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Abstract 

Digital imager pixels are shrinking resulting in an increased rate of pixel defects. These 

defects are known as “Hot Pixels” that are permanent in nature and develop in-field. The 

number of hot pixels in a given digital imager increases over time.  

This research experimentally measures defect rates for pixels from 7 µm to those in the 

cellphone camera range, as low as 1µm. New software algorithms and techniques have 

been developed to compensate for increasing noise levels in the 2 to 1 µm range. This 

has allowed the creation of an empirical model that provides accurate projections of 

defect rates as pixel size decreases and sensitivity increases. Results show that the hot 

pixel rate increases by 8.9 times as pixels shrink by a factor of 2. Additionally, digital 

imagers allow us to explore soft errors (known as single event upsets) in a way that can’t 

be done in traditional ICs. 

Keywords:  CMOS; imager defects; reliability; hot pixels; SEUs; growth rate 
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Chapter 1.  
 
Introduction 

1.1. Digital Photography Overview 

Since its inception in the commercial camera world in about 1999, digital imager 

technology has dominated the world of photography and is becoming ubiquitous, 

spreading into everyday products from cell phones to cars via embedded sensors. A 

digital imager’s advantage over traditional film based models is vast. It gives the user 

freedom to explore creative photography. Additionally, the cost of owning a digital 

camera is lower than film over the entire lifespan of the camera itself. Photographic 

sensitivity (ISO) is also increased and can be manipulated from shot to shot in digital 

photography. Digital imagers enable users to instantly review images before they are 

printed and provide the opportunity to make improvements and adjustments with 

software tools. The applications for digital imagers are quite wide spread. Firstly in the 

photographic industry, implementations range from compact digital cameras and 

cellphone cameras for the average photographer to full DSLRs for professional use with 

customizable ISO, exposure and shooting settings. Other applications include industrial 

manufacturing, security cameras and use in the medical field. In scientific applications, 

specialized high speed cameras are used for characterization of events that occur very 

quickly. Enhancing the physical camera itself, image processing software tools such as 

Photoshop have made it easier to edit and manipulate digital images thus increasing the 

overall ease of photography. A standard digital imager consists of a pixel sensor, 

processing electronics and software, and memory for image storage. The pixel sensor is 
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the heart and soul of every digital imager and its design, study and reliability will be the 

focus of this thesis.  

In addition to hardware advancements in imagers, innovation in the software 

industry has greatly pushed imaging capabilities. Most modern imagers have software 

and processing algorithms that are inbuilt into the imager’s functionality. For example, in 

traditional film based photography the concept of white balance was purely set by the 

type of film used and controlled via the process itself. In digital imagers, white balance is 

a software enhanced feature that can be automatically adjusted or varied in DSLR 

imagers. With Digital RAW files (the digital equivalent of photographic negative) white 

balance can be adjusted after shooting unlike film. Thus the power of the digital camera 

is the combination of hardware and software functionality. Unlike film based cameras, 

the image that is delivered to the user is greatly processed with software in digital 

cameras. This creates complications that arise when assessing the quality and defect 

behaviour of digital imagers. Our research looks into such issues and discusses 

solutions for imager defect analysis. 

1.2. Market Trends 

Given the popularity and increasing demand for digitalized imagers, one could 

expect the growth of such systems to have increased dramatically in comparison to its 

predecessor, film based cameras. Figure 1.1 displays the sales profile for different 

camera types; specifically comparing film based manufacturing sales to digital camera 

sales. 
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Figure 1.1  Growth Profile for various Camera types in Canada (after [1]) 

It’s not surprising that as the chart moves into the early 2000’s, digital imagers 

begin to rapidly take over the market by 2005 making legacy analog cameras almost 

non-existent from a market point-of-view. Another interesting point is that the DSLR 

market started out quite small but has increased in popularity as time progressed 

indicating a greater interest in the field in today’s modern society. 

The main trend that one should observe is towards the end of the chart. As we 

get close to 2013 and onwards to present day, the number of digital cameras in general 

that are being manufactured is decreasing. The main reason is due to the effectiveness 

and wide-spread availability of cellphone cameras. Figure 1.2 displays the growth of the 

cellphone industry over a period of 8 years.  



 

4 

 

Figure 1.2 Cellphone Shipments from 2007-2014 (after [2]) 

The biggest trend from the above figure is that the mobile market is converting to 

smartphones. The main factor for this change is that many of the features that are 

available in mainstream digital cameras can now be found in typical smartphones. Firstly 

increasing mega-pixel counts in recent cellphone generations have been an effective 

marketing technique especially in the younger demographic. Additionally, modern 

Android OS systems are now providing users with the ability to capture images in their 

RAW format with ISO, exposure time and other shooting controls. Apple iOS based 

cellphones are rumoured to have such functionality in the near future (circa 2016). The 

overall picture here is that people are switching to cellphone cameras as their primary 

snapshot camera which greatly impacts the current trend in which manufacturers are 

heading with respect to next generation imagers. Figure 1.3 shows a plot of cellphone 

megapixel counts as percentage of sales from 2004 – 2010. It is clear the cellphone 

imagers contain much of the standard features that modern digital imagers possess. 

Current day cellphones can have pixel counts greater than 20 megapixels. As pixel 

counts increase, the general trend is to decrease the pixel size itself. The result is a 

reduction in overall pixel quality and sensitivity. The main goal of manufacturers is to 

design for increased density with quality and sensitivity being secondary focuses leading 

to inherent trade-offs with this design approach. 
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Figure 1.3 Cellphone Megapixel Counts from 2004-2010 (after [3]) 

Given the market dynamics outlined above, cellphone manufacturers are looking 

at ways to improve camera performance while reducing costs. As mentioned earlier 

some of these marketing techniques involve advanced software and control features in 

the camera applications. However, the main push in the industry is to enhance sensor 

design in order to increase overall pixel count in the sensor of the imager. A sensor, put 

simply, is an array of multiple pixels where each pixel holds the value of charge of the 

incident light. The inherent result of increased cellphone camera usage is a drive to 

enhance these sensors via a decrease in pixel size and an increase in the sensitivity of 

the imager itself. Traditional digital photography is accustomed to sensors with pixels in 

the 5-10 µm range. Even the latest cutting-edge DSLR sensors contain pixels in the 3-5 

µm range. However, in the cellphone image sensor realm these pixel sizes are much 

smaller. Most mainline cellphone imagers contain pixels in the 2-4 µm range. As 

manufacturers look for more efficiency in their processes, these pixels sizes are getting 

shrunk to as low as 1 µm and potentially even smaller sizes. There are trade-offs in pixel 

sensitivity, noise immunity and image quality for smaller pixel sizes. Higher megapixel 

counts are easy to sell even at lower image performance. One important concern in the 

reliability segment is whether or not pushing pixel sizes to sub-micron levels has an 

effect on the overall reliability and defect growth behaviour of the sensor. Note that all 

pixels in this thesis are assumed to be square. 



 

6 

1.3. Defects in Digital Imagers 

The science of reliability engineering and defect analysis is rather vast and is an 

entire topic of its own. Simply put, the term reliability can be thought of as the probability 

of long term success. As it applies to manufacturing, reliability is the inherent ability of a 

product to function properly over its expected lifetime. Reliability benchmarks differ from 

product to product depending on use-case, price points and expected life time and use 

of the product itself. In digital imagers, reliability is a very important discussion as their 

lifecycle is fairly long and certain imagers are used for high precision captures. These 

make an understanding of imager defects vital and necessary in the design and 

manufacturing of digital imager sensors. Manufacturers typically don’t focus on long term 

defects as they entertain the idea of consumers purchasing updated models over time. 

However, if the defect rates are at a level such that defects are noticeable in a short time 

frame, it makes this area of research very relevant to sensor designers, especially 

cellphone camera manufacturers.  

The cause of defects is one that has been greatly debated in literature. Two 

classes of defects exist; manufacturing time defects and infield developed defects. 

Defects that occur at manufacturing time are a cause of fabrication camera defects. 

These defects occur at time zero in a camera’s lifetime. Material degradation on the 

other hand creates defects that are caused due to inherent decay and alteration in 

semiconductor structure layers such as thin films and gate oxides [4, 5]. These defects 

show an inherent clustering behaviour in defect manifestation. These defects are caused 

by an internal source. For example, if there was an inconsistency with the process that 

causes defects down the line in the imager’s lifetime, these defects would be seen in a 

particular area of the sensor in clusters as that particular region degrades.  

Infield defects on the other hand are caused by external random sources that 

damage pixel cells creating faults which occur over the imager’s lifetime. These defects 

are random in nature. Past research [6] has shown that the major causes of defects in 

imagers are external random sources that occur in field rather than material degradation. 

One reason for this is that unlike mainstream ICs, digital sensors are not constantly used 
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but rather used only for brief periods of time when taking photos. This in turn limits the 

use and exposure of the digital imager IC itself. Modern ICs such as microprocessors 

are used quite extensively and are generally stressed in their operational modes which 

in turn lead to a greater chance of material degradation. 

Defects in imagers, though not always obvious and known to the average 

photographer, are evident and increase as time progresses. Photography is unique 

unlike traditional ICs in that defects can be identified in both location and intensity. 

These defects can be classified into two classes. The first class of defects are known as 

permanent or hard defects which are formed infield. It is important to note that these 

defects are created or formed during the lifetime of the imager and not at fabrication (i.e. 

formed infield). The other class of defects are known as temporary or soft defects which 

are temporal and cause a defective behaviour that is not permanent. Regardless of the 

class of defect, defects in imagers occur at the pixel level and are detected in the output 

image that is created as a result of capturing the input light intensity of a scene. A defect 

causes the original response of a particular pixel to be degraded such that it causes 

detectable errors in the output of pixel (i.e. visible in the image itself). Figure 1.4 displays 

the most common permanent defect types. 

 

Figure 1.4  Cellphone Megapixel Counts from 2004-2010 [7] 
© 2012 IEEE 

Permanent defective pixels are pixels that constantly exhibit defective behaviour 

regardless of the environment or time. Several types of defects have been classified in 

previous research [8] and been reported in various digital sensor and photography 
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forums and discussions. Overall, these pixel defects are classified into two types; stuck 

pixels and hot pixels. Stuck defects are pixels that are stuck at a fixed value regardless 

of the incident light intensity – they are either fully saturated (stuck high) or fully dark 

(stuck low). Additionally, pixels can also be partially stuck in that they are stuck at an 

intensity value between fully dark and fully saturated. Stuck defects are usually created 

during fabrication and can be corrected via defect mapping at manufacturing. Previous 

work [8] has shown that true stuck pixels do not develop over time. 

Another permanent defect of most concern is the hot pixel. Hot pixels are pixel 

defects where the defect intensity is controlled by the pixel’s exposure time. Hot pixels 

also develop at manufacturing but have been found to increase over time unlike stuck 

pixels [9]. Additionally, hot pixel responses change as the light intensity is increased 

unlike stuck pixels that have fixed pixel defective responses. This inherent nature of hot 

pixels make it more difficult to detect, model and even correct. Studies have shown that 

cosmic rays hitting the image sensor are the likely cause of hot pixels and their growth 

[10,11]. Past research has focused on identification of hot pixel types, detection 

algorithms, effects of ISO and exposure rate on hot pixel response and initial creation of 

a hot pixel growth model [12, 13, 14]. However at the time, the sensors that were 

analyzed contained larger pixel sizes in the 6-10 µm range. Additionally, these studies 

mainly focused on DSLR imagers which in turn paved the way for initial hot pixel defect 

research. This thesis will focus on research at smaller technology nodes (i.e. < 2 µm). As 

mentioned earlier, current day technology has enabled manufacturers to push pixel sizes 

down in size, close to the sub-micron level. Advanced DSLR imagers have already 

begun to enter this range while cellphone imagers are well in the small pixel range. The 

complication and concerns that arise from these manufacturing trends center around the 

effects of pixel size on the defect rate. Pixel sensor designers and manufacturers are 

unaware of the implications of current trends with relation to defect behaviour. In the 

later chapters, this concept will be explored in detail for various pixel sizes showing the 

accelerated hot pixel defect growth at lower pixel sizes. 

Soft defects, or defects that are temporal, are quite different in nature. Just like 

other integrated circuits, imagers are all susceptible to transient defects which are seen 

in-field but are short-lived. These defects are known as Single Event Upsets (SEUs). 
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SEUs are caused by cosmic radiation particles the strike the imager at random times 

and locations causing defective pixel locations that are only evident in a single image. 

SEU defects should be thought of as a temporary injection of charge acting like real 

exposure to light. Much study has been given to SEUs in digital ICs [15, 16] over the 

past few years especially as large IC manufacturers are pushing designs to use smaller 

technology nodes. Literature suggests SEU defects occur 100 times more than 

permanent defects making them more prominent. However, the behaviour of SEUs and 

their rate as it applies to digital image sensors has not been discussed. The effects of 

ISO and exposure time on the SEU growth rate are important to understand as these 

mechanisms are not present in standard digital ICs and their effects are unknown in 

literature. Therefore, the understanding of image sensor behavior in the presence of 

SEUs is vital and will be explored in this thesis. 

1.4. Summary 

It is evident that digital imagers have become a central part of today’s society. 

The demand for smartphone devices with advanced photography tools has increased 

leading to manufacturers pushing pixel sizes down to the sub-micron level. This thesis 

will look at effects of small pixel size on defects, hot pixel behaviour, and SEU 

behaviour, as it pertains to digital imagers. The remainder of this thesis is organized as 

follows: Chapter 2 provides a background on digital imager sensors, camera operation 

and hot pixel theory. Chapter 3 examines the experimental method for detecting hot 

pixels and provides in-depth analysis for hot pixel behaviour at smaller pixel sizes. 

Chapter 4 introduces the concept of SEUs and their application in digital imagers. 

Chapter 5 discusses experimental SEU measurements, detection algorithms and 

analysis. Lastly, final thoughts, conclusions and recommendations for future research 

are provided in Chapter 6. 
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Chapter 2.  
 
Image Sensors and Hot Pixel Defects 

2.1. Overview 

The sensor is the heart-and-soul of any digital imager system. Its main role is to 

capture the incoming light intensity based on various settings programmed by the user at 

data collection. An understanding of sensor design and behaviour in modern 

commercially-available imagers is vital to assess the behaviour and impact of defects. 

This chapter will explain the basic behind photo detection and different sensor types. 

The various parameters and configuration controls available in modern digital cameras 

such as ISO and exposure rate will be discussed. Additionally, the theoretical behaviour 

of defects, particularly of hot pixels, will be introduced as they pertain to modern 

imagers.  

2.2. Photodetector 

The process of converting incident light energy into electrical energy which can 

then be digitized by signal processing circuitry is the fundamental function of any 

photodetector. Light is created by the transition between quantized energy states which 

in turn creates waves packets known as photons. The energy of a photon is given by 

Equation 2.1: 
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𝐸 = ℎ𝑣 =
ℎ𝑐

𝜆
 (2.1) 

where, h is Planck’s constant and v is the frequency of the photon. In order for the 

incident photon to generate electrical energy within a semiconductor, its photon energy 

must be greater than the semiconductor’s band gap, Eg. In solid state physics, the band 

gap is defined as a region in the crystal’s energy diagram where no electron states exist. 

