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Abstract 

Short-read DNA sequencing technologies have revolutionized bacterial genomics, but 

these technologies have limitations. It is easy to produce a high quality draft genome, but 

relatively costly and/or time consuming to complete a genome, so most bacterial genomes 

remain as drafts. Despite this, limitations of draft bacterial genomes for functional analysis 

have not been well assessed. To characterize the importance of missing and poor quality 

regions of draft genomes, analyses of COG categories and genes of medical importance 

were performed using analogous draft and complete genomes. A popular genomic island 

prediction tool, IslandViewer, was updated to allow draft genomes as input, and its ability 

to detect genomic islands in draft genomes was assessed. There are limitations to 

bacterial draft genome analysis, with respect to disproportionately missing certain types 

of genes. However, valuable information of medical interest, including virulence and 

antimicrobial resistance genes, can still be obtained from some draft genome datasets. 

Keywords:  bioinformatics; genomics; next generation sequencing; draft genomes; 
genomic islands; bacteria 
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Chapter 1.  
 
Introduction 

1.1. Next generation sequencing and draft genomes 

1.1.1. Current state of bacterial genome sequencing 

The current state of sequencing technology makes it easy to produce a high quality 

draft genome, but it is still relatively expensive or time consuming to close a genome (this 

will be discussed in more detail in section 1.1.4). As a result, the majority of bacterial 

genomes are only being sequenced to the draft stage (Figure 1.1). Long read sequencing 

technologies hold promise as an eventual solution to this problem, but for now Illumina 

short read sequencing (HiSeq, MiSeq) remains by far the most prevalent sequencing 

technology (Thayer, 2014). and for at least the next two years will remain as the primary 

method for public health agencies in Canada and the United States of America for 

bacterial whole genome sequencing (WGS; Gary van Domselaar, Public Health Agency 

of Canada, personal communication). Although both complete genome sequences and 

raw WGS libraries are growing exponentially, the number of WGS libraries is growing 

considerably faster (Figure 1.1). 
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Figure 1.1 The number of complete bacterial genomes in Genbank, and the 
number of bacterial genomes in the NCBI Sequence Read Archive 
(SRA; draft genomes). Both graphs contain the same data, but panel 
B has a logarithmic Y axis to emphasize the exponential growth of 
both curves. 
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WGS of bacteria is being used increasingly in clinical and epidemiological settings 

(Gilchrist et al., 2015). While WGS is not yet routine in these settings, it is predicted to 

eventually replace traditional molecular typing methods (Gilmour et al., 2013). Canada 

and The United States of America are both in the process of building a network of public 

health labs which are capable of performing Illumina sequencing (Gary van Domselaar, 

National Microbiology Laboratory, personal communication, Allard et al., 2016). The US 

public health network alone is expected to produce thousands of bacterial genome 

sequences (Allard et al., 2016). 

1.1.2. A brief history of DNA sequencing 

Two methods to determine the sequence of adenines, guanines, cytosines, and 

thymines in a DNA (deoxyribonucleic acid) polymer were published in 1977. The first of 

these was the Maxam-Gilbert method (Maxam & Gilbert, 1977), which involves cleaving 

a radiolabeled DNA molecule at each instance of a certain type of base, separating the 

DNA fragments using electrophoresis on a polyacrylamide gel, and using the band 

patterns formed by cleaving these different types of bases to determine the DNA 

sequence. The cleavage reactions included a guanine/adenine cleavage, a preferential 

adenine cleavage (which also cleaved guanine), a cytosine/thymine cleavage, and a 

cytosine cleavage. This was the first widely adopted sequencing method (Hutchison, 

2007), and could sequence about 100 base pairs (bp) of DNA. 

The first paper describing dideoxy Sanger sequencing (Sanger & Nicklen, 1977) 

was released later that year. Frederick Sanger had developed another sequencing method 

earlier that was used to sequence the genome of bacteriophage ɸX174, the first complete 

genome (Sanger et al., 1977). This earlier method used DNA polymerase reactions that 

copy a template by extending a primer sequence. The first reaction produced radiolabeled 

copies of the original sequence with varied lengths by using radiolabeled deoxynucleoside 

triphosphates (dNTPs) and reaction conditions that cause the individual reactions to 

proceed at very different rates. These sequences were then used to prime four "plus" 

reactions, where only one type of nucleoside triphosphate is present per reaction, and four 

"minus" reactions, where all but one type of nucleoside triphosphate is present per 

reaction. The reaction products were then separated using electrophoresis, and the band 
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lengths were used to determine the original sequence. The "plus and minus" method 

required both the plus and minus reactions because neither is sufficiently accurate on its 

own to determine the correct sequence (Sanger & Nicklen, 1977). The Sanger dideoxy 

sequencing method improved on the plus and minus method by adding a chain-

terminating 2',3'-dideoxynucleoside triphosphate to the polymerase reaction. This allowed 

for only one polymerization reaction step (done four times, once for each nucleotide), and 

increased the accuracy of the resulting sequence (Sanger & Nicklen, 1977). 

Changes to dideoxy Sanger sequencing have since allowed for longer sequences 

and more automation (Metzker, 2005). Modern Sanger sequencing uses a different 

fluorophore for each base (A, T, C, or G) and may either use four different reactions and 

label the primer sequence, or use a single reaction and label the terminating 2’,3’-

dideoxynucleoside triphosphates. Rather than traditional electrophoresis, automated 

Sanger sequencing uses capillary array electrophoresis, which allows a computer to 

analyze the gel directly (Smith et al., 1986). During the human genome sequencing 

project, Sanger sequencing produced 500-600bp reads, and a single machine could 

produce 115 kbp of sequence per day (Mardis, 2011). Sanger sequencing technology was 

used to produce many early genome sequences, including the human genome (Lander et 

al., 2001; Venter et al., 2001) and several bacterial genomes (Fleischmann et al., 1995; 

Fraser et al., 1995; Stover et al., 2000). While it still has uses today, next generation 

sequencing (NGS) technologies have made Sanger sequencing obsolete for the bulk of 

sequencing involved in genome sequencing projects, including bacterial genome 

sequencing. 

1.1.3. Short read sequencing technologies 

Short read sequencing technologies have shorter read lengths than Sanger 

sequencing, but they have replaced Sanger sequencing for genome-scale sequencing 

projects due to their much higher throughput. The first NGS system to be released was a 

pyrosequencing method developed by Roche/454 (Margulies et al., 2005). 

Pyrosequencing gets its name from the enzymatic luminometric inorganic pyrophosphate 

detection assay (ELIDA), which uses sulfurylase and luciferase to fluoresce in the 

presence of the pyrophosphate released when a base is added to a nucleotide sequence 
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by a polymerase (Nyrén et al., 1993). Roche/454 sequencing uses ELIDA on a very small 

scale: DNA is fragmented and bound to beads (approximately one fragment per bead), 

polymerase chain reaction (PCR) is performed on the fragments while they are attached 

to the bead, and then the beads containing millions of copies of the fragment template are 

put into extremely small wells where they are exposed to one dNTP at a time, and ELIDA 

is used to determine when a nucleotide is added to the new strand. A major source of 

error with this technology is the difficulty in determining the number of bases in a 

homopolymer, as this has to be measured based on the strength of signal from the ELIDA 

assay. According to Roche/454, their most recent machine produces 700 Mbp per run with 

a mode read length of 700bp (Roche Applied Science, 2011). While at one point 

Roche/454 sequencing was fairly popular, it is no longer in development, and its 

production will be shut down completely this year. Illumina technology, which I will discuss 

in the next paragraph, is now the most popular short read sequencing technology, taking 

up 71% of the world market in 2013 (Thayer, 2014). 

 

Figure 1.2 Illumina Sequencing by Synthesis technology. Courtesy of Illumina, 
Inc. 

Illumina/Solexa develops sequencing by synthesis technology, which also uses 

fluorescence to detect when a base is added to a nucleotide sequence by a polymerase  

(Barski et al., 2007). Illumina technology uses a flow cell that allows DNA fragments with 

an adapter sequence, which also acts as a primer on the complementary strand, to attach 

randomly to its surface. The DNA fragments are exposed to all four dNTPs at once, with 

each dNTP connected to a differently coloured fluorophore, so that a new base can be 
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added to the complementary strand by a polymerase. These dNTPs have a protecting 

group at their 3'-O-position so that further synthesis of the new strand is terminated 

(Turcatti et al., 2008). After a single base is added to a new strand, the colour of 

fluorescence corresponding to the newly added base is detected, and a wash cleaves the 

fluorophore and terminator sequence from the growing strand so another nucleotide can 

be added. The desktop Illumina machine, called MiSeq, produces 10-120Gb per run with 

read lengths from 50-300bp, while the most powerful machine, called the HiSeq X Ten, 

produces 900-1800Gb per run with read lengths from 50-150bp (Vincent et al., 2016). 

Table 1.1 shows read lengths and throughput produced by most of the sequencing 

technologies discussed in this thesis. A more extensive table of sequencing platforms was 

included in a review to mark the 10 year anniversary of NGS (Goodwin et al., 2016). 

Table 1.1 Read length and throughput of various sequencing technologies 

Sequencing Platform Read Length Throughput 

454 GS FLX+ 700 bp (mode) 700 Mb 

Illumina MiSeq 50-300 bp 10-120 Gb 

Illumina HiSeq X 50-150 bp 900-1800 Gb 

Pacific Biosciences RS II 10 Kb (mode) 750 – 1250 Mb 

Oxford Nanopore 
MinION 

5.5 Kb (median) Up to 1.5 Gb 

1.1.4. Difficulty of closing a genome 

Genomic reads are typically used to assemble longer genomic sequences. There 

are two main strategies for this: reference-based assembly, where reads are aligned to a 

pre-existing reference sequence, and de novo assembly, where reads are assembled 

without a reference sequence. A reference sequence is any nucleotide or protein 

sequence being used as a standard against which other sequences are being compared, 

and a reference genome is a genome being used as a standard against which other 

genomes are sequences are being compared. The basic strategy of de novo assemblers 

is to find reads with portions that align to each other, and to connect those reads together. 

The contiguous sequences that are produced from sequence assembly are referred to as 

contigs. Compared to eukaryote genomes, de novo assembly is used more often for 

bacterial genomes because the choice of reference sequence is less straightforward 
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(Pightling et al., 2014), and genome rearrangements or genomic regions that are present 

in the genome being assembled but absent from the reference genome are often of 

particular interest to researchers but would not be detected using a reference-based 

assembly (Hernandez et al., 2008). A bacterial genome sequence is considered complete 

or finished if the sequence of each chromosome is of high quality (with less than 1 error 

per 100 kb) and contained in a single contig, whereas in a draft genome sequence, which 

may be of high or low quality, the chromosome is contained within multiple contigs (Chain 

et al., 2009). While there is no agreed upon criteria in the international microbiology 

community for the definition of high quality draft genome, the Brinkman lab and others 

consider a draft genome to be of high quality if the overall coverage represents at least 

90% of the genome. Automated sequence assemblers typically do not produce a complete 

bacterial genome from Illumina short read sequencing data. 

 A major factor that prevents closing of genomes is the presence of repetitive 

regions. Repetitive regions contain sequences that occur more than once in a genome. 

This definition applies to both short repetitive elements and longer sequences with multiple 

copies in a genome (Treangen & Salzberg, 2012). Unless a sequence read containing a 

repetitive sequence traverses its entire length, the alignment of the read to the genome is 

ambiguous (Schatz et al., 2010).  A strategy to overcome this is paired end sequencing, 

where both ends of a DNA fragment are sequenced, and the approximate distance 

between the two ends can easily be estimated based on the fragment size (Roach et al., 

1995). While paired reads do help overcome difficulties of sequencing repetitive regions, 

there are still limitations (Phillippy et al., 2008). Sequence assembly algorithms can handle 

reads with ambiguous alignments by ignoring them, randomly assigning them, or reporting 

multiple alignments (Treangen & Salzberg, 2012). This can create gaps between contigs, 

or misassemblies. Misassemblies are large-scale assembly errors, typically resulting from 

ambiguous alignments.  Misassemblies can be rearrangements or inversions of genomic 

regions, or the collapse or expansion of repetitive regions (Phillippy et al., 2008). 

Strategies for the detection of misassemblies are discussed in section 2.1.  

As well as the computational problem of repetitive regions, limitations of the 

sequencing process also prevent genome closing. The whole-genome amplification stage 

of sequence library preparation does not amplify the entire genome uniformly. Both 
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tandem and inverted tandem repeats affect read coverage, and whether affected regions 

are over- or underrepresented depends on the amplification method used (Tsai et al., 

2014). Both high and low GC regions are underrepresented, and while there is empirical 

evidence suggesting that PCR is the most important cause for this (Benjamini & Speed, 

2012), some bias in coverage due to GC content is still present in unamplified sequencing 

libraries (Tsai et al., 2014). Sequencing errors also have a GC content bias: GC-rich 

regions, in particular regions with GGC motifs or G homopolymers, are particularly prone 

to sequencing errors in Illumina sequencers (Nakamura et al., 2011). Regions with 

inverted repeats are also more prone to errors (Nakamura et al., 2011). 

1.1.5. Long read sequencing technologies 

Sequence technologies that produce longer reads, and whose error profiles are 

unbiased, are more capable of closing genomes than short read sequencing technologies. 

There are two long read sequencing technologies that are currently being used in the 

genomics community: "Single Molecule, Real Time" (SMRT) technology from Pacific 

Biosciences (Flusberg et al., 2010) and nanopore technology from Oxford Nanopore 

(Clarke et al., 2009). SMRT technology, like sequencing by synthesis technology, 

measures the fluorescence of dNTPs labelled with four distinct colours as they are added 

to a growing complementary strand (in the case of SMRT sequencing, the fluorophore is 

linked to the terminal phosphate of the dNTP). However, unlike sequencing by synthesis 

technology, SMRT technology achieves single molecule resolution by binding the 

polymerase to the bottom of a nanophotonic structure called zero-mode waveguide, which 

allows for the detection of very small fluorescent emissions (Eid et al., 2009). Reads 

produced by SMRT technology have highly variable lengths, but half of the 750 Mb – 1.25 

Gb of sequence produced by a SMRT cell is contained within read lengths of at least 20 

kb (Pacific Biosciences, 2015). 

Oxford Nanopore technologies sequence DNA using a nanometer scale pore that 

connects a salt solution with a voltage gradient. As negatively charged, single stranded 

DNA passes through the pore, the change in electrical current can be used to determine 

the specific nucleotide sequence (Laszlo et al., 2014). The origin of nanopore sequencing 

was several years ago (Kasianowicz et al., 1996), but relatively recent improvements 
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including the use of Msp, an engineered porin protein (Derrington et al., 2010), the use of 

phi29 DNA polymerase to control translocation across the pore (Cherf et al., 2012), and 

improved algorithms for interpreting changes in current (Laszlo et al., 2014) have led to 

its commercialization. The MinION sequencer from Oxford Nanopore first became 

available to some researchers in 2014, and was released commercially in May 2015 

(Oxford Nanopore, n.d.). Nanopore sequencing theoretically has no limit on read length, 

and reads of greater than 230 Kb have been sequenced with MinION (Ip et al., 2015). The 

median read length of the MinION according to the MinION analysis and reference 

consortium is 5.5 Kb, and the yield of a single run can be up to 1.5 Gb (Ip et al., 2015). 

