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Abstract

In modern column-oriented databases, compression is important for improving I/O through-
put and overall database performance. Many string columnar data cannot be compressed
by special-purpose algorithms such as run-length encoding or dictionary compression, and
the typical choice for them is the LZ77-based compression algorithms such as GZIP [16] or
Snappy [13]. These algorithms treat data as a byte block and do not exploit the colum-
nar nature of the data. In this thesis, we develop a compression algorithm using frequent
string patterns directly mined from a sample of a string column. The patterns are used
as the dictionary phrases for compression. We discuss some interesting properties of fre-
quent patterns in the context of compression, and develop a pruning method to address
the cache inefficiencies in indexing the patterns. Experiments show that our compression
algorithm outperforms Snappy in compression ratio while retains compression and decom-
pression speed.

Keywords: data compression; column stores; columnar data
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Chapter 1

Introduction

In this chapter, we discuss why compression is important in modern database systems, and
why we design yet another compression algorithm for column stores. Then we summarize
the major contributions and describe the structure of the thesis.

1.1 Background and Motivation

We are witnessing the advent of big-data era. Huge volume of data is being pushed into
distributed data stores on a daily basis. Fast data retrieval and processing are becoming
more and more important for analytical applications that support business intelligence.
Many challenges arise in designing the system infrastructures for efficient storage, retrieval
and processing of large volume of data. These challenges are characterized by a group of
researchers from Facebook as: fast data loading, fast query processing, efficient storage space
utilization, and strong adaptivity to dynamic work loads [21]. Data compression plays an
important role in addressing these challenges. With compression, modern database systems
enjoy better query processing performance because of faster disk and memory I/O, even
after paying the cost of decompression [2, 52]. This is largely because disk and memory
bandwidth become a bottleneck for database systems after the rapid advancement in CPU
performance.

Traditionally, databases store values in a table row consecutively. Recently, column-
oriented data stores are becoming popular, where an entire column (or a block of column)
is stored consecutively [1]. Figure 1.1 illustrates the difference between the storage formats
of row stores and column stores. Column stores perform better in analytical applications
which aggregate over a small fraction of table columns, since they avoid the cost of reading
and discarding columns irrelevant to the query. Another advantage of column stores is better
compression. Fields in a single column are more likely to be similar to each other, and can
be compressed more effectively when they are stored consecutively. Compression has been
shown to significantly boost performance in column stores [2, 52]. If the compression scheme
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allows directly applying operators on compressed data, the performance improvement can
be an order of magnitude [2].

Name Birthdate
Bob 1976-07-20
Diana 1985-12-24
James 1973-02-13
. . . . . .

(a) A sample database

Bob 1976-07-20

Diana 1985-12-24

James 1973-02-13

… …

(b) Row-oriented database storage

Bob Diana James …

1976-07-20 1085-12-24 1973-02-13 …

(c) Column-oriented database storage

Figure 1.1: Row-oriented database storage vs. column-oriented database storage

Many compression techniques have been investigated and successfully used in column
stores to improve data processing performance. Most notably among them are dictionary
compression, run length encoding (RLE), bit vector encoding, frame of reference (FOR), and
compression techniques in the LZ77 family [2, 21, 19, 52]. However, the first four techniques
can only compress data with a certain type or distribution. LZ77 algorithms, on the other
hand, accepts any block of byte sequence, but they do so without the awareness that data
comes from a columnar format. In this thesis, we aim to answer this question: can we
design a better compression algorithm, knowing that the input data is columnar? Such an
algorithm can still be considered general purpose, since we can slice any block of data into
columnar format. When these pieces are indeed similar to each other, the algorithm further
aims to achieve lower compression ratio while being as fast as industry solutions such as
Snappy [13] from Google. The major idea is to use frequent pattern mining on columnar
data, and use the frequent patterns as a dictionary for compression. Our experiments show
that such a simple idea can lead to faster and/or better compression in a variety of columnar
inputs compared to Snappy.

2



1.2 Existing Compression Techniques

We further explain why there is room for a new compression algorithm, in the context of
column stores.

Some existing algorithms demand the data to have a certain distribution or format.
RLE, for example, compresses data only when there are consecutive fields in a column with
the same value. As another example, dictionary compression can only compress data that
has limited domain values (By dictionary compression we refer to the algorithm that assigns
a single integer code for a column field). If there is a color column with only 3 possible values
blue, red, green, then we only need 2 bits to represent each field, and effectively compress
the column. However, a great variety of data columns don’t fit into these assumptions.
Let us look at the examples shown in Table 1.1. These string columns cannot be directly
compressed by RLE or dictionary compression, although the data fields are structurally
similar and exposes compressible common patterns. We are left with no other choice but
the general purpose, byte oriented algorithms, which are usually LZ77-based.

Address
7397 9th Street New
Bern, NC 28560
318 Holly Drive
Ashburn, VA 20147
4919 Summer Street
Midlothian, VA 23112
...
017 Hilll Street South
Baby, GA 40737

(a) A column of addresses

User Agent
Mozilla/5.0 (Macintosh; U; PPC Mac
OS X 10_5_1; rv:1.9.2.20)
Gecko/2013-12-30 21:42:29 Firefox/4.0
Opera/8.53.(Windows NT 6.1; sl-SI)
Presto/2.9.176 Version/11.00
...
Mozilla/5.0 (Windows 98; en-US;
rv:1.9.2.20) Gecko/2013-06-21 00:58:37
Firefox/3.6.7

(b) A column of user agent strings

Table 1.1: Examples of string columnar data

The idea of LZ77 is to replace repeating patterns with reference pointers to previous
occurrences in the data [50]. A notable algorithm in this family, DEFLATE used in GZIP
[16], has good compression ratio, but is quite slow. In the context of distributed data
stores, fast decompression and low CPU overhead usually outweighs compression ratio for
better overall performance, which is why faster LZ77-based algorithms such as Snappy and
LZ4 are often used. they are exhaustively engineered to decompress at a very fast speed,
while sacrificing the compression ratio to some extend. They perform well when RLE or
dictionary compression are not applicable, but they are not designed to accept columnar
data directly, but rather a sequence of bytes. Columnar data needs to be stitched together
into a byte sequence to feed into these algorithms. Can we, however, compress columnar
data directly?

3



1.3 Major Ideas

These observations lead us to the idea of applying frequent pattern mining to columnar
data. The output of pattern mining is conveniently useful for compression: a dictionary of
repeating patterns. The dictionary is mined from only a sample of the data, since it is not
practical, and usually not necessary to mine the entire dataset. With the given dictionary,
the running time of compression is dominated by scanning input data to replace patterns
with integer codes. To speed up this process we use a variant of trie (prefix tree) for
pattern search, to minimize per symbol operations and improve CPU cache performance.
Experiments show that this algorithm is superior to Snappy for a variety of columnar
inputs (but not all possible inputs, otherwise we would have discovered a better byte-
oriented compression algorithm since we can convert any byte sequence into a column).
The typical results show that this algorithm has similar compression and decompression
speed to Snappy, and achieves better compression ratio for a variety of columnar data, an
improvement up to 40%. We have made the code publicly available 1.

However, it is not our goal to design a stable production-ready compression algorithm.
It is our goal to show that by understanding the data better, we can compress the data
better. On the foundation of this work, it is worthwhile for software engineers to deviate
from optimizing LZ77-based algorithms, and switch to a pattern mining based approach
to compress columnar data. They can further fine tune the search trie (or other search
algorithms), prune the patterns for cache efficiency and invest other engineering effort to
develop a production-ready compression software.

1.4 Contributions

We make the following contributions:

1. We develop a compression algorithm that achieves better compression ratio on a
variety of columnar data, while maintaining similar compression and decompression
speed compared to existing industry solutions.

2. We discuss algorithmic and data-structure choices for efficiently parsing and matching
data with a set of frequent patterns.

3. We demonstrate that a pattern mining based approach can effectively compete with
traditional LZ77-based algorithms to compress columnar data. We show that it is a
promising direction for data compression in column stores.

1https://github.com/superxiao/FrequentPatternCompressor
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1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we review the related work on
data compression methods, in the context of compression in column stores. We also review
existing work on compressing collections of strings, and the trie data-structure used in some
compression methods. In Chapter 3, we formally define pattern mining based compression
on columnar data as an optimization problem. In Chapter 4, we present and discuss our
sampling-based method and related data-structures for pattern match. Chapter 5 presents
the experiment results to show the effectiveness of this method, and Chapter 6 concludes
the thesis.
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Chapter 2

Related Work

This chapter introduces related work. First, we review the compression methods currently
used in column stores. Second, we introduce Lempel-Ziv algorithms, which replace phrases
in the input with references to dictionary phrases in a dynamically constructed dictionary.
Third, we review compression methods for string collections. Last, we review variations of
the trie data-structure. A trie is used to index the dictionary in our method.

2.1 Compression in Column Stores

The foundations of the work on column stores were laid by several influential academic im-
plementations, including MonetDB [26], VectorWise [10], and C-Store [41]. Major database
vendors such as Microsoft, IBM and SAP also started to supply their implementations in-
side commercial database systems [30, 7, 17]. Facebook introduced RCFile [21], a hybrid
of column-oriented and row-oriented storage format, into Hadoop systems. Compression
is an indispensable part of all these column stores, because column-oriented storage pro-
vides opportunities for better compression, which improves I/O performance throughout the
memory hierarchy [1]. A variety of compression techniques traditionally used in row stores
have been ported into column stores. Compression ratio is improved, and different columns
can be compressed by different methods that are most suitable [2, 52, 1]. In addition, it
is possible to apply operators directly on compressed data in column stores, tremendously
speeding up scan and aggregation operations [2, 3, 23, 1]. Column-store compression also
enables other optimization opportunities such as super-scalar compression [52], and lazy
decompression, where a column is decompressed only when absolutely necessary [21]. Com-
monly used compression schemes for column stores have been described in previous works
in the context of column stores [2, 52, 1], and we briefly summarize them here.

Null suppression [2] is a compression scheme for databases where consecutive zeros or
blanks are replaced by a short description of how to reconstruct them. For example, an
integer less than 127 can be represented using one byte instead of four. To signal that this
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is the last byte for the value, the most significant bit is set to 0. This scheme is usually
called variable byte encoding [49], which is one form of null suppression. Run length encoding
(RLE) [2] replaces consecutive appearances of any column value by a short description. This
scheme is effective when the data contains runs of the same values, which are commonly
seen in sorted columns, or columns with a small domain. Aggregation operators such as
COUNT, SUM or AVG can be easily applied to RLE encoded data without decompression.
Bit vector encoding [2] uses a bit vector for each domain value to indicate where in the
column this value appears. For example, for a column [red, green, red, yellow, yellow],
three bit vectors are created for the three possible colors: red 10100, green 01000, and
yellow 00011. This scheme is useful with small domain (therefore small number of vectors).
Dictionary compression [2] replaces each column field by a fixed-length integer code. An
example was given in Chapter 1. Some variations of this scheme preserves order, which
means a smaller value is assigned a smaller integer code [5, 9], to facilitate direct searching
and sorting operations on compressed data. Frame of reference (FOR) [1] is a compression
scheme where each field of a column is described as a difference between the original value
and a common reference. For a column of integers in a certain range, the common reference
can be the minimum integer in this column. The differences can be represented more
compactly using bit-packing. A related scheme is delta encoding [1], where a field is replace
by the difference to the previous field in the column. Delta encoding is particularly effective
on sorted data. A recent work develops a vectorized variation of FOR [33], which uses SIMD
instructions whenever possible, and is significantly faster than traditional implementations.
This scheme is used in our approach to efficiently compress and decompress integer codes.

These commonly used compression schemes all make certain assumptions of the data in
order to provide compression benefit. Our approach can be used on columns not fitting these
assumptions, particularly string columns with no fixed domain. Currently byte-oriented
LZ77 algorithms are commonly used in this scenario. We describe LZ77 in the next section.

2.2 Lempel-Ziv Compression

Lempel and Ziv proposed two early influential works on data compression in the 70’s, LZ77
[50] and LZ78 [51]. LZ77 is the basis of DEFLATE [15], which is used in the popular GZIP
compression program [16]. It also forms the basis for most fast general-purpose compression
tools currently used in distributed data storage systems, such as Snappy and LZ4. LZ78 is
less popular but has practical applications as well. Our method is closely related to LZ78
as they both replace phrases by integer codes representing dictionary entries. We give an
overview of the two Lempel-Ziv algorithms below.