The band gap is the energy difference between the semiconductor valence band and the 

bottom of the conduction band [17]. The different bands are shown in Figure 2.1 below. 

 

Figure 2.1. Semiconductor Energy Bands at 0ºK 

If this condition is satisfied, an electron will be excited from the valence band to 

the conduction band, creating carriers for electrical energy. A depiction of this process is 

shown in Figure 2.2. Photons that have energy values less than the band gap energy will 

not be absorbed by the semiconductor material. Thus for a given semiconductor, there is 

a cut-off frequency at which all photons below the cut-off will not be absorbed by the 

semiconductor. This cut-off frequency value is specific to different semiconductor 

materials. The band gap is the major determining factor of a material’s electrical 

conductivity. Materials with larger band gaps are insulators, while smaller band gaps are 

generally conductors. In practice, as temperature increases, the thermal energy causes 

certain electrons from the valence band to be promoted to the conduction band resulting 

in a flow of charge. 
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Figure 2.2.  Photoelectric process 

When a photon penetrates through a semiconductor surface, its initial power Io, 

decreases due to absorption within the material. The statistical relationship of the power 

at a given distance x below the surface of a semiconductor material with an absorption 

coefficient α (cm-1), is given by the Beer-Lambert Law: 

𝐼(𝑥) = 𝐼𝑜𝑒−𝑥𝛼            (2.2) 

The absorption behaviour will vary based on the semiconductor type and initial photon 

energy. Table 2.1 displays the absorption values for the three main components of 

visible light (Red, Blue and Green) for a silicon type semiconductor. The absorption 

length is defined as the distance λ into a material where the probability has dropped to 

1/e that a particle has not been absorbed. 

Table 2.1. Typical Absorption values in Silicon (data taken from [18]) 

Light Color Wavelength Absorption 
coefficient 

α (cm
-1

) 

Absorption 
length 

α
-1

 (μm) 

Red 600 3.75 × 10
3
 2.67 

Green 525 7.07 × 10
3
 1.41 

Blue 450 1.98 × 10
4
 0.51 

The complication with the above process is the fact that the actual creation of 

photo carriers is very transient and does not persist long enough to be measured 

effectively due to carrier recombination. More advanced techniques are used to prevent 

recombination and efficiently measure the photoelectric output. Some devices that use 

these techniques are photodiodes and photogates.  
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2.3. Photodiodes 

The first photodetector that will be discussed is a photodiode. Photodiodes are 

devices that convert incoming light into electrical energy. A P-N junction diode is a 

device that is made of a crystal semiconductor. Silicon is the most commonly used 

semiconductor material for diodes with germanium and gallium arsenide also being 

used. Impurities are added to the base semiconductor material to create a region that 

contains negatively charge carriers (electrons) known as n-type and a region that 

contains positively charged carriers (holes) known as p-type. When these regions are 

abutted, a transient flow of electrons from the n-type to the p-type occurs and holes from 

p-type to n-type. This creates a third narrow diffusion region known as the depletion 

region between the N and P regions where no charge carriers are present. This process 

is known as the junction effect. The diffusion creates an electric field in the depletion 

region. This electric field separates charges and creates a net charge effect. A 

sufficiently higher potential on the P in contrast to the N will cause a flow of electrons 

from the N to the P through the depletion region. The depletion region does not permit 

the flow of electrons in the opposite direction. The current-voltage (I-V) characteristics of 

a typical diode are shown in Figure 2.3. 

 

Figure 2.3.  P-N Junction Diode I-V Curve (taken from [19]) 

In essence, a photodiode is a P-N junction diode that is reverse-biased. When an 

incoming photon has sufficient energy, it will create an electron-hole pair – i.e. the 
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creation of photo carriers mentioned earlier. With this design, a small amount of current 

is also produced when no incident light is present. This is current is known as the dark 

current. Current that is generated through the thermal process in a diode is known as the 

photoelectric current. Figure 2.4 displays a behavioural model of a photodiode. Note that 

this is not a physical representation of an actual photodiode, but rather a circuit model 

that depicts its operation in terms of current and resistance characteristics.  

 

Figure 2.4.  Photodiode Circuit Behavioural model 

The main advantage of photodiodes is that they can easily be packaged into an 

array to create a larger photo sensor. Unlike modern CMOS designs that will be 

discussed later, a photodiode array can be used in high speed applications as it enables 

parallel readout electronics for quicker image processing. However, the greatest 

downfall of photodiodes is the large amount of dark current that can be produced. Two 

main types of sensors exist in digital camera technology; the traditional CCD sensor and 

the modern CMOS sensor. 

2.4. CMOS Sensors 

Before exploring CMOS sensors, it should be noted that CCD imagers were the 

industry favorites in the early stages (early to mid-2000s) of the digital photography 

boom. At the time, CCD sensors were the most cost-effective option for compact flash 

and DSLR cameras in the commercial camera market. CCD design and manufacturing 
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is a very specialized process. However, as CMOS technology progressed, 

manufacturers moved to using CMOS sensor designs creating a shift in the traditionally 

accepted sensor market. Today, CMOS sensors completely dominate the digital sensor 

world and the use of CCDs sensors has been limited to specialized scientific and 

research applications. Due to these current market trends, this thesis will not focus on 

CCD sensors, photogates and their defect rates, but rather, will explore the modern-day 

CMOS sensor. 

The CMOS sensor, or more commonly known as the active-pixel sensor (APS), 

is the most common choice for digital imagers in modern day photography. As indicated 

in the name, this type of sensor makes use of the Complementary Metal–Oxide–

Semiconductor (CMOS) technology process to design a pixel cell. The fundamentals 

behind CMOS technology is founded on the existence of a complimentary pair of MOS 

transistors used to create logic functions in digital ICs. This compatibility allows APS 

sensor to be integrated with other circuits on the sensor. 

A large advantage of CMOS technology over other processes is that fact that 

CMOS designs use much less power. The inherent nature of the design hinges upon the 

fact that one of the transistors in the pair is always ‘off.’ This in turn reduces power 

consumption and even gives CMOS circuits higher noise immunity. The only significant 

power draw is when there is a switch in the logic output. Given these advantages over 

other semiconductor processes, the CMOS imager is the number one choice for today’s 

camera manufacturers.  

A CMOS pixel is a design that makes use of multiple CMOS transistors to create 

the pixel cell. Figure 2.5 displays a typical 3 transistor (3T) CMOS pixel design. 
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Figure 2.5.  3T CMOS Pixel Design 

In the 3T pixel sensor, a photodiode is used to sense the incident light and 

convert the photon energy to electric energy. An important detail here is that diode is 

reset to high such that the incident light discharges the diode. In essence, the inversion 

of the charge is measured at the output of the cell. This eliminates any sub-threshold 

uncertainties if the measurement was done from low to high. A reset transistor is present 

to bring the circuit in and out of reset. This functionality is normally used at device power 

ON where the circuit will be held in reset until software initialization is complete, after 

which the reset will be lowered to enable operation of the pixel cell (note the active high 

reset in the diagram). A source follower amplifier is used to collect the output of the 

photodiode without actually removing the accumulated charge off the diode; essentially 

acting as a buffering stage. Lastly, a selection transistor enables higher level circuitry to 

selectively read-out pixel values using row and column selection signals. Although it may 

not be clear in circuit schematics, in CMOS pixels the photodiode takes up the largest 

die space in comparison to the rest of the transistors. In modern designs a more 

complex 4T pixel cell is used [20]. Figure 2.6 displays a typical 4T CMOD design [21]. 

This is essentially the 3T design with the addition of a transfer transistor just after the 

photodiode. The transfer transistor adds additional accuracy in extracting the 

accumulated charge of the photodiode and reduces lag in the pixel circuit. As digital 

technology has increased over time, more complex designs are being used to increase 

the dynamic range of the pixel cell in order to provide more functionality and density in 
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today’s digital imagers. Some pixel designs have transistor components that are 

specifically designed for high-dynamic-range (HDR) captures. 

 

Figure 2.6.  4T CMOS Pixel Design 

Pixels are typically put together into a two-dimensional array known as the image 

sensor. Each pixel is connected to a row and column select line as well as a common 

reset signal. As mentioned earlier, higher level processing and circuitry can read out 

pixel values by using the correct row and column signal selection; essentially a large 

multiplexing feature based on the row and column selections. Modern designs tend to 

combine the read out values and use circuitry that read out entire rows or columns at a 

time to increase performance. 

Another important concept in pixel design is the fill factor of a pixel. The majority 

of the pixel area is occupied by the photodetector in order to maximize its exposure to 

the incident light. However, due to other transistors and control lines in the pixel the 

entire pixel cannot be used for light detection as some of the area is lost for the other 

transistor circuitry. This ratio between the areas used for light detection to the total area 

of the pixel cell itself is known as the fill factor a pixel. Adding more transistors to pixel 

essentially reduces the fill factor of the pixel increasing the trade-offs between complex 

designs and overall pixel detector exposure. Figure 2.7 displays the schematic layout of 

a standard 3T CMOS pixel cell (8 µm pixel size). The fill factor is 49.9% where the photo 

sensitive area is 4.44µmx6.75µm. As mentioned earlier, in pixel cells, the photodiode 
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occupies the largest area in comparison to the other transistors. In typical pixel designs 

the fill factor is around 25%. Micro-lenses are used to increase the light collection 

efficiency of such designs.  

 

Figure 2.7.  3T CMOS Pixel Layout (taken from [22]) 

2.5. Sensor Comparison 

The main advantage of the CMOS pixel sensor over the CCD is that it is lower 

cost and easier to manufacture given the widespread availability of CMOS technology 

and foundries. Given these lower costs, CMOS sensors are the normal choice for high 

volume and consumer imager applications. CCD sensors however have a larger 

advantage in low-light applications making them more suitable for scientific and 

astronomical imaging applications. 
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Figure 2.8.  CMOS vs. CCD imager shipments 

Figure 2.8 display a comparison of CMOS imager vs CCD imager shipment 

numbers from 2009 – 2014 [23]. Clearly, CCD imagers were the industry leaders earlier 

the digital photography industry. However as CMOS imager designs became more 

mature and scalable, CMOS sensors have quickly taken over the market. Today, most 

consumer digital cameras contain CMOS sensors while CCD sensors are used for more 

application specific scientific imagers. Given these industry trends and the lower demand 

for CCD sensors, the remainder of this thesis will focus on CMOS imagers and their 

defects. 

2.6. Digital Photography Basics 

As mentioned earlier, an array of physical pixel cells form a digital imager sensor. 

This sensor is used to collect the incident light for a set amount of time which in turn 

forms the image. There are many factors that play a role in the image formation 

including the ISO (sensitivity) and exposure settings as well as the image format and 

color interpolation methods. These will all be looked at in the next few sections. Here we 

will take a closer look at digital pixels from a sensor level and how they play a role in 

capturing the image. 
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2.6.1. Pixels and Bayer Pattern 

APS pixels respond to a wide wavelength range. Thus in a sensor, each 

photosensitive pixel area is deposited with a colored filter to only allow certain 

wavelengths of light to be detected by the pixel area. This in turn blocks out other colors 

only allowing a certain grade of color to pass – Red: 625-740nm, Green: 500-565nm, 

Blue: 440-485nm. A pictorial depiction of this process is shown in Figure 2.9. As seen 

from the figure, on a location that has a red filter for example; incident blue light will not 

transmit light to the photodiode resulting in no accumulated charge at the output of the 

pixel. Only incident light that contains frequencies in the red spectral range (or that are 

accepted by the red filter) will be transmitted.  

 

Figure 2.9.  Red, Green and Blue color filters 

These pixel filters are patterned on a 2x2 square pixel basis. These 2x2 (or 4 

pixels in total) filters are known as the Bayer pattern of the imager (i.e. the CFA or Color 

Filter Array of the Imager). There are several different combinations that are possible but 

the most common configurations of the Bayer pattern will have two green components, 1 

red and 1 blue. The most common configuration is the RGGB Bayer pattern. RGBG and 

GRGB filters are also possible. A demonstration of this process is shown in Figure 2.10. 

Bayer patterns typically contain a 2:1 ratio between green to red and blue pixels. This is 

because the green wavelength is the peak of the emission band and the human eye is 

most sensitive to the color green.  
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Figure 2.10.  Bayer Pattern Demonstration 

Using the above technique, the sensor will output a collection of charge values 

based on a pixel’s particular Bayer color and the incident light. Together these are 

collected together to form the image which uses a pixel value range to depict the light 

intensity at that location. Essentially the output image is a series of pixel values based 

on the main RGB color scheme. Though this process is not intuitive, the advantages of 

this are seen during image compression and interpolation techniques. Image formats 

and their pixel ranges will be explained in the following sections. A particular imager’s 

CFA pattern will be embedded in the meta-data of its image. Modern image analysis 

tools are able to extra the CFA pattern along with other sensor specific details that are 

useful for understanding a particular camera’s behaviour. When analyzing defects, it is 

important to extract the Bayer pattern of the particular imager-under-test and to analyze 

the output image accordingly. Knowledge of a particular pixel’s CFA pattern helps one to 

understand defects and potential relations to certain CFA colors. 

2.6.2. Image File Formats 

Once the sensor captures a scene, it will produce a RAW image. A RAW image 

is the least treated image format a sensor can output. Processes such as noise 

suppression and pixel scaling are performed earlier in image collection before the RAW 

image is formed. Typical RAW images use 12-bit or 14-bits per pixel (i.e. per location). 

The key point here is the fact that for each location of the RAW image, the value of the 

pixel represents the intensity of either a red, blue or green location which is set by the 

sensor’s CFA pattern. RAW images do not have any compression applied to them in any 



 

22 

way, making them very large in size. As a result, only DSLR cameras tend to allow direct 

RAW image transfers for users to access.  

A RAW image on its own is not easily viewable and not processed. Most 

manufacturers have proprietary RAW formats that are not open-source and not easily-

readable. The advantage of RAW images is the fact that it gives photographers the most 

processing control over images before converting them to another standardized image 

format; typically JPEG. Regardless of the post-processing styles, the very first step in 

image conversion is demosaicing of the RAW image. The processing pipeline [24] used 

in digital photography is shown in Figure 2.11. In the processing pipeline there are two 

noise reduction stages. These stages effectively change the value of the pixel in order to 

pixel noise due to thermal effects. In defect analysis, this in turn changes the pixel 

values in the image captures even for RAW images themselves proving to be a 

challenge when analyzing images for defects. Additionally, these noise reduction stages 

are not standardized across imagers as each camera manufacturer applies custom 

proprietary noise reduction algorithms. 

 

Figure 2.11.  Image Processing Pipeline 

Demosaicing algorithms are applied in order to reconstruct a full color image 

from the RAW data using the color scheme set by the CFA pattern. All modern JPEG 

images undergo this process during their image creation. The simplest version of this 

algorithm is the interpolation of a pixel’s nearest neighbour to obtain the missing color 

information. As it sounds, this method intuitively uses a 4x4 or 8x8 nearest neighbour 

technique to average out surrounding pixel values to reconstruct the R-G-B color values 

at each pixel location while preserving image resolution. However, advanced techniques 

exist that are designed to avoid image artifacts and reduce conversion noise by 

iteratively refining the colors. As the complexity of the algorithm increases so does the 

computational requirements and times. Thus there is a trade-off that manufacturers of 

digital imagers have to consider when designing software algorithms.  



