A Formal Semantic Framework for
Maritime Situation Analysis

by
Amir Yaghoubi Shahir

B.Sc., Azad University, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science

Faculty of Applied Sciences

(© Amir Yaghoubi Shahir 2016
SIMON FRASER UNIVERSITY
Spring 2016

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with
the law, particularly if cited appropriately.

Approval

Name:
Degree:
Title:

Examining Committee:

Dr. Uwe Glasser
Senior Supervisor
Professor

Dr. Hans Wehn
Supervisor
Adjunct Professor

Dr. William N. Sumner

Internal Examiner
Assistant Professor

Date Defended:

Amir Yaghoubi Shahir
Master of Science (Computing Science)

A Formal Semantic Framework for Maritime Situation
Analysis

Dr. Ramesh Krishnamurti (Chair)
Professor

18 April 2016

ii

Abstract

Situation analysis is a process of examining a situation to provide and maintain a state
of situation awareness which is critical for dynamic decision-making in responding to real-
world situations. Limited surveillance resources constrain maritime domain awareness and
compromise safety and security coverage at all times. This calls for innovative intelligent
systems for interactive situation analysis to assist marine authorities in their routine surveil-
lance operations. In this research, we use the Abstract State Machine method to formally
model and design a precise yet concise situation analysis framework. The backbone of our
model is an existing abstract framework. We expand and enrich it by capturing detailed
requirements and specifying the precise behavior of its components to process, analyze, and
fuse large volumes of marine traffic data received from various sources. To this end, we

propose a time series structure for rendering vessel trajectories from real-time data.

Keywords: Maritime Domain Awareness, Time Series Analysis, Situation Analysis and

Decision Making, Formal Modeling, Abstract State Machines

iii

This thesis is dedicated to my parents and my grandparents,

for their everlasting love and support.

iv

Acknowledgements

I would first like to thank my senior supervisor, Dr. Uwe Glésser, your support and dedica-
tion in guiding me along my path to completing my Masters has been invaluable, you have
given me the tools to succeed and for that, there are no words to adequately describe my
gratitude. Thank you Dr. Hans Wehn, my supervisor, your advice and continued efforts

have helped to shape my research.

Many thanks to Dr. William N. Sumner, and Dr. Ramesh Krishnamurti for their

thorough examination of this thesis.

Jeanette, thank you for all your love and support through each step of the way. I would
also like to thank to Hamed for guiding me not only through my Masters, but through
life. Thanks to my friends at Simon Fraser University, Kamyar, Laleh, Mohammad, Narek,

Sara, Ehsan, and Jasneet.

My deepest and warmest thanks to my family, most importantly my parents, for their
endless support that has made all of this possible. To all my friends who cannot be men-

tioned, thank you.

I would also like to acknowledge the administrative and technical staff in the School of

Computing Science for their support in the course of this research.

Table of Contents

Approval ii
Abstract iii
Dedication iv
Acknowledgements v
Table of Contents vi
List of Tables ix
List of Figures X
1 Introduction 1
1.1 Motivation e 1
1.2 Problem Overview e 1
1.3 Thesis Contributions 2
1.4 Thesis Organization 3

2 Marine Traffic Monitoring Systems 5
2.1 Automatic Identification System (AIS) 5
2.1.1 How AIS Works. 6

2.1.2 Different Classes and Information 6

2.1.3 Typeof Vessel 8

2.1.4 AISRange 9

2.1.5 AIS Accuracy 9

2.1.6 Drawbacks of AIS 10

2.2 Satellite AIS and How it Works 10
2.3 Marine Radar 11
2.3.1 How Radar Works 11

2.3.2 Drawbacks of Radar 12

3 Abstract State Machines 13

vi

6

3.1 Lack of Model Designing 13

3.2 The Notion of ASM 14
3.2.1 Basic Concepts e 15
3.2.2 Fundamental Concepts 18

3.3 Ground Model 21

3.4 Refinement 22
3.4.1 Formal Definition of Refinement 23

3.5 ASM Systems Engineering Method 24
3.5.1 Distributed ASM 25

Time Series Analysis 26

4.1 Connecting the Dots — From Time Series to Trajectories 26

4.2 Definition of Time Series and its Related Operations 27

4.2.1 Initial Definition: Time Series with One Value per Feature and Precise
Timestamps L 28

4.2.2 First Refinement: Time Series with a Set of Values per Feature and
Precise Timestamps oo 31

4.2.3 Second Refinement: Time Series with Approximate Timestamps (Prac-

tical Approach) 32

Maritime Situation Analysis: A Formal Semantic Framework 35

5.1 Formal Approaches to Situation Analysis (Related Work) 36
5.1.1 JDL (Joint Directors of Laboratories) Data Fusion and State Transi-

tion Data Fusion (STDF) Models 36

5.2 Challenges and Key Concepts 39

5.3 Agent Network Structure 40

5.4 Observation Segment 41

5.5 Maritime Situation Analysis Framework 43

5.5.1 Observer Controller 46

5.5.2 Reasoner Controller 48

5.6 Formal Definition of Trajectory 56

Implementation 58

6.1 Implementation of the Framework (CoreASM Part) 59

6.1.1 Network Configuration Module 59

6.1.2 Environment Module oo 59

6.1.3 Observer and Reasoner Modules 60

6.1.4 Situation Analysis (SA) Module. 61

6.2 Implementation of the Framework (Java Part) 62

6.2.1 Data Structure 64

vii

6.2.2 Implementation of Rules 0.
6.2.3 Empirical Results o oo

7 Conclusions and Future Work

7.1

Future Work e

Bibliography

Appendix A Implementation Details

Al

A2
A3
A4

Time Series Operations
A.1.1 Horizontal Merge (Initial Definition)
A.1.2 Vertical Merge (Initial Definition)
Initialization of Data Structures
Input/Output Manager
Implementation of Rulesin Java
A.4.1 CleanObservations i
A.4.2 AffiliateObservations
A.4.3 AssociateObservations
A.4.4 CombineObservations

A .45 Resolvelnconsistencies

viii

74
75

76

List of Tables

Table 2.1 Significant Information Within Class A Reports
Table 2.2 Identifying Types of Marine Vessels Using AIS

ix

List of Figures

Figure 2.1

Figure 3.1
Figure 3.2
Figure 3.3

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.6
Figure 5.7

Figure 6.1
Figure 6.2

The researchers were able to spoof the route of boats [50]. 10
Function table consisting of (location,value)-pairs [26] 16
Classification of ASM functions, relations, locations [8] 19
The ASM Refinement Scheme [8] 24
Object Tracking L 27
Example of a Time Series — Head and Body 29
Horizontal Merge o 29

Vertical Mergeo 30
Hybrid Merge 31

Time Series with a Set of Values per Feature and Precise Timestamps 31

Algorithm for Finding Close Timestamps 34
Horizontal Merge with Approximate Timestamps 34
The JDL Data Fusion Model [46] 37

Information Fusion Model: Adopted from Simplified JDL Model [37] 38

Network Structure [37] L. 41
Time Series of an Observation Segment 42
Affiliate Observations Rule 47
Associate Observations Rule 49
Class Diagram of Domain Concepts 63

Data Structure of Observation Segments with Two-Layer HashMaps 65

Chapter 1

Introduction

1.1 Motivation

Maritime domain awareness is critical for protecting sea lanes, ports, harbors, fisheries,
offshore structures like oil and gas rigs, submarine cable systems, and various other types of
critical infrastructure against common threats and illegal activities such as smuggling and
piracy. Limited resources constrain maritime domain awareness and compromise full safety
and security coverage at all times. This problem is exacerbated in areas with high density
and volume of marine traffic, such as waterways in the proximity of major ports, and in
vast remote areas lacking close surveillance like the Arctic Ocean. Marine radar, Automatic
Identification System (AIS), satellites and other surveillance technologies produce massive
volumes of geospatial data. The growing data volume is problematic to analyze in real-time
as part of routine surveillance missions to enable proper responses to potential threats and

interdict illegal activities for border control and coast guard services [43].

1.2 Problem Overview

Situation analysis (SA) is a process of examining a situation to provide and maintain a state
of situation awareness [14] which is critical for dynamic decision-making in responding to
real-world situations. One of the main aspects of situation analysis is tracking and analyzing
the behavior of moving objects (e.g., marine vessels) in vast geographical areas of interest.
The movement of each vessel leads to an enormous number of observations, producing mar-
itime surveillance data, which is interpreted as sequences of discrete observations over time
that render vessel trajectories. Consecutive data points referring to the same vessel form a
time series [10] used for analyzing and reasoning about vessel behavior. Generally, these are
multi-dimensional time series since each single data point may refer to a number of observed
characteristics related to position, heading, speed and several other features. Furthermore,

deficiencies in various sources of marine traffic data (e.g., AIS, marine radar, satellites, etc.)

provide another constraint on situation analysis. Rendering a more comprehensive time
series of each vessel by fusing data and information from different sources helps to provide
a better understanding of unfolding scenarios in the real-world. To this end, time series
analysis is required to detect relationships among trajectories of multiple vessels [25].

The systems which conduct real-time accurate situation analysis in the presence of mul-
tiple vessels operate in vast geographical areas and need a large number of sensors/observers
to obtain accurate situation awareness and to make informed decisions. When the area to
be monitored is large, it may often be advantageous to have an adjustable hierarchy of
reporting and decision-making components. One of the main contributions of this research
is to expand and enrich an existing situation analysis framework proposed in [37] to model
and design a robust and extensible SA framework by capturing detailed requirements and
specifying the precise behavior of its components in order to process, analyze, and fuse
marine traffic data received from various sources. Monitoring areas of interest requires con-
stant communication of relevant information among the framework components. Analyzing
real-world situations inevitably needs to deal with complex processing of enormous data.
Detecting outliers and cleaning data, building the time series of each vessel by merging data
points, resolving inconstancies in the time series, reasoning on vessels’ relationships based

on trajectories, etc., are parts of this process.

1.3 Thesis Contributions

Maritime surveillance data is interpreted as sequences of discrete observations over time.
However, this data is being produced by various types of vessel tracking and monitoring
systems. In order to render coherent and consistent vessel trajectories, it is necessary to
systematically merge and fuse this data from different sources. The ultimate objective of
this thesis is to propose a framework to generate vessel trajectories that can be used for
further maritime situation analysis to potentially detect and predict the movement behavior

of vessels. To this end;

e We formally propose a structure of multivariate time series for marine traffic data
along with the definition of two merge operations on this structure. The proposed

operations are also refined to satisfy real-world assumptions and requirements.

e We propose a situation analysis framework with precise formal model of its com-
ponents using Abstract State Machine (ASM) method. The main outcome of the

framework is vessels’ trajectories.

e We formally define the concept of a “vessel trajectory” and prove some of its charac-

teristics.

e We implement the core of the underlying situation analysis framework in CoreASM

and Java to experimentally validate our model and framework.

1.4 Thesis Organization

Below is a brief content overview of each chapter;

Chapter 2: Marine Traffic Monitoring Systems

Critical to the understanding of this work is the foundational understanding of Marine
Traffic Monitoring Systems. In this chapter, we examine the systems; how they operate,
how they affect, and simultaneously contribute to the formation of a situation analysis
framework in the maritime domain. Different marine traffic monitoring systems provide
different types of information which represent the different observations found in the real-
world. A decent understanding of at least the leading marine traffic monitoring systems,
limitations and their capabilities, helps to have a more realistic overview of the situation
analysis framework requirements. Because of the importance of the Automatic Identification
System amongst other marine traffic monitoring systems, a large portion of this chapter is

allocated to discuss different aspect of AIS.

Chapter 3: Abstract State Machines

Abstract State Machine provides a flexible method for mathematical modeling of a system.
The ASM ground modeling method is a bridge between intuitive understanding of require-
ments to a precise yet flexible model. Refining the model improves the design for various
purposes such as extension and/or adding more details [8]. In this chapter, we briefly ex-
plain the basics of ASM, the concept of ground model and refinement in ASM, and their

formal definitions as background knowledge for later chapters.

Chapter 4: Time Series Analysis

The nature of AIS (and most other marine traffic monitoring systems) is sending information
of a given time sequentially. This common feature is a key to connecting all the data points
as a time series of all the received information. In order to have a meaningful time series
of all the information, we have to find the right type of time series. At the beginning
of this chapter, we discuss different types of time series in order to find the correct time
series which fits the characteristics of the received information. Secondly, we establish two
main different merge operations between time series. Each operation has two refinements,
and in the second refinement we introduce an algorithm which enables merging operations
to better satisfy real-world requirements. All the initial definitions and refinements are

mathematically defined in this chapter.

Chapter 5: Maritime Situation Analysis: A Formal Semantic Framework

In this chapter, we expand and enrich an existing situation analysis framework in [37].
Since there is more than one source of data for marine traffic, we take a look at different
information fusion models and methods (such as JDL and STDF) at the beginning of this
chapter. The next part of this chapter, we introduce Observation Segment—which is an
appropriate structure for marine traffic data. The most substantial section of this chapter
is the precise design of the framework. As mentioned, the backbone of the proposed situation
analysis framework in this research is the existing framework in [37]. All the components in
the proposed framework are precisely designed and explained, with some refined to a more

detailed level. We use ASM to formally design all the components and refinements.

Chapter 6: Implementation

For experimental evaluation and validation, we implement the core components of the pro-
posed SA framework with the help of CoreASM [15] and Java. CoreASM has a more high-level
control, while Java is responsible in dealing with data. This chapter is divided in two sec-
tions to explain the CoreASM, and Java sections of implementation. All extra details of the

implementations and coding are found in the Appendix A.

Chapter 2
Marine Traffic Monitoring Systems

A vessel traffic service (VTS), which is a marine traffic monitoring system, is utilized in
order to periodically transmit reports to remote tracking centres. In order to monitor
and provide safety and security of maritime domain (MD)! against common threats and
illegal activities, VTS is established by harbor or port authorities to automatically and
accurately monitor marine vessels movements, utilizing a limited number of reports from
each vessel. This easily installed and operated system typically uses marine radar and
Automatic Identification System (AIS) to track vessel movements and provide safety and
efficiency of navigation in a limited geographical area [12].

VTS can also provide information services by broadcasting information at fixed times
and intervals or when deemed necessary by the VTS, or at the request of a vessel. Infor-
mation services can include, for example, reports on the situation of a vessel (e.g., identifi-
cation and location information), intentions of other traffic (e.g., waterway conditions and
weather), or other facts that may influence the vessel’s transit.

A modern VTS integrates all of the information compiled from a VTS traffic image
from different sources. Integrating all of the information into a single operator working
environment is done for ease of use and in order to allow for effective traffic organization

and communication [47, 52].

2.1 Automatic Identification System (AIS)

The Automatic Identification System is one of the most important automated tracking
and monitoring system used by marine vessels. It has the purpose of improving safety
by utilizing the vessel traffic services to gather identification and location information;
facilitated by the continuous transmission of data with other nearby vessels, as well as

AIS base stations and satellites for collision avoidance of water transport [3, 47]. Heading,

L«Maritime domain is all areas and things of, on, under, relating to, adjacent to, or bordering on a sea,
ocean, or other navigable waterway, including all maritime-related activities, infrastructure, people, cargo,
and vessels and other conveyances” [47].

course over ground (COG), and speed over ground (SOG) would traditionally be provided
by AIS equipped marine vessels. Other maneuvering information available is not limited to
the following; closest point of approach (CPA), destination, and estimated time of arrival
(ETA). AIS normally works in a continuous self-determining mode in its range, regardless

of the location of operation (i.e., open seas, coastal or inland areas) [51].

2.1.1 How AIS Works

Every AIS system consists of one very high frequency (VHF) transmitter, two VHF Time
division multiple access (TDMA) receivers, one VHF digital selective calling (DSC) receiver,
and standard marine electronic communication links to shipboard display and sensor sys-
tems. Information provided by AIS equipment can be visualized on monitors and/or an
electronic chart display and information system (ECDIS). AIS equipped vessels self-report
information consisting of identity, position, and movement to the system in order to calculate
reports pertaining to, but not limited to, closest point of approach (CPA) [51]. Moreover,
AITS data can potentially be processed automatically in order to create normalized activity
patterns for individual vessels. Therefore, navigators of vessels equipped with AIS can avoid
collisions with other marine vessel, potential threats (maritime security), and hazards (e.g.,
sandbars or rocks) [3]. In order to avoid interference problems, and to allow the shifting
of channels without diminishing communications from other marine vessels, each station
transmits and receives over two radio channels in the Marine VHF band (only the use of
one radio channel is necessary) [51]. More advanced AIS equipment uses both frequencies
on the Marine VHF channels (Channel A 161.975 Mhz (87B) and Channel B 162.025 Mhz
(88B)) [48].

2.1.2 Different Classes and Information

There are varying types of AIS equipment with different technical specifications for the
purpose of transmitting and/or receiving data. Usually they include, but are not limited
to, vessel-mounted or shore-based equipment. Shore-based AIS equipped with a transceiver
(transmit and receive) are able to analysis and control all received reports and/or transmit
specific messages to vessels. The most significant of the vessel-mounted equipment are
called Class A and Class B. Class A AIS transponders operate using Self-Organizing TDMA
(SOTDMA) broadcast mode and transmit information every 2 to 10 seconds while underway
(every 3 minutes while at anchor). Static and voyage related vessel information, such as
the vessel’s name, are transmitted every 6 minutes. They are required to have a receiver,
external GPS, heading, and rate of turn indicator. Class A units also transmit and receive
safety-related text messages. Class B AIS transponders operate using carrier-sense TDMA
(CSTDMA) broadcast mode and transmit information every 30 to 180 seconds. Static

data, such as the vessel’s name, is transmitted every 6 minutes. A receiver and heading

are optional. Transmitting safety-related text messages is optional and can only be pre-
configured into Class B units [41].

To illustrate, Table 2.1 contains the most significant information broadcasted as a posi-
tion report (168 bits in total) by a Class A AIS unit [51]. The report contains information
such as speed over ground, course over ground, rate of turn (ROT), true heading (HDG),

latitude, and timestamp, among others [51].

Parameter Bits Description

User ID 30 | MMSI number which contains at most 9 digits

0 = under way using engine; 1 = at anchor; 2 = not under
command; 3 = Restricted maneuverability; 4 = constrained by
her draught; 5 = moored; 6 = aground; 7 = engaged in fishing;
8 = under way sail- ing; 9 = reserved for future amendment of
navigational status for ships carrying dangerous goods (DG),
harm- ful substances (HS), marine pollutants (MP), interna-
tional maritime organization (IMO) hazard, pollutant category
C or high speed craft (HSC); 10 = reserved for future
amendment of navigational status for ships carrying DG, HS,
MO, IMO hazard, pollutant category A or wing in ground
(WIG); 11 = power-driven vessel towing astern (regional use);
12 = power-driven vessel pushing ahead or towing alongside
(regional use); 13 = reserved for future; 14 = AIS-SART
(active), MOB- AIS, EPORB-AIS; 15 = undefined = default
(also used by AIS-SART, MOB-AIS and EPORB-AIS under
test)

Navigational Status 4

The rate of turning right (0 to 126) or left (0 to -126) in degree

Rate Of Turn (ROT) 8 scale at specific time intervals

Speed Over Ground The sum of the water’s speed vector and the vessel speed

(SOG) 0 vector in 1/10 knot scale (0 to 102.2 knots)
The position accuracy (PA) flag should be determined in
Position Accuracy 1 accordance with 1 = high (< 10 m); 0 =low (>10 m) or 0 =
default
Longituds 28 Longltude y&flth 1:10000 Sf:ale is {mﬂ (+/-180 degree) such that
East is positive and West is negative
. Latitude with 1:10000 scale is min (+/-90 degree) such that
Latitude 27 North is positive and South is negative
Course Over Ground Actual direction (0 to 3599) regardless of the course steered
12 . .
(COG) and temporary variations in heading around the course
Time Stamp 6 UTC second (0 to 59) when the report was generated by the

electronic position system (EPFS)

Table 2.1: Significant Information Within Class A Reports

2.1.3 Type of Vessel

Among all marine vessels there are a limited number which utilize AIS equipment. As a
general rule, any self-propelled vessel of 1600 or more gross tons operating in the navigable
water of the United States must utilize AIS equipment, except any warship, owned or leased
non-commercial vessels by the United States government. Vessels have to utilize specific
equipment in order to broadcast either Class A or Class B reports. According to the U.S.
Coast Guard Navigation Center, the following list specifies the vessel types and their prop-
erties which have either Class A or Class B devices [51];
Class A:

1. A self-propelled vessel of 65 feet or more in length, engaged in commercial service.

2. A towing vessel of 26 feet or more in length and more than 600 horsepower, engaged

in commercial service.
3. A vessel that is certificated to carry more than 150 passengers.

