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Abstract

At least since Knight (1921), economists have suspected that the distinction between risk and ‘un-
certainty’ might be important in economics. However, Savage (1954) showed this distinction is
meaningless if agents adhere to certain axioms, which seem to be normatively compelling. Savage’s
Subjective Expected Utility (SEU) model became the dominant paradigm in economics, and remains
so to this very day. Still, suspicions that the distinction matters never really died. The Ellsberg
Paradox (1961) first raised doubts about the SEU model. Then, Gilboa and Schmeidler (1989)
showed how to modify Savage’s axioms so that the distinction does matter. In their model, agents
entertain a set of priors, and optimize against the worst-case prior. Finally, Hansen and Sargent
(2008) operationalized this new approach by linking it to the engineering literature on ‘robust con-
trol’. My dissertation applies the Hansen-Sargent framework to the foreign exchange market. I show
that if we think of market participants as confronting both uncertainty and risk, then we can easily
explain several well known empirical puzzles in the foreign exchange market.

The first chapter of my dissertation, entitled Robustness and Exchange Rate Volatility, was
published in the Journal of International Economics in 2013, and is coauthored with my supervisor,
Prof. Kenneth Kasa. This paper uses the monetary model of exchange rates. It assumes investors
are aware of their own lack of knowledge about the economy. They respond to their ignorance
strategically, by constructing forecasts that are robust to model misspecification. We show that
revisions of robust forecasts are more sensitive to new information, and can easily explain observed
violations of Shiller’s variance bound inequality.

The second chapter, entitled Model Uncertainty and the Forward Premium Puzzle, was
published in the Journal of International Money and Finance in 2014. It studies a standard two-
country Lucas (1982) asset-pricing model. The main objective is to understand the determinants of
observed excess return in the foreign exchange market. The paper shows that Hansen-Jagannathan
(1991) volatility bounds can be attained with both reasonable degrees of risk aversion and empirically
plausible detection error probabilities. Hence, excess returns in the foreign exchange market appear
to be primarily driven by a ‘model uncertainty premium’ rather than a risk premium.

The third chapter, entitled Robust Learning in the Foreign Exchange Market, was recently
revised and resubmitted to the Canadian Journal of Economics. Following Hansen and Sargent
(2010), it assumes agents cope with uncertainty by both learning and by formulating robust decision
rules. Agents entertain two competing models, differing by the persistence of consumption growth.
As in my previous paper, agents continue to doubt the specification of each model. It shows that
robust learning can not only explain unconditional risk premia in the foreign exchange market, but
can also explain the cyclical dynamics of risk premia.
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Chapter 1

Robustness and Exchange Rate
Volatility

This chapter1 studies exchange rate volatility within the context of the monetary model
of exchange rates. We assume agents regard this model as merely a benchmark, or refer-
ence model, and attempt to construct forecasts that are robust to model misspecification.
We show that revisions of robust forecasts are more volatile than revisions of nonrobust
forecasts, and that empirically plausible concerns for model misspecification can explain
observed exchange rate volatility. We also briefly discuss the implications of robust fore-
casts for a number of other exchange rate puzzles.

1.1 Introduction

Exchange rate volatility remains a mystery. Over the years, many explanations have been
offered - bubbles, sunspots, ‘unobserved fundamentals’, noise traders, etcetera. Our paper
offers a new explanation. Our explanation is based on a disciplined retreat from the Rational
Expectations Hypothesis. The Rational Expectations Hypothesis involves two assumptions:
(1) Agents know the correct model of the economy (at least up to a small handful of unknown
parameters, which can be learned about using Bayes rule), and (2) Given their knowledge
of the model, agents make statistically optimal forecasts. In this paper, we try to retain
the idea that agents process information efficiently, while at the same time relaxing what
we view as the more controversial assumption, namely, that agents know the correct model
up to a finite dimensional parameterization.

Of course, if agents don’t know the model, and do not have conventional finite-dimensional
priors about it, the obvious question becomes - How are they supposed to forecast the fu-
ture? Our answer is to suppose that agents possess a simple benchmark model of the

1This chapter is a joint work with Kenneth Kasa (Dept of Economics, Simon Fraser University, Email:
kkasa@sfu.ca) and was published in the Journal of International Economics, 91 (2013) 27-39
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economy, containing a few key macroeconomic variables. We further suppose that agents
are aware of their own ignorance, and respond to it strategically by constructing forecasts
from the benchmark model that are robust to a wide spectrum of potential misspecifica-
tions. We show that revisions of robust forecasts are quite sensitive to new information,
and in the case of exchange rates, can easily account for observed exchange rate volatility.

Our paper is closely related to prior work by Hansen and Sargent (2008), Kasa (2001),
and Lewis and Whiteman (2008). Hansen and Sargent have pioneered the application of
robust control methods in economics. This literature formalizes the idea of a robust policy
or forecast by viewing agents as solving dynamic zero sum games, in which a so-called ‘evil
agent’ attempts to subvert the control or forecasting efforts of the decisionmaker. Hansen
and Sargent show that concerns for robustness and model misspecification shed light on
a wide variety of asset market phenomena, although they do not focus on exchange rate
volatility. Kasa (2001) used frequency domain methods to derive a robust version of the well
known Hansen and Sargent (1980) prediction formula. This formula is a key input to all
present value asset pricing models. Lewis and Whiteman (2008) use this formula to study
stock market volatility. They show that concerns for model misspecification can explain
observed violations of Shiller’s variance bound. They also apply a version of Hansen and
Sargent’s detection error probabilities to gauge the empirical plausibility of the agent’s fear
of model misspecification. Since robust forecasts are the outcome of a minmax control prob-
lem, one needs to make sure that agents are not being excessively pessimistic, by hedging
against models that could have been easily rejected on the basis of observed historical time
series. Lewis and Whiteman’s results suggest that explaining stock market volatility solely
on the basis of a concern for robustness requires an excessive degree of pessimism on the
part of market participants. Interestingly, when we modify their detection error calculations
slightly, we find that robust forecasts can explain observed exchange rate volatility.2

Since there are already many explanations of exchange rate volatility, a fair question at
this point is - Why do we need another one? We claim that our approach enjoys several ad-
vantages compared to existing explanations. Although bubbles and sunspots can obviously
generate a lot of volatility, these models require an extreme degree of expectation coordina-
tion. So far, no one has provided a convincing story for how bubbles or sunspots emerge in
the first place. Our approach requires a more modest degree of coordination. Agents must
merely agree on a simple benchmark model, and be aware of the fact that this model may
be misspecified.3 It is also clear that noise traders can generate a lot of volatility. However,

2This is not the first paper to apply robust control methods to the foreign exchange market. Li and
Tornell (2008) show that a particular type of structured uncertainty can explain the forward premium
puzzle. However, they do not calculate detection error probabilities. Colacito and Croce (2011a) develop a
dynamic general equilibrium model with time-varying risk premia, and study its implications for exchange
rate volatility. They adopt a ‘dual’ perspective, by focusing on a risk-sensitivity interpretation of robust
control. However, they do not focus on Shiller bounds or detection error probabilities, as we do here.

3On bubbles, see inter alia Meese (1986) and Evans (1986). On sunspots, see Manuelli and Peck (1990)
and King, Weber, and Wallace (1992). It should be noted that there are ways to motivate the emergence
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as with bubbles and sunspots, there is not yet a convincing story for where these noise
traders come from, and why they aren’t driven from the market. An attractive feature of
our approach is that, if anything, agents in our model are smarter than usual, since they
are aware of their own lack of knowledge about the economy.4

Our approach is perhaps most closely related to the ‘unobserved fundamentals’ argu-
ments in West (1987), Engel and West (2004), and Engel, Mark, and West (2007). These
papers all point out that volatility tests aren’t very informative unless one is confident that
the full array of macroeconomic fundamentals are captured by a model.5 As a result, they
argue that rather than test whether markets are ‘excessively volatile’, it is more informative
to simply compute the fraction of observed exchange rate volatility that can be accounted
for by innovations in observed fundamentals. Our perspective is similar, yet subtlely differ-
ent. In West, Engel-West, and Engel-Mark-West, fundamentals are only unobserved by the
outside econometrician. Agents within the (Rational Expectations) model are presumed to
observe them. In contrast, in our model it is the agents themselves who suspect there might
be missing fundamentals, in the form of unobserved shocks that are correlated both over
time and with the observed fundamentals. In fact, however, their benchmark model could
be perfectly well specified. (In the words of Hansen and Sargent, their doubts are only ‘in
their heads’). It is simply the prudent belief that they could be wrong that makes agents
aggressively revise forecasts in response to new information.

In contrast to ‘unobserved fundamentals’ explanations, which are obviously untestable,
there is a sense in which our model is testable. Since specification doubts are only ‘in
their heads’, we can ask whether an empirically plausible degree of doubt can rationalize
observed exchange rate volatility. That is, we only permit agents to worry about alternative
models that could have plausibly generated the observed time series of exchange rates and
fundamentals, where plausible is defined as an acceptable detection error probability, in
close analogy to a significance level in a traditional hypothesis test. We find that given a
sample size in the range of 100-150 quarterly observations, detection error probabilities in
the range of 10-20% can explain observed exchange rate volatility.

The remainder of the paper is organized as follows. Section 1.2 briefly outlines the mon-
etary model of exchange rates. We assume agents regard this model as merely a benchmark,
and so construct forecasts that are robust to a diffuse array of unstructured alternatives.
Section 1.3 briefly summarizes the data. We examine quarterly data from 1973:1-2011:3 on

of sunspots via an adaptive learning process (Woodford (1990)), but then this just changes the question to
how agents coordinated on a very particular learning rule.

4On the role of noise traders in fx markets, see Jeanne and Rose (2002). A more subtle way noise traders
can generate volatility is to prevent prices from revealing other traders’ private information. This can
produce a hierarchy of higher order beliefs about other traders’ expectations. Kasa, Walker, and Whiteman
(2010) show that these higher order belief dynamics can explain observed violations of Shiller bounds in the
US stock market.

5Remember, there is an important difference between unobserved fundamentals and unobserved informa-
tion about observed fundamentals. The latter can easily be accommodated using the methods of Campbell
and Shiller (1987) or West (1988).
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six US dollar bilateral exchange rates: the Australian dollar, the Canadian dollar, the Dan-
ish kroner, the Japanese yen, the Swiss franc, and the British pound. Section 1.4 contains
the results of a battery of traditional excess volatility tests: Shiller’s original bound applied
to linearly detrended data, the bounds of West (1988) and Campbell-Shiller (1987), which
are robust to inside information and unit roots, and finally, a couple of more recent tests
proposed by Engel and West (2004) and Engel (2005). Although the results differ somewhat
by test and currency, a fairly consistent picture of excess volatility emerges. Section 1.5
contains the results of our robust volatility bounds. We first apply Kasa’s (2001) robust
Hansen-Sargent prediction formula, based on a so-called H∞ approach to robustness, and
show that in this case the model actually predicts exchange rates should be far more volatile
than observed exchange rate volatility. We then follow Lewis and Whiteman (2008) and
solve a frequency domain version of Hansen and Sargent’s evil agent game, which allows us
to calibrate the degree of robustness to detection error probabilities. This is accomplished
by assigning a penalty parameter to the evil agent’s actions. We find that observed ex-
change rate volatility can be explained if agents are hedging against models that have a
10-20% chance of being the true data-generating process. Section 1.6 relates robustness to
other puzzles in the foreign exchange market. In particular, we show that robust forecasts
can explain the forward premium puzzle. In fact, explaining the forward premium puzzle is
easier than explaining the volatility puzzle, since the associated detection error probabilities
are larger. Section 1.7 contains a few concluding remarks.

1.2 The Monetary Model of Exchange Rates

The monetary model has been a workhorse model in open-economy macroeconomics. It
is a linear, partial equilibrium model, which combines Purchasing Power Parity (PPP),
Uncovered Interest Parity (UIP), and reduced-form money demand equations to derive
a simple first-order expectational difference equation for the exchange rate. It presumes
monetary policy and other fundamentals are exogenous. Of course, there is evidence against
each of these underlying ingredients. An outside econometrician would have reasons to
doubt the specification of the model. Unlike previous variance bounds tests using this
model, we assume the agents within the model share these specification doubts.

Since the model is well known, we shall not go into details. (See, e.g., Mark (2001) for a
detailed exposition). Combining PPP, UIP, and identical log-linear money demands yields
the following exchange rate equation:

st = (1− β)ft + βEtst+1 (1.2.1)

where st is the log of the spot exchange rate, defined as the price of foreign currency. The
variable ft represents the underlying macroeconomic fundamentals. In the monetary model,

4



it is just
ft = (mt −m∗t )− λ(yt − y∗t )

where mt is the log of the money supply, yt is the log of output, and asterisks denote foreign
variables. In what follows, we assume λ = 1, where λ is the income elasticity of money
demand. The key feature of equation (1.2.1) is that it views the exchange rate as a an
asset price. It’s current value is a convex combination of current fundamentals, ft, and
expectations of next period’s value. In traditional applications employing the Rational Ex-
pectations Hypothesis, Et is defined to be the mathematical expectations operator. We relax
this assumption. Perhaps not surprisingly, β turns out to be an important parameter, as it
governs the weight placed on expectations in determining today’s value. In the monetary
model, this parameter is given by, β = α/(1+α), where α is the interest rate semi-elasticity
of money demand. Following Engel and West (2005), we assume .95 < β < .99.

By imposing the no bubbles condition, limj→∞Etβ
jst+j = 0, and iterating eq. (1.2.1)

forward, we obtain the following present value model for the exchange rate

st = (1− β)Et
∞∑
j=0

βjft+j (1.2.2)

which expresses the current exchange rate as the expected present discounted value of
future fundamentals. If ft is covariance stationary with Wold representation ft = A(L)εt,
then application of the Hansen-Sargent prediction formula yields the following closed-form
expression for the exchange rate,

st = (1− β)
[
LA(L)− βA(β)

L− β

]
εt (1.2.3)

We shall have occasion to refer back to this in Section 1.5, when discussing robust fore-
casts. In practice, the assumption that ft is covariance stationary is questionable. Instead,
evidence suggests that for all six countries ft contains a unit root. In this case, we need
to reformulate equation (1.2.2) in terms of stationary variables. Following Campbell and
Shiller (1987), we can do this by defining the ‘spread’, φt = st − ft, and expressing it as a
function of expected future changes in fundamentals, ∆ft+1 = ft+1 − ft6

st − ft = Et

∞∑
j=1

βj∆ft+j (1.2.4)

Applying the Hansen-Sargent formula to this expression yields the following closed form
expression for the spread,

st − ft = β

[
A(L)−A(β)

L− β

]
εt (1.2.5)

6This suggests that st − ft should be stationary, i.e., st and ft are cointegrated. As we show in the next
section, the evidence here is more mixed.
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where we now assume that ∆ft = A(L)εt.

1.3 The Data

We study six US dollar exchange rates: the Australian dollar, the Canadian dollar, the
Danish kroner, the Japanese yen, the Swiss franc, and the British pound. The data are taken
from the IFS, and are quarterly end-of-period observations, expressed as the dollar price
of foreign currency. Money supply and income data are from the OECD Main Economic
Indicators. Money supply data are seasonally adjusted M1 (except for Britain, which is
M4). Income data are seasonally adjusted real GDP, expressed in national currency units.
All data are expressed in natural logs.

Table 1.1 contains summary statistics for ∆st and ∆ft. There are three noteworthy fea-

Table 1.1: Summary Statistics: Quarterly Data (1973:1-2011:3)

Aus Can Den Jap Swz UK

∆s
Mean −.0024 −.0002 .0007 .0080 .0083 −.0030
StDev .0547 .0311 .0576 .0590 .0649 .0529
ρ1 .067 .178 .067 .060 −.008 .151

∆f
Mean −.0091 −.0071 −.0105 −.0035 −.0053 −.0136
StDev .0307 .0197 .0277 .0273 .0455 .0236
ρ1 .197 .367 .277 .394 .092 .461

Notes: (1) USA is reference currency, with s = price of fx in US dollars.
(2) Both s and f are in natural logs, with f = m−m∗ − (y − y∗).
(3) ρ1 is the first-order autocorrelation coefficient.

tures. First, it is apparent that exchange rates are close to random walks, while at the same
time changes in fundamentals are predictable. This apparent contradiction was explained
by Engel and West (2005). They show that if the discount factor is close to one, as it is with
quarterly data, then exchange rates should be close to random walks. Second, it is apparent
that the mean of ∆st does not always match up well with the mean of ∆ft. This simply
reflects the fact that some of these currencies have experienced long-run real appreciations
or depreciations. This constitutes prima facie evidence against the monetary model, inde-
pendent of its volatility implications. Our empirical work accounts for these missing trends
by either detrending the data, or by including trends in posited cointegrating relationships.
This gives the model the best chance possible to explain exchange rate volatility. Third, and
most importantly for the purposes of our paper, note that the standard deviations of ∆st
are around twice as large as the standard deviations of ∆ft. Given the mild persistence in
∆ft, this is a major problem when it comes to explaining observed exchange rate volatility.
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As we discuss in more detail in the following section, variance bounds tests require
assumptions about the nature of trends in the data. The original tests of Shiller (1981)
presumed stationarity around a deterministic trend. Subsequent work showed that this
causes a bias toward rejection if in fact the data contain unit roots, which then led to the
development of tests that are robust to the presence of unit roots (Campbell and Shiller
(1987), West (1988)). Table 1.2 contains the usual tests for unit roots and cointegration.
Clearly, there is little evidence against the unit root null for both the exchange rate and

Table 1.2: Unit Root and Cointegration Tests

Aus Can Den Jap Swz UK

Dickey-Fuller
s −1.43 −1.16 −1.96 −2.08 −2.56 −2.70
f −1.03 −2.09 −1.57 −1.24 −2.27 −1.43

(s− f) −2.05 −1.91 −2.44 −2.37 −3.52 −3.25

Engle-Granger
(s, f) −1.44 −1.60 −2.49 −4.16 −3.62 −3.30

Johansen (Trace)
(s, f) 4.73 11.18 11.33 20.12 23.51 19.21

Notes: (1) DF and EG regressions include constant, trend, and four lags.
(2) (5%, 10%) critical values for DF = (−3.44,−3.14).
(3) (5%, 10%) critical values for EG = (−3.84,−3.54).
(4) Johansen based on VAR(4) with deterministic trend. 5% critical value = 18.40.

fundamentals. This casts doubt on the applicability of the original Shiller bound. One can
also see that the cointegration evidence is more mixed. There is some evidence in favor of
cointegration for Japan, Switzerland, and the UK (especially when using the Johansen test),
but little or no evidence for Australia, Canada, or Denmark. Later, when implementing tests
based on the unit root specification, we simply assume the implied cointegration restrictions
hold.

1.4 Traditional Volatility Tests

As motivation for our paper, this section briefly presents results from applying traditional
volatility tests. We present them roughly in order of their historical development. Given
our purposes, we do not dwell on the (many) statistical issues that arise when implementing
these tests.7

1.4.1 Shiller (1981)

The attraction of Shiller’s original variance bound test is that it is based on such a simple
and compelling logic. Shiller noted that since asset prices are the conditional expectation

7See Gilles and LeRoy (1991) for an excellent summary of these issues.
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of the present value of future fundamentals, they should be less volatile than the ex post
realized values of these fundamentals. More formally, if we define s∗t = (1− β)

∑∞
j=0 β

jft+j

as the ex post realized path of future fundamentals, then the monetary model is equivalent
to the statement that st = Ets

∗
t . Next, we can always decompose a random variable into

the sum of its conditional mean and an orthogonal forecast error,

s∗t = Ets
∗
t + ut

= st + ut

Since by construction the two terms on the right-hand side are orthogonal, we can take the
variance of both sides and get

σ2
s∗ = σ2

s + σ2
u ⇒ σ2

s ≤ σ2
s∗

It’s as simple as that.8 Two practical issues arise when implementing the bound. First,
prices and fundamentals clearly trend up over time. As a result, neither possesses a well
defined variance, so it is meaningless to apply the bounds test to the raw data. Shiller dealt
with this by linearly detrending the data. To maintain comparability, we do the same, al-
though later we present results that are robust to the presence of unit roots. Second, future
fundamentals are obviously unobserved beyond the end of the sample. Strictly speaking
then, we cannot compute σ2

s∗ , and therefore, Shiller’s bound is untestable. One can always
argue that agents within any given finite sample are acting on the basis of some as yet
unobserved event. Of course, this kind of explanation is the last refuge of a scoundrel, and
moreover, we show that it is unnecessary. Shiller handled the finite sample problem by
assuming that s∗T , the end-of-sample forecast for the discounted present value of future fun-
damentals, was simply given by the sample average. Unfortunately, subsequent researchers
were quick to point out that this produces a bias toward rejection. So in this case, we
depart from Shiller by using the unbiased procedure recommended by Mankiw, Romer, and
Shapiro (1985). This involves iterating on the backward recursion s∗t = (1 − β)ft + βs∗t+1,
with the boundary condition, s∗T = sT .