LZ77 replaces phrases in the input by descriptors pointing to the patterns’ previous
occurrences. Such a descriptor is called an LZ factor, and usually consists of the length
of the phrase to be replaced, and an offset value indicating the distance to the previous

7



occurrence. In the original LZ77 proposal, a factor contains another element which is
the literal symbol immediately following the replaced phrase. This is useful for skipping
symbols when no match is found. A later LZ77 variation, LZSS, eliminates the literal
symbol in a factor, and uses bit flags to differentiate factors and literals [42]. This strategy
is followed by most practical LZ77 implementations. The search of a matching phrase is
usually constrained in a sliding window immediately preceding the input position. In GZIP,
the sliding window is usually 32KB or less. The example in Figure 2.1 demonstrates how
LZ77 processes the input string abacababcab into factors, using an unbounded window.

Step Input Output

1 |abacababcab (0, 0, a)

2 a|bacababcab (0, 0, a)(0, 0, b)

3 ab|acababcab (0, 0, a)(0, 0, b)(2, 1, c)

4 abac|ababcab (0, 0, a)(0, 0, b)(2, 1, c)(4, 3, b)

5 abacabab|cab (0, 0, a)(0, 0, b)(2, 1, c)(4, 3, b)(5, 3, $)

Figure 2.1: LZ77 compression on input abacababcab using unbounded window. The vertical
bar marks the current input position in each step. Underlines mark the phrases to be
replaced, and their previous occurrences. The output is a list of LZ factors, each consisting
of the offset, the length, and the next symbol following the phrase to be replaced.

Step 1. The window before the current input position is initially empty. A triple (0, 0, a) is
sent to the output stream, where the offset 0 and length 0 indicate that no matching
phrase is found in the window. The first literal symbol a is also sent to the output as
a part of the triple, to advance the input position to the next symbol.

Step 2. The window is now a. The current input symbol b is not found in the window, so
(0, 0, b) is sent to the output. The input position is advanced by 1 symbol.

Step 3. The window is now ab. Since the current input symbol a is found in the window,
a triple (2, 1, c) is sent to the output. The triple indicates that 2 symbols to the left
there is a match of length 1, which is a. The symbol after the match in the current
input buffer is c, which is also sent to the output. The input position is advanced by
2 symbols.

Step 4. The window is now abac. A match aba of length 3 is found with an offset of 4, so
the triple (4, 3, b) is sent to the output, where b is the symbol after the match in the
current input buffer. The input position is advanced by 4 symbols.

Step 5. The window is now abacabab. A match cab is found, and there is no next symbol
in the input buffer after the match, so the triple (5, 3, $) is sent to the output, where
$ indicates the end of the input stream.

8



Practical LZ77 implementations use additional strategies to achieve compression. First,
factors can be further compressed. GZIP uses Huffman coding to compress factors, while
Snappy uses variable byte encoding. Second, short matches are usually skipped. GZIP uses
a minimum match length of 3 bytes, and Snappy uses 4. Third, different algorithms are
used for finding a match. GZIP uses a chained hash-table to index all 3-byte sequences
in the sliding window, and search through a bucket for a long match. It also uses local
lookahead, examining the cases of looking for a match starting from the next input byte, or
skipping it in favor of a longer match. Snappy avoids conflict resolution altogether by using
the most recent phrase prefixed by the next 4 input bytes. Snappy avoids local lookahead
as well. These differences make Snappy a much faster algorithm, at a cost of compression
ratio.

Compression can be generally considered from two different aspects, modelling and cod-
ing [38]. Modelling is the computation of redundancy characteristics of the input, producing
a dictionary or other forms of information model that captures the repetitiveness of the in-
put. Coding is using information from the model to replace symbols from the input. In the
example of LZ77, the sliding window can be considered as a dictionary that is constantly
updated during compression and decompression, and is part of the compression model.
Since a LZ77 model is not separately stored in compressed data, but rather constructed
and updated on-line during compression and decompression, it is said to be an adaptive
model.

LZ78 builds up a dictionary which maps phrases to integer codes (dictionary indexes)
as the input is parsed and compressed. At each step, it tries to find the longest dictionary
phrase that matches the input. It then replaces the input phrase by its dictionary index.
Meanwhile, it inserts a new dictionary phrase, which is the phrase being replaced, appended
by the following symbol in the input. Dictionary grows during compression, as well as the
bit length of integer indexes. Some implementations avoid degrading compression ratio by
resetting the dictionary when it grows to a certain size. An LZ78 factor consists of the
dictionary index of a phrase, and the next symbol following the phrase. LZW [47] removes
this symbol from factors. LZ78 is also an adaptive modeling algorithm since the dictionary
is not explicitly stored, and can be dynamically constructed in decompression, similar to
how it is constructed in compression. During compression, a trie (prefix tree) is often used
for the dictionary for fast match finding. Figure 2.2 shows an example of LZ78 compression
with the input string abacababcab.

Step 1. The dictionary is initially empty. A pair (0, a) is sent to the output where 0 indicates
that a match is not found in the dictionary. The literal symbol a in the pair is the
current input symbol. A new dictionary phrase a is discovered , and inserted into the
dictionary with a code (index) 1. The input position is advanced by 1 symbol.

9



Step Input New Dictionary Entry Output
1 |abacababcab a→ 1 (0, a)
2 a|bacababcab b→ 2 (0, a)(0, b)
3 ab|acababcab ac→ 3 (0, a)(0, b)(1, c)
4 abac|ababcab ab→ 4 (0, a)(0, b)(1, c)(1, b)
5 abacab|abcab abc→ 5 (0, a)(0, b)(1, c)(1, b)(4, c)
6 abacababc|ab (0, a)(0, b)(1, c)(1, b)(4, c)(4, $)

Figure 2.2: LZ78 compression on input abacababcab. Vertical bar marks the current input
position in each step. Underline marks the phrase to be replaced by a dictionary index. The
output is a list of LZ factors, each consisting of an dictionary index, and the next symbol
following the phrase.

Step 2. The current input symbol is b, and a match is not found in the dictionary. A pair
(0, b) is sent to the output, and b is inserted into the dictionary with a code 2. The
input position is advanced by 1 symbol.

Step 3. The longest match found in the dictionary is a, a single symbol. The pair (1, c) is
sent to the output where 1 is the code of a, and c is the symbol following the match
in the input buffer. A new phrase ac is discovered, and inserted into the dictionary
with a code 3. The input position is advanced by 2 symbols.

Step 4. Similar to step 3, the pair (1, b) is sent to the output and ab is inserted into the
dictionary. The input position is advanced by 2 symbols.

Step 5. The longest match found in the dictionary is ab, so the pair (4, c) is sent to the
output where 4 is the code of ab. A new phrase abc is inserted into the dictionary.
The input position is advanced by 3 symbols.

Step 6. The longest match found in the dictionary is ab, so the pair (4, $) is sent to the
output, where $ indicates the end of the input stream.

Our approach is similar to LZ78 in building an explicit dictionary mapping phrases to
integer codes in compression. However, we use a two-pass process, where a dictionary is
first generated from the data, and then used for compression without dynamic update. To
allow decompression, the dictionary must be stored explicitly in the compressed data. Such
a two-pass process is referred to as semi-static modelling [8], while LZ77 and LZ78 are
dynamic. A third kind is static modelling [8], which uses a pre-determined model.

Our method is faster in compression and decompression than traditional LZ78 imple-
mentations, and is generally as fast as Snappy-like LZ77 methods. First, we avoid the
running time cost of dynamically updating the dictionary. Second, we prunes dictionary
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phrases to construct a cache-efficient variation of trie. In addition, we compress and de-
compress integer codes using existing work that exploits super-scalar capabilities of modern
processors [33], reducing the cost of bit manipulation. Therefore, the running time of de-
compression is dominated by copying phrases from the dictionary, similar to LZ77. This
makes our method as fast as Snappy in decompression.

2.3 Compression of String Collections

The problem of compressing a collection of strings has been studied in the areas of informa-
tion retrieval for web collections [12, 24] and genome sequences [45, 37, 28, 14]. It is helpful
to first introduce some previous works on the problem of selecting dictionary phrases for
semi-static compression, which we refer to as phrase selection.

Phrase selection has been approached by several grammar-based methods, namely RE-
PAIR [31], RAY [11], and SEQUITUR [36]. Their procedures are akin to generating a set of
context-free grammar rules. RE-PAIR, for example, selects the most frequent symbol-pair
that appears in the message, and then creates a new symbol in the alphabet to replace all
appearances of this pair. It then updates the frequencies of symbol pairs. This procedure is
executed iteratively until every distinct pair appears only once. RAY selects symbol pairs
in a more complex manner, following the same intuition of repeatedly selecting the most
heuristically compressible pair. These methods offer significantly better compression ratio
than GZIP but incur great time and memory cost in compression. It is difficult to use them
directly on large data sets.

XRAY [12] is an extension of RAY which compresses large string collections using a
phrase book generated from a sample collection. The use of sampling scales the method
to large data sets, and still provides better compression ratio than GZIP with compara-
ble speed. Both XRAY and our method use sampling, and can be viewed as semi-static
variations of LZ78. However there are two major differences. First, we approach phrase
selection using frequent sequential patterns generated by the well-known algorithm PrefixS-
pan [27], instead of the greedy grammar-based approach of XRAY. Second, XRAY uses
local lookahead similar to GZIP. Our method avoids local lookahead, and is much faster
in compression. The authors of XRAY noted that compression is ineffective without local
lookahead, but our method shows that a method without local lookahead still can achieve
reasonably good compression. A possible explanation is related to the anti-monotonicity
property of frequent patterns, which we will discuss in detail in the next 2 chapters.

Another related work is relative Lempel-Ziv compression [24], which builds a dictionary
from a sample of the collection, and compresses each string by referencing the dictionary
using LZ77-style factors. It achieves an impressive compression ratio and decompression
speed, and supports random access of individual strings. However, the method targets
information retrieval system storing large document collections (hundreds of Gigabytes)
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with a dictionary of at least 500 MB large. The dictionary needs to be held in main
memory during decompression. It is not clear yet how this method can be scaled down to
compress small blocks of data with a low memory cost.

Compression of genome sequences is a unique problem in that two randomly selected
human genomes are highly correlative. The state-of-the-art methods belong to a class
known as referential compression. A single sequence is selected as a reference and all
other sequences are compressed relative to the reference sequence [45, 37, 28, 14]. These
methods can achieve a compression ratio of 400:1 or even more, as apposed to 4:1 to 8:1
using traditional compression methods [44]. For document collections and general string
columnar data, a single string is not enough to capture the global repetitiveness of the
collection. However, the intuition behind compressing genome sequences using a single
reference sequence is similar to compressing other types of string collections using a sample
collection.

A recurring theme in this line of works is the effective use of sampling. Sampling-
based methods achieve favorable performance in different trade-off settings of compression
speed, decompression speed, compression ratio and memory usage. Our method selects
phrases from a sample, and targets fast compression and decompression of columnar data
with relatively short fields, such as addresses and log messages. We approach this problem
from a different way than the relative Lempel-Ziv compression method mentioned earlier.
Specifically, our method is more similar to LZ78, constructing an explicit dictionary instead
of using LZ77-style positional references. We note that the latter approach is a possible
direction, and worth future investigations.

2.4 Compression and Frequent Pattern Mining

A few works link data compression to frequent pattern mining, by using the minimum
description length (MDL) principle to select a set of sequential patterns that compresses
data well [43, 29]. Compression is used as a means to reduce a large set of frequent patterns
to a smaller set of interesting patterns with less redundancy. Our work focuses on using
frequent patterns to efficiently compress textual data, and related work on this direction is
rare. It should be noted that a smaller set of phrases are desirable as long as the compression
ratio is preserved. This is because a smaller dictionary causes less cache misses, and speeds
up compression. In this work, we use a simple pruning strategy to reduce the number of
phrases. With a small loss in compression ratio, the pruning is shown to significantly speed
up compression when there are a large number of frequent patterns.
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2.5 Trie

A trie (prefix tree) is a multi-way tree for indexing strings. A basic implementation uses a
pointer array to index children nodes. For example, to index byte sequences using one node
per byte, each internal trie node represents a prefix string, and contains an array of 256
pointers to children nodes. Each child represents a string prefixed by the parent’s string,
with one appended byte.

Trie is often used in LZ78-style compression algorithms, since it is fast for looking up
the longest dictionary phrase matching the input. However, the basic form of trie may leave
many array entries empty, and is not space-efficient. With a large dictionary, the perfor-
mance of frequent search operations may suffer from frequent CPU cache misses. Variations
of trie have been proposed to address this issue. Path compression collapses consecutive
single descendant nodes into one node, which stores the string segment represented by the
replaced nodes [35]. This compressed version of trie is sometimes called a compact trie.
Burst-trie uses alternative container (linked-list by default) instead of array when the num-
ber of children is limited [22]. HAT-Trie uses cache-conscious hash-table to replace sparse
array [6]. Adaptive radix tree uses path compression, and dynamically adjust array size for
trie nodes [32]. XRAY compression algorithm [12] uses ternary search tree, a trie variation
with a fan-out of 3.

