
Using Computer Model Uncertainty to
Inform the Design of Physical

Experiments: An Application in
Glaciology

by

Sonja Surjanovic

B.Sc., Simon Fraser University, 2015

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Sonja Surjanovic 2016
SIMON FRASER UNIVERSITY

Summer 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.



Approval

Name: Sonja Surjanovic

Degree: Master of Science (Statistics)

Title: Using Computer Model Uncertainty to Inform the
Design of Physical Experiments: An Application
in Glaciology

Examining Committee: Chair: Tim Swartz
Professor

Derek Bingham
Senior Supervisor
Professor

Gwenn Flowers
Supervisor
Associate Professor
Earth Sciences

Dave Campbell
Internal Examiner
Associate Professor

Date Defended: 9 August 2016

ii



Abstract

Computer models are used as surrogates for physical experiments in many areas of science.
They can allow the researchers to gain a better understanding of the processes of interest,
in situations where it would be overly costly or time-consuming to obtain sufficient physical
data. In this project, we give an approach for using a computer model to obtain designs for
a physical experiment. The designs are optimal for modelling the spatial distribution of the
response across the region of interest. An additional consideration is the presence of several
tuning parameters to the computer model, which represent physical aspects of the process
but whose values are not precisely known. In obtaining the optimal designs, we account for
this uncertainty in the parameters governing the system.

The project is motivated by an application in glaciology, where computer models are often
used to model the melt of snow and ice across a glacier surface. The methodology is applied
to obtain optimal networks of stakes, which researchers use to obtain measurements of
summer mass balance (the difference between the amount of snow/ice before and after the
melt season).

Keywords: Experimental design; design and analysis of computer experiments; Gaussian
process regression; glacier stake networks
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Chapter 1

Introduction

Experimental design plays an important role in gathering information in all areas of scientific
discovery. Many experiments can be very costly to conduct, and thus the input values,
or sampling locations, must be carefully chosen. An improvement in the experimental
design can decrease the level of uncertainty in predicting a response value or estimating
a parameter of interest, without increasing the cost to the experimenter. As a result,
statistical experimental design plays a critical role in most investigations.

In the field of glaciology, physical measurements of ablation (loss of mass due to processes
such as melting, evaporation, sublimation and calving) and accumulation (increase in mass
mostly due to precipitation) are often taken at a network of stakes placed on the glacier
surface (e.g. Østrem and Brugman, 1991). An important question facing scientists is how
many stakes are required to obtain a reliable estimate of the spatial distribution of ablation
or accumulation across the glacier and how these stakes should be arranged (e.g. Fountain
and Vecchia, 1999). The common approach for selecting locations is to either arrange
the stakes somewhat uniformly across the glacier surface (e.g. Kuhn et al., 1999; Hock
and Jensen, 1999) or to place them along a centre line following the longitudinal axis of
the glacier (e.g. Østrem and Brugman, 1991; Kaser et al., 2003; Thibert et al., 2008).
Aside from the work done by Fountain and Vecchia (1999), where the standard error of
estimating the total mass balance (using regression and piecewise linear spline models)
was investigated for several different stake network configurations, obtaining a design that
optimizes statistical properties (e.g. minimizes prediction error) has not been the focus of
these standard approaches.

For many scientific problems, computer models can be used to gain information on the
processes of interest while avoiding costly physical experiments. In glaciology, computer
models are often used to model the melt across the glacier. Results from the computer
model can be used in place of, or together with, physical data from the stakes (e.g. Wheler
et al., 2014; Pellicciotti et al., 2005).
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In this project, we undertake the novel approach of using the computer model to aid
in the design of the physical experiment. The methodology will be generally applicable to
settings where a computational model is available to act as a surrogate for observations in
the field. In the glaciology context, this amounts to using a computer model for melt to
obtain a stake network design that is optimal for modelling the spatial distribution of melt
across the glacier surface. An issue that is met in the methodology is that several tuning
parameters to the computer model are not precisely known. Indeed, these parameters can
vary from glacier to glacier and also from year to year. Consequently, a design that is
optimal for one glacier may not be optimal for another. Additionally, a design that is
optimal for a specific glacier in one year may not be optimal for another year. In this
project, a new design criterion is proposed that attempts to incorporate the uncertainty in
the parameters governing the system. The resulting designs will have good properties (here
we focus on prediction properties) across values of the uncertain parameters.

The project is organized as follows. The motivating problem, stemming from mass
balance studies on glaciers, is described in Chapter 2. In addition, the computer model
for glacier melt is presented. Chapter 3 describes kriging, or Gaussian process regression,
which is the statistical model that will be used to obtain predictions of the response across
the region of interest. In Chapter 4, we introduce a new design criterion that quantifies
the average uncertainty of prediction across the region of interest, taking into account the
uncertainty in the computer model parameters. Chapter 5 presents the overall approach
used to obtain the optimal designs. Results for several test functions and for the glacier
application are given in Chapters 6 and 7, respectively. Finally, a discussion of the results
and further work is given in Chapter 8.
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Chapter 2

Motivating Problem

Understanding the mass balance (the difference between accumulation and ablation) for
the Earth’s glaciers is important for prediction of sea-level changes and managing water
resources (e.g. Allen et al., 2014; Lemke et al., 2007; Kaser et al., 2010; Moore et al.,
2009). This is particularly important in the age of global warming and will have important
consequences of interest to scientists and policy makers. Measurements of snow and ice
melt, acquired through field studies, are needed to constrain the models that estimate and
project glacier contribution to water resources and sea level (e.g. Radić et al., 2013).

The difference between accumulation and ablation that occurs during the summer season
is referred to as summer mass balance. A common method for obtaining field measurements
of (summer) mass balance is the glaciological, or in situ, method, whereby a network of
stakes is drilled into the glacier surface, and the height of snow/ice is measured on the
stake at the beginning and end of the melt season. The difference in heights, together with
measurements of snow density obtained at several snow pits, is used to obtain the summer
mass balance measurement at each stake (measured in metres water equivalent, i.e. m w.e.)
(Østrem and Brugman, 1991; Kaser et al., 2003).

However, obtaining the physical data is a labour-intensive process. Thus, a judicious
choice of stake locations is required to use the available sampling resources efficiently. In
many studies, stakes are distributed somewhat uniformly across the entire surface of the
glacier (e.g. Kuhn et al., 1999; Hock and Jensen, 1999). However, due to the spatial nature
of the data and the high correlation between observations taken at nearby stakes, there
might be some redundancy involved with this approach (Kuhn et al., 1999). The most
common alternative approach is to arrange the stakes along a centre line, following the
longitudinal axis of the glacier. Several transverse lines may also be added at right angles
to the centre line (e.g. Østrem and Brugman, 1991; Kaser et al., 2003; Thibert et al., 2008).
Fountain and Vecchia (1999) and Kaser et al. (2003) also suggest that stakes should be
arranged so as to intermittently sample as much of the elevation as possible.
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The main goal of this project, in terms of the glaciology application, is to formally
address the question of optimal stake network designs. Specifically, for any fixed number
of stakes n, we seek to obtain the stake network design that minimizes the uncertainty
associated with predicting the spatial distribution of melt across the surface of the glacier.
A physically-based computer model is used to aid the design search, by representing the
“true” melt across the glacier, up to experimental error. Evaporation and sublimation are
neglected in the computer model, and melt is treated as a good approximation to ablation.

The model is given in § 2.2. However, it has several unknown parameters. The un-
certainty in the parameters is accounted for using the methodology described in Chapters
4-5.

A secondary goal is to decide on the number of stakes n that is required to predict the
spatial distribution of melt across the glacier with a satisfactory level of precision. The
question of stake number can be of considerable significance to the researcher due to the
cost of each additional stake. This issue has been addressed by several researchers, such
as Fountain and Vecchia (1999). Using the methodology given in this project, by visually
analyzing the relationship between n and the prediction uncertainty of the optimal n-stake
network design, the researcher can decide on a satisfactory n at which the decrease in
prediction uncertainty becomes less significant than the cost of an additional stake.

2.1 Study Area and Field Data

For our stake network design study, we focus on a glacier in the Donjek Range of the St.
Elias Mountains in southwestern Yukon, Canada, located at 60◦50′N, 139◦10′W (Wheler
et al., 2014). Figure 2.1 shows the study area1. The glacier of interest has an area of 5.3 km2

and ranges in elevation from 1970 to 2960 m above sea level (Flowers et al., 2011). This
glacier is not yet named. However, in previous studies it has been referred to as “South
Glacier”, distinguishing it from other nearby sites that were studied by the same authors
(e.g. Wheler et al., 2014; MacDougall et al., 2011; Schoof et al., 2014). We adopt this name
here as well.