The first row of Table 1.3 reports results from applying Shiller’s bound. Evidently, rather
than being less volatile than ex post fundamentals, exchange rates are actually between 3
and 32 times as volatile as fundamentals.9 Perhaps the most striking result that Shiller

8As emphasized by Kasa, Walker, and Whiteman (2010), matters aren’t quiet so simple in models featur-
ing heterogeneous beliefs. The law of iterated expectations does not apply to the average beliefs operator.
They show conventional applications of Shiller’s bound can easily generate false rejections when there are
heterogeneous beliefs.

9By way of comparison, Shiller (1981) found that U.S. stock prices were 5 times as volatile as fundamen-
tals. In the first application to exchange rates, Huang (1981) found that the pound and deutschemark were
between 3 and 10 times too volatile. However, Diba (1987) pointed out that Huang’s results were tainted
by a miscalibrated discount factor. With empirically plausible values of β, Huang’s tests showed no signs of
excess volatility.
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Table 1.3: Traditional Volatility Tests

Aus Can Den Jap Swz UK

Shiller
var(s)/var(s∗) 3.13 7.85 25.7 2.93 14.2 32.5

Campbell-Shiller
var(φ)/var(φ∗) 3.41 10.2 7.98 211.2 178.2 9.00

West
var(ε)/var(ε̂) 2.36 1.81 2.33 1.34 1.73 1.77

Engel-West
var(∆s)/var(∆xH) 1.83 0.99 1.66 1.30 1.46 1.15

Engel
var(∆s)/var(∆ŝ) 5.98 10.8 3.35 7.42 20.7 14.6

Notes: (1) Shiller bound based on detrended data, assuming s∗T = sT and β = .98.
(2) Campbell-Shiller bound based on a VAR(2) for (∆f, φ), assuming β = .98.
(3) Engel-West bound based on AR(2) for ∆f , assuming β = .98 ≈ 1.
(4) Engel bound based on AR(1) for detrended ft, assuming β = .98.

presented was a simple time series plot of st versus s∗t . This, more than anything else, is what
convinced many readers that stock prices are excessively volatile.10 Figure 1 reproduces the
Shiller plot for each of our six currencies. These particular plots are based on the assumption
β = .98, but similar plots are obtained for the empirically plausible range, .95 ≤ β ≤ .99.

As with Shiller, these plots paint a clear picture of ‘excess volatility’. Unfortunately,
there are enough statistical caveats and pitfalls associated with these results, that it is
worthwhile to consider results from applying some of the more recently proposed bounds
tests, starting with the influential work of Campbell and Shiller (1987).

1.4.2 Campbell and Shiller (1987)

The results of Shiller (1981) are sensitive to the presence of unit roots in the data. As we
saw in Table 1.2, there appear to be unit roots in both st and ft (even after the removal
of a deterministic trend). Campbell and Shiller (1987) devised a volatility test that is valid
when the data are nonstationary. In addition, they devised a clever way of capturing po-
tential information that market participants might have about future fundamentals that is
unobserved by outside econometricians. To do this, one simply needs to include current and
lagged values of the exchange rate when forecasting future fundamentals. Under the null,
the current exchange rate is a sufficient statistic for the present value of future fundamen-
tals. Forecasting future fundamentals with a VAR that includes the exchange rate converts

10Not everyone was convinced. In particular, Kleidon (1986) warned that these plots could be quite
misleading if the underlying data are nonstationary.
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Figure 1.1: Shiller Bounds

Figure 1: Shiller Bounds
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Shiller’s variance bound inequality to a variance equality. The model-implied forecast of
the present value of fundamentals should be identically equal to the actual exchange rate!

To handle unit roots, Campbell and Shiller (1987) presume that st and ft are cointe-
grated, and then define the ‘spread’ variable φt = st − ft. The model implies that φt is
the expected present value of future values of ∆ft (see eq. (1.2.4)). If we define the vector
(∆ft, φt)′ we can then estimate the following VAR,

xt = Ψ(L)xt−1 + εt

By adding lags to the state, this can always be expressed as a VAR(1)

x̂t = Ψ̂x̂t−1 + εt

where Ψ̂ is a double companion matrix, and the first element of x̂t is ∆ft. The model-
implied spread, φ∗t , is given by the expected present discounted value of {∆ft+j}, which can
be expressed in terms of observables as follows,

φ∗t = e1′βΨ̂(I − βΨ̂)−1x̂t (1.4.6)
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where e1 is a selection vector that picks off the first element of x̂t. The model therefore
implies var(φt) = var(φ∗t ).

The second row of Table 1.3 reports values of var(φt)/var(φ∗t ) based on a VAR(2) model
(including a trend and intercept). We fix β = .98, although the results are similar for
values in the range .95 ≤ β ≤ .99. Although Campbell and Shiller’s approach is quite
different, the results are quite similar. All ratios substantially exceed unity. Although
the Campbell-Shiller method points to relatively less volatility in Denmark and the UK, it
actually suggests greater excess volatility for Japan and Switzerland.

1.4.3 West (1988)

West (1988) proposed an alternative test that is also robust to the presence of unit roots.
Rather than look directly at the volatility of observed prices and fundamentals, West’s test
is based on comparison of two innovation variances. These innovations can be interpreted
as one-period holding returns, and so are stationary even when the underlying price and
fundamentals processes are nonstationary. Following West (1988), let It be the market
information set at time-t, and let Ht ⊆ It be some subset that is observable by the out-
side econometrician. In practice, Ht is often assumed to just contain the history of past
(observable) fundamentals. Next, define the following two present value forecasts:

xtH =
∞∑
j=0

βjE(ft+j |Ht) xtI =
∞∑
j=0

βjE(ft+j |It)

West then derived the following variance bound,

E(xt+1,H − E[xt+1,H |Ht])2 ≥ E(xt+1,I − E[xt+1,I |It])2

This says that if market participants have more information than Ht, their forecasts should
have a smaller innovation variance. Intuitively, when forecasts are based on a coarser
information set, there are more things that can produce a surprise. We apply this bound
to forecasts of the spread, φt = st − ft, with Ht assumed to contain both the history of
fundamentals and exchange rates. From the Campbell-Shiller logic, the inclusion of st in
Ht converts West’s variance bound inequality to a variance equality.

To derive the market’s innovation, we can write the present value model recursively as
follows

φt = βEt(φt+1 + ∆ft+1)

Exploiting the decomposition, φt+1 + ∆ft+1 = Et(φt+1 + ∆ft+1) + εt+1, we can then derive
the ex post observable expression for the market’s innovation

εt+1 = φt+1 + ∆ft+1 −
1
β
φt
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Note that εt+1 is just a one-period excess return. We can do the same for the predicted
spread, φ̂t, estimated from the same VAR(2) model used to compute the Campbell-Shiller
test. This yields the fitted excess return,

ε̂t+1 = φ̂t+1 + ∆ft+1 −
1
β
φ̂t

Under the null, var(ε) = var(ε̂). The third row of Table 1.3 contains the results. Interest-
ingly, the West test indicates a much less dramatic degree of excess volatility. Although the
point estimates continue to exceed unity, most are in the range 1.5-2.0.

1.4.4 Engel and West (2004)

Engel and West (2004) use results from Engel and West (2005) to derive a variance bound
for the limiting case, β → 1. We implement this bound assuming β = .98. Two things
happen as β → 1. First, from West (1988) we know

var(εt,H) = 1− β2

β2 var(xt,H − xt,I) + var(εt,I)

Since var(xt,H−xt,I) is bounded, it is clear that var(εt,H) ≈ var(εt,I) as β → 1. Second, from
Engel and West (2005) we know that st converges to a random walk as β → 1. Therefore,
var(εt,I) ≈ var(∆st) as β → 1. Combining, we conclude that var(εt,H) ≈ var(∆st) under
the null as β → 1. To estimate var(εt,H) we first estimate a univariate VAR(2) for ∆ft,

∆ft = γ̂0 + γ̂1∆ft−1 + γ̂2∆ft−2 + ut

We can then estimate var(εt,H) as follows

var(εt,H) = (1− βγ̂1 − β2γ̂2)−2var(u)

The fourth row of Table 1.3 reports the ratio var(∆st)/var(εt,H) for each of our six cur-
rencies. Overall, the results are quite similar to the results from the West test, the only
significant difference being Canada, which has a point estimate (slightly) below unity. The
results are also quite similar to those reported by Engel and West (2004), although as noted
earlier, they interpret the results reciprocally, as the share of exchange rate volatility that
can be accounted for by observed fundamentals.

1.4.5 Engel (2005)

Engel (2005) derives a variance bound that is closely related to the West (1988) bound.
Like the West bound, it is robust to the presence of unit roots. Let ŝt be the forecast of
the present discounted value of future fundamentals based on a subset, Ht, of the market’s
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information. Engel shows that the model, along with the Rational Expectations Hypothesis,
implies the following inequality11

var(st − st−1) ≤ var(ŝt − ŝt−1)

For simplicity, we test this bound by assuming that ft follows an AR(1) around a determin-
istic trend. That is, letting f̃t denote the demeaned and detrended ft process, we assume
f̃t = ρf̃t−1 + ut. In this case, we have

ŝt = α0 + α1 · t+
( 1− β

1− ρβ

)
f̃t ⇒ ∆ŝt =

( 1− β
1− ρβ

)
∆f̃t

The bottom row reports values of var(∆st)/var(∆ŝt). Not surprisingly, given our previous
results, they all exceed unity by a substantial margin, once again pointing to excess volatility
in the foreign exchange market.

1.5 Robust Volatility Tests

The results reported in the previous section are based on tests that make different assump-
tions about information, trends, and the underlying data generating process. Despite this,
a consistent picture emerges - exchange rates appear to exhibit ‘excess volatility’. Of course,
we haven’t reported standard errors, so it is possible these results lack statistical significance
(although we doubt it). However, we agree with Shiller (1989). Pinning your hopes on a
lack of significance does not really provide much support for the model. It merely says there
isn’t enough evidence yet to reject it.

Although the previous tests differ along several dimensions, there is one assumption they
all share, namely, the Rational Expectations Hypothesis (REH). As noted earlier, this is a
joint hypothesis, based on two assumptions: (1) Agents have common knowledge of the cor-
rect model, and (2) Agents make statistically optimal forecasts. Of course, many previous
researchers have interpreted Shiller’s work as evidence against the Rational Expectations
Hypothesis (including Shiller himself!). However, there is an important difference between
our response and previous responses. Previous responses have focused on the second part
of the REH, and so have studied the consequences of various kinds of ad hoc forecasting
strategies. In contrast, we try to retain the idea that agents make statistically optimal fore-
casts, and instead relax the first part of the REH. We further assume that the sort of model
uncertainty that agents confront cannot be captured by a conventional (finite-dimensional)

11Engel (2005) also derives a second bound. As before, let s∗t denote the ex post realized present value
of future fundamentals. Engel shows that the model implies var(s∗t − s∗t−1) ≤ var(st − st−1). Note, this is
like the Shiller bound, but in first differences. However, note that the direction of the bound is reversed!
Although we haven’t formally checked it, given our previous results, we suspect this bound would be easily
satisfied.
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Bayesian prior. As a result, we define an optimal forecast in terms of ‘robustness’.12 Of
course, it is possible to abandon both parts of the REH at the same time. This has been
the approach of the adaptive learning literature. For example, Kim (2009) shows that (dis-
counted) Least Squares learning about the parameters of an otherwise known fundamentals
process can generate significant exchange rate volatility (although he does not focus on
violation of variance bounds inequalities). Markiewicz (2012) assumes agents entertain a
set of competing models, each of which is adaptively estimated. She shows that endogenous
model switching can generate time-varying exchange rate volatility.

1.5.1 A Robust Hansen-Sargent Prediction Formula

In contrast to the previous section, where agents knew the monetary model was the true
data-generating process, here we suppose agents entertain the possibility that they are
wrong. Although the monetary model is still regarded as a useful benchmark, agents sus-
pect the model could be misspecified in ways that are difficult to capture with a standard
Bayesian prior. To operationalize the idea of a robust forecast, agents employ the device
of a hypothetical ‘evil agent’, who picks the benchmark model’s disturbances so as to max-
imize the agent’s mean-squared forecast errors. Since the sequence of error-maximizing
disturbances obviously depends on the agent’s forecasts, agents view themselves as being
immersed in a dynamic zero-sum game. A robust forecast is a Nash equilibrium of this
game.

We provide two solutions to this game. The first makes the agent’s present value fore-
casts maximally robust, in the sense that the (population) mean-squared error remains
totally invariant to a wide spectrum of potential dynamic misspecifications. As stressed by
Hansen and Sargent (2008), this may not be an empirically plausible solution, as it may
reflect concerns about alternative models that could be easily rejected given the historically
generated data. We want our agents to be prudent, not paranoid. It will also turn out
to be the case that maximally robust forecasts deliver too much exchange rate volatility.
Hence, we also construct a solution that limits the freedom of the evil agent to subvert the
agent’s forecasts. The more we penalize the actions of evil agent, the closer we get to the
conventional minimum mean-squared error forecast. Our empirical strategy is to first select
a penalty parameter that replicates observed exchange rate volatility. We then calculate
the detection error probability associated with this parameter value. We find that detection
error probabilities in the range of 10-20% can explain observed exchange rate volatility.13

To handle general forms of dynamic misspecification, it is convenient to solve the problem
in the frequency domain. As a first step, let’s return to the problem of forecasting the present

12It is possible to provide axiomatic foundations that formalize the connection between robustness and
optimality. See, e.g., Strzalecki (2011).

13Note, our focus on detection error probabilities differentiates our approach from the the ‘rare disasters’
literature. In that literature, agents are hedging against very low probability events. See, e.g., Farhi and
Gabaix (2011).
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value of fundamentals (eq. (1.2.2)) under the assumption that the data-generating process
is known. In particular, suppose agents know that the Wold representation for fundamentals
is ft = A(L)εt. Transformed to the frequency domain our problem becomes (omitting the
(1− β) constant for simplicity),

min
g(z)∈H2

1
2πi

∮ ∣∣∣∣ A(z)
1− βz−1 − g(z)

∣∣∣∣ dzz (1.5.7)

where
∮

denotes contour integration around the unit circle, and H2 denotes the Hardy
space of square-integrable analytic functions on the unit disk. Once we find g(z), the time-
domain solution for optimal forecast is st = (1 − β)g(L)εt. Restricting the z-transform of
g(L) to lie in H2 guarantees the forecast is ‘causal’, i.e., based on a square-summable linear
combination of current and past values of the underlying shocks, εt. The solution of the
optimization problem in (1.5.7) is a classic result in Hilbert space theory (see, e.g., Young
(1988), p. 188). It is given by,

g(z) =
[

A(z)
1− βz−1

]
+

(1.5.8)

where [·]+ denotes an ‘annihilation operator’, meaning ‘ignore negative powers of z’. From
(1.5.8) it is a short step to the Hansen-Sargent prediction formula. One simply subtracts
off the principal part of the Laurent series expansion of A(z) around the point β (see, e.g.,
Hansen and Sargent (1980, Appendix A)). This yields

g(z) = A(z)− βA(β)z−1

1− βz−1

which is the well know Hansen-Sargent formula. (Note that g(z) ∈ H2 by construction,
since the pole at z = β is cancelled by a zero at z = β).

Now, what if the agent doesn’t know the true Wold representation of ft? In particular,
suppose the z-transform of the actual process is Aa(z) = An(z) + ∆(z), where An(z) is
the agent’s original benchmark (or nominal) model, and ∆(z) is an unknown (one-sided)
perturbation function. Applying (1.5.8) in this case yields the following mean-squared
forecast error:

La = Ln + ||∆(z)||22 + 2
2πi

∮
∆(z)

[
A(z)

1− βz−1

]
−

dz

z

= Ln + ||∆(z)||22 + 2
2πi

∮
∆(z)

(
βA(β)
z − β

)
dz

z
(1.5.9)

where [·]− is an annihilation operator that retains only negative powers of z, and La and
Ln denote actual and nominal mean-squared forecast errors. The point to notice is that
La could be much greater than Ln, even when ||∆(z)||22 is small, depending on how ∆(z)
interacts with β and A(z). To see this, apply Cauchy’s Residue Theorem to (5.9), which
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yields
La = Ln + ||∆(z)||22 + 2A(β)[∆(β)−∆(0)]

Notice that the last term is scaled by A(β) which, though bounded, could be quite large.
It turns out that the key to achieving greater robustness to model misspecification is to
switch norms. Rather than evaluate forecast errors in the conventional H2 sum-of-squares
norm, we are now going to evaluate them in the H∞ supremum norm. In the H∞-norm
the optimal forecasting problem becomes14

min
g(z)∈H∞

max
|z|=1

∣∣∣∣ A(z)
1− βz−1 − g(z)

∣∣∣∣2 (1.5.10)

where H∞ denotes the Hardy space of essentially bounded analytic functions on the unit
disk.15 Problem (1.5.10) is an example of a wide class of problems known as ‘Nehari’s
Approximation Problem’, which involves minimizing the H∞ distance between a two-sided
L∞ function and a one-sided H∞ function. For this particular case, Kasa (2001) proves
that the solution takes the following form

g(z) = zA(z)− βA(β)
z − β

+ β2

1− β2A(β) (1.5.11)

Notice that the first term is just the conventional Hansen-Sargent formula. The new element
here comes from the second term. It shows that a concern for robustness causes the agent
to revise his forecasts more aggressively in response to new information. Note that this
vigilance is an increasing function of β. As β → 1 the agent becomes more and more
concerned about low frequency misspecifications.16 It is here that the agent is most exposed
to the machinations of the evil agent, as even small misjudgments about the persistent
component of fundamentals can inflict large losses on the agent. Of course, the agent pays
a price for this vigilance, in the form of extra noise introduced at the high end of the
frequency spectrum. An agent concerned about robustness is happy to pay this price.

To illustrate the role of robust forecasts in generating exchange rate volatility, we con-
sider the spread, φt = st−ft, as a present value forecast of future values of ∆ft, and assume
∆ft is an AR(1), so that A(L) = 1/(1 − ρL) in the above formulas. Because the forecasts
begin at j = 1 in this case, the Hansen-Sargent formula changes slightly (see eq. (1.2.5)).
One can readily verify that the second term in the robust forecast remains unaltered.

14Using the sup norm to attain robustness is a time-honored strategy in both statistics (Huber (1981))
and control theory (Zames (1981)).

15In principle, we should write ‘inf’ and ‘sup’ in (1.5.10), but in our case it turns out that the extrema are
attained.

16This intuition is also the key to the Engel-West (2005) Theorem, which shows that exchange rates
converge to random walks as β → 1. This happens because agents become increasingly preoccupied by the
permanent component of fundamentals as β → 1.
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Table 1.4 reports ratios of actual to predicted spread variances for both traditional and
robust forecasts.

Table 1.4: Robust Volatility Tests

Aus Can Den Jap Swz UK

NonRobust AR(1) Forecast
var(φ)/var(φ̂) 3486. 1091. 3482. 1162. 15661. 740.1

Robust AR(1) Forecasts
var(φ)/var(φ̂) .227 .291 .478 .358 .218 .363

AR coef .197 .380 .281 .404 .092 .488

Notes: (1) Both bounds based on predictions of φ = s− f using an AR(1) model for ∆f .
(2) When computing present values, it is assumed β = .98.

Here traditional forecasts look even worse than before, partly because we are failing to
account for potential inside information, as we did in the Campbell-Shiller tests, and also
partly because an AR(1) benchmark model is probably a bit too simple. Note, however, that
this only makes our job harder when it comes to explaining excess volatility. The key results
are contained in the middle row of Table 1.4, which reports ratios of actual to predicted
spread variances with robust forecasts. Notice that all are well below one. If anything,
robust forecasts generate too much volatility! This is illustrated by Figure 2, which plots of
the actual spread (blue dashed line) against the nonrobust predicted spread (solid red line)
and robust predicted spread (black dotted line). The Shiller plot is inverted!17

Perhaps not surprisingly in light of eq. (1.5.11), the results here are rather sensitive to
the value of β. For example, the above results assume β = .98. If instead we set β = .92,
then all variance ratios exceed one and the model continues to generate excess volatility.
This is not a serious problem in our view, since with quarterly data β = .98 is a more
plausible value. A potentially more serious issue arises from the possibility that the agent is
being excessively pessimistic here, and is worrying about alternative models that have little
likelihood of being the true data-generating process. Fortunately, it is easy to avoid this
problem by parameterizing the agent’s concern for robustness. We do this by penalizing
the actions of the evil agent.