Oxford Nanopore sequencers, and analyses of their output, are rapidly improving (Loman 

& Watson, 2015), so the user base of this technology is likely to grow. 

Initially, long read sequencing was used in combination with short read sequencing 

technologies to help close genomes (Bashir et al., 2012; Ribeiro et al., 2012). Both long 

read sequencing technologies have since been used to produce complete bacterial 

genomes in a single run, with no need for additional sequencing. To overcome the high 

error rate of SMRT sequencing, the hierarchical genome assembly process (HGAP) 

incorporates a preassembly step where shorter reads are aligned to longer reads and 

used for error correction (Chin et al., 2013). This creates long, high quality sequences to 

be assembled. The HGAP preassembly step produced 17 232 reads with a mean length 

of 5 777 bp and a mean accuracy of 99.9% using reads from 8 cells (a single run) for an 

E. coli K12 MG1655 genome (Chin et al., 2013). A similar method was used to produce a 

complete version of the same genome using only MinION reads (Loman et al., 2015). 

While the ability to close a genome with a single sequencing technology has the potential 

to eventually eliminate the problem of draft genomes, the cost of these technologies and 

the investment that many institutions have already made into sequencing by synthesis 

technologies (Allard et al., 2016) mean that the problem of draft genomes is not yet 

eliminated. 
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1.2. Mobile genetic elements and genomic islands 

1.2.1. Horizontal Gene Transfer 

Horizontal gene transfer (HGT) is the transfer of genes between organisms by a 

mechanism other than direct inheritance. HGT is theorized to have occurred at very high 

frequencies in the early stages of life, allowing for new genes to spread easily through a 

population (Woese, 1998). Rates of HGT are still high in bacteria and archaea, and occur 

more frequently than single nucleotide substitutions in at least some bacteria (Hao & 

Golding, 2006). Ancient and modern HGT both complicate the production of phylogenetic 

trees. In particular, HGT has been problematic for the production of a single, universal tree 

of life (Doolittle & Bapteste, 2007). HGT in bacteria and archaea are also the basis of a 

major criticism of the species concept because different parts of an individual's genome 

can have different lineages (Ereshefsky, 2010). HGT remains an important mechanism 

for the acquisition of adaptive traits (Dobrindt et al., 2004; Sui et al., 2009). The importance 

of genomic regions acquired via HGT will be discussed in more detail in section 1.2.6. 

HGT can involve mobile genetic elements (MGEs), which encode mechanisms for their 

own transfer. There are three main mechanisms of HGT: transformation, conjugation, and 

transduction. These mechanisms will be briefly described in this section. 

Transformation is the uptake of free DNA from the environment (Griffith, 1928). 

Competent bacteria, bacteria which are capable of undergoing transformation, maintain 

several genes that regulate competence in their genome. The mechanism DNA uptake is 

similar across most competent bacteria. Competent gram negative bacteria have an 

additional secretin channel which transports double stranded DNA (dsDNA) across the 

outer membrane, which is not needed in gram positive bacteria. When dsDNA reaches 

the inner membrane of gram negative bacteria, or the membrane of gram positive bacteria, 

nuclease or strand separating proteins separate the DNA into single strands. One strand 

passes through a transmembrane pore, and the other strand is degraded (Johnston et al., 

2014). There are multiple theories regarding the reason bacteria maintain competence 

genes despite the risk of harmful mutations: it provides nutrition, it creates the potential 

for fast adaptation to the environment, or it can repair damaged DNA through homologous 

recombination (Finkel & Kolter, 2001; Redfield, 1988).  
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Conjugation is the transfer of DNA between two cells via direct interaction between 

a donor and a recipient (Lederberg & Tatum, 1946). Like transformation, conjugation 

requires many genes that are highly conserved (Alvarez-Martinez & Christie, 2009). DNA 

transfer and replication proteins, which include a relaxase and accessory factors, bind to 

a specific origin of transfer sequence, separate the two DNA strands, and facilitate the 

transfer of single-stranded DNA through a type IV secretion system (Alvarez-Martinez & 

Christie, 2009; Wozniak & Waldor, 2010).  The transferred DNA may or may not encode 

the machinery required for its own transfer. Plasmids and elements which integrate into 

the genome can both be transferred by conjugation, and the latter is discussed in more 

detail in later sections. 

Transduction is the transfer of DNA to a recipient cell through a bacteriophage 

(commonly called phage). When a phage enters the lysogenic stage, it integrates its own 

genome into the genome of the infected cell (Freifelder & Meselson, 1970), so the infected 

cell replicates the phage genome along with its own genome every time it divides. This 

usually involves integrating into the bacterial chromosome, but in some cases the phage 

genomes become circular or linear plasmids in the infected cell (Casjens, 2003). A phage 

chromosome that has integrated into a bacterial genome is called a prophage. Prophages 

are discussed in more detail in the next section. 

1.2.2. Prophage 

Phages are the most abundant, and possibly the most diverse, life forms on Earth 

(Suttle, 2005). Phages can be divided into two major groups: temperate phages, which 

are capable entering a lysogenic stage, and virulent phages, which are not (Lwoff, 1953). 

The former are more relevant to this work as they are the source of prophages, but virulent 

phages can also be an indirect source for HGT through recombination with a temperate 

phage (Fortier & Sekulovic, 2013). Most phage are specialized to infect a small subset of 

bacterial species, but some have a broader host range (Flores et al., 2011). Phage can 

acquire bacterial DNA from a host, and transfer that DNA to a new host. Specialized 

transduction can occur when a prophage is excised imperfectly such that flanking bacterial 

DNA is excised as well, whereas generalized transduction can occur if random bacterial 
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DNA from any part of the genome is accidentally packaged into a transducing phage 

(Canchaya et al., 2003). 

Some prophages are inserted into random locations in the host chromosome, while 

others are inserted preferentially at certain sites via site-specific recombination (Campbell, 

1992).  These insertion sites may be within tRNA genes or other repetitive sequences. 

Phage genomes often contain tRNA genes that were probably acquired from one of their 

previous hosts (Bailly-Bechet et al., 2007). They are the only translation-associated genes 

found in phage genomes and despite their small genomes, some phages carry more than 

20 tRNA genes. Maintaining tRNA genes might be beneficial for phage genomes by 

compensating for differences in codon usage bias between the phage and its host. 

Phages are ubiquitous in the environment, and are estimated to infect 1023 bacteria 

per second in oceans alone (Suttle, 2007). They are also estimated to cause about half of 

all bacterial deaths in the ocean (Fuhrman & Noble, 1995). Phages are a major source of 

HGT; it is estimated that 1025 to 1028 bp of DNA is transferred in oceans by phages per 

year (Rohwer & Edwards, 2002). Prophages are very prevalent in bacterial genomes. 

Bacterial genomes may consist of up to 20% phage genes, and the majority of bacterial 

genomes contain at least one prophage sequence (Casjens, 2003; Paul, 2008).  

1.2.3. Integrons 

An integron is a genetic element capable of integrating DNA fragments, but does 

not encode a mechanism for genetic transfer (Stokes & Hall, 1989). Some integrons are 

part of a bacterial chromosome, while others are encoded on plasmids (Escudero et al., 

2015). Integrons contain two main components: cassettes, which are variable, and a 

platform, which tends is more highly conserved. The platform contains elements required 

for integration and expression of cassettes: a tyrosine recombinase gene and its promoter, 

a recombination site for cassette integration, and a promoter to activate expression of the 

cassette. The tyrosine recombinase is highly conserved, but the recombination site is a 

more variable inverted repeat sequence  (Bouvier et al., 2005). An integron can contain 

more than one cassette; in some cases, an integron can accumulate hundreds of 

cassettes, such as the Vibro cholerae superintegron which can take up 3% of the whole 
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genome (Escudero et al., 2015; Mazel et al., 1998). Integrons are present in about 17% 

of sequenced bacterial genomes from a variety of taxonomic groups, but they are 

particularly prevalent in freshwater proteobacteria and marine ɣ-proteobacteria 

(Cambray  Guillaume et al., 2010). 

1.2.4. Transposons and IS elements 

Transposons are genetic elements that are able move to different locations in a 

genome. Transposons were first identified in maize (McClintock, 1941), and they can be 

found in genomes from all three domains of life (Langille et al., 2008b). They are quite 

diverse, and can range in size from hundreds to more than 65 000 bps. Transposons may 

either be autonomous, meaning they encode a mechanism to transpose themselves, or 

non-autonomous, meaning that they must rely on other transposition machinery. 

Transposases are proteins which catalyze transposition of DNA. There are several 

unrelated families of transposases, and different transposases can have different 

integration specificities. Many prefer to integrate into the 3' end of tRNA genes or other 

conserved genes, but others have low integration specificity (Bellanger et al., 2014). Most 

transposons have terminal inverted repeat (TIR) sequences at both ends which can act 

as transposase binding or cleavage sites (Langille et al., 2008b; Mahillon & Chandler, 

1998). 

Conjugative transposons encode machinery for their transfer by conjugation as 

well as encoding transposition machinery (Roberts et al., 2008). Besides conjugation and 

transposition machinery, the gene content of conjugative transposons is highly variable, 

even within transposon families which share closely related conjugation and transposition 

machinery (Bellanger et al., 2014). Most studied conjugative transposons are able to 

transfer themselves at least between closely related genera, but some conjugative 

transposons, such as the well studied Tn916 which confers tetracycline resistance, are 

able to transfer between diverse bacteria. 

Insertion sequence (IS) elements are small MGEs, 0.7 to 2.5 kb, which typically 

only contain genes required for their own mobility and TIR sequences (Adhya & Shapiro, 

1969; Darmon & Leach, 2014; Shapiro & Adhya, 1969; Shapiro, 1969). Like transposons 
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in general, IS elements have diverse transposases, and have varying degrees of insertion 

site specificity (Mahillon & Chandler, 1998). 

1.2.5. Genomic Islands 

Genomic islands (GIs) are segments of bacterial or archaeal chromosomes, 

consisting of several genes, that have probable horizontal origins (Langille et al., 2010). 

They are typically defined as being at least 8 kb in length. This length restriction serves 

as a practical cut off for use in GI prediction, and it excludes shorter MGEs such as IS 

elements. The term also excludes MGEs that do not integrate into the chromosome such 

as plasmids. Figure 1.3 is a diagram representing which MGEs are considered GIs, and 

which are not. GIs have previously been referred to as pathogenicity islands due to the 

ability of some GIs to induce a pathogenic phenotype in bacteria which carry them (Hacker 

et al., 1990). Several names were thereafter used to describe genetic elements that were 

similar to pathogenicity islands, but encoded different functions. These names include 

metabolic island, antibiotic-resistance island, and symbiosis island (Dobrindt et al., 2004). 

GI is an umbrella term used to describe these genomic regions regardless of the 

phenotypic traits they confer. 

Some definitions of GIs include a requirement that they are absent from the 

genomes of closely related strains (Darmon & Leach, 2014). This is a logical requirement 

because GIs are horizontally acquired regions, and this requirement has been used to 

support the validity of comparative genomics approaches to identify GIs (Karaolis et al., 

1998). However, this definition should be interpreted with caution because comparative 

genomics approaches may identify different GIs depending on the strains used for 

comparison (Langille et al., 2008a). GIs may have been acquired very recently, or they 

may be ancient. Comparative genomics approaches for GI prediction, and the difficulty of 

predicting ancient GIs, will be discussed in more detail in section 1.3. 
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Figure 1.3 Different kinds of MGEs, and which MGEs are considered GIs. 
Figure is from Langille, 2009 (Langille, 2009) and is used with 
permission of the author. 

1.2.6. Features of GIs and interest in GIs 

GIs have a different gene composition than non-GI regions. GIs disproportionately 

contain novel genes, or genes with no known homologs (Hsiao et al., 2005). This may be 

because GIs originate from a very large gene pool which includes the phage gene pool. 

As mentioned earlier, phages are possibly the most diverse life forms on Earth, yet they 

are not as well studied as other life forms. Unsurprisingly, mobility genes such as those 

encoding transposases are also disproportionately found in GIs. GIs are also associated 

with carrying a variety of genes for environmental adaptations such as those which enable 

the degradation of xenobiotic compounds and synthesis of polyketides (Dobrindt et al., 

2004). Acquisition of antimicrobial resistance (AMR) is often associated with either GIs or 

plasmids, and integrons are the main mechanism for acquisition of AMR by Gram-negative 

enterobacteria. Virulence factors (VFs), which are genes or other characteristics of 
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bacteria associated with the ability to cause disease, are also associated with GIs. VFs 

are disproportionately found in GIs across many bacteria, especially those that are 

capable of inhabiting multiple environmental niches (Sui et al., 2009). Type II and type IV 

secretion system components, toxins, and adherence factors in particular are 

overrepresented in GIs. 

There are several well documented examples of GIs, and prophages in particular, 

contributing to virulence (Fortier & Sekulovic, 2013). The namesake for pathogenicity 

islands in uropathogenic E. coli, which contained a hemolysin determinant and genes 

encoding a fimbriae, was able to convert a non-pathogenic strain to a pathogenic one 

(Hacker et al., 1990). Many well characterized toxins are encoded in prophages, including 

botulinum toxin in Clostridium botulinum, (Eklund et al., 1971), diphtheria toxin in 

Corynebacterium diphtheriae (Freeman, 1951), and Shiga toxin in Shigella dysenteria and 

some strains of E. coli (O’Brien et al., 1984). There are documented examples where 

antibiotic use has caused dormant phages to enter lytic stage, causing increased 

expression of phage-encoded genes, and increased virulence (Zhang et al., 2000). 

Prophage genes are highly expressed in Pseudomonas aeruginosa biofilms, and biofilms 

can allow for persistent infections in the lungs of cystic fibrosis patients (Whiteley et al., 

2001). 

Analysis of GIs, along with SNP-based analysis, can also help resolve 

transmission patterns. A recent example of the usefulness of GI analysis was a Listeria 

monocytogenes outbreak in Sydney, Australia where epidemiological data had traced the 

source to a hospital food supplier (Wang et al., 2015). Traditional typing methods and 

SNP-based analyses were insufficient to link clinical outbreak isolates with isolates from 

the food supplier, but when SNP data was combined with GI data the researchers were 

able to confirm the suspected epidemiological link. This case highlighted the importance 

of GI analysis for genomic epidemiology. 

Within-patient recombination is also of particular medical interest, although this 

area of research is still in its infancy. There has been disagreement about the rates of 

HGT between P. aeruginosa cells within cystic fibrosis lungs with persistent P. aeruginosa 

infections, and to what degree HGT contributes to within-host diversity (Williams et al., 
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2016). Rates of HGT within the gut microbiome are estimated to be high, driven by the 

dense and diverse environment (Smillie et al., 2011), but recombination in the gut 

microbiome is harder to study because of the complexity of the microbial community. 

In conclusion, GIs are of particular interest to researchers due to both their unique 

implications to evolution and their disproportionate contributions to disease. 