4. A self-propelled vessel engaged in dredging operations in or near a commercial channel

or shipping fairway in a manner likely to restrict or affect navigation of other vessels.
5. A self-propelled vessel engaged in the movement of

e Certain dangerous cargo, or

e Flammable or combustible liquid cargo in bulk

Class A device complying with International Convention for Safety of Life at Sea

(SOLAS);
1. A vessel of 300 gross tonnage or more, on an international voyage.

2. A vessel of 150 gross tonnage or more, when carrying more than 12 passengers on an

international voyage.
Class B:
1. Fishing industry vessels;
2. Vessels that are certificated to carry less than 150 passengers and that

e Do not operate in a Vessel Traffic Service (VTS) or Vessel Movement Reporting
System (VMRS) area and,

e Do not operate at speeds in excess of 14 knots?; and

2Knot is a unit of speed; 1 knot is equal to 1.852 km per hour (or 1.151 mph)

3. Vessels identified engaged in dredging operations.

Each type of vessel has a specific identifier number to be used by ships to report their
type. The identifier number consists of different factors such as; type of vessel, type of
goods they carry, and number of passengers. As shown in Table 2.2, the first digit of the
identifier number indicates the general type of vessel and for instance, for cargo ships, the

second digit represents more information about the goods it is carrying [44].

First Digit General Type
2 Wing In Ground // Second Digit Information on Cargo Goods
3 special category // 1 Major Hazard (Haz A)
4 High Speed Craft // ! 2 Hazard (Haz B)
5 special category / 3 Minor Hazard (Haz C)
6 Passenger / ! 4 Recogniseable Hazard (Haz D)
7 Cargo -~ -
8 Tanker
9 Other

Table 2.2: Identifying Types of Marine Vessels Using AIS

2.1.4 AIS Range

Shipboard transceivers are connected to an external antenna (on average 15 meters above
sea level) which normally sends and/or receives AIS information within a horizontal range of
15-20 nautical miles®. Depending on elevation, antenna type, obstacles surrounding antenna

and weather conditions, the AIS range can reach to 40-60 nautical miles [34].

2.1.5 AIS Accuracy

The accuracy of AIS information relayed by marine vessels is crucial as many vessels trans-
mit incomplete or inaccurate data. Based on a report of Maritime and Port Authority of

Singapore [35] many vessels are transmitting incomplete or incorrect data. As listed below;

1. Incorrect setting of static data, such as the MMSI number and the vessels’ dimensions,

during the initial installation of the AIS on board.

2. Omission of updating the voyage related data, such as the destination, estimated time

of arrival (ETA) and changes in navigational status, by the crew.

3. Incorrect input or processing of dynamic data, such as the position, course, speed and

heading, from the vessels sensors.

4. Inconsistent naming of some data, such as the vessels’ name and destination.

31 nautical mile = 1.852 km

2.1.6 Drawbacks of AIS

Although it is complex, yet feasible, to collect data points from AIS equipment in order
to study it as a time series. The expected ability to accurately predict the behavior of
marine vessels to aid in the improving of maritime security, nonetheless seems beyond the
scope of AIS equipment. As reported in [5], AIS equipment is highly vulnerable to hacking
(see also Figure 2.1). “Weaknesses in outdated systems could allow attackers to make ships
disappear from tracking systems—or even make it look like a large fleet was incoming” [5].
Changing AIS equipment is not the pragmatic solution for improving maritime security with
less spoof attempts. We need to use other marine traffic monitoring systems and improve

the observing and reasoning process of marine data.

Figure 2.1: The researchers were able to spoof the route of boats [50].

2.2 Satellite AIS and How it Works

Since the 1990’s global maritime and port authorities use shore-based AIS to keep track
of marine vessels. Shore-based AIS could provide only a limited range of sending and/or
receiving data coverage and it could not provide global, open ocean coverage [39]. In re-
cent decades, companies and governments have invested on deploying AIS transceivers on
satellites to obtain global coverage. The first step to reach satellite-based AIS monitoring
services was attaching two antennas (an AIS VHF antenna, and an Amateur Radio an-
tenna) to the Columbus module (the science laboratory of ISS). Since then, more satellites
have been built and launched for the satellite-based AIS-monitoring service purpose (e.g.,
VesselSat-1 and VesselSat-2 which are among the latest). Canada operates one of the largest
ATS satellite networks which provides global coverage using 7 satellites [3].

In order to assess the bigger picture, it is important to note that S-AIS has both its
positives and negatives. Case in point, one of the strengths of S-AIS is the ability with which
it can be correlated with additional information from other sources such as radar, optical,
and more search and rescue (SAR) related tools. Alternatively, a fundamental challenge

for AIS satellite operators is the overwhelming number of AIS messages simultaneously

10

received from a satellite’s large reception footprint leaving them inundated. The TDMA
radio access scheme defined in the AIS standard creates 4,500 available time-slots (for both
channels) per minute. TDMA, such as GSM, is a controlling entity that is used to allocate

transmission slots to each user [1, 3].

2.3 Marine Radar

The term RADAR (RAdio Detection And Ranging) designates electronic equipment classed
for the tracking and detecting of objects, or targets, at considerable distances. Not only is
radar used for detection and ranging of contacts, but it also functions independently of time
and weather conditions. This serves to make the radar device one of the most important
scientific discoveries and technological advancements to emerge from the 20" Century [38].

The ability of radar to detect a target at great distances, and to locate its position with
a high degree of accuracy marks it as ideal for utilization in marine navigation applications.
However, radar is rarely ever used alone in a marine setting. For example, in commercial
ships, radar is integrated into a much more complex, full system of marine instruments
including, chartplotters, sonar, two-way radio communication devices, and emergency loca-
tors (SART). Below is a brief summary of sonar and chartplotter, as they along with radar,

are crucial marine traffic monitoring equipment.

Sonar
Sonar (SOund Navigation And Ranging) utilizes a technique of sound propagation to nav-

igate, communicate with and/or detects objects on or under the surface of the water.

Chartplotter

Chartplotter is a device that integrates GPS data with an electronic navigational chart
(ENC) for the purpose of marine navigation. Along with displaying the ENC, it can also
display the position, heading, and speed of a ship and may provide additional information

from radar, Automatic Identification System, or other sensors [33].

2.3.1 How Radar Works

Radar stands out from AIS and satellites, as it utilizes its own radio signal to track and
detect and is not constrained by self-reporting capabilities dependent on a vessel to transmit.
The principle behind radar is simple—relatively short bursts of radio signals, traveling at
the speed of light, are transmitted and then reflected off a target and returned as an echo. In
more depth, radar functions with the use of a series of pings and echoes. Thus, radio waves
(or pulse) sent out from the radar dish found on top of a vessel, give radar the capability of
detecting signals from objects at varied distances (from several meters to kilometres). When
an object consequently reflects the signal, the radar computer determines the distance to

it and its location. In determining the distance, the signal that is sent out bounces off of

11

the object it comes into contact with and then registers on the receiver. The receiver then
redirects the signal to the computer and measures the time it took for the signal to reflect
back. It is crucial that the cycle (a series of equally spaced pulses commonly in durations
of about 1 microsecond or less) be completed before the pulse immediately following is
transmitted, as the distance to a target is determined by measuring the time required for
one pulse to travel to the target and return as a reflected echo [38].

Achieved by way of producing a narrow horizontal beam, marine radar has the funda-
mental requirement of directional transmission and reception. The performance of marine
radar lies within its power and horizontal beam width. However, “radar waves are restricted
in the recording of the range of low-lying objects by the radar horizon” [38]. The height of
an antenna on a vessel affects the range of the radar horizon, as well as the amount of bend-
ing of the radar wave. Moreover, there are only “two groups of radio frequencies allocated
by international standards for use by civil marine radar systems” [38]. The first group lies
within the X band that corresponds to a wavelength of 2.5-3.75 cm, with a frequency range
between 8.0-12 GHz. The second group is found within the S band consisting of wavelength
of 7.5-15 ¢cm and a frequency range of 2-4 GHz [33, 38].

2.3.2 Drawbacks of Radar

Weather conditions affect the range of radar causing an inability to detect an object due
to inaccurate echoes. The reduction in the effectiveness and strength of waves is known
as attenuation. Essentially, the absorption and scattering of the wave’s energy is the cause
of attenuation. The amount of attenuation in radar waves depend on various causes [38].
The radar wavelength (or frequencies) is crucial in the attenuation in a way that radar
waves with shorter wavelength (or higher frequencies) have a greater amount of attenuation.
The attenuation effect become significance when the wavelengths are shorter than 10cm;
therefore, S band suffers less than X band.

Furthermore, different factors (e.g., rain, fog, clouds, hail, snow, dust) in the atmosphere
play a key role in the amount of attenuation. “The amount of attenuation caused by these
weather factors is dependent upon the amount of water, liquid or frozen, present in a unit
volume of air and upon the temperature™ [38]. The higher density of particles in the
atmosphere increases the amount of attenuation for the radar waves. Particles cause clutter
in echoes and subsequently there will be a loss of energy because of the scattering and

absorption; therefore, the detection range will decrease [38].

 Attenuation takes place to some extent even when radar waves travel through a clear atmosphere [38].

12

Chapter 3

Abstract State Machines

Abstraction principles and formalization techniques advance modeling of software systems
in early design phases. Design is a creative activity calling for abstract models that fa-
cilitate reasoning about the key system attributes to ensure that these attributes are well
understood and properly established prior to actually building a system. The focus is on

specification and validation techniques rather than on formal verification [26].

3.1 Lack of Model Designing

The current software engineering industry needs to be more reliable and efficient. Based on
the Standish Group report [2]!, vast numbers of software projects fail because they cannot
be delivered on time within the allocated budget. Among those which could meet the
time schedule and be completed within the estimated budget, very few satisfy the original
specification requirements. Furthermore, testing the code is highly energy consuming and
costs more than half of the entire development budget [8]. Yet, in the context of larger,
seemingly more complicated projects, there are a number of errors which can cause problems,
such as security issues in the software.

The need to have a system engineering method which guides the development of software
is widely felt by the industry. A method for filling the gaps from human understanding of
the requirements to accurately formulating them, to creating an algorithmic solution and
finally, to implementing an executable code. The key for bridging these gaps (especially for
rather complicated software) is to develop several levels of abstraction beginning from the
ground model in order to maintain a uniform algorithmic view in a single framework. In

other words, the defining characteristic of the method utilizes abstraction and refinements.

! As stated in the Standish Group report “In the United States, we spend more than $250 billion each year
on IT application development of approximately 175,000 projects ... The Standish Group research shows a
staggering 31.1% of projects will be cancelled before they ever get completed. Further results indicate 52.7%
of projects will cost 189% of their original estimates ...on the success side, the average is only 16.2% for
software projects that are completed on- time and on-budget . .. projects completed by the largest American
companies have only approximately 42% of the originally-proposed features and functions.

13

Abstract State Machine (ASM) is a high-precision design instrument which is the bridge
between the two ends of system development, from requirements capture to detailed design
and coding [8]. As stated in [8];

“The concept of ASMs offers what for short we call freedom of abstraction,
namely the unconstrained possibility of expressing appropriate abstraction di-
rectly, without any encoding detour, to

— build the ground models satisfying the two parties involved in the system con-
tract, tailoring each model to the needs of the problem as determined by the
particular application, which may belong to any of a great variety of conceptu-
ally different domains and keeping the models simple, small and flexible (easily
adaptable to changing requirements),

— allow the designer to keep control of the design process by appropriate refine-

ment steps which are fine-tuned to the implementation ideas.”

ASM offers the ability to model arbitrarily complex systems. To design such a model, any
inessential details are scrapped from the system to obtain a precise and concise model which
leaves the core model as a result. By including more details to the core model and refining
it, the model of the complex system is gradually built until it reaches an executable ver-
sion. As a by-product of such a core model and its refinements, designers can analyze and
examine the model rationale and structure in order to modify when the requirements are

changed or extended [8].2

The ASM method has three essential components, namely the notion of ASM, the ground
model technique, and the refinement principle which will be explained in the following sec-
tions [8].

3.2 The Notion of ASM

Abstract State Machine offer a multipurpose and flexible method for mathematical modeling
of a system’s behavior and characteristics to bridge the gap between specification methods
and computation models. The Abstract State Machine method describes static and dynamic
aspects of a systems at any desired level of detail with the necessary degree of exactitude (any
desired level of abstraction). ASM builds on a universal computation model by combining
two universal concepts; abstract states and transition systems. Abstract State Machine

is known for its versatility in computational and mathematical modeling of all kinds of

“

20n the other hand, core model and its refinements allows users “...to get a general understanding
of what the system does, which supports an effective system operator training and is sufficiently exact to
prevent as much as possible a faulty system use”; moreover, it helps the maintainers “...to analyse faulty
run-time behavior in the abstract model” [8].

14

sequential, parallel and distributed systems, with practical applications [7, 21, 23, 24, 26,
40, 45].3

The general idea of Abstract State Machine is defined in two rounds. The first round,
Section 3.2.1 illustrates the basic computation model by means of a simple sample program
for sorting linear data structures consisting of a single transition rule. This is to provide
an applied perspective at an intuitive level of understanding. Additional rule constructs
for forming more complex programs will be described informally. In the second round,
Section 3.2.2 explains fundamental concepts of synchronous and asynchronous computation
models in some detail, building on common concepts and notions from discrete mathe-
matics and computational logic. Specifically, first-order predicate calculus and first-order
language will provide us with a universal syntactic and semantic foundation for expressing
the descriptive elements of Abstract State Machines [26].

3.2.1 Basic Concepts

In computing science, every algorithm uses a fixed set of instructions to access and ma-
nipulate the content of the data structures (reading and writing values in memory). At
any given time in the course of executing an algorithm, both data structures and control
structures define the state of the algorithm. The set of states of an algorithm can be finite
or infinite, and normally contains a non-empty subset of distinguished initial states which
hold special conditions [26].

Each computation step of an algorithm potentially changes the value of one or more
locations of one or more data structures, thus altering the successive state. Accordingly,
stepwise execution of an algorithm, also called run, is defined as a sequence of consecutive
state transitions such that each step performed on a given state S;, for i € {0,1,...}, results

in a next state S;11, where the difference between S; and S;41 is referred to as Ag,,

As mentioned, a run normally starts in a distinguished initial state Sy, but depending on
the nature of an algorithm, a run may or may not terminate and reach a distinguished final

state (an algorithm can be finite or infinite) [26].

ASM Representation of Algorithms

As stated in [26], describing an algorithm in terms of an Abstract State Machine means to;

1. Model states of the algorithm by a collection of data structures abstractly defined in

terms of sets, functions (operations) and relations

3See also the overview in [8].

15

2. Specify the state transition behavior by means of a program defining how these data

structures can be accessed and manipulated.

The choice of data structures which form the machine states, determine the level of ab-
straction of the algorithm. The machine program, together with the set of distinguished
initial states, implicitly describes the possible machine runs in terms of a state transition
system that inductively defines the set of states that are reachable from a distinguished
initial state. In general, both the set of initial states and the set of reachable states may be
infinite [26].

Basic Rule Types

ASM rules must be able to describe any sequential, parallel or distributed algorithm re-

gardless of the abstraction level, as explained below;

The canonical ASM rule consists of a basic update instruction of the form
f(t17t27 LIRS 7tn) = tO;

where f denotes an n-ary dynamic function and each t;, for 0 < i < n, refers to a term
that can be evaluated in a given state. Intuitively, one may perceive a dynamic function
f: X™ =Y as being represented by a function table where each row of the table associates
a location of f consisting of a sequence of argument values a1, ao,...,a, with a function

value b as illustrated in Figure 3.1.

VAR EN PR EA B
fiX" =Y ‘

b value

location

S
NQ
(=]

Function table

Figure 3.1: Function table consisting of (location,value)-pairs [26]

A basic update instruction as shown above specifies a pointwise update of the interpretation
of a dynamic function f as represented by the underlying function table in any given state.
That is, the value (say b) associated with the location referred to by t1,to,...,t, (say
ai,as,...,an), is to be overwritten with the value of to (say b, with ¥’ # b). While all the
terms t; are evaluated over the current state, the result of the update operation takes effect

only in the next state [26].

16

As stated in [26], for the description of complex instructions the composition of basic
update instructions into complex ASM rules with preconditions is inductively defined by

means of the rule constructors explained below;

Rule Constructors

Together with the basic update instruction, the rule constructors listed below form a com-
prehensive language for expressing ASM programs. While additional rule types may be
introduced as syntactic abbreviations they do not add to the expressiveness of the lan-

guage.

R=if e¢ then R; else R»

R = do in parallel
Ry
Rs

R =forall z €S :¢(z)
Rl(l')

R = choose z € S: ¢(x)
Ri(x)

R = extend S with =z
Ry ()

Abstract semantics [26];

e A rule R of the form “if e then R; else Ry” specifies a condition e as a boolean-valued
expression, together with two subrules denoted by R;, Rs. The evaluation of e over a

given state always yields a defined value, depending on whether R; or Rs is selected.

e A rule R of the form “do in parallel Ry Ry” states the composition of the rules
R1, Ry such that the two rules are to be applied in parallel. Since this situation is

common, the key word “do in parallel” is often dropped.*

e A rule R of the form “forall z € S : ¢(x) Ri(x)” states that for all the elements x in
a given finite set S for which a specified condition ¢(z) holds a copy of the rule R;(x)

in which x is instantiated to such an element is to be applied in parallel.

4Parallelism naturally occurs in algorithms whenever two or more instructions or operations that are
enabled in a given state do not interfere with each other. However, this property is often ignored by
programming languages that unnaturally impose linearization only because of their underlying execution
model.

17

e A rule R of the form “choose x € S : ¢(x) Ri(z)” randomly chooses some element
x in a given finite set S for which a specified condition ¢(x) holds and, if any such
element exists, applies the rule R;(x) in which z is instantiated to the chosen element;

otherwise it does nothing.

e A rule R of the form “extend S with = R;(z)” introduces a new element as the
value of the variable z into the specified set S and applies the rule R;(x) in which x
is instantiated to the chosen element. This rule is needed to dynamically introduce

new resources at runtime.

3.2.2 Fundamental Concepts

There are two prominently used ASM computation models which are explained in greater
detail in this section.

The first model, basic ASM, befits computations with synchronous parallel actions per-
formed by a single computational agent and captures the notion of parallel algorithm in
a comprehensive sense as discussed in [6, 26]. The second model, Distributed ASM, al-
lows any number of autonomously operating computational agents to cooperatively perform

asynchronously distributed computations [26].

Synchronous Parallelism

As stated in [26], a basic ASM M is defined as a tuple of the form (3, Z, R, Pys) where;

e Y is a wocabulary consisting of finitely many function symbols, each with a fixed arity

(number of arguments);
e 7 is a set consisting of one or more initial states defined over X;
e R is a collection of transition rules, and

e Py € R is a distinguished rule, called the main rule or the Program of machine M.

The following definitions (Signature — Transition) were established formally in [8]. As

such, we have not taken the liberty to make any changes from the original.

Signature

A signature X is a finite collection of function names. Each function name fhas an arity,
a non-negative integer. Nullary function names are called constants. Function names can
be static or dynamic. The dynamic functions are further classified according to Figure 3.2.
Every ASM signature is assumed without further mention to contain the static constants

undef, true, false.

18

A signature is also called a wvocabulary. The arity of a function name is the number
of arguments that function takes. Be aware that the interpretation of dynamic nullary
functions can change from one state to the next, so that they correspond to the variables

of programming.

|function/relation/location |

| basic | derived

| static | J dynamic l
in share
(monitored) controlied (interaction)

Figure 3.2: Classification of ASM functions, relations, locations [§]

State

A state 2 for ¥ is a many-sorted structure that yields a valid interpretation of 3. That
is, for each function symbol f : X" — Y in X, with n = 0,1,2,..., the interpretation
f*: X" =Y is consistent with the function symbol and all related constraints that apply.
Function symbols can be static or dynamic. Interpretations of dynamic function symbols can
change from state to state, whereas static function symbols do have a fixed interpretation
regardless of the state of M. In addition to common static symbols like true, false and
the usual Boolean, arithmetic and algebraic operations, which are all static, ¥ contains a

distinguished static symbol undef representing the ‘undefined’ value.?