1.5.2 The Evil Agent Game

The previous results incorporated robustness by evaluating forecast errors in the H∞-norm.
This delivers the maximal degree of robustness, but may entail unduly pessimistic beliefs.
Following Lewis and Whiteman (2008), we now go back to the H2-norm, and instead model

17We use eq. (1.5.11) to generate the time path of the robust spread. Expressed in terms of observables,
this implies

φ̂
r
t =

1
1− βρ

[(
βρ +

β2

1− β2

)
∆ft −

ρβ2

1− β2
∆ft−1

]
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Figure 1.2: Actual vs. Robust Predictions of the Spread

Figure 2: Actual vs. Robust Predictions of the Spread
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robustness by penalizing the actions of the hypothetical evil agent. In particular, we assume
the evil agent picks shocks subject to a quadratic penalty. As emphasized by Hansen and
Sargent (2008), a quadratic penalty is convenient, since in Gaussian environments it can be
related to entropy distortions and the Kullback-Leibler Information Criterion, which then
opens to door to an interpretation of the agent’s worst-case model in terms of detection
error probabilities. This allows us to place empirically plausible bounds on the evil agent’s
actions.

One new issue arises here. Normally, the choice between modeling the level of the
exchange rate (eq. (1.2.2)) and modeling the spread (eq. (1.2.4)) is based solely on statistical
considerations. However, here there is a substantive issue at stake. If we view the agent as
constructing a robust forecast of the spread, we are effectively conditioning on the current
value of ft, meaning that we are not permitting the evil agent to maliciously select current
shock realizations. In contrast, most applications of robust control view the agent and
his evil twin as making simultaneous (Nash) choices. Although it might seem natural to
condition forecasts on current fundamentals, remember that here we want the agent to
worry about potential unobserved fundamentals. If there are unobserved fundamentals, it
would actually be less robust to condition on the current level of ft. Hence, even if it makes
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more sense statistically to examine the spread, we want to first compute a robust forecast
of st, and then use standard manipulations to write st − ft in terms of ∆ft. (Note, due to
discounting, levels forecasts are still well defined even when there are unit roots in st and
ft).

To begin, we assume the agent has a benchmark (nominal) model, ft = An(L)εt. At
the same time, he realizes this model may be subject to unstructured perturbations of the
form ∆(L)εt, so that the actual model becomes, ft = Aa(L)εt = An(L)εt + ∆(L)εt. The
Evil Agent Game involves the agent selecting a forecast function, g(L), to minimize mean-
squared forecast errors, while at the same time the evil agent picks the distortion function,
∆(L). Hence, both agents must solve a calculus of variations problem. These problems are
related to each other, and so we must solve for a Nash equilibrium. Following Lewis and
Whiteman (2008), we can express the problem in the frequency domain as follows

min
g(z)

max
Aa(z)

1
2πi

∮ {∣∣∣∣ Aa(z)
1− βz−1 − g(z)

∣∣∣∣2 − θ ∣∣∣∣Aa(z)−An(z)
1− βz−1

∣∣∣∣2
}
dz

z
(1.5.12)

where for convenience we assume the evil agent picks Aa(z) rather than ∆(z). The key
element here is the parameter θ. It penalizes the actions of the evil agent. By increasing
θ we get closer to the conventional minimum mean-squared error forecast. Conversely, the
smallest value of θ that is consistent with the concavity of the evil agent’s problem delivers
the maximally robust H∞ solution.

The Wiener-Hopf first-order condition for the agent’s problem is

g(z)− 1
1− βz−1A

a(z) =
−1∑
∞

(1.5.13)

where
∑−1
∞ denotes an arbitrary function in negative powers of z. The evil agent’s Wiener-

Hopf equation can be written

(1− θ)Aa(z)
1− βz − 1− βz−1

1− βz g(z) + θAn(z)
1− βz =

−1∑
∞

(1.5.14)

Applying the annihilation operator to both sides of eq. (1.5.13), we can then solve for the
agent’s policy in terms of the policy of the evil agent

g(z) = zAa(z)− βAa(β)
z − β

Then, if we substitute this into the evil agent’s first-order condition and apply the annihi-
lation operator we get

−θAa(z)
1− βz +

[
βz−1Aa(β)

1− βz

]
+

+ θAn(z)
1− βz = 0

19



which then implies

Aa(z) = An(z) + β2

θ
Aa(β) (1.5.15)

To determine Aa(β) we can evaluate (1.5.15) at z = β, which implies Aa(β) = θAn(β)
θ−β2 .

Substituting this back into (1.5.15) yields

Aa(z) = An(z) + β2

θ − β2A
n(β) (1.5.16)

This gives the worst-case model associated with any given benchmark model. In game-
theoretic terms, it represents the evil agent’s reaction function. Finally, substituting (1.5.16)
into the above solution for g(z) delivers the following robust present value forecast

g(z) = zAn(z)− βAn(β)
z − β

+ β2

θ − β2A
n(β)

Notice that as θ → ∞ we recover the conventional minimum mean-squared error solution.
Conversely, notice the close correspondence to the previous H∞ solution when θ = 1.

1.5.3 Detection Error Calibration

The idea here is that the agent believes An(L)εt is a useful first-approximation to the
actual data-generating process. However, he also recognizes that if he is wrong, he could
suffer large losses. To minimize his exposure to these losses, he acts as if ft = Aa(L)εt
is the data-generating process when formulating his present value forecasts. Reducing θ
makes his forecasts more robust, but produces unnecessary noise if in fact the benchmark
model is correct. To gauge whether observed exchange rate volatility might simply reflect a
reasonable response to model uncertainty, we now ask the following question - Suppose we
calibrate θ to match the observed volatility of the spread, st− ft. (We know this is possible
from the H∞ results). Given this implied value of θ, how easy would it be for the agent to
statistically distinguish the worst-case model, Aa(L), from the benchmark monetary model,
An(L)? If the two would be easy to distinguish, then our explanation doesn’t carry much
force. However, if the probability of a detection error is reasonably large, then we claim that
model uncertainty provides a reasonable explanation of observed exchange rate volatility.

To begin, we need to take a stand on the benchmark model. For simplicity, we assume
∆ft follows an AR(1), so that An(L) = 1/[(1− ρL)(1−L)]. (We de-mean the data). Given
this, note that eq. (1.5.16) then implies the worst case model, Aa(L), is an ARMA(1,1),
with the same AR root. To facilitate notation, we write this model as follows,

∆ft = 1 + κ− ρκL
1− ρL εt
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where κ ≡ β2

θ−β2
1

1−ρβ . Notice that κ→ 0 as θ →∞, and the two models become increasingly
difficult to distinguish. As always, there are two kinds of inferential errors the agent could
make: (1) He could believe An is the true model, when in fact Aa is the true model, or
(2) He could believe Aa is the true model, when in fact An is the true model. Denote
the probability of the first error by P (An|Aa), and the probability of the second error by
P (Aa|An). Following Hansen and Sargent (2008), we treat the two errors symmetrically, and
define the detection error probability, E , to be 1

2 [P (An|Aa) + P (Aa|An)]. From Taniguchi
and Kakizawa (2000) (pgs. 500-503), we have the following frequency domain approximation
to this detection error probability,

E = 1
2

{
Φ
[
−
√
T
I(An, Aa)
V (An, Aa)

]
+ Φ

[
−
√
T
I(Aa, An)
V (Aa, An)

]}
(1.5.17)

where T is the sample size and Φ denotes the Gaussian cdf.18 Note that detection error
probabilities decrease with T . The I functions in (1.5.17) are the KLIC ‘distances’ between
the two models, given by

I(An, Aa) = 1
4π

∫ π

−π

[
− log |A

n(ω)|
|Aa(ω)| + An(ω)

Aa(ω) − 1
]
dω (1.5.18)

I(Aa, An) = 1
4π

∫ π

−π

[
− log |A

a(ω)|
|An(ω)| + Aa(ω)

An(ω) − 1
]
dω (1.5.19)

The V functions in (1.5.17) can be interpreted as standard errors. They are given by the
square roots of the following variance functions

V 2(An, Aa) = 1
4π

∫ π

−π

[
An(ω)

( 1
An(ω) −

1
Aa(ω)

)]2
dω (1.5.20)

V 2(Aa, An) = 1
4π

∫ π

−π

[
Aa(ω)

( 1
Aa(ω) −

1
An(ω)

)]2
dω (1.5.21)

18The same formula applies even when the underlying data are non-Gaussian. All that changes is that
higher-order cumulants must be added to the variance terms in (5.20)-(5.21). However, for simplicity, we
suppose the agent knows the data are Gaussian. Intuitively, we suspect that relaxing this assumption would
only strengthen our results.
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By substituting in the expressions for Aa and An and performing the integrations, we obtain
the following expressions for I functions19

I(An, Aa) = 1
2

[
log(1 + κ) + 1

(1 + κ)2(1− ψ2) − 1
]

I(Aa, An) = 1
2
[
− log(1 + κ) + (1 + κ)2(1 + ψ2)− 1

]
where ψ ≡ ρκ/(1 + κ). As a simple reality check, note that θ → ∞ ⇒ κ → 0 ⇒ I → 0,
which we know must be the case. Now, doing the same thing for the V functions gives us

V 2(An, Aa) = 1
2

1
(1 + κ)2(1− ψ2)

[
(1 + κ)4 − 2(1 + κ)2 + 1 + ψ2

(1− ψ2)2

]

V 2(Aa, An) = 1
2

[ 1
(1 + κ)2 − 2(1 + ψ2) + (1 + 4ψ2 + ψ4)(1 + κ)2

]
We use these formulas as follows. First, we estimate country-specific values of ρ. These are
given in the bottom row of Table 1.4. Then we calibrate θ for each country to match the
observed variance of its spread, st− ft. The resulting values are reported in the first row of
Table 1.5. Since the earlier H∞ forecasts generated too much volatility, it is not surprising
that the implied values of θ all exceed one (but not by much). Finally, as we have done
throughout, we set β = .98. We can then calculate the κ and ψ parameters that appear in
the above detection error formulas. The results are contained in the second and third rows
of Table 1.5.

We report detection error probabilities for two different sample sizes. The first assumes
T = 150, which is (approximately) the total number of quarterly observations available in
our post-Bretton Woods sample. In this case, the agent could distinguish the two models at
approximately the 10% significance level.20 Although one could argue this entails excessive
pessimism, keep in mind that the data are generated in real-time, and so agents did not
have access to the full sample when the data were actually being generated. As an informal

19We employed the following trick when evaluating these integrals. First, if An(L) = 1
1−ρL , we can then

write Aa = (1 + κ) 1−ψL
1−ρL , where κ is defined above and ψ = ρκ/(1 + κ). We then have (omitting inessential

constants)∮
− log |A

n|
|Aa|

dz

z
=
∮

log(1 + κ)dz
z

+
∮

log
∣∣∣∣1− ψz1− ρz

∣∣∣∣ dzz −
∮

log
∣∣∣∣ 1
1− ρz

∣∣∣∣ dzz = log(1 + κ)

where the last equality follows from the well known innovation formula, 1
2π

∫ π
−π log f(ω)dω = log(σ2), where

f(ω) is the spectral density of a process, and σ2 is its innovation variance. This cancels the last two terms
since they have the same innovation variance. The same trick can be used to evaluate the other log integral.

20It is a little misleading to describe these results in the language of hypothesis testing. The agent is not
conducting a traditional hypothesis test, since both models are treated symmetrically. It is more accurate
to think of the agent as conducting a pair of hypothesis tests with two different nulls, or even better, as
a Bayesian who is selecting between models with a uniform prior. The detection error probability is then
expected loss under a 0-1 loss function.
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Table 1.5: Evil Agent Game: Calibrated Detection Errors

Aus Can Den Jap Swz UK

θ 1.0442 1.0349 1.0178 1.0273 1.0454 1.0220

Det Error Prob(T = 150) .083 .109 .112 .119 .075 .131

Det Error Prob (T = 100) .107 .131 .134 .140 .099 .151

Notes: (1) θ calibrated to match observed variance of φ = s− f .
(2) When computing present values, it is assumed β = .98.

correction for this, we also report detection error probabilities assuming T = 100. Now the
detection error probabilities lie between 10-15%.

1.6 Other Puzzles

Excess volatility is not the only puzzle plaguing the foreign exchange market. Undoubtedly,
the most widely studied puzzle is the forward premium puzzle, based on the observation
that high interest rate currencies appreciate on average. Many proposed explanations of
this puzzle link it to another puzzle, ie., the ‘delayed overshooting puzzle’.21 More recently,
Engel (2012) has identified a new puzzle. One way to explain the forward premium puzzle
is to argue that high interest rate currencies are relatively risky. Engel notes that a problem
with standard risk premium theories is that the level of the exchange rate in high interest
rate countries tends to be quite strong, stronger than can be accounted for by Uncovered
Interest Parity. This suggests that high interest rate currencies are less risky.

Given these other puzzles, one natural concern is that our proposed explanation of excess
volatility comes at the expense of exacerbating one or more of these other puzzles. In this
section we show that robustness can readily account for the forward premium puzzle, but
is less successful in resolving the delayed overshooting and Engel puzzles.

1.6.1 The Forward Premium Puzzle

Efforts to explain the forward premium puzzle generally fall into one of two categories:
(1) Models with time-varying risk premia, or (2) Models with distorted expectations. Our
model clearly falls into the second category.22 Table 6 documents the forward premium

21See inter alia Eichenbaum and Evans (1995),Gourinchas and Tornell (2004), Li and Tornell (2008),
Bacchetta and van Wincoop (2010).

22In ongoing work, Djeutem (2012) studies the implications of model uncertainty and robustness in a
setting with stochastic discount factors and time-varying risk premia. He finds that Hansen-Jagannathan
bounds can be satisfied with low degrees of risk aversion as long as investors are hedging against a worst-case
consumption process with detection error probability in the same range as this paper (ie, 10-20%).
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puzzle for the case of the Canadian dollar, the Japanese yen, and the British pound. The
data are quarterly, for the period 1978:3-2011:1, and were downloaded from Engel’s website.

Table 1.6: UIP Regressions: 1978:3 - 2011:1

∆st+1 = α+ β(it − i∗t ) + εt+1

α β R2

Canada .001 −.059 .00
(.003) (.702)

Japan .027 −2.60 .07
(.008) (.816)

UK −.007 −1.28 .02
(.006) (.810)

The puzzle is that not only is β not equal to one, its point estimate is actually negative,
and significantly less than one for Japan and the UK. These results are quite typical and
quite robust (at least for the major currencies). On the surface, it would seem that our model
is incapable of addressing this puzzle. After all, the monetary model assumes Uncovered
Interest Parity! Remember, however, that we are not assuming Rational Expectations.
Although by construction our model would satisfy UIP in the event the agent’s worst-
case model is the true data-generating process, if instead his benchmark model is the true
model, so that his doubts are only ‘in his head’, then the agent’s forecasts are biased, and
this bias produces systematic deviations from UIP. Following Hansen and Sargent (2008),
these deviations can be interpreted as a ‘model uncertainty premium’, as opposed to a risk
premium.

Since our primary goal here is to address excess volatility, we make no pretense to
providing a full treatment of the links between robustness and the forward premium puzzle.
Instead, we merely show that a reasonably parameterized example can generate the sort of
deviations from UIP that are seen in the data. As noted earlier, an empirically plausible
specification for fundamentals is the ARIMA(1,1,0) process, ∆ft = ρ∆ft−1 +εt. Given this,
the robust spread can be written as follows:

st − ft = 1
1− βρ

[
βρ∆ft +

(
β2

θ − β2

)
(∆ft − ρ∆ft−1)

]
which then implies:

∆st+1 = 1
1− βρ

[
ρ(1− β)∆ft −

(
β2

θ − β2

)
εt +

(
1 + β2

θ − β2

)
εt+1

]
There are two new features here. First, notice that the middle term generates an omitted
variables bias in conventional UIP regressions. Evidently, the bias is downward. Second,
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notice from the third term that robust expectations produce a more volatile error term,
which potentially explains why UIP regressions typically have rather low R2’s.

Now, PPP and money demand imply the following relationship between the nominal
interest differential and the spread: st−ft = β(it−i∗t )/(1−β). With Rational Expectations
(i.e, as θ →∞) we would also have st− ft = ρβ

1−ρβ∆ft, which would imply UIP holds in the
above equation. However, if we instead relate the nominal interest differential to the robust
spread, we obtain the following relationship between exchange rate changes and nominal
interest rate differentials:

∆st+1 = ψ(it − i∗t ) + ρβ2

(1− βρ)(θ − β2)

[
1 + ψ

1− β
β

]
∆ft−1 +

(
1 + β2

θ − β2

)
εt+1

where the UIP regression slope coefficient is given by

ψ = 1− τ/(1− β)
1 + τ/β

τ = β2

ρ(θ − β2)

Note that ψ → 1 as θ → ∞, as it should. More importantly, notice that ψ < 0 for
θ < β

√
1 + [ρ(1− β)]−1, which offers some hope of resolving the forward premium puzzle.

To gauge this, we take parameter values from our above resolution of the excess volatility
puzzle, and see what they would imply about regressions of ∆st+1 on lagged interest rate
differentials. In principle, the entire history of it − i∗t should appear, but it is clear that
for modest values of ρ these lags damp out quite quickly. To simplify, we just report the
implied coefficients on the first two lags.

Table 1.7: Robust UIP Regressions

∆st+1 = β1(it − i∗t ) + β2(it−1 − i∗t−1) + εt+1

β1 β2 Implied θ
Canada −47.6 0.20 120.1

Japan −47.7 0.22 32.2

UK −47.5 0.35 43.0
Notes: (1) βi coefficients based on country-specific values of θ and ρ from Tables 4 and 5.

(2) Implied θ calibrated to match observed UIP slope estimates.

Evidently, we have a case of coefficient overshooting! Not only do we get negative
implied coefficients, but they are far too negative. What’s happening is that initial exchange
rate reactions greatly exceed their final equilibrium, but revert to it quite quickly. At the
same time, positive persistence in ∆ft means that interest differentials approach their new
equilibrium level more gradually. These movements generate a negative correlation between
∆st+1 and it−i∗t . Of course, traditional UIP regressions only include the first lag, and given
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the positive persistence in interest differentials, this omitted variable bias would moderate
the estimates on the first lag somewhat. However, it seems unlikely this would bring them
down enough. An alternative reconciliation is to consider less extreme values of θ. In fact,
we can pursue the exact same calibration strategy that we used for the volatility puzzle,
and simply pick a value of θ that replicates empirical findings. These implied values of θ are
reported in the final column of Table 1.7. Naturally, they are much larger. Interestingly,
this suggests that the forward premium puzzle is actually easier to explain than the excess
volatility puzzle, in the sense that detection error probabilities are larger in this case. It
would be interesting to consider both puzzles simultaneously, and attempt to find a single
value of θ that achieves some optimal compromise between the two puzzles. However, we
leave this for future work.

That overreaction can explain the forward premium puzzle is not too surprising in
light of the recent work of Burnside, Han, Hirshleifer, and Wang (2011). However, there
is an important difference between their model and ours. They attribute overreaction to
‘irrationality’, which produces overconfidence. They appeal to psychological evidence in
support of this posited irrationality. In contrast, we argue that it can be quite rational to
overreact to news if you are unsure (in a Knightian sense) about the underlying model.