1.3. Genomic island prediction 

1.3.1. Sequence composition based methods 

GIs can have certain compositional signatures that differ from their host genome, 

and these differences can be used to computationally detect GIs within a microbial 

genome sequence. These compositional differences include GC content, codon usage, 

and oligonucleotide frequency, which are guided by selective constraints in the host 

genome (Burget et al., 1992; Sueoka, 1992). GIs are not under the same selective 

constraints until after entering the host genome, and MGEs may have different selective 

pressures prior to entering a host genome which lead to distinct compositional signatures 

(Rocha & Danchin, 2002). As discussed in section 1.2, gene composition also differs in 

GIs, with certain gene types such as transposase and tRNA genes being overrepresented 

in these regions and can also be used in combination with sequence compositional bias 

for GI prediction. Two advantages of sequence composition based methods for GI 

prediction are that they do not require wet lab experiments, and unlike comparative 

genomics approaches (which are discussed in section 1.3.2) they do not require similar 

comparison genomes. A major limitation of these methods is that not all GIs have strong 

compositional signatures; many GIs are acquired from closely related organisms that have 

similar compositional signatures, and ancient GIs may have evolved with their host and 

lost their previous differences (Langille et al., 2010). 

Some sequence composition based methods use hidden Markov models (HMMs). 

HMMs are statistical models that can be applied to a wide variety of observable features 

with underlying states (Blunsom, 2004). In molecular biology or GI prediction, these 

observable features can include gene composition, or raw amino acid or nucleotide 



 

18 

sequences. With supervised training, HMMs are built from examples where observable 

features (such as amino acid sequence) and underlying states (such as the protein 

product) are both known. HMMs built from multiple sequence alignments are called profile 

HMMs (Eddy, 2003), which can be represented as position-specific scoring matrices 

(PSSMs). There are two BLAST tools designed specifically for use with HMMs: PSI-

BLAST performs searches using an HMM profile against a protein database, and RPS-

BLAST performs searches using a protein sequence against a PSSM database (Altschul 

et al., 1997).  HMMER is a tool for building and rapidly searching HMM profiles (Finn et 

al., 2011), and is incorporated into multiple sequence composition based GI prediction 

methods. 

There are many sequence composition based GI prediction methods, both with 

and without HMMs. SIGI-HMM (Waack et al., 2006) uses a HMM to detect GIs based on 

codon usage bias. PIPs (Abreu et al., 2012) and its extension, GIPSy (Soares et al., 2015), 

incorporate SIGI-HMM into their GI prediction pipelines, but they also detect atypical GC 

content and gene content associated with GIs. Another approach calculates Markovian 

Jensen-Shannon divergence of genomic regions, which generally represents nucleotide 

frequencies, for regions of decreasing size with a recursive algorithm until it detects 

atypical regions (Arvey et al., 2009). Alien Hunter (Vernikos & Parkhill, 2006) uses 

oligonucleotide frequencies to detect GIs, and uses an HMM to determine optimal 

boundaries of predictions. PredictBias (Pundhir et al., 2008) predicts sequences with 

either dinucleotide or GC content bias as putative GIs, and performs a RPSBLAST search 

of VF profiles to determine whether a GI is a pathogenicity island. IslandPath-DIMOB 

(Hsiao et al., 2005) detects GIs using dinucleotide biases, and requires the presence of a 

mobility gene, either within user-provided annotations or detected using HMMER3, to 

consider a region with dinucleotide bias as a GI. Centroid (Rajan et al., 2007) and 

INDeGenIUS (Shrivastava Sakshi, Ch V Siva Kumar Reddy, 2010) are other methods 

which detect differences in oligonucleotide frequencies, but do not use HMMs. MGSIP (de 

Brito et al., 2016) uses a mean shift clustering algorithm to detect GIs based GC content 

bias. PAI-IDA (Tu & Ding, 2003) detects GIs based on GC content, codon usage bias, and 

dinucleotide frequency. Z-island explorer is a web-based GI prediction tool which uses GC 

content variation to detect GIs (Wei et al., 2016). 
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Since there are many features and methods that can be used for GI detection, it is 

important to consider which methods are most appropriate for different purposes. A 

previous analysis of sequence composition based GI prediction methods used results from 

a comparative genomics method for GI prediction (IslandPick, described in the next 

section) to evaluate the performance of many tools using 117 microbial genomes (Langille 

et al., 2008a). This evaluation found that AlienHunter had the best sensitivity, SIGI-HMM 

was the most precise, and IslandPath-DIMOB and SIGI-HMM had the highest overall 

accuracy. It was therefore recommended that researchers who are willing to sort through 

false positives in order to have a high recall may prefer AlienHunter, while researchers 

who would prefer to have a small but accurate list of GIs with the risk of false negatives 

may prefer SIGI-HMM or IslandPath-DIMOB. By combining the latter two methods, there 

was an increase in recall with minimal decrease in sensitivity.  

1.3.2. Comparative genomics methods 

The first genetic element to be termed a pathogenicity island was discovered by 

comparing related strains of E. coli, where the genomes of some isolates contained this 

element while others did not (Hacker et al., 1990). This is an early example of a 

comparative genomics-based approach to GI detection, although in this case the genome 

sequences were not available and the comparison method was not computational. The 

basic approach of comparing an isolate of interest with related isolates, or a combination 

of this approach with sequence composition based methods, is still the preferred method 

for GI prediction when appropriate isolates are available for comparison (Langille et al., 

2010). Comparative genomics approaches identify GIs as regions of a query genome that 

are absent from related isolates, so results are highly dependent on the genomes used 

for comparison. If only very closely related genomes are used for comparison, only very 

recently acquired GIs will be detected. If very distantly related genomes are used, the risk 

of false positives due to chromosomal rearrangements increases. Consideration should 

therefore be given to choosing appropriate genomes for comparison. 

There are multiple computational methods that use a comparative genomics 

approach to predict GIs. DarkHorse (Podell & Gaasterland, 2007) performs a BLAST 

search of all predicted proteins in a genome against the NCBI non-redundant protein 
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database, uses the results to generate lineage probability index scores, and reports 

predicted proteins with highly ranked scores as having possible horizontal origins. The 

MobilomeFINDER (Ou et al., 2007) comparative analysis tool, which requires that users 

manually select comparison genomes, detects regions that are unique to the query 

genome using Mauve, a whole genome multiple sequence aligner (Darling et al., 2004). 

These unique regions are then filtered by requiring that they are flanked by tRNA gene 

segments, meaning that MobilomeFINDER only reports GIs which have inserted into tRNA 

genes. 

IslandPick (Langille et al., 2008a) also uses Mauve in its comparative genomics 

approach to GI prediction. IslandPick performs pairwise alignments against comparison 

genomes, extracts unique regions of greater than 8 kbp which are present in the query 

but absent from all comparison genomes, and performs a BLAST search of these regions 

against the query to filter out genome duplications. A major benefit of IslandPick is that it 

includes a method for automated selection of comparison genomes. CVTree (Xu & Hao, 

2009) is used to calculate genetic distances between the query genome and a set of 

possible comparison genomes, and uses a specific set of selection criteria to select, when 

possible, three to six genomes for comparison. The selection criteria include minimum and 

maximum distances from the query genome, as well as single close genome and single 

distant genome cut-offs that ensure not all selected genomes are very close to or very 

distant from the query genome. 

1.3.3. Databases and other computational resources 

There are several databases for GIs, or certain subsets of GIs, which include 

search tools to detect GIs in a user-provided DNA sequence. The Islander database 

(Hudson et al., 2015) specifically contains predicted GIs that have inserted into a tRNA 

gene and encode an integrase, and the program used to detect these predicted GIs is 

available for download on the database website. PAIDB (Yoon et al., 2014) is a database 

of pathogenicity and AMR islands which includes a tool for BLAT and BLASTx-based GI 

prediction. ICEberg (Bi et al., 2011) is a database specifically for ICEs, and has an option 

BLAST and HMMER3 searches on its web interface. MOSAIC (Chiapello et al., 2008) is 

a comparative genomics database containing information about conserved and variable 
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genomic regions developed using pre-computed whole genome alignments. HGT-DB 

(Garcia-Vallve et al., 2003) is a database of sequence composition information (GC 

content and codon usage) for genes in bacterial and archaeal genomes, including whether 

the sequence composition of the gene deviates from the rest of the genome. 

1.3.4. IslandViewer 

IslandViewer is a web-based GI prediction tool that incorporates three of the most 

accurate GI prediction methods: SIGI-HMM, IslandPath-DIMOB, and IslandPick (Hsiao et 

al., 2003; Langille & Brinkman, 2009; Langille et al., 2008a; Waack et al., 2006). SIGI-

HMM and IslandPath-DIMOB were identified as the most accurate sequence composition 

based prediction methods in a previous evaluation (see section 1.3.1), and IslandPick 

uses a comparative genomics approach for GI prediction (see section 1.3.2). IslandViewer 

contains pre-computed results from these methods for all complete bacterial and archaeal 

genomes available on NCBI, managed by the MicrobeDB database (Langille et al., 2012). 

Users can also upload annotated genomes to IslandViewer for custom GI predictions. 

IslandViewer results can be viewed using a circular genome map, and results can be 

downloaded in multiple file formats. After the first IslandViewer update, curated VF and 

AMR genes could also be viewed and downloaded for a subset of pre-computed genomes, 

along with a previous analysis of pathogen-associated genes. Pathogen-associated 

genes are only ever detected in pathogens and never in non-pathogens sequenced to 

date, and may contribute to virulence (Dhillon et al., 2013). 

Developed by the Brinkman laboratory, IslandViewer is freely available without a 

subscription and widely used. As of July 2016, the IslandViewer papers have 277, 41, and 

32 references according to Google Scholar (Dhillon et al., 2013, 2015; Langille & 

Brinkman, 2009), and hundreds of genomes are uploaded for custom GI prediction every 

month. Since its creation, IslandViewer has had multiple updates to increase its 

functionality and to provide flexible and interactive visualizations of results (Dhillon et al., 

2013, 2015), and more updates are underway. In particular, an improved version of 

IslandPath-DIMOB with increased overall accuracy will soon be implemented into 

IslandViewer. Chapter 3 will discuss several recent improvements to IslandViewer in more 

detail, with particular emphasis on a new draft genome analysis pipeline.  
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1.4. Prediction of other genomic regions of interest 

1.4.1. Antimicrobial Resistance genes 

The standard methods used for AMR detection are still based on culturing and 

measurement of minimum inhibitory concentration (Jorgensen et al., 2009), but several 

computational methods have recently been developed to detect AMR determinants from 

a bacterial genome sequence using a database of known AMR genes. ResFinder (Zankari 

et al., 2012) is the name of both a database and a corresponding AMR detection tool. The 

detection tool essentially performs a BLAST search of an assembled genome against the 

database. ARG-ANNOT (Gupta et al., 2014) is also a database and AMR detection tool. 

The ARG-ANNOT detection tool uses a BLAST search against a database of AMR 

proteins, but also searches for single nucleotide variants (SNVs) which confer AMR. 

SRST2 (Inouye et al., 2014) and SEAR (Rowe et al., 2015) both contain tools for AMR 

detection from unassembled sequence reads, and they both use the ARG-ANNOT 

database. The Comprehensive Antibiotic Resistance Database (CARD, McArthur et al., 

2013) is, as its name suggests, a comprehensive AMR database which is continually 

updated. As of July 2016, CARD contains 2433 AMR gene sequences and 963 SNVs 

(http://card.mcmaster.ca). The Resistance Gene Identifier (RGI) tool performs a BLASTp 

search of CARD with precise filtering criterion, and identifies SNVs which confer 

resistance. Resfams (Gibson et al., 2015) detects AMR genes by searching translated 

open reading frames (ORFs) against hidden Markov models (HMMs) of AMR protein 

families using hmmscan (Finn et al., 2011). The protein family models were developed in 

part from CARD. Large, well curated databases increase the efficacy of computational 

AMR prediction methods which depend on them, and in turn, computational AMR 

prediction can expand the number of known AMR genes (Gibson et al., 2015). 

1.4.2. Virulence Factors 

Computational VF prediction also relies largely on databases of known VFs. The 

Virulence Factor Database (VFDB, (Chen et al., 2012)) consists of two main data sets: 

one that consists solely of experimentally verified VFs from 24 medically important 

bacterial genera, and another that also includes VF homologs using reciprocal BLAST 
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searches. The VFDB web interface allows users to perform a BLAST search of either data 

set. Victors virulence factors (http://www.phidias.us/victors/) is a database that consists 

solely of VFs that have been experimentally observed, and currently contains VFs from 

194 pathogens. mVirDB (Zhou et al., 2007) is a database that combines toxin, VF, and 

AMR genes from various sources. The PATRIC database (Wattam et al., 2014) contains 

various gene types associated with pathogenic organisms, including VFs. The web 

interfaces for each of these databases include a BLAST search tool.  

1.4.3. Functional categories 

Proteins can be grouped into functional categories or families, and there are 

multiple databases that can be used to assign a protein to a functional category. KEGG, 

a set of databases containing a range of biological information including pathways, 

contains a GENES database for cross-species annotations of genes and proteins, and a 

BRITE functional hierarchy of these genes (Moriya et al., 2007). The KAAS genome 

annotation tool can assign protein coding sequences (CDSes) to KEGG GENE entries 

and infer information about functional pathways. Pfam (Bateman et al., 2004) is a 

database of protein domain families. Each family has been manually curated, but additions 

to the family are found automatically through HMMER3 searches during updates (Finn et 

al., 2011). Pfam profile HMMs are built from curated seed alignments, and can be used to 

detect protein families from protein sequences. Sets of families that are homologous but 

too highly diverged to be classified as a single family are called clans (Finn et al., 2006). 

A Cluster of Orthologous Groups of proteins (COG) is a group of proteins from at least 

three distantly related species that are predicted to belong to an orthologous protein family 

(Tatusov et al., 1997).  Position-specific scoring matrices have been created for each COG 

category, which can be used to assign protein sequences to COG categories (Marchler-

Bauer et al., 2009). COGs are classified into at least one of 25 superfamilies which broadly 

describe their function (or lack of known function) (Tatusov et al., 2000). 

1.5. Goals of present research 

The Integrated Rapid Infectious Disease Analysis project (IRIDA, 

http://www.irida.ca) is a collaboration between the Public Health Agency of Canada, the 
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British Columbia Centre for Disease Control, and the Brinkman Laboratory at Simon 

Fraser University to develop a bioinformatics platform for infectious disease genomic 

epidemiology. For GI prediction in outbreak isolate genomes, IslandViewer is being 

incorporated into IRIDA. The current version of IRIDA assembles genomes using Illumina 

read data and tends to produce draft genomes, so in order for IslandViewer to be 

integrated into IRIDA, it is essential for IslandViewer to be able to accept draft genomes 

as input. As analyses using draft bacterial genomes become increasingly common, 

including in clinical and epidemiological settings, it is also important to understand the 

characteristics of draft genomes compared to complete genomes. At the onset of my 

project, there had been relatively little research which characterized the utility of draft 

bacterial genomes for functional analysis. There was also only one available tool for GI 

prediction which could accept a draft genome as input, and this tool became unavailable 

shortly after publication (Lee et al., 2013).  In order to address these issues, the main 

goals of my project have been to perform an initial characterization of the importance of 

missing regions of draft genomes, with a particular focus on gene functional analysis and 

GI prediction, and to increase the functionality of IslandViewer software to allow for the 

analysis of draft genomes. 
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Chapter 2.  
 