Wheler et al. (2014) give a detailed description of the procedure used to acquire the
relevant field data. For this design study, we model the melt using data obtained during the
2012 melt season (May through September). Temperature records were obtained every five
minutes during the melt season, from an automatic weather station (AWS) in the ablation
area of South Glacier. The elevation of the weather station is approximately 2300 m above
sea level. The measurements were averaged to give values at one-hour intervals.

A Digital Elevation Model (DEM) was constructed on a discretized version of the glacier
surface, defined by a 30 m × 30 m grid. The DEM was constructed using real-time kine-

1Figure 2.1 is Figure 1a of Flowers et al. (2011) (http://www.the-cryosphere.net/5/299/2011/), pub-
lished in The Cryosphere under the Creative Commons Attribution 3.0 License (https://creativecommons.
org/licenses/by/3.0/legalcode).
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Figure 2.1: Donjek Range, with an outline of South Glacier.

matic Global Positioning System measurements and digitized map contours (De Paoli and
Flowers, 2009; Wilson et al., 2013). Using the DEM, the temperature measurements were
extrapolated from the station to all points on the grid using the constant temperature-
elevation lapse rate −6.5 ◦C km−1, which is a common value adopted in the literature
(Wheler et al., 2014; Minder et al., 2010). On the same grid, values of potential direct so-
lar radiation were computed at one-hour intervals, using the Solar Analyst tool in ArcGIS
(Wheler et al., 2014; Fu and Rich, 2000).

The initial snow depth (in m w.e.) was calculated at the beginning of the melt season
using field data at a network of stakes. At each stake location, the winter mass balance (the
difference between accumulation and ablation that occurs during the winter season) was
calculated using the snow depth measured at the stake and the snow densities observed in
several snow pits. These observations were then extended to each grid point i on the glacier
surface using the DEM and the linear relationship

bw,i = β0 + β1zi + β2mi + β3ci, (2.1)

where bw,i is the winter mass balance at point i, and zi, mi and ci are the elevation, slope
and curvature at point i, respectively (Wheler et al., 2014).

Field data were also collected to account for summer accumulation, since summer snow-
fall can affect melt rates (Wheler et al., 2014). Accumulation events were measured using an
ultrasonic depth gauge at the weather station, and were then extrapolated to all points on
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the discrete glacier grid, under the assumption of a constant accumulation-elevation lapse
rate of 2 cm w.e. km−1 (Wheler et al., 2014).

The firn line of a glacier is defined to be the line that “marks the transition between
exposed glacier ice and the snow-covered surface of a glacier” (U.S. Department of the
Interior, 2013). For South Glacier, the firn line is set at an elevation of 2450 m above sea
level, based on field observations (Wheler et al., 2014).

2.2 Melt Model

To aid in obtaining the optimal designs, a physically-based computer model is used to
act as a surrogate for the melt across the glacier surface. A commonly used model for
glacier snow- and ice-melt is the Hock (1999) enhanced temperature-index melt model,
which utilizes the relationship between melt and temperature while incorporating a term to
account for radiation (e.g. Schuler et al., 2002; Huss et al., 2007; Zhang et al., 2008; Wheler
et al., 2014). The model relies on the field data described in § 2.1.

The computer code for the model was provided by the Simon Fraser University Glaciol-
ogy Group. On the 30 m × 30 m grid, cumulative melt (i.e. total melt over the course of
the melt season) is obtained at each grid point by calculating melt at one-hour intervals
and taking the sum of these values. The melt rateM (mm w.e. h−1) is calculated according
to the model

M =


(

1
nMF + asnow/iceI

)
T if T > 0

0 if T ≤ 0,
(2.2)

where n = 24 is the number of time-steps per day, MF is the temperature melt factor
(mm w.e. day−1 ◦C−1), asnow and aice are the radiation coefficients for snow and ice surfaces
(mm w.e. h−1 ◦C−1 m2 W−1), I is the potential direct clear-sky solar radiation (W m−2),
and T is the air temperature (◦C) (Hock, 1999).

Hourly records of temperature T and potential direct clear-sky solar radiation I at each
grid point were obtained as described in § 2.1. At every time-step, the model takes into
account the amount of snow present at each grid point, based on the initial snow depth at
the beginning of the melt season, the amount of previously melted snow, and the amount
of new snow resulting from summer accumulation. At points in time when there is snow
remaining at a given grid point, the radiation coefficient asnow is used in (2.2). When there
is no snow remaining at a grid point, the coefficient aice is used instead. However, the snow
is taken to be arbitrarily deep above the firn line (2450 m above sea level) (Wheler et al.,
2014).

The model in (2.2) contains several tuning parameters whose values are not known, and
which may vary from glacier to glacier: MF , asnow and aice. A joint distribution is proposed
on these parameters, based on values used for various glaciers in the literature. Details are
given in § 7.1.
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2.3 Focus on a Rectangle

One of the complicating factors that must be taken into consideration is the non-convexity
of the glacier. In this setting, when constructing a spatial model for the response surface
of glacier melt, the Euclidean distance may not provide an accurate representation of the
true closeness of two locations.

To simplify the problem, we assume for the purpose of this project that the region of
interest, on which we wish to model the response (which is the melt in this case), is a
rectangular region. With several slight modifications, the methodology can be applied to
any arbitrary convex shape. In future work, as discussed in Chapter 8, it can be applied to
the full glacier using the methods presented in Pratola et al. (2015).

The rectangular region of interest on South Glacier is defined by UTM Easting values
between 601 783 m and 602 563 m, and UTM Northing values between 6 743 283 m and
6 744 423 m. This region was chosen so as to contain a significant portion of the central
part of the glacier surface, while preserving the overall direction of elevation increase. The
glacier, along with its elevation contours and the rectangular region of interest, is shown in
Figure 2.2. The rectangular region lies entirely below the firn line.
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Figure 2.2: South Glacier, with elevation contours (m above sea level) and the rectangular
region of interest.
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Chapter 3

Kriging

The primary goal of this project is to propose optimal experimental designs using a computer
model with uncertain inputs. In finding the optimal design, we must consider the modelling
approach that will be used to predict response values across the region of interest.

We assume that the data, consisting of evaluations of the computer model at a set of
design locations, are used to fit a kriging model to the surface. Kriging, or Gaussian process
regression, is commonly used for modelling geostatistical data and output from computer
experiments (e.g. Diggle and Ribeiro Jr., 2007; Sacks et al., 1989a,b; Cressie, 1993).

In terms of the glacier application, response values on a glacier surface, such as melt,
ablation, accumulation and mass balance are often spatially correlated (e.g. Cogley, 1999),
and thus this spatial modelling approach is commonly used in glacier studies. Several
examples of studies that have used kriging to model values such as summer balance, winter
balance, ablation and accumulation include Hock and Jensen (1999), Jansson and Pettersson
(2007), Holmlund et al. (2005), Bales et al. (2001) and Jansson (1999).

3.1 Notation

Throughout the project, it is assumed that the region of interest is a d-dimensional hy-
perrectangle. For the glacier application, this is assumed to be the rectangle on the
glacier surface defined by the coordinates in § 2.3 (see Figure 2.2), and thus there are
d = 2 spatial dimensions: Easting and Northing. For simplicity, the region of interest is
scaled to A = [0, 1]d. Then, the spatial location of a point in the domain is denoted by
x = [x1, . . . , xd]>. At any x in the region of interest A = [0, 1]d, Z(x) is the response value
of interest.

8



A design X is defined to be a set of n design points in A,

X =


x>1
...
x>n

 =


x11 . . . x1d
... . . . ...
xn1 . . . xnd

 , (3.1)

where xij is the jth dimension of the ith observed location (for i ∈ {1, . . . , n} and j ∈
{1, . . . , d}). The vector of response values observed at the design points in X is denoted by
z = [Z(x1), . . . , Z(xn)]>. Overall, the aim is to build a predictive model for Z(x)|z at any
location x ∈ A. The predictor is denoted by Ẑ(x), and is dependent on the data (X, z).