Finally, it should be noted that whether overreaction explains the forward premium
puzzle depends on the underlying source of model uncertainty.23 Our monetary model pre-
sumes money and income are the exogenous determinants of exchange rates, which agents
then attempt to forecast. For the sake of argument, suppose these fundamentals are sta-
tionary. Then, without model uncertainty, a positive money shock drives down the nominal
interest rate and causes the exchange rate to depreciate. The interest rate falls because the
price level rises less than the money supply (due to known mean reversion). During the
transition back to the steady state, we find negative interest rates accompanied by currency
appreciation, in accordance with Uncovered Interest Parity. With model uncertainty, how-
ever, nominal interest rates can rise in response to a positive money shock, since the price
level (and exchange rate) can rise more than the money supply. In this case, one would
find positive interest rates accompanied by subsequent currency appreciation, as seen in the
data. However, what if instead we suppose interest rates are the exogenous determinants of
exchange rates? This might be a reasonable assumption if Central Banks follow an interest
rate rule. Now the present value model is st = −Et

∑∞
j=0(it+j − i∗t+j). Overreaction to

an exogenous interest rate shock now produces an upward bias in the estimated UIP slope
coefficient.24

23We thank an anonymous referee for pointing this out.
24Ilut (2012) assumes interest rates are exogenous, and is still able to explain the forward premium puzzle

by appealing to robust, ambiguity averse, forecasts. Interestingly, his model predicts a state dependent UIP
slope coefficient. However, we suspect his model exacerbates the excess volatility puzzle.
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1.6.2 The Delayed Overshooting and Engel Puzzles

Although robustness seems to offer a promising route toward resolving two of the leading
puzzles in foreign exchange markets, it seems less promising as an explanation of the delayed
overshooting and Engel puzzles. Since both these puzzles relate real exchange rates to real
interest differentials, we must obviously modify our benchmark monetary model in some
way if we are to even get started, since it imposes PPP, and PPP does not depend on
expectations in this model. A natural way of doing this is to relax the assumption of
exogenous monetary policy, and to instead follow the recent literature on Taylor Rules
and exchange rates. In particular, we can simply import the following real exchange rate
equation from Engel and West (2006) (see their paper for motivation and details):

qt = (1− β)ft + βEtqt+1

where qt is the real exchange rate, defined as the relative price of foreign goods. Notice that
this has the exact same form as eq. (1.2.1). Now, however, ft refers to the following Taylor
rule fundamentals:

ft = 1
χ

[
ψπEt(π∗t+1 − πt+1) + ψy(y∗t − yt)

]
where χ > 0 is the coefficient on the foreign central bank’s reaction to real exchange rates.
It turns out that β = 1/(1 + χ), which given empirically plausible values of χ, once again
implies that β should be quite close to unity. The ψπ and ψy coefficients can be inferred
from standard Taylor rule estimates.

Engel and West (2006) apply this equation to the case of the deutschmark-dollar real
exchange rate. They find some support for it. Interestingly, however, they find that it
does not generate sufficient volatility. We instead suppose that the Central Bank (and the
public) formulate robust expectations. Superficially, the analysis can proceed exactly as
before. There is one important difference, however. Now fundamentals are endogenous. In
particular, the model implies the following relationship between ft and qt:

ft = β

1− β (r∗t − rt) + qt

where r∗t − rt is the real interest rate differential. If one were to specify a process for ft, use
it to evaluate the present value, and then take account of endogeneity, one would find that
real interest parity holds. That is, one would find:

qt+1 − qt = rt − r∗t + εt+1 (1.6.22)

where εt+1 is an i.i.d, mean zero projection error. Engel (2012) shows that in fact the same
sort of anomalous results are obtained with real exchange rates, i.e., estimated coefficients
on rt−r∗t are usually negative. Moreover, he points to a new puzzle confronting conventional
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risk premium explanations of these results. In particular, if we define λt = r∗t−rt+Etqt+1−qt
as the period-t risk premium on the foreign currency, we can iterate eq. (1.6.22) forward
(assuming stationarity of the real interest differential), and obtain the following expression
for the level of the real exchange rate

qt = q̄ −Rt − Λt

where q̄ = limj→∞(Etqt+j) is the long-run mean of the real exchange rate, and Rt =
Et
∑∞
j=0(rt+j − r∗t+j − r̄) and Λt = Et

∑∞
j=0(λt+j − λ̄). Engel refers to Λt as the ‘level risk

premium’, since it relates risk to the level of the real exchange rate. Using VARs to compute
present values, Engel shows that cov(Λt, rt − r∗t ) > 0. That is, when domestic real interest
rates are relatively high, the domestic currency is less risky. Of course, there is no necessary
conflict between having a currency be relatively risky in the short-run and relatively safe
in the long-run, but Engel goes on to show that conventional risk premium models fail to
generate the necessary sign reversal.

As was the case with nominal interest parity, robust forecasts will generate systematic
deviations from real interest parity if in fact the benchmark Taylor Rule model is the true
DGP. These deviations can be interpreted as a ‘model uncertainty premium’. Can model
uncertainty premia explain the Engel (2012) puzzle? Following the exact same procedures
as before, we can derive the following expression for the real exchange rate (assuming, as
in Engel (2012), the real interest differential is stationary):

qt = (1− β)
{[

LA(L)− βA(β)
L− β

]
vt +

(
β2

θ − β2

)
A(β)vt

}
(1.6.23)

where ft follows the process, ft = A(L)vt. A subtlety arises here from the combination of
robust forecasts and the endogeneity of ft. For example, suppose we adopt the empirically
plausible assumption that the real interest differential follows the AR(1) process, (r∗t −rt) =
ρ(r∗t−1 − rt−1) + vt. Then, because ft = β

1−β (r∗t − rt) + qt, the robust real exchange rate
equation in (1.6.23) implies that ft is actually an ARMA(1,1). One can readily verify that
qt inherits the same AR root as the real interest differential, but the MA root must be found
via a fixed point procedure. That is, we guess ft = A0

(
1−γL
1−ρL

)
, use this guess to evaluate

(1.6.23), and then match coefficients to find A0 and γ. It turns out A0 > 0 and 0 < γβ < 1
for feasible values of θ, so that A(β) > 0. To see what this implies about real interest parity
and the Engel puzzle, we can use (1.6.23) to derive the following equation for real exchange
rate changes:

∆qt+1 = rt − r∗t − (1− β)A(β)
(

β2

θ − β2

)
vt + (1− β)A(β)

[
1 + β

(
β2

θ − β2

)]
vt+1 (1.6.24)
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Not surprisingly, we see that real interest parity holds as θ → ∞. However, as before,
notice that for θ <∞ the middle term generates an omitted variables bias in conventional
regression tests. Substituting for vt in terms of rt − r∗t and rt−1 − r∗t−1, one finds two
offsetting effects. First, the ‘true’ coefficient (ie, with rt−1 − r∗t−1 included) exceeds unity.
Second, if the lag is excluded, the omitted variable bias is downward when ρ > 0. One can
show that for the knife-edge case, ρ = 1, the two effects exactly offset, and one would find
that real interest parity holds. If ρ > 1, one would find estimated coefficients below one,
and perhaps even negative for small enough values of θ. In this case, the Engel puzzle would
be resolved. However, for the more plausible case that ρ < 1, we would find estimates in
excess of unity. Although the model would generate needed volatility, and would explain
why high interest rate currencies are strong, it would not explain observed deviations from
real interest parity. The Engel puzzle would remain.

Engel (2012) conjectures that a resolution might be found by combining over-reaction
with ‘momentum’, and cites Hong and Stein (1999) as a promising lead. The model in
Hong and Stein generates short-term underreaction and long-term overreaction by positing
investor heterogeneity, and by assuming that dispersed private information diffuses slowly
within the market. Unfortunately, given the initial underreaction, it’s not clear whether such
a model can explain our main objective here, i.e., excess volatility. However, introducing
robustness into a model with gradual information diffusion might be a way to generate both
initial overreaction and momentum.

1.7 Concluding Remarks

This paper has proposed a solution to the excess volatility puzzle in foreign exchange mar-
kets. Our solution is based on a disciplined retreat from the Rational Expectations Hy-
pothesis. We abandon the assumption that agents know the correct model of the economy,
while retaining a revised notion of statistically optimal forecasts. We show that an empir-
ically plausible concern for robustness can explain observed exchange rate volatility, even
in a relatively simple environment like the constant discount rate/flexible-price monetary
model.

Of course, there are many competing explanations already out there, so why is ours
better? We think our approach represents a nice compromise between the two usual routes
taken toward explaining exchange rate volatility. One obvious way to generate volatility
is to assume the existence of bubbles, herds, or sunspots. Although these models retain
the idea that agents make rational (self-fulfilling) forecasts, in our opinion they rely on
an implausible degree of expectation coordination. Moreover, they are often not robust to
minor changes in market structure or information. At the other end of the spectrum, many
so-called ‘behavioral’ explanations have the virtue of not relying on strong coordination
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assumptions, but only resolve the puzzle by introducing rather drastic departures from
conventional notions of optimality.

As noted at the outset, our paper is closely related to Lewis and Whiteman (2008).
They argue that robustness can explain observed US stock market volatility. However,
they also find that if detection errors are based only on the agent’s ability to discriminate
between alternative models for the economy’s exogenous dividend process, then implausibly
small detection error probabilities are required. If instead detection errors are based on the
agent’s ability to discriminate between bivariate models of dividends and prices, then stock
market volatility can be accounted for with reasonable detection errors. This is not at all
surprising, since robustness delivers a substantially improved fit for prices. Interestingly,
we find that even if detection errors are only based on the exogenous fundamentals process,
exchange rate volatility can be accounted for with reasonable detection error probabilities.
Still, one could argue that they are a bit on the low side, so it might be a useful extension to
apply the bivariate Lewis-Whiteman approach to computing detection error probabilities.
We conjecture that this would only strengthen our results. A second useful extension
would be to consider in more detail the links between robustness and other exchange rate
puzzles. For example, while we have shown that robust forecasts can also explain the
forward premium puzzle, it would interesting to see to what extent both puzzles can be
explained simultaneously.

30



Chapter 2

Model Uncertainty and the
Forward Premium Puzzle

This chapter1 studies the Forward Premium Puzzle in a setting where investors doubt the
specification of their models, and thus engage in robust portfolio strategies ( Hansen and
Sargent (2008)). It shows that an empirically plausible concern for model misspecification
can explain the Forward Premium Puzzle. In particular, the paper shows that Hansen and
Jagannathan (1991) volatility bounds can be attained with both reasonable degrees of risk
aversion and reasonable detection error probabilities. Hence, observed excess returns in the
foreign exchange market appear to be primarily driven by a model uncertainty premium.

2.1 Introduction

It is commonly found in empirical international finance that high interest rate currencies
tend to appreciate on average, while Uncovered Interest Parity (UIP) predicts they should
depreciate. That is, under the joint hypotheses of Rational Expectations and risk neutrality,
the regression of realized exchange rate changes on interest rate differentials should give a
coefficient of one. Most studies find that not only is this coefficient statistically different
from one, but it is often negative.2 One common explanation attributes this failure to
time varying risk premia. However, empirical tests using standard utility models require
implausibly high degrees of risk aversion to account for observed excess returns in foreign
exchanges markets.3

This paper revisits the puzzle in a setting where investors are both risk and ambiguity
averse. Following Hansen and Sargent (2008), I use the notion of a preference for robustness4

1This chapter was published in the Journal of International Money and Finance, 46 (2014) 16-40
2Prominent examples include Hansen and Hodrick (1980), Fama (1984), Engel (1996) and Bansal and

Dahlquist (2000).
3See inter alia Engel (1996) and Mark (2001) for a review of conventional risk premium explanations.
4I use interchangeably the expressions model uncertainty, robustness, knightian uncertainty and ambigu-

ity aversion.
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to distinguish between risk and ambiguity. More specifically, I consider an ambiguity averse
investor who decides how much to consume and how much to invest in domestic and foreign
bonds. The overall portfolio is therefore risky due to exchange rate risk, and the investor is
assumed to be uncertain about the low frequency covariance between consumption growth
and the exchange rate.

In my model, fears of misspecification pertain to the equilibrium consumption growth
process. In response, the agent constructs a set of unstructured alternative consumption
growth models surrounding a benchmark approximating model. Each model in this set is
difficult to distinguish statistically from the benchmark model. I use model detection theory
(Anderson, Hansen, and Sargent (2003)) to calibrate the robustness parameter, and show
that there is strong empirical evidence supporting the ambiguity aversion interpretation.
In fact, the paper shows that a model uncertainty premium is more important than a risk
premium in explaining the forward premium puzzle.

Behavioural foundations for robustness go back to Knight (1921), who tried to distin-
guish between risk and uncertainty. For Knight, uncertainty refers to situations where
a decision-maker does not know the probability distribution of an event, while risk cor-
responds to the case where this probability distribution is known or can be constructed
from past data. Although most economists found Knight’s arguments intuitively plausible,
Savage (1954) showed that this distinction is irrelevant when individuals can formulate sub-
jective probabilities. However, Ellsberg (1961) urn experiments suggest that, empirically,
individuals seem to have a preference for knowing the probability distribution rather than
having to form it subjectively. One of the most attractive approaches that takes account
of the Ellsberg paradox is the multiple priors (or maxmin) approach developed by Gilboa
and Schmeidler (1989). They show that in the presence of Knightian uncertainty, agents
cannot form a unique probability distribution over states of the world. As a result, they
proposed an approach where agents formulate multiple priors, and then base decisions on
the worst probability measure. This approach has been extended to dynamic recursive en-
vironments by Hansen and Sargent (2008). It is inspired by robust control theory, widely
used in engineering, and gives rise to so called multiplier preferences.5

This paper is not the first to use ambiguity as a potential solution to the forward
premium puzzle. Li and Tornell (2008) use an overlapping generations framework with an
ambiguity averse investor and an exogenous interest rate differential. They assume interest
rate differentials are governed by temporary and persistent components that are unobserved
by investors. Rational investors thus engage in robust filtering, and systematically distort
their forecasts. A negative UIP coefficient is then the result of forecast distortion in response
to interest rate differential shocks. Recently, Ilut (2012) used a similar assumption and

5Axiomatic characterization of these preferences are provided by Strzalecki (2011) and Maccheroni, Mari-
nacci, and Rustichini (2006)
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showed that ambiguity averse investors systematically underestimate the hidden state of
interest rate differentials, underreacting to good news and overacting to bad news.

There are several features that distinguish this paper from Li and Tornell (2008) and
Ilut (2012). First, both these papers use a partial equilibrium model where interest rate dif-
ferentials are exogenously specified. Their solutions depend sensitively on the specification
of the interest differential. For instance, Ilut (2012, p53) shows that, with less persistence,
his model cannot account for the puzzle, while a robust decision against the higher variance
of temporary component generates a negative UIP slope. My test strategy relies on test-
ing the volatility implications of the Euler equations of a general equilibrium model. This
strategy is due to Hansen and Jagannathan (1991), and I examine the restrictions imposed
by their volatility bound using multiplier preferences. In particular, my paper addresses
the following question: can model uncertainty be an alternative to the implausibly high
degrees of risk aversion found with standard preference specifications?6 Second, these two
papers do not focus on volatility, and it is likely that the combination of underaction to
good news and overaction to bad news exacerbates the excess volatility puzzle (Djeutem
and Kasa (2013)). Third, my choice of the stochastic discount factor environment is jus-
tified by the need to generate a time varying risk premium. As pointed out by Cochrane
(2001, p. 451), and emphasized by Alvarez, Atkeson, and Kehoe (2009), variation in risk is
essential for understanding movements in assets prices. In addition, Fama (1984), Benigno,
Benigno, and Nisticò (2011), Verdelhan (2010), Menkhoff, Sarno, Schmeling, and Schrimpf
(2012) and Engel (2012) have provided evidence for a time varying risk component in the
foreign exchange markets. Fourth, these two papers do not calibrate empirically the de-
gree of model uncertainty. In contrast, I use detection error probabilities to investigate
whether implied model uncertainty premia are empirically plausible. I find that observed
excess returns can be explained if investors are hedging against models that have a 30-40%
probability of being the true model.

The remainder of the paper is organized as follows. Section 2.2 describes the framework.
Section 2.3 presents the data and the empirical results. Section 2.4 concludes, and an
appendix provides details of some mathematical derivations.

2.2 The Framework

2.2.1 The Forward Premium Puzzle

The uncovered interest parity relation states that:

(1 + it) = (1 + i∗t )
EtSt+1
St

(2.2.1)

6This paper is methodologically closely related to Tallarini (2000), Barillas, Hansen, and Sargent (2009)
and Bidder and Smith (2011).

33



where S is the spot exchange rate defined as the price of foreign currency, i and i∗

are domestic and foreign one period nominal interest rates, and Et denotes the market
expectation. Taking logarithms on both sides of the relation yields the linear approximation:

Etst+1 − st = α0 + it − i∗t (2.2.2)

where s = ln(S) and α0 is a linearization constant. Assuming Rational Expectations,

st+1 = Etst+1 + εt+1 ⇒ st+1 − st = it − i∗t + εt+1 (2.2.3)

where εt+1 is an i.i.d forecast error that is orthogonal to the time-t information set. The
last expression implies the following testable implication, often called a Fama regression:

∆st+1 = α0 + α1(it − i∗t ) + εt+1 H0 : α1 = 1 (2.2.4)

where ∆st+1 = st+1 − st. As noted in the Introduction, empirical evidence suggests that
for the major currencies α1 is actually negative. Existing explanations of these results
fall into one of two broad categories: (1) Relaxations of the risk neutrality assumption,
and (2) relaxations of the Rational Expectations Hypothesis. In what follows, I propose
an explanation that involves a sort of interaction between these two. We shall see that
ambiguity aversion can be interpreted as producing pessimistically distorted beliefs.7

2.2.2 Stochastic Discount Factors Without Robustness

Basic Set up

The setup is a simplified version of the typical consumption-based asset pricing model due
to Lucas (1978). This is a two-country flexible exchange rate model with an exogenous
nonstorable consumption good. There are two assets: a one period nominal bond in do-
mestic currency, and a one period nominal bond in foreign currency, with interest rates it
and i∗t respectively. The domestic nominal bond is a (nominally) risk free asset, while the
foreign bond is a risky asset due to exchange rate risk. Given an initial level of wealth
x0, a representative consumer wants to maximize his lifetime expected utility by choosing
how much to consume each period Ct, and how much to save Bt. A share ωt of this saving
is invested in the domestic bond, and 1 − ωt is invested in the foreign bond with return
(1 + i∗t )

St+1
St

. The consumption-saving problem is therefore:
7In this paper I am using quarterly data.
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Max
{Ct,ωt}∞t=0

E0

∞∑
t=0

βtU(Ct)

s.t. PtCt +Bt = xt,

xt+1 = Bt

[
ωt(1 + it) + (1− ωt)(1 + i∗t )

St+1
St

]
where β is the subjective discount factor. Let {Ft}∞t=0 denote a sequence of increasing
conditioning information sets available to the agent. Then E[.|Ft] is the conditional expec-
tation with respect to the information set available at date t, denoted alternatively Et. The
Bellman equation for this problem is:

V (xt) = Max
Ct,ωt

U(Ct) + βEtV (xt+1)

s.t.xt+1 =
[
ωt(1 + it) + (1− ωt)(1 + i∗t )

St+1
St

]
[xt − PtCt]

The first-order condition with respect to ωt is given by:

Et

[
β
U
′(Ct+1)
Pt+1

(
(1 + it)− (1 + i∗t )

St+1
St

)]
= 0 (2.2.5)

Multiplying both sides of 2.2.5 by Pt
U ′ (Ct)

yields:

Et

[
β
U
′(Ct+1)
U ′(Ct)

(
(1 + it)− (1 + i∗t )

St+1
St

)
Pt
Pt+1

]
= 0 (2.2.6)

Equivalently the Euler equation can be written in a compact form as:

Et(mt+1R
e
t+1) = 0 (2.2.7)

where Ret+1 =
(
(1 + it)− (1 + i∗t )

St+1
St

)
Pt
Pt+1

is the real return differential, and mt+1 =
β U
′(Ct+1)
U ′(Ct) is the agent’s stochastic discount factor. The Euler equation states that if in-

vestors are optimizing, the expected marginal utility from a leveraged position in the foreign
currency is zero.

Many empirical studies have tested this Euler equation. One approach consists of spec-
ifying a general equilibrium model and then using Generalized Method of Moments to test
the Euler equation’s moment conditions (Mark 1985, Modjtahedi 1991). Using a CRRA
utility function, both studies found that a degree of risk aversion ranging from 40 to 65 was
required for the Euler restrictions in the forward foreign exchange market to hold. However,
instead of testing directly that relationship Hansen and Jagannathan (1991) use a nonpara-
metric reverse engineering approach to infer the properties that any valid discount factor
must satisfy. In particular, they derived a lower bound for the variance of the discount
factor using the first two moments of returns.
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Hansen Jagannathan Lower Bound

The Euler equation of consumption-based asset pricing is expressed in general as :

Et(mt+1Rt+1) = 1N (2.2.8)

where Rt+1 is a N-dimensional vector of one period returns from date t to date t+1. A valid
discount factor satisfying the previous Euler equation could be m∗ = RT

[
E(RRT )

]−1
1N ,

and thus m = m∗ + ε is another valid discount factor, with ε being any random variable
orthogonal to R. Using this insight, the Hansen Jagannathan procedure consists of deriving
the SDF with the lowest variance. The trick is to use the property of Ordinary Least
Squares together with the Cauchy Schwarz inequality.

