cases the loads can still slip past the stores with which they don’t alias.

To handle fences in TSO and weaker consistency models, NACHOS treats the fence like a dummy

memory operation and introduces MDEs to implement the fence. For instance, for a mfence it

will simply introduce a memory dependency edge between all pre-fence memory operations in the

program and the fence operation and from the fence to all post-fence operations; enforcing the

execution schedule Pre-fence memory operations → Fence (dummy op) → Post-fence memory
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Table 5.3: MDE Fan-ins incident to a node in NACHOS generated dataflow graph

app memop bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6
gzip 4 - - - - - - -
art 36 17 9 - - - - -
181.mcf 2 - - - - - - -
equake 215 178 2 1 1 1
crafty 7 - - - - - - -
parser 12 - - - - - - -
bzip2 110 77 4 1 1 1 1 1
gcc 2 - - - - - - -
429.mcf 3 - - - - - - -
namd 100 74 1 3 2 - - -
soplex 32 25 3 1 - - - -
povray 74 70 1 4 1 - - -
sjeng 11 1 - - - - - -
h264ref 42 11 3 - - - - -
lbm 57 34 3 3 1 - - -
sphinx3 20 - - - - - - -
blackscholes 0 - - - - - - -
bodytrack 42 35 1 1 - - - -
dwt53 16 15 4 4 - - - -
ferret 0 - - - - - - -
fft-2d 80 75 1 1 2 - - -
fluidanimate 28 - - - - - - -
freqmine 32 25 1 2 1 - - -
sar-backprojection 7 3 1 3 - - - -
sar-pfa-interp1 32 27 1 1 2 - - -
streamcluster 32 - - - - - - -
histogram 48 30 2 1 1 - - -
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operations. Finally, our acceleration regions are enclosed in synchronization boundaries, i.e., our

compiler does not permit offloaded regions to cross-synchronization boundaries (e.g., pthread lock

and unlock calls) ensuring overall program correctness.

5.7 Simulation Infrastructure

We have developed a detailed cycle-accurate simulator that models the host core, the NACHOS

accelerator, and spatial accelerator. Our compiler generates a binary with two components: the x86

executable for the cold paths and the dataflow graph for the offload accelerator. We model a spatial

homogeneous fabric accelerator similar to [7, 31]. To model the accelerator we traverse the activity

of the program dataflow graph cycle-by-cycle, generating any requisite memory operations in a cycle

and stalling the appropriate operations as necessary. The host OoO core pipeline is modeled using

MacSim [46]. We assume that NACHOS is an accelerator that communicates with the OoO core via

the shared L2 cache. The memory hierarchy is modeled using Ruby [24]. We assume an aggressive

non-blocking interface to memory. To model the power consumption, we adopt an event-based power

model similar to Aladdin [40]. Table 5.4 shows the characteristics of the architectures that we model.

Table 5.4: System parameters

Host Core 2 GHz, 4-way OoO, 96 entry ROB, 4 INT, 4 FPU,
INT RF (64 entries), FP RF (64 entries)
32 entry load queue, 32 entry store queue

L1 64K 4-way D-Cache, 3 cycles
LLC 4M shared 16 way, 8 tile NUCA, ring, avg. 25 cycles. Directory MESI coherence.
Memory 200 cycles.

Accelerator
CGRA16 16× 16 function units or

Energy Parameters (Static and Dynamic)
OoO Mcpat [19]; ARM A9 2Ghz template.
CGRA CGRA Network (600 fJ/link), Function units (500 fJ/INT,1500 pJ/FP)

Memory dependency edge. May: 500 fJ/edge Must: 250 fJ /edge
LSQ 48 entries/bank 2 ports. 1—4 banks. Loads: 5000 fJ Stores: 7500 fJ

Bloom Filter: 2500fJ. 512 entries counting.
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5.8 Related Work

5.8.1 Architecture

The focus of much research in LSQ has been to either reduce the content-addressable LSQ checks(e.g.,