In some applications, it may be beneficial to incorporate a small additive error term in
the observed response values, as a way to account for measurement error in the data. This
error term is referred to as a nugget. Throughout this project, synthetic data are obtained
using a deterministic computer model, and thus it is assumed that there is no measurement
error. However, a very small nugget is incorporated for purely computational reasons be-
cause it can reduce the numerical instability caused by the inversion of an otherwise nearly
singular covariance matrix (Santner et al., 2003; Peng and Wu, 2014).

3.2 The Model

The response Z(x) is assumed to be a second-order stationary Gaussian process. In other
words, for any set of locations {x1, . . . ,xn} ⊂ A, the corresponding responses {Z(x1), . . . ,
Z(xn)} are jointly multivariate Gaussian (Santner et al., 2003), and for all x,x′ ∈ A,

E [Z(x)] = µ, (3.2)

Var [Z(x)] = σ2, and (3.3)

Corr
[
Z(x), Z(x′)

]
= ρ(x− x′), (3.4)

for a mean µ, variance σ2 and positive-definite correlation function ρ(·) (Cressie, 1993). Note
that, under the second-order stationarity assumption, the correlation between the response
values at two locations is only a function of the difference vector x− x′. In many cases, it
is further assumed that the correlation is isotropic, meaning that it is only a function of the
distance ||x − x′|| between the locations (Cressie, 1993); however, this assumption is not
required.

There are many valid correlation functions to choose from. For this project, the Matérn
correlation function is used:

ρ(x− x′) =
d∏
j=1

21−κ

Γ(κ)

(√
2κ|xj − x′j |

θj

)κ
Kκ

(√
2κ|xj − x′j |

θj

)
, (3.5)
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for correlation parameters θ1, . . . , θd > 0, where Kκ(·) is the modified Bessel function (Ras-
mussen and Williams, 2006). A commonly used value of the Bessel function parameter is
κ = 3/2, and it can be shown that for this value the correlation function is

ρ(x− x′) =
d∏
j=1

(
1 +
√

3|xj − x′j |
θj

)
exp

(
−
√

3|xj − x′j |
θj

)
(3.6)

(Rasmussen and Williams, 2006). Thus, a larger value of θj in any dimension generally
implies a larger degree of spatial correlation between response values in that dimension.
Other correlation functions (such as the Gaussian correlation function), can also be used
to suit the application. However, the Matérn correlation function is chosen here due to its
flexibility on the smoothness assumptions for the response surface (Rasmussen andWilliams,
2006; Diggle and Ribeiro Jr., 2007).

3.3 Parameter Estimation

The aim is to find optimal designs that are helpful when using the kriging model for pre-
diction. To use the model, the parameters that govern the model must be estimated. The
kriging parameters that need to be estimated are the mean µ, variance σ2 and correlation
parameters θ = [θ1, . . . , θd]>. The parameters are estimated using maximum likelihood
(e.g., see Diggle and Ribeiro Jr., 2007; Jones et al., 1998).

For the Gaussian process specified in § 3.1-3.2, the likelihood function for the observa-
tions is

L(µ, σ2,θ) = 1
(2π)

n
2 det(σ2V )

1
2
exp

(
−1

2(z − µ1)>(σ2V )−1(z − µ1)
)
, (3.7)

where det(·) denotes the determinant of a matrix, and 1 is an n-vector of 1’s. In (3.7),
σ2V is the covariance matrix for the data z = [Z(x1), . . . , Z(xn)]>. If there is no nugget
term (i.e. random error) added to the responses, then V is simply the n-by-n matrix whose
(i, j)th element is ρ(xi − xj). However, even though there is no measurement error in the
model we are using, a small nugget term is added purely for computational reasons, as
discussed in § 3.1. In this case, the value ν2 is added to the diagonal of V , where ν2 is a
small value needed for numerical stability.

The log-likelihood function can thus be expressed as

`(µ, σ2,θ) = −n2 log(2πσ2)− 1
2 log(det(V ))− 1

2σ2 (z − µ1)>V −1(z − µ1). (3.8)
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Note that V is a function of θ. Assuming θ is known, the maximum likelihood estimates
of µ and σ2 can be written as

µ̂(V ) =
(
1>V −11

)−1
1>V −1z, and (3.9)

σ̂2(V ) = 1
n

(z − µ̂(V )1)> V −1 (z − µ̂(V )1) . (3.10)

Substituting these maximum likelihood estimates into (3.8) yields the concentrated log-
likelihood function, which is a function of only θ.

Using a numerical optimization procedure, the concentrated log-likelihood function is
maximized to obtain an estimate of θ (numerical details of the optimization procedure are
provided below). Then, by substituting the estimate of θ back into (3.9) and (3.10), the
estimates of µ and σ2 are obtained.

3.3.1 Optimization of the Concentrated Log-Likelihood

Optimization of the concentrated log-likelihood function is treated as a constrained op-
timization problem. For the correlation parameter in the jth dimension, denoted by θj

(j ∈ {1, . . . , d}), the constraint is

θj ∈
[
10−10, 2

(
max
i=1,...,n

(xij)− min
i=1,...,n

(xij)
)]

, (3.11)

where xij is the value of the ith observation in the jth dimension (as in Roustant et al.,
2012).

The optimization is conducted using functions in the R package stats (R Core Team,
2015). For d ≥ 2, we use the function constrOptim(), using the Nelder-Mead optimization
algorithm. For cases where d = 1 (such as in one of the examples in Chapter 6), the
function optimize() is used instead, since a warning message states that the Nelder-Mead
method may be unreliable in one dimension. This function uses a “combination of golden
section search and successive parabolic interpolation” (R Core Team, 2015). In either case,
the optimization is randomly restarted three times, and the overall best set of kriging
parameter values is taken to be the optimal set.

3.4 Prediction

We are interested in predicting the value of the response at any new location in the region of
interestA = [0, 1]d. The prediction uncertainty is measured by the Mean Squared Prediction
Error (MSPE). The MSPE for predicting the response Z(x) at any point x ∈ A, using a
predictor Ẑ(x), is

MSPE(x) , E
[(
Z(x)− Ẑ(x)

)2
]
, (3.12)
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where the expectation is taken over the joint distribution of Z(x) and Ẑ(x), i.e. the joint
distribution of Z(x) and the data z = [Z(x1), . . . , Z(xn)]>. Result 3.1, obtained from
Diggle and Ribeiro Jr. (2007), gives a result on obtaining the predictor that minimizes the
MSPE at any given location x.

Result 3.1. At any x, the predictor that minimizes the MSPE is Ẑ(x) = E [Z(x)|z]. The
MSPE for this predictor is E

[
Var

[
Z(x)

∣∣∣z]].
Using the result above for the kriging model, the MSPE-optimal predictor of the response

at any x ∈ A is
Ẑ(x) = E [Z(x)|z] = µ+ r>(x)V −1(z − µ1), (3.13)

and its MSPE is

MSPE(x) = Var [Z(x)|z] = σ2
(
1− r>(x)V −1r(x)

)
, (3.14)

where (3.13) and (3.14) can be shown to be the conditional mean and variance, respectively,
of Z(x)|z (Diggle and Ribeiro Jr., 2007). In the above equations, V is defined as in § 3.3,
and r(x) = [ρ(x− xi)]i=1,...,n is the vector of correlations between Z(x) and each of the
response values in the design. Note that the outer expectation has been dropped from the
MSPE expression in (3.14), since the expression is a constant with respect to z (Diggle and
Ribeiro Jr., 2007).

Thus, since the MSPE is a decreasing function of r>(x)V −1r(x), and the correlation
function is a decreasing function of the distance between spatial locations, the uncertainty
of predicting the response at any location x ∈ A is smaller when x is close to the points
in the design. This property is explored further in Chapter 4, where optimal designs are
discussed.

Finally, we note that the minimum-MSPE predictor given in Result 3.1 is unbiased.
That is,

Ez
[
Ẑ(x)

]
= Ez

[
EZ(x)|z

[
Z(x)

∣∣∣z]] = EZ(x) [Z(x)] , (3.15)

from the law of iterated expectations (Wasserman, 2013). Thus, the predictor in (3.13) is
the best linear unbiased predictor (BLUP) for Z(x).
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Chapter 4

Optimal Design Criteria

Finding an optimal experimental design amounts to finding a design that optimizes some
criterion. There are several optimization criteria that can be considered. When predictions
are based on the distances between a point and the points in the design, as is the case with
kriging using a distance-based correlation function, space-filling designs are often imple-
mented to ensure that the design points are well-spread throughout the region of interest
(e.g. Johnson et al., 1990).