More formally, let µm ≡ E(mt), µR ≡ E(Rt), ΣR ≡ E(Rt − µR)(Rt − µR)T and then
project m− µm onto R− µR. That is :

m− µm = (R− µR)Tβ + u (2.2.9)

An estimate of β is given by:

β̂ = Σ−1E(R− µR)(m− µm)

= Σ−1 [E(mR)− µRµm]

= Σ−1 [1N − µRµm] By using the Euler equation

where Σ is the variance-covariance matrix of the random vector R−µR. Since by construc-
tion u is orthogonal to (R− µR)Tβ, we can derive the variance of m as:

σ2
m = E

[
β̂T (R− µR)(R− µR)T β̂

]
+ σ2

u

= (1N − µRµm)TΣ−1(1N − µRµm) + σ2
u

Implying the following lower bound for the volatility of the stochastic discount factor:

σm ≥
√

(1N − µRµm)TΣ−1(1N − µRµm) (2.2.10)

In foreign exchange markets, where all the assets are either forward contracts or zero
net investment positions, the inequality becomes:

σ(m) ≥ E(m)
√
R̄e′Σ−1R̄e (2.2.11)
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where R̄e is a vector of mean return differentials and Σ is their variance-covariance matrix.
Mark (2001, p143) reports that a coefficient of relative risk aversion of at least 30 is needed
to attain the Hansen-Jagannathan bound.

Standard expected utility models have a hard time pricing risk in general, and give rise
to several well known paradoxes or puzzles, such as the Ellsberg paradox, Allais paradox,
Equity premium puzzle or risk-free rate puzzle The response to these puzzles has been
to develop more sophsticated utility models, which differ from expected utility in various
ways: (i) the aggregation procedure of utility, (ii) time of resolution of uncertainty and, (iii)
the persistence of risk Ljungqvist and Sargent (2012, p 532-535). Prominent theoretical
contributions include Kreps and Porteus (1978), Epstein and Zin (1989), Weil (1990), and
Tallarini (2000).

2.2.3 Stochastic Discount Factors With Robustness

An agent with multiplier preferences is aware of his own ignorance, and would like to make
decisions that are robust to a set of unstructured alternative models expressed in terms of
distortions to the shocks in his benchmark model. The desire for robustness is implemented
using Gilboa and Schmeidler (1989) insight, implying a robust decision is the outcome of
a dynamic zero sum game between the agent and a hypothetical evil agent who chooses
shocks to minimize the agent’s payoff.

Let xt+1 = h(xt, ut, εt+1) be the agent’s benchmark approximating model, where xt is
the state vector, ut = [log Ct, ωt] is the control vector, and εt a sequence of i.i.d shocks to
the state vector. Denote r(xt, ut) the payoff function and let p(xt|xt−1) be the benchmark
conditional probability describing the state transition equation.

A preference for robustness can be modelled as follows:

W (x0) = Min
{gt+1}

∞∑
t=0

E
{
βtGt [r(xt, ut) + βθE(gt+1 log gt+1|Ft)] |F0

}
s.t. xt+1 = h(xt, ut, εt+1)

Gt+1 = gt+1Gt

E[gt+1|Ft] = 1 , gt+1 ≥ 0 , G0 = 1

x0 given

Where θ is a penalty parameter on the conditional relative entropy associated with gt+1.
When θ increases, the evil agent pays a bigger cost to distort the agent’s model. Essentially,
the agent cares less about robustness. {Gt; t ≥ 0} is a nonnegative martingale that is used
to construct a distorted probability measure generated by the approximating model.
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The robust optimization problem now takes the form of a zero-sum dynamic game:

Max
{ut}

Min
{gt+1}

∞∑
t=0

E
{
βtGt [r(xt, ut) + βθE(gt+1 log gt+1|Ft)] |F0

}
s.t. xt+1 = h(xt, ut, εt+1)

Gt+1 = gt+1Gt

E[gt+1|Ft] = 1 , gt+1 ≥ 0 , G0 = 1

x0 given

And the corresponding Bellman equation is given by:

V (xt) =Max
ut

Min
g(xt+1,xt)

r(xt, ut) + β

∫ {
g(xt+1, xt)V (xt+1)+

θg(xt+1, xt) log g(xt+1, xt)
}
p(xt+1|xt)dxt+1

s.t. xt+1 = h(xt, ut, εt+1)

Gt+1 = gt+1Gt

E[gt+1|Ft] = 1 , gt+1 ≥ 0 , G0 = 1

x0 given

Under mild regularity conditions8, the order of optimization in the previous problem
does not matter. Solving the Evil agent’s problem yields the following martingale increment:

g(xt+1, xt) = e−
V (xt+1)

θ

E(e−
V (xt+1)

θ |Ft)
(2.2.12)

Plugging the worst-case martingale increment back into the Bellman equation gives:

V (xt) =Max
ut

r(xt, ut)− βθ log E
[
exp

(
−V (xt+1)

θ

)
|xt
]

s.t. xt+1 = h(xt, ut, εt+1)

x0 given

(2.2.13)

This recursive representation corresponds toHansen and Sargent (1995) risk sensitive pref-
erences 9, and thus shows a connection between risk sensitivity and robustness.10 Moreover,

8These conditions are known as the Isaac conditions, and require the objective function to be globally
concave in ut and globally convex in gt+1

9With θ = − 1
(1−β)(1−γ) and γ > 1 denotes the agent’s risk sensitivity

10More formally, robustness and risk sensitivity are mathematical duals, in the sense that they are Legendre
transforms of each other.
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with multiplier preferences, the stochastic discount factor becomes11:

m̂t+1 =
(
β
Ct
Ct+1

) e−
Vt+1
θ

E(e−
Vt+1
θ |Ft)


And the Euler equation eq. (2.2.7) takes the form:

Et
(
m̂t+1R

e
t+1
)

= Et
(
gt+1mt+1R

e
t+1
)

= 0 (2.2.14)

= Êt
(
mt+1R

e
t+1
)

= 0

Where mt+1 = β Ct
Ct+1

corresponds to the traditional risk averse SDF (with a risk aversion
coefficient equal to one). Note that gt+1 can be interpreted either as a multiplicative shock
to the conventional discount factor, or as a distortion to the traditional expectations op-
erator (where Ê represent expectations taken with respect to this pessimistically distorted
probabability measure).

2.2.4 Consumption growth dynamics

Evidently, the specification of the consumption process and the utility function are essen-
tial to study the forward premium. In fact, the value function of the investor’s problem,
the stochastic discount factor and mean-variance frontier of the SDF all depend tightly on
the consumption time series. The previous maxmin problem can be very difficult to esti-
mate, due to the recursive nature of the preferences and the nonlinearity of the transition
law. Without loss of generality, the following three simplifying assumptions are made. Let
log Ct ≡ ct.

Assumption 2.2.1. Consumption follows one of the following two processes:

Random Walk (RW): ct+1 = µ+ ct + σεεt+1

Trend Stationary (TS): ct = λ+ µt+ zt

zt = ρzt−1 + σεεt

where εt is i.i.d.N(0, 1).

The specification of the consumption process is identical to Tallarini (2000), Barillas,
Hansen, and Sargent (2009), and Bidder and Smith (2011). These two specifications can
also be classified within the broader class of univariate consumption growth specifications
encountered in the literature (Mehra and Prescott 1985, Cecchetti, Lam, and Mark 1994,
Bansal and Yaron 2004, Hansen, Heaton, Lee, and Roussanov 2007, e.g.).

11To ease notation, let gt+1 ≡ g(xt+1, xt) and Vt ≡ V (xt)
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Assumption 2.2.2. The one period payoff function (utility) of the investor is log linear:

r(xt, ut) = ct

This requirement on the one period utility is solely used for tractability purposes.

Conjecture 2.2.3. Using the multiplier preferences, we conjecture that the value function
is also linear in ct:

RW: Vt = A+Bct

TS: Vt = D + Et+ Fct

Assumptions 2.2.1 and 2.2.2 together with conjecture 2.2.3 delivers a closed form solution
for the stochastic discount factor. The following three propositions summarize these results.
12

Proposition 2.2.4. Under multiplier preferences 2.2.13, assumptions 2.2.1 and 2.2.2, and
conjecture 2.2.3; the agent’s problem gives the following optimal distortion:

RW: gt+1 = exp
{
−Bσε

θ εt+1 − B2σ2
ε

2θ2

}
TS: gt+1 = exp

{
−Fσε

θ εt+1 − F 2σ2
ε

2θ2

}

where B = 1
1−β and F = 1

1−βρ

Proof. See A.2

The results from the above proposition are central to our analysis in the sense that,
first, the martingal increment is essential to find the corresponding distorted probability
distribution p̃(xt+1|xt) by using its likelihood ratio interpretation. That is,

p̃(xt+1|xt) = g(xt+1, xt)p(xt+1|xt)

In our environment where the approximating distribution of consumption growth is posited
to follow either a random walk with drift or trend stationary process, the equilibrium
worst case distribution distorts only the mean. These distortion are respectively given by
wt+1 = −σε(γ − 1) and wt+1 = −σε (1−β)(γ−1)

1−βρ .
Second, it will also be useful in determining the unconditional distribution of the stochas-

tic discount factor summarize in proposition below.
12See Barillas, Hansen, and Sargent (2009) for alternative proofs of proposition 2.2.4 and 2.2.5 .
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Proposition 2.2.5. Under multiplier preference 2.2.13, assumptions 2.2.1, 2.2.2 and con-
jecture 2.2.3; The stochastic discount factor has the following unconditional distributions:

RW: logmt+1 ∼ N
(
log β − µ− B2

2θ2σ
2
ε , σ

2
ε(1 + B

θ )2
)

TS: logmt+1 ∼ N
(
log β − µ− F 2

2θ2 , σ
2
ε( 2

1+ρ + 2Fθ + F 2

θ2 )
)

Proof. See A.3

The unconditional distribution of the SDF are necessary to describe the loci (E(m), σ(m))
spanned by their first two moments. In this case, γ can be interpreted as a model uncertainty
premium rather than risk aversion coefficient Hansen, Sargent, and Tallarini (1999).

2.2.5 Detection Error Probability

So far, the model uncertainty parameter γ is assumed to be a free parameter. I will now
use the procedure outlined by Hansen and Sargent (2008, ch 9) to calibrate this parameter.
It is calibrated to match the difficulty of statistically discriminating the approximating
model from the worst case model, given the observed data. This is called a detection error
probability, and is computed using the likelihood ratio principle.

Letting A and B denote respectively the approximating and worst case models, assigning
a prior probability 0.50 to each model, the detection error probability is given by:

p(γ) = pA + pB
2

where pA = P(log LALB < 0|A), pB = P(log LALB > 0|B), and Li the likelihood associated
with model i. pi measures the probability that a likelihood ratio test selects model j, or
equivalently pi is the probability of a model detection error.

Proposition 2.2.6. Under assumptions 2.2.1 and 2.2.2, the detection error probabilities
are given by:

RW : p(γ) = Φ
(
−0.5

√
Tσε |γ − 1|

)
TS : p(γ) = Φ

(
−0.5

√
Tσε

(1− β) |γ − 1|
1− ρβ

)
Proof. See A.4

Proposition 2.2.6 implies that detection error probabilities are decreasing with the sam-
ple size (T ), the variance of the temporary component (σε), and the first order autocorrela-
tion ρ and γ. Intuitively, as more data becomes available it becomes easier to discriminate
between the approximating and worst case models. Thus, the detection error probability
falls. Similarly, higher γ translates into small θ which means that the evil agent can more
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freely perturb the actions of the agents. Thus, the worst case distribution will be easily
distinguishable from the approximating model, entailing a smaller detection error proba-
bility. Note, the detection error probability is related to a significance level employed in
traditional hypothesis testing. It varies from 0 to 0.5 and the larger it is, the more plausible
is the model uncertainty explanation.

2.3 Applications

2.3.1 Data

The data consist of quarterly observations from 1979Q1 to 2012Q2 on spot exchange rates
and nominal interest rates, all from Datastream. The consumer price indices are from
the OECD database, while real consumption comes from the IFS database. I study four
currencies: Canadian dollars, Japanese Yen, British pound and US dollars.

Figure 2.1: Excess return and relative depreciation
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Figure 2.1 plots the return differential (it−i∗t ) versus the realized depreciation (st+1−st)
for the six pairs of countries together with the fitted regression line and its confidence
interval. This plot confirms that the slope coefficient is statistically far from being one, and
is in fact negative for most of the pairs of countries considered. 13

Table 2.1: MLE Estimate of consumption process

Spec. CAN JPN UK US
Random Walk

µ 0.01460 0.00625 0.01673 0.01491
σε 0.00832 0.01162 0.01179 0.00800

Trend Stationary
µ 0.01022 -0.12680 0.00593 0.00470
σε 0.00648 0.01012 0.00895 0.00661
ρ 0.96543 0.99889 0.98121 0.98855
T 134 134 134 134
Notes: T is the sample size 1979Q1-2012Q2.

A dynamic regression (see Figure A.1) using rolling and expanding window that the
UIP coefficient is consistently negative and do not depend on the sample size. This result
suggests that the investor earns excess return and that high interest currencies are more
likely to experience an appreciation.

Furthermore, Table 2.1 reports estimates of the consumption growth process by the
maximum likelihood method. Two features emerge from this table. First, for most countries,
the two consumption specifications give almost identical estimates of the variance of the
innovation σε, but slightly different estimates of long run consumption growth, µ. Second,
error terms in the trend stationary specification are highly autocorrelated (ρ), indicating
high persistence and weak mean reversion.

2.3.2 Robust Hansen-Jagannathan bound

This section presents the mean-variance frontier of the stochastic discount factor for the
four countries. Figure 2.2 plots on the horizontal axis the first moment of the SDF and on
the vertical axis its second moment, for different preferences specifications: (i) power utility
(CRRA), and (ii) multiplier preferences with consumption process specified as either a
random walk with drift(RW) or a Trend stationary(TS) process. The Hansen-Jagannathan
volatility lower bound is also reported (HJ). Notice that with a conventional power utility
function, implausibly high degree of risk aversion are needed to reach the HJ lower bound.
These minimals degree of risk aversion are 8, 8, 7 and 11 respectively for Canada, Japan,
UK and USA.

Interestingly, when I allow investors to have preference for objective probability and
calibrate the taste for robustness using the detection error probability, the data provide

13Chinn (2006) shows that the intensity of the puzzle might depends of the sample period and the puzzle
is more prominent in major currencies.
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Figure 2.2: Robust Hansen Jagannathan Bound

γ = 8
γ = 8

γ = 7 γ = 11

CAN JPN

UK US

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
E(m)

σ(
m

)

model

CRRA

HJ

RW

TS

Notes: This figure plots
for each country, the Hansen and Jagannathan bound(HJ) and the loci (E(m), σ(m)) for the power
utility(CRRA), multiplier preference with random walk (RW) and trend stationary (TS) consumption
growth processes. Each point on the locus correspond to a particular value of γ. Subjective dis-
count factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2 and real interest

rate differential is Ret+1 =
(

(1 + i∗t )
St+1
St

− (1 + it)
)

Pt
Pt+1

. RW: E(m) = β exp
[
−µ + σ2

ε
2 (2γ − 1)

]
,

σ(m)
E(m) =

√
exp
[
σ2
εγ

2
]
− 1. TS : E(m) = β exp

[
−µ + σ2

ε
2

(
1− 2(1−β)(1−γ)

1−βρ + 1−ρ
1+ρ

)]
, σ(m)
E(m) =√

exp
[
σ2
ε

({
(1−β)(1−γ)

1−βρ − 1
}2

+ 1−ρ
1+ρ

)]
− 1

Table 2.2: Distance to HJ bound and corresponding γ and p(γ)

σ(m)

E(m)
√
R̄e
′Σ−1R̄e

γ p(γ)
CAN JPN UK US CAN JPN UK US

Random Walk
1.00 8 8 7 11 36.8 31.9 36.6 32.2
0.75 6 6 5 9 40.5 36.8 39.2 35.6
0.50 4 4 3 6 44.3 42.0 44.6 40.8
0.25 2 2 2 3 48.1 47.3 47.3 46.3

Trend Stationary
1.00 79 18 38 54 35.9 31.5 34.2 30.5
0.75 57 14 28 40 39.8 35.6 38.4 35.4
0.50 36 9 17 26 43.6 41.0 43.0 40.5
0.25 14 4 7 11 47.6 46.6 47.4 46.2

This table provides the minimal γ and the corresponding detection error probability for different distance to
the bound. The ratio σ(m)

E(m)

√
R̄e
′Σ−1R̄e

equal to 1.00 means that the corresponding γ puts the (E(m), σ(m))

on the HJ bound; while 0.50 put (E(m), σ(m)) half way to the bound. Subjective discount factor is assumed
to be β = 0.995. The sample period is 1979Q1-2012Q2 and the real interest rate differential is Ret+1 =(

(1 + i∗t )
St+1
St

− (1 + it)
)

Pt
Pt+1
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strong evidence for the ambiguity aversion explanation. In fact, the HJ lower bound is
reached with detection error probabilities in the range 30.5% to 36.8 % using our two
consumption growth specification(See fig. 2.2 and table 2.2) . How can we make sense of
these probabilities? Taking for instance the case of USA and TS specification, there is
30.5% chance of making a mistake when the investor is trying to distinguish the worst case
from the benchmark model. In contrast, usingTallarini (2000) approach and considering
that consumption process is trend stationary, the minimal degree of risk aversion will be
79, 18, 38 and 54 for Canada, Japan, UK and US respectively.

2.3.3 Detection Error Probability

I use the estimates from table 2.1 together with the results of proposition 2.2.6 to calculate
the detection error probability for each country and consumption specification. Figure 2.3
reports the results.

Figure 2.3: Detection Error Probablility
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)
. The parameters estimates are from Table 2.1. Subjective discount

factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2.
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From Figure 2.3 we observe that for a given value of γ, the corresponding detection
error probability is higher with the TS specification than with the RW specification. This
suggests that with TS the investor hardly discriminates between the approximating model
and the worst case model, and thus there is a need to seek robustness. 14 In addition, the
distinctive pattern for Japan in Figure2.3comes from the fact that consumption growth is
highly persistent in Japan (see estimate Table 2.1) and the detection error probability (TS)
is decreasing in ρ. Since, Japan has the highest estimate of the first order autocorrelation
of consumption growth, the p(γ) decreases rapidly compare to other countries.

2.3.4 Implications for UIP Regressions

Go back to the distorted Euler equation in 2.2.14. UIP regressions are based on the as-
sumption that mt+1 is constant, so that this Euler equation takes the simple form:

EtR
e
t+1 = 0

This is the restriction tested by UIP regressions, and the data suggest it is violated. If
investors are risk averse, however, this regression is misspecified. In particular, if mt+1 is
stochastic we have

EtR
e
t+1 = −

covt(mt+1, R
e
t+1)

Et(mt+1)

Writing this out and imposing Rational Expectations, we have

st+1 − st = it − i∗t −
covt(mt+1, R

e
t+1)

Et(mt+1) + εt+1

Evidently, if covt(mt+1,Ret+1)
Et(mt+1) is positively correlated with (it− i∗t ), then OLS regressions that

omit this variable will produce estimates that are biased downward, as seen in the data.
One way to interpret the failure of conventional risk premium models is that attempts
to produce an observable counterpart to mt+1 produce an insufficiently strong positive
correlation between covt(mt+1,Ret+1)

Et(mt+1) and (it − i∗t ). Ambiguity accentuates the volatility of
mt+1 by introducing the multiplicative model uncertainty premium, gt+1, which can then
accentuate the omitted variable bias. Unfortunately, showing this explicity would require
us to explicitly solve the model, so we leave this to future research.

2.3.5 Sensitivity analysis

Over the past forty years, the global economy has experienced tremendous changes, e.g.,
rapid globabilization, integration of financial markets, the Asian financial crisis, and the
2008 subprime crisis. One might expect the dynamics of exchange rates and interest rates

14A low detection error probability means that the investor can easily discriminate, while a high detection
error probability means he often makes mistakes.
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to be influenced by these events, so that the severity of the UIP puzzle might vary over
the sample. I argue in this paper that the deviation from UIP is attributed to underlying
Knightian Uncertainty of consumption growth. So, if all these events contributed to a more
turbulent or uncertain environment, one would expect the puzzle to still remain.