During our prototype stage, we found that compact trie and adaptive radix tree only
speed up compression in a few limited cases where dictionary is large and cache inefficiency is
severe. In other cases, they significantly slow down the compression because of the additional
operations they add for traversing phrases. For example, compact trie needs a conditional
test for each node examining whether it contains compressed path. This seems trivial but
adds up in practice, and the cost is not sufficiently compensated by improvements in cache
locality. Instead of using existing trie variations, we propose an optimization specifically
designed to speed up compression, which is closely tied to the phrase pruning strategy
mentioned in the previous section.
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Chapter 3

Problem Definition

In this chapter, we introduce some preliminaries on frequent pattern mining for string
columns. We then introduce a semi-static encoding format for string columns. Lastly,
we formally define the problem of optimal compression with the aforementioned encoding
format.

3.1 Columnar String Pattern Mining

Let Σ = {c1, c2, . . . , cm} be an alphabet, a non-empty finite set of character symbols. A
string s over Σ is an empty sequence, or a finite sequence of symbols c′1c′2 · · · c′l, where l > 0
and c′i ∈ Σ for 1 ≤ i ≤ l. l is called the length of the string, denoted by |s| = l. For
example, a string of ASCII characters abacababcab has an alphabet Σ consisting of 128
ASCII characters, i.e. |Σ| = 128. In this thesis, we are mainly concerned with byte strings,
where Σ consists of 256 byte values, i.e. |Σ| = 256. We denote by s[i] the i-th symbol of s.

A non-empty string s = c1c2 · · · cl is a substring of a non-empty string s′ = c′1c′2 · · · c′l′ at
r, denoted by s �r s′, if l ≤ l′, 1 ≤ r ≤ l′ − l + 1 and cj+1 = c′j+r for all 0 ≤ j ≤ l − 1. We
also use s′[r, r + l−1] to denote the substring s �r s′, where l = |s|. We call s′ a superstring
of s, and s′ supports s. For example, s = cab is a substring of s′ = abacababcab, where we
have s �4 s′ and s �9 s′ (the two appearances of substring s in s′ start from the 4th and
9th symbols, respectively). For s �r s′, we say that s is a prefix of s′ if r = 1, and s is a
postfix or suffix of s′ if r = |s′| − |s|+ 1.

A string column C over Σ is a sequence of strings over Σ. C is defined as a sequence
instead of a set, since the same string may appear several times in a column, and we want
to preserve the order of a column. Note that the strings in a column may have different
lengths. The number of strings in C is denoted by |C|, and the i-th string in C is denoted
by C[i] where 1 ≤ i ≤ |C|.
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Definition 3.1 (Support and Relative Support). The support of a string s in a string s′,
denoted by Support(s, s′), is the number of appearances of s in s′, that is,

Support(s, s′) = |{r|s �r s′}| (3.1)

The support of a string s in a column C, denoted by Support(s, C) is the number of
appearances of s in C, that is,

Support(s, C) =
∑

1≤i≤|C|
Support(s, C[i]) (3.2)

The relative support of s in C is denoted by RelSupp(s, C) = Support(s,C)
|C| .

Note that RelSupp(s, C) may be higher than 1. We often omit the string column C if it
is clear from the context.

Definition 3.2 (Columnar String Pattern Mining). Given a minimum threshold of rel-
ative support minRelSupp > 0 (or a minimum threshold of support minSupport > 0),
the problem of columnar string pattern mining is to find all strings s such that
RelSupp(s, C) ≥ minRelSupp (or Support(s, C) ≥ minSupport, if minSupport is given
instead of minRelSupp). Every such string s is called a string pattern, and we say that s

is frequent.

Example 3.1. Table 3.1 illustrates the string patterns of a column of 4 strings, where
minSupport = 2, and minRelSupp = 0.5.

C
abc
acd
bcd
abcab

(a) A string column C

String pattern Support
ab 3
bc 3
cd 2
abc 2

(b) string patterns with minimum support 2

Table 3.1: An example of string patterns

The problem of sequential pattern mining is a related problem defined in previous liter-
ature [4]. It has 3 major differences from columnar string pattern mining:

1. A sequence in sequential pattern mining is defined as a list of itemsets, while a string
in columnar string pattern mining is defined as a list of items (symbols).

2. A sequential pattern is supported by a sequence if the pattern appears in the sequence
with or without gaps. A string pattern s is supported by a string s′ only if s appears
in s′ as a consecutive substring.
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3. The relative support of a sequential pattern is no larger than 1, because each sequence
in a sequential database contributes at most 1 to the support of a sequential pattern.
The relative support of a string pattern s can be larger than 1, because all appearances
of s in different positions of a string C[i] are counted towards the support.

The anti-monotonicity property of frequent sequential patterns also applies to string
patterns.

Property 3.1 (Anti-monotonicity for String Patterns). If s is a substring of s′, then
Support(s) ≥ Support(s′). If s is infrequent, so is s′.

Proof. Assume s is a substring of s′ at p, i.e. s �p s′. If for a string C[i] we have s′ �q C[i],
then by the definition of substring, s �q+p−1 C[i]. Then we have

Support(s, C[i]) = |{r|s �r C[i]}|

≥ |{q + p− 1|s′ �q C[i]}| = |{q|s′ �q C[i]}| = Support(s′, C[i])

Therefore,

Support(s, C) =
∑

1≤i≤|C|
Support(s, C[i]) ≥

∑
1≤i≤|C|

Support(s′, C[i]) = Support(s′, C)

PrefixSpan [27] is a state-of-the-art algorithm for sequential pattern mining, and can be
easily adapted to mine frequent string patterns, as discussed in the next chapter.

3.2 A Semi-static Encoding Format

In this section, we introduce a generic semi-static encoding format as the basis for the
output of our compression algorithm. It is helpful to first introduce some compression-
related concepts.

Definition 3.3 (Factorization). A factorization of a string s, denoted by s = s1s2 · · · sk is
a partition of s into a sequence of substrings s1, s2, . . . , sk. Each substring si for 1 ≤ i ≤ k is
a factor of the factorization. A factorization of a column C is the sequence of factorizations
of each string C[i] for all 1 ≤ i ≤ |C|.

Definition 3.4 (Cover and Dictionary). A set of strings P = {p1, p2, . . . , pm} is said to
cover a string s, if there exists a factorization s = s1s2 . . . sk such that si ∈ P for all
1 ≤ i ≤ k. P covers a column C if P covers C[i] for all 1 ≤ i ≤ |C|. A sequence that
is an arbitrary ordering of P is called a dictionary, denoted by Dict. If p ∈ P, then we
say p ∈ Dict. Any string p ∈ Dict is called a phrase. The index of a phrase p in Dict is
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the integer code of p, also called a dictionary index, denoted by dDict(p) (written as d(p)
whenever clear from the context). If s = s1s2 · · · sk is a factorization of s, and si ∈ Dict

for all 1 ≤ i ≤ k, we say that the sequence d(s1), d(s2), . . . , d(sk) is a factorization of s

with Dict. Each integer code d(si) in the factorization is alternatively called a factor of the
factorization with Dict.

Note that a factor may refer to a substring, or the integer code of a substring, depending
on the context.

Example 3.2. A dictionary for string abacababcab is shown in Figure 3.1. A factorization
of s with this dictionary is 〈3, 2, 3, 4, 3〉, which creates a factoring by repeatedly finding the
greedy longest match in the dictionary.

Dictionary Index Phrase
0 a

1 b

2 ac

3 ab

4 abc

(a) A dictionary for string abacababcab

ab ac abc ab ab 

3 2 4 3 3 

(b) A factorization of abacababcab with the
dictionary

Figure 3.1: An example of string factorization by greedy matching

Throughout this thesis, we use the term compression ratio to refer to the fraction where
the numerator is the byte length of the data in a compressed format, and the denominator
is the byte length of the uncompressed data. The lower the compression ratio is, the better.

Table 3.2 outlines an encoding format for a compressed column block, where a column
block is a consecutive subsequence of a column. We compress a large column in blocks so
that a single block can be decompressed without decompressing the entire column. Both
field 5 and field 6 are compressed sequence of integers. They are compressed using the Frame
of Reference (FOR) method, which subtracts each integer with the minimum integer in the
sequence, and compresses the differences with binary packing. Binary packing is a scheme
that uses dlog2 dmaxe bits to represent each integer in a sequence, where the maximum
integer is dmax. For the integer codes (dictionary indexes) in field 6, since the minimum
value is 0, the compression ratio of FOR should be very close to binary packing, where the
bit length of a compressed integer code is dlog2(|Dict|)e. In our implementation, we use
SIMDPFor from the research library FastPFor [33]. It is an implementation of FOR using
SIMD instructions whenever possible to speed up compression. Since one of our goals is
to design a fast compression algorithm, we choose to use FOR instead of entropy coding
such as Huffman coding [25]. Although Huffman coding can yield better compression ratio,
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it incurs a slower compression and decompression speed, so it is usually not used in fast
compression algorithms such as Snappy.

ID Field Name Size (Bytes) Description

1 Block size 8 64 bit integer representing the
size of the current block.

2 Number of strings 4
32 bit integer representing the
number of strings in the col-
umn block.

3 Dictionary Variable

The dictionary Dict for the
column block. Each phrase
is prefixed by 16 bit integer
(2 bytes) denoting its length.
Two 0 bytes mark the end of
this field.

4 Size of compressed string lengths 4 32 bit integer representing the
size of the next field.

5 Compressed string lengths Variable

A sequence of integers com-
pressed using FOR. The in-
tegers represent the lengths
of the strings in the column
block.

6 Compressed integer codes Variable

A sequence of integer codes
compressed using FOR. The
integer code sequence repre-
sents a factorization of the col-
umn block with Dict.

Table 3.2: A semi-static encoding format for a compressed column block

We distill the dictionary and the compressed integer codes from this concrete format
into the following definition. The other fields are omitted because their sizes are not affected
by the selection of dictionary phrases, and the factorization of the column.

Definition 3.5 (Semi-static Encoding Format E). Let the alphabet be all byte values. The
encoding format E is a sequence of bytes consisting of two parts, M followed by D. M

denotes a byte representation of a dictionary Dict. M consists of a sequence of elements,
where each element is a byte representation of a phrase in Dict. The elements in M follow
the same order as the phrases in Dict. The byte representation of each phrase p ∈ Dict is
the string of p prefixed by 2 bytes denoting the length of p. M ends with 2 empty bytes.
D denotes a byte representation of a factorization of a string column C with Dict. D is
a bit sequence, where every dlog2(|Dict|)e bits denote a dictionary index (a factor) in the
factorization, following the order of the factorization.
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3.3 The Problem of Optimal Compression with Encoding
Format E

With the encoding format specified, it is desirable to attain a compression ratio as small as
possible and as efficiently as possible. We define an optimization problem for attaining the
smallest compression ratio.

Definition 3.6 (Optimal Compression with Semi-static Encoding Format E). For a given
string column C, find a dictionary Dict and a factorization of C with Dict such that the
byte length of C compressed in the format E is minimized.

We refer to this problem as optimal compression in the remaining of this thesis.

Definition 3.7 (Minimum Factorization with Static Dictionary). Given a dictionary Dict

and a string s, find a factorization of s with Dict such that the factorization contains the
minimum number of factors. For such a factorization, we say that s is minimally factorized.

We refer to this problem as minimum factorization in the remaining of this thesis.
Example 3.2 in Section 3.2 shows a minimum factorization. For this example, there is no
other factorization resulting in less than 5 factors.

The following lemma states that a solution of optimal compression must be at the same
time a solution of minimum factorization.

Lemma 3.1. Given an optimal dictionary for the optimal compression problem, the com-
pression is optimal if and only if the factorization is minimum.

Proof. Assume a minimum factorization f with the given optimal dictionary does not yield
optimal compression. Let f ′ be the factorization in an optimal compression. If we substitute
f ′ with f , the number of factors does not increase. Since the bit length of each integer code
is fixed to be dlog2(|Dict|)e where Dict is given, the substitution does not increase the
compressed size, so the compression is still optimal. This is a contradiction.

Assume in an optimal compression, the factorization is not minimum. Substituting
the factorization with a minimum factorization would decrease the number of factors, and
decrease the compressed size, so the given compression is not optimal, which is a contra-
diction.

The following lemma states that the dictionary should not contain any unused phrase.

Lemma 3.2. In an exact solution to the optimal compression problem, where the dictionary
is Dict, for any dictionary phrase p ∈ Dict, its integer code d(p) appears in the factorization
of a string s in C with Dict.

Proof. Given a solution to the optimal compression problem, if there is a phrase p ∈ Dict

not used in the factorization, then removing p from Dict results in a smaller representation
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of the dictionary without changing the factorization. In addition, it may result in shorter
integer code, since |Dict| is reduced by 1. Therefore the solution cannot be optimal.