Since the goal for this project is optimal prediction, we propose a design criterion that
is closely related to the Integrated Mean Squared Prediction Error of Sacks et al. (1989a,b).
The criterion is discussed in detail in § 4.1. We also consider the optimal design obtained
from a commonly-used space-filling criterion, and we compare the results. The numerical
details for obtaining the optimal designs are given in Chapter 5.

A key new innovation for the proposed methodology is that the computer model is used
to aid in the design of the physical experiment. Also, the criterion used for obtaining the
optimal design takes into account the uncertainty in the computer model parameters, which
represent physical factors governing the system.

4.1 Average Integrated Mean Squared Prediction Error

The spatial distribution of glacier melt that is given by the model in § 2.2 contains three
tuning parameters: the temperature melt factor (MF ), the radiation coefficient for snow
(asnow) and the radiation coefficient for ice (aice). The values of these parameters vary
across different glacier environments, as well as across individual glaciers and under different
weather conditions. In most studies involving the Hock (1999) melt model, the authors
estimate the values of these parameters using field observations (e.g. Huss et al., 2008;
Wheler et al., 2014; Gabbi et al., 2014). This amounts to being a type of inverse problem.

We are interested in obtaining a design (i.e. a stake network in the glaciology application)
that can provide good predictions of the spatial distribution of the response for a variety of

13



values of the computer model parameters. In particular, we use a design criterion that is an
extension of the Integrated Mean Squared Prediction Error (IMSPE) defined in Sacks et al.
(1989a,b). The criterion, which we refer to as Average Integrated Mean Squared Prediction
Error (ave-IMSPE), is the expected value of the IMSPE over a proposed joint distribution
of the unknown computer model parameters φ.

4.1.1 General Definition of ave-IMSPE

As described in § 3.1, we continue under the assumption that the region of interest is a
d-dimensional hyperrectangle, scaled to A = [0, 1]d. Following previous notation, X =
[x1, . . . ,xn]> is the n-by-d design matrix containing n locations in A.

A common measure of prediction error at any new location is the Mean Squared Pre-
diction Error (MSPE). The MSPE at a location x ∈ A, for a design X, is

MSPE(x;X,φ) , E
[(
Z(x)− Ẑ(x)

)2
]
, (4.1)

where φ is a given set of input parameters to the computer model (Diggle and Ribeiro Jr.,
2007). In the glaciology application, the computer model parameters are φ = [MF, asnow,

aice]>. The expectation in (4.1) is taken over the joint distribution of the response Z(x) and
the prediction Ẑ(x), i.e. the joint distribution of Z(x) and the data z = [Z(x1), . . . , Z(xn)]>

observed using this design. When a kriging model is used to obtain Ẑ(x), the analytical
expression of the MSPE is given in (3.14), for any given design X and computer model
parameters φ.

For a given set of computer model parameters φ, we would like the optimal design to
have a low value of MSPE(x;X,φ) at all (or most) values of x ∈ A. This can be formulated
using the IMSPE criterion of Sacks et al. (1989a,b). For a given φ, the IMSPE-optimal
design is the one that minimizes

IMSPE(X;φ) ,
∫
A
MSPE(x;X,φ)dx =

∫
A
E
[(
Z(x)− Ẑ(x)

)2
]
dx. (4.2)

Thus, an IMSPE-optimal design is one that minimizes the average uncertainty of prediction
(Zhu and Evangelou, 2015).

However, the true values of the computer model parameters are not known. If it is
assumed that they are random variables with some joint distribution π(φ), an optimal
design is one that minimizes

ave-IMSPE(X) ,
∫
φ
IMSPE(X;φ)π(φ)dφ

=
∫
φ

∫
A
MSPE(x;X,φ)π(φ)dxdφ. (4.3)
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Thus, the ave-IMSPE optimal design minimizes the expected value of the IMSPE over the
assumed joint distribution of the computer model parameters. The design is thus optimal in
terms of prediction over the region of interest, and robust to changes in the computer model
parameters. For a given number of stakes n, the ave-IMSPE optimal design is denoted by
X∗(n).

The proposed distribution π(φ) on the computer model parameters can be estimated
using expert knowledge or data from previous studies. Section 7.1 gives details on how π(φ)
is obtained for the glacier application.

4.1.2 ave-IMSPE for the Kriging Model

Within the ave-IMSPE expression in (4.3), the MSPE is dependent on the model used to
construct the predictions Ẑ(x). Recall that for the kriging predictor in (3.13), the MSPE
of predicting Z(x) at any x ∈ A is

MSPE(x;X,φ) = σ2
(
1− r>(x)V −1r(x)

)
, (4.4)

where σ2, r(x) and V are defined as in Chapter 3.
Thus, for a kriging model, the MSPE at any point x ∈ A depends on the design

through r(x) and V ; in particular, it decreases with r>(x)V −1r(x). Since the correlation
function chosen for the kriging model is a decreasing function of the distance between
spatial locations, locations x which are farther from the design points will have a higher
level of uncertainty in prediction due to a higher value of MSPE. In the design optimization
problem, this results in a type of space-filling property, since designs that have nearby points
to all locations in A are generally more favourable.

The MSPE expression in (4.4) also depends on the computer model parameters φ,
through the estimation of the Gaussian process variance σ2 and the correlation parameters
θ. Thus, the ave-IMSPE design criterion for kriging is

ave-MSPE(X) =
∫
φ

∫
A
σ2
(
1− r>(x)V −1r(x)

)
π(φ)dxdφ. (4.5)

4.1.3 Approximating ave-IMSPE

In this project, the integrals in the expression for ave-IMSPE are approximated numerically.
The inner integral, which evaluates the IMSPE, is approximated by taking the average
MSPE over a regular grid of x-locations in the region of interest A. Formally, for any given
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set of computer model parameters φ,

IMSPE(X;φ) =
∫
A
MSPE(x;X,φ)dx

≈ |A|
Ngrid

∑
x∈Xgrid

MSPE(x;X,φ), (4.6)

where |A| = (1 − 0)d = 1 is the measure of the hyperrectangle A, Xgrid is a regular d-
dimensional grid of points in A, and Ngrid is the number of grid points. Recall that at any
location x, the MSPE of predicting the response Z(x) is dependent on the model used, and
the analytical expression for kriging is given in (4.4).

The outer integral in the expression for ave-IMSPE gives the expected value of the
IMSPE over the assumed joint distribution of the computer model parameters. It is ap-
proximated using Monte Carlo. Values of φ are sampled from the proposed joint distribution
π(φ), and the ave-IMSPE is approximated as follows, for a given design:

ave-IMSPE(X) =
∫
φ
IMSPE(X;φ)π(φ)dφ

= Eφ [IMSPE(X;φ)]

≈ 1
Nparams

Nparams∑
j=1

IMSPE(X;φj)

≈ |A|
NparamsNgrid

Nparams∑
j=1

∑
x∈Xgrid

MSPE(x;X,φj), (4.7)

where the fourth line follows from (4.6), and {φ1, . . . ,φNparams} are the samples from the
proposed distribution π(φ). The proposed distribution for the glacier application is esti-
mated empirically using data from the literature. Details on the procedure are given in
§ 7.1.

4.2 Space-Filling Design Criteria

Space-filling designs are commonly used for spatial models such as kriging. Due to the
spatial dependence between response values, it is beneficial to spread out the design points
throughout the region of interest, ensuring a low uncertainty of prediction at most locations.
Several design criteria exist for this purpose, each defining the space-filling property in
different ways.