Table 2.3: Average distance to HJ bound using expanding window

σ(m)

E(m)
√
R̄e
′Σ−1R̄e

γ p(γ)
CAN JPN UK US CAN JPN UK US

Random Walk
1.00 10 8 6 12 35.7 34.1 39.1 34.1
0.75 7 6 4 9 39.5 38.4 42.2 38.2
0.50 5 4 3 6 43.5 42.9 45.4 42.5
0.25 2 2 2 3 47.6 47.2 48.2 46.9

Trend Stationary
1.00 101 23 73 134 33.0 28.3 35.3 31.8
0.75 78 19 57 103 36.7 32.7 38.3 35.7
0.50 55 14 42 72 40.6 37.5 41.5 39.9
0.25 31 9 26 41 44.6 42.6 44.8 44.3

This table provides the minimal γ and the corresponding detection error probability for different distance to the
bound. These statistique are average over 67 samples constructed using expanding window. The first sample is
1979Q1-1995Q3 the second one is 1979Q1-1995Q4 etc. The ratio σ(m)

E(m)

√
R̄e
′Σ−1R̄e

equal to 1.00 means that the

corresponding γ puts the (E(m), σ(m)) on the HJ bound; while 0.50 put (E(m), σ(m)) half way to the bound.
Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2 and the real interest
rate differential is Ret+1 =

(
(1 + i∗t )

St+1
St

− (1 + it)
)

Pt
Pt+1

In order to assess the sensitivity15 of our results with respect to sample selection, I
selected 67 different samples using an expanding window technique. The first sample runs
from 1979Q1-1995Q3, the second one is from 1979Q1-1995Q4, and so on. For each sub-
sample I calculate the minimal multiplier parameter (γ) needed to reach the HJ bound and
the corresponding detection error probability. Table 2.3 reports the average over the 67
samples. From this table, we see the results are pretty robust to sample selection.16 The
average detection error probability and γ are in the same range as those obtain with the
full sample.

2.4 Conclusion

This paper has proposed a solution to the forward premium puzzle in the foreign exchange
market. This solution relaxes simultaneously the two underlying assumptions of the UIP
hypothesis: risk neutrality and Rational Expectation Hypothesis. I consider a framework
where risk averse investors fear model misspecification, and derive the implications for the
stochastic discount factor in the spirit of Hansen and Jagannathan (1991). I showed that
an empirically plausible preference for robustness can help attain the Hansen-Jagannathan

15Thanks to an anomous refree for suggesting the sensitivity analysis
16Tables A.2, A.3 and A.4 in the appendices contain respectively the standard deviations, minimun and

maximum over the subsamples.
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volatility bound. This result echoes the previous findings of Barillas, Hansen, and Sargent
(2009), which showed that model uncertainty premia go a long way towards explaining the
equity premium puzzle.

One potential extension of the present work would be to refine the econometric analysis
by taking into account the effect of sampling variability on the minimal γ needed to reach the
HJ bound. For that purpose, Cecchetti, Lam, and Mark (1994) and Burnside (1994) would
be useful. Another avenue would be to fully specify and solve a general equilibrium model
that account for all puzzles surrounding the Forward Premium Puzzle (delayed overshooting,
excess volatility andEngel (2012) puzzle). Instead of testing the model indirectly, it could
be estimated using recent advances in particle filtering. In any case, robust filtering could
be to be a promising and unified mechanism for understanding decision-making in financial
markets.
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Chapter 3

Robust Learning in the Foreign
Exchange Market

This chapter studies risk premia in the foreign exchange market when investors entertain
multiple models for consumption growth. Investors confront two sources of uncertainty: (1)
individual models might be misspecified, and (2) it is not known which of these potentially
misspecified models is the best approximation to the actual data-generating process. Follow-
ing Hansen and Sargent (2010), agents formulate ‘robust’ portfolio policies. These policies
are implemented by applying two risk-sensitivity operators. One is forward-looking, and
pessimistically distorts the state dynamics of each individual model. The other is backward-
looking, and pessimistically distorts the probability weights assigned to each model. A
robust learner assigns higher weights to worst-case models that yield lower continuation
values. The magnitude of this distortion evolves over time in response to realized consump-
tion growth. It is shown that robust learning not only explains unconditional risk premia in
the foreign exchange market, it can also explain the dynamics of risk premia. In particular,
an empirically plausible concern for model misspecification and model uncertainty gener-
ates a stochastic discount factor that uniformly satisfies the spectral Hansen-Jagannathan
bound of Otrok et. al. (2007).

3.1 Introduction

Economists have been struggling to understand exchange rate dynamics for more than
forty years now, ever since the breakdown of the Bretton Woods system. Early attempts
focused on linear present value models, which linked exchange rates to expectations of
future fundamentals, such as money supplies and income levels. After these models failed,
attention shifted to models with time-varying risk premia. However, these models have also
failed.
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A puzzling feature of all this research is that while economists struggle with one model
after another, their models all assume that the agents within the model somehow know
the true model generating exchange rates. Why the asymmetry? If economists don’t know
the model, but market participants do, why don’t economists just ask them what’s going
on? This tension between the knowledge of econometricians and the presumed knowledge
of agents within econometric models was recently highlighted by Hansen (2014, p.947) in
his Nobel address:

Why is it fruitful to consider model misspecification? ... Part of a meaningful
quantitative analysis is to look at models and try to figure out their deficiencies
and the ways in which they can be improved. A more subtle challenge for statis-
tical methods is to explore systematically potential modeling errors in order to
assess the quality of the model predictions. This kind of uncertainty about the
adequacy of a model or model family is not only relevant for econometricians
outside the model, but potentially also for agents inside the models.

This paper follows up on Hansen’s conjecture in the context of the foreign exchange mar-
ket, by assuming that agents within the model confront the same sort of fears of model
misspecification that plague outside econometricians.

Given my focus on risk premia in the foreign exchange market, the model that mat-
ters to the representative agent here concerns the (equilibrium) consumption growth pro-
cess.1 As a practicing econometrician, the agent does not attempt to construct a single,
all-encompassing, model. Instead, he considers several smaller, more parsimonious specifi-
cations, which differ along one or more key dimensions. In this paper, the key dimension
along which models differ is their implied persistence of consumption growth.

Before explaining why allowing agents to consider multiple models is important, it is
worth pausing to remember that according to traditional Bayesian decision theory, there is
no meaningful distinction between models and parameters. A Bayesian forms a single nest-
ing ‘hypermodel’, by assigning probability weights to each individual model. This Bayesian
Model Averaging (BMA) procedure eliminates the distinction between models and param-
eters. Although many consider the Savage axioms to be normatively compelling, it is also
worth remembering that Bayesian decision theory is just a theory, and the ultimate arbiter
of any theory should be its ability to explain the data. As detailed by Hansen and Sar-
gent (2008, 2011), and many others, there has been mounting empirical evidence against
the Savage axioms. At the same time bayesian econometric methods have become popular
among outside macroeconometricians, macroeconomic theorists are increasingly populat-
ing their models with inside agents that violate the Savage axioms. In this paper, the
Savage axioms are violated in two ways. First, agents are unable to formulate a unique

1Of course, agents choose consumption, so there is never any uncertainty about it at the time. What
really concerns agents is the future realization of the exogenous state, and how this will then determine what
the ex post optimal level of consumption is. See Lucas (1978) for further discussion.
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finite-dimensional prior distribution over model parameters. In response, they formulate
an infinite-dimensional ‘cloud’ of unstructured alternatives, and then optimize against the
worst-case model.2 Second, agents violate the reduction of compound lotteries axiom. In
particular, they have a preference for the early resolution of uncertainty. If models differ
along this dimension then the distinction between models and parameters becomes impor-
tant.

So we can now see why multiple consumption growth models might be important to
the pricing of risk in the foreign exchange market. A currency is risky if its value moves
procyclically (ie, if it appreciates when consumption growth is high). If investors are uncer-
tain about consumption growth dynamics, this is reflected in currency risk premia. Given
their assumed preference for the early resolution of uncertainty, a consumption growth
process that is persistent is undesirable, since it confronts agents with a relatively late reso-
lution of uncertainty. All else equal, a pessimistic, ambiguity averse, investor will therefore
slant model probability estimates towards models that embody relatively more consump-
tion growth persistence. At the same time, however, the value implications of persistence
are also state dependent. During good times, persistent consumption growth is obviously
desirable. To paraphrase Hansen and Sargent (2010), a pessimist is someone who thinks
bad times are persistent and good times are transitory. Therefore, although on average
robust model probabilities are biased toward persistent growth specifications, this bias be-
comes especially large during bad times. This implies robust learning can generate state
dependence in the price of currency risk.

The main result of this paper is to show that the combination of an empirically plau-
sible concern for individual model misspecification along with robust learning can explain
both the average level of the risk premium in the foreign exchange market, and its state
dependent dynamics. These dynamics are assessed by comparing the spectral density of the
robust stochastic discount factor process with the frequency specific bound derived by Otrok,
Ravikumar, and Whiteman (2007). This permits investigation of the properties of risk pre-
mia at different horizons, and therefore addresses the concern that the relationship between
exchange rates and interest rates could be horizon-dependent (Chinn 2006, Chaboud and
Wright 2005, Alexius 2001), or even non-monotonic (Hnatkovska, Lahiri, and Vegh 2013).
I find that robust learning easily satisfies the bound for all frequencies, while conventional
Bayesian learning only satisfies the bound for low frequencies. Following Hansen and Sar-
gent (2008), I calibrate the degree of empirically plausible robustness to detection error
probabilities. I find that risk premia can be explained with a 20% detection error probabil-
ity.

This paper is closely related to prior work by Bansal and Yaron (2004), Hansen and
Sargent (2010), and Djeutem (2014). Bansal and Yaron (2004) focus on the equity market,

2As discussed by Hansen and Sargent (2008), this can be interpreted as a weakening of Savage’s ‘Sure
Thing Principle’.
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and adopt the perspective of an outside econometrician. They observe that a consumption
growth process with a small degree of high persistence is difficult to distinguish empirically
from an i.i.d process. They show that if investors have recursive Epstein-Zin preferences that
value early resolution of uncertainty, then the persistent growth specification can explain
many observed asset pricing puzzles. However, they must resort to exogenous stochastic
volatility to account for observed dynamics in the price of risk. Hansen and Sargent (2010)
revisit the analysis of Bansal and Yaron (2004), but assume that the same model specifica-
tion uncertainty that confronted Bansal and Yaron’s outside econometrician, also confronts
the agents in the model. They show that countercyclical slanting of model probabilities to-
ward the persistent growth specification can generate countercyclical movements in the price
of risk, without having to resort to exogenous stochastic volatility in consumption growth.
In Djeutem (2014), I show that an empirically plausible model uncertainty premium can
account for the forward premium puzzle in the foreign exchange market. However, in that
paper there is no learning. Agents face unstructured uncertainty about a given benchmark
model, but do not consider the possibility that some other benchmark model might be bet-
ter. I show that robust learning can account not only for the average risk premium in the
foreign exchange market, but also its state dependent dynamics.

Bansal and Shaliastovich (2013) also study risk premia in the foreign exchange market
using a setting with long-run risk and Epstein-Zin investors. Their framework incorporates
uncertain consumption growth along with uncertain inflation dynamics, specified as a vec-
tor autoregressive process with stochastic volatility. They show that a preference for the
early resolution of uncertainty combined with stochastic volatility and non-neutral effects of
inflation on growth can account for many observed features of excess returns in the foreign
exchange market. Three features distinguish their model from mine. First, the two sources
of uncertainty in their model (inflation and consumption growth) are modelled explicitly,
using a so-called structured uncertainty approach. In contrast, I assume agents employ a ro-
bust, unstructured uncertainty approach. Second, I show that robust learning dynamics can
explain observed risk premium dynamics without resort to exogenously specified stochastic
volatility. Third, Bansal and Shaliastovich (2013) interpret their results in terms of risk
aversion. They find that a risk aversion coefficient of 21 can explain observed risk premia.
Although this is an improvement relative to many previous studies, one could argue that
it is still implausibly high. In contrast, following Barillas, Hansen, and Sargent (2009), I
interpret this parameter as amodel uncertainty premium, and link it to detection error prob-
abilities. Fourth, my model evaluation strategy, based on the spectral Hansen-Jagannathan
bound, is simpler and less computationally intensive.

First generation risk premium explanations of observed deviations from Uncovered In-
terest Parity employed a risk averse representative agent with rational expectations (Fama
1984, Bekaert, Hodrick, and Marshall 1997). These models cannot fully account for the
dynamics of excess returns, and they rely on implausibly high degrees of risk aversion.
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This framework has been extended in many directions by using external habit persis-
tence preferences (Wachter 2006, Verdelhan 2010, Moore and Roche 2002), recursive prefer-
ences (Colacito and Croce 2011b, Benigno, Benigno, and Nisticò 2011, Backus, Gavazzoni,
Telmer, and Zin 2010), limited market participation (Alvarez, Atkeson, and Kehoe 2009),
liquidity constraints (Rabitsch 2014), learning (Chakraborty and Evans 2008, Piazzesi and
Schneider 2006, Lewis 1989), rare disaster(Lu and Siemer 2014, Farhi and Gabaix 2014, Gou-
rio, Siemer, and Verdelhan 2013) or non rational expectation(Ilut 2012, Burnside, Han,
Hirshleifer, and Wang 2011, Li and Tornell 2008, Gourinchas and Tornell 2004).3 However,
to the best of my knowledge, this is the first paper to explore the consequences of robust
learning.

The remainder of the paper is organized as follows. The next section outlines a standard
consumption-based model of risk in the foreign exchange market, and then shows how
model uncertainty and robust learning can be introduced. Section 3.3 discusses the data
and presents the empirical results. I consider quarterly data from 1979:1 to 2012:2 on
three US dollar exchange rates: the Canadian dollar, the Japanese yen, and the British
pound. In the main text I present results from the perspective of a US investor, who
forms portfolios of these three currencies. I first construct two models that are difficult to
distinguish empirically, but which embody different assumptions about the persistence of
consumption growth. I then assume the investor confronts this uncertainty by constructing a
robust, recursively updated, weighted average of these two models. I show that conventional
Bayesian model averaging generates little variation in the stochastic discount factor, and can
only satisfy the spectral Hansen-Jagannathan bound of Otrok, Ravikumar, and Whiteman
(2007) at very low frequencies. In contrast, the robust learning stochastic discount factor is
much more volatile, and satisfies the bound at all frequencies. Finally, Section 3.4 offers a
few concluding remarks, while Appendix A shows that the results are similar when viewed
from the perspective of foreign investors.

3.2 Framework

3.2.1 Basic Setup
4 The setup is a standard consumption-based asset pricing model due to Lucas (1978, 1982).
It is a two-country flexible exchange rate model with an exogenous nonstorable consumption
good. There are two assets: a one period nominal bond in domestic currency, and a one
period nominal bond in foreign currency, with interest rates it and i∗t respectively. The
domestic bond is a (nominally) risk free asset, while the foreign bond is a risky asset due to
exchange rate risk. Given initial wealth, a representative consumer wants to maximize his

3For detailed literature review on exchange rates and interest parity see inter alia(Engel 2015, Sarno
2005, Engel 1996) and Lewis (2011) for international asset pricing.

4This set up is identical to the one in Djeutem (2014).
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lifetime expected utility by choosing how much to consume each period Ct, and how much
to save. The Euler equations can be combined and written compactly as follows:

Et(mt+1R
e
t+1) = 0 (3.2.1)

where Ret+1 =
(
(1 + it)− (1 + i∗t )

St+1
St

)
Pt
Pt+1

is the real return differential, and mt+1 =
β U
′(Ct+1)
U ′(Ct) is the agent’s stochastic discount factor. Equation 3.2.1 is central to this paper,

as it is in all consumption-based asset pricing models. This equation is mostly tested using
the Fama reduced form regression or Generalized Method of Moments. In the following
sections, I introduce more formally the framework by specifying the consumption growth
dynamics and the agent’s valuation.

3.2.2 Canonical consumption growth model

The consumption growth process is modelled in a state space framework. Let yt be the
observable (or signal) time series of consumption growth, with conditional density function
p(yt+1|xt), where xt denotes an underlying latent process, with conditional transition density
given by p(xt+1|xt). These two densities fully characterize our state space model. I adopt
throughout the convention that p(.|.) denotes a density function specified by its arguments.

I further restrict attention to linear state spate models. In this case the model is :

xt+1 = Axt + Cεt+1

yt = Dxt +Gεt
(3.2.2)

or alternatively

p(xt+1|xt) = N (Axt, CC ′)

p(yt|xt) = N (Dxt, GG′)
(3.2.3)

where yt = logCt − logCt−1, xt is a random vector, {εt} is a sequence of iid normally
distributed random vectors with mean zero and covariance matrix I, and (A,C,D G) are
matrices of conforming dimensions. The representative investor is assumed to have unitary
elasticity of intertemporal substitution. This implies the (equilibrium) value function for
expected discounted utility is given by the following Bellman equation:

V (x, c) = (1− β)c+ βE
[
V (x′, c′)|x, c

]
(3.2.4)

where c = logC. The log-linearity of instantaneous utility and consumption growth implies
the consumption/wealth ratio is constant, which then delivers the following closed-form
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expression for the value function5.

V (x, c) = c+ βD(I − βA)−1x (3.2.5)

The agent does not observe xt and therefore has to make inferences about it using the signal
history, Y t−1 = {y1, y2, · · · , yt−1} and yt. This signal extraction problem is solved via the
Kalman filter, described recursively by:

x̂t+1 = Ax̂t +K(Σt)ηt+1

yt = Dx̂t + ηt

Σt+1 = AΣtA
′ + CC ′ −K(Σt)(AΣtD

′ + CG′)′

K(Σt) = (AΣtD
′ + CG′)(DΣtD

′ +GG′)−1

(3.2.6)

where x̂t = E[xt|Y t−1], ηt = yt − E[yt|Y t−1], Σt = E(xt − x̂t)(xt − x̂t)′.
Given the forecast of the underling latent process, the conditional distribution of con-

sumption growth is then given by:

p(yt|x̂t) = N
(
Dx̂t;GG

′ +DΣtD
′
)
. (3.2.7)

3.2.3 Multiple models and Bayesian learning

Now imagine a situation where the representative investor has in mind multiple models in-
dexed by M1,M2, · · · ,MK .6 He does not know which model generates the data. Through-
out this paper, a model is a probability distribution over the consumption growth process.
Thus a model is specified by the state space formulation in 3.2.2, where the matrices spe-
cific to model Mk are indexed by k. Let Lt be a random variable indexing the model that
generates the data at date t. The state space model class is then:

x
(k)
t+1 = A(k)x

(k)
t + C(k)εt+1

yt = D(k)x
(k)
t +G(k)εt

(3.2.8)

Since Lt is unknown to the investor it therefore becomes a state variable. Hence, the
agent must infer both x(k)

t and Lt. As before, these latent processes are obtained recursively
by Kalman filtering. Let π0,k be the initial prior distribution over models. Then:

πt,k =

 p(yt|x(k)
t , Lt = k)

K∑
l=1

πt−1,lp(yt|x
(l)
t , Lt = l)

πt−1,k. (3.2.9)

5 Letting v = V (x, c)−c, and rewrite the Bellman equation as v = βE [v′ + c′ − c] = βEv′+βDx. Iterate
forward this expression using the 3.2.2 and obtain v = βD(I − βA)−1x

6The notation is closely related to Raftery, Kárný, and Ettler (2010).
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Notice the predicted signal is a weighted average of model-specific predictions, where the

weights are the posterior probabilities, πt,k. Specifically, let ŷBMA
t =

K∑
k=1

πt,kD
(k)x̂

(k)
t be the

Bayesian model average predicted signal.

3.2.4 Multiple models and Robust learning

With robust learning the agent still possesses multiple models, but now fears misspecifica-
tion. The source of ambiguity is threefold. The first source of uncertainty is the distribution
of the consumption growth process conditional on knowing the model and the latent pro-
cess. That is, the agent mistrusts p(yt|x(k)

t , Lt = k). The second source of doubt is the
underlying conditional transition density of the latent process p(x(k)

t+1|x
(k)
t , Lt = k). Lastly,

the agent also has doubts about his own prior distribution over models.
The multiple sources of uncertainty creates an ambiguous environment, where decision

making is particularly challenging. To formalize this ambiguity, I adopt the multiplier
preferences of Hansen and Sargent. In this case, our representative agent distorts probability
distributions by trading off the plausibility of each alternative distribution and the loss it
induces.

The previous Bayesian problem is now modified by introducing two risk sensitivity oper-
ators designed to cope with different aspects of this ambiguity. The T 1 operator is forward-
looking, and guards against misspecification of each model’s conditional signal dynamics
p(yt|x(k)

t , Lt = k). The T 2 operator is backward-looking, and guards against misspecifi-
cation of the agent’s prior πt,k across models, as well as the unobserved state transition
dynamics p(x(k)

t+1|x
(k)
t , Lt = k) 7.