Finding an optimal dictionary in various encoding formats is NP-complete as proved
in the literature [42]. However, solving minimum factorization is not hard, which we will
discuss in more detail. Lemma 3.1 implies a possible heuristic direction for approaching
the optimal compression problem. First, a heuristic dictionary is found, which captures
the repetitiveness in the input column C. Then, we find a minimum factorization for every
string s in C with the dictionary.

In Chapter 4, we will give a dynamic programming algorithm for the minimum factor-
ization problem, which runs in O(maxp∈Dict(|p|)|s|) time. The idea is that the minimum
factorization of a string s with Dict can be obtained by examining every case of removing a
suffix p of s where p ∈ Dict, and picking the case where the remaining string has the smallest
minimum factorization. Another solution is to transform the problem into a shortest path
problem on a graph, where each node represents a substring p of s where p ∈ Dict. Certain
path on such a graph represents a concatenation into s. The details of this algorithm are
left to the readers.

Some semi-static compression schemes use local lookahead methods for factorization
[12]. One such method evaluates two cases: a greedy match starting from the current input
symbol, and one starting from the next. If the latter match is longer, then the current
input symbol is sent to the output as a literal, the input position is advanced by 1, and the
comparison starts again [12]. The goal is to heuristically look for long matches (substring
factors). This is similar to minimum factorization, because if the number of factors is
minimized, then the average length of substring factors is maximized. Therefore, local
lookahead can be viewed as a heuristic method for approaching the minimum factorization
problem in linear time, i.e. O(|s|) for an input string s. In Chapter 4, we show that if Dict

only contains the alphabet and all frequent string patterns with a fixed minSupport, then
the minimum factorization problem can be optimally solved in O(|s|) with a simple greedy
matching algorithm with no local lookahead. This is a nice property for using frequent
string patterns for phrase selection in semi-static compression.

Finding a good dictionary is important for compression. If a large Dict is used, then
even if the number of factors is minimized, the bit length of each integer code can be long,
resulting in a larger compressed factor stream. Furthermore, a larger dictionary itself takes
more space. It is desirable to have a small dictionary which at the same time has a small
minimum factorization. In Chapter 4, we propose a sampling-based method using frequent
string patterns as the dictionary for compression, with a focus on compression speed. Al-
though the method does not have an optimality guarantee, it is shown in experiments to
work well on many types of columnar data.
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Chapter 4

Compressing Columnar Data with
Frequent String Patterns

In this chapter, we develop our compression method for string columnar data. It is a semi-
static compression method, where the dictionary phrases are frequent string patterns from
a sample of the data. First, we illustrate a pattern mining method for string columnar data
based on PrefixSpan [27]. Second, we describe a dynamic programming algorithm for the
minimum factorization problem. Third, we describe a greedy factorization algorithm which
we use in our compression method, and show some nice properties of the algorithm. Last,
we describe a trie pruning method to improve compression speed.

4.1 PrefixSpan for Columnar String Pattern Mining

PrefixSpan is a pattern mining method for sequential databases based on the pattern-growth
paradigm [27, 20]. Here we use a simple example to illustrate how to mine frequent string
patterns using a variation of PrefixSpan for string columns. The major difference is that
this method mine string patterns as defined in Section 3.1. That is, this variation does not
consider gaps in a pattern, and counts multiple appearances of a substring p in a string
s towards the support of p in s. The differences between string patterns and sequential
patterns were discussed in more detail in Section 3.1.

In the original PrefixSpan algorithm for sequential patterns, a technique called pseudo-
projection was introduced. This technique uses positional pointers to represent the prefix-
projection, which examines only the postfix subsequences corresponding to the frequent
prefix subsequences [27]. Here we also adopt pseudo-projection for mining string patterns.
To store the frequent string patterns found, we construct a prefix tree (trie) on the fly.

Example 4.1. We use the string column from Example 3.1 as the input, denoted by C,
shown again in Table 4.1. Each field of this column is a string. The problem is to find all
frequent string patterns with minSupport = 2. Note that as defined in Section 3.1, a string
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pattern s is supported by a string s′ only if s is a substring of s′ without gaps. Also note
that Support(s, s′) can be higher than 1 if s appears at several different positions in s′.

C
abc
acd
bcd
abcab

Table 4.1: An example column for columnar string pattern mining

Step 1. Let a pair (i, j) denote the position in the column C of the j-th symbol in the i-th
string, where i and j are 1-based indexes. For a substring p of a string s in C, the
position of p is the position of the first symbol of p in C. For example, the substring bc

in abc is at position (1, 2). In the first step, for each symbol we gather all its positions
into a list. We store these lists as the children of the root in a prefix tree, shown in
Figure 4.1.

root

(1,1),(2,1),(4,1),(4,4)a

(1,2),(3,1),(4,2),(4,5)b

(1,3),(2,2),(3,2),(4,3)c

(2,3),(3,3)d

Figure 4.1: A prefix tree containing all symbols in C and their positions

Step 2. From Figure 4.1 we know that all symbols have a support higher than 2, so they
are all frequent. Note that multiple appearances of a symbol in a string are counted
multiple times towards the symbol’s support. For example, a has a support of 4,
where it appears twice in the string abcab. Then, we search the positions of a for all
frequent length-2 patterns starting with a. To achieve this, we group the positions of
a by different length-2 substrings starting with a. For example, the appearances of a

at (1, 1) and (4, 1) are followed by b, so ab has positions (1, 1) and (4, 1). The grouped
positions are stored as lists in the children of the node a in the prefix tree, shown in
Figure 4.2. There are 2 such substrings, ab and ac. Only ab has a support greater
than or equal to minSupport, so only ab is frequent. Since ac is infrequent, its node
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in the prefix tree is removed. Here, the frequent string pattern ab is found by pattern
growth on the prefix a. That is, we grow the frequent prefix a into a frequent string
pattern ab by examining all extensions of a.

root

(1,1),(2,1),(4,1),(4,4)a

...

(1,1),(4,1),(4,4)ab

(2,1)ac

Figure 4.2: Grouping positions of a by length-2 substrings starting with a

Step 3. We search the positions of ab for frequent length-3 patterns starting with ab. Since
2 of the 3 appearances of ab are followed by c, the prefix ab is grown into a frequent
string pattern abc. There is no frequent length-4 pattern starting with abc. There is no
other frequent length-3 pattern starting with ab, or frequent length-2 pattern starting
with a, so we go back to Step 2 to search for frequent string patterns starting with
the next frequent symbol b. The algorithm terminates when all frequent extensions
of each frequent symbol are explored. When the algorithm terminates, all frequent
string patterns shown in Example 3.1 are found.

This is a recursive, depth-first search procedure producing a prefix-tree containing all
frequent string patterns found. We refer to this algorithm as PrefixSpan for columnar string
pattern mining. The pseudocode of this algorithm is listed in Algorithm 1 in the next page.

Lemma 4.1. PrefixSpan for columnar string pattern mining finds the complete set of
frequent string patterns in a string column C.

Proof. We prove that if a substring p is frequent in C, then the algorithm identifies p as
frequent, and finds all positions of p in C.

If |p| = 1, i.e. p is a symbol, then all its positions are found in line 6-14 in Algorithm
1. The algorithm identifies p as frequent by calculating the support of p from the number
of positions of p, by the definition of support. If |p| > 1, then by Property 3.1 (anti-
monotonicity, page 16), all non-empty prefixes of p are frequent. Let us assume that, either
the algorithm does not identify p as frequent (we say that p is unidentified), or there is a
position of p not found by the algorithm (we say that there is an unidentified position of p).
Then we claim that for all 0 ≤ k < |p|, either the frequent prefix p[1, |p| − k] is unidentified,
or there is an unidentified position of p[1, |p| − k]. This claim is proved by induction as
follows.
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Base Case. Let k = 0. For the prefix p[1, |p|], i.e. p itself, the assumption specifies that
either p is unidentified, or there is an unidentified position for p.

Algorithm 1 PrefixSpan for Columnar String Pattern Mining
Input: A string column C, and a minimum support minSupport;
Output: A prefix tree T containing all frequent string patterns of C;

1: T ← empty prefix tree with only a root node
2: root← root node of T
3: Let l(·) to denote the length of a string or list
4: Let a pair (i, j) denote the position in C of the j-th symbol in the i-th string
5: Let n[c] to denote a null pointer, or a child of node n in T , where n indexes a string s,

and n[c] indexes the string s extended by the symbol c
6: for all position pos in C do
7: c← the symbol at pos in C
8: if root[c] is a null pointer then
9: root[c]← a new node

10: root[c].pattern← c
11: root[c].Positions← empty list
12: end if
13: append pos to root[c].Positions
14: end for
15: for all non-null child in children of root do
16: if l(child.Positions) ≥ minSupport then
17: DfsMinePatterns(child)
18: else
19: child← a null pointer
20: end if
21: end for
22:
23: function DfsMinePatterns(node)
24: GroupPositionsByChildren(node)
25: for all non-null child in children of node do
26: if l(child.Positions) ≥ minSupport then
27: DfsMinePatterns(child)
28: else
29: child← a null pointer
30: end if
31: end for
32: end function
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33: function GroupPositionsByChildren(node)
34: for all pos ∈ node.Positions do
35: if the position (pos.i, pos.j + l(pattern(node))) exists in C then
36: c← the symbol at (pos.i, pos.j + l(pattern(node))) in C
37: if node[c] is a null pointer then
38: node[c]← a new node
39: node[c].pattern← node.pattern appended with c
40: node[c].Positions← empty list
41: end if
42: append pos to node[c].Positions
43: end if
44: end for
45: end function

Inductive Step. Let 0 < k < |p|. The induction hypothesis is that for p′ = p[1, |p|− (k−1)],
either p′ is unidentified, or there is an unidentified position of p′. p′ is frequent since
it is a prefix of p. Let p′′ = p[1, |p| − k], i.e. p′′ is the prefix of p′ (and p) with
length |p′| − 1. p′′ is frequent since it is a prefix of p. Assume that the algorithm
identifies p′′ as frequent, and the algorithm identifies all positions of p′′. Then, the
algorithm would be able to search the positions of p′′ and find all positions of p′,
because every position of p′ must be a position of p′′. Then, the algorithm would
identify p′ as frequent by calculating its support from the number of its positions.
This contradicts the induction hypothesis, so either p′′ is unidentified, or there is an
unidentified position of p′′.

By the principle of mathematical induction, for all 0 ≤ k < |p|, either the frequent prefix
p[1, |p| − k] is unidentified, or there is an unidentified position of p[1, |p| − k]. This holds
for k = |p| − 1, where p[1, |p| − k] = p[1, 1], which is the first symbol of p. However, this
contradicts the fact that all positions of each symbol are identified by the algorithm in lines
6-14, and all frequent symbols are identified as frequent. By this contradiction, we proves
the initial claim that the algorithm identifies p as frequent, and identifies all positions of p.
The completeness of the algorithm is proved.

Lemma 4.2. PrefixSpan for columnar string pattern mining does not identify any infre-
quent pattern as frequent.

Proof. We prove that for a substring p identified by the algorithm as frequent in C, and (i, j)
identified as a position of p, p indeed appears in C at (i, j). We say that (i, j) is correctly
identified for p. Because the algorithm calculates the support of p from the number of
identified positions of p, if every identified position of p is correct, then the calculated
support is no larger than the true support, so p must be frequent.

If |p| = 1, i.e. p is a symbol, then every position found for p in Algorithm 1 is correctly
identified. If |p| > 1, let us assume that there is an incorrectly identified position (i, j)
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for p, i.e. (i, j) is identified as a position of p by the algorithm, but p does not appear at
(i, j). Then we claim that for all 0 ≤ k < |p|, (i, j) is incorrectly identified for the prefix
p[1, |p| − k]. This claim is proved by induction as follows.

Base Case. Let k = 0. For the prefix p[1, |p|], i.e. p itself, the assumption specifies that
(i, j) is incorrectly identified for p.

Inductive Step. Let 0 < k < |p|. The induction hypothesis is that for p[1, |p| − (k − 1)],
(i, j) is incorrectly identified. Let p′ = p[1, |p| − (k − 1)]. Let p′′ = p[1, |p| − k], i.e.
the prefix of p′ (and p) with length |p′| − 1. It follows that the algorithm identifies
p′ as frequent when exploring extensions of p′′, and the symbol at (i, j + |p′′|) is the
same as the last symbol of p′. Also, the algorithm identifies p′′ as frequent. Since all
identified positions of p′ are found by searching the identified positions of p′′, (i, j)
must be an identified position of p′′. Assume (i, j) is correctly identified for p′′. Then
the algorithm would correctly identify (i, j) for p′ because the symbol at (i, j + |p′′|)
is the same as the last symbol of p′, but this contradicts the induction hypothesis.
Therefore, (i, j) must be incorrectly identified for p′′.