One such criterion, which is considered herein, ensures that the design points are as
spread out as possible from each other. Specifically, the maximin distance design (Johnson
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et al., 1990) is defined as the design X = [x1, . . . ,xn]> that maximizes

mindist(X) , min
i 6=i′

dist(xi,xi′), (4.8)

where dist(xi,xi′) is a distance function. The Euclidean norm is used here, given by

dist(xi,xi′) = ||xi − xi′ || =

√√√√√ d∑
j=1

(
xij − xi′j

)2
, (4.9)

where xij is the jth dimension of the ith design point.
Thus, a maximin distance design X∗ is one that maximizes the minimum distance

between any two points in the design. As a result, it ensures that the points in the design
are as spread apart as possible, since no two points in the design are closer together than
mindist(X∗). This property is useful for a modelling approach such as kriging. Since
the prediction at a point x is based on the distances between x and the points in the
design, design points that are very close together provide redundant information (Zhu and
Evangelou, 2015). In this project, the prediction performance of the maximin design is
compared to that of the minimum ave-IMSPE design.
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Chapter 5

Finding the Optimal Design

In this chapter, we give details of the methodology for finding minimum ave-IMSPE designs.
The first section describes how ave-IMSPE is evaluated for any given design. This requires
a preliminary modelling step to be conducted before the design search takes place. In the
second section, Particle Swarm Optimization (PSO) is described, which is the design search
algorithm used to actually obtain the optimal designs. A final summary of the overall
approach is given in the last section.

5.1 Evaluating the Criterion for a Fixed Design

Ideally, for each candidate design considered during the design search, the ave-IMSPE
would be evaluated as follows: First, Nparams values of the computer model parameters
φ would be sampled from their proposed distribution, and these would be used to obtain
the corresponding responses from the computer model. For each set of responses, the data
would be used to fit a kriging model, and these estimates of the kriging model parameters
would be used to evaluate the values of MSPE at a grid of locations. The resulting values
of MSPE would then be used to evaluate the ave-IMSPE, as in (4.7).

However, this approach is computationally expensive, since it requires obtaining com-
puter model response values and fitting a new kriging model at each evaluation of ave-
IMSPE. To speed up the computation, a preliminary modelling step is introduced, during
which Nparams kriging models are fit before the design search takes place. The same kriging
models are then used throughout the entire design search. The step is described in detail
below.

Preliminary Modelling Step:

1. Nparams values of the computer model parameters φ are sampled from their proposed
distribution π(φ). For the glaciology application, the proposed distribution is based
on values in the literature (see § 7.1).
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2. For each of the sampled φ-values, the computer model is then evaluated at a dense
grid of points Xdense. The resulting responses are {z(1), . . . ,z(Nparams)}, where each
z(j) is the vector of responses observed on the grid for the jth value of the computer
model parameters.

3. Each dataset
(
z(j),Xdense

)
is used to fit a kriging model, as in § 3.3, giving the jth

set of kriging parameter estimates, {µ̂(j), σ̂2(j), θ̂(j)}.

Because the preliminary Nparams kriging fits have been obtained on a dense grid, they
should be close to the appropriate values for each response surface. As a result, they can
be treated as surrogates to the computer model response surface throughout the remainder
of the algorithm. Then, for every candidate design considered during the design search, the
ave-IMSPE is evaluated as follows.

Evaluation of ave-IMSPE:

1. For each of the Nparams kriging fits that were constructed in the preliminary modelling
step, the MSPE is evaluated at a grid of locations x ∈Xgrid. Since the kriging fits are
treated as surrogates to the computer model response surface, the kriging parameters
{µ(j), σ2(j),θ(j)} are assumed to be known and equal to the estimates obtained in the
preliminary modelling step (for j ∈ {1, . . . , Nparams}). Thus, the MSPE for the design
X can be evaluated at any x ∈Xgrid using the analytical expression (4.4).

2. The values of MSPE, which have been obtained for each fit j ∈ {1, . . . , Nparams} and
at each location x ∈Xgrid, are substituted into (4.7) to give the approximation to the
ave-IMSPE for this design.

Following the above procedure results in a less computationally expensive design search
step. Since Nparams kriging fits are all obtained on a dense grid in the preliminary modelling
step, they are treated as surrogates for the computer model, where each fit corresponds to
a different value of the computer model parameters. The value of ave-IMSPE obtained for
each candidate design during the design search is then an approximation to the expected un-
certainty of prediction, averaged over the computer model parameter values and the region
of interest. Although the preliminary modelling step may be computationally expensive, it
only needs to be done once, and no further kriging fits or computer model evaluations are
required.

In order for an optimal design to actually be found, a design search algorithm must be
chosen and implemented. The design search algorithm that is used for this application is
PSO, described in the following section.
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5.2 Particle Swarm Optimization

The design search algorithm that is used to minimize ave-IMSPE in terms of the designX =
[x1, . . . ,xn]>, is Particle Swarm Optimization (PSO), a metaheuristic algorithm originally
proposed by Kennedy and Eberhart (1995). The algorithm gets its name from its similarity
to the movement of swarms of organisms, such as birds in a flock or fish in a school.

An advantage of PSO is that it requires no assumptions about the function to be mini-
mized (such as monotonicity, convexity or unimodality). It also requires few tuning param-
eters to be defined to make the algorithm work reasonably well. Several such parameters
have been proposed in the literature (Mandal et al., 2015). PSO has been used to obtain
maximin designs (e.g. Leatherman et al., 2014), IMSPE-optimal designs (e.g. Leatherman
et al., 2014), minimax designs (e.g. Chen et al., 2015), and optimal Latin Hypercube Designs
(e.g. Chen et al., 2013).

Throughout the PSO algorithm, every candidate design X = [x1, . . . ,xn]>, containing
n points in d dimensions, is reshaped into a vector of length nd and referred to as a particle.
More specifically, a particle is a vectorized version of the design X, constructed by defining
the first n elements to be the first column of X, the next n elements to be the second
column of X, etc. The design search algorithm then becomes an optimization problem
for finding the particle that, when reshaped back into matrix form, gives the design that
minimizes the ave-IMSPE. As before, it is assumed for simplicity that the region of interest
for design points is A = [0, 1]d (in the glaciology application, this is the scaled rectangle on
the glacier, defined in § 2.3). Thus, particles (i.e. vectorized designs) can take on values in
Apart = [0, 1]nd.

The main idea behind the PSO algorithm is that multiple particles, referred to as a
swarm, move simultaneously through the search space Apart = [0, 1]nd, searching for an
optimal position, where a position is a point in the nd-dimensional space that corresponds
to a design. At each iteration of the algorithm, the position of each particle changes by
an additive velocity term. The velocity is governed partly by a movement in the direction
of the best position of the individual particle thus far, and partly by a movement in the
direction of the best global position of any particle in the swarm thus far.

The pseudocode for PSO is given in Algorithm 1. It has been generalized for an arbitrary
objective function f(·). For this problem, the objective function is ave-IMSPE. The values
of two tuning parameters must be specified to implement the algorithm: the number of
particles P that will simultaneously move through the search space, and the maximum
number of iterations T that will take place. The algorithm begins by obtaining the initial
positions of the P particles. In this project, the initial positions are taken to be randomly
generated points in Apart = [0, 1]nd. The initial particle positions (i.e. candidate designs)
are denoted by p(0)

1 , . . . ,p
(0)
P . The particle velocities are then initialized and denoted by

v
(0)
1 , . . . ,v

(0)
P . These initial velocities are set to zero, as in Leatherman et al. (2014).
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At any iteration t of the PSO algorithm, the personal best position for the ith particle,
b

(t)
i (for i ∈ {1, . . . , P}), is defined to be the best position that has been encountered by

the ith particle thus far, in terms of ave-IMSPE. The global best, b(t)
g , is the best position

that has been obtained by any particle in the swarm thus far. Thus, the next step of the
algorithm is to evaluate ave-IMSPE for each of the initial particle positions, and then obtain
b

(0)
i (for i ∈ {1, . . . , P}) and b(0)

g as described in Algorithm 1.
The algorithm then begins its first iteration. For t ∈ {1, . . . , T}, the velocity term for

each particle is calculated as follows:

v
(t)
i = wv

(t−1)
i + γ1α

(t)
i �

(
b

(t−1)
i − p(t−1)

i

)
+ γ2β

(t)
i �

(
b(t−1)
g − p(t−1)

i

)
, (5.1)

and the particle moves according to

p
(t)
i = p

(t−1)
i + v(t)

i , (5.2)

where the notation � in (5.1) denotes the Hadamard product (Mandal et al., 2015). The
second and third terms in the velocity expression define the movement of the particle in the
direction of its personal best position and the global best position, respectively. The first
term is an “inertia” term, which adds a degree of exploration of the search space (Shi and
Eberhart, 1998).

There are three parameters in the PSO algorithm. The inertia weight, w ∈ [0, 1], affects
the exploration-exploitation trade-off in the optimization procedure (Bansal et al., 2011).
It defines the extent to which the previous velocity affects the movement of the particle at
each iteration. The intermediate value of w = 0.5 is chosen, as in Leatherman et al. (2014),
although non-constant values can also be used, such as a linearly decreasing function of t
(Bansal et al., 2011).