 

23 

In defect analysis RAW images are the format of choice because each pixel’s 

value is not affected by it neighbours; as mentioned before, RAW images have the least 

modification. Thus the effect of a defective pixel is isolated to the individual defect site. In 

JPEG conversion these defects are spread around due to the demosaicing algorithm’s 

interpolation nature, making it difficult to identify the defect pixel location and true 

intensity. Thus in this research, all experiments make use of imagers that have RAW 

image capabilities. 

2.6.3. ISO 

At a high level, the three foundations of digital photography are the ISO, 

exposure rate and the aperture. The ISO setting of a camera (the exposure index) was 

developed in the film camera era and is the sensitivity or amplification of the sensor 

providing a relationship between the exposure time and the output sensor values. The 

lower the ISO setting, the less the imager is sensitive to the incoming light (or less 

amplification). For scenes with a high amount of light, a lower ISO setting is used as 

there is sufficient input light for the image. In low light settings, a higher ISO value is 

typically used to amplify the incoming light.  

When discussing ISO settings, a key point is that the actual pixel photodiode 

charge accumulation and collection is not affected by the ISO setting itself. The ISO 

simply acts as a gain mechanism to amplify the output of the pixel. At higher ISO values 

background thermal noise in the pixel is also amplified which in turn results in an image 

that is more susceptible to noise, essentially adding a grainy feel to the image. This ISO 

to noise trade-off must be considered when dealing with digital photography and defect 

analysis. 

In this research the ISO setting is a fundamental experimental parameter for 

understanding pixel defects. They play a role in the defect pixel output as well varying 

ISO values in experiments reveal to us behavioural models for characterizing defects. 

Additionally, defect growth rates and trends are parameterized using the ISO in growth 
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equations. The hot pixel and SEU defect analyses that will be seen in the following 

chapters use the ISO setting quite often in discussing their relative defect behaviour.  

2.6.4. Standard Pixel Response 

When analyzing pixel response characteristics we begin to consider pixels at a 

higher level of abstraction in which the pixel at a whole is treated as a device. As 

mentioned in previous sections, each pixel in a sensor is sensitive to the input light and 

the output response is related to the accumulated time of light exposure on the individual 

pixel.  

 

Figure 2.12.  Ideal Pixel Response 

Figure 2.12 displays the ideal response of a standard imager pixel. This 

response is characterized by the exposure time and the sensitivity of the pixel itself. 

Ideally, as the exposure time to light increases, the pixel output will increase linearly up 

to a max saturation level. The value of this saturation level is also referred to as the max 

dynamic range of the pixel. The time at which the pixel hits saturation is known as the 

saturation time, Tsat. The response’s slope is the sensitivity of the pixel which is directly 

related to the imager’s ISO setting (amplification). 
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Mathematically, the response of the ideal pixel can is characterized with the 

following piecewise linear relationship: 

𝐼𝑝𝑖𝑥 = {
𝑚[𝑅𝑝𝑖𝑥𝑇𝑒𝑥𝑝]     𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 < 𝑇𝑠𝑎𝑡

𝐼𝑠𝑎𝑡                       𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 ≥ 𝑇𝑠𝑎𝑡
                                     (2.3) 

The pixel response, Ipix, is modelled with slope m (set by the ISO), exposure rate Rpix and 

exposure time Texp. When the exposure time crosses the saturation time boundary Tsat, 

the pixel response is flat. Before the saturation time threshold, the pixel has a linear 

growth profile. An important concept here is that modifying the ISO of the imager (by 

changing the internal amplifier gain) will change the response’s profile such that the time 

to reach saturation varies based on the ISO setting. Assuming a constant exposure rate, 

higher ISO settings reach saturation quicker than lower ISO settings. A depiction of this 

concept is shown in Figure 2.13 where the pixel response varies as the ISO amplification 

changes. 

 

Figure 2.13.  ISO effects on pixel response 
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2.6.5. Exposure Time 

The term exposure, as it relates to digital photography, is the amount of light per 

unit area captured by the image sensor. To quantify exposure, the following relationship 

for luminous exposure is used:   

𝐼 = 𝐸𝑡   (2.4) 

E is the luminance, or total flux, at the surface of the sensor measured in units of lux (lx) 

and t is the exposure time in seconds (s). The product of these two terms produces the 

luminance flux measured in units of lx-s. The above relationship is inherently defined as 

linear with time such that a change in the exposure time changes the total exposure of 

the image in a linear fashion. Increasing the exposure time will increase the overall 

exposure which if overexposed, can lead to images that lack edge details due to much 

light in the image. Similarly, reducing the exposure time will reduce the total exposure 

but can cause the image to be underexposed leading to muddy looking images. 

Examples of underexposed and overexposed images can be seen in Figure 2.14(a) and 

Figure 2.14(b) respectively. 

 

 
 

a) b) 

Figure 2.14.  Examples of (a) Underexposed and (b) Overexposed Images 
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In digital photography the exposure time is controlled with a setting called the 

shutter speed which dictates the amount of time the pixel sensor is exposed to the 

incident light. These shutter speeds are typically measured in units of seconds. Modern 

DSLRs have shutter speeds as short as 1/8000th of second to as high as 30 seconds (in 

typical operation) with a range of options in between. In our experiments for defect 

detection, the shutter speed plays a vital role in characterization of such defects. Given 

that the pixel values will vary based on the exposure time, the defects will also exhibit 

different behaviour as the exposure time is varied. Many of the defect models that will be 

discussed in the future chapters will use exposure time as a key parameter. 

2.7. Permanent Defective Pixel Overview 

This section will introduce the concept of permanent defective pixels and the 

various types that exist. For each defect type, the corresponding pixel response curve is 

displayed. 

2.7.1. Defective Pixel Response 

In practice, all electronic devices develop defects. Given that the sensor can be 

treated as a mixed analog and digital device, it is susceptible to developing defects as 

other semiconductor devices do. Though electrical and material degradation all play a 

part in defect creation, cosmic rays have been identified as the main source of defect 

creation through previous research in Dr. Chapman’s research lab at SFU [25, 26]. 

Studies have shown that these defects develop at more rapid rates at higher elevations 

where cosmic radiation is larger. Figure 2.15 displays a sample 8x8 pixel color image of 

a grey background. In practice the image should only contain pixel colors that contain 

the color grey. However, it is clear that a single red pixel in the image stands out and is 

considered a defect.  
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Figure 2.15.  Example Hot Pixel Defect 

When it comes to hot pixels (permanent defects), the combinations for faulty 

defect responses are infinite as one could conjure many potential defective pixel 

response curves. However, past research [27, 28] has identified three main types of 

permanent defective pixel responses which will be discussed in the next sections.  

2.7.2. Stuck Defective Pixels 

A stuck defect is a pixel that maintains a fixed intensity value regardless of the 

exposure time applied. Two types exist, stuck high and stuck low defects. A stuck high 

pixel will remain max in value regardless of the scene and surrounding pixel responses. 

Conversely stuck low pixels remain low (or dark). A stuck pixel follows the relationship 

given in Equation 2.5 where b is a constant value.  

𝐼𝑝𝑖𝑥 = 𝑏     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇𝑒𝑥𝑝     (2.5) 

Stuck pixels are easily identifiable at time of manufacturing enabling 

manufacturers to map out these defects and bypass them using software techniques. It 

is important to note that stuck pixels have not been observed to develop overtime for 

commercially available DSLRs in our research [28] indicating that they only occur at 
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manufacturing. Hot pixels on the other hand are not easily discernable and cannot be 

corrected at time of manufacturing. 

2.7.3. Standard Hot Pixels 

To model the response of a hot pixel, Equation 2.3 needs to be modified to the 

following: 

𝐼𝑝𝑖𝑥 = {
𝑚[𝑅𝑝𝑖𝑥𝑇𝑒𝑥𝑝] + 𝑚[𝑅𝑑𝑎𝑟𝑘𝑇𝑑𝑎𝑟𝑘 + 𝑏]      𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 < 𝑇𝑠𝑎𝑡

𝐼𝑠𝑎𝑡                                                                 𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 ≥ 𝑇𝑠𝑎𝑡
             (2.6) 

The above equation adds an additional section to compensate for dark current effects 

parameterized by the dark response rate Rdark and the dark exposure time Tdark. An 

additional offset, b, is also introduced and is known as the dark offset. In an ideal non-

defective pixel, the Rdark, Tdark and b terms all have a value of zero. In the presence of no 

light (otherwise known as a dark frame), non-defective pixels will have an intensity 

response of zero, regardless of the exposure time. This can be seen in Figure 2.16(a). It 

is important to note that in this figure, the pixel intensity values have been normalized. 

This normalization of the intensities is a standard way of analyzing pixel curves as it 

shows general trends on a standardized scale. 

 

Figure 2.16.  Comparing the dark response of imager pixels: (a) good pixel, (b) 
standard hot pixel, (c) hot pixel with offset [29] 
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To simplify hot pixel analysis we will assume a dark frame scene in which the 

light intensity rate term Rpix goes to zero. The resulting hot pixel equation now becomes: 

𝐼𝑝𝑖𝑥 = {
𝑚[𝑅𝑑𝑎𝑟𝑘𝑇𝑑𝑎𝑟𝑘 + 𝑏]      𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 < 𝑇𝑠𝑎𝑡

𝐼𝑠𝑎𝑡                                   𝑓𝑜𝑟 𝑇𝑒𝑥𝑝 ≥ 𝑇𝑠𝑎𝑡
                             (2.7) 

Again, for a good pixel the above response will be ideally zero as dark current effects 

are not seen. In practice there is an inherent noise component in the system which 

means the pixel’s value will be in the noise floor and not exactly zero. For a defective 

pixel, or hot pixel, the above pixel response will have a non-zero Rdark term causing an 

output in the pixels’ values in the presence of a dark frame. Using this term we can 

derive two types of hot pixels. The first being a standard hot pixel and the next a hot 

pixel with an intensity offset. 

The standard hot pixel dark frame response is shown in Figure 2.16(b). This 

curve resembles the standard good pixel response in a light frame. As the exposure time 

approaches zero, the effects of this pixel are not seen in the image. While the exposure 

time increases, the pixel output increases linearly as the dark frame rate also increases 

linearly with time. Similar to the previous pixel responses seen, the dark pixel also 

reaches a maximum pixel value at which point it begins to saturate. Thus this type of hot 

pixel is mostly visible at longer exposures as its initial pixel value is low at smaller 

exposure times. This is the classic hot pixel typically described in literature.  

The second type of hot pixel is the partially stuck hot pixel as seen in           

Figure 2.16(c). These hot pixels have the same slope, growth and saturation 

characteristics as the standard hot pixel but have the addition of an offset. This offset is 

an initial intensity offset at time zero. In theory as the exposure time approaches zero, 

the pixel output will still contain a significant intensity value. This indicates that partially 

stuck hot pixels are identifiable at lower exposure time values unlike standard hot pixels. 

SFU research has shown that in commercial imagers, approximately 70% of the defects 

are partially stuck hot pixels and 30% are standard hot pixels [29]. Our research 

suggests that all reported in-field stuck pixels are really partially stuck hot pixels.  



 

31 

It’s important to note that though the above defective pixel responses have been 

analyzed using dark frame responses, their behaviour still exists in light frame scenes. In 

light frame scenes, the dark frame response will be added to the overall pixel response 

causing incorrect pixel values. Hot pixels have additional behaviour in light frames which 

are not strictly linear. There are ongoing studies in this area to model hot pixel behaviour 

in light frames. 

2.8. Hot Pixel Detection 

In order to detect defective pixels, specialized software has been developed to 

assist with this process. This section will discuss the experimental method to detect hot 

pixels in-field. 

2.8.1. Dark Frame Techniques 

The hot pixel models that have been presented are characterized using dark 

frame analysis. There are a few advantages in using the dark frame method over the 

light frame in characterization and study of defects. Firstly, the dark frame experiment is 

easy to reproduce as the surroundings are deterministic. Experiments can be done by 

simply covering the image sensor in a dark room whereas in the light frame it is difficult 

to accurately reproduce light scenarios when performing experiments. The main 

advantage of the dark field analysis is the linear nature of the pixel response. Research 

has been done in analyzing light frame techniques with hot pixels [30] and creating 

appropriate models. Current papers have found that this behaviour may not be linear 

and more work in this area is necessary. As a result, this paper will use dark frame 

techniques for detection and characterization of hot pixels and their behaviour. A key 

factor that dominates the direction of the dark frame calibration is the system noise in the 

imager. Even in dark frames the imager is susceptible to thermal noise. Thus at higher 

ISO ranges this thermal noise is amplified and could appear to be a hot pixel. This in 

turn limits the amount of significant data that can be captured at higher ISOs. 
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Additionally, the defect analysis software (discussed in Chapter 3) has been developed 

in order to take noise characteristics into consideration.  

2.8.2. Image Capture Techniques 

In this research, dark frame analysis is conducted by covering the imager sensor 

(typically using the manufacturer provided cover) in a photography dark room or a dark 

covered box. This ensures no rogue light is present in the experiment environment 

because with long exposure times, light can leak in via the eyepiece of a DSLR imager. 

The imager is programmed to capture images in RAW format with all correction and 

built-in processing tools disabled. Experiments are taken over a wide range of ISOs with 

increasing exposure times for each ISO setting. This technique enables one to identify 

hot pixel intensity growth as the exposure time increases for a given ISO setting. A 

depiction of this process is shown pictorially in Figure 2.17 where the exposure time 

increases from left to right. This data is then fed into customized software to analyze and 

output hot pixel behaviour. 

               

               

               

a) T1 
 

b) T2 

 

c) T3 

 

d) T4 

Figure 2.17.  Hot Pixel Intensity Increase with Exposure Time 

Previous attempts have been made to use JPEG images for defect analysis but 

have been proved to be greatly ineffective [30]. As mentioned earlier, JPEG images 

undergo a large demosaicing process that performs color interpolation of the pixels. In 

dark frame images, this demosaicing algorithm spreads the defect over a much larger 

area which makes detection of these defects difficult and highly inaccurate. 
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2.9. Summary 

This chapter has outlined the basics of imager pixel and sensor architectures, 

comparing various options and stating current industry standards. Pixel behavioural 

models were explored for both non-defective and defective pixels. Specifically, the hot 

pixel model was introduced for dark-frame analysis. The next chapter will explore 

software algorithms that are used for analysis in more detail and look at hot pixel 

experimental data for DSLR and cellphone imagers. 
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Chapter 3.  
 
Hot Pixel Experimental Results and Analysis 

3.1. Overview 

The previous chapter presented a foundation on pixel sensor design, digital 

photography, and hot pixel theory. Specifically, the classical hot pixel model was 

explained in detail to provide a basis for further research and analysis. The chapter 

ended with an explanation of dark frame techniques and detecting hot pixels. This 

chapter will focus on hot pixels from a practical and experimental basis. Firstly, the 

software algorithms used for hot pixel detection in imagers will be discussed. This 

discussion is important as it allows one to understand what is considered a real hot pixel 

in experiments and what data is discarded as noise. Such knowledge is essential as the 

number of hot pixels detected has a direct correlation with the derived growth rate for a 

given imager. The concept of defect growth rate will be explained along with the curve 

fitting techniques used in this research. A key point is that there is very little information 

in literature on pixel defect rates and how they increase as pixel sizes decrease. This 

chapter will look at different growth models and how pixel sizes affect the rate. 