Definition 3.2.1. The two risk sensitivity operators are given by:

T1(W (x′, c′)
)(
x, c, ; θ1

)
= −θ1 logE

(
exp

(
−W (x′, c′)

θ1

)
|x, c

)

T2(W (x, c)
)(
x̂, c,Σ; θ2

)
= −θ2 logE

(
exp

(
−W (x, c)

θ2

)
|x̂, c,Σ)

)

where θ1 and θ2 are penalty parameters controlling the amplitudes of the two distortions.

Given this definition, the new risk-sensitive Bellman equation is:

W (x, c) = (1− β)c+ βT2
[
T1
(
W (x′, c′)(x, c, ; θ1)

)]
(x̂, c,Σ; θ2) (3.2.10)

Solving this Bellman recursion taking into consideration the definition of the two risk sen-
sitivity operators and the Kalman filtering problem produces a worst case density for each

7See Hansen and Sargent (2011). These risk sensitivity operators are mathematically equivalent to finding
worst case distributions (see Proposition 1.4.2, Dupuis and Ellis (1997)).
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of the probability distributions. The worst case distributions are obtained by distorting the
approximating model inversely to their continuation value. This distortion mechanism is
also known as exponential tilting in the robust control and large deviations literature.

Proposition 3.2.2. The worst case probability distribution of consumption growth taking into
consideration the first two sources of uncertainty is:

p̃(yt|x̂(k), Lt = k) = N
(
D(k)x̂

(k)
t −

β

θ1
G(k)

[
C(k)′λ(k) +G(k)′

]
− 1
θ2
D(k)Σtλ(k);G(k)G(k)′+D(k)ΣtD(k)′

)

The worst case distribution of model averaging weights is:

π̃t,l ∝ πt,l exp
(
−U(x̂(k)

t ,Σ(k)
t , k)

θ2

)

Where the continuation value function U(x̂(k)
t ,Σ(k)

t , k) = λ(k)x̂
(k)
t + κ(k) − 1

2θ2λ
(k)′Σ(k)

t λ(k), λ(k) =
D(k) (I − βA(k))−1, κ(k) = − β2

2(1−β)θ1

∣∣λ(k)C(k) +G(k)
∣∣2

Proof. See Hansen and Sargent (2010).

Few remarks emerge from this proposition:

• the Mean Squared Error(MSE) forecast of consumption growth is unaffacted by the
concern for model misspecification. This is mainly due to the fact that the investor
has log-utility preferences over instantaneous consumption;

• the mean of conditional distribution of consumption growth is distorted with two
terms: a constant forward looking adjustment term and a time varying term coming
from the learning process of the latent process. The time varying term is dictated by
the MSE of the best forecast of the latent process Σ(k)

t ;

• the priors over models are adjusted inversly with respect to the robust continuation
value function. A model with large forecast error of the latent process induces a lower
continuation value function and thus the prior models are shifted toward this model.

This last proposition completes the description of our framework. The main results are
summarized in Table 3.1. This table provides the predictive model averaging signal and also
the stochastic discount factor used to price risk in the context of the foreign exchange mar-
ket. The two predictive model averaging conditional probabilities of consumption growth
emerge from the optimization of our ambiguity averse investor. However how do we calibrate
the desire for robustness practically? I address this question in the next section.
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3.2.5 Detection error probability

The robustness parameters θ1 and θ2 are calibrated to match the probability of incor-
rectly choosing the probability distribution that generates the data. In the statistics and
information processing literatures this probability is usually called a detection error prob-
ability, the model discrimination rate, or the misclassification probability. An application
of this concept in economics can be found in Anderson, Hansen, and Sargent (2003) or
Hansen and Sargent (2008, chap 9.); for general textbook treatments see inter alia Gal-
lager (2014, chap. 3) and Taniguchi and Kakizawa (2000, chap. 7). Let Pr(pi|pj) be
the probability of selecting model i while the data are generated by j. And let α be the
prior probability assigned to model j. The Bayesian detection error probability is given by
p = αPr(p1|p2)+(1−α)Pr(p2|p1). In our case, the agent considers two alternatives: (i) the
approximating Bayesian model averaging signal ŷBMA

t and (ii) the worst case Robust model
averaging version ŷRMA

t . Let fBMA(ω) and fRMA(ω) be the spectral density functions of
these two processes. Then, treating symmetrically the two types of errors (related to the
so called type I and type II errors) implies that:

p(θ1, θ2) = 0.5Pr
(
fBMA|fRMA

)
+ 0.5Pr

(
fRMA|fBMA

)
(3.2.11)

Applying the frequency domain approximation in Taniguchi and Kakizawa (2000) in theo-
rem 7.3.1 gives8

p(θ1, θ2) = 0.5Φ
(
−
√
T
I(fBMA, fRMA)
V (fBMA, fRMA)

)
+ 0.5Φ

(
−
√
T
I(fRMA, fBMA)
V (fRMA, fBMA)

)
(3.2.12)

where T is the sample size, I is the Kullback-Leibler distance between fBMA and fRMA,
and V is an asymptotic standard error defined by:9

I(f i, f j) = 1
4π

π∫
−π

[
− log

∣∣f i(ω)
∣∣

|f j(ω)| + f i(ω)
f j(ω) − 1

]
dω (3.2.13)

V 2(f i, f j) = 1
4π

π∫
−π

f i(ω)
[ 1
f i(ω) −

1
f j(ω)

]2
dω (3.2.14)

with i, j ∈ {BMA,RMA}.
8See Djeutem and Kasa (2013) for an application of this formula to the calibration of robustness in a

(risk-neutral) monetary model of exchange rates. Djeutem and Kasa (2013) show that a preference for
robustness can account for observed violations of Shiller bounds.

9The assumption here that signal distributions are known to be Gaussian implies that the asymptotic
standard errors do not depend on fourth order cumulants.
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3.3 Empirical Analysis

3.3.1 Data

This paper studies three US dollar exchange rates: the Canadian dollar, the Japanese
Yen, and the British pound. It uses quarterly data covering the period 1979:1 to 2012:2.
The dataset is described in more detail in Djeutem (2014). The linear state space models
considered here have the same formulation as in Hansen and Sargent (2010) and are given
by :

xt+1 =
(
ρ 0
0 1

)
xt +

(
σx 0
0 0

)
εt+1

yt = (1, 1)xt + (0, σy)εt

(3.3.15)

To capture the specification problem faced by our representative agent, I construct a set
of two models that are hard to distinguish in the likelihood sense. I follow a two step
procedure. Denote by x2t = µy the deterministic latent process and define the vector
ψ = (ρ, σx, σy, µy). In the first step, I find the maximum likelihood estimates ψMLE . Then
in a second step, I fix the value of σy to σMLE

y and use profile maximum likelihood over ρ
to construct a set of alternative models. Profile maximum likelihood consists of defining a
grid of ρ values, and for each value of ρ in the grid, finding the corresponding maximum
likelihood estimates of (σx, µy). A model with log likelihood L is hard to distinguish from
the MLE if 2|LMLE − L| < χ2

2,0.95. For simplicity, I picked from this set two models :
models with the lowest and the highest persistence parameter ρ.10 The model with highest
persistence parameter will be labelled the long run risk model, and the other the non long
run risk model. Using USA data (see table B.1 for other countries), the calibrated models
are :

1. Long run risk model, k = 1

xt+1 =
(

0.995 0
0 1

)
xt +

(
0.00179 0

0 0

)
εt+1

yt = (1, 1)xt + (0, 0.00564)εt

(3.3.16)

2. Non Long run risk model, k = 2

xt+1 =
(

0.746 0
0 1

)
xt +

(
0.00366 0

0 0

)
εt+1

yt = (1, 1)xt + (0, 0.00564)εt

(3.3.17)

10Profile maximun likelihood potentially provides a systematic approach to constructing the set of models
that hard to distinguish using the available data. See Hansen and Sargent (2015) for an alternative approach.
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With these two models in hand, I follow the procedure outlined in Section 3.2.5 to compute
the locus of (θ1, θ2) values that deliver the same detection error probability. I first apply
the Kalman filter to each model, and then recursively compute the Bayesian and robust
prior over models and the model averaging signals. Finally, Equation 3.2.12 is used to find
the misclassification probability.

Figure 3.1: Detection error probabilities
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Notes: Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2.

Throughout the rest of the paper, I present the results from a perspective of a US investor
who constructs a portfolio of three return differentials with respect to the Canadian dollar,
the Japanese Yen and the British pound. Then I use US consumption growth to study risk
premia11.

Figure 3.1 plots the detection error probability for each pair of values (θ1, θ2). This
plot reveals two features. First, the detection error probability increases with both θ1 and
θ2. This is not surprising since an increase in the robustness parameter means that it is
more costly to the evil agent to distort the approximating model. As a result, the size of
the distortion is smaller and the approximating and worst case models will therefore be
more similar. Thus, the detection error probability is higher. Second, the locus of values
delivering the same detection error probability is downward sloping. Using this locus of
values, I calibrate (θ1, θ2) to yield a detection error probability of 20%. These calibrated
values are used in the next two sections to derive the posterior model probabilities and the
Hansen Jagannatan bound.

11Figure B.3, B.4,B.5 andB.6 in the appendices contains the result from the perspective of a foreign
investor pricing risk using foreign consumption. The results a similar to the case of a US investor
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Table 3.2: Calibration

Parameter Value
Subjective Discount factor β 0.995
T1 Parameter θ1 0.770
T2 Parameter θ2 1.880
Detection error probability p(θ1, θ2) 0.200

3.3.2 Posterior model probabilities

This section analyzes the posterior model probabilities contained in line 2 of Table 3.1 and
depicted in Figure 3.2. The benchmark Bayesian probabilities can be subdivided roughly
into 3 main sub-periods. In the 1980s, a Bayesian learner puts more weight on the non-
long risk model characterized by low persistence, ie., the temporary component of the state
space model plays a bigger role in the dynamics of consumption growth. This makes sense
since this period was characterized by relatively volatile consumption growth. The next
sub-period goes from the 1990s until 2007. During this period the long run risk model
is the main driver of consumption growth which is less volatile. Therefore the process is
mostly driven by the low frequency component. The last sub-period begins with the recent
financial crisis and is again marked by an increase in the probability attached to the non
long risk model.

This plot also shows that when the agent is averse to both misspecification of the state
and to model priors, this leads to a uniform increase in the posterior probability assigned to
the long run risk model. Notice the Robust Bayesian probabilities are consistently greater
than 50%. More importantly, notice that although recessions trigger a reduction in the
probability of the long-run risk model for both the Bayesian and the robust learner, the
reduction is much greater for the Bayesian. That is, the bias of the robust learner is state
dependent.

The next section investigates the properties of the stochastic discount factor generated
by our robust model averaging investor. More specifically, we are interested in seeing
whether it satisfies the Hansen and Jagannathan (1991) bound, since satisfying this bound
has proven to be a challenge for conventional risk premium models.

3.3.3 Hansen Jagannathan Bound

This subsection asks whether the robust stochastic discount factor is volatile enough to
satisfy the Euler equation and the implied Hansen Jagannathan bound. To answer this
question, I start with a visual inspection, and plot the stochastic discount factor implied by
our model. This corresponds to line 5 of Table 3.1. Figure 3.3 clearly shows that relative
to CRRA and Bayesian stochastic discount factors, the robust model averaging version is
very volatile. Next, I plot the Hansen Jagannathan bound. This bound places restrictions
on the first two moments of any valid stochastic discount factor, and thus provides a simple
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Figure 3.2: Posterior model probabilities
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Notes: Subjective discount factor is assumed to be β = 0.995. Robustness parameters
(θ1, θ2) = (0.77, 1.88). Detection error probability p(θ1, θ2) = 20%. The sample period is 1979Q1-
2012Q2.

test of whether a given model is consistent with the data. In this paper I use the generalized
version of this bound due to Otrok, Ravikumar, and Whiteman (2007). Their bound takes
into account not only current returns, but also past and future returns. As a consequence,
it provides a test for all horizons (e.g., short, medium and long). The bound is given by:

fm(ω) ≥ fRg(ω)′fR(ω)−1fRg(ω) ∀ω (3.3.18)

where fm is the spectral density of the stochastic discount factor, fRg is the cross-spectrum
between the assets’ returns and the stochastic discount factor, fR is the spectral density
matrix of assets returns. Denote the right hand side of Equation 3.3.18 as fg and refer to
it as the spectral bound.

Figure 3.4 illustrates this spectral bound (dotted line) and the the spectrum of the
stochastic discount factors(solid line). Each panel corresponds to a specific model and plots
on the horizontal axis the frequency and on the vertical the corresponding spectrum. The
spectral bound is almost always violated at all frequencies for the log utility model and
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Figure 3.3: Stochastic Discount Factors
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Notes: Subjective discount factor is assumed to be β = 0.995. Robustness parameters
(θ1, θ2) = (0.77, 1.88). Detection error probability p(θ1, θ2) = 20%. The sample period is 1979Q1-
2012Q2.

Figure 3.4: Hansen Jagannathan bound by frequency
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.
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the Bayesian model averaging version. In contrast, our robust learning version satisfies
the bound at all frequencies. Moreover, this is achieved with an empirically plausible
detection error probability of 20%. A formal model comparison procedure is conducted in
the next section to more formally assess which of the three stochastic discount factors is
more consistent with observed excess returns data in the foreign exchange market.

3.3.4 Model Comparison

One candidate metric for model comparison would be to use the quadratic form introduced
by Hansen and Jagannathan (1997). This distance depends on the implied pricing error of
the stochastic discount factor and is given by:

dHJ =
√
m′TΣ−1

R,TmT (3.3.19)

where mT is the vector of the sample average of pricing errors with mi,T = 1
T

T∑
t=1

mtR
e
i,t,

ΣR,T = 1
TR

eRe
′ is the sample second moment matrix of excess returns. Alternatively, I

compute the symmetric Kullback-Leiber distance between the spectral density functions of
the stochastic discount factor fm(ω) and the spectral density function of the generalized
Hansen Jagannathan bound fg(ω).

dSpec = I(fm, fg) + I(fg, fm) (3.3.20)

I then find the pair of robustness parameters that minimizes this distance. The spectral
distance for the robust model averaging is 1.153, about 23% lower than the benchmark
Bayesian model averaging version and 26% lower than the time separable power utility
with unit elasticity counterpart. It therefore appears that according to this spectral metric
the proposed robust learning model is more consistent with the data. All these distances
are reported in Table 3.3 together with the HJ distance. The HJ distance gives the same
ranking of models.

Table 3.3: Pricing specification errors by models

Models HJ distance Spectral distance
dHJ θ1 θ2 p(θ1, θ2) dspec θ1 θ2 p(θ1, θ2)

Robust Model Averaging 0.040 15.261 0.317 0.160 1.153 3.979 0.843 0.268
Bayesian Model Averaging 0.096 1.415
CRRA(IES=1) 0.096 1.561
This table provides the HJ and spectral distance. The value of the robustness parameter are obtained by minimizing
the corresponding distance. The subjective discount factor is assumed to be β = 0.995. The sample period is
1979Q1-2012Q2 and the real interest rate differential is Ret+1 =

(
(1 + i∗t )

St+1
St

− (1 + it)
)

Pt
Pt+1

These results offer a reinterpretation of Bansal and Shaliastovich (2013). One could
argue that their estimated coefficient of risk aversion is implausibly high. My results show
that this parameter need not be interpreted in terms of risk aversion. Instead, a concern
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for model misspecification combined with learning provides an alternative interpretation in
which the uncertainty is calibrated to detection error probabilities rather than risk. I find
reasonable detection error probabilities (in the range 15-30%) can explain observed risk
premium dynamics.

3.3.5 The Importance of Learning

A natural question at this point is to ask what is the relative contribution of the two risk-
sensitivity operators. To address this question, I shut down the forward-looking learning
operator T1 by letting θ1 = +∞, and see how this affects the HJ bound and the probability
weights assigned to each model. The robustness parameter associated with T2 is set to
θ2 = 0.74 yielding a detection error probability of 30%.

Figure 3.5: Model probabilities and Hansen Jagannathan bound with T2 only
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Notes: Subjective discount factor is assumed to be β = 0.995. Robustness parameters (θ1, θ2) = (+∞, 0.74).
Detection error probability p(θ1, θ2) = 30%. The sample period is 1979Q1-2012Q2.

Two main features emerge from this experiment (see 3.5). First, the worst case prob-
ability weight assigned to the long run risk consumption growth is smaller. Second, the
Hansen Jagannathan bound is now violated at high frequencies.

3.4 Conclusion

This paper has studied risk premia in the foreign exchange market using a consumption-
based asset pricing framework with model uncertainty. I showed that fears of model mis-
specification combined with robust learning accounts for both the average level of the risk
premium and its state dependent dynamics. The key mechanism is that our robust agent
tilts asymmetrically model probabilities toward the consumption growth model with the
highest degree of persistence, and this bias increases during bad times. This mechanism gen-
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erates a stochastic discount factor that satisfies the Hansen-Jagannathan volatility bound
at all frequencies, with a modest detection error probability of 20 %.

To preserve tractability, this paper used a linear state space model together with a
unit elasticity of intertemporal substitution. One avenue for future research would be to
relax this assumption, and use for instance a model with stochastic volatility. In this case
nonlinear filtering techniques (eg, the particle filter) will be needed. Alternatively one could
also use Ju and Miao (2012) preferences to model a concern for model misspecification, but
at the price of losing the backward and forward interpretations of Hansen and Sargent’s
operators. Perhaps the most important direction will be to solve a fully specified general
equilibrium model incorporating model uncertainty and learning, and study its implications
for exchange rate dynamics and UIP regressions. In this regard Colacito and Croce (2012)
would be a good starting point.
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Appendix A

Model uncertainty and the forward
premium puzzle

A.1 Additional tables

Table A.1: Fama regression : st+1 − st = α0 + α1(it − i∗t ) + εt+1

α0 α1 R2 F Pr(> F )

US-CAN 0.000 -0.347 0.002 2.015 0.137
(0.003) (0.745)

US-JPN 0.024 -2.377 0.058 8.188 0.000
(0.008) (0.834)

US-UK -0.008 -1.527 0.024 4.457 0.013
(0.006) (0.856)

UK-CAN 0.012 -3.261 0.075 9.025 0.000
(0.005) (1.003)

UK-JPN 0.029 -1.700 0.016 2.735 0.069
(0.014) (1.167)

JPN-CAN -0.028 -2.492 0.039 5.318 0.006
(0.011) (1.079)

Notes: (1) F is the F-statistics for the joint test of α0 = 0 and α1 = 1.
(2) Pr(> F ) is the p-value for the joint test.
(3) Number in parentheses are standard errors.
(4) Sample 1979Q1-2012Q2
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Table A.2: Distance to HJ bound and corresponding γ and p(γ) (Standard deviations)

σ(m)

E(m)
√
R̄e
′Σ−1R̄e

γ p(γ)
CAN JPN UK US CAN JPN UK US

Random Walk
1.00 2.8 3.0 2.5 4.1 4.5 7.0 5.7 5.7
0.75 2.1 2.3 1.8 3.1 3.5 5.5 4.3 4.5
0.50 1.4 1.5 1.2 2.1 2.4 3.8 2.9 3.1
0.25 0.7 0.7 0.5 1.0 1.2 1.6 1.1 1.5

Trend Stationary
1.00 41.8 21.5 28.5 64.8 4.4 7.8 5.7 5.6
0.75 31.7 17.3 21.7 49.1 3.5 6.3 4.5 4.5
0.50 21.6 13.0 14.8 33.4 2.4 4.4 3.1 3.2
0.25 11.5 8.7 8.1 17.6 1.3 2.3 1.6 1.7

This table provides the minimal γ and the corresponding detection error probability for different distance to the
bound. These statistique are standard deviations over 67 samples constructed using expanding window. The first
sample is 1979Q1-1995Q3 the second one is 1979Q1-1995Q4 etc. The ratio σ(m)

E(m)

√
R̄e
′Σ−1R̄e

equal to 1.00 means

that the corresponding γ puts the (E(m), σ(m)) on the HJ bound; while 0.50 put (E(m), σ(m)) half way to the
bound. Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2 and the real
interest rate differential is Ret+1 =

(
(1 + i∗t )

St+1
St

− (1 + it)
)

Pt
Pt+1

Table A.3: Distance to HJ bound and corresponding γ and p(γ) (Minimum)

σ(m)

E(m)
√
R̄e
′Σ−1R̄e

γ p(γ)
CAN JPN UK US CAN JPN UK US

Random Walk
1.00 4 3 1 6 44.5 46.7 49.6 40.7
0.75 3 2 1 5 46.3 48.0 50.0 43.4
0.50 2 1 1 3 48.2 49.3 49.8 46.2
0.25 1 1 1 2 50.0 49.9 49.9 48.9