[36]) or eliminate it entirely (e.g., [39]). Research that focused on filtering accesses [4, 26, 36]

may require additional hardware structures for filtering, predict when to filter, and RAM structures

for data forwarding with additional complexity and area. Sha et al. have proposed to employ

prediction to pairwise match up potentially aliasing loads and stores to eliminate the power-hungry

searches [38]. Fire-and-Forget [44] and NoSQ [39] both proposed methods for removing the store

queue by forwarding values to the loads. Both proposals use sophisticated dependence predictors [4]

and may require multi-ported RAM structures. A promising scheme is the use of two level load-store

queues [2] or bloom filters [36] to filter load store queue filters accesses. A popular approach is

banking [37, 43] which optimizes for latency and power. As we demonstrate even a banked LSQ

with a two-level filter introduces significant energy overhead in a hardware accelerator. Huang

and Huang [14] used best-effort binary instrumentation to filter out loads from the LSQ that are

guaranteed to be safe; the LSQ is required to enforce ordering among all other memory operations.

NACHOS demonstrates that for hardware accelerators, a compiler can completely drive the

memory disambiguation and eliminate the LSQs as opposed to being best effort strategies (e.g.,

[4, 14]). We leverage the compiler to find MLP accurately as opposed to speculatively finding it [44].

Similar to memory cloaking and bypassing [26] we directly forward data between ST-LD pairs using

dataflow dependencies but we leverage the compiler to form ST-LD pairs accurately. Finally, we use

pairwise hardware checks to handle memory dependencies when the compiler is unsure.

5.8.2 Alias Analysis in Compilers

NACHOS is the first work to directly leverage alias analysis for driving memory disambiguation

and builds on extensive research within the compiler community. Static alias analysis determines

whether two different pointers in a program may point to the same object when a program executes.

In contrast, pointer analysis or points-to analysis identifies the set of objects to which a pointer may

point. By helping to determine which operations on pointers may affect each other, these studies

provide a foundation for many optimizations [3, 12,41]. NACHOS leverages these approaches for

memory disambiguation. Others have leveraged static analysis for a seemingly related but different

problem, program parallelization. Many research papers have exploited static analysis to extract

threads [6, 51] from sequential programs. These works have largely been hampered by may alias

relationships.

Identifying pointers that provably must not alias is key to finding MLP at compile-time itself.

This same notion of pruning conflicting accesses via must-not-alias information has also been used

for precise data race detection by Naik and Aiken [27]. Indeed, the formulation that we use for

aliasing accesses matches the traditional definition of a data race in program analysis. Must-not-alias
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analysis has also been used to improve the general efficiency of CFL-based alias analysis [50]. Some

analysis instead exploit the dynamic aliasing relationships present in the running software. We find

static analysis to be sufficient for memory disambiguation in hardware accelerators. Mock et al.

determined that most dynamic points-to sets were small in practice (of size 1, 98% of the time), and

optimizations based on dynamic alias analysis improves over static analysis [25]. The predictability

of aliasing behavior from profiles has led to other works that speculatively exploit possible aliasing

relationships [5, 20].
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Chapter 6

Conclusion

We present NACHOS; a compiler-assisted approach to memory disambiguation for hardware accel-

erators. NACHOS leverages compiler alias analysis and exploits the limited execution window of

hardware accelerators to perform compile time memory disambiguation and extraction of memory

level parallelism (MLP). NACHOS frees accelerator designers from having to identify memory

aliasing operations manually or use hardware memory disambiguation. It is a generalized approach

that enables hardware accelerator designs to be more broadly employed in programs. Finally, it

eliminates the need for a Load Store Queue (LSQ), while consuming 50% less energy at comparable

performance.

6.1 Future Work

In Stage 2 of Alias analysis, we observed that we could improve alias analysis by tracing the

provenance of the pointers back across one function call boundary. We could find out – how many

levels of function calls we can trace back to find meaningful alias information. There is a trade-off

in terms of the amount of work required for alias analysis in profiling stage vs. meaningful alias

information that adds to energy reduction. Currently, transitivity property in Stage 3 helps to reduce

the number of edges significantly. It will be interesting to look at benchmarks where this is not

the case i.e. benchmarks with wide dataflow graphs, and explore how alias analysis can be used to

improve energy and performance in such cases.

We only looked at the hottest path for our energy evaluation. However, we provide alias

information for the top five hot paths. We can evaluate if it is feasible to build hardware for the

top five hot paths. In case of multiple Store Load dependencies we convert Forwarding Edges to

Ordering Edges, we can research other avenues to improve performance. We also need to explore

efficient routing and placement of dependent memory operations to reduce the link energy.
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