The remaining parameters are γ1 and γ2, the cognitive and social learning factors, re-
spectively. The default values of γ1 = γ2 = 2 are used, thus equally weighing the influence
of the personal and global best positions on average (Mandal et al., 2015; Leatherman et al.,
2014). The variables α(t)

i and β(t)
i are random vectors whose elements are independently

distributed as Uniform[0, 1]. The random vectors are sampled independently at each itera-
tion and for each particle. They provide a stochastic element in the design search algorithm,
allowing for better exploration of the search space.

An additional consideration is the confinement rule for the position and velocity vectors.
If a particle position p(t)

i falls outside of the particle domain Apart = [0, 1]nd in any dimen-
sion, the value in this dimension is set to the nearest domain point. Thus, the particles that
fall outside of the domain are projected onto the edges and corners. To prevent this from
happening too frequently, it is required that the velocities do not become too large. Thus,
the velocity v(t)

i (for each particle i and at each iteration t) is confined component-wise by
[−0.25× 1, 0.25× 1], where 1 is an nd-vector of 1’s.
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Algorithm 1 Pseudocode for Particle Swarm Optimization.
Randomly initialize particle positions: p(0)

1 , . . . ,p
(0)
P .

for particle i in 1 : P do
Initialize the particle’s velocity: v(0)

i .
Evaluate the objective function: f(p(0)

i ).
Set the personal best position to the initial position: b(0)

i ← p
(0)
i .

end for
Define b(0)

i∗ such that f(b(0)
i∗ ) = mini

(
f(b(0)

i )
)
.

Obtain the global best position: b(0)
g ← b

(0)
i∗ .

for iteration t in 1 : T do
for particle i in 1 : P do
Generate α(t)

i
iid∼ Unif[0, 1].

Generate β(t)
i

iid∼ Unif[0, 1].
Update the particle’s velocity according to (5.1).
Enforce confinement rule on the velocity.
Update the particle’s position according to (5.2).
Enforce confinement rule on the position.
Evaluate the objective function: f(p(t)

i ).
if f(p(t)

i ) < f(b(t−1)
i ) then

Update the personal best position: b(t)
i ← p

(t)
i .

else
b

(t)
i ← b

(t−1)
i

end if
end for
Define b(t)

i∗ such that f(b(t)
i∗ ) = mini

(
f(b(t)

i )
)
.

Update the global best position: b(t)
g ← b

(t)
i∗ .

end for
OUTPUT: b(T )

g and f(b(T )
g )
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After a maximum number of iterations T , the optimal particle position is taken to be
the globally best position b(T )

g . This is then reshaped back into matrix form, to obtain the
optimal design X∗ = [x∗1, . . . ,x∗n]>. We note that, due to the nature of the PSO algorithm,
only one particle needs to find the optimum. The optimum, which is the minimum value of
ave-IMSPE, is then ave-IMSPE(X∗).

5.3 Summary of Overall Approach

The following is an overview of all of the steps involved in finding the ave-IMSPE optimal
design. Steps 1 and 2 have been described in detail in § 5.1-5.2, and are given here only in
brief.

Step 1 (Preliminary Modelling Step): Nparams values of the computer model param-
eters φ are sampled, and the corresponding responses are obtained using the computer
model. For each sampled value of φ, a kriging model is fit to act as a surrogate for the
computer model response surface at this value of φ.

Step 2 (Design Search): The PSO design search algorithm (described in § 5.2) is con-
ducted. For each candidate design X = [x1, . . . ,xn]> during the design search, the ave-
IMSPE is evaluated as follows:

Step 2.1: The MSPE is obtained from the analytical expression at a grid of locations
x ∈Xgrid, for each of the Nparams kriging fits.

Step 2.2: The values of MSPE are substituted into (4.7) to give the approximation
to the ave-IMSPE for this design.

Step 3: The result of the design search algorithm is the optimal design X∗(n), which is the
n-point design that minimizes ave-IMSPE. Step 2 can then be repeated for various values
of n, obtaining the optimal design X∗(n) each time.

Step 4: A plot of ave-IMSPE(X∗(n)) vs. n can help to decide on a value of n that provides
an acceptable level of prediction uncertainty while being affordable to the experimenter.
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Chapter 6

Simulation Results

The methodology of Chapters 4-5 is implemented on several simple computer models, in
order to illustrate how ave-IMSPE optimal designs are obtained. The results are compared
to those of a maximin design. All programming is done in R (R Core Team, 2015; Adler
et al., 2016; Venables and Ripley, 2002; Sarkar, 2008; Wickham, 2011; Calaway et al., 2015).

6.1 Additive Two-Dimensional Function

Consider the following two-dimensional example of a computer model giving the response
Z(x) at any location x ∈ A ⊂ R2:

Z(x) = exp
(
ax1
2

)
+ 2 sin(2bx2). (6.1)

The parameters for this model are φ = [a, b]>, with a, b ∈ [1, 4]. This is a simple additive
two-dimensional model, for which different combinations of the computer model parameters
result in response surfaces with different degrees of variability in each dimension. The region
of interest is assumed to be A = [0, 1]2.

The first step is defining the joint distribution of the computer model parameters φ =
[a, b]>. For this example, the distributional assumption on the computer model parameters
is that a and b are independent and uniformly distributed on [1, 4]2. Then, Nparams = 20
values of φ = [a, b]> are sampled from this proposed distribution.

As described in Chapter 5, a preliminary modelling step is completed before beginning
the design search. At each of the Nparams = 20 sampled values of φ, response values are
obtained from the computer model in (6.1) at a 25 × 25 grid of locations, and a kriging
model is fit to each dataset, with a small value of ν2 = 10−3 added to the diagonal of the
correlation matrix for purely computational reasons, as described in § 3.1 and § 3.3.

Several of the resulting kriging model surfaces are shown in Figure 6.1. It is clear that
for different values of the computer model parameters, the variability of the response surface
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Figure 6.1: Kriging model fits corresponding to the response surfaces for the additive two-
dimensional function, with φ> = [1.0, 1.7], [1.5, 3.7], [3.4, 1.0] and [3.9, 3.9], respectively.

in each dimension is quite different. Note that if the IMSPE-optimal designs were to be
found for each of the 20 surfaces separately, it is most likely that surfaces with a higher
variability in x2 than in x1 would require a larger number of points in the x2-dimension,
and vice versa.

Recall from § 4.1.3 that the ave-IMSPE criterion for any given designX = [x1, . . . ,xn]>

is approximated as

ave-IMSPE(X) ≈ |A|
NparamsNgrid

Nparams∑
j=1

∑
x∈Xgrid

MSPE(x;X,φj),

where |A| = 1, Nparams = 20, Xgrid is a regular 10 × 10 grid of points in the region of
interest, and thus Ngrid = 102 = 100. Recall that the value of MSPE(x;X,φj) for the jth
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Figure 6.2: ave-IMSPE optimal designs for the additive two-dimensional function.
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set of computer model parameters is found using the analytical expression

σ2
(
1− r>(x)V −1r(x)

)
,

where the kriging parameters σ2 and θ are taken from the jth kriging model obtained earlier.
The ave-IMSPE optimal designs are found for each of n ∈ {2, 3, . . . , 10}, as described

in Chapter 5. The PSO algorithm is run with P = 80 candidate particles moving simulta-
neously at each iteration, and T = 150 iterations. The algorithm is randomly restarted ten
times, and the best of the ten results is taken to be the overall optimal design for a given
value of n.

The optimal designs X∗(n) for n ∈ {2, 3, . . . , 10} are shown in Figure 6.2. The designs
all appear to fill the region of interest very well. This space-filling property makes intuitive
sense, since it allows for a low uncertainty of prediction everywhere in the region of interest
(see § 4.1.2).
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Figure 6.3: IMSPE-optimal designs for four individual fits for the additive two-dimensional
function, with n = 6.
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For comparison, the same PSO algorithm is used to obtain the IMSPE-optimal designs
for the four kriging fits in Figure 6.1, for n = 6. The results are shown in Figure 6.3. It can
be seen that most of the four IMSPE-optimal designs are very different. Perhaps the most
characteristic result is the one for a = 1.5 and b = 3.7. The response surface for this kriging
fit is very variable in x2 and varies only slightly in x1. As a result, the IMSPE-optimal
design is one that is evenly-spaced along the x2-dimension, with only a single value of x1

being observed. As expected, the ave-IMSPE optimal designs in Figure 6.2 are, in a sense,
“averages” of the designs that would have been obtained using any individual surface. They
are thus robust to changes in the computer model parameters.