By the principle of mathematical induction, for all 0 ≤ k < |p|, (i, j) is incorrectly identified
for the prefix p[1, |p| − k]. This holds for k = |p| − 1, where p[1, |p| − k] = p[1, 1], which
is the first symbol of p. This contradicts the fact that all the positions identified for each
symbol in Algorithm 1 are correct. Thus we proves the initial claim that every identified
position of p is correct. The correctness of the algorithm is proved.

Combining Lemma 4.1 and Lemma 4.2, we have the following theorem.

Theorem 4.3. A substring p is a frequent string pattern if and only if PrefixSpan for
columnar string pattern mining says so.

We analyze the running time as follows. For a position (i, j) in C, let p be the longest
frequent string pattern at (i, j). That is, the substring at (i, j) of length |p| + 1 does not
exist, or is infrequent. During pattern growth, O(|p|) running time is spent on append-
ing the position (i, j) into the position list of every prefix of p, i.e., the positions lists of
p[1], p[1, 2], . . . , p[1, |p| − 1], p. Overall, the algorithm runs in O(lmax

∑
1≤i≤|C| |C[i]|) time,

where lmax is the length of the longest frequent string pattern(s). One worst-case scenario
is that every symbol in C is the same. In this case, the running time of the algorithm is
O(

∑
1≤i≤|C| |C[i]|2).

Since we derive the frequent string patterns from a sample of the input column, only a
small proportion of the compression time is spent on pattern mining. The majority of the
compression time is spent on the factorization of the entire input column, which is described
in Section 4.3. In a practical implementation, it may be desirable to impose a constraint
on the maximum pattern length to further reduce the cost of pattern mining.
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4.2 Solving the Minimum Factorization Problem with Dy-
namic Programming

In Section 3.3, we defined the optimal compression problem, which tries to find an optimal
dictionary to compress an input string column into the smallest size. We also defined
the minimum factorization problem: given a set of dictionary phrases, partition an input
string into the least amount of substring factors, where each substring factor is a dictionary
phrase. It was proved that, under our encoding format (with fixed-length codes), if an
optimal dictionary is given, then the minimum factorization of the input column yields the
optimal compression (Lemma 3.1).

Note the condition in the above property. If a non-optimal dictionary is given, then
the minimum factorization does not necessarily yield the best compression among all pos-
sible factorizations. Consider the simple case of compressing a string s, with a dictionary
containing s itself as a phrase. The minimum factorization has 1 factor, which is s itself.
But this does not yield any compression, although another factorization with some other
dictionary phrases may compress the string s. However, Lemma 3.1 still points to a heuris-
tic direction for approaching the optimal compression problem. First, we find a heuristic
dictionary that succinctly captures the repetitiveness of the input column. Then, we obtain
a minimum factorization of the input column to heuristically approach compression, given
that the bit length of each integer code is constrained by the dictionary.

In this section, we present a dynamic programming solution to optimally solve the
minimum factorization problem. The basic idea comes from the following observation:
given a string s, if s = p1p2 · · · pm is a minimum factorization of s (where each pi is a phrase
in the given dictionary), then s′ = p1p2 · · · pm−1 must be a minimum factorization of s′.
This recurrence relation is formally described in Lemma 4.4 with a proof. Example 4.2
shows an example of a dynamic programming algorithm based on the recurrence relation.

Lemma 4.4. Given a dictionary Dict, let OPT (s) denote the minimum number of factors
that can be achieved by a factorization of s with Dict. If s is not an empty string, and Dict

does not cover s, then let OPT (s) =∞. Then the following recurrence relation holds:

OPT (s) =


0 if |s| = 0,

∞ if |s| > 0, and Dict does not cover s,

min
p∈Dict,s=s′p

(1 + OPT (s′)) otherwise.

(4.1)

Proof. The case where s is an empty string is trivial. If s is not empty, and Dict covers s,
let us assume that OPT (s) 6= minp∈Dict,s=s′p (1 + OPT (s′)).

Case 1. OPT (s) > minp∈Dict,s=s′p (1 + OPT (s′)). Then the right-hand side cannot be ∞,
and there exists p′ such that p = p′ ∈ Dict, s = s′′p′ achieves minimization on the right-
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hand side. Then we have OPT (s) > 1 + OPT (s′′), and OPT (s′′) 6=∞ (i.e. there is a
factorization of s′′). If we factorize s such that the last factor is p′, and the remaining
prefix s′′ is factorized corresponding to OPT (s′′), then the number of factors in such a
factorization of s is exactly 1 + OPT (s′′), which contradicts OPT (s) > 1 + OPT (s′′).

Case 2. OPT (s) < minp∈Dict,s=s′p (1 + OPT (s′)). Then OPT (s) 6= ∞. Let the factoriza-
tion corresponding to OPT (s) be s = p1p2 · · · pm, where OPT (s) = m ≥ 1. Let s′′ be
such that s = s′′pm. If m = 1, then s′′ is an empty string, so m−1 = OPT (s′′) = 0. If
m > 1, then s′′ = p1p2 · · · pm−1, i.e. there is an factorization of s′′ with m− 1 factors,
so m− 1 ≥ OPT (s′′). In both cases, m− 1 ≥ OPT (s′′). Since OPT (s) = m, we have
OPT (s) ≥ 1 + OPT (s′′) ≥ minp∈Dict,s=s′p (1 + OPT (s′)), which is a contradiction.

Note that for the case where s is not empty and Dict does not cover s, we specify
OPT (s) =∞. In practice, we should either allow the dictionary to contain the alphabet so
that the input is always covered, or have certain literal encoding scheme to deal with the
case that the input is not covered.

Example 4.2. Let the input string be s = abacd. Let Dict = 〈a, b, c, d, ab, bac〉. Note that
Dict is a sequence of distinct phrases (so that each phrase is associated with an index).
Also note that Dict contains every symbol in s, so Dict covers every substring of s. Let an
empty string be denoted by e.

Step 1. It is trivial to show that OPT (a) = 1, where the dictionary phrase a is used to
factorize the input string a into 1 factor.

Step 2. For ab, there are two suffixes that are in the dictionary, b and ab, and the corre-
sponding remaining prefixes are a and an empty string, respectively. It follows that
OPT (ab) = min(1 + OPT (a), 1 + OPT (e)) = min(2, 1) = 1.

Step 3. For aba, there is only one suffix that is in the dictionary. This suffix is a. It follows
that OPT (aba) = min(1 + OPT (ab)) = 2. That is, the minimum factorization of aba

is 〈ab, a〉.

Step 4. For abac, two suffixes are in the dictionary, c and bac. The corresponding remaining
prefixes are aba and a, respectively. Since OPT (aba) = 2 > OPT (a) = 1, we have
OPT (abac) = min(1 + OPT (aba), 1 + OPT (a)) = 2, where bac is chosen as the last
factor, and the factorization 〈a, bac〉 is chosen over 〈ab, a, c〉. However, if we use a
greedy method where we immediately choose the longest available factor as the next,
we would have the factorization 〈ab, a, c〉, which is not the minimum factorization of
abac. This greedy method however has other attractive properties, which are discussed
in detail in the next section.
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Step 5. For abacd, i.e. the entire input string s, the only suffix that is in the dictionary is
d. OPT (abacd) = min(1+OPT (abac)) = 3. The minimum factorization of the string
s is 〈a, bac, d〉.

The algorithm can be implemented as follows. A pointer array A of length |s| is created,
where each A[j] for 1 ≤ j ≤ |s| points to a set of indexes. Each index i in the set pointed by
A[j] is such that 1 ≤ i ≤ j, and the substring s[i, j] is a dictionary phrase, i.e. s[i, j] ∈ Dict.
A[j] should contain every such index i for j. We scan the input string s from left to right to
create the array A. Note that we do not need to test the cases where j − i > maxp∈Dict |p|,
i.e. s[i, j] is longer than the longest dictionary phrase. Thus creating the array A runs
in O(|s|maxp∈Dict |p|) time, if we index Dict with a prefix tree. Then, for computing the
minimum factorization of each prefix s[1, j] for 1 ≤ j ≤ |s|, we iterate through every index
i in the set pointed by A[j]. We examine each case of removing such a suffix s[i, j], and
compute the minimum factorization of s[1, j] according to equation 4.1. Overall, the running
time is O(|s|maxp∈Dict |p|).

This algorithm is presented in pseudocode as follows. Note that we also maintain an
array MinFact of minimum factorizations for each prefix of s. In a proper implementation,
the time complexity of maintaining MinFact should be the same as maintaining OPT . The
indexes for A, OPT and MinFact are 0-based.

Algorithm 2 Dynamic Programming for Minimum Factorization
Input: An input string s, and a dictionary Dict;
Output: A minimum factorization MinFact of s with Dict;

1: A← array of size |s|+ 1, where each element is an empty set
2: OPT ← array of size |s|+ 1, where each element is initialized with 0
3: MinFact← array of size |s|+ 1, where each element is an empty factorization
4: for all (i, j) such that s[i, j] ∈ Dict do
5: append (i, j) to the set in A[j]
6: end for
7: for all 0 < j ≤ |A| do
8: if A[j] is empty then
9: OPT [j]←∞

10: else
11: (i∗, j) = arg min(i,j)∈A[j](1 + OPT [i− 1])
12: OPT [j] = 1 + OPT [i∗ − 1]
13: if OPT [j] 6=∞ then
14: MinFact[j] = MinFact[i∗ − 1] appended with s[i∗, j]
15: end if
16: end if
17: end for
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4.3 Greedy Matching for Factorization and Phrase Selection

In the previous section, we presented a dynamic programming solution to the minimum
factorization problem, which runs in O(|s|maxp∈Dict |p|) time. For data compression, we
have not seen this method used in practice (and presume it is rare). In this section, we
discuss two alternative methods for factorization, a greedy matching algorithm, and local
lookahead methods. We focus the discussion on the former, which is used in our compression
method.

Factorization refers to parsing an input column top-to-bottom and left-to-right, and
partitioning each string into a sequence of substrings such that each substring is a dictionary
phrase. Each such substring can be replaced by a dictionary index to achieve compression.
Such a substring for replacement is called a match. We also say it is a substring factor of
the factorization. The idea of greedy matching is that, the longest match starting from the
current input symbol is found, and is immediately replaced by its dictionary index. Later,
we will present the pseudocode of this algorithm, which has more implementation subtleties.
For now, let us demonstrate the basic idea by reusing the input in Example 4.2.

Example 4.3. Let the input string be s = abacd. Let Dict = 〈a, b, c, d, ab, bac〉. Perform a
greedy matching to factorize s with Dict.

Step 1. The current input string is abacd. The longest prefix such that the prefix is a
dictionary phrase is ab. We say that such a prefix is the longest match. The algorithm
immediately declares ab as the first factor. The remaining input string is acd.

Step 2. The longest match for acd is a, so the factorization is appended by a new factor a,
and becomes 〈ab, a〉. The remaining string is cd.

Step 3. The longest match for cd is c, so the factorization is appended by a new factor c,
and becomes 〈ab, a, c〉. Similarly, in step 4 the last longest match d is found. The
complete factorization of s is 〈ab, a, c, d〉.

This greedy algorithm is in contrast to a local lookahead method [12]: alternative
matches starting from the following input symbols are also evaluated, and a certain measure
(e.g. lengths of matches) is used to decide whether to defer the replacement of a match.
The following example demonstrates one such method, where a single alternative match is
evaluated.

Example 4.4. In this example, we demonstrate a local lookahead method for factorization.
We use the same input as Example 4.3.

Step 1. The input string is currently abacd. The longest match is ab. We evaluate an
alternative match: the longest match starting from the next input symbol b. This
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alternative match is bac. Since the alternative match is longer, we abandon the former
match ab, and use the current input symbol a as a factor (or send a to the output as
a literal, depending on the details of the compression algorithm). The factorization
so far is 〈a〉, and the remaining input string is bacd. Note that we do not immediately
declare bac as the next factor. The decision of factoring is deferred.

Step 2. The input string is currently bacd. We already know that the longest match is bac

from step 1. The alternative match starting from the next input symbol a is a. Since
the alternative match is not longer, we use the current match bac as a factor. The
factorization becomes 〈a, bac〉, and the remaining input string is d.

Step 3. The last factor d is found, and the complete factorization is 〈a, bac, d〉. Interestingly,
this gives the same optimal solution to the minimum factorization problem as the
dynamic programming example in the previous section.

Greedy matching may not be as effective as local lookahead for compression [12]. Local
lookahead methods based on match lengths try to achieve a similar goal to the dynamic
programming algorithm for minimum factorization. Specifically, the dynamic programming
algorithm achieves minimum number of factors, and therefore maximum average length of
matches. Local lookahead methods also try to find long matches and use them as fac-
tors, and therefore heuristically improve compression. It is reported in previous literature
that with a dictionary generated with certain methods, local lookahead achieves effective
compression, while greedy matching with no local lookahead does not [12].