Characterization of missing regions in draft genomes 

Note: I led the characterization of missing regions in draft genomes and performed the 

analysis. Bhavjinder Dhillon detected virulence factors in complete genomes, and Dr. 

Claire Bertelli provided genomic island predictions from one of the methods used: an 

updated version of IslandPath-DIMOB. For antisense transcription analysis, I developed 

the analysis pipeline, and Ogan Mancarci went on to do the analysis. 

2.1. Background and rationale 

2.1.1. Draft genome assessment background 

As described in section 1.1.5, the vast majority of bacterial genome sequences are 

only completed to the draft stage. There have been multiple studies that have 

characterized draft genomes, and most of these characterizations have so far been in the 

form of evaluation of assemblies. Assembly evaluations focus on comparing traits such as 

number of contigs, contig lengths, N50 and variants of N50, and GC content. In a genome 

assembly, the N50 is the contig length such that 50% of the base pairs in the assembly 

are contained within contigs of that length or larger. In cases where a complete reference 

genome is available, they may also look at other factors such as the number of 

misassemblies. The first examples of these studies were Assemblathon and GAGE (Earl 

et al., 2011; Salzberg et al., 2012). Assemblathon was a contest where competing teams 

assembled simulated Ilumina HiSeq reads of a simulated genome evolved from human 

chromosome 13. GAGE is a tool for assembly assessment which requires a complete 

reference genome. GAGE was originally used to compare several assembly algorithms 

for their ability to assemble four genomes: S. aureus, R. sphaeroides, human, and bumble 

bee. A bacteria-specific version of GAGE, GAGE-B, was tested with eight bacterial 

genomes of varying size and GC content (Magoc et al., 2013). The first GAGE study found 

that ALLPATHS-LG performed well overall, and bacteria-specific study found that 

MaSuRCA and SPAdes produced the best assemblies, but in both studies the authors 
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emphasized that each assembler had strengths and weaknesses, and that many 

assembly algorithms were still under development. Later assembly evaluations include 

QUAST (which was notably the first evaluation tool which did not require a complete 

reference genome), and iMetAMOS (Gurevich et al., 2013; Koren et al., 2014). Both of 

these tools found that SPAdes was the best assembler for the bacterial genomes which 

they assessed.  

Another strategy for draft genome evaluation is the detection of misassemblies 

without a reference sequence. Misassembly detection algorithms align raw paired-end 

reads to de novo assemblies that were generated using those reads, and use the read 

alignments to generate a probability or likelihood score for every base in the assembly. 

These scores are then used to detect regions of the draft genome that are misassembled 

(Clark et al., 2013; Hunt et al., 2013; Rahman & Pachter, 2013). With these algorithms, 

regions to be resequenced can be identified, and a corrected N50 can be calculated 

without a reference sequence. These algorithms take into account issues surrounding 

repetitive genomic regions, provide an additional metric of genome quality for draft 

genomes without a reference, and are useful for improving the quality of the draft genome 

being assessed. 

The draft genome assessments described above do not focus on gene content or 

characteristics of draft genomes that are directly pertinent to common uses of draft 

genomes. The extent of gene analysis in the above assessments is to calculate the total 

number of genes in the draft genome (Gurevich et al., 2013). More recently, there have 

been two studies that have assessed the quality of draft genomes based on the presence 

or absence of a set of marker genes. One study identified sets of universal single-copy 

orthologs for six major phylogenetic clades, and detected genes from this set that are 

duplicated, fragmented, or missing in a draft genome (Simão et al., 2015). Another study, 

which focused on microbial genomes, defined marker genes as any gene present in a 

single copy in at least 97% of genomes in a certain lineage (Parks et al., 2015), and used 

these marker genes to calculate the percent completeness for thousands of genomes.  

To my knowledge, there has been only one previous study to assess gene 

functional categories in draft genomes (Klassen & Currie, 2012). This study focused on 
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the fragmentation of open reading frames (ORFs) at contig boundaries. Gene 

fragmentation in draft genomes can lead to under-annotation if a gene fragment is not 

recognized or is mistaken for a truncated gene, but it can also lead to over-annotation in 

cases where a single gene is contained within two contigs, and the gene is annotated in 

each contig. Twenty-five Streptomyces were assessed for over- or under-representation 

of certain gene types based on Pfam, COG, and KEGG  classifications. Based on these 

genomes, gene fragmentation led to over-annotation with KEGG and under-annotation 

with Pfam. Three COG superfamilies were identified as substantially enriched in 

fragmented ORFs, and this trend was driven mostly by 3 families: polyketide synthase 

modules and related proteins, non-ribosomal peptide synthetase modules and related 

proteins, and serine/threonine protein kinases. This study only addressed genes that were 

fragmented in draft genomes, and did not address genes that were missing from draft 

genomes. 

2.1.2. Antisense transcription background 

Cis-antisense transcription is the production of an RNA molecule copied from the 

sense strand of an ORF, such that the RNA molecule does not encode a functional protein. 

Antisense RNA molecules are usually small (relative to the length of the ORF), and are 

known to control gene expression in at least some cases (Georg & Hess, 2011). Early 

documented cases of antisense transcription disproportionately occurred in mobile 

elements (Wagner & Simons, 1994), and a personal communication indicated that there 

may be a bias in antisense transcription in genomic islands (GIs), but to my knowledge 

there has been no previous genome-wide assessment of the association of genomic 

islands with antisense transcription. Therefore, as well as a characterization of GIs and 

other features in draft genomes, this chapter also investigated whether there was any 

association of antisense transcription with GIs. 

2.1.3. Rationale 

While there has been extensive work on the evaluation of draft genomes, there is 

relatively little existing research that directly measures the limitations of draft genomes for 

comparing gene content. To my knowledge, there has been no assessment of the quality 
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of draft genomes in terms of how useful they are for analyses such as antimicrobial 

resistance (AMR) gene and virulence factor (VF) prediction, gene function analysis, or GI 

analysis. This chapter presents research that begins to address this knowledge gap. 

To characterize the importance of missing regions in two sets of draft genomes, 

draft bacterial genomes produced using Illumina sequencing by synthesis technology 

were compared with the subsequently completed genomic sequence from the same 

isolate. The main data set used for this analysis consists of thirty-six Listeria 

monocytogenes genomes sequenced by the Canadian National Microbiology Laboratory, 

where pairs of draft and complete genomes from the same isolates were used. Genomes 

of Pseudomonas aeruginosa reference panel isolates were also used as a secondary data 

set. Listeria and Pseudomonas have very different evolutionary lineages and genome 

characteristics (Glaser et al., 2001; Stover et al., 2000). Pseudomonas is Gram-negative, 

while Listeria is Gram-positive. P. aeruginosa genomes range from 5.5 to 7 Mbp and are 

GC rich, while L. monocytogenes genomes are typically about 3 Mbp and are AT rich. 

L. monocytogenes and P. aeruginosa are both well studied pathogens, but the 

illnesses they cause and the mechanisms through which the cause illness are very 

different. L. monocytogenes is a foodborne pathogen, and it is the causative agent of 

listeriosis. Listeriosis can cause a variety of symptoms including gastroenteritis and 

septiciaemia, which is highly lethal (Hamon et al., 2006). L. monocytogenes is an 

intracellular pathogen, and it enters host cells by binding to receptors using internalin A or 

internalin B. Internalin A and internalin B bind proteins on the surface of a host cell, which 

causes host cytoskeletal rearrangement and the entry of L. monocytogenes into the host 

cell within a phagosome. After entering a host cell, L. monocytogenes releases itself from 

the phagasome by secreting phospholipases and listeriolysin O, a pore-forming toxin. 

After releasing itself from the phagosome, L. monocytogenes can use ActA to polymerize 

host actin, propel through the host cytoplasm, and pass into neighbouring host cells in a 

double membraned vacuole via membrane protrusion. 

P. aeruginosa is an opportunistic pathogen which most commonly infects the lungs 

of cystic fibrosis patients and burn wounds (Gellatly & Hancock, 2013). As a species, P. 

aeruginosa is known for being metabolically diverse, for expressing a wide variety of VFs, 
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and for causing persistent infections. VFs include flagella and type IV pili, which facilitate 

cell mobility and attachment to host epithelial cells, a type III secretion system, proteases, 

and lipopolysaccharide. When a local population is sufficiently high, P. aeruginosa can 

form a biofilm, which contributes to the persistence of infection. Each cell secretes 

autoinducer molecules, and when the local concentration of autoinducer molecules 

passes a threshold, P. aeruginosa cells in the area undergo changes in gene expression 

which results in biofilm formation.  

Analysis of clusters of orthologous groups of genes (COGs), antimicrobial 

resistance genes, and virulence factors in regions present in the complete genome and 

missing from draft genomes was performed.  The ability to detect GIs in draft genomes 

was assessed using IslandViewer. Together, these analyses show that there are 

limitations to bacterial draft genome analysis, with respect to disproportionately missing 

certain types of genes, however, valuable information of medical interest can still be 

obtained from some draft genome datasets. 

2.2. General methods 

2.2.1. Genome annotation and alignment of draft genome to 
complete genome 

Draft and complete genomes were annotated using Prokka (Seemann, 2014), a 

widely used tool that combines several previously existing annotation tools in order to 

provide automated annotation of bacterial genome sequences. Both data sets used the 

default settings, but the L. monocytogenes data set was annotated with Prokka 1.7, while 

the P. aeruginosa data set was annotated using Prokka 1.11. A newer version of Prokka 

was used for the Pseudomonas data set in order to coordinate these analyses with other 

work being done on the same data set. Differences between these versions of Prokka are 

not expected to have a significant impact on the results of this study. Coding sequence 

(CDS) and tRNA gene annotation are the components of Prokka annotations that are used 

for this analysis. Prokka uses ARAGORN (Laslett & Canback, 2004) to predict tRNA 

genes. ARAGORN predicts tRNA genes by searching the genome for a small, conserved 

segment of the B-box promoter signal and searching for a tRNA structure around each 
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initial hit. Prokka uses Prodigal (Hyatt et al., 2010) to predict CDSes, and uses a series of 

searches against increasingly broad databases to identify a putative gene annotation for 

each CDS. 

Contigs from each draft genome were aligned to the corresponding complete 

genome from the same isolate, or complete genomes from closely related isolates in the 

case of most genomes in the P. aeruginosa data set, using Mauve Contig Mover (Rissman 

et al., 2009). An additional MegaBLAST step was performed where contigs that were not 

aligned with Mauve were aligned to the complete genome. Contigs that had 90% identity 

with a region of the complete genome over at least 90% of its length, with gaps of no more 

than 10% of its length were considered to correspond to that region of the complete 

genome, given that only one region of the complete genome met these requirements. The 

length limits were chosen empirically. A non-redundant list of coordinates covered by 

contigs was generated from the Mauve and MegaBLAST output using a custom script. 

Coordinates of genomic regions of interest were compared against this non-redundant list 

to determine whether these regions were present in the draft genome. 

2.2.2. Identification of COGs and genes of interest 

COG categories were assigned to CDSes as described previously (Klassen & 

Currie, 2012). COG motifs were retrieved from NCBI and used to create an RPSBLAST 

database. An RPSBLAST search with an expectation value cutoff of 0.00001 was 

performed on each CDS in each complete genome, and the top hit was assigned as the 

COG category corresponding to a given CDS. 

VF and AMR gene homologs were predicted using the same methods that were 

used for genome annotation in IslandViewer 3 (Dhillon et al., 2015). For each complete 

genome in this study, Reciprocal BLAST searches were performed: all CDSes in the query 

genome underwent a BLASTp search against a database of all CDSes in a curated 

reference genome, and vice versa.  Curated reference genomes were chosen such that 

the CVTree (Xu & Hao, 2009) distance between the curated and uncurated genomes was 

less than 0.3. Reciprocal best blast hits where the reference gene has a virulence factor 

annotation are then used to annotate virulence factors in the query genome. L. 
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monocytogenes EGD-e (NC_003210.1) was used as a reference genome for the L. 

monocytogenes data set, and P. aeruginosa PAO1 (NC_002516.2) and PA14 

(NC_008463.1) were used as reference genomes for the P. aeruginosa data set. 

Antimicrobial resistance genes were annotated using the Resistance Gene Identifier (RGI) 

(McArthur et al., 2013), a tool linked to the CARD database which was described in section 

1.4.1. 

2.2.3. Genomic Island detection 

GIs were predicted in both draft and complete genomes using IslandViewer 3 

(Dhillon et al., 2015). For draft L. monocytogenes genomes, reference genomes used for 

contig arrangement were chosen by performing a BLAST search of the longest contig 

against all complete bacterial genomes in RefSeq as of September 18, 2014. Genomes 

within this data set were excluded from the BLAST search in order to simulate a data set 

where the complete genome from the same isolate is not available. For draft P. aeruginosa 

genomes, the complete RefSeq genome separated from a draft genome by the shortest 

total branch length based on a phylogenetic tree of P. aeruginosa genomes generated 

using parSNP (Treangen et al., 2014) was chosen as a reference genome. For this 

analysis, reference genomes were limited to RefSeq genomes that had been complete as 

of March 2015, as these genomes were readily available for use as reference genomes in 

IslandViewer. 

As mentioned in chapter 1, a new version of IslandPath-DIMOB has been 

developed and will soon be incorporated into IslandViewer. In order to incorporate the 

most recent version of the IslandViewer prediction methods into this analysis, IslandPath-

DIMOB results from IslandViewer were replaced with output from the most recent version 

of this method. 



 

32 

2.3. Draft Listeria monocytogenes genomes 

2.3.1. The data set 

The main data set for this analysis consists of 36 L. monocytogenes isolates where 

both the original shotgun sequencing reads, and the subsequently completed genome 

sequences from the same isolate, were provided by the Public Health Agency of Canada. 

Two of these genomes had been previously analyzed (Gilmour et al., 2010) and can be 

found on GenBank with the accession numbers NC_013766.2 and NC_013768.1. The 

other 34 genomes are expected to be released on GenBank soon. These genomes are 

all from clinical isolates from across Canada, and were isolated over many years ranging 

from 1981 to 2010.  They were sequenced using the Illumina MiSeq platform, with 250 bp 

paired end reads and an insert size of 0 bp. Complete genomes were obtained by 

sequencing select regions with Sanger sequencing in order to bridge gaps between 

contigs. 

Each draft genome was assembled using SPAdes (Bankevich et al., 2012), which 

was chosen because multiple assembly evaluations determined that SPAdes had the best 

performance with bacterial genomes (see section 2.1.1). SPAdes produced high quality 

draft genome sequences. The average number of contigs in these draft genomes was 66 

(the range was 23-231 contigs). The average number of contigs greater than 1000 bp, 

which is considered a better reflection of genome quality than the total number of contigs, 

was 14 (the range was 10-24 contigs). The average N50 was 534 kb (the range was 297 

kb to 1.5 Mb). The average percentage of CDSes missing from the draft genomes was 

0.65%, but it should be noted that most draft genomes were missing between 0.097% and 

0.61% of their total CDSes. A single draft genome, 0861, was missing 10% of CDSes. 