The PSO algorithm is also used to obtain the two-dimensional maximin designs, defined
in § 4.2 (shown in Figure 6.4). For comparing the performance of the two designs, a measure
of the proportion of unexplained variability is given by∫ IMSPE(X;φ)

σ2(φ) π(φ)dφ, (6.2)

where σ2(φ) is the variability of the response when the true value of the computer model
parameters is φ. This is approximated using

scaled ave-IMSPE(X) = ave-IMSPE(X)∫
σ2(φ)π(φ)dφ , (6.3)

where the denominator is approximated by the sample mean 1
Nparams

∑Nparams
j=1 σ2(j).

Table 6.1 and Figure 6.5 show the resulting scaled ave-IMSPE values for the optimal
designs and the maximin designs, for each n. As expected, the ave-IMSPE optimal designs
perform better than the maximin designs, and the value of ave-IMSPE decreases with n.

Table 6.1: Scaled values of ave-IMSPE for the additive two-dimensional function.

n ave-IMSPE Optimal Design Maximin Design

2 0.435 0.666

3 0.305 0.445

4 0.223 0.500

5 0.174 0.280

6 0.136 0.174

7 0.107 0.178

8 0.088 0.127

9 0.074 0.199

10 0.060 0.094
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Figure 6.4: Two-dimensional maximin designs.
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Figure 6.5: Scaled ave-IMSPE values at the optimal designs and maximin designs, for the
additive two-dimensional function.

6.2 One-Dimensional Damped Cosine Function

The next example computer model that is considered is

Z(x) = exp(−ax) cos(bπx). (6.4)

This is a modified version of the Santner et al. (2003) one-dimensional damped cosine
function, obtained from the Virtual Library of Simulation Experiments (Surjanovic and
Bingham, 2013). The parameters for this model are φ = [a, b]>, with a ∈ [0, 3] and b ∈ [2, 5].
The region of interest is A = [0, 1].

We again assume that the computer model parameters are independent and uniformly
distributed on their respective domains. As in the previous example, Nparams = 20 values
of φ = [a, b]> are sampled from this proposed distribution, responses are obtained for each
sample at 25 equally-spaced locations in A, and a kriging model is fit to each dataset (with
a small value of ν2 = 10−5 added to the diagonal of the correlation matrix). Several of the
kriging model surfaces are shown in Figure 6.6.

Following the same methodology as in § 6.1, the ave-IMSPE optimal designs are found
for each of n ∈ {2, 3, . . . , 10}. As before, the PSO algorithm is run with P = 80 candidate
particles, T = 150 iterations, and ten random restarts. The optimal designs are shown in
Figure 6.7. They all consist of fairly equally-spaced points in A = [0, 1].

Figure 6.8 shows the one-dimensional maximin designs, obtained using the PSO algo-
rithm. As in § 6.1, the scaled value of ave-IMSPE is used to compare the performance
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Figure 6.6: Kriging model fits corresponding to the response surfaces for the one-dimensional
damped cosine function, with φ> = [0.02, 2.7], [0.5, 4.7], [2.4, 2.0] and [2.9, 4.9], respectively.
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Figure 6.7: ave-IMSPE optimal designs for the one-dimensional damped cosine function.
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Figure 6.8: One-dimensional maximin designs.

of the two designs. Table 6.2 and Figure 6.9 show the resulting scaled ave-IMSPE values
for the optimal designs and the maximin designs, for each n. As before, the ave-IMSPE
optimal designs improve in performance as n increases. However, due to their similarity to
the maximin designs, the performance is very similar.

Table 6.2: Scaled values of ave-IMSPE for the one-dimensional damped cosine function.

n ave-IMSPE Optimal Design Maximin Design

2 1.62× 10−1 3.07× 10−1

3 6.83× 10−2 9.93× 10−2

4 3.27× 10−2 3.92× 10−2

5 1.75× 10−2 1.88× 10−2

6 9.73× 10−3 1.02× 10−2

7 5.95× 10−3 5.99× 10−3

8 3.57× 10−3 3.83× 10−3

9 1.76× 10−3 2.58× 10−3

10 9.99× 10−6 1.25× 10−5
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Figure 6.9: Scaled ave-IMSPE values at the optimal designs and maximin designs, for the
one-dimensional damped cosine function.

6.3 Ackley Function

The final example that we consider is the 2-dimensional Ackley function,

Z(x) = −a exp

−b
√√√√√1
d

d∑
j=1

x2
j

− exp

1
d

d∑
j=1

cos(cxj)

+ a+ exp(1), (6.5)

where d = 2, and we use the parameter values a = 20 and b = 0.2 (obtained from the
Virtual Library of Simulation Experiments, Surjanovic and Bingham, 2013). This function is
commonly used for testing numerical optimization methods, because it contains many local
minima. We scale it so that its domain, initially [−32.768, 32.768]d, becomes A = [0, 1]d.

The unknown parameter in the model is c, whose distribution is defined to be Gaussian
with a mean of 2π and a standard deviation of π/2. As before, Nparams = 20 values of
φ = c are sampled from this distribution, responses are obtained for each sample at 25
equally-spaced locations in A, and a kriging model is fit to each dataset (with ν2 = 10−3).
Two of the kriging model surfaces are shown in Figure 6.10. The number of local minima
differs greatly for the two surfaces. However, both surfaces appear to be nearly symmetrical
with respect to x1 and x2. Thus, it can be expected that the IMSPE-optimal designs for
the two fits will be approximately evenly distributed in the two dimensions, and will thus
be similar to each other.

The ave-IMSPE optimal designs are found for each of n ∈ {2, 3, . . . , 10}, using the same
PSO algorithm. They are shown in Figure 6.11. They appear to fill the space A = [0, 1]2
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Figure 6.10: Kriging model fits corresponding to the response surfaces for the two-
dimensional Ackley function, with φ = 2.0 and 8.3, respectively.

very well, and are all nearly symmetrical with respect to x1 and x2, due the response surface
having equal variability in each dimension.

The maximin designs are the same as in § 6.1. Table 6.3 and Figure 6.12 show the
resulting scaled ave-IMSPE values for the optimal designs and the maximin designs, for each
n. As before, the ave-IMSPE optimal designs perform better than the maximin designs,
and their performance improves with n.

Table 6.3: Scaled values of ave-IMSPE for the two-dimensional Ackley function.

n ave-IMSPE Optimal Design Maximin Design

2 0.666 0.847

3 0.547 0.696

4 0.453 0.670

5 0.382 0.535

6 0.328 0.413

7 0.285 0.368

8 0.249 0.299

9 0.220 0.318

10 0.193 0.242
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Figure 6.11: ave-IMSPE optimal designs for the two-dimensional Ackley function.
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Figure 6.12: Scaled ave-IMSPE values at the optimal designs and maximin designs, for the
two-dimensional Ackley function.
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Chapter 7

Return to the Glacier

Using the same approach as in the previous chapter, we obtain results for the glaciology
application discussed in Chapter 2. The results are compared to those of a maximin design
and a design commonly applied in the glaciology literature.

7.1 Proposed Distribution of φ

The computer model parameters for the melt model in (2.2) are: MF (temperature melt
factor, measured in mm w.e. day−1 ◦C−1) and asnow/ice (radiation coefficients for snow and
ice surfaces, given in 10−3 mm w.e. h−1 ◦C−1 m2 W−1). As with the computer model
parameters in the simulation examples, these are inputs to the computer model whose
values are not known in advance. Since the distribution of φ = [MF, asnow, aice]> is not
precisely known, a distribution is specified based on values in the literature.

A literature review for uses of the Hock (1999) melt model was done. From this, twenty
separate vectors φ = [MF, asnow, aice]> were found, corresponding to studies on various
glaciers around the world. The values are given in Table 7.1. The top of Figure 7.1 shows
the scatterplot matrix of the parameter values. It appears that, in the data collected, there
is a strong positive linear relationship between asnow and aice, and a very weak relationship
between the other two pairs of parameters. The proposed joint distribution π(φ) on the
computer model parameters is a multivariate Gaussian distribution with means, variances
and correlations equal to the empirical values obtained from the literature, which are given
in Table 7.2. The distribution is truncated to require that MF, asnow, aice > 0.