Trend Stationary
1.00 24 3 26 44 33.7 28.8 41.8 30.3
0.75 19 3 21 34 37.4 33.2 43.4 34.6
0.50 13 2 16 24 41.1 37.9 44.9 39.1
0.25 8 2 12 14 45.0 42.8 46.5 43.7

This table provides the minimal γ and the corresponding detection error probability for different distance to the
bound. These statistique are miniumun over 67 samples constructed using expanding window. The first sample
is 1979Q1-1995Q3 the second one is 1979Q1-1995Q4 etc. The ratio σ(m)

E(m)

√
R̄e
′Σ−1R̄e

equal to 1.00 means that

the corresponding γ puts the (E(m), σ(m)) on the HJ bound; while 0.50 put (E(m), σ(m)) half way to the bound.
Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2 and the real interest
rate differential is Ret+1 =

(
(1 + i∗t )

St+1
St

− (1 + it)
)

Pt
Pt+1
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Figure A.1: Dynamic UIP Regression using rolling and expanding window
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Notes: This plot gives the UIP slope coefficient. The rolling window line corresponds to the regression using
half sample and progressively add one observation at the top while removing one at the queue. This is done
till the end of the full sample 2012Q2. The expanding window only adds new observation. Sample period:
1979Q1-2012Q2.
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Table A.4: Distance to HJ bound and corresponding γ and p(γ) (Maximun)

σ(m)

E(m)
√
R̄e
′Σ−1R̄e

γ p(γ)
CAN JPN UK US CAN JPN UK US

Random Walk
1.00 17 15 12 23 24.2 19.9 26.1 21.4
0.75 13 11 9 18 30.3 26.7 32.0 27.8
0.50 9 8 6 12 37.1 34.7 38.5 35.2
0.25 4 4 3 6 44.3 43.4 45.4 43.1

Trend Stationary
1.00 205 113 145 289 21.9 39.1 32.5 19.5
0.75 157 90 112 220 27.7 41.3 36.2 25.7
0.50 108 66 80 150 34.2 43.6 40.2 32.8
0.25 59 43 47 81 41.3 45.9 44.2 40.6

This table provides the minimal γ and the corresponding detection error probability for different distance to the
bound. These statistique are maximum over 67 samples constructed using expanding window. The first sample
is 1979Q1-1995Q3 the second one is 1979Q1-1995Q4 etc. The ratio σ(m)

E(m)

√
R̄e
′Σ−1R̄e

equal to 1.00 means that

the corresponding γ puts the (E(m), σ(m)) on the HJ bound; while 0.50 put (E(m), σ(m)) half way to the bound.
Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2 and the real interest
rate differential is Ret+1 =

(
(1 + i∗t )

St+1
St

− (1 + it)
)

Pt
Pt+1
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A.2 Proof proposition 2.2.4

Proof. RW case:
Value Function:
The recursive formulation is fully characterized by the following system of equations:

Vt = ct − βθ log Et
[
exp(−Vt+1

θ
)
]

ct+1 = µ+ ct + σεεt+1

Vt = A+B ct

Using the third equation into the first yields:

Vt = ct − βθ log Et
[
exp(−A+Bct+1

θ
)
]

= ct − βθ log Et
[
exp(−A+B(µ+ ct + σεεt+1)

θ
)
]

= ct − βθ log Et
[
exp(−A+B(µ+ ct)

θ
) exp(−Bσεεt+1

θ
)
]

= ct + β(A+B(µ+ ct))− βθ log Et exp(−Bσεεt+1
θ

)

= ct + β(A+B(µ+ ct))− βθ(
B2σ2

ε

2θ2 )

= ct + β(A+B(µ+ ct))− β(B
2σ2
ε

2θ )

The equality between line 4 and line 5 uses:

εt+1 ∼ N (0, 1)⇒ − B

θ
σεεt+1 ∼ N (0, B

2

θ2 σ
2
ε )

⇒ exp(−B
θ
σεεt+1) ∼ logN (0, B

2

θ2 σ
2
ε )

⇒ Et(exp(−B
θ
σεεt+1)) = exp(0 + B2σ2

ε

2θ2 )

Mapping the coefficient in the LHS to those in the RHS of the value function gives, the
following system of equations:


B = 1 + βB

A = βA− βB
2σ2
ε

2θ + βBµ
⇒


B = 1

1− β

A = β

(1− β)2

(
µ− σ2

ε

2(1− β)θ

)

Using the fact that θ = − 1
(1−β)(1−γ) :

Vt = β

(1− β)2

(
µ− σ2

ε (γ − 1)
2

)
+ 1

1− β ct
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Martingale increment:
The martingale increment is given by

gt+1 =
exp(−Vt+1

θ )
Et(exp(−Vt+1

θ ))

=
exp(−A+Bct+1

θ )
Et exp(−A+Bct+1

θ )

=
exp(−A+B(µ+ct)

θ ) exp(−Bσεεt+1
θ )

Et(exp(−A+B(µ+ct)
θ ) exp(−Bσεεt+1

θ ))

=
exp(−Bσεεt+1

θ )
Et(exp(−Bσεεt+1

θ ))

= exp(−Bσεεt+1
θ

− B2σ2
ε

2θ2 )

= exp(−σε(γ − 1)εt+1 −
(γ − 1)2σ2

ε

2 )

Consumption mean distortion:
Using the likelihood ratio interpretation of gt+1 it follows that:

p̂ε(εt+1) = gt+1(εt+1)pε(εt+1)

∝ exp(−Bσεεt+1
θ

− B2σ2
ε

2θ2 ) exp(−
ε2
t+1
2 )

∝ exp
(
−1

2(εt+1 + B

θ
σε)2

)
And the mean distortion is : wt+1 = −B

θ σε

TS case:
First, the consumption process should be rewritten in a single equation taking into account
the autocorrelated errors as follow:{

ct+1 = λ+ µt+ zt+1
zt = ρzt−1 + σεεt

⇒
{
ct+1 = ((1− ρ)λ+ ρµ) + µ(1− ρ)t+ ρct + σεεt+1

ct+1 = λ̃+ µ̃t+ ρct + σεεt+1

Value function:
And the recursive formulation will be :

Vt = ct − βθ log Et
[
exp(−Vt+1

θ
)
]

ct+1 = λ̃+ µ̃t+ ρct + σεεt+1

Vt = D + E t+ F ct
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Vt = ct − βθ log Et
(

exp(−D + E(t+ 1) + F ct+1
θ

)
)

= ct − βθ log Et

(
exp(−D + E(t+ 1) + F (λ̃+ µ̃t+ ρct + σεεt+1)

θ
)
)

= ct − βθ log Et

(
exp(−D + E + Et+ F (λ̃+ µ̃t+ ρct)

θ
) exp(−Fσεεt+1

θ
)
)

= ct + β(D + E + Et+ F (λ̃+ µ̃t+ ρct))− βθ logEt(exp(−Fσεεt+1
θ

))

= ct + β(D + E + Et+ F (λ̃+ µ̃t+ ρct))− βθ(
F 2σ2

ε

2θ2 )

= ct + β(D + E + Et+ F (λ̃+ µ̃t+ ρct))− β(F
2σ2
ε

2θ )

Again, mapping the coefficient of the LHS and RHS of the last equality gives:


D = β(D + E + Fλ̃− F 2σ2

ε
2θ )

E = β(E + Fµ̃)
F = 1 + βFρ

⇒


D = β

(1−β)

(
βµ(1−ρ)

(1−β)(1−βρ) + (1−ρ)λ+ρµ
1−βρ − σ2

ε (1−β)(γ−1)
2(1−βρ)2

)
E = βµ(1−ρ)

(1−β)(1−βρ)
F = 1

1−βρ

And Finally:

Vt = β

(1− β)

(
βµ(1− ρ)

(1− β)(1− βρ) + (1− ρ)λ+ ρµ

1− βρ − σ2
ε (1− β)(γ − 1)

2(1− βρ)2

)

+ βµ(1− ρ)
(1− β)(1− βρ) t+ 1

1− βρct

Martingale Increment:
Using the same procedure as in the RW case, we have :

gt+1 = exp
(
−Fσεεt+1

θ
− F 2σ2

ε

2θ2

)

= exp
(
−(1− β)(γ − 1)

1− βρ σεεt+1 −
(1− β)2(γ − 1)2σ2

ε

2(1− βρ)2

)
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Consumption mean distortion:
Using the likelihood ratio interpretation of gt+1 it follows that:

p̂ε(εt+1) = gt+1(εt+1)pε(εt+1)

∝ exp(−Fσεεt+1
θ

− F 2σ2
ε

2θ2 ) exp(−
ε2
t+1
2 )

∝ exp
(
−1

2(εt+1 + F

θ
σε)2

)
And the mean distortion is : wt+1 = −F

θ σε

A.3 Proof proposition 2.2.5

RW case:

mt+1 =
(
β
Ct
Ct+1

) e−
Vt+1
θ

E(e−
Vt+1
θ |Ft)


=

(
β
Ct
Ct+1

)
gt+1

= β exp
(
− log(Ct+1

Ct
)
)

exp
(
−Bσεεt+1

θ
− B2σ2

ε

2θ2

)

= β exp
(
−∆ct+1 −

Bσεεt+1
θ

− B2σ2
ε

2θ2

)

= β exp
(
−µ− σεεt+1 −

Bσεεt+1
θ

− B2σ2
ε

2θ2

)

Taking the logarithm of this last expression gives:

log(mt+1) = log(β)− µ− σεεt+1 −
Bσεεt+1

θ
− B2σ2

ε

2θ2

⇒
{

E(log(mt+1)) = log(β)− µ− B2σ2
ε

2θ2

var(log(mt=1)) = σ2
ε var(εt+1) + B2σ2

ε

θ2 var(εt+1) + 2Bσ
2
ε

θ
cov(εt+1, εt+1)

= σ2
ε + B2σ2

ε

θ2 + 2Bσ
2
ε

θ

= σ2
ε

(
1 + B

θ

)2
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Since log(mt+1) is a linear combination of Gaussian distributions, it is also Gaussian distri-
bution fully characterized but its first two moments. Thus:

logmt+1 ∼ N (log β − µ− B2

2θ2σ
2
ε , σ

2
ε(1 + B

θ
)2)

TS case:

ct+1 = λ̃+ µ̃t+ ρct + σεεt+1 ⇒ ∆ct+1 = µ̃+ ρ∆ct + σε∆εt+1

⇒ (1− ρL)∆ct+1 = µ̃+ σε∆εt+1

⇒ ∆ct+1 = µ̃

1− ρL + σε∆εt+1
1− ρL

⇒ ∆ct+1 = µ̃

1− ρ + σε

∞∑
j=0

ρj∆εt+1−j

⇒ ∆ct+1 = µ+ σε

∞∑
j=0

ρj∆εt+1−j

Using the same procedure as in the RW case we have:

log(mt+1) = log(β)−∆ct+1 −
Fσεεt+1

θ
− F 2σ2

ε

2θ2

Plugging the MA(∞) representation of the TS process gives:

log(mt+1) = log(β)− µ− σε
∞∑
j=0

ρj∆εt+1−j −
Fσεεt+1

θ
− F 2σ2

ε

2θ2
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And

E(log(mt+1)) = log(β)− µ− F 2σ2
ε

2θ2

V ar(log(mt+1)) = σ2
εV ar

 ∞∑
j=0

ρj∆εt+1−j + Fεt+1

θ


= σ2

ε

V ar( ∞∑
j=0

ρj∆εt+1−j) + F 2

θ2 V ar(εt+1) + 2F
θ
Cov(

∞∑
j=0

ρj∆εt+1−j , εt+1)


= σ2

ε

 ∞∑
j=0

ρ2jV ar(∆εt+1−j) + 2
∞∑
j=0

Cov(ρj∆εt+1−j , ρ
j+1∆εt−j) + F 2

θ2 + 2F
θ
Cov(εt+1 − εt, εt+1)


= σ2

ε

2
∞∑
j=0

ρ2j − 2ρ
∞∑
j=0

ρ2j + F 2

θ2 + 2F
θ


= σ2

ε

[
2

1− ρ2 −
2ρ

1− ρ2 + F 2

θ2 + 2F
θ

]
= σ2

ε

[
2

1 + ρ
+ F 2

θ2 + 2F
θ

]
Hence :

logmt+1 ∼ N
(

log β − µ− F 2

2θ2 , σ
2
ε(

2
1 + ρ

+ 2F
θ

+ F 2

θ2 )
)

Finally the mean and the variance are computed using the properties of a log-normal dis-
tribution. If logX ∼ N (µ, σ2) then

E(X) = exp(µ+ σ2)
2

V ar(X) = (exp(σ2)− 1)E(X)2

A.4 Proof proposition 2.2.6

Proof. RW case:
Consider a sample {ct}T0 of consumption following the approximating and worst case model
outline previously. The conditional likelihood are respectively given by :

lnLA = −1
2 ln(2π)− 1

2 ln(σ2
ε )−

1
2σ2

ε

T∑
t=2

[∆ct+1 − µA]2

lnLB = −1
2 ln(2π)− 1

2 ln(σ2
ε )−

1
2σ2

ε

T∑
t=2

[∆ct+1 − µB]2

The log likelihood ratio is then:
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lnLA − lnLB = − 1
2σ2

ε

T∑
t=2

[∆ct+1 − µA]2 + 1
2σ2

ε

T∑
t=2

[∆ct+1 − µB]2

= 1
2σ2

ε

T∑
t=2

[
(∆ct+1 − µB)2 − (∆ct+1 − µA)2

]

= 1
2σ2

ε

T∑
t=2

[
(µA − µB) (2∆ct+1 − µA − µB)

]

= 1
σ2
ε

[ T∑
t=2

∆ct+1 −
T − 1

2 (µA + µB)
]

= (µA − µB)
σ2
ε

[
(T − 1)µ̂− (T − 1

2 )(µA + µB)
]

= (T − 1)(µA − µB)
σ2
ε

[
µ̂− (µA + µB)

2

]

Where µ̂ = 1
T−1

T∑
t=2

∆ct+1.

Since∆ct+1 = µ + εt+1 with εt ∼ iidN (0, σ2
ε ), the Central Limit Theorem implies that:√

T−1(µ̂−µ)
σε

∼ N (0, 1) and :

pA = P (lnLA − lnLB < 0|A) = P
{(T − 1)(µA − µB)

σ2
ε

[
µ̂− (µA + µB)

2

]
< 0|A

}
= P

{(T − 1)(µA − µB)
σ2
ε

[
µ̂− µA + (µA − µB)

2

]
< 0|A

}
= P

{√
T − 1(µ̂− µA)

σε
<

√
T − 1(µB − µA)

2σε
|A
}
if µA > µB

= Φ
{√

T − 1
2σε

(µB − µA)
}
if µA > µB

In the other case we have:

pA =P
{√

T − 1(µ̂− µA)
σε

≥
√
T − 1(µB − µA)

2σε
|A
}
if µA ≤ µB

=1− Φ
{√

T − 1
2σε

(µB − µA)
}

if µA ≤ µB

In sum:

pA = Φ
{
−
√
T − 1
2σε

|µB − µA|
}
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Similarly,

pB = Φ
{
−
√
T − 1
2σε

|µB − µA|
}

And thus :
p(γ) = Φ

{
−
√
T − 1
2σε

|µB − µA|
}

= Φ
(
−0.5

√
Tσε |γ − 1|

)
The equality comes comes from the fact that the mean distortion in random walk case is
|µB − µA| = σ2

ε |γ − 1|.
TS case:
The averaged conditional log-likelihood functions are :

lnLA = −1
2 ln(2π)− 1

2 ln(σ2
ε )−

1
2σ2

ε (T − 1)

T∑
t=2

[ct − (1− ρ)λA − µ[t− ρ(t− 1)]− ρct−1]2

lnLB = −1
2 ln(2π)− 1

2 ln(σ2
ε )−

1
2σ2

ε (T − 1)

T∑
t=2

[ct − (1− ρ)λB − µ[t− ρ(t− 1)]− ρct−1]2

And the log likelihood ratio is :

lnLA − lnLB =(1− ρ)2(λA − λB)
2σ2

ε (T − 1)

T∑
t=2

[ 2
1− ρ (ct − ρct−1 − µ(t− ρ(t− 1)))− (λA + λB)

]

=(1− ρ)2(λA − λB)
2σ2

ε

{
1

(T − 1)(1− ρ)

T∑
t=2

[ct − ρct−1 − µ(t− ρ(t− 1))]− λA + λB
2

}

=(1− ρ)2(λA − λB)
2σ2

ε

{
λ̂− λA + λB

2

}

P(lnLA − lnLB < 0|A) =P
(

(1− ρ)2(λA − λB)
2σ2

ε

{
λ̂− λA + λB

2

}
< 0|A

)

=

P
(
λ̂− λA+λB

2 < 0|A
)
if λA > λB

P
(
λ̂− λA+λB

2 >≥ |A
)
if λA ≤ λB

=


P
(√

T (λ̂−λA)
σε

<
√
T (λB−λA)

2σε

)
if λA > λB

P
(√

T (λ̂−λA)
σε

≥
√
T (λB−λA)

2σε

)
if λA ≤ λB

=Φ
(
−
√
T |λA − λB|

2σε

)
Similarly,
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P(lnLA − lnLB > 0|B) = Φ
(
−
√
T |λA − λB|

2σε

)

and the detection probability

p(γ) = P(lnLA − lnLB < 0|A) + P(lnLA − lnLB > 0|B)
2

= Φ
(
−
√
T |λA − λB|

2σε

)
Since the mean distortion is given by :

|λA − λB| =
σ2
ε (1− β) |γ − 1|

1− ρβ

Plugging the mean distortion back into the expression of detection probability gives:

p(γ) =Φ
(
−0.5

√
Tσε

(1− β) |γ − 1|
1− ρβ

)
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Appendix B

Robust learning in the foreign
exchange market

B.1 Additional tables

Table B.1: Models

CAN JPN UK US
est. se est. se est. se est. se

MLE
ρ 0.99110 0.01471 0.99426 0.00946 0.98982 0.01382 0.93972 0.06993
σx 0.00129 0.00046 0.00092 0.00033 0.00240 0.00073 0.00230 0.00093
σy 0.00610 0.00044 0.01000 0.00063 0.00810 0.00063 0.00564 0.00057
µy 0.01641 0.01272 0.00660 0.01249 0.02215 0.01679 0.01544 0.01047

−LMLE -474.93998 -417.06674 -431.70185 -474.70339
Long Run Risk

ρ 0.99500 0.99500 0.99500 0.99500
σx 0.00122 0.00035 0.00091 0.00028 0.00230 0.00060 0.00179 0.00051
σy 0.00610 0.00044 0.01000 0.00063 0.00810 0.00063 0.00564 0.00057
µy 0.01680 0.01464 0.00661 0.01283 0.02339 0.02244 0.01705 0.01855

2|LMLE − L| 0.11134 0.00669 0.22305 1.93452
Non Long Run Risk

ρ 0.88556 0.93530 0.90545 0.74626
σx 0.00252 0.00045 0.00177 0.00044 0.00368 0.00064 0.00366 0.00051
σy 0.00610 0.00044 0.01000 0.00063 0.00810 0.00063 0.00564 0.00057
µy 0.01477 0.01018 0.00640 0.01028 0.01806 0.01052 0.01501 0.01009

2|LMLE − L| 5.44966 5.20789 5.95974 5.58613
The sample period is 1979Q1-2012Q2.

88



Figure B.1: Predicted Model Averaging Consumption Growth - USA
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Notes: Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2.
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Figure B.2: Nominal Interest Rate
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Figure B.3: Posterior model probability by country
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Notes: Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2.
Shaded area corresponds to NBER recession for in USA.
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Figure B.4: Stochastic discount factor by countries
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Notes: Subjective discount factor is assumed to be β = 0.995. The sample period is 1979Q1-2012Q2.
Shaded area corresponds to NBER recession for in USA.
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Figure B.5: Hansen Jagannathan bound by frequency and by country
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(b) CAN - RMA
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(c) JPN - BMA
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(e) UK - BMA
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(f) UK - RMA
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Notes: Subjective discount factor is assumed to be β = 0.995. Robustness parameters are calibrated to give a detection
error probability p(θ1, θ2) = 20%. The sample period is 1979Q1-2012Q2 and the real interest rate differential is Ret+1 =(

(1 + i∗t )
St+1
St

− (1 + it)
)

Pt
Pt+1

.
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Figure B.6: Predicted consumption growth per country
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Shaded area corresponds to NBER recession for in USA.
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