This genome had an N50 of 561125 bp and contained 12 contigs greater than 1000 bp, 

but not all of these contigs could be aligned to the complete genome. This may be due to 

errors during sequence assembly. This is an example of how N50 and number of contigs 

are imperfect measures of genome quality.   
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Figure 2.1 Average GC content of the 36 Listeria monocytogenes complete 
genomes, draft genomes, and regions missing from draft genomes. 
Standard deviation in GC content of each region type is shown. 

The average genome size for this data set was 2.98 ± 0.04 Mb. The average GC 

content was 37.97 ± 0.02%. GC content of the draft genomes were similar but slightly 

lower, with an average of 37.86 ± 0.02%. Regions missing from the draft genomes, 

however, had a higher GC content at 48 ± 2%. A comparison of these values is shown in 

figure 2.1. While there was little variation in GC content of missing regions across 

genomes, there was more variation in GC content of the individual missing regions within 

a single draft genome. Figure 2.2 shows the GC content of the regions missing from 

genome 95-0093. 
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Figure 2.2 Regions missing from a single Listeria monocytogenes draft 
genome (95-0093) and the GC content of those regions. 

In order to simulate a project where only draft genomes are available, complete 

genomes from this set of 36 isolates were not used as reference genomes in IslandViewer 

(more details about IslandViewer analysis are described in section 2.5). Reference 

genomes for IslandViewer analysis were chosen by performing a MegaBLAST alignment 

of the largest contig from each draft genome against all complete bacterial genomes in 

GenBank, excluding genomes from this data set. Table 2.1 shows the reference genomes 

used for IslandViewer analysis. 

Table 2.1 Listeria monocytogenes genomes used as a reference for 
IslandViewer analysis 

Listeria Genome Name Similar Reference 

95-0093 NC_018593.1 

88-0478 NC_018593.1 

81-0558 NC_021825.1 

81-0592 NC_021825.1 

10-0809 NC_021825.1 

10-0810 NC_021824.1 

10-0811 NC_021824.1 

10-0812 NC_017544.1 

10-0813 NC_017544.1 

10-0814 NC_018593.1 
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10-0815 NC_021837.1 

81-0861 NC_021825.1 

10-0933 NC_021837.1 

10-0934 NC_021837.1 

10-1046 NC_018593.1 

10-1047 NC_018593.1 

02-1103 NC_019556.1 

02-1289 NC_019556.1 

10-1321 NC_021837.1 

02-1792 NC_019556.1 

98-2035 NC_018593.1 

10-4754 NC_021837.1 

10-5024 NC_018593.1 

10-5025 NC_018588.1 

10-5026 NC_018588.1 

10-5027 NC_018588.1 

04-5457 NC_018593.1 

02-5993 NC_018593.1 

08-6056 NC_021837.1 

99-6370 NC_018593.1 

08-6569 NC_021837.1 

02-6679 NC_021824.1 

02-6680 NC_021824.1 

08-6997 NC_021837.1 

08-7374 NC_018593.1 

08-7669 NC_018593.1 

2.3.2. Genes of interest 

AMR gene homologs and VF orthologs were detected in each of the 36 complete 

L. monocytogenes genomes, and 11 ± 6 AMR genes were predicted per complete 

genome. For all but one of the genomes, every AMR gene was present in the draft 

genome. A single draft genome, L. monocytogenes 02-1792, was missing one of the 18 

genes detected in the complete genome. The missing gene was predicted to encode an 

efflux pump that confers resistance to macrolides. This family of efflux pumps was first 
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discovered in Streptomyces  and belongs to a larger family of ATP-dependent transport 

proteins (Schoner et al., 1992). For each of the 36 genomes, the proportion of missing 

AMR genes was lower than the proportion of all CDSes missing from the draft. However, 

the difference between these proportions is not statistically significant based on two tailed 

Z-test. The complete genomes contained 64 ± 6 predicted VFs per genome. Every VF 

was present in the draft version of each genome, so as with predicted AMR genes, the 

proportion of missing VFs was lower than the proportion of all CDSes missing from the 

draft for each of the 36 genomes. Similar to AMR genes, the difference between these 

proportions is not statistically significant different based on a two tailed Z-test. Figure 2.3 

shows a box plot representation of the AMR genes and VFs missing from the Listeria draft 

genomes.  

tRNA genes were also assessed as a gene of interest because of their association 

with MGEs (see section 1.2). Each of the complete Listeria genomes has exactly 58 tRNA 

genes in their PROKKA annotations, and all except one of the draft Listeria genomes was 

missing 4 of those tRNA genes, or 6.9%. The genomic locations and annotations of the 

missing tRNA genes in each genome were assessed manually, and different sets of 4 

tRNA genes were missing from different draft genomes. The single exception is L. 

monocytogenes 81-0861, which is also the genome whose draft version is missing a larger 

percentage of total CDSes. The draft version of this genome was missing 24 tRNA genes, 

or 41.4%. This genome brought up the average percentage missing to 7.7%. When 

compared to the percentage of CDSes missing from the draft versions of these genomes, 

the difference is not only statistically significant as a whole, but it is statistically significant 

in each individual genome (p < 10-5). 
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Figure 2.3 Box plot of the percentage of genes in a complete genome that are 
missing from the draft version of the same genome. A single outlier 
is shown on a separate plot above the main box plot. 
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2.3.3. COG analysis 

 

Figure 2.4 Distribution of COG superfamilies amongst CDSes in complete 
Listeria monocytogenes genomes, and amongst CDSes that are 
present or missing from the draft versions of these genomes. 
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Figure 2.5 Distribution of COG superfamilies amongst CDSes in complete 
Listeria monocytogenes genomes, and amongst CDSes that are 
present or missing from the draft versions of these genomes. This 
figure includes CDSes which could not be assigned to a COG 
category. 



 

40 

COG categories were assigned to CDSes in the 36 complete L. monocytogenes 

genomes, and 82.1 ± 9.7% of CDSes were able to be assigned to a COG category. The 

distribution of COG superfamilies among the assigned CDSes is shown in purple in Figure 

2.4. The distribution of COG superfamilies were also measured in regions missing from 

the draft version of Listeria genomes to determine whether there is a bias in COG 

categories in these missing regions. If there was no bias in gene coverage, the distribution 

of proportion would be expected to be equivalent. The distribution of COG superfamilies 

among assigned CDSes in missing regions is shown in red in figure 2.4. This figure is 

meant to be analogous to a previously produced figure from another group showing the 

distribution of COG superfamilies amongst partially covered ORFs (Klassen & Currie, 

2012). In that case, replication, recombination and repair, signal transduction 

mechanisms, and secondary metabolites biosynthesis were the overrepresented 

superfamilies among partially covered ORFs in 25 draft Streptomyces genomes. 

In order to show standard deviation, the proportions in the Figure 2.4 are the 

means of the proportions for the 36 Listeria genomes. Using an average proportion across 

36 genomes potentially creates a bias towards genes missing from higher quality 

genomes; if a draft genome is missing 10 genes, each missing gene will affect the average 

proportion 10-fold more than a gene in a draft genome which is missing 100 genes. To 

avoid this bias, proportions that were used to test for statistical significance were 

calculated from the sum of genes from each of the 36 Listeria genomes for each 

superfamily.  

Because a large proportion of CDSes in missing regions were not assigned to a 

COG category, superfamilies which are overrepresented amongst assigned CDSes may 

not be overrepresented amongst CDSes as a whole. Figure 2.5 shows the distribution of 

CDSes in complete genomes and regions missing from draft genomes. Unlike Figure 2.4, 

the distributions in Figure 2.5 include CDSes which were not assigned to any COG 

category. Being overrepresented only amongst assigned CDSes may still be meaningful; 

the distribution of gene functions amongst unassigned CDSes is unknown, and could 

mirror the distribution of genes with predicted functions. Metagenomics studies have 

compared distributions of assigned COGs across data sets (Gosalbes et al., 2011; 

Kurokawa et al., 2007), although in the case of a metagenomics study, different 
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proportions of unassigned COGs could be due to uncharacterized species, and this 

explanation does not apply here. 

 Using Fisher’s exact test, replication, recombination, and repair was the only 

superfamily which was overrepresented in regions missing from the complete genomes (p 

= 4.76 x10-18). This superfamily was significantly overrepresented even after a Bonferroni 

correction for multiple sample testing. The majority of CDSes missing from this superfamily 

were assigned to the Transposase and inactivated derivatives category, COG2801 

(69/80), and the vast majority of genes assigned to this COG category were missing from 

draft genomes in this data set (69/71). 

Unassigned CDSes were also significantly overrepresented in regions missing 

from draft genomes even after a Bonferroni correction (p = 4.89 x10-66). In total, 1.6% of 

unassigned CDSes were missing from the set of draft L. monocytogenes genomes, and 

63 ± 4% of all missing CDSes were unassigned. The majority of these unassigned CDSes 

were annotated as conserved hypothetical proteins by PROKKA (173/297). A similar 

analysis of COG categories that were overrepresented in GI regions has previously been 

performed (Hsiao et al., 2005). Notably, CDSes which could not be assigned to a COG 

category and those assigned to the replication, recombination, and repair superfamily 

were also found to be the two overrepresented groups in GIs. 

2.4. Draft Pseudomonas aeruginosa genomes 

2.4.1. The data set 

The P. aeruginosa data set for this analysis is from the Pseudomonas aeruginosa 

reference panel. This panel was developed in order to represent the diversity of the 

species, and has a mix of older, commonly studied isolates and more recently isolated 

strains. The panel consists of 40 P. aeruginosa strains isolated around the world from both 

clinical and environmental samples (De Soyza et al., 2013). The genomes of these 

isolates were produced using various sequencing technologies and assembly algorithms, 

and seven of the genomes are complete. Draft genome data is available for two complete 

genomes, both of which were sequenced using pyrosequencing technology and 
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completed by Sanger sequencing of genomic regions between contigs (Jeukens et al., 

2014). 

 

Figure 2.6 Phylogenetic tree that was used to identify complete genomes that 
are closely related to draft panel genomes. Figure is from Freschi et 
al, 2015 (Freschi et al., 2015) and is licensed under CC BY. 

To increase the sample size of matching draft and complete genomes, a 

phylogenetic tree of P. aeruginosa genomes produced using parSNP (Treangen et al., 

2014) was parsed to find the closest complete genome to each draft genome in the 

reference panel. Based on the distribution of distances from panel genomes to the nearest 

complete genomes, the maximum distance between a draft genome and the complete 

genome used for comparative analysis was set to 0.01. Due to the timing of the analysis, 

some complete genomes were not available to use as a reference for IslandViewer 

analysis (Dhillon et al., 2015), so a similar search of the phylogenetic tree was done to 

identify the most similar complete genome available to use as a reference in IslandViewer. 

In total, 11 of the 40 panel genomes met the requirements for this analysis, including the 

two complete genomes for which draft data is still available.  
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Figure 2.7 Graph showing distances of Pseudomonas aeruginosa draft panel 
genomes from the nearest complete genome. CPHL9433, which had 
a distance of 1.8353 from any complete genome, was excluded from 
this figure for clarity. Genomes are listed in ascending order of 
distance from the closest complete genome. 

The sources of the 11 genomes used for this analysis include seven isolates from 

cystic fibrosis patients, one from the parent of a cystic fibrosis patient, and three other 

clinical, non-cystic fibrosis samples. The nine genomes for which there is no complete 

genome from the same isolate were all sequenced using Illumina MiSeq, with a TruSeq 

paired-end 2x300 library. The other two genomes, which were sequenced earlier and have 

since been completed were sequenced using 454 GS-FLX Titanium (Jeukens et al., 

2014). The N50 of all 11 genomes used ranges from 200 kb to 479 kb. The percentage of 

CDSes absent from these genomes but present in the most similar complete genome 

ranged from 0.26% to 9.27%, with an average of 2%.  
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This analysis is part of a much larger project to analyze the genomes of the 

Pseudomonas aeruginosa panel strains. Careful analyses of these 40 strains, which 

represent the diversity of the species, will lead to a better understanding of P. aeruginosa 

evolution. The assessment of draft genomes described here is meant to provide support 

for the use of draft genomes in the broader panel genome project.  

Table 2.2 Pseudomonas aeruginosa genomes used for draft analysis 

Panel Genome Complete Reference Complete Reference for 
IslandViewer Analysis 

15108-1 NZ_CP011369.1 NC_017549.1 

1709-12 NZ_CP011317.1 NZ_CP010555.1 

679 NC_021577.1 NC_021577.1 

AMT0023-30 NZ_AAQW01000001.1 NZ_AAQW01000001.1 

AMT0023-34 NZ_AAQW01000001.1 NZ_AAQW01000001.1 

AMT0060-1 NZ_CP010555.1 NZ_CP010555.1 

AMT0060-2 NZ_CP010555.1 NZ_CP010555.1 

AMT0060-3 NZ_CP010555.1 NZ_CP010555.1 

KK1 NZ_CP008749.1 NZ_CP007147.1 

LES400 NZ_CP006982.1 (same isolate) NC_023066.1 

LES431 NC_023066.1 (same isolate) NC_023066.1 (same isolate) 

A significant limitation to the P. aeruginosa data set in comparison to the L. 

monocytogenes data set is that the majority of the draft genomes do not have complete 

genomes from the same isolate to be used as a reference. This means that the results 

may be impacted by actual differences between isolates. The analysis is restricted to draft 

genomes and complete genomes from very closely related isolates in order to reduce the 

impact of this limitation. However, in section 2.3, and again in this section, it is found that 

regions associated with mobile elements are more prevalent in regions missing from draft 

genomes.  Since differences in mobile elements can be present even between strains that 

are very closely related in a core genome phylogenetic tree (Hao & Golding, 2006), not 

having complete genome sequences from the same isolates to use as references greatly 

limits the strength of this study in the P. aeruginosa data set. For this reason, the P. 

aeruginosa data set should be considered a secondary, supporting data set to the main 

analysis that was performed using L. monocytogenes data. 
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2.4.2. Genes of interest 

AMR gene homologs and VF orthologs were detected in the 8 complete P. 

aeruginosa genomes listed in the middle column of table 2.2, and the coordinates of these 

homologs were compared with regions missing from a draft genome of a similar or 

identical isolate, which is listed in the left column of table 2.2. The complete genomes 

contained 46 ± 5 predicted AMR genes per genome. Five draft genomes were missing 

one AMR gene each, while the other six draft genomes contained all of the AMR genes 

found in their most similar complete genome, bringing the average percentage of AMR 

genes missing from drafts to 1 ± 1%. The complete genomes contained 150 ± 40 VF 

orthologs per genome. The percentage of VFs that were missing from draft genomes was 

also 1  ± 1%. The proportion of AMR genes was not significantly different from the total 

proportion of CDSes, but the proportion of VFs missing from draft Pseudomonas genomes 

was significantly lower than the total proportion of missing CDSes (P < 10-5). Figure 2.8 

shows a box plot representation of the AMR genes and VFs missing from the 

Pseudomonas draft genomes. 