The main focus of this section and key expansion from previous SFU research 

will be the analysis of defect rates at smaller pixel sizes. As mentioned throughout this 

thesis, there is a large push in industry to make pixel sizes smaller for manufacturing 

and design efficiencies with unknown consequences to defect rates. Additionally, the 

drastic increase in consumer demand for cellphones increases the trend to push pixels 
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to smaller sizes. Cellphone imagers and their defect behaviour will be explored in detail 

along with an updated model of the defect growth rate. 

3.2. Hot Pixel Software Detection Algorithms 

One can imagine that given the number of pixels in an image extracted from a 

modern DSLR (10 – 50 Megapixels) it can difficult to manually go through the image and 

find defective pixels. Thus, there is a need for automated methods for detecting such 

defects. In this research, a software based algorithm for hot pixel defect detection was 

developed using a MATLAB based GUI. The process of characterizing defect behaviour 

for a particular imager involves an experimental lab procedure as well as software 

analysis processing. 

3.2.1. Experimental Process 

Before we can analyze hot pixels, the appropriate set of images needs to be 

captured in order to enable analysis. The process developed involves taking images with 

the chosen DSLR in a pitch dark environment. Additionally, the camera’s lens cover and 

eyepiece cover are also used to ensure no rouge light interaction is allowed with the 

camera sensor. The DSLR is setup such that all controllable automated shooting 

features and additional image processing and correction tools are disabled. DSLRs 

provide the ability to take images in either manual or automatic mode. Automatic capture 

mode uses inbuilt software to assist with focusing, exposure control, etc. Manual mode 

on the other hand allows the user to specify the capture settings such as ISO, exposure 

time, and other controllable features. For these experiments, the camera is typically put 

in manual shoot mode capturing the highest quality RAW images. As mentioned in the 

previous chapter, RAW images are beneficial as the intensity effects on a pixel are not 

spread to its neighbours. Auto correction algorithms are also disabled during this 

process. The goal in these preliminary configuration steps is to keep the output pixel 

values in their most raw state. 
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A series of images are captured for a sequence of ISO settings for the camera. 

The ISO range typically starts at ISO100 and increases by a factor of 2 up to ISO6400 – 

i.e. 100, 200, 400, etc. The aim is to capture an increasing set of exposure times for 

each ISO setting supported by the camera. The first exposure time is usually 1/1000 

second. This initial exposure time was chosen as the initial for two main reasons. Firstly, 

at this short exposure any stuck nature of the defective pixel, i.e. offset b, totally 

dominates the response. Additionally, at such a short exposure the leakage current, 

RdarkTexp term, in the pixel is small and negligible. One image is taken at each exposure 

setting. To eliminate an overload in data and RAW files, the exposure times are 

generally halved as they increased – i.e. the next exposure stop would be 1/500 second, 

what is known in photography as a one-stop change. The typical upper bound on this 

exposure setting is in the 2 second range. Between each image capture, there is a 30 

second pause that is observed to allow the sensor and camera to cool to room 

temperature. Additionally between each ISO set, there is a 2 minute pause. Thermal 

effects on the sensor are random in nature thus waiting a determined amount of time 

between shots limits the amount of thermal noise in the images. 

 

Figure 3.1.  Hot Pixel Experimental Process Overview 

An overall depiction of the capture process is shown in Figure 3.1. This process 

is usually referred to as dark frame calibration. For a given date, the camera is calibrated 

using dark frame images for various ISO and exposure rate combinations. Multiple 

calibrations are performed over time to produce image sets over time. This enables us to 

have history of the camera’s defect behaviour as times progress. Typically this process 

is done once every 2-4 months; so about 4-6 calibrations a year. It is also fairly essential 
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to obtain a calibration set at every beginning of the camera’s lifetime (typically after 

purchase). This initial calibration provides a baseline defect profile at an initial time close 

to time zero; however, often this is no possible. Once a set is captured for a particular 

timestamp, the entire set is analyzed using software to extract hot pixel behaviour and 

counts.  

3.2.2. Hot Pixel Detection 

Each set of images from a given calibration set are divided into ISO groupings 

before running the analysis tools. For each ISO there are images with increasing 

exposure rates. At a high level, the tool does a sweep of all the pixels in each image and 

compares it to the next image in the sequence (with higher exposure time) to detect hot 

pixel increases. For example in a set of N images for a particular ISO, the current image 

in the set being analyzed can be denoted as imgi(x,y), where i ranges from 0 to N-1. For 

each pixel in imgi(x,y) the software tool will compare the corresponding pixels to 

imgi+1(x,y) in order to extract the pixel value. From this the program will generate a set of 

hot pixel curves (intensity vs. exposure time) and the number of hot pixels. Additional 

information such as the pixel color type will also be given. This is done for each ISO 

setting. 

When detecting hot pixels, we need to take into account the noise floor of the 

image sensor. There will be some fluctuation in the pixel output due to random noise in 

the system which increases with exposure time. Thus the hot pixel detection tool uses a 

nominal threshold (typically 5% of the saturation value) to filter out pixels that fall below 

this threshold as either good pixels or variations due to noise. Another way of looking at 

this is that the software essentially generates curves for each and every pixel in the 

image across the exposure time range. At the end of the curve generation the tool will 

apply the 5% threshold filter on all pixel curves. The majority are filtered out and the rest 

are considered hot pixel defects.  

The concept of filtering using thresholds can be somewhat complicated in that 

depending at which point a threshold is applied, the amount of data filtered out can vary 
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significantly. For example, if the 5% threshold was applied at the lowest exposure for a 

fixed ISO, the majority of pixels would be filtered out as the majority of hot pixels have 

low pixel values at the smallest exposure time. Only stuck or partially hot pixels will be 

present after this type of filtering. Conversely, if the 5% filter was applied at the highest 

exposure, the filter would allow a lot of noise to be collected as potential hot pixels which 

extremely skews the extracted hot pixel count. Thus, in this research, the hot pixel 

threshold is applied at the middle exposure to maintain a conservative approach in noise 

filtration. 

               

               

               

T1 
 

T2 

 

T3 

 

T4 

a) True Hot Pixel 
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T2 

 

T3 

 

T4 

b) False Hot Pixel 

Figure 3.2.  Examples of two detected hot pixels 

In addition to threshold filtering, the program takes into account false hot pixel 

detections when running the software analysis. Figure 3.2 displays types of hot pixels 

that could potentially be collected by the initial stages of the program’s detection for a 

dark calibration image set. Note in this figure, the exposure times are increasing.    

Figure 3.2(a) displays a hot pixel that starts off with an initial defective intensity but has 

its intensity increase as the exposure time increases. This is the behaviour of a typical 

hot pixel. However, Figure 3.2(b) shows a pixel that only has a defective intensity for a 

single exposure time and is non-defective at other intensities. It is important to note that 

the pixel in Figure 3.2(b) is not considered a hot pixel but rather an effect of noise or 

some other transient behaviour. In fact, this pixel behaviour could be considered a 
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Single Event Upset which will be discussed in the following chapters. In any case, the 

program will discard this from the hot pixel list.  

 

Figure 3.3.  Fitted Intensity Curve of a True Hot Pixel (y = 1.9011x + 0.1349,        
R² = 0.9434) 

 

Figure 3.4.  Fitted Intensity Curve of a False Hot Pixel (y = 0.3918x + 0.1866,      
R² = 0.0831) 

The mechanism through which the detection program discards false hot pixels is 

a statistical linear regression fit to the hot pixel model shown in Equation 2.6. Figure 3.3 

displays the raw intensity values of a proper hot pixel along with its associated 

regression fitted linear curve. It is clear that the error bounds are within the error of the 
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respective slope and offset of the regression fit. Thus this pixel would be considered a 

proper hot pixel similar to the one shown in Figure 3.2(a). In contrast, Figure 3.4 displays 

the same parameters as Figure 3.3 but for a pixel that would be considered a false hot 

pixel. From the figure it is clear the second last pixel’s error bounds are well out of the 

error bounds of the curve’s slope and offset and would not be considered a hot pixel as 

is the one in Figure 3.2(b). Mathematically, this can be automated in software by 

analyzing the error bounds of a simple line equation as show in Equation 3.1: 

𝑦 = 𝑏 + 𝑎𝑥      (3.1) 

In the above equation, the parameters are derived with a regression fit of the raw data. 

The automated software uses the standard deviation (covariance) on the fit parameters 

a and b when assessing whether the pixel is a hot pixel or not. Outliers can be detected 

by comparing the individual raw data point values to the error bounds of the fitted 

parameter. For example, if a raw data point indicates a slope value, a, that is more than 

3 times the fitted slope error, ∆a, it is a clear outlier. The same process is applied for the 

offset, b, as well. Mathematically, this can be depicted as shown in Equation 3.2. 

Relating this back to Figure 3.2(a), it is clear that the fitted slope of 1.9011 is within the 

error bound of the slope. The same applies to the offset as well. 

|𝑎| > 3∆𝑎      (3.2) 

If a raw data point indicates a slope value, a, that is less than 3 times the fitted slope 

error, ∆a, then statistically the possibility of the slope (Rdark) being zero is too high for the 

hot pixel to be counted, as shown in Equation 3.3. Thus the second last data point in 

Figure 3.2(b) is well outside the error bounds of the fitted slope value of 0.3918.  

|𝑎| < 3∆𝑎      (3.3) 
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Figure 3.5.  Overall Defect Identification Flow 
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This filtering of false hot pixels is vital as it ensures that the count of defective 

pixels for each calibration set is accurate without false count increments. These count 

values are directly used to generate growth rates for imagers over ISO and camera life 

time. Figure 3.5 displays an overview of the entire defect analysis process. There are 

two main components of the entire flow – 1) Image Capture flow and 2) Defect Detection 

flow. The image capture flow consists of the following: 

 For a fixed ISO range, capture RAW images with increasing exposure time 

 Stop after a 1 second exposure is reached 

 Repeat for all ISOs (increase ISO by doubling) 

 Once the max ISO has been reached, move onto the Defect Detection process 

The defect detection process is done via software. The software extracts 

defective pixel values and generates hot pixel curves for each ISO set. False hot pixels 

will be discarded as explained in the previous section. The software portion of the flow is 

implemented using MATLAB. Other options for implementation exist such as Python 

scripts, native C++/C# GUIs and other script based options. However, MATLAB possess 

inbuilt helper functions to ease processing implementation. Specifically, MATLAB has a 

native image processing toolkit which provides methods to input RAW images and 

extract/manipulate the associated pixel values. Thus, MATLAB was chosen as the 

implementation software for this research. The implementation of hot pixel detection 

methods uses the inbuilt parallelism of MATLAB as compared to nested loops and 

conditional statements. This provides increased processing performance and aids in 

extracting values for research. Additionally the use of inbuilt MATLAB functions reduces 

the processing time for defect detection. To analyze a set of calibration images for a 

fixed ISO typically takes a few seconds of processing time. 

The key advantage of the above flow is that it can be used for any camera that 

outputs RAW images. In this research, we have used it for cameras from different 

manufacturers. Additionally, these cameras vary in age, pixel size, ISO ranges and other 

sensor parameters. The benefit of having one flow is that a standardized research tool 

can be used that is sustainable as camera technology advances. This eliminates the 

need of having specific flows based on the camera manufacturer or camera property. 

RAW images contain a header section embedded in the image file itself which provides 

metadata such as camera model, image capture date and camera settings. 
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3.3. Curve Fitting Methodology 

The end goal of this research is to develop a relationship between the defect 

growth rate, sensor size and ISO. The defect numbers from each calibration set can be 

collected over time for further data analysis. Our research has collected a series of 

calibration sets for 29 DSLRs over the past 11 years. The end goal is to develop a model 

of the defect growth rate using the collected data from calibration sets. Various 

parameters can be used to model the growth rate of hot pixel defects. The two main 

parameters of interest are the ISO amplification and pixel size S of the sensor array. 

There are various methods that can be used when performing linear regression 

fits. The most typical method is to use the least squares approach in regression analysis. 

However, in this research, techniques discussed in [31] are employed. These techniques 

focus on the analysis of residuals to determine the effectiveness of a fit. A residual is the 

difference between the actual value and the predicted value of the model. A residual R 

can be defined as shown in Equation 3.4: 

𝑅 = 𝑌𝑗 − 𝐹(𝑥𝑗)                 (3.4)   

where Yj is the jth data point and F(xj) is the corresponding fitted value. The easiest way 

to analyze residuals is to plot the residuals versus the predicted values. Figure 3.6 

shows an example of a residual plot. The distance from the x-axis to the residual point 

indicates the deviation between the predicted and observed values. Positive values 

suggest that the prediction is too low, while negative values indicate an over prediction in 

the model.  
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Figure 3.6.  Example Residual Plot 

Additionally, the general form and pattern of the residual plot can have a strong 

indication of the statistical significance of the residual plot and the overall effectiveness 

of the prediction model. Figure 3.7 and Figure 3.8 display examples of two residual plots. 

The first example shows the following characteristics: 

 Residual behaviour is random and not deterministic (ideally, no clear 
patterns) 

 Tend to cluster towards the middle of the plot 

 Clustered around lower residual values, not large values (low error) 

The above characteristics are what make a favorable residual plot. Figure 3.8 on the 

other hand shows the following characteristics when analyzing a problematic residual 

plot: 

 Plot is not evenly distributed 

 Contains evident outliers 

 Clear patterns are discernable 

The above basic fundamentals are employed in this research when analyzing residuals. 

Our prediction models have been highly analysed for residuals with clear patterns, heavy 

dependence on either x or y axes, and a large number of outliers.  
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Figure 3.7.  Residual Plot Example – Ideal 

 

Figure 3.8.  Residual Plot Example - Problematic 

In addition to analyzing the randomness and behaviour of the residuals, the size 

of the residuals themselves is important. Figure 3.9 displays residuals that have a 

random pattern but the value of the residuals themselves is low. This indicates that the 

corresponding fit is quite good. However, Figure 3.10 displays another set of residuals 

that show random behaviour with no clear patterns. In this case, the values of the 

residuals are very large. This indicates that the fit was not effective. When analyzing the 

residuals from our fits, we take into account the pattern and trend of residuals as well as 

the residual values themselves. 
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Figure 3.9.  Residual Plot Example - Low Error 

 

Figure 3.10.  Residual Plot Example - High Error 

3.4. Hot Pixel Defect Growth Model 

This section will discuss the hot pixel growth model and how it was determined 

using empirical lab data. The statistical concepts and tools that were discussed in the 

previous section are employed when generating the defect growth model. 
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3.4.1. Hot Pixel Defect Growth with Pixel Size 

It is important to note that when generating linear fit models, data from all the 

cameras tested for all years is used. This gives us a large comprehensive data set when 

trying to generate a growth model based on pixel size and ISO. The goal is derive a 

relationship that would model defect growth as defects/year/mm2. Before deriving the 

defect growth relation, initial research [32] focused on generating a rate with a fixed ISO 

and varying pixel size as shown in Figure 3.11. This showed a linear relationship in the 

growth trend.  