Location

A location of 2 is a pair (f, (a1,...,a,)), where fis an n-ary function name and aq,...,a,
are elements of |2A|. The value f*(ay,...,a,) is called the content of the location in 2. The
elements of the location are the elements of the set {a1,...,a,}.

A state 2 can be viewed as a function that maps the locations of 2 to its contents.

SPartial functions are modeled on top of total functions by setting undefined values to the distinguished
value undef.

19

Update and Update Set

Evaluation of a transition rule in a given state yields a finite set of updates of the form
((f,{a1,...,apn)),v), where f is an n-ary function symbol in X, {ai,...,ay) is a location in
Dom(f) and v is a value in Ran(f). An update set is consistent if no location occurs more

than once.

Transition

A state transition from a given state
Ag,
Si — Sit1

such that Sj;1 is obtained from S;, for ¢ > 0, by firing Ag, on S;, where Ag, denotes a
finite set of updates computed by evaluating agent programs over S;. Firing an update
set means that all the updates in the set are fired simultaneously in one atomic step. The
result of firing an update set is defined if and only if the set does not contain any conflicting

(inconsistent) updates.

Asynchronous Multi Agent ASM

An arbitrary finite number of agents each of which is executing a basic ASM independently
in its own local state, is called asynchronous multi-agent ASM.® The main considerable
issue with asynchronous ASM is agents may run with different clock, data, and duration
of execution. Since there is no order to the moves of functions, it is unreasonable to define
a global state where moves are executed to specific changes; therefore, the notion of local

move for each agent in each state is defined [26].

Real Time

In a given state S of M, the global time (as measured by an external clock) is given
by a monitored nullary function now taking values in a linearly ordered domain TIME C
IR. Values of now increase monotonically over runs of M. Additionally, co represents a
distinguished value of TIME, such that ¢ < oo for all ¢ € TIME — {oco}. Finite time intervals
are given as elements of a linearly ordered domain DURATION.

The ASM concept of physical time is defined orthogonally to the concept of state transi-
tion, flexibly supporting a wide range of time models, also including continuous time [26, 27].
A frequently used model is that of distributed real-time ASM with time values ranging over

positive real numbers [26].

SA run of an asynchronous multi agent ASM is also called a partially ordered run of ASM.

20

3.3 Ground Model

Derivation and deduction of requirements is a well-known struggle and error prone part
of the system development process. Building ground model ASM helps to have a better

solution on three major difficulties of requirements capture. As stated in [8];

“Requirements capture is largely a formalization task, namely to realize the tran-
sition from natural language problem descriptions — which are often incomplete
and interspersed with misleading details, partly ambiguous or even inconsis-
tent — to a sufficiently precise, unambiguous, consistent, complete and minimal
description, which can serve as a basis for contract between the customer or
domain expert and software designer. We use the term ground model for such

an accurate description resulting from the requirements elicitation ...”

According to [8], the formalization task helps the three major difficulties found in build-
ing the ground model by way of model inspection, verification, and testing, as briefly ex-

plained below;

1. The first formalization problem is one of language and communication. This entails a
precise and understandable language for the application domain expert (the contrac-
tor) and the system designer. It must be created in such a way as to allow the ground
model to accurately express the relevant features of the given application domain,
all the while doing so naturally. As such, the modeling language needs to provide
a general data model combined with a function model, as well as an accompanying

interface to the environments.

2. The second problem which formalization helps solve is a verification method. This is
do to the lack of mathematical means which prove the accuracy of the passage from
an informal to the precise description. To get past this issue, the designer must be
able to formally check the completeness and internal consistency of the model, along
with the consistency of different system views. One possible solution to this problem
is ASM, which allows customization of the ground model to resemble the structure of
real-world problems, and in so doing, makes it possible to inspect its correctness and

analyze its completeness with respect to the problem to be solved.

3. The third problem is wvalidation. Simulating the ground model for running relevant
scenarios of the system is often considered a system acceptance test plan (prior to
coding). The ground model ASM can be used for static testing, where the code is
inspected and compared to the specification, and also it can be used for dynamic

testing, where the execution results are compared.

So far the over all concept of ground model has been explained but the general mathe-

matical definition of the notion of ground model has not been characterized. Based on [8],

21

the mathematical definition of the notion of ground model is characterized by the following

underlying properties. The ground model has to be:

e precise at the appropriate level of detailing to assure the accuracy of requirements yet
flezible to be modifiable for any further use such as extending or adapting to different

application domains.

e simple and concise to be easily understandable by both parties involved, domain ex-
pert (the contractor) and the system designer. Furthermore, the simplicity in ground
model avoids any unnecessary and unrelated encoding through its abstract structure

of real-world problem.

e abstract (minimal) yet complete. Minimality means that the ground model is ab-
stracted in relevant details. Any details which are related to future design modifi-
cation and/or extension should not influence. Completeness means a ground model
should contain and present every semantically relevant features and parameters (e.g.,

benefits and obligations which are mentioned in contract).

e validatable which means it should be capable of simulating the relevant scenarios of
the system. As a consequence, the executable ground model helps to understand and

analyze the behavior of the system and validate it.

e equipped with a precise semantical foundation as a prerequisite for analysis and a

reliable tool for development.

3.4 Refinement

The second building block of the ASM method for designing models is refinement. Refining
a model to improve the system design (for various purposes such as extension and/or adding
more details or modifying for the use of other application domains) is a long established and
characterized idea in designing and developing a system. One of the tenets of refinement

notions in the literature is:

“principle of substitutivity: it is acceptable to replace one program by another,
provided it is impossible for user of the program to observe that the substitution
has taken place” [13].

Due to the primary focus of literature on the principle of substitutivity, there are resulting
restrictions which limit the range of applicability. Based on [8] these restrictions mainly are

as follows:

e Restriction to certain forms of programs which basically means the se-

quence of operations should occur in the refined model as it occurs in

22

Alternatively, refinements in the ASM method give a more open framework due to the
freedom of abstraction. The availability of the arbitrary abstract structure in ASM, which
mirrors the underlying notion of state, provides a way to find a well-defined mapping from
the abstract structure to a refined and more concrete one. The mapping should be consistent

with a more detailed state and more involved computation in a way that the intended

the abstract counterpart; therefore, the refined model will be structurally

equivalent to the abstract counterpart.

Restriction to programs with monolithic state operations impedes any pos-
sibility of modifying elements in any state. This restriction reduce the
combination of local effects on the refined model and basically prevents
having more difficult formal specification of programs than the initial de-

scription of the program.

Restriction to observations interpreted as pairs of input/output sequences
or of pre-post-states ensures that the input/output representation at the

abstract model and the refined model are equivalent.

Restriction to logic or proof-rule-oriented refinement schemes. Tailoring
refinement schemes to fit a priori fixed proof principles quickly leads to

severe restrictions of the design space.

equivalency between this corresponding is explicitly defined and proved (Figure 3.3).

(0) show that an implementation S* satisfies a desired property P* the ASM method allows

the designer to

(1) build an abstract model S,

(2) prove a possibly abstract from P of the property in question to hold under appropriate

assumptions for S,

(3) show S to be correctly refined by S* and assumptions to hold in S*.

3.4.1 Formal Definition of Refinement

The formal definition of correctness and completeness of refinement as stated in [8] is found

below;

Definition — Correct Refinement

Fix any notions = of states and of initial and final states. An ASM M™* is a correct re-
finement of an ASM M if and only if for each of M*-run S5, S7,..
So, Si,...

and sequences 79 < i1 < ..., jo < j1 < ... such that ig = jo = 0 and 5;, = S’;-‘k

23

. there is an M-run

m steps of M

—
T] .. T

Stae § ————— §

State S$*

\

S
gy ...0p

—
n steps of M*

With an equivalence = notion between data

in locations of interest in corresponding states

Figure 3.3: The ASM Refinement Scheme [8]

for each k£ and either
— both runs terminate and their final states are the last pair of equivalent states, or

— both runs and both sequences ig < i1 < ..., jo < j1 < ... are infinite [§].

Definition — Complete Refinement

M* is a complete refinement of M if and only if M is a correct refinement of M* [8].

3.5 ASM Systems Engineering Method

The ASM method [8] aims at industrial system design and development by integrating
precise high-level, problem-domain oriented modeling into the design and development cycle,
and by systematically linking abstract models down to executable code [26].

The method consists of three essential elements:) capturing the requirements into
a precise yet abstract operational model, called a ground model ASM, i) systematic and
incremental refinement of the ground model down to the implementation, and i) exper-
imental model validation through simulation or testing at each level of abstraction [26].
This process emphasizes freedom of abstraction as a guiding principle, meaning that origi-
nal ideas behind the design of a system can be expressed in a direct and intuitive way so as
to enable system designers to stress on the essential aspects of design rather than encoding
insignificant details [26].

Starting from a ground model and applying the process of step-wise refinement [8], a

hierarchy of intermediate models can be created that are systematically linked down to

24

the implementation. At each step, the refined model can be validated and verified to be a
correct implementation of the abstract model. The resulting hierarchy serves as a design

documentation and allows one to trace requirements down to the implementation [26].

3.5.1 Distributed ASM

A distributed ASM (DASM) Mp is defined by a dynamic set AGENT of autonomously oper-
ating computational agents, each executing a basic ASM independetly. This set may change
dynamically over runs of Mp, as required to model a varying number of computational re-
sources. Agents of Mp interact with one another by reading and writing shared locations
of a global machine state, and also Mp typically interacts with its operational environment
which is the part of the external world visible to Mp, and formally represented by controlled
and monitored functions [26].

Of particular interest are monitored functions, read-only functions controlled by the
environment. A typical example is the abstract representation of global system time in
terms of a monitored function now taking values in a linearly ordered domain TiME. Values

of now increase monotonically over runs of Mp [8, 26].

25

Chapter 4
Time Series Analysis

The International Maritime Organization (IMO) defines maritime domain awareness (MDA)
as “the effective understanding of anything associated with the maritime domain that could
impact the security, safety, economy, or environment” [28]. To avoid any such threat to the
maritime domain, an accurate understanding of the current state of the maritime domain
is required. Comprehensive fusion of data and information from pertinent sources (e.g.,
AIS, S-AIS, radar, satellite images, humans, and beyond) helps to improve the awareness of
the current state and trend of the maritime domain. Data will be received periodically to
monitor and analyze maritime activities in order to identify any anomalies and/or threats.
Due to the multiplicity of the sources, data from monitoring real-world situations is often
subject to inconsistency in addition to corrupted values, missing values or noise [37]. With
these deficiencies it would be even more complicated to analyze and extract any meaningful
behavior. Therefore, all received data at any point in time needs to be integrated in a
coherent and consistent way to have a better understanding of the current state (and build
a history of states). Representing all the received data in an ordered sequence as a time
series, and working with time series is the approach of this work for analyze data in the

maritime domain.

4.1 Connecting the Dots — From Time Series to Trajectories

A time series is a collection of a sequential series of data points (i.e., observations) measured
at successive points over time. The study of these data points, in order to extract meaningful
feature, behavior, characteristics, and statistics, is called time series analysis. Processing
time series to reach a state of situation awareness is one of the goals of this thesis. To
reach this goal, we need to have a reasonable understanding of received observations from
maritime domain (Chapter 2), and also time series, in order to describe how a marine vessel

moves through space as a function of time (called trajectory) and analyze trajectories.

26

% time interval between two data points
Data Points B

~
o
S

Trajectory

Time Series

Area of Interest

Figure 4.1: Object Tracking

4.2 Definition of Time Series and its Related Operations

A simple time series is an ordered sequence of data points (e.g., values) of a single variable
at equally spaced time intervals [13]. The study of these data points, in order to extract
meaningful feature, behavior, and statistics, is called time series analysis [49]. But all time
series are not simple time series. Depending on the filed of study, time series have a different

variety of characteristics, as described below;

e A time series which has the values of more than one variable at each point in time

(i.e., timestamp) is called a multivariate time series.

e A time series may not be wuniform, which means it does not have equal space time

intervals between any two successive data points.

e There is temporal ordering between data points in any simple time series. However,
if there is more than one source for receiving data, the temporal order between obser-

vations can be defined as full order or partial order.

e A time series can be defined as continuous or discrete based on the nature of the

observations (i.e., taken continuously through time or at specific times).

e A time series can also be defined as stochastic or deterministic. Most time series are

stochastic as the future is partly determined by the past and the current state [10].

Due to the fact that observations are received from different sources of marine traffic
monitoring systems, we need to select the corresponding time series (among all the possible
variety of time series) in order to match observations’ characteristics and behaviors received

from the maritime domain. Each observation contains different types of information and

27

they are received randomly at any given timestamp.

Corollary — Sensors are monitoring the real-world environment, therefore they are dealing

with discrete and stochastic multivariate time series which may not be uniform.

Assumption — A global clock for all sensors (e.g., AIS receivers) is assumed in this research
which causes a full temporal order between all timestamps (in the same or different time

series).

As stated in [10], the objectives of time series analysis can be categorized in four distinct
categories; description, explanation, prediction and control. Description is a means of plot-
ting the data points to describe the trend of changes over time which may occur gradually
or dramatically. Moreover, the graph (time plot) can highlight the occurrence of outliers.
Explanation, or modelling, is to explain observations which have two or more variables in
one time series. In this research, observations on maritime vessels have more than one vari-
able (e.g., location, course, speed). Prediction signifies the function of predicting the future
behavior of time series depending on given data points. Time series can be predictable if
the successive observations are dependent. Control is usually the strategy, or plan, to have
control of the changes of a time series. Based on the time plot, and studying the behavior

and characteristic of the time series, a controller then takes the optimal control strategy [10].

The rest of the section gradually builds upon the definition of the concept of time series

that will be used for the proposed framework.
4.2.1 Initial Definition: Time Series with One Value per Feature and
Precise Timestamps

As illustrated in Figure 4.2, Time series 7 of a single object (e.g., marine vessel) is defined

with two sets;

e Head(T) is a tuple of features with a unique order, (fi,, for,..., fn;), one of which

must be the global timestamp.

Head(T) = {timestamp} U Features
e Body(T) is a sorted set of tuples, {7;}, with the same order of Head(T), for which,

each has one value (or null), (vy,_,vy,_ ,...,vy,), of every feature. The Body(T) is

sorted by timestamps.

28

Features

—

Timestamp || Speed | Course | Head
1 __2009-01-0112:30:00 _ | _ 12 | 156 |
! 2009-01-01 12:31:00 12 160 iTupIe
2009-01-01 12:32:00 13 157
2009-01-01 12:33:00 12 | 158__ Body
2009-01-01 12:34:00 11 || 160 | Cell
2009-01-01 12:35:00 10 | 165

Figure 4.2: Example of a Time Series — Head and Body

Horizontal Merge

Assume there are two time series, 7; with n features and 7; with m features, the horizontal
merge (7, 7;) is defined as;

Preconditions:
Head(T;) N Head(T;) = {timestamp}
V7; € Body(T;),3t; € Body(T;) : timestamp,, = timestamp,, N
V7; € Body(T;),3m; € Body(T;) : timestamp,, = timestamp.,

Head(bq(ﬁ77;)) Cl:e{‘(fln7f27’i7'"7fn’7’i’f17}7f2737"‘7fm’7}.)

Body(>(T;, T;)) def {(Uﬁ v U Ut Ufa s ""UfmTj) | 7; € Body(T,),
7; € Body(T;) which tzmestampT = tzmestampT }

Note that, horizontal merge can be applied on more than two time series (e.g., ><(7;, 75, . . ., Tk))-

[Timestamp [Speed | [Timestamp [Course | [Timestamp || Speed [Course |
2009-01-01 12:30:00 12 2009-01-01 12:30:00 156 2009-01-01 12:30:00 2 | 156
2009-01-01 12:31:00 2 2009-01-01 12:31:00 160 2009-01-01 12:31:00 2 | 160
2009-01-01 12:32:00 13 N 2009-01-01 12:32:00 57 | — 2009-01-01 12:32:00 3 | 157
2009-01-01 12:33:00 12 2009-01-01 12:33:00 158 2009-01-01 12:33:00 2 | 158
2009-01-01 12:34.00 11 2009-01-01 12:34:00 160 2009-01-01 12:34:00 | 160
2009-01-01 12:35:00 10 2009-01-01 12:35:00 165 2009-01-01 12:35:00 0 | 165

Figure 4.3: Horizontal Merge

29

Vertical Merge

Assume there are two time series, 7; and 7;, the vertical merge X(7;,7;) is defined as;

Preconditions:
Head(T;) = Head(T;)
V7; € Body(T;), 7j € Body(T;) : timestamp,, = timestampy,

Head(X(T;,T;)) = Head(T;)

def

def

Body(X(T:,T;)) = Body(T;) U Body(T;)

Note that, vertical merge can be applied on more than two time series (e.g., X(7;, 75, - - -

,Tk))-

[Timestamp [speed [course |
2009-01-01 12:30:00 12 156
2009-01-01 12:31:00 12 160 -
2009-01-01 12:32:00 1B | 157 UG5 || Speed [Course
2009-01-01 12:33:00 12 158
2009-01-01 12:30:00 12 156
— 2009-01-01 12:31:00 12 160
X - 2009-01-01 12:32:00 13 157
2009-01-01 12:33:00 12 158
Timestamp [speed [course | 2009-01-01 12:34:00 11 160
2009-01-01 12:35:00 10 165
2009-01-01 12:34:00 11 160
2009-01-01 12:35:00 10 165

Figure 4.4: Vertical Merge

Hybrid Merge

The application of hybrid merge, X(7;, 7;), occurs in the instance of two time series, 7; and
T;, not satisfying at least one precondition of both horizontal merge and vertical merge.
Essentially, hybrid merge is applying both horizontal and vertical merges on two time series
and dealing with null cells (i.e., a null cell is the result of not satisfying preconditions in
horizontal/vertical merge). In other words, merging two time series horizontally, without
the identical sets of timestamps, requires adding the tuples with missing timestamps and
null values for all the features, or merging two time series vertically, without identical heads,
requires adding the missing features and set null values for all timestamps of the features.

Note that, hybrid merge can be applied for more than two time series (e.g., X(7;, 75, ..., Ti))-

30

Timestamp [Speed | [Timestamp [course | Timestamp || Speed [Course |

2009-01-01 12:30:00 12 2009-01-01 12:30:00 156 2009-01-01 12:30:00 12 156
2009-01-01 12:33:00 12 m 2009-01-01 12:31:00 160 — 2009-01-01 12:31:00 NULL 160
2009-01-01 12:34:00 11 2009-01-01 12:32:00 157 - 2009-01-01 12:32:00 13 NULL
2009-01-01 12:33:00 158 2009-01-01 12:33:00 12 158

2009-01-01 12:34:00 11 160

2009-01-01 12:35:00 10 NULL

Figure 4.5: Hybrid Merge

4.2.2 First Refinement: Time Series with a Set of Values per Feature and
Precise Timestamps

In this refinement, each feature can have a set of values in the body of a time series (see
Figure 4.6).

Timestamp || Speed | Course |
2009-01-01 12:30:00 12 {156, 158}
2009-01-01 12:31:00 {12, 18} 157
2009-01-01 12:32:00 {12, 13} {158, 159}
2009-01-01 12:33:00 12 158
2009-01-01 12:34:00 {11, 12} {160, 161}
2009-01-01 12:35:00 {10, 11} 164

Figure 4.6: Time Series with a Set of Values per Feature and Precise Timestamps

Horizontal Merge

If two time series, 7; with m features and 7; with n features, have some similar fea-
tures in their heads, the horizontal merge >(7;,7;) (with similar timestamps precondition:
V1; € Body(T;),3r; € Body(T;) : timestamp;, = timestamp,; A V1; € Body(T;),3r; €
Body(T;) : timestamp,; = timestampy,) is defined as;
def
Head(N(T)) : (f1T7f27~ y .- ‘7fm’7.7f17*‘)f27*.7 .. ’fn’T]) which
Vfar, (1<a<mr) € Head(Ti) = fy . 7 € Head(>(T;,T;)) A
vfmTj(ISISn/) € Head(T;) = fy 1., 7 € Head(>(T;,T;))
def .
Body(>=(T;,T;)) = (v, D Vag e Vf a”f1f. YUfase s Uy) which

n Tj

7; € Body(T;) A7 € Body(T;) A tzmestampn = timestampy,
= Uiy {Ufyﬂ»vszj} s oy € Body(®(Ti, 7))

31

In other words, if there is a similar feature in the heads of two time series, the value of that
feature in the body of the merged time series, is the union of related values in each time

series.