Unlike the Listeria data set, tRNA gene annotations for the Pseudomonas data set 

were extracted from RefSeq annotations which use the NCBI Prokaryotic Genome 

Annotation Pipeline including tRNAscan-SE for tRNA predictions (Lowe & Eddy, 1997). 

The prediction method used is for tRNA genes is not expected to a significant impact on 

the results. As with the Listeria data set, tRNA genes were significantly overrepresented 

in regions that were not present in draft genomes. Complete Pseudomonas genome 

annotations contained 69 ± 6 tRNA genes per genome, and 11 ± 3% of these genes were 

in regions that were not present in the draft genomes. When compared to the percentage 

of CDSes missing from the draft genomes, tRNA genes are strongly overrepresented in 

missing regions (P < 10-5). 

It should be noted that multiple draft genomes are being compared to a single 

complete genome for this data set, and complete genomes which are used as a reference 

for more than one draft may have a larger impact on the results (see Table 2.2). 
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Figure 2.8 Box plot showing, for several gene types, the percentage of genes 
that are missing from draft Pseudomonas aeruginosa genomes. 
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2.4.3. COG analysis 

 

Figure 2.9 Distribution of COG superfamilies amongst CDSes in complete 
Pseudomonas aeruginosa genomes, and amongst CDSes that are 
present or missing from draft genomes of very similar or identical 
isolates. 
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Figure 2.10 Distribution of COG superfamilies amongst CDSes in complete 
Pseudomonas aeruginosa genomes, and amongst CDSes that are 
present or missing from draft genomes of very similar or identical 
isolates. This figure includes CDSes which could not be assigned to 
a COG category. 
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COG categories were assigned to CDSes in the 8 complete P. aeruginosa 

genomes listed in the middle column of table 2.2, and 80 ± 2% of CDSes were able to be 

assigned to a COG category. The distribution of COG superfamilies among the assigned 

CDSes is shown in purple in Figure 2.9, but it should be noted that because this is meant 

to be compared to regions missing from the draft Pseudomonas genomes, 

NZ_AAQW01000001.1 was counted twice and NZ_CP010555.1 was counted three times 

towards towards the average and standard deviation values in the figure (see table 2.2). 

The distribution of COG superfamilies among assigned CDSes in regions missing from 

draft Pseudomonas genomes is shown in red in Figure 2.9. 

As with the Listeria data set, the only COG superfamily that was significantly 

overrepresented in missing regions was the replication, recombination, and repair 

superfamily (p=7.94e-29). CDSes which could not be assigned to a COG category were 

also overrepresented in regions missing from draft genomes (p = 2.32e-180). Significance 

was tested using Fisher's exact test, similarly to the L. monocytogenes data set as 

described in section 2.3.3. They were both still significantly overrepresented after the 

Bonferroni correction for multiple sample testing. In total, 8% of unassigned CDSes were 

missing from the set of draft Pseudomonas genomes compared to the most similar 

complete genomes, and 30 ± 20% of all missing CDSes were unassigned for each 

genome. 

As with the Listeria data set, because a large proportion of CDSes in missing 

regions were not assigned to a COG category, superfamilies which are overrepresented 

amongst assigned CDSes may not be overrepresented amongst CDSes as a whole. The 

distribution of COG superfamilies among all CDSes, including those which could not be 

assigned to a COG category, is shown in Figure 2.10. The cell wall, membrane, and 

envelope biogenesis and intracellular trafficking, secretion, and vesicular transport 

superfamilies represent a higher proportion of assigned CDSes in missing regions, as 

shown in figure 2.9, but were not found to be significantly overrepresented using the 

measurement of CDSes described in 2.3.3. Some superfamilies are, in fact, significantly 

underrepresented.  
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2.5. Genomic islands and contig boundaries 

2.5.1. Method overview 

To assess GI predictions in draft genomes, the GI predictions in draft genomes 

were compared with GI predictions in complete genomes. The flowchart below outlines 

the information used for the comparison. Draft genome GI predictions were mapped to  

coordinates in the complete genome using MegaBLAST, using requirements similar to 

those used to align contigs to the complete genome (this was described in section 2.2.1), 

but with less strict limits on alignment length variation. For GIs, the alignment had to cover 

a minimum of 75% of the GI sequence length, and have gaps of no more than the length 

of the GI sequence (these limits on alignment length and identity were chosen empirically 

through manual assessment of a range of limits).   

 

Figure 2.11 Flowchart illustrating basic pipeline for assessment of draft 
genomes with IslandViewer 

True positives, false positives, and false negative (TP, FP, FN) GI predictions were 

calculated in two different ways: a 50% overlap method, and a per-base method. For the 

50% overlap method, each GI that is predicted in both the draft and complete genome is 

counted as a TP, and a GI is considered to be the same if the prediction in the draft 

genome and complete genome overlap by at least 50% of their lengths. FPs are GIs 

predicted only in the draft genome, and FNs are genomic islands predicted only in the 

complete genome, and these are both determined by having less than a 50% overlap with 

GIs in the other version of the equivalent genome. For the per base method, each base in 

the genome (as opposed to each GI) may be a TP, FP, FN, or TN (true negative).  Each 

base that is predicted to be a GI in both the complete and draft genome is a TP. Bases in 
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the complete genome that are predicted to be an island but are not predicted in the draft 

genome are FNs, and bases that are predicted to be GIs in the draft genome but are not 

predicted to be GIs in the complete genome are FNs. Bases that are predicted to be GIs 

in neither the draft nor complete version of a genome are TNs. After using either method 

to calculate TP, FP, and FN, precision and sensitivity were calculated using the equations 

below. 

precision = TP / (TP + FP) 

sensitivity = TP / (TP + FN) 

accuracy = (TP + TN) / (TP + TN + FP + FN) 

It is important to note that IslandViewer GI predictions in the complete genome are 

not equivalent to the true set of GIs in each genome. Like every GI prediction method, the 

methods in IslandViewer may make incorrect predictions or fail to predict true islands, 

even when using a complete genome as input. This is true even though IslandViewer uses 

three of the most accurate GI prediction methods (Dhillon et al., 2015). See section 1.3 

for more information about GI prediction methods. For the purposes of this analysis, 

IslandViewer predictions are being treated as TPs for two reasons. First, it is outside the 

scope of this thesis to experimentally verify the locations of true GIs (such as activation of 

bacteriophages by exposing cells to mitomycin (van Schaik et al., 2010)) within the 

genomes of each isolate in the Listeria and Pseudomonas data sets. Second, as this is 

an assessment of the utility of draft genomes vs. complete genomes, it is more 

straightforward to compare IslandViewer predictions in draft genomes vs. IslandViewer 

predictions in complete genomes, rather than comparing IslandViewer predictions in both 

draft and complete genomes vs. experimentally verified GIs. 

2.5.2. GenomeD3Plot visualizations 

GenomeD3Plot is a javascript library built using the D3 library (Laird et al., 2015). 

Originally developed for IslandViewer (the incorporation of GenomeD3Plot into 

IslandViewer is described in more detail in section 3.5), GenomeD3Plot is a flexible tool 

for producing genome visualizations that incorporate various genome features such as 
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genomic islands, gene content, and GC content. GenomeD3Plot was used to generate 

visualizations of contigs aligned to complete genomes, overlaid with GI predictions for the 

complete genome and equivalent draft genome. 

Two types of GenomeD3Plot JSON scripts were automatically generated for each 

draft-complete genome pair, and these scripts were used to produce two distinct 

visualizations. The first, more complex, visualization displays GIs predicted by each 

method in IslandViewer, and displays the alignment of each contig to the complete 

genome. The second, simplified visualization displays integrated GI predictions and 

regions missing from the draft genome. 

Two example genomes are shown here: L. monocytogenes 95-0093 and P. 

aeruginosa LES431. In the Pseudomonas example, an IslandPath-DIMOB prediction in 

the draft genome with the coordinates 4878834-4910304bp is shown as not matching in 

the more complex visualization that separates predictions by method, but because SIGI-

HMM predicts the GI at that location in the complete genome, the GI is labelled as 

matching in the simplified visualization. This is an example of the benefits of using multiple 

GI prediction tools, as multiple tools are able to complement each other (Langille et al., 

2008a). Both examples have locations where GI predictions overlap with regions missing 

from the draft genome. The plots are useful for quickly interpreting the relative locations 

of GIs and contig breaks, and possible relationships between the two. This relationship 

was assessed quantitatively as well, and this assessment will be discussed in the following 

two sections. 
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Figure 2.12 Example: visualization of GI predictions in Listeria monocytogenes 
95-0093. Draft predictions are displayed on the outer ring, and 
predictions in the complete genome are displayed on the inner ring. 
Matching GI predictions were predicted in both the draft and 
complete genome. When SIGI-HMM and IslandPath-DIMOB 
predictions overlap, it produces a cyan colour. GI predictions on or 
near regions absent from the draft were not predicted in the draft 
genome. 
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Figure 2.13 Example: simpler visualization of GI predictions in Listeria 
monocytogenes 95-0093. 
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Figure 2.14 Example: visualization of GI predictions Pseudomonas aeruginosa 
LES431. Draft predictions are displayed on the outer ring, and 
predictions in the complete genome are displayed on the inner ring. 
Matching GI predictions were predicted in both the draft and 
complete genome. 
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Figure 2.15 Example: Simpler visualization of GI predictions in Pseudomonas 
aeruginosa LES431. This visualization shows that the GI at 4,878,834 
bp was correctly predicted. 

2.5.3. Listeria monocytogenes results 

Results for the comparison of GI prediction in draft and complete GI predictions 

are shown in Table 2.3. Note that IslandPath-DIMOB results are from a new version that 

will be released with a new version of IslandViewer, rather than the version of IslandPath-

DIMOB that is included in the current version of IslandViewer described in the next 

chapter. Sensitivity and precision for each GI prediction method, and for both of the 

measurements described in 2.5.1, are shown. Although accuracy can be calculated with 

the per base measurement of TNs, it was found that accuracy was always close to 1 

because of the high number of TNs, and was not informative. Both methods have very 

high precision, and SIGI-HMM has high sensitivity. While IslandPath-DIMOB has a lower 

sensitivity, it is still high enough to be in line with other GI prediction methods for complete 

genomes (Langille et al., 2008a). Sensitivity and precision of IslandViewer predictions 
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were compared with N50 for each of the L. monocytogenes genomes, as shown in figures 

2.16 and 2.17. No clear link between N50 and sensitivity or precision was found for this 

data set, but this may have been because all of the genomes were of relatively high quality, 

and each genome had a high N50. 

Table 2.3 GI prediction sensitivity and precision for draft Listeria 
monocytogenes genomes 

  Sensitivity Precision 

SIGI-HMM 50% overlap 0.9867 1.0000 

per base 0.9292 0.9712 

IslandPath-DIMOB 50% overlap 0.7627 0.9864 

per base 0.8210 0.9585 
  



 

58 

 

Figure 2.16 Graph of N50 vs precision for GI predictions in the Listeria 
monocytogenes data set. Each point represents predictions from 
one method for one genome. No correlation was observed. 

 

Figure 2.17 Graph of N50 vs sensitivity for GI predictions in the Listeria 
monocytogenes data set. Each point represents predictions from 
one method for one genome. No correlation was observed. 
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To determine whether there is a relationship between IslandViewer performance 

and gaps in draft genomes, IslandViewer predictions in the complete L. monocytogenes 

genomes were binned according to how close they were to the edge of a contig in the 

draft genome, and this grouping is shown in Figure 2.18.  This was done with combined 

SIGI-HMM and IslandPath-DIMOB predictions for the 36 complete genomes, where 

overlapping predictions were combined to form a single GI prediction. If a GI prediction 

overlapped with the edge of a contig, including overlapping with regions not covered in 

the draft genome, the distance from a contig edge was considered to be 0. GIs were also 

separated according to whether they were correctly predicted in the draft genome, based 

on the 50% overlap method described in section 2.5.1. This separation of GIs correctly 

predicted or missed in draft genome analysis is also shown in Figure 2.18. While not all 

GI predictions occur where there are gaps in the draft version of a genome, and not all GI 

predictions that occur at these gaps are missed, a non-negligible proportion of GIs do 

occur at these gaps, and these GIs were missed more often in draft genome analysis than 

those which are further away from gaps for this data set. 

 

 

Figure 2.18 Integrated GI predictions in complete Listeria monocytogenes 
genomes, binned by distance from a contig edge in the draft 
genome, and by whether the GI was correctly predicted in the draft 
genome. 
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Figure 2.19 shows the IslandViewer interface, which will be described in detail in 

section 3.4.2, zoomed in on a GI which was detected in the complete L. monocytogenes 

08-7669 genome, but missed in the draft version of the genome. The circular view shows 

the whole genome (with the zoomed in region denoted by black dots), and the zoomed in 

region is shown in the linear view. Note that because the new version of IslandPath-

DIMOB is not yet integrated into the IslandViewer interface, this image shows IslandPath-

DIMOB predictions made using IslandViewer 3. The highlighted GI is also predicted in the 

most up-to-date version of IslandPath-DIMOB. Two contig edges are contained within this 

GI prediction: one at 2778324 bp and the other at 2779323 bp (not shown). This likely 

contributed to the GI being missed in the draft genome. This example is also notable 

because the contig edges are occurring at the locations of two transposases within the GI. 

 

Figure 2.19 An example of a GI that was missed during draft genome analysis in 
the IslandViewer interface. The blue bands signify IslandPath-
DIMOB predictions. Two contig edges and two transposase genes 
are contained within the GI. 
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2.5.4. Pseudomonas aeruginosa results 

Results for the comparison of GI prediction in draft and complete GI predictions 

are shown in Table 2.4. Sensitivity and precision for each GI prediction method, and for 

both of the measurements described in 2.5.1, are shown. Sensitivity and precision for 

each method is lower than for the L. monocytogenes data set. This is might be because 

most draft genomes are not being compared with a complete genome from the same 

isolate, and the accessory genomic structure of P. aeruginosa is highly diverse 

(Klockgether et al., 2011). Differences between draft and complete genomes being 

compared here may be due to true differences between isolates, as opposed to errors or 

missing regions in the draft genome.  

Table 2.4 GI prediction sensitivity and precision for draft Pseudomonas 
aeruginosa genomes 

  Sensitivity Precision 

SIGI-HMM 50% overlap 0.5543 0.7588 

per base 0.5346 0.6979 

IslandPath-DIMOB 50% overlap 0.5959 0.8275 

per base 0.5919 0.8158 

IslandViewer predictions from complete P. aeruginosa genomes were binned 

according to how close they were to the edge of a contig in the draft genome, similarly to 

the binning of L. monocytogenes GI predictions described in the previous section, and  

this binning is shown in Figure 2.20. This figure reflects the low overall sensitivity of 

IslandViewer for the Pseudomonas data set, but it also shows that, like in the Listeria data 

set, many GI predictions overlap with contig edges in this data set. Note that, as mentioned 

in previous sections, GI predictions from some complete Pseudomonas genomes are 

counted multiple times because they are being compared to more than one draft genome. 
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Figure 2.20 Integrated GI predictions in complete Pseudomonas aeruginosa 
genomes, sorted by distance from a contig edge in the draft 
genome, and by whether the GI was correctly predicted in the draft 
genome. 