 

Figure 3.11.  APS Defect rate/year/mm2 vs pixel size for fixed ISO (taken from [32]) 

From Figure 3.11 it is clear the defect growth has a linear relationship with the 

pixel size. Additionally, the growth curves for varying ISO have parallel slopes. This 

strongly suggests that there is an ISO and pixel size relation with the defect growth rate. 

Thus the hot pixel growth rate needs to take both parameters into consideration. 

3.4.2. Power Law 

The Oakdale Engineering curve fitting software known as DataFit [33] was used 

as a tool to search for the best fit relation given the input parameters of ISO and sensor 
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size. The software suggested a power law form for the hot pixel growth model. For the 

purposes of this thesis, a form of the power law is as shown in Equation 3.5: 

𝐷(𝑋, 𝑌) = 10𝐴𝑋𝐵𝑌𝐶                          (3.5) 

X and Y are variable members of the power function f. These variables will in turn 

become the ISO and S (pixel size) variables for the growth model. The terms A, B and C 

are constants that are set based on the linear regression model. The inherent issue with 

the power law is that it is not linear and very hard to fit and analyze. The term linear here 

refers to the equation being linear in its parameters (i.e. parameters can be separated). 

A check for linearity can be done by taking a derivative of the expression in question. For 

example, Equation 3.5 can be checked for linearity by taking the derivative of X with 

respect to A. Clearly the parameters are not separated. However, the above equation 

can be converted to a simpler form by taking the logarithm of the equation, yielding the 

following form where the parameters can be separated: 

log(𝐷(𝑋, 𝑌)) = 𝐴 + 𝐵 ∙ 𝑙𝑜𝑔(𝑋) + 𝐶 ∙ 𝑙𝑜𝑔(𝑌)                             (3.6) 

Equation 3.5 is now in a form that can be used for linear regression and curve fitting. 

Residual analysis is also easier using this logarithmic form. With this knowledge, the hot 

pixel growth model can now take the following forms: 

𝐷(𝑆, 𝐼𝑆𝑂) = 10𝐴𝑆𝐵𝐼𝑆𝑂𝐶                                     (3.7) 

The above empirical formula predicts the defect density D (defects per year per mm2 of 

sensor area) based on the pixel size S and ISO. Microsoft Excel was used to carry out 

the data fits themselves.  
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3.4.3. Hot Pixel Growth Analysis Combining Pixel Size and ISO 

Using the empirical relationships mentioned in the previous section, we used the 

logarithmic form of the power law shown in Equation 3.6 in a least square fit to extract 

constants to be used in the growth model. Initial research [34] focused on larger pixel 

sizes (5-10 µm) from mainstream DSLRs. Additionally, separate relationships were 

developed for APS and CCD sensor types. For a list of APS imagers used in this 

research, refer to Appendix A. The empirical growth model for APS and CCD sensors is 

given in Equations 3.8 and 3.9 respectively [34] with the error bounds for the fitted 

constants shown in Table 3.1. 

𝐷𝐴𝑃𝑆(𝑆, 𝐼𝑆𝑂) = 10−1.13𝑆−3.05𝐼𝑆𝑂0.505                                 (3.8) 

𝐷𝐶𝐶𝐷(𝑆, 𝐼𝑆𝑂) = 10−1.849𝑆−2.25𝐼𝑆𝑂0.687                                (3.9) 

It is important to note that these initial empirical relationships were developed 

using previous research that used cameras with pixel sizes in the 5 to 10 µm range. The 

research in this thesis has significantly expanded the pixel and ISO range covered as 

shown in Figure 3.13. The CMOS empirical formula is generated with the updated hot 

pixel data which will be discussed in later sections of this chapter. 

Table 3.1. Power Law Fitted Constants with Error Bounds 

Constant APS CCD 

A -1.13 ± 0.26 -1.849 ± 0.22 

B -3.05 ± 0.25 -2.25 ± 0.17 

C 0.505 ± 0.081 0.687 ± 0.086 

These equations are important as they indicate that the defect rate increases 

drastically when the pixel size falls below 2 microns. Additionally, the defect rate is 

projected to reach a rate of 12.5 defects/year/mm2 at ISO 25,600 (which is available on 

some high-end cameras). Figure 3.12 displays the fitted power law distribution for APS 

sensors. Given that the current trend is to reduce the size of pixels, our experimental 

results project that the number of these defects will increase to high levels, emphasizing 
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the need to understand how the development rate of these defects increases for even 

smaller pixel sizes. 

A key point to note on Figure 3.12 is that the curve at the lower pixel size (< 2μm) 

and higher ISO values are shown purely using projected values. At the time the original 

empirical relation was found (2012), imagers at smaller pixel sizes did not support RAW 

image capture. Additionally, the usable ISO range was low as higher ISOs suffered 

greatly from noise issues. Thus the model shown in the figure is purely predictive and 

projected for smaller pixel sizes and higher ISOs. The following sections will detail the 

recent push in the industry to smaller pixel sizes and the availability of smaller pixel 

imagers. Additionally, this research will generate an updated model that will be 

compared to the original prediction model. 

 

Figure 3.12.  Fitted power law for APS defect density (D=defects/year/mm2) vs. 
pixel size S (µm) and ISO (I) [34] 
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3.5. Industry Trends to Lower Pixel Sizes 

The number of pixels in an average commercial digital camera has increased 

considerably over the last 11 years. The majority of camera manufacturers have kept the 

sensor size intact over camera generations but have significantly reduced the pixel size 

(increasing number of pixels per sensor). This previous research analyzed imagers from 

DSLR cameras in the higher range pixel sizes (6 - 7 μm), point-and-shoot cameras in the 

midrange pixel sizes (3 - 4 μm) and cell phone cameras in the small pixel size range (2 - 

3 μm). Figure 3.13(a) displays a 3D bar chart summarizing the range of imagers used 

and data collected in our previous research. On the y-axis, different pixel sizes are 

displayed (from 8 - 2 μm). On the other, the different ISOs are presented (ISO100 to ISO 

25,600). The vertical axis specifies the number of cameras used at a given ISO and pixel 

size combination. From this figure, it is clear that past research focused on imagers in 

the larger pixel range and lower ISO settings. The main reason for this is because 

imagers at the time generally had larger pixel sizes as smaller pixel nodes were not 

prevalent in available imagers. 

  

(a) (b) 

Figure 3.13.  Camera count as a function of pixel size and ISO – (a) Prior: 2006-
2012 (b) Current: 2016 

The research in this thesis has substantially expanded the data at smaller pixel 

sizes for many ISOs. An updated bar plot with our current data is displayed in         

Figure 3.13(b). When comparing Figure 3.13(a) and Figure 3.13(b) it is quite evident that 
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the research in this thesis puts a greater emphasis on smaller pixel imagers and higher 

ISO ranges giving us a larger matrix of experimental data for growth analysis and defect 

rate prediction. The imagers used comprised of DSLRs with smaller pixel sizes (<4 μm) 

and cellphone imagers. Specifically at the 4 micron range, we have a large increase in 

the data set for ISO ranges with more coverage on ISOs greater than ISO400. In the 

past, point and shoot cameras represented the data set at the 4 μm pixel range but in 

this research we have DSLR camera data at this pixel size range. Even at the sub 2 

micron range the ISO range has been enhanced.  

One important point to note is that each count on the bar plot represents a larger 

set of data for that pixel size and ISO combination – i.e. each count represents full dark 

frame calibration data sets for multiple times and often several years. As mentioned 

earlier, for each given pixel size and ISO combination we have about 10 data sets 

(images) ranging from 0.008 sec to 2 sec and conduct a linear regression fit for varying 

exposure times as shown in Figure 2.13 for each identified hot pixel. Furthermore, each 

imager contains calibration experiments over multiple times, giving us larger sets of 

data. Our oldest camera has undergone dark frame experiments at 15 different time 

points over 13 years, and most have 2 to 5 such periodic measurements. One should 

also note that Figure 3.13(b) displays a current snapshot and the smaller pixel range will 

be greatly enhanced in the near future as more imagers become available in this range. 

In past research we had collected data for both APS and CCD cameras. However as 

mentioned in previous chapters, CCD sensors are only used in some scientific imagers 

and have ceased to be used in modern camera manufacturing. Thus our future research 

will not continue to explore defects in CCD imagers and will concentrate on APS sensors 

only. 

The original defect growth equations in Equations 3.6 and 3.7 were developed 

using data that was centered at the 5 - 7 micron sizes for the full ISO range, while the 

smaller number of 3 - 4 micron pixel imagers tended to have ISOs of 100-400. This 

caused the projection for defect growth at smaller pixels and higher ISO values to have 

higher uncertainty as there were very few data points in this region when doing the fit. 

The new data sets shown in Figure 3.13(b) enhance our coverage specifically in the 1 - 

4 micron pixel range with higher ISOs in the 1600-3200 range which in turn significantly 
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reduces the uncertainty of the small pixel region of the curves. In areas where we only 

obtained a few data points for a given imager, we averaged the rate when doing the 

curve fitting. For imagers with two or more tests, we did a linear regression for the rate 

fitting to gain better statistical accuracy. Given that imagers are trending towards smaller 

pixel sizes, this data will prove to be quite beneficial for imager designers and users. 

Table 3.2 shows how many sensors of a given area were tested and the types of 

cameras with those sensors. In terms of sensor area the DSLRs are mostly in the 330 to 

350 mm2 areas, with two at 850 mm2 (full frame) size. Cell phone cameras ranged from 

15 to 22 mm2.   

Table 3.2. Sensor Area for Camera Numbers Tested 

Area (mm
2
) Camera Numbers Type 

16 3 Cellphone 

                 23                10 Cellphone 

               340                18 DSLR 

               860                  2 DSLR 

3.6. Cellphone Imager Defect Analysis 

The focus of the research in this thesis has been imager defects at smaller pixel 

sizes (<4 µm). Though DSLR imagers are being designed with smaller pixels, cellphone 

imagers are the main driving factor in this pixel range. Given high consumer demand, 

manufacturers have optimized the design and manufacturing of these cellphone imagers 

at smaller pixel sizes creating the need for study of defects of such imagers. 

3.6.1. Enhanced Dark Frame Calibration Methods 

The detection and analysis of hot pixels in cell phone imagers is an area where 

our efforts have been focused as this area of research has not been greatly explored in 

previous publications and is of growing interest as the application of cell phone cameras 

increases. This work is important as it reveals how hot pixel generation accelerates as 

pixel sizes decrease. As manufacturers push cellphone pixel sizes down to 1 micron, our 

goal is to provide a more accurate estimate of the hot pixel growth rate. Additionally, 
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given the decreasing cost for cell phone manufacturing, manufacturers do not map out 

defects at the time of manufacturing, causing higher numbers of imager defects in cell 

phones compared to DSLR cameras where manufacturing defects are being mapped 

out. Past research [35] attempted to use 10 identical cell phones of 2.2 micron pixel 

sizes for calibration tests. However, these phones had very limited exposure controls 

and would only output images in JPEG format. While we did develop techniques to 

detect hot pixels, the compressed image format made extraction of the pixel parameters 

quite difficult and gave low precision. 

This area of research requires enhanced experimental methods in terms of 

image extraction, detection, and analysis, in contrast to what is typically used in 

experiments with DSLRs. Firstly, the extraction of true digital RAW images from cell 

phone imagers is quite difficult. RAW image support is not present in most commercially 

available cellphones. Some variants of the Android OS do support RAW, but only on 

specific cell phone models and OS versions (5.1 and greater) and then only where the 

manufacturers have fully implemented the RAW support set. Another complication is that 

these RAW images are inherently quite noisy which makes identifying and analyzing hot 

pixels a non-trivial task. In DSLRs, manufacturers apply noise reduction to the pixel data 

before creating the RAW image as photographers commonly use these files. 

Additionally, cellphone imagers tend to heat rapidly, due to display and other processing 

circuitry, thus we need to separate each exposure shot (image) by 30 sec or thermal 

effects of the sensor will dominate the output image. Other techniques such as turning 

off the cellphone for a few minutes before doing calibration tests reduce thermal and 

noise effects in the images. All this is due to the inherent lack of noise suppression 

algorithms in cell phone imagers as compared to those used in DSLR cameras. As a 

method to handle these manufacturing limitations, this research has developed 

specialized detection algorithms that enable us to obtain a defect count for various cell 

phone imagers. We also ensure that hot pixel detection in cell phone cameras is 

statistically significant within the error margins. If either the fitted offset or dark current is 

statistically significant, the hot pixel will be regarded as a true hot pixel. If neither is 

significant, then it will be considered as noise. 
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Our initial experimental results indicate that the number of hot pixels that occur in 

RAW images from most cellphone imagers is very high (ranging between 100 and 500 

hot pixel defects) in comparison to DSLR APS defect counts. The majority of cellphone 

manufacturers do not map out defective pixels at fabrication time, unlike DSLR 

manufacturers. The consequence to our research is that this requires that we get 

sufficient measurements over time to do a linear regression back to time zero to identify 

those initial fabrication time defects. Fortunately (for analysis purposes only), as defect 

numbers in small pixels increase rapidly over time (e.g., 5 in a month at ISO 400 for 1.8 

micron pixels) this can be done with a modest set of measurements over a few months. 

As more cellphones will switch to newer OS version that support RAW image captures, 

we will have a wider range of cellphone imagers to analyze for hot pixel defects. 

Currently, as Figure 3.13(b) demonstrates, we are able to test cell phone cameras with 

pixels from 1.5 to 1.1 microns, and ISOs from 400 to 1600 ISO. The highest ISOs that 

each cell imager permits were always found to be way too noisy to extract data from. 

These small (e.g., 1.1 micron) pixel results showed D, defect/year/mm2, rates that 

ranged up to 100 times higher than those of DSLRs with 4 micron pixels. This is in line 

with the power law type relationship of the pixel size we noted in the earlier fits.  

3.6.2. Growth Model for Cellphone Imagers  

With updated APS data sets using the cellphone imagers, after regression fitting 

of the power law we have found that the defect rate curve has changed only slightly from 

the one in Equation 3.6 to the following in Equation 3.10: 

𝐷(𝑆, 𝐼𝑆𝑂) = 10−1.12𝑆−3.15𝐼𝑆𝑂0.522                                    (3.10) 

The modest changes compared to Equation 3.6 show that the original predicted trends 

still hold. A comparison of the fitted values between the prior fit and the current is shown 

in Table 3.3. In fact, the standard errors of the new fitted values are smaller increasing 

the effectiveness of the updated empirical fit. The Pearson’s r coefficient for this fit is 

r=0.91 which indicates a strong fit and small average errors. A fairly simple technique is 

used when assessing the quality of a fit. For example, given fit parameter a, a1 
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represents the first fit and a2 represents the second fit. Where the error on a1 is Δa1 and 

the error on a2 is Δa2. If the difference of a1 and a2 is less than 2 or 3 times the sum of 

Δa1 and Δa2, the fit is considered fairly strong. The fitted power of the pixel size S, when 

taking into account the standard error, is 3.15 ± 0.17, a range that includes the original 

power law parameters in Equation 3.6 of 3.05 ± 0.25. Note also the standard deviation 

has reduced. 