However, local lookahead methods are also slow, as we will show in the experiments.
Let us examine one particular local lookahead method [12], which is already demonstrated
in Example 4.4. Let the longest match starting from the current input symbol be the left
match. Let the longest match starting from the next input symbol be the right match. If
the left match is longer, then it is immediately replaced by a dictionary index, and the
input position is advanced to skip the left match. Otherwise, the current input symbol is
encoded as a literal, the input position is advanced by 1 symbol, and the previous right
match is used as the left match for the next comparison. This represents a local lookahead
scheme with a search window of length 2. In the best case, every left match is longer
than their corresponding right match, and the running time is O(|s|) (in this case, local
lookahead performs a less exhaustive search than the dynamic programming algorithm). In
the worst case, every right match is longer, and the running time is the same as the dynamic
programming algorithm, i.e. O(|s|maxp∈Dict |p|). Even in the best case, such a method may
still spend a significant amount of time on evaluating alternative matches, while the greedy
matching algorithm does not.

A major idea of our work is to use a set of frequent string patterns as the heuristic
dictionary. Later we will prove that, if a complete set of string patterns are used as the
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dictionary, then the greedy matching algorithm achieves the minimum number of factors
with the dictionary. The main implication is that, since local lookahead cannot further
decrease the number of factors with such a dictionary, greedy matching may be sufficient
for effective compression. This is confirmed in our experiments: if we use frequent string
patterns as the dictionary, local lookahead methods based on match lengths not only are
much slower than greedy matching, but also offer no significant improvement in terms of
compression ratio.

The basic idea of the greedy matching algorithm was shown in Example 4.3. We again
describe the algorithm with pseudocode in Algorithm 3. There is a subtle complication
here. According to Lemma 3.2, the dictionary Dict stored in the compressed data needs
to contain only the set of phrases that are used in the factorization of the input column
C. Depending on the factorization method, some phrases from the dictionary may not be
used, so the input dictionary may be a superset of Dict, i.e. the input dictionary is a
candidate dictionary. Therefore, upon completing the greedy matching algorithm with the
given candidate dictionary, we can then reduce the candidate dictionary into only those
phrases that are used in the factorization. That is, the term phrase selection means a two-
pass process in our method: the selection of a candidate dictionary by pattern mining, and
the selection of a final dictionary by factorization. Algorithm 3 uses a candidate dictionary
CandDict for factorization, and selects a Dict from CandDict. Note that the integer code
of a phrase p is the index of p in Dict, not CandDict. To ensure CandDict covers the input
string column, CandDict must contain at least the alphabet of the column.

Algorithm 3 Greedy Matching for Factorization
Input: A string column C, and a candidate dictionary CandDict containing at least the

alphabet of C;
Output: A dictionary Dict ⊆ CandDict, and a factorization of C with Dict;

1: Dict← empty list
2: factorization← empty list
3: for all string s in C do
4: while s is not an empty string do
5: p← the longest prefix of s where the prefix is in CandDict
6: if p /∈ Dict then
7: append p to Dict
8: end if
9: append dDict(p) to factorization

10: remove the prefix p from s
11: end while
12: end for

Example 4.5. Let the input column contain just one string s = abacd, and let CandDict =
〈a, b, c, d, ab, bac〉 (same as the previous examples except that here the dictionary is treated as
a candidate). The complete factorization with Algorithm 3 is 〈ab, a, c, d〉, same as Example
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4.3. There is one difference: Dict is constructed from CandDict along with the factorization,
and contains only the used phrases, so Dict = 〈ab, a, c, d〉 where the unused candidate
phrases b and bac are not included. This decreases the bit length of a integer code from
dlog2(|CandDict|)e = 3 to dlog2(|Dict|)e = 2.

A proper implementation of Algorithm 3 runs in O(
∑

1≤i≤|C| |C[i]|) time complexity.
Finding the longest match in line 5 uses linear time to the length of the match, if CandDict

is indexed by a trie. When a phrase p is appended to Dict in line 7, dDict(p) (the index of
p in Dict) can be stored in the trie node of p in CandDict, so that for future matches of p,
dDict(p) can be retrieved in constant time. In addition, we can use a positional pointer to
implement line 10 instead of creating a copy of s with the prefix p removed.

The following lemma shows a nice property of using frequent string patterns as the
heuristic dictionary, as discussed earlier in the section.

Lemma 4.5. Given a string column C, and a candidate dictionary CandDict containing
only the alphabet of C and a set of all frequent string patterns of a given minSupport, then
the greedy matching algorithm achieves the minimum number of factors of every string
s ∈ C with CandDict.

Proof. For a string s ∈ C, let the factorization produced by the greedy matching algorithm
be s = p1p2 · · · pk, where pi ∈ CandDict for 1 ≤ i ≤ k. Note k is the number of factors in this
factorization. Let a minimum factorization of s be s = q1q2 · · · qm, where qj ∈ CandDict

for 1 ≤ j ≤ m. Note m is the minimum number of factors achievable, so k ≥ m. Our
goal is to prove k = m. Let us first prove such a claim: for all 1 ≤ r ≤ m, we have∑

1≤i≤r |pi| ≥
∑

1≤j≤r |qj |, i.e. |p1p2 · · · pr| ≥ |q1q2 · · · qr|. We prove it by induction.

Base Case. Let r = 1. Since p1 is the longest first factor that can be selected, we have
|p1| ≥ |q1|, i.e.

∑
1≤i≤r |pi| ≥

∑
1≤j≤r |qj | is true when r = 1.

Inductive Step. Let r > 1. As the induction hypothesis, assume the statement to be true
for r−1, i.e.

∑
1≤i≤r−1 |pi| ≥

∑
1≤j≤r−1 |qj |. Then either

∑
1≤i≤r−1 |pi| ≥

∑
1≤j≤r |qj |,

in which case we have
∑

1≤i≤r |pi| ≥
∑

1≤j≤r |qj |, or
∑

1≤i≤r−1 |pi| <
∑

1≤j≤r |qj |, as
shown in Figure 4.3. Since qr ∈ CandDict, qr is a symbol or a frequent string pattern.
If qr is a symbol, then every non-empty substring of qr (i.e. only qr itself) is in
CandDict. If qr is a frequent string pattern, then by Property 3.1 (anti-monotonicity,
page 16), every non-empty substring of qr is in CandDict. As shown in Figure 4.3, our
available selections for pr include the suffix q′r of qr, where q′r is obtained by removing
the prefix p1p2 · · · pr−1 from the string q1q2 · · · qr. Since we select pr to be the longest
one in all available options, including q′r, we have

∑
1≤i≤r |pi| ≥

∑
1≤j≤r |qj |. This

completes the inductive step.
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Figure 4.3: Towards proving Lemma 4.5

Then we prove k = m by contradiction. Since we know k ≥ m, let us assume k > m. We
already know that

∑
1≤i≤m |pi| ≥

∑
1≤j≤m |qj | = |s|. Since m < k, we have

∑
1≤i≤m |pi| <∑

1≤i≤k |pi| = |s|, which is a contradiction. Therefore, k = m.

The following example uses the greedy matching algorithm with a complete set of fre-
quent string patterns as the dictionary.

Example 4.6. We use the input string s = abacd again. But in this example, we aug-
ment the CandDict in Example 4.5 such that it mimics a complete set of frequent string
patterns. We do so by adding all substrings of each p ∈ CandDict into CandDict. After
the augmentation, we have CandDict = 〈a, b, c, d, ab, bac, ba, ac〉 (two new phrases ba and
ac are added, which are substrings of bac).

It is easy to see that the greedy matching algorithm produces 〈ab, ac, d〉 as the factor-
ization, and 〈ab, ac, d〉 as the output dictionary Dict. Using the local lookahead algorithm
demonstrated in Example 4.4 with CandDict still yields 〈a, bac, d〉 as the factorization.
Local lookahead does not reduce the number of factors, and does not increase the average
length of matches.

Using the dynamic programming algorithm achieves either of these factorizations, de-
pending on how a tie is broken.

The frequent string patterns used as a dictionary does not have to be from the input
column C. For efficient and effective compression, we use the frequent string patterns from
a sample of C, based on the assumption that the repetitiveness of C can be captured in the
form of the string patterns from a sample. Our experiments show that using a sampling
rate of 0.5% for a 4MB block of real world or synthetic columnar data yields satisfactory
compression, outperforming Snappy [13], a LZ77-based compression program widely used
in the industry.

We discussed earlier that, in our method, local lookahead based on match lengths may
not improve compression ratio over greedy matching. However, it is possible for local
lookahead with alternative measures to effectively improve compression ratio. In particular,
if such a measure facilitates selection of a smaller Dict (e.g. prefers dictionary phrases that
are already in Dict over others), then compression may be improved by shorter bit length of
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each integer code due to less phrases in Dict, since each code is represented by dlog2(|Dict|)e
bits. This is a possible future direction to trade compression speed for compression ratio.

Is a set of string patterns a suitable heuristic dictionary for columnar data? In our
experiments, we compare string patterns with another phrased selection method Re-Pair
[31], which is a grammar-based method. It is shown that given the same sampling settings
and encoding format, phrase selection using string patterns achieves similar compression
ratio as Re-Pair. The advantage of string patterns is that a pruning heuristic based on
support can be naturally incorporated into pattern mining, which enables trading a small
amount of compression ratio for compression speed. This pruning method is described in
the next section.

4.4 Pruning Trie

In Section 4.1, we illustrated columnar string pattern mining using a variation of PrefixS-
pan, where the output string patterns are stored in a prefix tree. A prefix tree can be
implemented as an uncompressed trie, where the children of a tree node are indexed by an
array of length |Σ|, Σ being the alphabet. Using an uncompressed trie for greedy match-
ing is very fast, except when the number of the patterns is large and there are many long
patterns. In such cases, trie search suffers from frequent cache misses and deteriorating
performance. Experiments in Chapter 5 show that for two synthetic datasets, compression
speed is negatively affected if an uncompressed trie is used. One dataset contains user agent
strings, and the other one contains lorem ipsum strings (fake text). Both datasets contain
long patterns. Figure 4.4 shows an uncompressed trie containing 3 strings abc, abd, and
bcd and all their substrings, where many array entries on the lower levels of the trie are left
empty. The wastage of space in a trie leads to poor CPU cache performance for searching
long string patterns.

A possible remedy is to use a compact trie, introduced in Section 2.5. This trie variation
uses path compression to mitigate cache inefficiencies. However, experiments show that
using a compact trie leads to faster compression in some cases, and slower in others. The
problem is that additional CPU cycles are required when traversing a compact trie. It needs
at least a check for whether the current node represents a collapsed path of single descendant
nodes. In our experiments, about 500 to 1500 trie nodes are created to index the frequent
string patterns from a sample (0.5% of 4MB data). The trie is large enough to cause cache
inefficiencies, but not so large that using a compact trie is consistently faster. Instead of
using existing variations of trie, we design a pruning heuristic to produce a smaller trie to
speed up compression. The pruning heuristic is described as follows.

After pruning, the trie has no more than 3 levels below the root. The first 2 levels are
exactly the same as the original trie. On the third level, each node n may contain a suffix.
This suffix is selected from the descendants of n in the original trie. To select a single suffix
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Figure 4.4: Uncompressed trie containing abc, abd, and bcd and all their substrings. A null
array refers to an array of length 256 containing only null pointers.
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among the descendants, a best-first heuristic is used. On each level below the third, only
the most frequent extension is selected.

Example 4.7. Figure 4.5 illustrates an example of the pruning heuristic. Assume the
frequent string pattern abcd has the highest support among all frequent length-4 patterns
prefixed by abc. Then, all such patterns are pruned except abcd. Assume abcdf has the
highest support among all length-5 patterns prefixed by abcd. Then, all such patterns are
pruned except abcdf . Assume abcdf has no frequent extensions, then the pruning below
the node abc stops. There is only a single suffix df left below the node abc. Insead of
using 2 extra nodes for the suffix df , we can store a string df in the node abc to further
improve cache locality (this is the lazy expansion technique of a compact trie, which is path
compression with the collapsed path inside a leaf).

...

root

97
(a) ...

null array

... 98
(b) ...

... 99
(c) ...

... 100
(d)

101
(e) ...

... 101
(e)

102
(f) ...

null array null array

...

root

97
(a) ...

... 98
(b) ...

... 99
(cdf) ...

null array

Figure 4.5: An example of pruning trie to improve CPU cache performance in compression.
In the top 3 levels below the root, no pruning is performed. Among the children of a
3rd level node, only the node with the highest support is kept. The pruning is performed
recursively until a leaf is reached. E.g., abcd is the most frequent children of abc, so all the
siblings of abcd are pruned. Again, abcdf is the most frequent children of abcd, so all the
siblings of abcdf are pruned. Since only a single suffix df is left below abc, we remove the
lower levels altogether and keep the suffix df in the node abc.