2.5.5. Antisense transcription 

An additional analysis of GIs was performed on Citrobacter rodentium and 

Helicobacter pylori. Directional RNA-Seq data was used to perform a genome-wide 

assessment of cis-antisense transcription in GIs. Normal sequencing preparation 

protocols include an amplification step that leads to a loss of strand-specific information in 

RNA-Seq libraries. There are multiple methods for directional RNA-Seq which use 

sequencing preparation protocols that maintain strand specificity (Mamanova et al., 2010; 

Ozsolak et al., 2009; Wu et al., 2008). The data sets were downloaded from the NCBI 

SRA database (the SRA Study IDs are ERP000493 for the Citrobacter rodentium data set 

and SRP001481 for the Helicobacter pylori  data set). At  the time of the analysis, there 

were very few directional RNA-Seq data sets, so the species examined were chosen 

based on the availability of data. 

dRNA-Seq reads were aligned to a reference genome with Bowtie (Langmead et 

al., 2009), GIs were predicted using IslandViewer (Dhillon et al., 2013), and ORFs were 
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predicted in the reference genome using Glimmer (Delcher et al., 1999). A custom script 

was used to determine the percentage of ORFs with above average antisense 

transcription inside GIs vs. outside of GIs. There was no increase in antisense 

transcription in predicted GIs for either of the data sets examined. This result does not 

support the hypothesis that antisense transcription occurs disproportionately in GI regions. 

Table 2.5 Percentage of ORFs with antisense transcription in each data set, 
both inside and outside of GIs 

 GIs non-GI regions 

Citrobacter rodentium 0.1938 0.8061 

Helicobacter pylori 0.0123 0.0137 

2.6. Listeria vs. Pseudomonas analysis: common 
characteristics 

Both the Listeria and Pseudomonas data sets consisted of high quality draft 

genomes, with high N50 values and a high percentage of total CDSes included in the draft. 

All of the Listeria genomes, and most of the Pseudomonas genomes, were sequenced 

using Illumina short read sequencing technology. The two sets of draft genomes also have 

similar biases in terms of what they were missing. Both data sets found that VFs and AMR 

genes are not overrepresented in missing regions. In the Pseudomonas data set, VFs 

were even found to be underrepresented in these missing regions. These results are 

promising for the use of WGS for clinical and epidemiological purposes. That being said, 

any researcher, clinician, or epidemiologist that works with draft genome data should 

always be aware that it is possible for a gene of interest to be missing from a draft genome. 

In both data sets, tRNA genes and CDSes assigned to the replication, 

recombination, and repair superfamily are significantly overrepresented in regions missing 

from draft genomes. CDSes which could not be assigned to a COG category are also 

highly overrepresented in missing regions of draft genomes in both data sets. No other 

COG superfamily was overrepresented in either data set, although as discussed in 2.4.4, 

this may be due the extremely high proportion of unassigned CDSes. These 

overrepresented groups are of particular interest because they are all associated with GIs 

(Hsiao et al., 2005). 
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It is unsurprising that tRNA genes are commonly missing from draft genomes; 

tRNA genes are repetitive, which makes them more difficult to sequence. The generalized 

structure of tRNA can be described as a cloverleaf, with four loops and at least four stems 

held together by Watson-Crick base pairs (Holley et al., 1965). Therefore, tRNA genes 

contain multiple pairs of sequences which are reverse complementary to each other, with 

one pair for each stem. This pattern of reverse complementary sequences can be used to 

computationally predict tRNA genes in DNA sequences (Marvel, 1986). tRNA genes also 

have high sequence similarity to each other, and can cluster together (Vold, 1985). 

Repetitive genomic regions are more difficult to sequence (see section 1.1.3). 

Repetitiveness both within and between tRNA genes may both be contributing to the low 

coverage of tRNA genes in draft genomes. 

GIs were able to be predicted well in the L. monocytogenes draft genomes, but 

less well in the P. aeruginosa data set. However, analysis of the Pseudomonas data set 

was limited by not having complete genomes from identical isolates for comparison. In 

both data sets, a large number of GI predictions overlap with contig edges or regions that 

are missing from draft genomes, and in the Listeria data set these GIs were less likely to 

be correctly predicted in draft genomes. When performing comparative genomics analysis 

of GI regions, it is useful to note that GIs which are present in an isolate’s genome may 

be hidden by a sequence gap. 

Results of this GI analysis may be biased due to the GI prediction tools in 

IslandViewer. In particular, IslandPath-DIMOB only reports GIs which contain a mobility 

gene such as a transposase, and transposases are disproportionately missing from draft 

genomes. Different GI prediction tools focus on different compositional biases (see section 

1.3.1) and could identify different GIs with characteristics that make them more or less 

likely to be missing from draft genomes. Also, the current version of IslandPath-DIMOB 

does not incorporate a method to optimize prediction boundaries, and this may have an 

impact on the results of this analysis. Differing boundaries of GI predictions that are 

otherwise in agreement between draft and complete genomes have an impact on the “per 

base” method of calculating TPs, FPs, and FNs described in 2.5.1 
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The combined results that some GIs overlap with contig boundaries and missing 

regions, and that tRNA genes and transposases are disproportionately missing from draft 

genomes suggest that complete genomes are ideal, particularly for comparative genomics 

studies of GIs in these species. That being said, IslandViewer still overall performs well 

when using draft genomes as input, at least in the Listeria data set, for which complete 

genomes from identical isolates are available for comparison. The differences between 

the Listeria and Pseudomonas data sets highlight the need for this analysis to be repeated 

on other species of particular interest in the future to ensure that the utility of draft genomes 

for functional analyses is well understood. 
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Chapter 3.  
 
Improving IslandViewer including the ability to 
process draft genomes 

Portions of this chapter have been previously published in the following article 
Dhillon, B. K., Laird, M. R., Shay, J. A., Winsor, G. L., Lo, R., Nizam, F., Pereira, S. 
K., Waglechner, N., McArthur, A. G., Langille, M. G. I., & Brinkman, F. S. L. (2015). 
IslandViewer 3: more flexible, interactive genomic island discovery, visualization and 
analysis. Nucleic Acids Research, 43(W1), W104–8. 
http://doi.org/10.1093/nar/gkv401 

Note: IslandViewer 3 development was led by Bhavjinder Dhillon and Matthew Laird. I 

developed the draft genome analysis pipeline, performed the assessment of IslandViewer 

3 prediction methods, and aided the IslandViewer 3 interface development.  

3.1. Background and rationale 

This chapter describes IslandViewer 3, a major new release of IslandViewer 

software with several updates. IslandViewer is a web-based genomic island (GI) prediction 

tool which incorporates three of the most accurate GI prediction methods: IslandPick, 

IslandPath-DIMOB, and SIGI-HMM (Hsiao et al., 2003; Langille et al., 2008a; Waack et 

al., 2006). For more information about IslandViewer, see section 1.3.4. At the start of this 

project, there was a lack of tools for GI prediction in draft genomes. One tool did exist, but 

the website for this tool was shut down shortly after the research article describing the tool 

was published (Lee et al., 2013). However, there was high demand for a GI prediction tool 

for draft genomes. As described in section 1.1.5, the vast majority of bacterial genomes 

are only being sequenced to the draft stage. Prior to the release of IslandViewer 3, one of 

the most requested features was the ability to analyze draft genomes. To accommodate 

this, IslandViewer now accepts draft genomes as input for its analysis pipeline. 

The other new features in IslandViewer 3 are an upgraded backend, a new 

visualization tool, and updated gene annotations. Upgrades to the IslandViewer backend 

and visualizations in IslandViewer 3 were prompted by the increased number of complete 
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genomes for which IslandViewer stored pre-computed results, and the increased number 

of genomes being uploaded for custom analysis. Due to these updates, IslandViewer 

requires less data storage per genome and will not crash due to a high volume of requests 

for custom analysis. As well as reducing data storage, the dynamic visualization of 

IslandViewer 3 also improves the user experience. Annotations of AMR genes, VFs, and 

pathogen-associated genes were updated and expanded to increase the functionality of 

IslandViewer for the analysis of clinical and epidemiological isolates. 

The main focus of this chapter is the ability of IslandViewer to accept draft 

genomes as input. Other updates in IslandViewer 3, including an updated backend, a new 

visualization tool, and updated annotation, are also described. 

3.2. Draft genome pipeline 

3.2.1. Pipeline overview 

The IslandViewer draft genome pipeline requires an assembled, annotated draft 

genome sequence and a user-selected reference genome as input. The uploaded contigs 

are aligned against the user-selected reference genome using MCM (Rissman et al., 

2009), and then a single concatenated sequence is generated based on this alignment. In 

cases where the reverse complement of a contig is aligned to the reference sequence, the 

reverse complement of that contig is included in the concatenated sequence instead of 

the original contig sequence. Any unaligned contigs are included at the end of the 

concatenated sequence for analysis, but they are clearly labeled as unaligned contigs in 

the IslandViewer output. This ‘concatenated-contigs genome’ is then run through the 

existing IslandViewer pipeline. IslandPick is not run on draft genomes due to the possibility 

of incorrectly oriented contigs (see section 1.3.2 for more information about the IslandPick 

approach). This simple approach allows for the identification of GI predictions in draft 

genomes, with all its caveats. 
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Figure 3.1 Flowchart describing IslandViewer draft genome pipeline 

3.2.2. Contig ordering 

IslandViewer uses the Mauve Contig Mover (MCM) to arrange contigs against a 

reference genome sequence in the draft genome analysis pipeline. MCM was built on the 

framework of Mauve, a multiple genome alignment tool (Darling et al., 2004). Mauve uses 

locally collinear blocks to align multiple genomes. These locally collinear blocks are highly 

similar local sequence alignments which act as anchors around which the rest of the 

sequence is aligned. MCM performs iterative alignments between the set of concatenated 

contigs and the reference genome. After each alignment stage, MCM rearranges contigs 

in order to maximize the lengths of locally collinear blocks. That is, it detects contig edges 

that correspond to locally collinear block edges, and rearranges those contigs such that 

their edges are put together. Contigs may also be converted to their reverse complement 

sequence in order to maximize locally collinear blocks. MCM then repeats the alignment 

and rearrangement steps until no further rearrangements can further optimize the 

alignment. With each alignment stage, MCM produces several output files. The output 

files do not include a single sequence of the concatenated set of contigs, but it does 
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include two files that are used in the concatenation step of the IslandViewer draft genome 

pipeline. The first of these files is a list of contigs with information about their order, 

location, and orientation in the alignment, and the second is an alignment backbone file 

which lists exactly which coordinates in the draft genome aligned to which coordinates in 

the complete reference. The backbone file is used to separate contigs which are aligned 

to the complete reference from those which are not successfully aligned. 

3.2.3. Concatenation 

After MCM determines the optimum arrangement of contigs, a custom Perl script 

is used to produce a concatenated genome sequence in GenBank format. This 

concatenated genome file appears as a single, complete genome sequence to be used 

as input for IslandPath-DIMOB and SIGI-HMM. The locations of individual contigs within 

the concatenated sequence are listed in the annotations of this GenBank file, and this file 

can be downloaded through the IslandViewer interface. Coordinate information for all 

annotations of the original contigs are adjusted accordingly and incorporated into the 

concatenated Genbank file. Contigs which were not aligned to the reference sequence in 

the MCM step are appended to the end of the concatenated sequence. Contigs are 

labelled by their alignment status in the IslandViewer interface (see section 3.5.3 for more 

details about the IslandViewer interface for draft genomes). 

Within the concatenated sequence, contigs are separated by a constant 1000 bps 

of unassigned bases ("n"). An earlier version of the draft genome pipeline contained an 

extra step which calculated specific lengths of unassigned base sequences to separate 

contigs. In this earlier version, the length of sequence separating contigs was set to the 

length of the complete reference sequence which separated the regions that aligned to 

the two adjacent contigs, with a minimum of 3 bp and a maximum of 10 kbp of separating 

sequence. However, the length of separating sequence had no impact on IslandViewer 

predictions in the Listeria monocytogenes draft genome data set described in 2.3.1. The 

switch to a constant length of separating sequence saves an extra computational step, 

and ensures that contig boundaries are easily visible in the IslandViewer interface. Other 

researchers who have produced concatenated contig sequences used a sequence which 

contains stop codons in all six reading frames. This was used to prevent ORFs which span 
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contigs from being detected by annotation tools (Athey et al., 2016), and was determined 

to be unnecessary for the purposes of IslandViewer, because contigs are annotated prior 

to concatenation. 

3.3. Other new features 

3.3.1. Backend upgrades 

Earlier versions of IslandViewer were built upon MicrobeDB (Langille et al., 2012), 

a database of all complete bacterial genomes as downloaded from NCBI 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). As the number of genomes continued to grow, 

the coupled IslandViewer and MicrobeDB database became very inefficient. The new 

version of IslandViewer is completely separated from MicrobeDB and only stores 

information relevant to IslandViewer users. New backend update scripts reflect changes 

in file structure and genome annotations in NCBI, and allow for monthly updates to pre-

computed analyses so that they include new complete bacterial or archaeal genomes. In 

addition to this, IslandViewer can now submit custom analyses with a robust queuing 

system. This improves processing time of custom analyses of existing genomes (for 

example, using different IslandPick comparative genomics criteria) and analysis of new 

user-uploaded genomes, and virtually eliminates the most common errors prevalent in the 

former system. 

3.3.2. Visualization with GenomeD3Plot 

GenomeD3Plot, which was used to create the visualizations described in section 

2.5.2, was developed for IslandViewer 3 as a new genome visualization library based on 

the D3 javascript library (http://www.d3js.org) (Laird et al., 2015). With this new tool, 

interactive circular, horizontal and vertical genome views are provided in IslandViewer for 

both user-uploaded and pre-computed genome analyses. Importantly, GenomeD3Plot is 

able to generate visualizations dynamically, eliminating the need to store pre-computed 

images for every permutation of information to display, as was done previously. This 

greatly improves IslandViewer's ability to handle the increasing number of bacterial and 

archaeal genomes while minimizing storage requirements and provides a richer, more 
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interactive genome browsing experience. Within the three separate views, GI predictions 

are shown, broken down by prediction method, along with annotations of virulence factors, 

antimicrobial resistance genes and pathogen-associated genes. Users can specify which 

GI prediction method and annotations to display, and can select regions in the circular 

view to zoom in or out, which updates the horizontal and vertical genome on the selected 

region. While the horizontal viewer provides a more detailed visual representation of a 

selected region of the genome, the vertical viewer provides text descriptions of the genes 

and gene products located within the genomic region of interest. Both horizontal and 

vertical viewers have their own zoom/navigation features (using a mouse scroll wheel, for 

example over the horizontal view). For pre-computed genome analyses, both viewers 

provide links to the NCBI for any selected gene, or in the case of virulence and 

antimicrobial resistance gene annotations, links are provided to the source of the 

annotation for more information. A side-by-side comparison of two genomes is also 

supported by GenomeD3Plot. Additionally, as users navigate through a genome of 

interest, a page can be ‘saved’ for linking back to selected regions and zoom levels using 

a unique URL. 