Table 3.3. Updated Power Law Fitted Constants with Error Bounds 

Constant Prior Current 

A -1.13 ± 0.26 -1.12 ± 0.26 

B -3.05 ± 0.25 -3.15 ± 0.17 

C 0.505 ± 0.081 0.522 ± 0.08 

Figure 3.14 displays an updated growth curve based on Equation 3.8. The figure 

indicates that the hot pixel rate increases by 8.9 times as pixels shrink by a factor of 2, 

say from 4 microns (current DSLR range) to 2 microns (current cellphone pixel size). 

Defect rates also increase with ISO to the power of 0.522±0.08 which means that going 

from ISO 400 to 3200 (a common range now) results in a 3 times increase in the defect 

rate. 

As mentioned earlier, Figure 3.12 showed a curve that had projected values for 

lower pixel sizes. The updated data in this section makes use of newer cellphones with 

RAW image capabilities. As pixels decrease to sizes smaller than 2 microns, they have 

different noise suppression characteristics as compared to traditional DSLR imagers. 

The initial concern with this change in behaviour is that it may affect the hot pixel growth 

trend we had modelled earlier. However, as shown, the refined model shows that even 

with different characteristics in lower pixel sized imagers our initial model trended in the 

right direction and was within the error bounds of the updated model.  
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Figure 3.14.  Expanded data Fitted power law for APS defect density 
(D=defects/year/mm2)  vs. pixel size S (µm) and ISO (I) 

 

Figure 3.15.  Expanded data Fitted power law for APS in the 1 to 2.5 µm pixel 
range: defect density (D=defects/year/mm2) vs. pixel size S (µm) and 
ISO (I) 

The main areas of interest are the defect rates in the cell phone camera range, 

which range from 2.5 micron to the 1 micron pixels that manufacturers are aiming at. 
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Additionally, cell phones are now targeting ISOs of 3200 to 6400 in order to approach 

the low light capabilities of DSLRs. Figure 3.15 displays how the defect rates will 

accelerate as 1 micron pixels are approached. Note the vertical defect rate scale is now 

increased by a factor of 2.6. 

 

Figure 3.16.  Residuals of fitted power law for APS defect density; Residual 
Log(D) (D=defects/year/mm2) vs. pixel size S (µm) and ISO 

As mentioned in earlier sections, this research uses the distribution of residual 

errors as an important measure of any fit. As this is a power law relationship we plot the 

residuals of Log(D) against the pixel size S and ISO. A Log(D) plot is used to avoid 

biasing to the larger pixel sizes and higher ISO ranges. Analyzing the 3D residual plot in 

Figure 3.16 shows that there is no evident clustering of the residuals indicating the 

model is a fairly good fit for the imagers used in this research. For enhanced analysis we 

observe the residuals against the pixel size S in Figure 3.17, and against the ISO in 

Figure 3.18. Note that the residuals are quite evenly distributed on both sides of the zero 

axis for both plots, indicating no systematic deviations with ISO or pixel size S. The 

residuals at 2.2 microns are clustered on the positive side, but these are all from earlier 

cell phone tests which only had access to the JPEG images, which had more difficulty in 

detecting hot pixel, and limited camera control compared to the RAW images used for 

the other data points. It is noted that the largest deviations are for the high ISO1600 and 

ISO3200 ranges, though this is understandable as these are the noisiest operating 

regions of even the DSLR cameras. An important observation with this fit is that our data 
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in the range less than 4 microns has changed sustainably in contrast to previous 

research. Additionally, the original data in this area was primarily point and shoot 

imagers while the current data is predominantly cellphone imagers that differ greatly in 

technology and software in contrast to point and shoot cameras. However, with this 

updated data, our fit parameters have changed within the error, giving us a high level of 

confidence in our fit. 

 

Figure 3.17.  Residuals of fitted power law for APS defect density; Residual 
Log(D) (D=defects/year/mm2) vs. pixel size S (µm) 

Most recent experiments on the smaller 1.4 to 1.1 micron pixels with higher ISO 

ranges is in agreement with previous projections for the rapid growth of defect rate as 

pixels approach the one micron size. As a matter of fact, based on our very recent cell 

phone measurements, these curves are a conservative estimate of the actual defect 

rate. The fit errors are largest in the smaller pixel sizes, due to the lower number of data 

points. Specifically, at the 1.1 micron pixels rates of 5.8 defects/year/mm2 are observed 

at ISO1600. What is important is that this power law relationship seems to be extending 

perfectly to the 1 µm range.  
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Figure 3.18.  Residuals of fitted power law for APS defect density; Residual 
Log(D) (D=defects/year/mm2) vs. ISO) 

Since the newest generation of cell phones have digital RAW imaging 

implemented in the OS (Android, iOS), future research expects to significantly expand 

both the number and accuracy of these data points. This conclusion has important 

implications for imager designers as they push pixels down to the one micron or smaller 

pixels. This is further exacerbated by moving ISOs closer to the 6400 or 12,800 values 

common in DSLRs. The strong indication is that defect numbers will become significant 

even at these small sensor areas (15-25 mm2) even with the few year lifetime of typical 

cell ownership. For DSLR designers, where sensor sizes are typically more than 10 

times larger, moving the pixel sizes towards 2 microns will significantly increase their 

defect rates even with the lower noise sensors available for those cameras. Moreover, 

the much longer ownership lifetime of those DSLRS, combined with a greater sensitivity 

of the users to defects, makes this potentially a larger issue for them. With imaging 

sensors moving into many other products, like car cameras, which have even longer 

lifetimes (where design targets are for up to 20 years of in field usage), this can have 

other reliability issues. For example when these cameras are used as part of driving 

automation, where edge detection algorithms are important, hot pixel growth over these 

periods can have a significant impact in performance, reliability and safety. 
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3.7. Summary 

This research emphasizes the strong defect growth behavior of hot pixels as 

pixels sizes are shrunk, especially to the 2 to 1 µm range. Current results show a 

significant accelerated growth rate in this small pixel range due to the power law 

relationship with pixel size. The current fits suggest a shrinkage of pixel size by a factor 

of 2 results in an 8.9 times increase in defect rate. The growth with higher imager 

sensitivities (ISOs) only increases this effect with a factor of 2 increase in ISO, 

generating a 1.44 increase in defect rates. Such an increase is of significant importance 

for DSLRs where serious and professional photographers are very sensitive to 

significant numbers of defects in their images. 

Cell phone cameras, which are the best source of 2 to 1 micron pixels for testing, 

have just implemented digital raw formats in the past year. Tests showed that using this 

format was needed for accurate measurements of the hot pixels. Growing numbers of 

cellphones using this format by the end of 2016 will give us much larger data sets in 

these small pixel sizes in the near future. These defect rate equations suggest care in 

the current race for every smaller pixel in cell phones (thus more megapixels) even for 

these small area sensors shrinkage below 1 micron is projected to produce defect rates 

that may degrade the image even with the short lifetime ownership of current phones (1 

to 2 years). With these clear results imager designers need to take this strong 

relationship between pixel size and defect rates into account during system planning. 

The last few chapters have focused on permanent infield defects in digital 

imagers. Specifically, hot pixels were discussed and their growth trend. A focus was 

made on imagers in the smaller pixel sizes including cellphone imagers. In addition to 

permanent defects, imagers are susceptible to transient or soft defects that are not 

lasting but have a short manifestation. Traditional ICs experience such behaviour which 

also includes pixel sensors. The next chapter will explore soft and temporal defects in 

digital imagers. 
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Chapter 4.  
 
Single Event Upsets in Digital Imagers 

4.1. Overview 

The previous chapters focused on sensor design, and permanent defects in 

digital imagers. Specifically, hot pixel defects were explored in detail and their impact in 

smaller pixel nodes. In fact, the majority of pixel defect literature has focused on 

permanent defects. However, image pixels are susceptible to the same transient errors 

that occur in standard digital ICs. These transient (or non-permanent) defects are known 

in the literature as Single Event Upsets (SEUs) [36].  

The goal in SEU research as they pertain to digital imagers is to study the 

relationship between permanent and soft errors. In typical digital ICs, the rate of soft 

errors is much higher than hard (or permanent) errors. Additionally, the question that 

arises is that given the significant rate of hot pixel defects in standard imagers, what is 

the rate of SEUs in imagers? Past research in this area has failed to answer this 

question which could lead to significant sensor design implications. An understanding of 

the charge levels that are seen in SEU defects also provides insight into hot pixel charge 

levels.  

This chapter will explore our research in the area of SEUs and how they relate to 

digital imaging systems. General SEU behaviour, experimental detection methods and 

SEU types will be discussed in this chapter. 
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4.2. SEU Defects in Digital Imagers 

As discussed earlier, over the past several years, our research was focused 

mainly on the analysis of in-field permanent defects; their development, their 

characterization, and their growth rate specifically at smaller pixel sizes. Our research 

has also shown that cosmic rays are the main cause of hot pixel defects. 
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c) SEU - streak 

Figure 4.1.  Examples of SEUs 

Figure 4.1 displays 3 examples of SEU defects. In each case, identical shots are 

taken with the same digital imager for a dark background. However in certain shots, 

there are visibly bright pixels (the color of the pixel does not matter). It is important to 
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note that these defects are only seen for that one image and the defective behaviour is 

not seen in the previous and next picture, captured at that location. Similarly to other 

ICs, imagers are also subject to transient defects. These are defects that are seen in-

field but are short-lived and therefore appear in only a single image. In this chapter the 

nature of Single Event Upsets (SEUs) as they apply to imagers will be discussed. SEUs 

are caused by cosmic particles that strike the imager at random times and locations. 

Depending on the particle energy, the SEU can deposit charge to cause a soft error that 

can be seen in the actual values collected by a pixel. In modern literature there has been 

considerable study of SEUs as they relate to digital ICs [37].  

More recent research has started to look at SEUs in digital imagers, including the 

use of cell phone sensors as detectors for cosmic ray activity [38]. Unlike standard digital 

ICs, pixels in a digital imaging sensor can be monitored at almost any desirable 

frequency. Since a SEU manifests itself as one or more brighter pixels in an otherwise 

dark image, the rate of SEUs can be measured at a considerably higher accuracy by 

taking dark-field pictures at different exposure times and different frequencies. Another 

difference between the imager sensor and traditional ICs is that image sensors provide 

us with location and charge/energy data, charge spread and rate when analyzing 

defects.  

In digital ICs it is known that SEUs occur typically at about a 100 times greater 

than permanent faults. In these ICs, the SEUs are hidden and difficult to locate. 

However, the SEU rate (or number of temporarily erroneous pixels) as compared to the 

rate of permanent hot pixels in digital imagers has not been discussed. This is important 

as it helps understand the effect of these temporary defects at different ISO/exposure 

times and also enables camera manufacturers to better design for reliability and fault 

tolerance. Therefore, the understanding of image sensor behavior in the presence of 

SEUs is vital. 

One important point to highlight is that the design methodology taken by digital 

camera manufacturers is inherently much different than traditional digital IC 

manufacturers. In modern day digital ICs, a lot of added circuitry and protection is 
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designed into the chip to avoid and correct soft errors. In high speed bus protocols the 

use of data parity and CRC protection is quite common to detect soft errors and 

potentially correct for them. Additionally, most RAM designs in today’s digital circuits 

contain enhanced ECC protection that can correct single-bit ECC errors and detect 

higher bit errors. In systems where high speed DSPs are used, manufacturers stress 

circuitry in order to reduce the bit-error-rate (BER) value to levels where advanced error 

correction coding can correct soft errors. Digital imagers are much different in nature; 

hence our research is looking at SEUs in imagers first as a tool to better understand 

SEUs in ICs.  

Most of the past research that has taken place in this field has focused on cosmic 

ray detection and analysis in imager sensors. In essence, SEUs were observed and 

analyzed at a transistor physics level. The goal of this research, on the other hand, is to 

study the decrease in image quality resulting from the imager defects, with an eye 

towards developing defect mitigation techniques. Clearly image quality depends on the 

image’s exposure time and ISO setting, so our results can allow camera manufacturers 

to improve the reliability of their designs. We will look at the results of our experimental 

study of soft and hard errors in digital cameras. 

4.3. SEU Defect Detection Methods 

Unlike hot pixel defects, SEUs are not permanent indicating a new detection 

algorithm is needed when attempting to identify defects. This section will explore the 

experimental process behind detecting SEUs and various noise considerations that were 

taken into account. 

4.3.1. Experimental Overview 

In order to identify SEUs, we used DSLRs as our first test devices because they 

have large imager areas with highly sensitive pixels, and allow direct access to the pixel 
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RAW values without image processing such as jpeg that tends to distort the data [39]. 

The experimental method for this research differs from what was used in the hot pixel 

research. For the hot pixel experiments, a series of images were taken at increasing 

exposure times with a fixed ISO. Then a linear fit was performed in order to create a 

curve as shown in Figure 2.13. However, for the SEU experiments the important issue is 

total accumulated exposure to events; hence, we took a series of medium to long 

exposures (1 to 30 seconds) at a fixed ISO. Because the exposure time for each image 

is fixed, this allows us to look for events the only occur in a single image and then go 

away. The key point is that SEUs are by their nature very short in duration and suddenly 

inject a charge into the local area of the IC. However, in digital imagers the pixel 

integrates charge changes over the duration of the exposure, and by taking an exposure 

of a given duration the imager records both the temporal and spatial occurrence of each 

SEU even if the SEU disappears. Still, we could not take very long exposures with digital 

cameras as they accumulate noise in the image (e.g., thermal generated electrons) over 

time. The maximum exposure time varies with the camera and the ISO but is typically in 

the order of 10 to 30 seconds before noise becomes so prevalent that identifying SEUs 

is difficult. Hence, in our experiments we needed to take a sequence of short duration 

images.  

In order to reliably measure the effect of SEUs on imagers for various operating 

conditions, we created an experimental setup to collect a large number of dark-frame 

images. Effectively, these images needed to be precise temporal snapshots of the 

sensor activity for a specific time period at various camera settings: ISO levels and 

exposure times. The sequence of images also allows us to separate SEUs from the hot 

pixel events and obtain a temporal rate for these short duration events. 

In designing the experiments we first used a camera with a large imager (36 by 

24 mm2) and a high sensitivity (ISO) which previous research showed would develop 

about one hot pixel every 12.5 days. This camera had support for RAW image output. 

Based on the reported ratio of 100 SEUs for each permanent fault, we expected to have 

to take a large number of pictures before detecting a noticeable number of events. In 

practice it turned out that SEUs were more common than we expected, and our setup 

resulted in a significant number of detections. 
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In order to take multiple shots at a fixed ISO and exposure time, we made use of 

a digital camera remote control, called an intervelometer, which would take a set 

sequence of images. The remote was set up such that after each shot (image), a one 

minute delay was inserted to remove any effects of thermal noise caused by the sensor 

heating up as the experiment progressed. 3 types of intervelometers are available for 

use in modern digital camera technology: 

 Self-contained intervelometer – this is a remote device that plugs into the 
camera’s control port. The remote intervelometer has settings for capture 
duration, interval wait time, and number of images to capture. The advantage of 
this method is that an external computer is not required for image capture. 

 Software controlled – most DSLR manufacturers provide software that allows 
one to control camera shooting via a USB interface to the camera itself. This 
method has the benefit of being able to save images directly to the computer’s 
disk drive rather than the camera’s memory card. 