The pruning may result in increased compression ratio since less phrases are available for
compression, but it tries to keep the more frequent phrases with the assumption that they
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are more beneficial for compression. We maintain a fixed number of untouched levels to
simplify the operations involved in trie search as much as possible. For example, if a leaf is
on the second level, there is no need to test whether it contains a suffix, since only the third
level nodes may contain suffixes. The number 3 is chosen because it strikes a reasonable
balance of compression speed and ratio in our experiments. Note that with pruning, it is
no longer guaranteed that for a phrase p ∈ CandDict all suffixes of p are also in CandDict.
Among the substrings of p, only those of length 3 or less are guaranteed to be in CandDict.
Therefore, the greedy matching algorithm may no longer produce a minimum factorization
with CandDict.

An interesting comparison can be made between the pruned trie and the sliding window
dictionary in Snappy [13]. Snappy indexes each 4-byte substring of the window, and if
there is a conflict, the right-most substring (which is closest to the current input position)
is indexed. The assumption is that a closer match is likely to be a longer match. While
for the pruned trie, each 3-byte frequent pattern from a sample indexes a single dictionary
phrase. Conflicts are resolved by a best-first heuristic, and the assumption is that, on
average, more frequent phrases may produce better matches. This assumption works well
on columnar data, as demonstrated in the experiments.

Algorithm 4 uses an alternative recursive function to replace the DfsMinePatterns
function in Algorithm 1, to incorporate the heuristic pruning into pattern mining.

4.5 Summary

In this chapter, we introduced our compression method which consists of two phases. First,
we described how to mine frequent patterns as dictionary phrases from a sample. Second,
we introduced the greedy matching method for identifying input phrases for replacement
by dictionary indexes. We provided a partial justification of this method, as apposed to
other more complicated factorization methods. Finally, we described a pruning method to
improve search performance of the dictionary trie. A final note is that we do not further
compress the dictionary stored in the compressed data, although it is possible to do so,
since there may be repetitions in the dictionary. Further compressing the dictionary may
not yield large compression benefits, since we observe that the size of the dictionary is
usually less than 1% of the entire compressed block. We keep the method simple for the
current prototyping, and leave this kind of detailed improvements for future work.
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Algorithm 4 Mining String Patterns with Heuristic Pruning
1: function DfsMinePatternsWithPruning(node, level)
2: if level = 3 then
3: SelectSuffix(node)
4: return
5: end if
6: GroupPositionsByChildren(node)
7: for all non-null child in children of node do
8: if l(child.Positions) ≥ minSupport then
9: DfsMinePatternsWithPruning(child, level + 1)

10: else
11: child← a null pointer
12: end if
13: end for
14: end function
15:
16: function SelectSuffix(node)
17: GroupPositionsByChildren(node)
18: c∗ ← the symbol c with maximum l(node[c].Positions)
19: if l(node[c∗].Positions) ≥ minSupport then
20: node.pattern← node[c∗].pattern
21: node.Positions← node[c∗].Positions
22: SelectSuffix(node)
23: end if
24: all children of node← null pointers
25: end function
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Chapter 5

Experiments

In this chapter, we evaluate our method in terms of compression ratio, compression speed,
and decompression speed, on both real-world and synthetic columnar data. First, we give
an overall comparison among our method, GZIP [16], and Snappy [13] on all the available
datasets. Second, we evaluate our method under different sampling and minimum support
settings on a single dataset. Two other sampling-based methods are included for comparison.

We implement our algorithms using C++. The experiments are conducted on a Mac-
Book Pro with 8 GB RAM, and Intel(R) Core(TM) i5-4278U CPU, 2.60GHz, with 3 MB
L3 cache size. The programs are compiled with Apple Clang in Xcode 7.3.1. The code is
publicly available 1.

5.1 Datasets

We use both synthetic and real-world datasets in our experiments. The synthetic datasets
are generated by the Python Faker package 2. The package generates synthetic data such as
names, addresses, and dates. Table 5.1 gives examples of the synthetic datasets that we use.
We generate 5GB data for each category. For the real-world datasets, we have fine_foods 3

[34] and wiki-links 4 [39]. The former consists of Amazon reviews of fine foods, amounting
to 248.5 MB in size. The latter consists of web page urls whose contents contain links to the
English Wikipedia, amounting to 694.9 MB. Table 5.2 gives examples of these two datasets.
Table 5.3 shows some statistics of the datasets, where |C| is the average number of strings
in a 4MB column block, and |s| is the average string length in a dataset.

1https://github.com/superxiao/FrequentPatternCompressor
2https://github.com/joke2k/faker
3http://snap.stanford.edu/data/web-FineFoods.html
4https://code.google.com/archive/p/wiki-links/
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Synthetic Datasets Example
name Liza Kemmer
address 284 Reichert Canyon Suite 070 Port Aron, FL 54862
phone_number (257)123-0907
email lurline.schiller@kris.com
iso8601 2004-09-30T21:13:29
credit_card_number 3337689104646870
credit_card_full JCB 15 digit Alex Jewess 180098847840358 09/24 CVC: 464
uri http://schuppehintz.com/main.html

user_agent Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.01;
Trident/4.0)

sha1 0e96cbfc74b05421f9ad54933c8a638ea7c60b77

text Sint velit iste laudantium blanditiis. Fugiat quos nostrum esse
iste.

Table 5.1: Examples of synthetic datasets

Real-world Datasets Example
fine_foods This product is great. Gives you so much energy and...
wiki-links http://www.nytimes.com/2009/07/20/arts/20funny.html

Table 5.2: Examples of real-world datasets

name address phone_number email iso8601 credit_card_number
|C| 241,165 86,657 241,397 169,021 199,728 242,827
|s| 15.39 46.40 15.38 22.82 19.00 15.27

credit_card_full uri user_agent sha1 text fine_foods wiki-links
|C| 67,853 114,174 45,990 99,864 28,151 9,571 64,712
|s| 59.81 34.74 89.20 40.00 147.00 436.23 62.82

Table 5.3: Dataset statistics

5.2 Comparisons to GZIP and Snappy

In this section, we will give a set of experiments evaluating the compression efficiency and
effectiveness of our method, compared to two baselines, GZIP [16] (from boost 1.6.0) and
Snappy [13] (version 1.1.3). These two programs are widely used in industry for textual
compression in databases. For each dataset, we compress every 4 MB of data as a block
to simulate real-world column-oriented storage where data is often stored in blocks [1].
For each dataset, we repeatedly compress it until a total volume of 10 GB (2,560 blocks) is
compressed and then decompressed. For example, we have 5 GB data for the email dataset,
so we compress the dataset 2 times to reach the 10 GB volume. We exclude disk I/O time
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from the compression and decompression time, so that we can evaluate the computing
efficiency of the various algorithms more accurately.

For our method, two versions are experimented with. The first version is referred to
as frequent. This version uses an uncompressed trie to index string patterns for textual
replacement during compression, as described in Chapter 4. The second version, referred
to as frequent(pruned), uses the pruning scheme described in Section 4.4 to reduce the
number of patterns and improve CPU cache performance in trie search. When compressing
a 4 MB block, both methods derive string patterns from a sample of the block. Two
parameters need to be set. The first one is the number of strings to include in a sample
(or the sampling rate). The second one is the minimum relative support (or the minimum
support) for pattern mining. As will be shown in the next section, these parameters affect
the trade-off between compression speed and ratio. For the experiments in this section,
we use the following simple rules. We use a sampling rate of 0.5% for both versions. For
example, if a 4 MB block of the fine_food dataset contains 9,571 reviews, then a sample
contains d0.5% × 9, 571e = 48 reviews. We use a minimum relative support of 3% or a
minimum support of 4, whichever is the higher, for mining frequent string patterns. For
example, for a sample of 48 fine_food reviews, we set minSupport = max(3%× 48, 4) = 4.
The minimum support threshold 4 is to avoid deriving too many patterns, because a large
number of patterns may significantly slow down the compression. Figures 5.1, 5.2, 5.4 show
the comparisons in compression ratio (see page 17), compression speed, and decompression
speed of the two versions of our method and the two baselines. For each dataset, the three
values are computed for every block, and the average and the standard deviation over all the
2,560 blocks are displayed. Figure 5.3 shows the average number of candidate dictionary
phrases mined from a sample, along with the standard deviation. Figure 5.5 shows the
memory usage of each method during compression.

Overall, our methods obtain good compression ratios, which are significantly lower (bet-
ter) than Snappy on most datasets, and are close to GZIP on a few datasets. Speed-wise,
our methods compress faster than Snappy on some datasets, and slower on others. For
decompression, our methods are faster than Snappy on most datasets (note that decom-
pression speed is measured in terms of decompressed bytes produced per second). While
GZIP has overall the best compression ratio, it is very slow compared to our methods and
Snappy.

One may wonder why the frequent method can be even faster than Snappy on certain
datasets. We provide several observations here. First, we observe that the running time of
pattern mining in these experiments is usually less than 10% of the overall running time
of compression, due to sampling. The compression time is dominated mainly by matching
the input with the dictionary trie and compressing the integer codes. For certain datasets,
such as phone_number, the dictionary trie is small and very fast for matching. Second, we
use an integer compression library using SIMD instructions [33], which accounts for 20-30%
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Figure 5.1: Compression ratio of our methods compared to GZIP and Snappy
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Figure 5.2: Compression speed of our methods compared to GZIP and Snappy

improvements in compression speed, on top of our own bit packing implementation. Snappy
currently does not use such vectorized code. Third, our method is semi-static while Snappy
is adaptive. More specifically, Snappy adaptively maintains a lookup table for finding the
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Figure 5.3: Average number of candidate dictionary phrases from a sample
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Figure 5.4: Decompression speed of our methods compared to GZIP and Snappy

positions of matches in the sliding window. Our method does not pay the cost of maintaining
an adaptive dictionary, because the dictionary trie does not change once it is constructed
from the sample.
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Figure 5.5: Memory usage compared to GZIP and Snappy

For the two versions of our method, the compression ratio of frequent(pruned) is slightly
worse than frequent on some datasets. However, on the datasets user-agent, text, fine_foods
and wiki-links, frequent(pruned) compresses much faster than frequent. Figure 5.3 shows
that, for these 4 datasets, the numbers of frequent string patterns are large. This causes se-
vere cache inefficiencies and explains why frequent is slow. Meanwhile, the pruning heuristic
removes a large number of dictionary phrases on these datasets, speeding up the compres-
sion to a level comparable to Snappy, without affecting the compression ratio too much. A
question is, can we simply increase the minimum (relative) support to decrease the number
of string patterns to achieve the same purpose? This is not as effective as the pruning
heuristic in preserving the compression ratio, as will be demonstrated in the next section.

Both versions of our method have similar decompression speed. This is because de-
compression is a relatively simple process without involving a trie. We only need to read
the dictionary from a compressed block, and index it as an array of strings for textual
replacement in decompression. In terms of decompression speed, our method is even faster
than Snappy on most datasets. This shows that the encoding method we use is suitable for
read-only analytical tasks in column stores.

Another observation is that, compared to Snappy, our method is particularly effective
on datasets containing random sequences of symbols, such as phone numbers and dates.
This is because such datasets do not contain long repeats of strings. They are compressible
mainly because they have a small alphabet. Therefore they are not suitable for the byte-
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oriented LZ77 algorithms such as Snappy. However, these datasets can be effectively and
efficiently compressed by our method because we pack integer codes in their bit lengths.
In addition, we use an integer compression library using SIMD instructions [33], further
speeding up the packing and unpacking of integer codes.

For the iso8601 dataset, it should be noted that date time values can be stored as
integers instead of strings in databases. For example, unix time can be stored in a single
32-bit integer [48]. This would give us around 21% comrpession ratio, much better than all
the different algorithms shown in Figure 5.1, including ours. With more prior knowledge of
the data, a more specific algorithm can compress the data better.

For the wiki-links dataset, our method does not compress better than Snappy. This
is because this dataset contains consecutive urls from the same domain, and such local
repetitions can be more effectively captured by the LZ77 algorithms. Since our method
is based on sampling a large number of strings, the local repetitions may not be captured
effectively. We also observe that frequent(pruned) has a slightly better compression ratio
than frequent on wiki-links, unlike other datasets. This shows that having more patterns
in the dictionary does not necessarily translates to better compression. These observations
demonstrate that different kinds of data may be compressed more or less effectively by our
method, depending on the characteristics of the data.

Figure 5.5 shows the memory usage of our experiment program. These measurements
include the memory usage of the compression algorithms, as well as holding the input
blocks in memory and other experiment-related cost. Our methods have a memory usage
ranging from 40 MB to 80 MB, significantly more than Snappy and GZIP. Frequent(pruned)
generally has a smaller memory footprint than frequent, resulting from a pruned trie. It is
possible to further improve memory usage on top of our current prototype implementation.