Vertical Merge

If two time series, 7; and 7; with k features, have a number of similar timestamps in their
bodies, the vertical merge X(7;,7;) (with precondition: Head(T;) = Head(T;)) is defined as;

Head(X(Ti, T;)) o Head(T;)

Body(X(Ti, T;)) &' Body(T;) U Body(T;) s.t.
VT, Tn © Tm € Body(T;) A 1, € Body(T;) A timestamp,,, = timestamp,,,

= Ty(mn) = ({Ufhm ' Uf1,, h {UfQ‘rm Vo, B {UfkTm ' Ufkr, }) which
Ta(m.n) € Body(X(T;, T;)) and timestampy,, = timestampr,,

In other words, if there are similar timestamps in the bodies of two time series, the value
of each feature with that timestamp in the body of the merged time series, is the union of

the values in each time series.

4.2.3 Second Refinement: Time Series with Approximate Timestamps
(Practical Approach)

Due to real-world constraints, it is not realistic to assume two time series, which are pro-
duced from two different sources, have two identical sets of timestamps. As a consequence,
the merged time series will have a relatively big number of null cells. This practical approach
helps to have a merged time series with less null cells. If timestamp,,, and timestamp.,
are close enough, they can be considered as occurring at the same timestamp (they can be

considered as similar timestamps).

Definition — Close Timestamps

timestamp.,, and timestamp,, (which 7,, € Body(T;) and 7, € Body(T;)) are close if and
only if:

[timestamp,,, — timestamp.,,| < (which ¢ is constant)

Therefore, in the practical approach, horizontal merge does not require the precondition in
the first refinement. Likewise, in the vertical merge, having close timestamps (rather than
similar timestamps) is enough for the union of the values of the same feature in the bodies
of two time series. Another challenge for merging two time series in a real-world situation

is that the data stream will receive from sources endlessly. Therefore, the algorithm which

32

finds the close pair of timestamps should be an online algorithm. The purpose of this algo-
rithm is to reduce the number null cells by finding close timestamps; however, it does not

minimize the number of null cells and finds the optimal close timestamps as data is received.

Algorithm: Based on the assumption in Section 4.2, all timestamps are full temporal
ordered; therefore, timestamps of two (or more) time series, which should be merged, can
be sorted with simple comparisons as the data is received. In a sorted list, based on the
definition of close timestamps, finding close timestamps needs another comparison between
each two successive timestamps. In this algorithm, each timestamp has a flag of “True” or
“False” which shows if it is already marked as a close timestamp of another timestamp or
not. Initially, the flag of every timestamp is set to False. Also, if n time series are merging,
each timestamp will be close to at most n-1 different timestamps (which means each of

them is from a different time series).

Preconditions: To find the close timestamps of a timestamp like timestamp;,, , at least one
piece of data with a timestamp greater than timestamp., + 0 should have already been

received; in other words, time interval (timestamp.,,, timestamp,,, +9) should be available.

Algorithm Steps:

1. A timestamp, timestamp,, , with the False flag selects a limited number of both
preceding and successive timestamps through the list, such that either it selects
the n-1 nearest, and different, timestamps whose flags are set as False (before itself
and/or after itself) or it exceeds the threshold § (in time intervals of (timestamp,,, —

J, timestamp,,) and/or (timestamp,,, timestamp,, +9)).

2. If before (and/or after) timestamp,,, there is more than one timestamp belonging to

one time series, the selected timestamp will be the nearest to timestamp,,, .

3. In each side of the timestamp;, (before and after it) there will be at most n-1 selected
different timestamps. If in both sides there is a selected timestamp of one time series,
the nearest one will be marked as close timestamp. Otherwise, in both sides only one
selected timestamp of a time series exists which will be marked as close timestamp to

timestamp,,, .

4. If timestamp,,, finds any close timestamps, the flags of all timestamps which are
marked as close timestamps to tiémestamp,,, , and timestamp,,, will be turned to

True. Otherwise, the flags of timestamp,,, stay as False.

5. The following timestamp after timestamp,,, with the False flag, will repeat the steps

as explained above.

33

® e @ True

@
° Tue O Tue O
@ Tue @ Tue @
8 P AN Tue ©
Tue O Tue O
o Fase © O False O
o False O {* True O
® Tue @ Tue @
o False O ° False ©

alse
® “dse @ ,*” True @
® False @ False @
o I" False © False O
® False @ False @
® False @ False @
(¢] False O False O

o False O False O

Figure 4.7: Algorithm for Finding Close Timestamps

Horizontal /Vertical Merge

Merging two (or more) time series in this refinement (both horizontally and vertically) is
the same as the first refinement with the difference being that instead of similar timestamps
in the first refinement, close timestamps will be considered. Note that, close timestamps are
different from each other; therefore, the average of all of them is the timestamp of related

tuple in the body of the merged time series.

[Timestamp [Speed [Course | [Timestamp [Speed [Course | Timestamp [Speed [cCourse |
2009-01-01 12:30:13 12 156 2009-01-01 12:29:59 12 158 2009-01-01 12:30:06 12 {156, 158}
2009-01-01 12:31:23 12 160 2009-01-01 12:31:19 13 161 2009-01-01 12:31:21 {12, 13} {160, 161}
2009-01-01 12:31:58 13 157 M 2009-01-01 12:33:05 13 159 —_— 2009-01-01 12:31:58 13 157
2009-01-01 12:33:19 12 158 2009-01-01 12:33:46 12 158 - 2009-01-01 12:33:12 {12, 13} {158, 159}
2009-01-01 12:34:30 11 160 2009-01-01 12:34:32 12 161 2009-01-01 12:33:46 12 158
2009-01-01 12:35:04 10 165 2009-01-01 12:34:50 11 164 2009-01-01 12:34:31 {11, 12} {160, 161}

2009-01-01 12:34:57 {10, 11} {165, 164}

Figure 4.8: Horizontal Merge with Approximate Timestamps

Merging two time series by definition (in Initial Definition and First Refinement) is not
subjected to any errors. However, the Second Refinement may be subject to error depending
on the threshold (4). The algorithm may not find an acceptable group of close timestamps if
0 is not well chosen. Since § is an arbitrary constant, the error of the algorithm is dependent

on its value. If § approaches 0, the close timestamps approaches similar timestamps.

34

Chapter 5

Maritime Situation Analysis: A

Formal Semantic Framework

Situation analysis (SA) refers to a process of examining a situation and its related factors
to have a perception of environment [14]. Situation analysis provides and maintains a state

of situation awareness [37], which is defined as below based on [14];

“the perception of the elements in the environment within a volume of time and
space, the comprehension of their meaning and projection of their status in near

future”

Due to the fact that multiple surveillance resources (e.g., satellites and radars) are monitor-
ing vast geographical areas in the maritime domain, an intelligent and interactive situation
analysis model helps to provide situation assessment and situation awareness for dynamic
decision-making. Thus, a reliable computational SA framework is vital as the foundation
of complex decision-making processes. As a result, the development of an intelligent sys-
tem tailored to assist and guide human operators by supporting their decision-making tasks
allows for the focus to lie in critical situations outside the scope of the routine activities [37].

The abstract framework in [37] is the backbone of the proposed maritime situation
analysis framework in this chapter. By capturing more details in response to real-world
situations, we propose a situation analysis framework (particularly focused on the maritime
domain) which uses situational evidences from varied surveillance resources.

Cleaning, processing, and transforming raw time series of marine data into vessel tra-
jectories is challenging, especially if there is more than one data source. Thus, information

fusion models and methods (e.g., JDL or STDF) play a pivotal role here.

35

5.1 Formal Approaches to Situation Analysis (Related Work)

We briefly discuss related works on existing situation analysis models. As stated in [37],
there are three major approaches to formalizing situation analysis concepts and models,

which are characterized as follows:
1. Methods based on general purpose formal logics such as [4];
2. Methods based on machine learning and ontologies such as [11];

3. Distinct situation analysis models and methods such as Dynamic Case-Based Reason-
ing [29] and State Transition Data Fusion (STDF) [32].

In the following section, we focus on the STDF model, which is the basis of our proposed
situation analysis framework. In fact, STDF is an extension of the JDL (Joint Directors of
Laboratories) Data Fusion model [9, 46].

5.1.1 JDL (Joint Directors of Laboratories) Data Fusion and State Tran-
sition Data Fusion (STDF) Models

As stated in [46], the initial definition of data fusion proposed by data fusion lexicon in
1987 is as follows;

“A process dealing with the association, correlation, and combination of data
and information from single and multiple sources to achieve refined position
and identity estimates, and complete and timely assessments of situations and
threats, and their significance. The process is characterized by continuous re-
finements of its estimates and assessments, and the evaluation of the need for
additional sources, or modification of the process itself, to achieve improved
results” [53].

However, a more concise definition is proposed in [46];

“Data fusion is the process of combining data to refine state estimates and

predictions.”

Since 1987, various revisions of data and information fusion models have been proposed;
however, the main objective of all these models is to provide distinction among different
fusion levels. In this section, the JDL model proposed in [46] and its main five levels are
elaborated (see also Figure 5.1). Below, the main responsibilities of each level is reported
from [46];

e LEVEL 0 — Sub-object Data Assessment: Estimation and prediction of signal/object
observable states on the basis of pixel-/signal-level data association and characteri-
zation. Level 0 assignment involves hypothesizing the presence of a signal (i.e., of a

common source of sensed energy) and estimating its state.

36

Level 3

Impact Assessment

7 § Plans“ "Situations/PIans
Level 4
Process Refinement
Situations Situations“ "Plans ResourcesT
Level 2
Situation Assessment
“Objects Situations"
Level 1
Object Assessment
- Obijects
Signal/Features \ 4

Level 0

Sub-object Data Assessment
Signal/Features¢

TMeasurements

Figure 5.1: The JDL Data Fusion Model [46]

e LEVEL 1 — Object Assessment: Estimation and prediction of entity states on the ba-
sis of observation-to-track association, continuous state estimation (e.g., kinematics)
and discrete state estimation (e.g., target type and ID). Level 1 assignments involve
associating reports (or tracks from prior fusion nodes) into association hypotheses,
for which we use the convenient shorthand “tracks”. Each such track represents the
hypothesis that the given set of reports is the total set of reports available to the

system referencing some individual entity.

e LEVEL 2 — Situation Assessment: Estimation and prediction of relations among enti-
ties to include force structure and cross-force relations, communications and percep-
tual influences, physical context, and so forth. Level 2 assignment involves associating
tracks (i.e., hypothesized entities) into aggregations. The state of the aggregate is
represented as a network of relations among its elements. Any variety of relations is
considered—vphysical, informational, perceptual, organizational—given that it is ap-
propriate to the given system’s mission. As the class of relationships estimated and
the numbers of interrelated entities broaden, Steinberg, Bowman, and White tend to

use the term situation for an aggregate object of estimation.

e LEVEL 3 — Impact Assessment: Estimation and prediction of effects on situations of

planned, estimated, or predicted actions by the participants, to include interactions

37

between action plans of multiple players (e.g., assessing susceptibilities and vulnerabil-
ities to estimated or predicted threat actions, given one’s own planned actions). Level
3 assignment is usually implemented as a prediction function, drawing particular kinds
of inferences from Level 2 associations. Level 3 fusion estimates the “impact” of an
assessed situation (i.e., the outcome of various plans as they interact with one another
and with the environment). The impact estimate can include likelihood and cost or

utility measures associated with potential outcomes of a player’s planned actions.

e LEVEL 4 — Process Refinement: Adaptive data acquisition and processing to support
mission objectives. Level 4 processing involves planning and control, not estimation.

Level 4 assignment involves assigning tasks to resources.

The STDF model provides a unification of both sensor and higher-level fusion across
three main levels [32]; Object Assessment, Situation Assessment, and Impact Assessment
(highlighted in Figure 5.1). Both JDL and STDF are functional models. The STDF model
is less abstract than the JDL model, and seeks to demonstrate a unifying framework across
all three levels. Figure 5.2 illustrates our interpretation of the common ground in terms of
an abstract fusion model adopted from the JDL [9], and its extension State Transition Data
Fusion (STDF) model [32].

Impact Assessment (Level 3)

! |

: Object Object Object I Sensors
| Association Registration Detection |

1

Figure 5.2: Information Fusion Model: Adopted from Simplified JDL Model [37]

It is composed of the Object Assessment phase, where the system detects objects in the
area of interest, identifies their properties and their behavior. The system then passes the
control on to the Situation Assessment phase, where it detects the relationships between
objects, reasons about the properties of such relationships, and detects abnormal behavior.
Finally, acquiring awareness of the current situation, in the Impact Assessment phase the
system predicts possible scenarios that may unfold over time, evaluates most likely scenar-

ios and possible impacts of those scenarios. The Object Assessment phase returns sets of

38

statements, each corresponding to one object in the area of interest; the Situation Assess-
ment phase returns sets of sets of statements, each set corresponding to a situation, which
typically involves more than one object; and the Impact Assessment phase returns a set
of scenarios and a corresponding evaluation for each scenario. The latter is a sequences of
situations itself.

As studied in [4, 37] proposes an operational decision support model by employing
reasoners that are associated with specific logics. However, a situation analysis system needs
to reason about data over time and this aspect is not supported by the applied reasoners.
Other approaches and methods specifically focusing on early stages of problem formulation
and design are explored in [16, 20, 30]. There is a necessity for integrated approaches to
design situation analysis and decision support systems for complex domains [31]. As stated
in [31, 36];

“Large, complex systems are hard to evolve without undermining their depend-
ability. Often change is disproportionately costly, ...system architectures are
pivotal in meeting the above challenge. ... First, dependability properties tend
to be emergent, and are much more readily modeled and controlled at an archi-

tectural level”.

Existing (formal) frameworks designed and proposed for situation analysis models mainly
focus on specific theoretical aspects. As mentioned in [37], practical needs call for adaptive
and evolutionary analysis and design methods that encompass iterative modeling to exper-
imentally validate the essential aspects of design through rapid prototyping of executable

models in early phases.

5.2 Challenges and Key Concepts

Best engineering practice calls for a system to be modeled prior to construction.t

When modeling a situation analysis system, it is crucial to consider the impact factors
of the real-world or physical environment in which the system operates. Various sensors
are monitoring areas of interest to collect situational evidence of events. This results in
a series of discrete observations, and consequently time series of collected observations.
Due to weather conditions, vulnerability of equipment, and technological limitations (as
discussed in Chapter 2), observations often are inaccurate, incomplete or even invalid. Such
inconsistency, corruption, and uncertainty in data leads to serious challenges. With this
in mind, one of the challenges of our proposed situation analysis framework is fusing data
and information from multiple diverse sources to develop and render a coherent consistent

global picture of a complex real-world situation as it unfolds over time [37].

"Uwe Glasser and Hamed Yaghoubi Shahir, ASM/CoreASM Tutorial ([26])

39

The foundation of our proposed situation analysis framework is adopted from [32], while
this framework mainly focuses on object assessment and situation assessment layers (see also
Figure 5.2). We define the key concepts and vocabulary of our proposed situation analysis

framework accurately as follow;

e Objects are all entities that can be observed in the real-world (e.g., maritime domain).

e Observation refers to a single data point in a time series, typically associated with a
single object in the real-world. It is assumed that each observation is associated with

a timestamp.

e Observation Segment refers to a structure used to preserve the information (i.e.,
a collection of observations) about a single object and its related time series over a
certain period of time.? Details of the observation segment structure are explained in
Section 5.4.

e Trajectory refers to a comprehensive time series that describes how an object moves
through space as a function of time. It is important to note that additional object
characteristics beyond geospatial and kinematic aspects can be part of the time se-
ries. The most important geospatial and kinematic features are location, course over

ground, speed over ground, and rate of turn.

5.3 Agent Network Structure

The structure of agents defines the relations and the interactions between different con-
ceptual components (sensors, observers, and reasoners.) in the generic architecture of the
framework. As illustrated in Figure 5.3, a set of sensors is connected to an observer (sensors
of each observer provide observations as the input to the observer) and a set of observers is
connected to a reasoner.

The framework has flexibility in its structuring of the level of hierarchy, as a result a
fourth layer (not illustrated in Figure 5.3) can potentially be added which consists of the
human decision-maker who depends on the information from reasoners.

The definitions of sensors, observers, and reasoners are adopted from [37] as follows:

e Sensors are interfaces of the system with the environment. They are located in the
external world in such a way as to cover the area of interest. Often, multiple sensors
are used to provide a better understanding of the real-world situation as a combination
of different observations at any given state. Each sensor belongs to only one observer

and its observations are the input of its corresponding observer. Typical sensor types

2 Aggregation of one or more time series as part of one observation segment where the goal is to merge
these time series into one coherent and consistent resulting time series.

40

Reasoner

Figure 5.3: Network Structure [37]

include AIS transceivers, radar, satellites, sensor units on aircrafts, the human eye,
etc. Sensors are potentially prone to errors, thus, each sensor has a confidence value

which indicates the reliability of its observation.

e Observers are computational agents which process its corresponding sensors’ obser-
vations. Each observer generates local observations by combining its own sensors’
output. Each observer belongs to only one reasoner. Observers may be mobile or

stationary.

e Reasoners are computational agents which have a global view of the environment
by processing the output of its belonging observers. In addition, reasoners typically

have access to additional contextual and background information.

reasoner : OBSERVER +— REASONER
observers : REASONER — SET(OBSERVER)
observer : SENSOR +— OBSERVER
sensors : OBSERVER +— SET(SENSOR)

5.4 Observation Segment

In this section, we define the structure of an observation segment which is used to pre-
serve the information about each observable entity (i.e., object). Domains and universes
along with, corresponding functions, represent observation segments and are defined in the

following;

41

Universes and Domains

AGENT = SENSOR U OBSERVER U REASONER

OBJECT // An object is a vessel which is identified by an ID (e.g., MMSI).
TIMESERIES

FEATURE

TUPLE

RECORD

VALUE

AGENTID

OBSERVATIONSEGMENT // or OS as abbreviation

/

Each observation segment has four elements: owner, object, time series, and status.

Functions Related to the Definition of Observation Segment

owner : OBSERVATIONSEGMENT +— AGENT

object : OBSERVATIONSEGMENT +— OBJECT

timeSeries : OBSERVATIONSEGMENT +— TIMESERIES

status : OBSERVATIONSEGMENT +— {UNDEF, CLEANED, MERGED, UNIFIED, FUSED, CONSISTENT}

| Timestamp | speed Course iFeatureS } Head
g gy 1
: (RMD,0D,81D,12), | __ _ _j-—==4--------- 7:7*
- = . : s DqiL 9,11, 12), Dot Splbs !
Tuple ! 2009-01-01 12:30:00 (P2 i B 12, || BIP.040, 510 18! ' Record
[e | e e ———— p————]
2009-01-0112:31:00 | {aic,o10,50 1) | (o 010 10,15 Body

*RID, OID, and SID are abbreviations for ReasonerlD, ObserverlD, and SensorlD respectively
which can be an ID or Null

Figure 5.4: Time Series of an Observation Segment

e Owner is an agent which belongs to either one of the Sensors or Observers or Rea-

soners with an agent ID.
e Object is a vessel which is identified by an ID (e.g., MMSI).

e Time Series in an observation segment can possibly contain multiple values (or null)
in a cell of its body due to the multiplicity of sensors, observers, and reasoners. The
time series in an observation segment is a multivariate time series with the difference

being that instead of one or more values (or null) for every cell in the Body(T), there

42

are one or more 4-tuples such as (ReasonerID , ObserverID, SensorID, Value) called

record as in Figures 5.4.

e Status is a multifaceted flag to show where each observation segment is located

through out the system as it is illustrated in Figure 5.5.