 Built-in intervelometer – more recent cameras have built-in timed shooting 
features that mimic the external intervelometer. Again, the advantage of this 
method is that the experiment is portable and does not rely on a computer. 
However, this tends to use more camera battery as the remote shooting features 
are now in the camera itself. 

On average, a set of 150 to 250 images was collected for each ISO and exposure time 

combination. The above image number was set by the maximum picture limit of the 

camera batteries or the memory card itself.  

It is important to note that these experiments were all conducted in a pitch dark 

room or box so that no incident light fell onto the camera sensor. This enabled us to 

detect any temporary defects caused by SEUs. 

To analyze the images for SEU artifacts, a software tool was created. This tool 

read in the RAW images and executed the following algorithm using 3 consecutive 

images at a time (as shown in Figure 4.2): 

 Flag any pixels that have a pixel increase from image j-1 to image j using a 
predetermined threshold 

 Using the pixel locations from the previous step, check to see if any of them have 
a decrease in pixel values from image j to image j+1 using the same 
predetermined threshold 
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 If any pixel location satisfies the above conditions, it is marked as an SEU defect 
location 

 

Figure 4.2.  SEU Detection Algorithm demonstrating an SEU that was detected in 
image ‘j’ and not present in images ‘j-1’ and ‘j+1’ 

This algorithm ignores locations where known hot pixels resided. Given our 

previous research with hot pixels on this particular imager, the hot pixel locations were 

known and were not used in the analysis in order to avoid any false positive results. 

As with the hot pixel analysis software, MATLAB was used to implement the SEU 

analysis software. Unlike the hot pixel analysis case where the software dealt with a 

handful of images at a time, the SEU analysis requires all images to be imported at the 

time of analysis. This means that the software could be storing 250 images worth of pixel 

data in memory implying that the overall coding implementation will greatly affect 

software performance. Our initial revision of the MATLAB software used nested loops 
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when analyzing pixels across horizontal and vertical directions while comparing pixel 

values. Though this performed the actual analysis correctly, the performance was quite 

poor in that it took about 2 hours to analyze 100 images for SEU defects. In general, 

most experiments resulted in 500-1000 images and gigabytes of data which makes 

processing efficiency important. Given the poor performance results, the SEU analysis 

software was upgraded to use parallel processing features built into MATLAB. These 

features inherently provide the same functions that were previously implemented with 

nested loops; however they make use of lower level MATLAB code benefits to provide 

increased performance. For example, instead of looping through each pixel in the image, 

the ‘find’ command was used to locate pixels that were above a certain value. Using 

these code enhancements, the processing time for 100 images reduced to about 5 

minutes which is a significant increase. The SEU analysis software does not make use 

of GPU processing tools but rather the standard CPU threads. Future research will make 

use of more complex GPU libraries for increased processing speed and throughput.  

4.3.2. System Noise Consideration 

An important concern that arises with any experiment is the validity and 

repeatability of results as they relate to system noise. In the SEU experiment case, one 

can imagine that fluctuating system noise in the imager could potentially lead to the 

above algorithm flagging noise fluctuations as SEU locations. In order to get a baseline 

for the noise in our system, we took a series of images at each ISO and exposure setting 

to better analyze the noise levels we were dealing with. For each ISO and exposure 

setting combination, 5 images were taken in a pitch dark room. The pixel values were 

then averaged to collect the mean noise floor for the imager. These are displayed in 

Table 4.1. 
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Table 4.1. Averaged Baseline Noise Values 

 ISO 400 ISO 800 ISO 1600 ISO 3200 ISO 6400 

Exp. Time (s)      

0.5 ~ 0 ~ 0 ~ 0 0.01 0.09 

          1 ~ 0 ~ 0 ~ 0 0.01 0.10 

          2 ~ 0 ~ 0 ~ 0 0.01 0.10 

          4 ~ 0 ~ 0 ~ 0 0.02 0.12 

          8 ~ 0 ~ 0 ~ 0 0.03 0.15 

        15 ~ 0 ~ 0 0.01 0.07 0.23 

In the images captured, pixel values can range from 0 to 255. A pixel value of 0 

indicates a completely dark location while a value of 255 represents a fully saturated 

one. Clearly from the above images, all the averaged noise values are very low and 

negligible for even the highest ISO and exposure time combination. Additionally, when 

the averaging was done, locations with known hot pixels were not included in order to 

avoid false analysis. Overall, the noise in the imager system is not a concern and our 

SEU analysis algorithm will prove to be effective in detecting defects. 

4.4. SEU Defect Classification 

Figure 4.3 displays the three main types of SEU defect types. The first being a 

single spot event (bottom), the other a streak event (top left) and the last being a cluster 

event (top right). 

A simple SEU spot is a single pixel location that accumulates charge due to an 

incoming cosmic ray or energy source as seen in the bottom pixel shown in Figure 4.3. 

This value is then collected by the digital imager’s processing circuitry and eventually 

makes it onto the image itself. The key point here is that the SEU event is isolated to one 

pixel and not spread to its neighbouring pixels. Additionally, Figure 4.3 displays an SEU 

cluster at the top right of the image. This is where the SEU event is between multiple 

pixels and the charge is spread creating an ‘L’ type structure.   
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Figure 4.3.  SEU types – simple SEU spot (bottom), SEU streak (top left) and 
SEU cluster (top right) 

More complicated SEU manifestations are possible and are known as streak 

defects. Streak defects involve a number of neighbouring pixels in the defect behaviour. 

It is important to note that the defect itself is still caused by a single cosmic ray energy 

event but the effects are seen over a range of pixels in the vicinity. Figure 4.3 shows an 

example of a streak event at the top of the image. In this example, a cosmic ray particle 

caused a group of pixels to exhibit defective pixel values. The collections of pixels in this 

case are considered as single SEU event in our detection algorithm. Figure 4.4 and 

Figure 4.5 display actual experimental SEUs from infield images in these tests. More 

examples and details will be explained in the following chapter. 
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Figure 4.4.  Experimental SEU Streak 1 

 

Figure 4.5.  Experimental SEU Streak 2 

In regular ICs the SEU on a given circuit element is often hidden behind the 

surround circuit operations so that both the physical location and actual charge 

deposited are hard to characterize. Studying SEUs in digital imagers is considerably 

simpler as it can be done by taking dark-field photos at a high frequency and long 

exposure times (up to 30 seconds). The instant an SEU occurs, the charge it deposits is 

captured as a bright dot in the picture and is retained by the pixel even after the SEU 

disappears allowing the determination of the physical location and the charge generated. 

The next chapter compares the hot pixel rate to the SEU rate to better understand the 

permanent hot pixel generation process. 
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4.5. Summary 

This chapter has explored the theoretical concept of SEU defects in digital 

imagers and the motivation for this research. The lack of publications and literature that 

focus on transient errors in digital imagers with respect to image quality leads to a 

greater need for this area of technology to be explored. The next chapter will discuss our 

experimental results and analysis for SEUs in CMOS imagers. 
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Chapter 5.  
 
Single Event Upsets Experimental Results and 
Analysis 

5.1. Overview 

In this chapter the results of our SEU experiments will be analyzed. Unlike 

standard digital ICs, pixels in a digital imaging sensor can be monitored at almost any 

desirable frequency. Since an SEU manifests itself as one or more brighter pixels in an 

otherwise dark image, the rate of SEUs can be measured at a considerably higher 

accuracy by taking dark-field pictures at different exposure times and different 

frequencies. A range of imagers will be used in the analysis.   

5.2. Experimental Results 

Using the SEU detection algorithm mentioned in the previous chapter, we 

conducted experiments at different ISO and exposure times to collect SEU defect 

counts. One important thing to note is that the camera that was used for this experiment 

was set-up such that no image post-processing was introduced (i.e. RAW images were 

used). RAW images are the minimally processed pictures that essentially contain pixel 

data as taken by the camera. There are minimal processing algorithms or demosaicing 

performed on the RAW images because color is unimportant at this level. 
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As a starting point we began at ISO 6400, performing experiments at 30s, 10s, 

3.2s and 1s. For each experiment about 100 images were taken. The initial expectation 

was that digital imagers would experience about 100 times more SEUs than typical ICs. 

Thus, given the known hot pixel defect rates, the theoretical expected runtime to hit such 

an event is around 24 hours. However, during our initial experiment at ISO 6400 with a 

30 seconds exposure, we observed many events in the first hour itself (almost one every 

10 seconds). Also, in our first set of experiments, we have discovered several interesting 

forms of SEU defects, specifically SEU streaks as mentioned in Chapter 4. An example 

is shown in Figure 5.1. In this example, an incident cosmic ray has hit the imager, 

depositing a charge covering 5 neighboring pixels in a line. We consider this a single 

particle hit as the cause of this streak is likely a single SEU. We justify this by noting that 

the event rate (at most a few SEUs per a 21 megapixel image) is such that the 

probability of 5 events occurring as neighbors is extremely low. Moreover, such streaks 

turned out to be a common occurrence. These streaks are really the charge equivalent 

of the trails left by cosmic ray particles in classic cloud chamber detectors. 

 

Figure 5.1.  Simple Experimental SEU Streak (snapshot of 5x6 pixels – 31.3µm x 
37.6 µm) 

A more complicated streak is shown in Figure 5.2. In this example, it is clear that 

the incident cosmic particle began at a particular direction. However, at some point, it 

incurred a deflection. One possibility is that the incident cosmic ray particle collided with 

an atom, causing the particle to deflect and creating this interesting SEU defect. From 
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the figure it is clear that there are gaps in the streak which are likely due to some pixels 

not accumulating enough charge from the incident particle to show the SEU brightness. 

 

Figure 5.2.  Complex SEU Streak (snapshot of 12x17 pixels in size – 75.12µm x 
106.42µm) 

With this complex observation of streaks with inherent gaps, we upgraded our 

algorithm to consider a streak as a single SEU hit. This method also took into account 

streaks that had gaps. This enables us to effectively treat an SEU that created a multiple 

streak as one single event.  

5.3. SEU Analysis 

Using the data obtained by our experiments we can now attempt to define certain 

trends and rates of SEU growth at various operating conditions of the imager. We have 

counted SEUs that appear in streaks as a single defect as shown in Figure 4.3.      

Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6 display the defect count distribution for 

each exposure time for the ISO 6400 experiments. A Canon 5D Mark II DSLR with a 

pixel size of 6.26 µm was used for these experiments. From the distributions we can see 

that each of the exposure time set has a clear peak value. Additionally, at the ISO 6400 
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with a 30s exposure time case, we see that every single image contained an SEU; there 

was not a single case of no SEUs being detected.  

 

Figure 5.3.  Distribution of SEUs per image (ISO 6400, t=30s) – Canon 5D MII, 
6.26 µm – Peak ~ 3 events/image 

 

Figure 5.4.  Distribution of SEUs per image (ISO 6400, t=10s) – Canon 5D MII, 
6.26 µm – Peak ~ 2 events/image 
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Figure 5.5.  Distribution of SEUs per image (ISO 6400, t=3.2s) – Canon 5D MII, 
6.26 µm – Peak ~ 1 event/image 

 

Figure 5.6.  Distribution of SEUs per image (ISO 6400, t=1s) – Canon 5D MII, 6.26 
µm –   Peak ~ <1 event/image 

In order to understand the dependence on ISO, the same tests were repeated 

with ISO1600. These distributions are shown in Figure 5.7, Figure 5.8, Figure 5.9, and 

Figure 5.10. The distributions here are similar to the ISO 6400 case except that the peak 

SEU counts now occur at lower values as we would expect when we lower the ISO 
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setting. Additionally, in each of the exposure time experiments at ISO 1600, we see 

cases where images did not contain SEUs. 

 

Figure 5.7.  Distribution of SEUs per image (ISO 1600, t=30s) – Canon 5D MII, 
6.26 µm – Peak ~ 1 event/image 

 

Figure 5.8.  Distribution of # of SEUs per image (ISO 1600, t=10s) – Canon 5D 
MII, 6.26 µm – Peak ~ 1 event/image 
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Figure 5.9.  Distribution of # of SEUs per image (ISO 1600, t=3.2s) – Canon 5D 
MII, 6.26 µm – Peak ~ < 1 event/image 

 

Figure 5.10.  Distribution of # of SEUs per image (ISO 1600, t=1s) – Canon 5D MII, 
6.26 µm – Peak ~ 1 event/image 

These results indicate, as is expected, that the defect rate increases as the 

exposure time increases. For radiation type events, a common assumption is that their 

number follows a Poisson process [40]. Given that SEUs occur randomly, the Poisson 
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distribution is suitable for such cases as it expresses the probability of a given number of 

events occurring in a fixed interval window if these events occur with a known average 

rate and independently of the previous event. This type of distribution is commonly used 

in radiation event rates. The Poisson distribution is shown in Equation 5.1, where λ is the 

event rate (per second), λt is the expected value of the number of events occurring in t 

seconds, and k is the number of events in an imager.   

𝑃(𝑘, λ, t) =
(λt)𝑘𝑒−λt

𝑘!
                   (5.1) 

For each value of t, we estimated the expected value λt. Figure 5.11 plots λt for 

ISO 6400 and ISO 1600 over a range of exposure lengths t. Note that in this plot the 

exposure time is in a log scale. Figure 5.11 suggests that SEU defect rates increase with 

ISO. However, this increase is not constant over exposure times. It is clear that for larger 

exposure times, the increase is greater (with a slope of approximately 0.069 

SEUs/second), while for smaller exposure times the difference is much smaller. Also, 

note that there is a drop in the defect count below the 3.2s exposures for both ISO 1600 

and ISO 6400. From the images analyzed, there is a definite reduction in noise from 1s 

to 3.2s. This sudden change in noise levels implies a sudden change in the SEU events. 

Though not fully understood at this point, it should be noted that the camera performs 

some level of background dark frame subtraction around the 1s exposure point. For 

exposures greater than about 1 s, the camera sequentially takes a dark field image in 

addition to the exposed image, which is then subtracted from the original data to reduce 

noise in the image before presenting the data. This subtraction threshold possibly 

produces the sudden change in the curves at this point as it modifies the background 

noise level suddenly. 
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Figure 5.11.  Average number of SEUs per image vs exposure time for 1600 and 
6400 ISO settings (log scale) 

To further illustrate the effects of ISO on the defect rate, we plotted the averages 

λt for ISO 100, 200, 400, 800, 1600, 3200 and 6400 as shown in Figure 5.12 for two 

different imagers. For each ISO, the exposure time was fixed at t=30s. It is clear that the 

defect rate increases with ISO. For camera A from ISO 800 onwards the defect rate 

grows linearly with ISO at 0.26x10-3 SEU/ISO. At ISO 400 and lower ISOs the rate 

suddenly falls showing the gain is too small for many SEU’s to be seen above the noise 

Threshold. An interesting point is that the ISO400 images do not show the streaks that 

are seen at higher ISOs. This suggests that there may be several different causes of 

SEUs (i.e., different cosmic ray particles types creating different effects). The streaks are 

lower energy events, thus producing many less electrons, and are therefore not evident 

in the lower ISOs. Camera B shows a similar behavior, but the linear region starts at 

ISO400, and the slope is 1.01x10-3 SEU/ISO or 4.3x steeper. This may reflect the 

camera differences, of larger sensor area and smaller pixels (see Table 5.1). This plot 

scales the rate to the Camera A sensor size. 
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Figure 5.12.  Average number of SEUs per image vs ISO (for a 30s exposure) for 2 
cameras scaled to camera A (36x24mm) 

One question that we have not answered yet is what the exact cause is for SEUs 

in digital imagers. Traditional studies point towards neutron particles being the primary 

cause [41]. Literature discussion suggests that muons (generated by secondary cosmic 

particles) are the likely source of these streak-like errors [42]. In traditional IC defect 

analysis, SEUs are commonly thought of as single points rather than a spread of charge. 