 

72 

 

Figure 3.2 The new IslandViewer visualization with GenomeD3Plot, in this example it is showing the chromosome of 
Salmonella enterica subsp. enterica serovar Typhi str. CT18 
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Because of the interactive nature of GenomeD3Plot, IslandViewer 3 also allows 

users to search for particular genes of interest within a genome, and will highlight the 

genes of interest in each view. This function allows users to better navigate through a 

genome of interest. Figure 3.2 shows the GenomeD3Plot visualizations for Salmonella 

enterica subsp. enterica serovar Typhi str. CT18 after searching for a known virulence 

factor, vexE. This gene is focused in all views and highlighted in the vertical panel to easily 

evaluate the GI predictions and annotations of vexE and its neighboring genes. This 

GenomeD3Plot viewer and associated gene search functionality can serve as a broader 

search tool to study a genome of interest at various levels of detail, including virulence, 

resistance or pathogen-associated genes. 

3.3.3. Updated annotations 

In the previous IslandViewer update, 956 antimicrobial resistance gene 

annotations were incorporated from the ARDB (Liu & Pop, 2009). To further improve 

resistance gene annotations, all proteins in IslandViewer 3 precomputed results as of 

November 2014 were analyzed using the most precise version of the previously published 

RGI method for identifying genes involved in AMR (McArthur et al., 2013). The AMR gene 

annotations from ARDB have been curated and incorporated into CARD, thus, these new 

annotations have replaced the previous ARDB annotations in IslandViewer. Exact 

matches to curated antimicrobial resistance genes are denoted as curated resistance 

genes and colored in pink in IslandViewer 3. Any hits that were found within the strict 

criterion are denoted as homologs and are displayed in light pink. Through this analysis, 

antimicrobial resistance gene annotations for pre-computed genomes have been greatly 

expanded from 956 to 28 911 resistance genes, providing an overview of predicted 

molecular antimicrobial resistance profiles for 589 distinct genera available to date in 

IslandViewer. 

The previously published pathogen-associated genes analysis was updated using 

the same methodology as outlined by Ho Sui et al. in 2009 (Sui et al., 2009). The original 

analysis was performed on 631 genomes, of which 298 were pathogens. An update of this 

analysis to include every genome completely sequenced up to September 2014 (and 

available through NCBI) required manual curation of 2794 genomes as either from a 
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pathogen or non-pathogen, using the same criteria accepted in the previous analysis. In 

total, 1277 pathogen and 1517 non-pathogen genomes were compared, to determine the 

set of genes currently specific for pathogen genomes using set criteria, termed pathogen-

associated genes. These pathogen-associated genes have been shown to be 

disproportionately involved in more ‘offensive’ virulence roles such as invasion into a host, 

type III/IV secretion systems, or toxins, rather than defence roles. Such genes are of 

interest since they may represent novel virulence factors under certain conditions. After 

this updated analysis, 18 919 pathogen-associated genes (found in three or more distinct 

genera) were identified and annotated in IslandViewer 3. All results from this analysis are 

also available for reference at http://pathogenomics.sfu.ca/pathogen-associated/2014. 

To aid identification of pathogenicity islands within GI predictions, an expanded 

virulence factor annotation was complete. More than 1600 curated virulence factors were 

annotated in the last release of IslandViewer using the VFDB (Chen et al., 2012). Since 

then, over 8000 additional curated virulence factor gene annotations have been collected 

from the expanded Virulence Factor Database (VFDB), PATRIC (Wattam et al., 2014) and 

Victor's virulence factors (http://www.phidias.us/victors/) and mapped to their 

corresponding proteins in IslandViewer 3. Only a subset of virulence factor annotations 

from PATRIC, those with curated links to literature, were incorporated. These annotations 

are displayed in purple in the genome visualizations. 

However, such curated virulence factors still only cover a limited number of 

genomes and as the number of very closely related genomes sequenced increases, it is 

clear that many of these curated virulence factors should also be annotated in highly 

similar genomes of the same species or serovar. To address this issue, a very 

conservative reciprocal best blast hit (RBBH) approach was used to identify homologs 

(essentially probable orthologs) of curated virulence factor genes using strict criteria: the 

virulence factor annotation transfer was only permitted if the gene occurred within the 

same species, plus the CVTree (Xu & Hao, 2009) distance between the genomes being 

compared was <0.3 (to ensure that annotation transfer did not occur even within a species 

if the genomes were more divergent). Additional filters were placed specifically upon 

genera with notable phenotypic variability within the species, e.g. Salmonella and 

Escherichia genera, such that annotation transfer was only permitted between genomes 
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from the same serovar or strain for such species. Annotations were also only transferred 

if the RBBH BLASTp e-value was lower than 1e–10, plus the sequences shared ≥90% 

sequence identity, plus the BLAST hit (high scoring segment pair) also covered at least 

80% of the query sequence length. These very stringent criteria were selected in order to 

maximize precision/specificity for the annotation of virulence factor gene homologs at the 

expense of recall/sensitivity to ensure annotations would be most likely correct, at the 

expense of missing some. Even though this criteria tends to identify orthologs by widely 

accepted RBBH criteria, they are referred to as homologs in IslandViewer 3 and annotated 

with a different lighter purple color in the genome visualization to highlight that they are 

not confirmed, curated virulence factors. Using this approach, an additional 39 441 

virulence gene homologs in 485 genomes, covering 37 distinct pathogen genera were 

annotated. With this expanded dataset, users can view and explore the presence/absence 

of PAIs in many more genomes than previously, including very closely related genomes 

from different strains of a species which clearly contain the same classic virulence factors 

for that species. Of course, in the end such annotations should always be thought of as 

an initial guide, or hypothesis-generating for more in depth future analysis, due to the 

highly contextual nature of virulence. 

3.4. Implementation into IslandViewer 

3.4.1. Evaluation of GI prediction methods 

During the beta testing phase of the new version of IslandViewer, GI predictions 

from IslandPath-DIMOB and IslandPick were found to be different from those predicted 

using the previous IslandViewer version. These methods were not meant to have been 

changed from the previous version of IslandViewer. IslandPick selects comparison 

genomes to use for GI detection (Langille et al., 2008a), and predicted GIs may differ 

depending on the comparison genomes chosen. Differences in available genomes for 

comparison were a possible cause for the different results observed. However, this cause 

was ruled out by redoing analyses on the previous version of IslandViewer with an updated 

set of genomes available for comparison. The changes in each method were identified, 

and an assessment of each method's performance with and without these changes was 
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performed. The methodology of a previous assessment of GI prediction tools, including 

IslandPath-DIMOB and IslandPick, was used again for this assessment (Langille et al., 

2008a). 

Differences in IslandPath-DIMOB results were due to a switch from HMMER2 to 

HMMER3 for identification of mobility genes. HMMER3 is much faster than HMMER2, and 

is more sensitive but has a slight reduction in specificity (Eddy, 2011). Both versions of 

IslandPath-DIMOB were assessed using the same set of 117 genomes used in the 

previous assessment (Langille et al., 2008a).  Precision, sensitivity, and accuracy were 

calculated using the equations and per-base method described in section 2.5.1. The set 

of positives were the original IslandPick predictions in these genomes, and the set of 

negatives were highly conserved regions. Table 3.1 shows the performance of IslandPath-

DIMOB with HMMER2 and with HMMER3. Accuracy was similar between the two 

versions, but precision was slightly lower and sensitivity slightly higher when using 

HMMER3. This is unsurprising, as this result mirrors the reported differences between 

HMMER2 and HMMER3. Due to its significantly increased speed, HMMER3 continues to 

be used for IslandPath-DIMOB prediction in IslandViewer 3. 

Table 3.1 IslandPath-DIMOB performance using HMMER2 and HMMER3 

 Precision Sensitivity Accuracy 

Results from Original 
IslandViewer 
(HMMER2) 

0.865 0.355 0.862 

Results from 
IslandViewer 3 
(HMMER3) 

0.810 0.386 0.861 

The cause for differences in IslandPick results was identified as a minor change in 

the comparison genome picking algorithm in IslandViewer 2 which was inadvertently 

corrected in IslandViewer 3. The minimum single close genome distance cut off requires 

that at least one genome used for IslandPick comparison has a CVtree distance of at least 

that amount from the query genome (Langille et al., 2008a; Xu & Hao, 2009). That 

minimum distance was reported as 0.34, but was set to 0 in IslandViewer 2. To determine 

which minimum distance currently produces the best results, I repeated an assessment 

using literature-derived GIs from 5 genomes. The results from this assessment are shown 
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in Table 3.2. While IslandPick had perfect precision with either distance value, both 

sensitivity and accuracy were higher when using a minimum distance of 0.34. This higher 

minimum distance was implemented in the release of IslandViewer 3. Note that over time, 

as more genomes become available for comparison, the IslandPick parameters for 

choosing comparison genomes should be adjusted to ensure that the best comparison 

genomes are chosen. 

Table 3.2 IslandPick performance using different minimum single close 
genome distances 

 Precision Sensitivity Accuracy 

Results from original 
IslandViewer (Langille 
et al., 2008a) 

1.000 0.870 0.963 

IslandViewer 3 
Minimum Distance of 0 

1.000 0.725 0.924 

IslandViewer 3 
Minimum Distance of 
0.34 

1.000 0.798 0.962 
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3.4.2. Draft genome submission 

 

Figure 3.3 Screenshot of the draft genome submission page in IslandViewer 3 

When a user attempts to upload a draft genome sequence on the IslandViewer 

submission page, they are prompted to select a complete reference genome. A 

screenshot of the submission page upon a user uploading  a draft genome is shown in 

Figure 3.4. Currently, reference genomes must be chosen from pre-computed 

IslandViewer genomes, which include all NCBI complete microbial genomes as of the 

most recent IslandViewer update. Multiple users have requested to be able to upload their 

own reference genome, so this functionality may be added to the draft genome pipeline 

soon. Users must submit annotated contigs in GenBank or EMBL format. 

An earlier version of the draft genome pipeline had included an optional genome 

annotation step which used Prokka (Seemann, 2014), but this option was not implemented 

into IslandViewer 3. This option was removed in part to be consistent with the normal 

IslandViewer custom genome analysis pipelines, which requires an annotated genome as 

input. Also, all three GI prediction methods in IslandViewer depend on genome 

annotations, and differences in genome annotations can lead to different results. This is 

true for all three prediction methods, but IslandPath-DIMOB in particular searches genome 
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annotations for mobility genes. It is the responsibility of the user to choose an annotation 

pipeline which suits their needs. Automated selection of a reference genome used for 

contig ordering was also an option in an earlier version of the draft genome pipeline, but 

this option was also left out of IslandViewer 3, so users are responsible for manually 

selecting a reference genome. Choice of reference sequence has the potential to impact 

results, particularly in the case of GIs which overlap with contig edges. The importance of 

a proper choice of reference sequence has been well characterized for SNV analyses 

(Pightling et al., 2014). 

3.4.3. Draft Genome Visualization 

The IslandViewer visualization of draft genome results is similar to the interface for 

complete genomes (see 3.4.2), but contains a few extra features. An example for results 

of a draft genome is shown in Figure 3.3. Contigs, which are arranged based on their 

alignment to the complete reference, are shown in a circular view made using 

GenomeD3Plot (Laird et al., 2015). Contigs which could not be aligned to the reference 

are shown at the top of the circular view, just before the origin. Aligned contigs are denoted 

by a green line around the outside of the circular view which does not cover unaligned 

contigs. Contig boundaries are shown in the circular view as jagged grey lines. These 

jagged lines also appear at contig boundaries in the linear view. Like other components of 

the IslandViewer visualization, contig boundary and alignment labels can be turned on or 

off by selecting these labels in the legend. 
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Figure 3.4 The IslandViewer interface for a draft genome. This example shows Salmonella enterica subsp. enterica 
serovar  Newport str. SL254 
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3.4.4. Caveats and benefits 

The IslandViewer draft genome pipeline was developed due to high demand. With 

this update, IslandViewer is able to predict GIs in draft genome sequences, which 

constitute the vast majority of all bacterial and archaeal genome sequences. However, 

draft genomes are not ideal for GI analysis. The reasons for this are described in detail in 

Chapter 2. The IslandViewer submission page includes a warning  regarding false 

predictions and missing GIs in draft genomes, and it is recommended that users only 

submit high quality draft genomes for which a similar reference genome is available. 

That being said, in many cases it is currently impractical to complete every genome 

that is being analyzed, particularly in larger projects which sequence hundreds or 

thousands of microbial genomes. Chapter 2 also described how IslandViewer was able to 

identify many true GIs. The majority of genomes submitted to IslandViewer for custom 

analysis are now drafts. IslandViewer facilitates the analysis of GIs for genomes which 

previously could not be analyzed and true, valuable GI predictions can be obtained this 

way.  
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Chapter 4.  
 
Concluding remarks 

The two main goals of my project have been to perform an initial characterization 

of the importance of missing regions in draft genomes, and to increase the functionality of 

IslandViewer software to allow for the analysis of draft genomes. Through the work 

described in this thesis, I have achieved both of these goals. To achieve the first goal, I 

used two sets of draft and complete genomes from two very different bacterial species: 

Listeria monocytogenes and Pseudomonas aeruginosa. Several important results were 

common between these data sets. In both data sets, neither antimicrobial resistance 

genes nor virulence factors were disproportionately missing from draft genomes. This 

result is encouraging for the use of draft genomes for clinical or epidemiological 

purposes—at least for the species examined. tRNA genes and replication, recombination, 

and repair genes were both disproportionately missing from draft genomes, which is of 

particular interest because both of these gene types are associated with genomic islands 

(GIs). Results of GI analysis differed between the two data sets, but this may be due at 

least in part to the lack of draft and complete genomes produced from identical isolates in 

the P. aeruginosa data set. In both data sets, GI predictions were missed in the draft 

genome, and many GIs were predicted at contig boundaries. This is notable, since GIs 

are noted for potentially encoding genes involved in recent adaptations. These findings 

form the basis for further study, and are useful for researchers, clinicians, or 

epidemiologists to consider when interpreting GI predictions in draft genomes.  

The second goal was achieved with the release of IslandViewer 3 (Dhillon et al., 

2015), which includes a simple pipeline to allow draft genomes as input. While there are 

limitations to using draft genomes for analysis of GIs, they can still be used to produce 

valuable results. There are several ways in which the IslandViewer draft genome pipeline 

may be improved in the near future. These include warnings for genomic regions with 

potential false negative (such as contig boundaries where a GI is predicted in the similar 

reference genome) or potential false positive (such as GI predictions influenced by 

automated gene annotation) predictions. Due to demand, the ability for users to upload a 

custom reference genome to be used for contig alignment may also be incorporated soon. 



 

83 

A new GI analysis tool, IslandCompare, is being developed by the Brinkman Laboratory 

in order to directly compare GI predictions in dozens of genomes at once, including draft 

genomes. 

The number of draft bacterial genomes being produced vastly outnumbers 

complete genomes, and bacterial genomics is being used more extensively in clinical and 

epidemiological settings. To accommodate this, I have set out to characterize the features 

and limitations of draft genomes, and to enable GI analysis using draft genomes. Further 

research on the characteristics of draft genomes, particularly for other species of particular 

clinical and epidemiological importance, will be key as draft genome analysis becomes 

more prevalent in these areas. 
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