Functions related to the time series of each observation segments are defined in the following;;

Functions Related to the Definition of Time Series of an Observation Segment

head : TIMESERIES — LIST(FEATURE)

body : TIMESERIES +— LI1ST(TUPLE)
tupleTimestamp : TUPLE — TIME

record : TIMESERIES X TIME x FEATURE — SET(RECORD)
startTimestamp : TIMESERIES +— TIME
endTimestamp : TIMESERIES +— TIME

value : RECORD +— VALUE
sensorlD : RECORD — AGENTID
observerID : RECORD +— AGENTID
reasonerID : RECORD — AGENTID
id: AGENT — AGENTID

5.5 Maritime Situation Analysis Framework

The situation analysis framework has a modular design with the minimal yet complete core.
The major strength of this design is extensibility. The core of the framework is precise yet
flexible to add different modules to it. The creation and refinement of modules can improve
the design by adding more details to it, or modifying it for specific purposes.

The core of the situation analysis framework contains two main components Observer
Controller and Reasoner Controller. The figure 5.5 illustrates the flow of data and infor-
mation in the form of observation segments between the modules of the Observer and the
Reasoner. The situation analysis framework is a pipeline which contains different rules in
different modules. The output of each rule stores in a set (set of observation segments),
thus the next module can use it as its input. The framework is fed by observation from the
environment (i.e., raw observation segments) and at the end the global trajectory represen-
tations is the output of it.

This proposed framework is built upon the foundation of the framework in [37]. Nal-
bandyan’s [37] framework served as the basis for my working model, after undergoing modifi-
cations and enrichments to flesh out an improved framework for maritime situation analysis.
In this section each module of the framework (except the Inter-Reasoner modules) is defined

precisely and concisely; moreover, they have been validated with ASM.

43

In the Observer, raw observation segments are cleaned (of outliers) and stored in the
Cleaned Observation Segments set. All the cleaned and valid observation segments with
similar timestamps related to the same object will be merged (in the time series), to build
a generic and observation of the observer (stored in the Merged Observation Segments set).
In the Reasoner, all the merged observation segments belonging to each observer will be
merged in order to build a time series of each object (stored in the Unified Observation
Segments set). All the unified observation segments of all the observers which belong to a
same reasoner are the input of the Combine Observations module of that reasoner. Thus,
all their corresponding time series (which come from different observers), merge to build
a coherent time series for each object (and are stored in the Fused Observation Segments
set). After this, all inconsistencies (which is a natural result of having observations from
different sensors) will be resolved and the confidence of different sensors are adjusted (Con-

sistent Fused Observation Segments set).

Up to this point, each reasoner has a coherent and consistent time series for each object.
As it states in [37], Detect (Object) Relationships is about detecting interactions between
two or more objects, utilizing contextual information and other additional sources, which
are suspicious and requires special attention or even interjection [42, 43].

As previously noted, the modules within of the Inter-Reasoner are not part the focus
of this work. However, the Inter-Reasoner is an integral part of the situation analysis

framework, and is explained in [37] as below;

Inter-Reasoner Controller:

e Exchange Information: Each reasoner agent communicates with a set
of neighbors (i.e., reasoner agents), which may vary from a single one to all
the others. If there is any new relevant information to share with neighbors
after performing the Detect Relationships rule, the agent prepares the new

information and communicates it to its neighbors in the logical network.

e Distributed Agreement: In every state, reasoner agents assess the newly
received information. If this conflicts with their own local “perception” of
a situation, they apply conflict resolution strategies using confidence values
and eventually agree on the situation. Upon reaching mutual agreement,
the updated information is shared with neighbors, eventually forming co-
herent global observations. Different distributed agreement protocols exist

in literature, and the selection of a suitable protocol is context dependent.

Since the network structure potentially contains more than one reasoner, the inter-
reasoner can hypothetically be assumed as a super-reasoner and it plays the role of the

distributed agreement protocol between all reasoners. The input of this super-reasoner is

44

Raw
Observation
Segments

Observer

Clean
Observations

Cleaned
Observation
Segments

—>

Identify
Objects

Affiliate
Observations

—>

Merged
Observation
Segments

Reasoner

Intra-Reasoner

Consistent Fused
Observation
Segments

Resolve
Inconsistencies
& Adjust
Confidence

Fused
Observation
Segments

<«

Combine
Observations

Unified
Observation
Segments

Associate
Observations

A A

Inter-Reasoner

Detect (Object)
Relationships

Exchange
Information

Verify
Distributed
Agreement

Global
Observations

Finalize
Global
Agreement

Global
Trajectory
Representations

Distributed Situation Analysis Framework

Figure 5.5: Data and Information Flow®

the perception of each reasoner from the area which they cover. The output of the supper-
reasoner is the global trajectory representations which is the outcome of the agreement
between all reasoners. In the last component of the inter-reasoner, Finalize Global Agree-

ment, trajectory of a vessel is being finalized.

// Functions and Rules Related to Observation Segment

rawOSs : SENSOR +— SET(OBSERVATIONSEGMENT)
cleanedOSs : OBSERVER — SET(OBSERVATIONSEGMENT)
mergedOSs : OBSERVER +—> SET(OBSERVATIONSEGMENT)
unified0Ss : REASONER — SET(OBSERVATIONSEGMENT)
fusedOSs : REASONER +— SET(OBSERVATIONSEGMENT)
cFusedOSs : REASONER — SET(OBSERVATIONSEGMENT)

observerObjectSet : OBSERVER — SET(OBJECT)
reasonerObjectSet : REASONER +— SET(OBJECT)
cleanedSet : OBSERVER X OBJECT +— SET(OBSERVATIONSEGMENT)
unifiedSet : REASONER X OBJECT +— SET(OBSERVATIONSEGMENT)

. def
IsDefined(os : OBSERVATIONSEGMENT) = os # undef

GenerateAUniversallyRandomID =
extend OBJECT with tempObj

3This is a revised and extended representation of the model shown in [37]

45

5.5.1 Observer Controller

An ASM agent is assigned to each observer (based on the network structure) for syn-

chronously running all the rules in the Observer in parallel.

Observer =
CleanObservations
IdentifyObjects
AffiliateObservations

Clean Observations

A specific valid range as explained briefly in Table 2.1 is assigned to each feature in a head
(e.g., speed, course, etc.) for any AIS report. The CleanObservations rule identifies and
marks the invalid values in raw observation segments which are received from different types
of sensors. In addition, the owner of the observation segment is changed to the observer
of the sensors based on the network structure. The main assumption of the rule enforces
that received raw observation segment from a sensor for one single timestamp is related to
a single object. Thus, |Body(T)| =1 and startTimestamp(T) = endTimestamp(T).

CleanObservations =
forall snr in sensors(self) do
forall ros in rawOSs(snr) with (status(ros) # cleaned) do
extend cleanedOSs(self) with cos do
par

owner(cos) = self
object(cos) := object(ros)
timeSeries(cos) := Clean(timeSeries(ros))
status(cos) := undef

status(ros) := cleaned

where
Clean(ts : TIMESERIES) =
let timestamp := startTimestamp(ts) in // start Timestamp(ts) = endTimestamp(ts)
forall f in head(ts) do // because |body(ts)| =1

forall rec in record(ts, timestamp,) do
if (value(rec) < &;(f) V value(rec) > §,(f)) then

value(rec) := ‘out-of-range’ // Each feature has a specific valid range

46

Identify Object

Each object must be defined with an unique ID to trace. An object may not have an ID,
either because the type of sensor is not capable to detect the object’s ID (e.g., radar, satel-
lite images) or because of corruption or missing data. In ldentifyObject, the correct ID will

be assigned to the correct object if it does not have its own ID assigned.

First Refinement — The GenerateAUniversallyRandomID rule generates a temporary
unique ID for any object which is not assigned an ID. The temporary ID helps to keep track

of the object and must be different and distinguishable from any actual object’s ID.

IdentifyObjects =
forall cos in cleanedOSs(self) with (status(cos) # merged) do
if (object(cos) = undef) then
GenerateAUniversallyRandom|D

Affiliate Observations

For each object, all cleaned observation segments of an observer at a similar timestamp
will be merged (horizontally) into one single observation segment to create the generic local
observation of that observer. The local observation has all data of different features from

different types of sensors (sensors of the observer) at that specific timestamp, Figure 5.6.

Timestamp || Speed Course | | Timestamp || Speed
2009-01-01 12:31:00 (NULL, 0,ID, S,ID, 12) | (NULL, O,ID, S,ID, 151) N 2009-01-01 12:31:00 (NULL, O,ID, S,ID, 14)
Timestamp || Speed Course
- 2009-01-01 12:31:00 oL oo o vy [w00, 5.0,150

Figure 5.6: Affiliate Observations Rule

47

derived observerObjectSet(self) =
{object(cos) | cos € cleanedOSs(self) A status(cos) # merged}

derived cleanedSet(self,0bj) =
{cos | cos € cleanedOSs(self) A object(cos) = obj A status(cos) # merged}

AffiliateObservations =
forall obj in observerObjectSet(self) do
extend mergedOSs(self) with mos do // |body(mos)| = 1
par
owner(mos) := self
object(mos) := obj

timeSeries(mos) = > (timeSeries(cos))
Veos : cos€cleanedSet(self,obj)

status(mos) := undef
forall cos in cleanedSet(self,0bj) do

status(cos) := merged

5.5.2 Reasoner Controller

An ASM agent is assigned to each reasoner (based on the network structure) for syn-

chronously running all the rules in the Reasoner in parallel.

Reasoner =
AssociateObservations
CombineObservations
Resolvelnconsistencies
AdjustConfidence

Associate Observations

The AssociateObservations rule is executed by reasoner agents. In this rule, all the merged
observation segments which belong to the same observer and same object will be merged
(vertically) to create a time series (since they have different timestamps), Figure 5.7. In
other words, for each observer, merged observation segments of an object will be associated
to a unified observation segment with the similar object to create a more up-to-date time
series in that unified observation segment.

It is important to note, these time series are growing within all observers of a reasoner
independently; therefore, the AssociateObservations rule can be potentially executed by
observer agents; however, due to the following reasons, the AssociateObservations is located

in the Reasoner. Time and space limitations at the implementation level enforce that time

48

series of unified observation segments only grow to a certain point. Thus the time series
passed to (CombineObservations) should be partitioned. On the other hand and due to the
nature of Observers, they cannot make any decisions on the partitioning process. Therefore

the AssociateObservations rule must be located at the Reasoner level.

[Timestamp | Speed | course |
2009-01-01 12:31:00 oL o, 1o, 1) | (e, 0u0. 90,150
2009-01-01 12:32:00 O se | NuLL, oo, S 46y Tmestarp [Speed oI
2009-01-01 12:33:00 oL oo 21 vgy | w00, 5,0, 159
2009-01-01 12:31:00 o o 2o | o, 0,0,5,0, 151
X = 2009-01-01 12:32:00 [‘i | waoRs
Timestamp " Speed Course 2009-01-01 12:33:00 '(':‘t%'lgssl'lg“a (NULL, 0,00, 8,0, 153)
LD 10.00m 2009-01-01 12:34:00 o500 | inuwt. o0, 90, 159
2009-01-01 12:34:00 (NULL, 01D, 5,0, 18) | (NULL, OID, S,ID, 154)

* Out of Range

Figure 5.7: Associate Observations Rule

derived observerObjectSet(obs) =
{object(mos) | mos € mergedOSs(obs) A status(mos) # unified}

AssociateObservations =
forall obs in observers(self) do
forall obj in observerObjectSet(obs) do
choose mos in mergedOSs(obs) with (object(mos) = obj A status(mos) # unified) do
choose uos in unifiedOSs(obs) with (object(uos) = obj) do
if IsDefined(uos) then
par
timeSeries(uos) := X(timeSeries(uos), timeSeries(mos))

status(uos) := undef
status(mos) = unified
else
extend unifiedOSs(self) with newUos do

par
owner(newUos) := self
object(newUos) := obj
timeSeries(newlUos) := timeSeries(mos)
status(newlUos) := undef

status(mos) := unified

49

Combine Observations

To have the most coherent picture of an object’s movement in the real-world, from the view
of a reasoner, all the unified observation segments of each observer (which belong to that
reasoner based on the network structure) should be merged. Since all the unified observation
segments of an object are from different observers with different sets of sensors; the head
of the time series of unified observation segments may not be similar. On the other hand,
time series of different unified observation segments have different timestamps as explained
in Section 5.5.2.Associate Observations. As a result, merging in CombineObservations is a

hybrid merge.

derived reasonerObjectSet(self) =

{object(uos) | uos € unifiedOSs(obs) A status(uos) # fused}
Yobs : obsc observers(self)

derived unifiedSet(self, obj) =

U {uos | uos € unifiedOSs(obs) A object(uos) = obj A status(uos) # fused}
Yobs : obsc observers(self)

CombineObservations =
forall obj in reasonerObjectSet(self) do
choose fos in fusedOSs(self) with (object(fos) = obj) do
if IsDefined(fos) then
par

timeSeries(fos) 1= (timeSeries(fos), timeSeries(uos))

X
Yuos : uoscunifiedSet(self,obj)

status(fos) := undef

forall uos in unifiedSet(self,0bj) do
status(uos) := fused

else
extend fusedOSs(self) with newFos do

par
owner(newkFos) := self
object(newFos) := object(uos)

timeSeries(newFos) := X (timeSeries(uos))
Yuos : uoscunifiedSet(self,obj)

status(newFos) := undef
forall wos in unifiedSet(self,0bj) do

status(uos) := fused

50

Resolve Inconsistencies

For each feature in a tuple there may be more than one record which contains different
values (due to the first refinement on merging time series). Resolvelnconsistencies attempts

to condense to one single record based on all the records.

Resolve Inconsistencies — Primitive Solution

The primitive solution would be that the Resolve rule chooses one record at random. This
approach of resolve inconsistencies is not involved with sensor confidence, nor sensor’s errors

of the received data.

o1

Resolvelnconsistencies =
forall fos in fusedOSs(self) with (status(fos) # consistent) do
extend cFusedOSs(self) with cFos do
par
owner(cFos) := self
object(cFos) := object(fos)
timeSeries(cFos) := ConflictResolution(timeSeries(fos))
status(cFos) := undef
status(fos) := consistent
where
ConflictResolution(ts : TIMESERIES) =
forall f in head(ts) do
forall ¢ in body(ts) do
let recordSet := record(ts, tupleTimestamp(t), f) in
extend recordSet with resolvedRecord do
if |recordSet| = 0 then
Nullify(recordSet, resolved Record)
else if |recordSet| =1 then
Confirm(recordSet, resolved Record)
else
Resolve(recordSet, resolved Record)

Nullify(recordSet : SET(RECORD), resolved Record : RECORD) =
value(resolvedRecord) := null
sensorlD(resolvedRecord) = null
observerID(resolved Record) := null
reasonerID(resolved Record) := id(self)

Confirm(recordSet : SET(RECORD), resolvedRecord : RECORD) =
choose rec in recordSet do
value(resolved Record) := value(rec)
sensorID(resolvedRecord) := sensorID(rec)
observerID(resolvedRecord) := observerID(rec)
reasonerID(resolved Record) := id(self)

Resolve(recordSet : SET(RECORD), resolvedRecord : RECORD) =
choose rec in recordSet do // One of the records will be chosen randomly
value(resolvedRecord) := value(rec) // and no confidence is applied
sensorID(resolvedRecord) := sensorID(rec)
observerID(resolvedRecord) := observerID(rec)
reasonerID(resolved Record) := id(self)

52

Resolve Inconsistencies — Considering Sensors’ Error

In observational studies, repeated measurement is the key to obtaining as close a value as
possible to the actual value of a variable. Calculating the uncertainty of measurements
because of the error of the measuring device (or devices) is another concern which statistics
helps to conquer. However, finding a closer value to the actual value and an error of this
value can be done in various ways as explained later.

In the framework, Figure 5.5, the rules Resolvelnconsistencies and AdjustConfidence will

be accurate only if the definition of confidence is clear and precise.

Definition — Confidence

Confidence of a sensor is defined as the error of that sensor, AS;, which is not determined
by each individual observation. It is a value which is derived of how accurate a sensor is
over time and may change with an external agent. If the error of a sensor becomes greater
than a defined threshold, the received value of that sensor will not be considered until it

becomes reliable again.

In this refinement, the structure of each record will be slightly different. Each record will
carry the error of its own sensor (or the error of number of sensors after AdjustConfidence);
therefore, (ReasonerID ,ObserverID ,SensorlD, Error, Value).

It is important to note that the structure of the Resolvelnconsistencies rule will not
change, thus it contains the Nullify rule, the Confirm rule, and the Resolve rule. The refine-
ment will be mainly on the Resolve rule which applies when there is more than one record

in a cell.

Calculating Value — Avarage

The Resolve rule should condense to a single record, which is the simple average of all the

records’ value in this refinement as below;

vs; T Us; o t+ous;

— J— +k
YR, =% =]

— vg, is the value of a record which was received from sensor ;.
~ US;,US;415 - -5 Us, are all in a same cell of a merged time series.
— S, 8i4+1,...,SE are the sensors belonging to a reasoner R, (They may or may not

belong to the same observer).

Adjust Confidence

Repeated measurement can be done in different ways such as one device measures several

times, or a number of independent devices measure. In this case, different sensors measure

53

a feature of an object independently and eventually all data is merge. As a result, there
may be more than one measurement (i.e., record) in a cell of a time series. The output of
the rule Resolve is a single value based on the values of all records (in this refinement it
is the average of them). AdjustConfidence rule calculates the error of the output record in

Resolve (based on the error of each record in the cell).

Calculating Error — Propagation of Uncertainty

In statistics, if the measurements are independent (therefore, the errors are independent as

well), the error of their average (or in general, any other function) will be calculated as below;

9z_)2 AS
S5 i+1 8US+) Z+k

ARn:\/(agz JZAS? + (52—)2A8 % + .+ (52—

Note that, reasoner themselves do not have error, what it considered as reasoner’s error,
AR, is the calculated error of the records in a cell of a merged time series. For instance,
if two records such as (RID,,, OID,,, SID;, AS;,Vs,) and

(RIDy,OID,y,SID;j, AS;, Vs,), where S; and S; are the sensors of similar or different ob-
servers, are in the same cell, the output of Resolvelnconsistencies and AdjustConfidence rules
will be a record such as (RID,,, Null, Null, AR,,, Vaverage). Therefore AR, is the calculated
error based on AS; and AS;.

As a result of this approach, in each cell of time series, the error of a reasoner is cal-
culating; therefore, there might be different errors for one reasoner. The average of all the

errors for each reasoner is the error of that reasoner.

// Functions and Rules Related to the First Refinement

error : RECORD + ERROR
valuesOfRecordSet : SET(RECORD) — SET(NUMBER)
errorsOfRecordSet : SET(RECORD) +— SET(NUMBER)

Average(SET(NUMBER))
Error(SET(NUMBER))

54

derived valuesOfRecordSet(self) = {value(rec) | rec € recordSet}
derived errorsOfRecordSet(self) = {error(rec) | rec € recordSet}

Nullify(recordSet : SET(RECORD), resolvedRecord : RECORD) =
value(resolvedRecord) := null
error(resolvedRecord) := null
sensorlD(resolved Record) := null
observerID(resolvedRecord) := id(self)

reasonerID(resolved Record) := null

Confirm(recordSet : SET(RECORD), resolved Record : RECORD) =
choose rec in recordSet do
value(resolved Record) = value(rec)
error(resolvedRecord) := error(rec)
sensorID(resolvedRecord) := sensorID(rec)
observerID(resolvedRecord) := observerID(rec)
reasonerID(resolved Record) := id(self)

Resolve(recordSet : SET(RECORD), resolved Record : RECORD) =
value(resolved Record) := Average(valuesOfRecordSet)
error(resolvedRecord) := Error(errorsOfRecordSet)
sensorID(resolvedRecord) := null
observerID(resolved Record) := null // If all of the observerIDs in a recordSet are similar,

reasonerID(resolved Record) = id(self) // observerID(resolvedRecord) := observerlD(rec)

55

5.6 Formal Definition of Trajectory

Global Trajectory Representations are a set of observation segments, each of which is re-
lated to one object. The time series of each observation segment is called the trajectory of
the object of that observation segment. Trajectory of an object is the most general outcome
(of the framework based on all the reasoners) which represents the object in the real-world
situation. Based on the definition of trajectory in [37], we present here a refined version to
make the definition consistent with the definition of observation segment and time series.