5.3 Comparisons to Local Lookahead and Re-Pair Under
Different Parameters

In this section, we evaluate our method under different parameters settings. There are two
parameters to set. The first one is the sampling rate, and the second one is the minimum
support. Note that we experiment with the minimum support instead of the minimum
relative support in the following experiments, for clarity reasons. We still use a 4 MB block
size for all experiments, and compress a 10 GB volume under each parameter setting.

GZIP and Snappy are again included as baselines, for which two horizontal lines are
shown in each figure, since they are not relevant to the sampling rate or minimum support.
Again, the two versions of our method, frequent and frequent(pruned), are evaluated in
these experiments. Besides, there are 2 other sampling-based competitors. The first one,
referred to as frequent(local lookahead), is the same as frequent, except that it uses local
lookahead instead of greedy matching for the factorization of the input data (both local
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lookahead and greedy matching were discussed in Section 4.3). This method is included so
that we can evaluate whether a simpler and faster greedy matching algorithm would have
worse compression ratio than a local lookahead method. For this purpose, we implemented
a more exhaustive version of the local lookahead scheme [12], which uses a search window
of the same size as the left match (see the discussion on local lookahead in Section 4.3 for
more details). The second method we experimented against, referred to as re-pair, is a
sampling-based method using the Re-Pair method [31] to select phrases. As introduced in
Section 2.3, Re-Pair is a grammar-based method which repeatedly selects the most frequent
symbol-pair that appears in the data, and then replaces the pair with an unused symbol.
This method was shown to have very good compression ratio, although the compression is
slow. The original Re-Pair method does not use sampling, and comes with its own coding
scheme with entropy codes [31]. We use only the phrase selection part of Re-Pair together
with our sampling settings and encoding format. We include re-pair in the experiments to
evaluate the compression performance of phrase selection using frequent string patterns, as
apposed to a more complicated phrase selection method. We implemented re-pair using the
discussed method in the original paper [31].

The dataset fine_foods is chosen for the following experiments since it represents a
common kind of string data, English text. Most of the findings on find_food is representative
of the results we see on other datasets. There are a few exceptions, which we will point out
in later discussion. Figures 5.6 to 5.8 respectively show the compression ratio, compression
speed and decompression speed of the various methods under different sampling rates.
Figure 5.9 shows the number of trie nodes in the sampling based methods (this is the number
of dictionary phrases for frequent and frequent(pruned), but not re-pair). Figure 5.10 shows
the percentages of CPU cycles spent on serving L3 cache misses during compression. This
metric is recommended by Intel for measuring the performance impact on L3 cache [40].
The minimum support is set to 5 in these experiments. Figures 5.11 to 5.15 show the
results under different minimum support settings. The sampling rate is set to 0.5% in these
experiments.

We have the following observations from these results.

1. A higher sampling rate leads to slower compression speed (Figure 5.7) and better
compression ratio (Figure 5.6) for all the sampling-based methods. This shows that
the repetitiveness of columnar data can be captured more effectively with a larger
sample. At the same time, larger sample size increases the cost of phrase selection,
and also increases the number of phrases selected (Figure 5.9). This leads to worse
cache performance during the textual replacement phase (Figure 5.10). This also
implies that our method may benefit from a larger CPU cache size, e.g. from a server
machine. If fast compression is required, then a sampling rate under 0.5% seems to
give a good trade-off between compression speed and ratio.
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Figure 5.6: Comparison of compression ratio for fine_foods with minSupport = 5
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Figure 5.7: Comparison of compression speed for fine_foods with minSupport = 5
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Figure 5.8: Comparison of decompression speed for fine_foods with minSupport = 5
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Figure 5.9: Comparison of number of trie nodes in compression, with minSupport = 5.
This is the same as the number of dictionary phrases for frequent and frequent(pruned),
since every node represents a frequent string pattern, and therefore a dictionary phrase.
This does not hold for re-pair.
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misses) in compression, with minSupport = 5
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Figure 5.11: Comparison of compression ratio for fine_foods with sampling rate 0.5%
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Figure 5.12: Comparison of compression speed for fine_foods with sampling rate 0.5%
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Figure 5.13: Comparison of decompression speed for fine_foods with sampling rate 0.5%
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Figure 5.14: Comparison of number of trie nodes in compression, with sampling rate 0.5%
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Figure 5.15: Comparison of percentages of CPU cycles spent on memory access (L3 cache
misses) in compression, with sampling rate 0.5%
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2. Among the sampling-based methods, frequent(pruned) is overall the fastest in terms
of compression. It obtains an impressive speed-up on top of frequent, especially in
high sampling rates (Figure 5.7) or low minSupport settings (Figure 5.12). In these
settings, frequent tends to produce a larger number of dictionary phrases (Figure 5.9
and 5.14), which results in worse cache performance (Figure 5.10 and 5.15). Fre-
quent(pruned) restricts the number of dictionary phrases, so the compression speed is
faster. The speed-up comes at a cost of compression ratio, which is in an acceptable
range (Figure 5.6 and Figure 5.11).

3. Among the sampling-based methods, the best compression ratio is obtained by re-pair
(Figure 5.6). Such a grammar-based method is shown to exploit the compressibility
of the data more effectively than frequent string patterns. However, on the fine_foods
dataset, this advantage only comes under a large sampling rate and slow compres-
sion speed. Below a sampling rate of 1%, re-pair does not compress better than
frequent. In addition, re-pair compresses significantly slower than both frequent and
frequent(pruned) (Figure 5.7). One reason is that phrase selection using Re-Pair can
be more costly than string pattern mining, which was observed in our profiling. An-
other reason is that greedy matching for re-pair is more complicated. For example, if
the Re-Pair method finds a dictionary phrase p = abacd, then the prefix abac is not
necessarily also a dictionary phrase (unlike frequent string patterns). Let us assume
that only the prefix ab is found as a phrase. When a match ab is found during factor-
ization, we must keep looking for a possible match abacd. If we find a match abac but
not abacd, we still have to use ab as a factor, at a cost of extra lookahead. The frequent
and frequent(pruned) methods do not have such a cost. We also experimented with
another version of re-pair where every prefix of a phrase can be used for factorization.
This method is faster but has worse compression ratio than re-pair. In the comparison
for another dataset user_agent (figures are not shown for brevity), re-pair not only is
faster than frequent, but also compresses better, although frequent(pruned) is still the
fastest. This demonstrates that such grammar-based methods may be more suitable
for the types of data containing long repetitions. In short, Re-Pair or other simi-
lar methods can be good options for sampling-based compression, but some careful
engineering is needed to speed up compression.

4. Increasing the minimum support has the effect of speeding up compression (Figure
5.12), at a cost of worse compression ratio (Figure 5.11), because it reduces the length
of dictionary phrases, and reduces the number of phrases in the dictionary. By com-
paring frequent(pruned) with minSupport = 3 and frequent with minSupport = 5, we
can see that the former not only has slightly better compression ratio (Figure 5.11),
but also is significantly faster (Figure 5.12). This shows that the pruning heuris-
tic can be a more effective strategy for trading a small amount of compression ratio
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for compression speed, compared to raising minimum support. It is even more so for
datasets containing long repetitions, such as user_agent, where the speed-up achieved
by frequent(pruned) is much more significant (Figure 5.2).

5. Frequent(local lookahead) not only compresses much slower than frequent (Figure 5.7
and 5.12), but also has worse compression ratio (Figure 5.6 and 5.11). This confirms
our speculation in Section 4.3 that the faster and simpler greedy matching algorithm
is sufficient to obtain good compression ratio with frequent string patterns as the
dictionary.

6. For decompression speed, Figure 5.8 shows that as the sampling rate increases over
1%, frequent decompresses slower, while frequent(pruned) does not. We presume that
this is because, for frequent, a higher sampling rate leads to more dictionary phrases
being stored in a compressed block. This leads to worse cache performance for seeking
and copying the phrases in decompression. For frequent(pruned), since the pruning
restricts rapid growth of dictionary phrases as the sampling rate increases, decom-
pression speed does not decrease too much. We also observe in Figure 5.13, as the
minimum support increases, the decompression speed first increases, then decreases.
We presume that the initial speed-up is due to a smaller dictionary and improved
cache performance in decompression. The following slow-down may be because the
dictionary phrases (frequent patterns) become shorter, and the number of integer
codes (factors) becomes larger, resulting in higher cost in decompressing the integer
codes and replacing them with the phrases.

7. It should be noted that Figure 5.10 and 5.15 only show the performance impact on
L3 cache, not the entire cache hierarchy. For example, as the sampling rate increases,
frequent(pruned) becomes significant slower, although the performance impact on L3
cache does not change much. One explanation is that the cost of pattern mining is
higher. Another one is that the performance impact on L1 and L2 caches, not included
in the experiments, may become worse.

Finally, the following Figure 5.16 shows the memory usage of our methods under dif-
ferent sampling rates, with the dataset fine_foods. It can be seen that memory usage of
frequent increases almost linearly up to a sampling rate of 5%, while the memory usage of
frequent(pruned) increases much slower under large sampling rates. This is consistent to
Figure 5.9 which shows the numbers of trie nodes under different sampling rates.
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Chapter 6

Conclusions

Compression is important for the performance of analytical tasks in column stores. We
observe that existing compression methods used in column stores, such as dictionary com-
pression and run length encoding [2], may not effectively compress certain kinds of string
data such as street addresses, log messages, etc. Another popular option is to use LZ77-
based methods such as GZIP [16] and Snappy [13], but these methods do not exploit the
columnar nature of the data. We develop a sampling-based method, which derives fre-
quent string patterns from a sample of an input column, and uses these patterns as the
dictionary phrases for compression. We use the PrefixSpan algorithm [27] to find frequent
string patterns. We discussed several methods for partitioning an input column into a se-
quence of dictionary phrases that can be replaced by dictionary indexes (i.e. methods for
factorization). We inferred that, given a complete set of frequent string patterns as the
dictionary, the simple and fast greedy matching algorithm may be sufficient for obtaining
good compression ratio, as apposed to a more complicated local lookahead method [12].
This is confirmed on the datasets used in our experiments. In addition, we develop a simple
pruning heuristic to reduce the number of dictionary phrases (string patterns), in order to
improve CPU cache performance in compression. The pruning heuristic is experimentally
shown to significantly speed up compression with a reasonable loss in compression ratio.
Overall, our method is shown to have significantly better compression ratio than Snappy
on many types of columnar data, with comparable compression and decompression speed.

For future work, the following directions can be considered.

• Developing a better pruning method, or choosing alternative data structures for ef-
ficient and effective compression. Currently, we use frequent string patterns with a
simple pruning heuristic to achieve fast compression speed and reasonable compression
ratio. A better pruning method may potentially improve cache performance, speed up
compression, and yield better compression ratio. A possible direction is to prune on
the transitions on possible word breaks, such as transitions between different character
classes (alphabetic, numeric, and punctuation marks, etc). We have also evaluated
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other pattern mining methods such as GoKrimp, which mines patterns by how well a
pattern compresses the input data [29]. This method turns out to be less effective in
terms of compression ratio than simple frequent patterns in our compression settings.
A possible explanation is that GoKrimp may not work well with the greedy matching
method which we use. However, there are other possible alternatives worth further
evaluation, such as closed sequential patterns [46] or sequence generators [18]. Finally,
we can evaluate data structure choices other than trie, such as suffix array.

• Experimenting with LZ77-like factorization with a dictionary constructed with frequent
string patterns. Currently, we use a sequence of phrases as the dictionary, and use the
dictionary indexes as codes. An alternative is to construct the dictionary as a block of
data from a sample of the input, and use two numbers, an offset and a length, to refer
to a dictionary phrase in this block. This is similar to LZ77, and can be considered as a
combination of sampling and traditional fast compression algorithms, such as Snappy.
The idea has been explored for large string collections such as web collections [24]
and genome sequences [45, 37, 28, 14]. We can test this idea for collections of shorter
strings, such as the kinds of columnar data targeted by our method. Especially, we
can construct the dictionary block with a pattern mining based approach.

• Automatic selection of sampling rate and minimum support. In our experiments, we
used some simplistic rules for selecting these two parameters in Section 5.2. It is
desirable to have a more stable method for selecting the parameters that yield a more
consistent trade-off between compression ratio and speed.

• Extending our method for NoSQL, such as JSON document stores. Since JSON doc-
uments can be longer than the strings we experimented with, it may be beneficial
to first apply a certain kind of vertical partitioning on the documents, and use each
partition as a column input for our method. Since each partition may have its unique
set of repetitions, it is possible to achieve better compression ratio and speed than
compressing the documents as a single column.

• Extending our method in streaming settings. If we expect each block of a columnar
data stream to be similar, then the dictionary phrased mined from an earlier block can
be used to compress later blocks, saving the running time spent on repeated pattern
mining.
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