This research shows that spread type defects in the form of SEU clusters or streaks are 

clearly possibly in digital imagers and potentially common ICs. Though a definite answer 

is yet to be determined, the trend in Figure 5.12 suggests that a combination of neutrons 

and muons causes these SEU defects. Firstly, at low ISOs we see that almost all defects 

are single spots and not the clustered kind. Additionally, the number of clusters 

increases as the ISO increases. Other researchers have identified streaks in imagers as 

being caused by cosmic ray generated muons, which are lower energy events than the 

cosmic ray neutrons [43]. This leads us to believe that muons are the probable cause of 

streak defects, while neutrons more likely generate single pixel defects (similar to what is 

seen in digital IC circuits). 
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Table 5.1. SEU Defect Rates for 3 APS Digital Imagers (t=10s, ISO 1600) 

Camera λt λt/cm
2
 Sensor Size 

(mm × mm) 
Pixel (μm) 

A 1.640 0.189 36.0 × 24.0 6.26 

B 0.481 0.145 22.3 × 14.9 4.30 

C 0.654 0.190 22.7 × 15.1 7.38 

To confirm that similar behavior is observed across different imagers, we have 

performed tests on two additional cameras at ISO 1600 with a t=10s exposure time as 

shown in Table 5.1 (A is the camera used in the previous sections). All the imagers in 

this table have APS sensors and the experiments were conducted and analyzed using 

the same methodology. For all three cameras, the average number of defects λt was 

extracted. However, each camera has a different sensor size which means that the λt 

values cannot be directly compared, but have to be scaled by the sensor area of the 

camera. 

The results of Table 5.1 tell us some important points. Firstly, SEUs are not 

limited to one imager but are observable in multiple imagers, making the research 

repeatable. Secondly, the rates of SEU defects for each camera are fairly consistent. 

Cameras A and C have higher rates that are quite close to each other. It should be 

noted that Camera B has smaller pixels (4 µm compared to 7) which may indicate that 

the pixel size has an impact on the SEU rate. Though Camera B has a smaller rate at 

ISO 1600, at higher ISOs it is observed that the rate can increase to greater than that of 

Camera A. 

The SEU rate that we have observed for digital imagers, of about 4 SEUs for 

every 30 seconds, is considerably higher than what was previously reported for ordinary 

ICs and our expectations when running initial experiments. Permanent hot pixels for the 

same imager have a rate of about 1 every 12.6 days by our previous measurements 

[44], so SEUs are 145,000 times more common. By comparison, for ordinary ICs the 

literature indicates that SEUs are about 100 times more common than permanent faults. 

This much higher rate in digital imagers is most likely the result of the greater sensitivity 

of pixels to injected charges. However, as Figure 5.12 suggests, it may also be that 

imager SEU’s are detecting other cosmic ray events, such as muons, that do not affect 

other digital circuits.  
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Table 5.1 also suggests the important area that we do not yet have enough data 

to explore. In the case of hot pixels we saw a strong power law relationship between the 

pixel size and the hot pixel development rate. We need to see how the hot pixel rate 

versus SEU rate changes as a function of pixel size. 

5.4. SEU Charge Analysis 

An ongoing goal of this research is to analyze the charge generated by the SEU 

events. The intent is to extract the charge of the SEU event by looking at the RAW pixel 

values. To begin estimating the charge of an SEU event, an assumption that is made is 

that it takes about 40K electrons to reach saturation for a 7 µm CMOS pixel at ISO 100, 

a typical value listed in the literature. Note the actual value of 40K is not relevant as the 

calculations that proceed are relative to this value since it is taken as a baseline. The 

electron count needed for saturation halves as the ISO doubles. Additionally as the area 

goes down by a factor of 2, the needed number of electrons also decreases by a factor 

of 2. Using this analysis, the charge of the SEU events can be derived from the 

extracted data in the experiments.  

Figure 5.13 displays the normalized SEU rate for three imagers as a function of 

the associated charge. We denote this normalized rate by λ(c) and define it as the 

expected number of SEUs with charge c per year, per mm² of the IC. We can see that 

the curves for the two cameras with the smaller pixel sizes are very close while the curve 

for camera 2 deviates. It should be noted that camera 2 is an imager with a larger pixel 

size which suggests that the size of the pixel may have an impact on the overall SEU 

rate. As mentioned earlier, this area of SEU research is in the early stages of analysis 

and further analysis and study is required in this area. 
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Figure 5.13.  Normalized SEU rate λ(c) as a function of the charge 

5.5. Summary 

This chapter has demonstrated that SEUs occur much more often in digital 

imagers than in regular ICs, and obviously, more often than permanent hot pixels. As 

SEUs are easily detectable in digital imagers, further study on the rate as a function of 

the amplitude (the amount of charge injected by the particle hit) is needed. Such a study 

can prove to be useful for SEUs in regular ICs as well. Further research will determine 

how the ratio between the SEU rate and hot pixel rate varies with the imager 

parameters.  

The SEU rate that we have observed for digital imagers, of about 4 SEUs for 

every 30 seconds, is considerably higher than has been reported for ordinary ICs. 

Permanent hot pixels for the same imager have a rate of about 1 every 12.6 days, so 

SEUs are 145,000 times more common. By comparison, for ordinary ICs the literature 

indicates that SEUs are about 100 times more common than permanent faults. This 
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much higher rate in digital imagers is most likely the result of the much higher sensitivity 

of pixels to injected charges. However, as this research suggests, it may also be that 

imager SEUs are detecting other cosmic ray events, such as muons, that do not affect 

other digital circuits.   
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Chapter 6.  
 
Conclusion 

6.1. Overview 

The previous chapters have explored digital imager pixels in great detail. 

Emphasis was put on CMOS type pixels due to major trends in today’s digital imager 

market and the limit application use-case for CCD sensors. In Chapter 2, this thesis has 

demonstrated the overall behaviour of imager pixels and their integration into a larger 

digital camera system. From low level CMOS design and pixel response curves, the 

sensor’s interaction with incoming light in normal operations was clearly demonstrated. 

Additionally, the overall benefits of digital photography in contrast to film based cameras 

were clear. Trends have shown that the traditional film based cameras have been more-

or-less phased out and the market is dominated with digital imagers. Moreover, the 

emergence of cellphone imagers and smaller pixel designs has started to shift the 

market once more. The average consumer prefers small and more compact digital 

imagers that can be found in cellphones and other portable devices. There is an evident 

push in the industry to reduce pixel sizes and increase overall sensor density. With such 

trends there are definite trade-offs.  

The main focus of this thesis is the issue of defects in digital imagers. As 

mentioned in earlier chapters, the concept of defects and faults in an imager can be 

quite vast. From hardware to software, many areas of the system are susceptible to 

defects and eventual infield faults. This research focuses on pixel defects that cause 
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incorrect pixel output values during camera operation. Two classes of defects were 

explored – permanent defects that develop infield and temporal or soft defects. 

As discussed in Chapter 3, hot pixels are the main type of permanent defect and 

were the focus of this research for this class of defects. Generally believed to be caused 

by cosmic rays, hot pixels are damaged pixels that do not follow the standard pixel 

response. Instead, we have shown that in the presence of a dark field, these pixels will 

output values. Various types of pixels were shown such as stuck, partially stuck and 

standard hot pixels. The main goal of this research is to analyze and understand the 

growth rate of these hot pixel defects. It has been shown that hot pixel defects are 

caused in field and grow over time indicating that an imager gains more defects as it 

gets older. This thesis has outlined an empirical model that predicts the hot pixel growth 

rate based on ISO and pixel size. Focusing on the pixel size parameter, it is clear that as 

the size of pixels decrease, the defect rate increases. This is a concern as the industry is 

moving towards smaller pixels in order to reach higher density values – i.e. more 

megapixels on the same sensor size. Though an advantage from a marketing 

perspective, these small pixels are a concern as manufacturers do not fully understand 

the implications from a defect growth concept. Specifically as the market has moved to 

smaller pixels in the 2 to 1 µm range, the defect growth has accelerated. This research 

has studied a number of cellphone and DSLR imagers and empirical data has been 

captured to validate the theory of accelerated defect growth at pixel sizes less than 2 

µm. Limitations at the time of this thesis (circa 2016) such as limited RAW support from 

certain cellphones such as iOS variants proved to be a challenge when focusing on this 

range of pixels. An updated empirical model has been presented with the enhanced 

cellphone data as seen in Equation 3.10. The updated model is still within the error 

bounds of the original model and generally projects the same trends. This model 

indicates that if the pixel size is shrunk by a factor of 2, then the defect rate will increase 

by 8.9 times. Similarly, if the ISO is doubled, the defect rate will increase the power of 

0.522. The Pearson’s r coefficient for this fit is r=0.91, indicating a strong fit. As shown in 

Figure 3.13 this research has significantly increased coverage at smaller pixel sizes and 

larger ISO values. The updated growth model is still within the original error bounds with 

slight changes to the fit parameters.  
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Hot pixel research has led us to look into SEUs in digital imagers, an area that 

has not been explored extensively in literature in the past. In literature, soft defects are 

defined as defects that are temporary and show transient behaviour. They only last for a 

short amount of time and their effects are not permanent to the circuit itself. Most 

literature has focused on soft defects in digital ICs – mainly microprocessors and circuits 

of the like. However, not a lot, if not any discussion has been made on the effects and 

occurrence of soft defects in digital imagers. A digital sensor is a mixed digital-analog 

device and is susceptible to the same defect behaviour that traditional digital ICs 

experience. This thesis has shown that SEUs definitely occur in digital imagers. An 

experimental setup was created to automate the data collection from imagers. This 

enabled a large set of data to be collected in an automated fashion. Additionally, a 

detection software algorithm was developed to detect SEUs in images and generate 

SEU rates. The experiments mentioned in thesis have studied SEU behaviour over 

various ISO and exposure time combinations for different DSLR cameras. It has been 

shown that the overall SEU rate in digital imagers appears to be higher than traditional 

ICs. The cause of SEUs is typically considered to be cosmic particles hitting the sensor 

of the camera. The SEU rate for a given imager is about 4 SEUs every 30 seconds. 

Permanent hot pixels for the same imager have a rate of about 1 every 12.6 days, so 

SEUs are 145,000 times more common. Literature indicates that ordinary ICs 

experience SEUs that are about 100 times more common than permanent faults. The 

SEU rate in digital imagers is much larger and is possibly an avenue for further insight 

into hot pixel behaviour and charge analysis. This thesis has discovered streak type 

defects that are believed to be due to a single event that is spread over a larger pixel 

area, a concept that has not been explored in traditional IC defect analysis. 

6.2. Future Research 

This thesis has provided an in-depth analysis of hot pixel growth rates and 

current trends at lower pixel sizes. However, due to limitations in commercially available 

cell phones, only a handful of cellphone imagers were used in this research as they were 

the models that only supported RAW output. As technology improves, this research 
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should be expanded to cover a broader range of cellphone imagers including iOS and 

other Android based platforms. Additionally, DSLR manufacturers will also begin pushing 

pixel sizes to these ranges as well which calls for an interesting comparison of the defect 

rates between DSLRs and cellphone imagers in this small pixel range. The software 

tools that have developed for cellphone imagers in this thesis can be used for future data 

and analysis as pixel sizes shrink. 

Another avenue for further expansion is the area of hot pixels in light frame fields. 

All of the research presented in this paper has looked at hot pixels in dark frame fields. 

From capture, to detection and analysis, no background illumination was present. To 

fully model hot pixels, their behaviour in the presence of light is vital. Complications in 

this area are bound to arise as this type of research is susceptible to much more noise 

and could possibly lead to non-linear behaviour. However, this model of hot pixels in 

light is vital for manufacturers to be able to quantify their impact and potentially even 

correct for them in-field. 

The SEU research presented here solely looked at DSLR imagers due to 

restrictions with technology. DSLR imagers are the only type of cameras that enabled 

remote shooting such that we could take 100+ consecutive images to detect SEUs. In 

the future as cellphones become mainstream, they will support remote shooting and 

other functions that current day DSLRs possess. The SEU analysis needs to be 

enhanced compare rates between camera types and pixel sizes. Additionally, the area of 

charge analysis in our SEU research is in its infancy. Further work needs to be 

performed to understand the charge behaviour created by these transient events and 

their dependency to pixel size, ISO and exposure time. Furthermore, our initial results 

showed some anomalies in the charge behaviour between cameras which at this stage 

have not been explained. Further study in this is needed to fully explain the charge 

behaviour due to SEUs. Additionally, as cellphone support for RAW increases, the SEU 

research should be extended to include cellphone imagers.  
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6.3. Concluding Thoughts 

It is clear that as the digital IC industry advances to smaller transistor sizes and 

higher density designs, this trend directly affects the photography industry as well. Digital 

cameras are also experiencing constant change in that manufacturers are pushing pixels 

to smaller and smaller sizes with an increased need for sensitivity. As discussed in this 

thesis, such a push comes at cost in the inherent defect behaviour of the sensors 

themselves. Though modern designs have been successful to increase pixel density and 

reduce the relative size of the pixels themselves, sensor designers have not considered 

the impact of defect growth rates at smaller technology nodes, especially as pixel sizes 

begin to move to less than 1 µm. 

This thesis has explored in detail the various concerns and problematic trends 

that are occurring at the smaller micron pixel sizes. It is clear that an accelerated defect 

growth is taking place and it is vital for camera manufacturers to design against such a 

rapid defect growth trend. Additionally, it has been shown that temporal defects like 

SEUs are also more prevalent in digital imagers in comparison to traditional digital ICs. 

Though it does sound comical, this research suggests that as pixel sizes reach lower 

values, the defect growth rate approaches infinity. However, this statement is what is 

currently occurring in digital imagers. We are seeing an accelerated growth trend which 

is concerning when one begins to think about future implications for next generation 

imagers. Manufacturers of digital imagers need to consider the quality of imagers as 

pixel sizes decrease. Such concerns further illustrate the need for greater research and 

investment in the area of digital imager defect analysis and prevention. 
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Appendix A.  
 
List of APS Imagers 

 

 Canon EOS10D   

 Canon EOS5DMarkII   

 Canon EOS300D   

 Canon EOS450D   

 Canon EOS350D   

 Canon EOS450D   

 Canon EOS20D   

 Canon EOS350D   

 Canon EOS30D   

 Nikon D2x   

 Canon EOS550D (T2i MS) 

 Pentax K7   

 Canon EOS550D (T2i AC) 

 Canon T1i (MS) 

 Canon T3i (J) 

 Canon T5i (RT) 

 Nexus 5 Sony IMX175 

 Oneplus One a0001 

 Nexus P6 

 Samsung S6 