We also provide a proof of this critical concept, which is not given in [37].

trajectory : OBJECT + TIMESERIES

derived trajectory(obj) = trajectory(obj, currentTimestamp) // which current Timestamp
/ is the latest timestamp of
// time series (related to 0bj)

// in Global Trajectory Representations

where the inductive definition of trajectory is as follows:

trajeActory : OBJECT X TIME +— TIMESERIES

trajeActory(obj, currentTimestamp) def

trajectory(obj, previousTimestamp) R {timeSeries(OS) | OS € GlobalTrajectoryRepresentations A
endTimestamp(timeSeries(0S)) = currentTimestamp A
object(OS) = obj} // which previousTimestamp

// precedes currentTimestamp
tv"ajeActory(obj7 beginningTimestamp) := 0 // which beginning Timestamp is

// when the model started to run

Corollary 1. The function trajectory is a bijective mapping between the set of objects in

any given state and their history of global trajectory representations.

To prove the function trajectory is bijective, we need to prove trajectory is injective and
surjective.
Injectivity: The trajectory function being an injective function means no two elements in

the domain of the function (i.e., objects) get mapped to the same image (i.e., time series).

Vobj,0bj’ € OBIJECT which obj # obj’ = trajectory(obj) # trajectory(obj’)
where OBJECT = {object(OS) | OS € GlobalTrajectoryRepresentations}

Proof : Suppose this proposition is false.
This conditional statement being false means there are two different objects (assume obj
and obj’) which implies trajectory(obj) = trajectory(obj’) thus, based on the definition of

traj eActory;

56

trajectory(obj, currentTimestamp) = trajectory(obj’, currentTimestamp')

If currentTimestamp # currentTimestamp’, then trajectory(obj) # trajectory(obj’) and

it is a contradiction; therefore, the proposition is true.

If currentTimestamp = currentTimestamp’, then
trajectory(obj, currentTimestamp) = trajectory(obj, previousTimestamp) X
{timeSeries(OS) | OS € GlobalTrajectoryRepresentations A
endTimestamp(timeSeries(OS)) = currentTimestamp A
object(OS) = obj}

trajectory(obj’, currentTimestamp) = trajectory(obj’, previousTimestamp') X
{timeSeries(OS) | OS € GlobalTrajectoryRepresentations A
endTimestamp(timeSeries(0OS)) = currentTimestamp A

object(0S) = obj'}

Even if the time series of two objects, obj and obj’ have the same timestamp, current-
Timestamp, they are different time series with different values in their body, because they
are related to two different objects. Therefore, trajectory(obj) # trajectory(obj’) and it is

a contradiction and it means the proposition is true and trajectory is injective.

Surjectivity: The trajectory function being a surjective function means any element in

the range of the function is hit by the function.

Proof : Based on the definition of the domain and the range of the trajectory function,
surjectivity is intuitive.

OBJECT = {object(0S) | OS € GlobalTrajectoryRepresentations}

TIMESERIES = {timeSeries(0S) | OS € GlobalTrajectoryRepresentations}

Any element in the range of trajectory is a time series of an observation segment in the
global trajectory representations, which is mapped to the object of same observation seg-

ment in the domain of trajectory; therefore trajectory is surjective.

Corollary 2. For each object 0bj in any state of model, trajectory(obj) is a time series of
coherent and, in a probabilistic sense based on confidence values, consistent observations of

obj over a run of the SA model.*

ntuitively, the function trajectory yields the best possible situational evidence one can compute under
uncertainty from multiple observations of how objects move.

57

Chapter 6
Implementation

CoreASM [15, 17, 19] is an Open Source project and a supporting tool to focus on early
phases of the software design process. The main goal of CoreASM is encouraging rapid
prototyping, analyzing, as well as experimental validation of ASM models. CoreASM has
an extensible plugin-based architecture [18] and the core of the language and engine (i.e.,
kernel) holds only to the bare essentials. Most of the language constructs and functions
are defined in plugins as extensions to the kernel. CoreASM plugins can either extend the
functionality of specific engine components (introducing additional structure or behavior
to those components), or they can extend the control flow of the engine (interposing their
own code in between state transitions of the engine). Extending with plugins gives a bet-
ter control on CoreASM, allowing for customizing depending on specific application needs.
CoreASM is implemented in Java under Academic Free License version 3.0 (AFL 3.0) and
it is available at www.coreasm.org.

The proposed situation analysis framework is implemented using CoreASM and Java.
The part which is implemented in CoreASM has a higher level of abstraction and its respon-
sibility is to have control on time, input/output (calling the Java method for each sensor to
read the raw data from a text file); moreover, CoreASM has access to the network structure;
therefore it is calling all the related method/functions of Java for each rule in Observers
and Reasoners.

On the other hand, Java mainly deals with data structures and the actual data. Data
structure for observation segment, time series, tuple, and record are defined in Java; more-
over, all of the merges (i.e., horizontal merge and vertical merge) are defined and imple-
mented as methods in Java as well. Rules are implemented in Java from reading raw data
from a text file, to every rule in Observer and Reasoner, thus, when CoreASM calls these

rules, they can be executed for a specific sensor, observer, or reasoner.

58

www.coreasm.org

6.1 Implementation of the Framework (CoreASM Part)

For each physical sensor in the environment there is a corresponding agent in CoreASM. For
each sensor’s agent, CoreASM calls the related method in Java for reading raw data, which
is stored in a text file with a specific format and name. Moreover, for each observer and
reasoner there is a corresponding agent defined in CoreASM which is responsible for calling
all the related method/functions in Java. JASMine is a CoreASM plugin which provides the
access to Java objects and classes from CoreASM [22]. At first, CoreASM imports a class into
a location and then invokes a method of that class from Java. Furthermore, to increase the
readability of the code, Modularity plugin helps breaking the code into different CoreASM

modules as explained below.

6.1.1 Network Configuration Module

NetworkConfiguration is the rule of Network Configuration module in CoreASM which ex-
ecutes before any other rule in the Initialization rule. The hierarchical structure of the
network is building by executing this rule (Figure 5.3). Based on four ASM functions be-
low, each sensor belongs to one observer (observer function), and each observer belongs to
one reasoner (reasoner function). On the other hand, the sensor set of each observer and
the observer set of each reasoner establishes in the NetworkConfiguration as well (sensors

function and observers function respectively).

function reasoner: OBSERVER -> REASONER

function observers: REASONER -> SET //SET OF OBSERVER
function observer: SENSOR -> OBSERVER

function sensors: OBSERVER -> SET //SET OF SENSOR

Furthermore, in this module each AgentID is assigned to the relevant agent (i.e., all sensors,

observers, and reasoners).

function id: AGENT -> AGENTID //AGENT = UNION(SENSOR, OBERVER, REASONER)

6.1.2 Environment Module

In our implementation (in CoreASM), we define the concept of “time” as logical time. This
means that “time” is set to zero in the initial state; and then, the Environment rule is
responsible for increasing it by one unit at every step.

The Environment rule invokes the read From CSVFile method for all active sensors (i.e., sensor
agent). readFromCSVFile is a Java method which reads input values from a CSV! file. It

has two input parameters, the sensor name and the logical time.

!Comma-Separated Values

59

Due to the fact that the accuracy of the measurement of timestamps is one second in
the real-world, converting a logical time to a real-world timestamps in Java (the logical time
will be an parameter of a Java method) is a viable solution to keep the CoreASM part as a

controller in the abstract level.

forall snr in SENSOR with status(snr) = Enable do

invoke environment -> readFromCSVFile(id(snr), time)

6.1.3 Observer and Reasoner Modules

There are two separate modules related to the Observer and the Reasoner. As stated in
Section 5.5, each observer agent runs all of the sub-rules in Observer in parallel. Likewise,

each reasoner agent runs all of the sub-rules in Reasoner in parallel.

Observer Rule

rule Observer = {
CleanObservations
IdentifyObjects

AffiliateObservations

rule CleanObservations = {
forall snr in sensors(self) do

invoke coreASMCleanObservations -> cleaned0Ss(id(self), id(snr))

rule AffiliateObservations = {
invoke coreASMAffiliateObservations -> MergedOSs(id(self))

Reasoner Rule

rule Reasoner = {
AssociateObservations
Combine(Observations

ResolvelInconsistenciesAndAdjustConfidence

rule AssociateObservations = {
forall obs in observers(self) do

invoke coreASMAssociateObservations -> Unified0Ss(id(self), id(obs))

rule CombineObservations = {

invoke coreASMCombineObservations -> Fused0Ss(id(self))

60

rule ResolvelnconsistenciesAndAdjustConfidence = {

invoke coreASMResolveInconsistenciesAndAdjustConfidence -> ConsistentFused0Ss(id(self))

6.1.4 Situation Analysis (SA) Module

SA is the main module in our implementation in CoreASM, as such the init rule executes
here. All functions, universes, and enums are defined in SA. As previously mentioned,

agents are defined and assigned in this module as follows;
e There is an agent for each observer and reasoner.

e There is an agent, called EnvironmentAgent, which is responsible for executing the

Environment rule.

Different modes are defined in this module to put order in running different rules. Initially,
when the mode is undef, the logical time is set to zero and the NetworkConfiguration rule is
being executed. All Java classes are imported in importJavaFiles mode. When the mode
is changed to gemerateOSsStructure, all data structures are created by invoking related
methods from Java for each sensor, observer, and reasoner. Finally, all observers, reasoners,
and environment agents are assigned to the Observer, Reasoner, and Environment rules,

respectively.

init Initialization
rule Initialization = {
if (mode = undef) then {
time := 0
NetworkConfiguration
mode := importJavaFiles
else if (mode = importJavaFiles) then {
import native io.IOManager() into environment

import native coreasm.Initialization() into initialization

import native coreasm.CleanObservations() into coreASMCleanObservations

import native coreasm.AffiliateObservations() into coreASMAffiliateObservations

import native coreasm.AssociateObservations() into coreASMAssociateQObservations

import native coreasm.CombineObservations() into coreASMCombineObservations

61

import native coreasm.ResolveInconsistencies() into

coreASMResolveIlnconsistenciesAndAdjustConfidence

import native core.Print0Ss() into coreASMPrint0Ss

mode := generateOSsStructure

else if (mode = generateOSsStructure) then {
forall snr in SENSOR with status(snr) = Enable do

invoke initialization -> generateSensor0SsStructure(id(snr))

forall obs in OBSERVER do

invoke initialization -> generateObserverOSsStructure(id(obs))

forall rsn in REASONER do

invoke initialization -> generateReasonerOSsStructure(id(rsn))
mode := assignAgents
else if (mode = assignAgents) then {
program(EnvironmentAgent) := Q@Environment
forall obs in OBSERVER do {

Agents(obs) := true

program(obs) := Q@Observer

forall rsn in REASONER do {
Agents(rsn) := true

program(rsn) := QReasoner

program(self) := undef

6.2 Implementation of the Framework (Java Part)

CoreASM is in charge of controlling the logical time as well as the Environment, Observer
and Reasoner rules. Each of which has a corresponding method in Java with at least one
parameter. This parameter is the ID of the agent (e.g., sensor, observer, or reasoner agent)

and is passed to Java by CoreASM. Records, tuples, and time series structures are defined as

62

separate classes in Java. Also, an observation segment class is defined in Java to support the

data structure corresponding to raw observation segments, cleaned observation segments,

merged observation segments, unified observation segments, fused observation segments,

and consistent fused observation segments. Figure 6.1 illustrates the class diagram of domain

concepts such as record, time series, observation segment, etc.

<<Java Enumeration>>
O status

domain

%F Undef: Status

% Cleaned: Status
%F Merged: Status
%FUnified: Status

%f Fused: Status

%' Consistent: Status

& Status()

0.1

<<Java Class>>
©0bservationSegment

domain

= gwner: String

OcohservatlonSegment(Strlng‘ArrayLlsttFeature:]
& ObservationSegment()

@ getOwner():5tring

@ setOwner(String):void

@ getObject():Vessel

@ setObject(Vesselkvoid

@ geiTimeSeries().TimeSeries

@ setTimeSeries(TimeSeries)void
@ getStatus(j:Status

@ setStatus(Status)void

@ print(}:5tring

-timeSeries | 0.1

<<Java Class>>
©TimeSeries

domain

o head: ArrayList<Feature>

ODTIIT\ESEHEE{AUE)IL\BI‘ Feature>)

& TimeSeries()

@ getHead():ArrayList<Feature>

@ selHead({ArrayList<Feature>)void

@ getBody pArraylList<Tuple>

© getDataOfSpecificTimestamp(Date :ArrayList<ArrayList<Record>>
@ getStartTimestamp().Date

@ getEndTimestamp():Date

@ getTimestampSet(}ArrayList<Date>

© addToBody(Tuple):void

@ splitTime SeriesFromTimestamp(Date):void
@ horizontalMergeWIT(TimeSeries)void

@ verticalMergeWIH({TimeSeries)void

@ assignTimeSeries(TimeSeries):void

@ print():5tring

-body | 0..*

<<Java Class>>
GTuple

domain

o timestamp: Date
o data: ArrayList<ArrayList<Record>> = new ArrayList<ArrayList<Record>>()

& Tuple(int)

& Tuple()

@ getTimestamp():Date

@ setTimestamp(Date):void

© getData():ArrayList<ArrayList<Record>>

@ getCell{int):ArrayList<Record>

@ getRecordOfCell(intint):Record

® getRecordsOfCell(int):ArrayList<Record>

o editvalueOfRecord(intintint):void

© editSensoriDOMRecord(String,int,int):void

@ editObserverlDOfRecord(String,intint)void
@ editReasonerlDOfRecord(String int intjvoid
® addRecord2CellOMata(Record int):void

© addRecords2CellOfData(ArrayList<Record= int)void
@ setData(ArrayList<ArrayList<Record>>).void
@ clone()Tuple

o print():String

0.1

N SRS

<<Java Class>>
©Vessel

domain

o name: String

o type: String

o length: int

o width: int
&Vessel()

@ getName():String

© setName(String)void
@ gelType():String

@ seltType(String):void
@ getlength{}int

@ setLength(int):void
@ getWidihkint

@ setWidth(int):void

<<Java Class>>
(& ObservableObject

domain

~ id:long

& ObservableObject()
@ getiD{)long
@ setiD({long):void

<<Java Class>>
(©Record

damain

a reasoneriD: String
o observerlD: String
a sensorlD: String

o error: float

o value: Integer

& Record(String,String String Integer)
&'Record()

@ getReasonerlD():String

@ setReasonerlD(String)void
& getObserveriD():String

@ setObserverlD(String):void
@ getSensorlD():String

@ setSensorlD(String kvoid

@ getError()float

@ setError{float)void

@ getValue()integer

@ setValue(Integer)void

@ clone(}:Record

@ print():5tring

Figure 6.1: Class Diagram of Domain Concepts

63

6.2.1 Data Structure
Data Structure of Observation Segment

As stated in Section 5.5, observation segments of a specific object, which belong to a observer
or a reasoner, are merged in different modules. With this in mind, HashMap is a reasonable
choice to store the observation segments as the complexity of accessing to an observation
segment of a certain object which belongs to an observer/reasoner is of O(1).

As illustrated in Figure 6.2, any of the Cleaned Observation Segments, Merged Observa-
tion Segments, Fused Observation Segments, and Consistent Fused Observation Segments
requires a HashMap of HashMaps [observer/reasoner , [object , observation segment]| |.

Only the Unified Observation Segments requires a three-layered HashMap due to the
fact that the owner of observation segments in Unified Observation Segments is a reasoner,
but observation segments of a similar observer for a specific object are getting merged. So,
we need to have all reasoners, all of the corresponding observers, and all the objects in one
structure.

These structures are defined as a set of public static members in a class named Globals

as below;

public static HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>> rawOSs =
new HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>>();

public static HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>> cleaned0Ss =
new HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>>();

public static HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>> merged0Ss =
new HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>>();

public static HashMap<String, HashMap<String, HashMap<Long,
ArrayList<ObservationSegment>>>> unified0Ss =
new HashMap<String, HashMap<String, HashMap<Long, ArrayList<ObservationSegment>>>>();
public static HashMap<String, HashMap<Long, ObservationSegment>> fused0Ss =
new HashMap<String, HashMap<Long, UbservationSegment>>();
public static HashMap<String, HashMap<Long, ObservationSegment>> cfused0Ss =
new HashMap<String, HashMap<Long, ObservationSegment>>();

64

w _&i_ Observation Segment Observation Segment
QE) 8 : -
o N
(7]
Q -~
o .8 . Observation Segment Observation Segment
k)
o p q
k _&i Observation Segment Observation Segment
Q
g o) a b
O >
(2]
Q -
o _&i Observation Segment Observation Segment
S v w
o
w g Observation Segment Observation Segment
s ° g :
0 X
(7]
Q -
0 _8 Observation Segment Observation Segment
g t u
[¢]

Figure 6.2: Data Structure of Observation Segments with Two-Layer HashMaps

Data Structure of Time Series

Time Series is composed of an ArrayList of Feature as its head, and an ArrayList of Tuple as

its body. Feature is a public enum which contains list of used features in our implementation.

public class TimeSeries {
private ArrayList<Feature> head;

private ArrayList<Tuple> body;

Tuple contains a Date and a ArrayList of ArrayLists of records. Note that the size of ‘data’

(defined below) is the same as the size of the head of time series.

public class Tuple {
private Date timestamp;

private ArrayList<ArrayList<Record>> data = new ArrayList<ArrayList<Record>>();

6.2.2 Implementation of Rules

Each rule of Observer or Reasoner in CoreASM has a corresponding class in Java with a
similar name. A simple example, the AffiliateObservations rule, is presented in the following

and the rest of the implementation details are presented in Appendix A.