From this joint distribution, Nparams = 50 values of φ are sampled, and the resulting
scatterplot matrix is given in the bottom of Figure 7.1. The results closely resemble the
data from the literature.
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Figure 7.1: Hock (1999) model parameter values found in the literature (top) and obtained
from the proposed joint distribution (bottom).
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Table 7.2: Means and variances of the Hock (1999) model parameter values found in the
literature (left), and the corresponding correlation matrix (right).

MF asnow aice

Mean 2.130 0.530 0.848

Variance 1.643 0.086 0.110

MF asnow aice

MF 1 −0.249 −0.056

asnow −0.249 1 0.864

aice −0.056 0.864 1

7.2 Design Optimization Results

As in the simulation examples of Chapter 6, the preliminary modelling step consists of
obtaining responses from the computer model for each of the Nparams = 50 sampled values
of φ (on the 30 m × 30 m DEM grid), and fitting a kriging model to each dataset, with a
small value of ν2 = 10−3 added to the diagonal of the correlation matrix for computational
reasons.

Looking at the sampled values of φ, it is difficult to determine which ones correspond
to complex surfaces. However, in each of the d = 2 dimensions, the value of the correlation
parameter θj represents the degree of spatial correlation in that dimension. A larger value of
θj generally implies a smoother surface in that dimension. Four kriging model surfaces (for
the rectangular region of interest) are shown in Figure 7.2, with correlation parameters θ> =
[0.32, 0.14], [0.38, 0.07], [0.15, 0.09] and [0.14, 0.04]. These kriging fits correspond to the
responses obtained from the computer model using φ> = [3.88, 0.07, 0.09], [2.14, 0.04, 0.36],
[1.53, 0.51, 0.48] and [0.56, 0.50, 0.97]. The dimensions x1 and x2 correspond to standardized
values of Easting and Northing, respectively. As expected, the surfaces differ with respect
to the amount of variability across the surface. However, they share the common result that
the melt tends to vary most greatly in x2. In particular, the melt decreases as x2 increases.
This makes intuitive sense, because locations at a higher value of x2 are generally at a
higher elevation (see Figure 2.2).

The ave-IMSPE optimal designs are found for each of n ∈ {2, 3, . . . , 10, 12, 14, 16, 18,
20, 25, 30}, using the PSO algorithm with P = 80 candidate particles moving simultaneously
at each iteration, T = 150 iterations, and ten random restarts. Due to the complexity of
the surfaces, each random restart results in a slightly different configuration of the optimal
design. However, the best designs all share the property of being somewhat space-filling in x2

(since this is the dimension in which the response varies most greatly), and being positioned
close to the middle of the x1-values. This is an interesting result, since it is qualitatively
similar to the suggestions discussed in the glaciology literature (see Chapter 2). The ten
random restarts for each value of n result in very similar values of ave-IMSPE. The overall
best designs are shown in Figures 7.3 and 7.4.
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Figure 7.2: Kriging model fits corresponding to the response surfaces for the glacier appli-
cation, with φ> = [3.88, 0.07, 0.09], [2.14, 0.04, 0.36], [1.53, 0.51, 0.48] and [0.56, 0.50, 0.97],
respectively.

These results are compared to the two-dimensional maximin designs (which, for n ≤ 10,
are the same as the ones shown in Figure 6.4), as well as expert-knowledge designs con-
structed using the common approach in the glaciology literature. As described in Chapter 2,
the recommended approach is to arrange the stakes along the centre line following the lon-
gitudinal axis of the glacier. Due to the way in which the rectangular region is defined, this
corresponds approximately to a centre line down the middle of the region, in the direction
of x2. As suggested by Fountain and Vecchia (1999) and Kaser et al. (2003), the stakes
should be arranged so as to evenly sample as much of the elevation as possible. Using this
approach, the expert-knowledge designs (for n ≤ 10) are shown in Figure 7.5.
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Figure 7.3: ave-IMSPE optimal designs for the glacier application, for n ≤ 10.
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Figure 7.4: ave-IMSPE optimal designs for the glacier application, for 10 < n ≤ 30.
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Figure 7.5: Expert-knowledge designs for the glacier application, along with elevation con-
tours (m above sea level), for n ≤ 10.
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Table 7.3 and Figure 7.6 show the resulting scaled ave-IMSPE values for the ave-IMSPE
optimal designs, maximin designs and expert-knowledge designs, for each n. As expected,
the ave-IMSPE optimal designs perform better than either of the two alternatives, and
the value of ave-IMSPE decreases with n. Also, as the value of n increases past n = 20,
the ave-IMSPE for the optimal designs begins to display the same convex shape as in the
simulation results in Chapter 6. Note also that the difference in ave-IMSPE between the
optimal designs, maximin designs and expert-knowledge designs tends to increase with n.

Table 7.3: Scaled values of ave-IMSPE for the glacier application.

n ave-IMSPE Optimal Design Maximin Design Expert-Knowledge Design

2 0.951 0.966 0.966

3 0.927 0.951 0.949

4 0.903 0.932 0.917

5 0.879 0.920 0.923

6 0.855 0.884 0.897

7 0.832 0.877 0.897

8 0.809 0.873 0.894

9 0.785 0.858 0.879

10 0.763 0.830 0.842

12 0.717 0.752 0.842

14 0.673 0.763 0.824

16 0.636 0.731 0.820

18 0.595 0.712 0.815

20 0.550 0.693 0.806

25 0.466 0.625 0.797

30 0.397 0.534 0.795

45



2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

n

S
c
a

le
d
 A

ve
ra

g
e
−

IM
S

P
E

ave−IMSPE Optimal Design
Maximin Design
Expert−Knowledge Design
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Chapter 8

Discussion and Further Work

In this project, a methodology has been presented for using a computer model to aid in
the design of a physical experiment. The designs minimize the uncertainty of prediction,
and are robust to changes in the computer model parameters, whose true values are not
known. Thus, the resulting designs often display space-filling properties, with more points
placed along the dimension that contains more variability in the response values. They are,
in a sense, “averages” of the IMSPE-designs that would be obtained for any single set of
computer model parameter values.

For the glacier application, the ave-IMSPE optimal designs all lie near the middle of
the Easting dimension (x1), and are spread out along the length of the Northing dimension
(x2). This result resembles the description of the expert-knowledge designs commonly used
in the glaciology literature (e.g. Fountain and Vecchia, 1999; Kaser et al., 2003; Østrem
and Brugman, 1991). However, since the ave-IMSPE optimal designs seek to minimize
the uncertainty of prediction across the entire region of interest, they also contain some
variability in the x1-dimension. As a result, they provide a compromise between the centre
line designs (expert-knowledge designs) and space-filling designs that seek to place points
throughout the entire space (e.g. maximin designs). As shown in Chapter 7, they outperform
both of these alternative approaches.

Several points must be considered for future work on this problem. Most importantly,
an assumption that has been made is that the region of interest is a hyperrectangle in
d dimensions. On the glacier, this corresponds to the rectangle defined in § 2.3. In the
future, the methodology will be expanded, using the methods in Pratola et al. (2015), to
be applicable to a non-rectangular (and non-convex) surface such as South Glacier.

Future work will also consider the relationship between designs that are optimal for pre-
dicting the spatial distribution of the response across the surface (i.e. designs that minimize
ave-IMSPE, as in this project), and designs that are optimal for estimating the average or
total response value across the surface. Much interest in glaciology lies in estimating the
total melt across the glacier, and so this result would be beneficial to researchers.
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Furthermore, uncertainty in the physical conditions represented by the computer model
in § 2.2 can also be represented by a further parameter to the model: the year in which the
field data was obtained. Data from South Glacier exist for several years, and considering
them would allow the design criterion, ave-IMSPE, to more accurately incorporate the
uncertainty in the parameters governing the system. Thus, the resulting optimal designs
could more effectively be used to predict the spatial distribution of melt for any given year.

A final potential problem to be considered stems directly from an application in glacio-
logical field work. During the melt season, the snow/ice level at certain points on the glacier
may decrease to a level lower than the bottom of a stake. As a result, the measurement of
snow/ice level at this stake cannot accurately be measured, as only a lower bound is known.
This amounts to a type of censoring problem, and could be the focus of further studies.
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