65

public class AffiliateObservations {

public void MergedOSs(String observerID) throws IOException {
if (!Globals.cleaned0Ss.containsKey(observerID))
throw new IOException("Affiliate Observations Error: The Observer ID, " +
observerID + ", is NOT valid.");
if (!Globals.merged0Ss.containsKey(observerID))
throw new IOException("Affiliate Observations Error: The Observer ID, " +

observerID + ", is NOT valid.");

if (!(Globals.cleaned0Ss.get (observerID).isEmpty())) {
HashSet<Long> observerObjectSet = new HashSet<Long>();
observerObjectSet.addA11(Globals.cleaned0Ss.get (observerID) .keySet());

for (Long object : observerObjectSet) {
for (ObservationSegment cos : Globals.cleanedOSs.get (observerID).get(object)) {
if (!(cos.getStatus().equals(Status.Merged))) {

ObservationSegment mos = new ObservationSegment();

mos .setOwner (observerID) ;

mos.setObject (cos.getObject());

TimeSeries tempCosTimeseries = new TimeSeries();

tempCosTimeseries.assignTimeSeries(cos.getTimeSeries());

for (ObservationSegment mergingCos
Globals.cleaned0Ss.get (observerID) .get(object)) {
if ((!(mergingCos.equals(cos))) &&
(! (mergingCos.getStatus() .equals(Status.Merged))) &&
(mergingCos.getTimeSeries() .getTimestampSet ()
.equals (tempCosTimeseries.getTimestampSet ()))) {

TimeSeries tempMergingCosTimeseries = new TimeSeries();

tempMergingCosTimeseries.assignTimeSeries(mergingCos.getTimeSeries());
tempCosTimeseries.horizontalMergeWIT (tempMergingCosTimeseries) ;
mergingCos.setStatus(Status.Merged) ;

}

mos.setTimeSeries (tempCosTimeseries) ;

mos.setStatus(Status.Undef);
cos.setStatus(Status.Merged) ;

if (Globals.mergedOSs.get (observerID).containsKey(object))
Globals.mergedOSs.get (observerID) .get (object) .add(mos) ;

66

else {
ArrayList<ObservationSegment> mosList = new
ArrayList<ObservationSegment>() ;

mosList.add (mos);

Globals.mergedOSs.get (observerID) .put(object, mosList);

6.2.3 Empirical Results

In this section, we extract some test data from real-world AIS datasets collected by U.S.
Coast Guard Services (available at www.marinecadastre.gov) to experimentally validate
the implementation. The datasets contain records of marine traffic for each month of the
calendar years 2009-2011. Records are filtered to one minute and stored in geodatabases
organized by Universal Transverse Mercator (UTM) zones 1-11 and 14-19. Combined, these
cover the coastal waters of the entire United States and most of Canada. For our exper-
iments, we assumed there are seven sensors in the environment, as well as four observers

and two reasoners. The network configuration is as following;

rule NetworkConfiguration = {

sensors (Observerl) := {Sensorl, Sensor2}
sensors (Observer2) := {Sensor3, Sensor4}
sensors (Observer3) := {Sensor5, Sensor6}
sensors(Observer4) := {Sensor7}
observers(Reasonerl) := {Observerl, Observer2}
observers(Reasoner2) := {0Observer3, Observer4}

Input Data From Seven Sensors & Output Time Series

sensorl:

Timestamp,MMSI,COG,Heading

2009-01-01 00:00:01,367409990,245,511
2009-01-01 00:00:02,367409990,228,511
2009-01-01 00:00:02,538003423,68,0

67

www.marinecadastre.gov

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

03,367409990,235,511
04,367409990,248,114
04,538003423,74,511
05,367409990,258,98
06,538003423,69,12
07,664445000,163,334
08,538003423,84,511
09,367409990,250,93
10,367409990,261,511
10,664445000,172,365

sensor2:

Timestamp,MMSI,S0G,Heading,ROT

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

01,367409990,0,511,128
02,367409990,0,125,128
02,538003423,12,12,126
03,367409990,0,126,127
04,367409990,2,129,128
04,538003423,15,511,128
05,367409990,3,511,126
06,538003423,17,511,128
07,664445000,16,320,128
08,538003423,19,14,124
09,367409990,4,139,128
10,367409990,4,142,128
10,664445000,18,341,121

sensor3:

Timestamp,MMSI,S0G,COG,ROT

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:

01,538003423,11,57,127
03,367409990,0,240,128
03,538003423,14,65,110
05,367409990,3,211,128
05,538003423,15,71,121
06,367409990,3,225,121
06,664445000,19,121,127
07,367409990,4,213,126

68

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:

07,538003423,17,84,127
07,664445000,21,182,128
08,367409990,4,254,128
08,664445000,21,175,126
09,664445000,23,169,127
10,538003423,19,89,120

sensor4:

Timestamp,MMSI,COG,Heading,ROT

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

01,538003423,67,12,126
03,367409990,230,511,128
03,538003423,73,19,128
05,367409990,238,131,127
05,538003423,64,511,128
06,367409990,234,152,127
06,664445000,157,324,128
07,367409990,290,511,126
07,538003423,81,511,128
07,664445000,142,335,128
08,367409990,295,167,124
08,664445000,159,356,126
09,664445000,189,385,128
10,538003423,87,21,128

sensorb:

Timestamp,MMSI,S0G,C0G,Heading

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

02,367409990,1,210,133
02,538003423,14,65,113
02,664445000,15,119,313
04,367409990,2,237,132
04,538003423,15,71,123
04,664445000,15,124,334
06,367409990,4,247,511
06,538003423,17,65,156
06,664445000,17,137,365
08,367409990,5,295,511
08,538003423,17,71,114

69

2009-01-01 00:00:08,664445000,21,119,511
2009-01-01 00:00:09,367409990,5,287,116
2009-01-01 00:00:09,538003423,18,91,110
2009-01-01 00:00:09,664445000,23,153,511
2009-01-01 00:00:10,367409990,6,265,118
2009-01-01 00:00:10,538003423,19,86,121
2009-01-01 00:00:10,664445000,24,161,312

sensor6:

Timestamp,MMSI,COG,ROT

2009-01-01 00:00:02,367409990,212,128
2009-01-01 00:00:02,538003423,69,126

2009-01-01 00:00:02,664445000,116,128
2009-01-01 00:00:04,367409990,234,127
2009-01-01 00:00:04,538003423,77,128

2009-01-01 00:00:04,664445000,121,128
2009-01-01 00:00:06,367409990,225,127
2009-01-01 00:00:06,538003423,71,128

2009-01-01 00:00:06,664445000,132,128
2009-01-01 00:00:08,367409990,254,123
2009-01-01 00:00:08,538003423,79,128

2009-01-01 00:00:08,664445000,139,128
2009-01-01 00:00:09,367409990,235,123
2009-01-01 00:00:09,538003423,91,128

2009-01-01 00:00:09,664445000,140,125
2009-01-01 00:00:10,367409990,264,127
2009-01-01 00:00:10,538003423,98,128

2009-01-01 00:00:10,664445000,153,128

sensorT:

Timestamp,MMSI,S0G,C0G,Heading,ROT

2009-01-01 00:00:01,367409990,0,231,511,126
2009-01-01 00:00:01,538003423,11,57,113,128
2009-01-01 00:00:01,664445000,16,119,511,127
2009-01-01 00:00:02,367409990,0,249,511,128
2009-01-01 00:00:02,538003423,12,59,113,127
2009-01-01 00:00:02,664445000,18,211,334,128

70

2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01
2009-01-01

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

03,367409990,2,247,128,127
03,538003423,12,69,511,128
03,664445000,19,147,365,127
05,367409990,5,254,119,126
05,538003423,13,79,118,128
05,664445000,20,163,511,127
07,367409990,6,245,110,126
07,538003423,18,99,128,126
07,664445000,21,162,375,128

71

| (0oTT ‘a@rexus ‘QIigsqo ‘QITuUsSI)
| (¥2T ‘dIgaus ‘QqITsqo ‘QITusI)

| (Lg1 ‘dqIexus ‘QIgsqo ‘QITusI)

| (82T ‘dIgaus ‘QITsqo ‘QITusI)

| (T2T ‘dIgxus ‘QIgsqo ‘QITusi)
| (8T ‘dIgius ‘QITsqo ‘QITusI)

| (0TT ‘@IeTus ‘QIgsqo ‘QITUSI)
| (92T ‘@IzIus ‘QITsqo ‘QITUSI)
| (L2T ‘@Igxus ‘QIgsqo ‘QITUSI)

| (Tgr ‘aigaus ‘QIrsqo ‘QItusI) |

| (Lg1 ‘@rexus ‘QIgsqo ‘QItusI) |
| (92T ‘drgaus ‘QIgsqo ‘QIrusy)
| (82T ‘dIgrus ‘QIgsqo ‘QITusI)
| (82T ‘dIprus ‘QIgsqo ‘QITusiI)

| (81 ‘dIzxus ‘QIisqo ‘QITusI)

| (8c1
| (9z1
| (et
| (8T1
| (set
| (8zt
| (821
| (8zT1

‘grgaus
‘grgaus
‘grgxus
‘qreaus
‘@Igaus
‘@Iyaus
‘@Igaus
‘gIzaus

‘aregsqo
‘aregsqo
‘aIgsqo
‘argsqo
‘arrsqo
‘argsqo
‘arsqo
‘artsqo

(8Z1 ‘aIzaus ‘QITsqo ‘QITusI)

‘qIyusI)
‘qrrusI)
‘QIuUsI)
‘QITUsI)
‘qIyusI)
‘qriusI)
‘qriusI)
‘QIusI)

| (e
| @1
(118
| (er1
(118
(118
| (61
I (2t
| (1

(TTnu
(TTnu

(9s€
(see
(vee

(¢4
| (g6
(L91
(118
(TsT
(118
(621
(118
(118
(118

‘qIpaus
‘dIgaus
‘qIyaus
‘grraus
‘gIyaus
‘drgaus
‘dIpaus
‘qIrgaus
‘qIyaus

‘qrraus
‘dIpaus
‘qIyaus
‘qIyaus
‘qIyaus

‘dIgaus
‘qrraus
‘qIyaus
‘gIyaus
‘Ipaus
‘dIgaus
‘qrgaus
‘qIyaus
‘grraus
‘qrgxus

‘qIzsao
‘qrisqo
‘QIzsao
‘aIrsqo
‘qIzsqo
‘qrisqo
‘qIzsao
‘qrisqo
‘qIzsao

‘arrsqo
‘argsqe
‘arzsqo
‘arzsqo
‘arzsqo

‘arrsqao
‘arrsao
‘aresqo
‘aresqo
‘aresqo
‘arrsqao
‘arrsao
‘argsao
‘arrsqo
‘arisqo

‘qIrusx)
‘qIiusx)
‘@rrusI)
‘@rrusI)
‘qrrusx)
‘@rrusa)
‘qIrusI)
‘@rrusI)
‘@rrusI)

‘@Irusx)
‘qIrusx)
‘@riusI)
‘qrrusx)
‘qrrusx)

‘qIrusx)
‘qIiusa)
‘qIiusx)
‘qIrusx)
‘@rrusI)
‘qIiusx)
‘@riusI)
‘qIiusx)
‘qIrusx)
‘@rrusa)

(68
(¥8
(¥8
(69
(1L
(L
(9
(89
(L9

(TLT
(691
(841
(z8t
(LST

(192
(052
(s62
(062
(szT
(8€2
(8%¢
(ove
(8ze
[€i%4

‘gqrexus
‘gqITaus
‘qrexus
‘qriaus
‘qrexus
‘qriaus
‘gqrexus
‘qriaus
‘qIryaus

‘qIraus
‘gqrexus
‘qrexus
‘qrexus
‘qIyaus

‘arraus
‘arraus
‘aIyIus
‘aIyIus
‘arerus
‘aryrus
‘arraus
‘argrus
‘ariaus
‘qrraus

‘argsqo
‘arrsqo
‘aregsqo
‘arrsqo
‘argsqo
‘arrsqo
‘aregsqo
‘arrsqo
‘aregsqo

‘arrsqo
‘aregsqo
‘aregsqo
‘aregsqo
‘argsqo

‘arrsqo
‘arrsqo
‘arzsqo
‘arzsqo
‘argsqo
‘argsqo
‘arrsqo
‘argsqo
‘arrsqo
‘arrsqo

‘QITUsI)
‘qIyusI)
‘qIyusI)
‘qrrusI)
‘qrrusI)
‘QITuUsI)
‘qIyusI)
‘qIyusI)
‘qIrrusI)

‘QIuUsI)
‘qIyusI)
‘qIyusI)
‘qrrusx)
‘qrrusI)

‘qIyusI)
‘qIyusI)
‘qIrusx)
‘qrrusa)
‘QITUsI)
‘QITUsI)
‘qIiusI)
‘qIrusx)
‘qIrusa)
‘qIiusi)

(67 ‘aIerus ‘qIgsqo ‘QIyusI)
(67 ‘dIgIus ‘qITsqo ‘QITusI)
(LT ‘@igrus ‘QIgsqo ‘QITusI)
(LT ‘dQIgaus ‘QqITsqo ‘QITusI)
(ST ‘a@ieaus ‘qIgsqo ‘QIrusi)
(ST ‘QIgaus ‘QITsqo ‘QITusI)
(¥T ‘aqIerus ‘qIgsqo ‘QIyusI)
(2T ‘aigaus ‘QITsqo ‘QITusI)
(TT ‘argrus ‘QIgsqo ‘QITusI)

| 10¥ | SutpesH | oD | HOS

(87 ‘dIgIus ‘qITsqo ‘QITusI)
(€z ‘aqierus ‘qIgsqo ‘QIyusI)
(Tz ‘arerus ‘qIgsqo ‘QIrusI)
(97 ‘dIigaus ‘QqITsqo ‘QITusI)
(6T ‘@rerus ‘qIgsqo ‘QIrusi)

| 104 | SutpesH | DHOD | HOS

(¥ ‘dIgaus ‘QITsqo ‘QIiusI)
(¥ ‘dIgaus ‘qIisqo ‘QIrusI)
(¥ ‘arexus ‘qIgsqo ‘QIiusx)
(¥ ‘@rexus ‘qIgsqo ‘QIrusi)
(€ ‘qIeaus ‘qIgsqo ‘QITusI)
(€ ‘dIeaus ‘QIgsqo ‘QIiusI)
(Z ‘aIgaus ‘QITsqo ‘QITusI)
(0 ‘@rgrus ‘qIgsqo ‘QIrusa)
(0 ‘aIgaus ‘QqITsqo ‘QITusI)
(0 ‘QIgaus ‘QITsSqO ‘QITUSI)

| 104 | SutpesH | DHOD | HOS

600C
6002
6002
6002
6002
6002
6002
6002
6002

6002
6002
6002
6002
6002

6002
6002
6002
6002
6002
6002
6002
6002
6002
6002

1sd
1sd
1sd
1Lsd
ILsd
1sd
1sd
1sd
1sd

1sd
1sd
1sd
1Lsd
ILsd

1sd
1sd
1Lsd
ILsd
1sd
1sd
1sd
1sd
1Lsd
1sd

10
10
10
10
10
10
10
[4eH 10
T0: 10
duregsowt]
:SOTIOGAUWTL],

Fepup :snielg
€CTYEO08EG :T®SSdA
QITUSI :I8ump

uer
uer
uer
uer
uer
uer
uer
uer
uer

nyL
nyL,
nyL,
nyL
nyg
nyg
nyL,
nyL
nyL

0T:00:00
60:00:00
80:00:00
,0:00:00 TO
90:00:00 TO
durejsewrt]

10
10
T0

uer
uer
uer
uer
uer

nyg
nyL,
nyL,
nyL
nyg

:SOTISGOWT]
Fopup :snjeig
000S¥¥¥99 :Tessep
QITusI :Iaump

10
10
10
10
10
10
10
10
[4oR 10
T0: 10
duregseurt]

uer
uer
uer
uer
uer
uer
uer
uer
uer
uer

nyg
nyr
nyL
nyL
nyL
nyg
nyg
nyL
nyL
nyL

1 S9TIOGOUWT]
Jopup :snjeig
06660%.,9€ :TosSs8p
@ITusI :Isumg

72

(821
(821
(9Tt
(821
(821
(821
(821
(LTt
(821

‘qroxus
‘qroxus
‘grLaus
‘qroxus
‘qrLaus
‘qroxus
‘qILIus
‘qrLaus
‘grLaus

‘aresqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘arysqo
‘arysqo

‘qIgusI)
‘qIgusI)
‘qIgusx)
‘qIgusI)
‘qIgusI)
‘qIgusx)
‘qIgusI)
‘qIgusI)
‘qIzusx)

(21 ‘QqI9ius ‘QIgsqo ‘QIgusI)
(8TT ‘dI9ius ‘QIEsqo ‘QIZuSI)
(82T ‘@I aus ‘QIysqo ‘Qlgusa) |
(8T ‘QI9ius ‘QIesqo ‘QqIgusi) |
(LZT ‘dILus ‘QIysSqo ‘QIZusI)
(82T ‘@I9aus ‘QIesqo ‘QIgusl)
(L1 ‘dQILius ‘QIpsqo ‘QqIgusi) |
(8Z1 ‘dILIus ‘QI¥Sqo ‘QIZUSI)
(LZT ‘dILaus ‘QIysqo ‘QIgusl)

(eet
(ezt
9zt
(LetT
9zt
Lzt
(Let
(8et
(9z1

‘qroxus
‘qroxus
‘qrLaus
‘qroxus
‘qrLaus
‘qroxus
‘qrLIus
‘qrLaus
‘qrLIus

‘aresqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘arysqo
‘arysqo

‘qIgusT)
‘qIgusx)
‘qigusI)
‘qIgusT)
‘qIgusx)
‘qIzusI)
‘qIgusI)
‘qIgusax)
‘qIgusI)

(017
(G233
(8zt
(997
(811
(eer
(119
(€17
(€17

(118
(118
(TTnu
AHHﬁﬁ
(r18
(vee
AHHﬁﬁ
(e
(118

9171
(118
(01T
(118
(611
(zet
(8et
(118
(119

‘qrgIus
‘qrgIus
‘qrLxus
‘qIrgIus
‘qILIus
‘qIgxus
‘QrLIus
‘qILIus
‘qrLxus

‘qrgaus
‘qrgaus
‘QILaus
‘qrgaus
‘qrLaus
‘qrgaus
‘qrLaus
‘qrLaus
‘QILaus

‘qrgIus
‘gqIgxus
‘qILIus
‘qrgIus
‘qrLxus
‘qrgIus
‘qILIus
‘qrLxus
‘qILIus

‘aresao
‘aresao
‘arysqo
‘aresao
‘arysao
‘aresqo
‘arysao
‘arysao
‘arysqo

‘aresqo
‘aresqo
‘aiysqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘arysqo
‘aiysqo

‘aresqo
‘aresqo
‘arysqo
‘aresqo
‘aiysqo
‘aresqo
‘arysqo
‘aiysqo
‘aiysqo

‘@rgusI)
‘@rgus)
‘qIgusax)
‘dIgusI)
‘@Igus)
‘qIgusax)
‘qIgusI)
‘@rgus)
‘qIgusax)

‘@IgusI)
‘argusI)
‘qIgus)
‘QIgusI)
‘@rgusI)
‘qIgusx)
‘@IgusI)
‘argusI)
‘qIgus)

‘@rgusI)
‘qIgusx)
‘@IgusI)
‘@IgusI)
‘qIgusax)
‘@rgusI)
‘@IgusI)
‘qIgusax)
‘@rgusI)

(16
(6L
(66
(89
(6L
(LL
(89
(65
(L8

(est
(6€T
(29T
(LeT
(€971
(¥ert
vt
(617
(611

(L82
(¥sz
(sve
(see
(¥sz
(vee
(Lve
(z1T
(1€2

‘qrgIus
‘qroxus
‘gILaus
‘qrgIus
‘qrLaus
‘groaus
‘qILIus
‘qrLaus
‘gILaus

‘qrgaus
‘qroxus
‘qrLaus
‘qrgaus
‘qrLaus
‘qrgaus
‘qrLaus
‘qrgaus
‘qILaus

‘qrgaus
‘qroxus
‘qrLaus
‘qroxus
‘QILaus
‘qroxus
‘qrLaus
‘groxus
‘qILIus

‘aresqao
‘aresqo
‘arysqo
‘aresqao
‘arysao
‘aresqo
‘arysao
‘arysao
‘arysqo

‘aresqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘aresqo
‘aIysqo
‘aresqo
‘arysqo

‘aresqo
‘aresqo
‘arysqo
‘aresqo
‘arysqo
‘aresqo
‘aIysqo
‘aresqo
‘arysqo

‘qIgusI)
‘qIgusI)
‘qIzusx)
‘qIgusI)
‘qIgusI)
‘qIzusx)
‘qIgusI)
‘qIgusI)
‘qIzusx)

‘qIgusI)
‘dqIgusI)
‘dIgusI)
‘qIgusI)
‘qIgusT)
‘qIzusx)
‘qIgusI)
‘qIgusI)
‘qIzusx)

‘qIgusI)
‘qIzusx)
‘qIgusI)
‘qIgusT)
‘qIzusx)
‘qIgusI)
‘qIgusT)
‘qIzusx)
‘qIgusI)

(8T ‘QIgIus ‘QIgsqo ‘QIgusI)
(L1 ‘@IgIus ‘QIesqo ‘QIgusI)
(81 ‘dILius ‘QIysSqo ‘QIZUSI)
(L1 ‘dIgxus ‘qIesqo ‘QIgusl)
(€T ‘QILIUS ‘QIpsqo ‘QIgusI)
(§T ‘dqIgrus ‘qIesqe ‘QIgusl)
(z1 ‘dqILius ‘qIysqe ‘QIgusl)
(T1 ‘qILIUus ‘QIPsqo ‘QIgusI)
(TT ‘dqILIus ‘qIySqo ‘QIZusI)

| 1oYW | ButpesH | H0D | HOS

(€T ‘QIgius ‘QIesqo ‘QIgusl)
(Tz ‘qIgIus ‘qIesqo ‘QIgusl)
(TZ ‘dILius ‘qIpsqo ‘QIgusd)
(LT ‘qIgius ‘QIgsqo ‘QIgusi)
(0T ‘dILus ‘QIysqo ‘QIZusI)
(ST ‘dqIgius ‘QqIesqo ‘QIgusdi)
(6T ‘QILIus ‘QIsqo ‘QIgusI)
(81 ‘dILIus ‘QIPSqo ‘QIZUSI)
(9T ‘@ILaus ‘QIysqo ‘QIgusI)

| 10Y | Sutpeed | H0D | DOS

(§ ‘@IsIus ‘QIesqo ‘QIgusI)
(§ ‘qIgrus ‘qIesqo ‘QIgusl)
(9 ‘@ILus ‘QIysqo ‘QIgusI)
(¥ ‘aIsIus ‘QIesqo ‘QIgusi)
(§ ‘dqILIus ‘qIysqo ‘QIZusI)
(z ‘qIgIus ‘QIesqo ‘QIgusI)
(z ‘QILus ‘QIpsqo ‘QIgusI)
(0 ‘dILIus ‘qIPsqo ‘QIZUSI)
(0 ‘QILIUs ‘QIsqo ‘QIgusI)
| 10" | ButpesH | 50D | HOS

6002
6002
6002
6002
6002
6002
6002
6002
6002

6002
6002
6002
6002
6002
6002
6002
6002
6002

6002
6002
6002
6002
6002
6002
6002
6002
6002

1sd
Lsd
1sd
1sd
Lsd
1sd
1sd
1sd
1sd

1sd
Lsd
1sd
Lsd
1sd
1sd
1sd
Lsd
1sd

Lsd
1sd
1sd
Lsd
1sd
1sd
1sd
1sd
Lsd

60:00:00 TO uef nylL
80:00:00 TO Uef nyl
,0:00:00 TO uerf nyfL
90:00:00 TO uer nylL
S0:00:00 TO uerf oyl
%0:00:00 70 uer nyL
€0:00:00 TO uer nylL
20:00:00 TO uerf nyl
10:00:00 TO Uel nyl
duregsauwt]
1 SOTIOGOWT]
Fopup :snieig
€TYE008ES :TOSSdON
QIZusSI :IsumQ

60:00:00 TO uef nylL
80:00:00 TO uef nylL
,0:00:00 TO uel nyl
90:00:00 TO Uer oyl
S0:00:00 TO uef oyl
%0:00:00 TO uer nyL
€0:00:00 TO uef nylL
20:00:00 TO uer oyl
T0:00:00 TO Uel nyl
dureqsouwt],
1 SOTIOGOWT],
Fopun :snieig
000577799 :T@sSs8p
QIgusSI :IsumQ

60:00:00 TO Uuef oyl
80:00:00 TO Uuer nyf
20:00:00 TO uef oyl
90:00:00 TO uef oyl
§0:00:00 TO uer nyfL
¥0:00:00 70 uel nyl
€0:00:00 TO uef oyl
20:00:00 TO uer nyf
10:00:00 TO Uel nyL
duregsouwt],
1SOTISGoWT],
Jopup :snje3s
066607.,9€ :T@ss8p
JIgusx :xsumQ

73

Chapter 7

Conclusions and Future Work

Providing safety and security for the maritime domain against potential threats and illegal
activities needs constant monitoring and analyzing. Examining different marine traffic
monitoring systems and going in depth with how they operate to observe and interpret
real-world situations are essential to have a deeper understanding of their capabilities and
limitations. Fusing marine traffic data from various sources provides a more, i) coherent
and comprehensive, and ii) accurate and reliable view of the real-world pertaining to the
maritime domain.

Intelligent systems are crucial for interactive situation analysis and dynamic decision-
making, responding to complex real-world situations calls for innovative methodical and
formal approaches to economically develop robust and scalable solutions. In this thesis, we
propose a formal semantic framework for maritime situation analysis based on the work
presented in [32, 37]. For this purpose, we use the Abstract State Machine method to; %)
seamlessly bridge the gap between abstract requirements and formal specifications, and i)
formally express the underlying design concepts, assumptions, and constraints. At first,
these requirements and assumptions are interpreted as the core of the situation analysis
ground model; which is then refined vertically and horizontally to a more concrete model.

Maritime surveillance data is interpreted as sequences of discrete observations over time
that render vessel trajectories. Consecutive data points referring to the same object form a
time series used for analyzing and reasoning about vessel behavior. However, more than one
time series can initially belong to one object (i.e., vessel). In order to describe how a number
of time series related to one object are fused into a single comprehensive multivariate time
series, we formally defined a time series structure along with a set operations (e.g., horizontal
merge or vertical merge) to render the trajectory of vessels. As proof of concept, the core
components of the framework are implemented in CoreASM and Java to demonstrate the
process of generating vessel trajectories from diverse sources of real-world data. In our
implementation, CoreASM controls the information fusion and situation analysis process

while Java deals with data and all computational components. We also extract some test

74

data from real-world AIS datasets collected by U.S. Coast Guard Services (available at
www.marinecadastre.gov) to experimentally validate the framework and the consistency

between the high-level requirements, the abstract ground model and the executable model.

7.1 Future Work

e Vertical Refinement: Enriching each component by capturing more concrete domain-
specific requirements to address real-world constraints and demands. For instance,

proposing an algorithm which find the optimal “close” timestamps.

e Conflict Resolution and Confidence Values: Proposing a more concrete model
for dealing with real-world uncertainties (e.g., sensor error, missing data, etc.) as well

as assigning confidence values to them.

e Distributed Model: Expanding the framework to support more than one reasoner
in a distributed manner. Distributed agreement protocols should be proposed to

provide a global common view among all reasoners.

Expected outcomes of this thesis are the design of a generic system and service model for
situation analysis in the maritime domain as well as a working prototype to be tested in a

simulated operational environment.

75

Bibliography

[1]

2]

[3]

All About AIS Website. Available electronically at http://www.allaboutais.com
(Last visited in April 2015).

Iman Attarzadeh and Siew Hock Ow. Project management practices: the criteria for
success or failure. Communications of the IBIMA, 1:234-241, 2008.

Automatic Identification System Wikipedia, the free encyclopedia. Available elec-
tronically at https://en.wikipedia.org/wiki/Automatic_Identification_System
(Last visited in March 2015).

Franz Baader, Andreas Bauer, Peter Baumgartner, Anne Cregan, Alfredo Gabaldon,
Krystian Ji, Kevin Lee, David Rajaratnam, and Rolf Schwitter. A novel architecture
for situation awareness systems. In Automated Reasoning with Analytic Tableauzr and
Related Methods, pages 77-92. Springer, 2009.

BBC News Website. Available electronically at http://www.bbc.com/news/
technology-24586394 (Last visited in August 2014).

Andreas Blass and Yuri Gurevich. Abstract state machines capture parallel algorithms.
ACM Transactions on Computational Logic (TOCL), 4(4):578-651, 2003.

Egon Borger, Uwe Glésser, and Wolfgang Muller. A formal definition of an abstract
vhdli93 simulator by ea-machines. In Formal Semantics for VHDL, pages 107-139.
Springer, 1995.

Egon Borger and Robert F. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

Eloi Bossé, Jean Roy, and Steve Wark. Concepts, models, and tools for information
fusion, artech house. Inc., 27:28-29, 2007.

Chris Chatfield. The Analysis of Time Series: An Introduction. Chapman & Hall/CRC
Texts in Statistical Science. Taylor & Francis, sixth edition edition, 1996.

Mariusz Chmielewski. Ontology applications for achieving situation awareness in mil-
itary decision support systems. In Computational Collective Intelligence. Semantic
Web, Social Networks and Multiagent Systems, pages 528-539. Springer, 2009.

James Douglas Clines. Method and system for marine vessel tracking system, Decem-
ber 2 2003. US Patent 6,658,349.

76

http://www.allaboutais.com
https://en.wikipedia.org/wiki/Automatic_Identification_System
http://www.bbc.com/news/technology-24586394
http://www.bbc.com/news/technology-24586394

[13]

[14]

[15]

[16]

[19]

[20]

[21]

John Derrick and Eerke Boiten. Refinement in Z and Object-Z, volume 30. Springer,
2001.

Mica R. Endsley and Daniel J. Garland. Situation awareness analysis and measure-
ment. CRC Press, 2000.

Roozbeh Farahbod. CoreASM: An Extensible Modeling Framework € Tool Environ-
ment for High-level Design and Analysis of Distributed Systems. PhD thesis, Simon
Fraser University, 2009.

Roozbeh Farahbod, Vladimir Avram, Uwe Gléasser, and Adel Guitouni. A formal en-
gineering approach to high-level design of situation analysis decision support systems.
In Formal Methods and Software Engineering, pages 211-226. Springer, 2011.

Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glasser. Coreasm: An extensible asm
execution engine. Fundamenta Informaticae, 77(1-2):71-104, 2007.

Roozbeh Farahbod, Vincenzo Gervasi, Uwe Glasser, and George Ma. Coreasm plug-
in architecture. In Rigorous Methods for Software Construction and Analysis, pages
147-169. Springer, 2009.

Roozbeh Farahbod and Uwe Glésser. The coreasm modeling framework. Software:
Practice and Ezperience, 41(2):167-178, 2011.

Roozbeh Farahbod, Uwe Gléasser, Eloi Bossé, and Adel Guitouni. Integrating abstract
state machines and interpreted systems for situation analysis decision support design.
In Information Fusion, 2008 11th International Conference on, pages 1-8. IKEE, 2008.

Roozbeh Farahbod, Uwe Glésser, and Mona Vajihollahi. An abstract machine archi-
tecture for web service based business process management. International Journal of
Business Process Integration and Management, 1(4):279-291, 2006.

Vincenzo Gervasi and Roozbeh Farahbod. Jasmine: Accessing java code from coreasm.
In Rigorous Methods for Software Construction and Analysis, pages 170-186. Springer,
20009.

Uwe Glésser, Reinhard Gotzhein, and Andreas Prinz. The formal semantics of sdl-2000:
Status and perspectives. Comput. Netw., 42(3):343-358, June 2003.

Uwe Gléasser, Yuri Gurevich, and Margus Veanes. Abstract communication model
for distributed systems. Software Engineering, IEEE Transactions on, 30(7):458-472,
2004.

Uwe Glésser, Piper Jackson, Ali Khalili Araghi, and Hamed Yaghoubi Shahir. Intel-
ligent decision support for marine safety and security operations. In Intelligence and
Security Informatics (ISI), 2010 IEEE International Conference on, pages 101-107.
IEEE, 2010.

Uwe Glasser and Hamed Yaghoubi Shahir. ASM/CoreASM Tutorial. Software Tech-
nology Lab, School of Computing Science, Simon Fraser University, 2013.

77

[27]

[28]

[29]

[32]

[33]

[34]

[35]

Yuri Gurevich and James K Huggins. The railroad crossing problem: an experiment
with instantaneous actions and immediate reactions. In Computer Science Logic, pages
266—290. Springer, 1996.

International Maritime Organization Website. Available electronically at http:
//www.imo.org/blast/blastDataHelper.asp?data_id=29093&filename=1367.pdf
(Last visited in April 2015).

Gabriel Jakobson, Lundy Lewis, John Buford, and Col Ed Sherman. Battlespace
situation analysis: the dynamic cbr approach. In Military Communications Conference,
2004. MILCOM 2004. 2004 IEEE, volume 2, pages 941-947. IEEE, 2004.

Anne-Laure Jousselme and Patrick Maupin. Interpreted systems for situation analysis.
In Information Fusion, 2007 10th International Conference on, pages 1-11. IEEE, 2007.

Robb Klashner and Sameh Sabet. A dss design model for complex problems: Lessons
from mission critical infrastructure. Decision Support Systems, 43(3):990-1013, 2007.

Dale A Lambert. A blueprint for higher-level fusion systems. Information Fusion,
10(1):6-24, 2009.

Marine radar Wikipedia, the free encyclopedia. Available electronically at https://en.
wikipedia.org/wiki/Marine_radar (Last visited in May 2015).

MarineTraffic Website. Available electronically at http://www.marinetraffic.com/
en/p/faq (Last visited in April 2015).

Maritime and Port Authority of Singapore Website. Avail-
able electronically at http://www.mpa.gov.sg/web/wcm/connect/www/
Tb6c139b-£004-4812-acf2-ac3738230067/pc05-21.pdf ?MOD=AJPERES (Last visited
in April 2015).

J McDermid. Science of software design: Architectures for evolvable, dependable sys-
tems. In NSF Workshop on the Science of Design: Software and Software-Intensive
Systems, Airlie Center, VA, 2003.

Narek Nalbandyan, Uwe Glésser, Hamed Yaghoubi Shahir, and Hans Wehn. Dis-
tributed situation analysis - a formal semantic framework. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z - 4th International Conference, ABZ 201/, Toulouse,
France, June 2-6, 2014. Proceedings, pages 158-173, 2014.

National Geospatial-Intelligence Agency Website. Available electronically at http://
msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310chl.pdf (Last vis-
ited in January 2016).

ORBCOMM Inc. Website. Available electronically at http://www.orbcomm.com/
networks/satellite-ais (Last visited in April 2015).

Elvinia Riccobene and Joachim Schmid. Capturing requirements by abstract state ma-
chines: The light control case study. Journal of Universal Computer Science, 6(7):597—
620, 2000.

78

http://www.imo.org/blast/blastDataHelper.asp?data_id=29093&filename=1367.pdf
http://www.imo.org/blast/blastDataHelper.asp?data_id=29093&filename=1367.pdf
https://en.wikipedia.org/wiki/Marine_radar
https://en.wikipedia.org/wiki/Marine_radar
http://www.marinetraffic.com/en/p/faq
http://www.marinetraffic.com/en/p/faq
http://www.mpa.gov.sg/web/wcm/connect/www/7b6c139b-f004-4812-acf2-ac3738230067/pc05-21.pdf?MOD=AJPERES
http://www.mpa.gov.sg/web/wcm/connect/www/7b6c139b-f004-4812-acf2-ac3738230067/pc05-21.pdf?MOD=AJPERES
http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310ch1.pdf
http://msi.nga.mil/MSISiteContent/StaticFiles/NAV_PUBS/RNM/310ch1.pdf
http://www.orbcomm.com/networks/satellite-ais
http://www.orbcomm.com/networks/satellite-ais

[41]

[42]

[43]

[51]

[52]

River Information Services Website. Available electronically at http://ris.
vlaanderen.be/html_en/AIS/ais_vragen.html#klasseAenB (Last visited in March
2015).

Hamed Yaghoubi Shahir, Uwe Glésser, Narek Nalbandyan, and Hans Wehn. Maritime
situation analysis. In 2018 IEEFE International Conference on Intelligence and Security
Informatics, 2013.

Hamed Yaghoubi Shahir, Uwe Glésser, Amir Yaghoubi Shahir, and Hans Wehn. Mar-
itime situation analysis framework: Vessel interaction classification and anomaly de-
tection. In Big Data (Big Data), 2015 IEEE International Conference on, pages 1279—
1289. IEEE, 2015.

Ship AIS Website. Available electronically at http://www.shipais.com/doc/Pifaq/
1/22/ (Last visited in March 2015).

Robert F. Stark, Joachim Schmid, and Egon Borger. Java and the Java virtual ma-
chine: definition, verification, validation. Springer Science & Business Media, 2012.

Alan N. Steinberg, Christopher L. Bowman, and Franklin E. White. Revisions to the
jdl data fusion model. In AeroSense’99, pages 430—-441. International Society for Optics
and Photonics, 1999.

Commander Brian J. Tetreault. Use of the automatic identification system (ais) for
maritime domain awareness (mda). In OCEANS, 2005. Proceedings of MTS/IEEE,
pages 1590-1594. TEEE, 2005.

The Bosun’s Mate Website. Available electronically at http://www.bosunsmate.org/
ais/ (Last visited in March 2015).

Time Series Wikipedia, the free encyclopedia. Available electronically at http://en.
wikipedia.org/wiki/time_series (Last visited in August 2014).

Trend Micro Website. Available electronically at http:
//blog.trendmicro.com/trendlabs-security-intelligence/
captain-where-is-your-ship-compromising-vessel-tracking-systems/.

U.S. Coast Guard Navigation Center. Available electronically at http://www.navcen.
uscg.gov (Last visited in March 2015).

Vessel Traffic Service Wikipedia, the free encyclopedia. Available electronically at
https://en.wikipedia.org/wiki/Vessel_traffic_service (Last visited in April
2015).

Franklin E. White Jr. Data fusion lexicon, joint directors of laboratories. Technical
panel for C, 3, 1987.

79

http://ris.vlaanderen.be/html_en/AIS/ais_vragen.html#klasseAenB
http://ris.vlaanderen.be/html_en/AIS/ais_vragen.html#klasseAenB
http://www.shipais.com/doc/Pifaq/1/22/
http://www.shipais.com/doc/Pifaq/1/22/
http://www.bosunsmate.org/ais/
http://www.bosunsmate.org/ais/
http://en.wikipedia.org/wiki/time_series
http://en.wikipedia.org/wiki/time_series
http://blog.trendmicro.com/trendlabs-security-intelligence/captain-where-is-your-ship-compromising-vessel-tracking-systems/
http://blog.trendmicro.com/trendlabs-security-intelligence/captain-where-is-your-ship-compromising-vessel-tracking-systems/
http://blog.trendmicro.com/trendlabs-security-intelligence/captain-where-is-your-ship-compromising-vessel-tracking-systems/
http://www.navcen.uscg.gov
http://www.navcen.uscg.gov
https://en.wikipedia.org/wiki/Vessel_traffic_service

Appendix A

Implementation Details

A.1 Time Series Operations

A.1.1 Horizontal Merge (Initial Definition)

public void horizontalMergeWIT(TimeSeries ts) throws IOException {
if (ts.getHead().size() != ts.getBody().get(0).getData().size())
throw new IOException("Horizontal Merge Error: Head size and Data size of the merging
timeseries, " + ts + ", are NOT matching.");

if (this.head.isEmpty() && this.body.isEmpty()) {
head.addAll(ts.getHead (D) ;
body.addAll(ts.getBody());

}

else if (this.getTimestampSet().equals(ts.getTimestampSet())) {
ArrayList<Feature> tempHead = new ArrayList<Feature>();
tempHead.addAll (head) ;

int headi = 0;
int tsHeadi = 0;

int featurei = O;
int tempHeadi = O;

while ((tempHeadi < tempHead.size()) && (tsHeadi < ts.getHead().size())) {
if (tempHead.get(tempHeadi) .equals(ts.getHead().get(tsHeadi))) {
tempHeadi++;
tsHeadi++;
}
else {
if (tempHead.get(tempHeadi) .equals(Globals.FEATURES.get (featurei))) {
tempHeadi++;
featurei++;
}
else if (ts.getHead() .get(tsHeadi).equals(Globals.FEATURES.get(featurei))) {
tempHead.add (tempHeadi, Globals.FEATURES.get(featurei));
tempHeadi++;
tsHeadi++;
featurei++;

80

}
else {
featurei++;

}
if (tempHeadi >= tempHead.size()) {
while (tsHeadi < ts.getHead().size()) {
tempHead.add(ts.getHead () .get (tsHeadi)) ;

tsHeadi++;

ArrayList<Tuple> tempBody = new ArrayList<Tuple>();

for (int bodyi = 0; bodyi < body.size(); bodyi++) {
Tuple tuple = new Tuple(tempHead.size());
tuple.setTimestamp (body.get (bodyi) .getTimestamp());

tempHeadi = 0;
headi = 0;
tsHeadi = 0;

for (tempHeadi = O; tempHeadi < tempHead.size(); tempHeadi++) {
if ((head.get(headi).equals(tempHead.get (tempHeadi))) &&
(ts.getHead () .get (tsHeadi)
.equals(tempHead.get (tempHeadi)))) {
tuple.addRecords2CellOfData(body.get (bodyi) .getData() .get (headi),
tempHeadi) ;
tuple.addRecords2Cell0fData(ts.getBody() .get (bodyi) .getData() .get (tsHeadi),
tempHeadi) ;

if (headi < head.size()-1) headi++;
if (tsHeadi < ts.getHead().size()-1) tsHeadi++;
}
else if ((head.get(headi).equals(tempHead.get(tempHeadi))) &&
! (ts.getHead () .get (tsHeadi)
.equals(tempHead.get (tempHeadi)))) {
tuple.addRecords2Cell0fData(body.get (bodyi) .getData() .get (headi),
tempHeadi) ;

if (headi < head.size()-1) headi++;
}
else if (!(head.get(headi).equals(tempHead.get(tempHeadi))) &&
(ts.getHead () .get (tsHeadi)
.equals (tempHead.get (tempHeadi)))) {
tuple.addRecords2Cell0fData(ts.getBody() .get (bodyi) .getData() .get (tsHeadi),
tempHeadi) ;

if (tsHeadi < ts.getHead().size()-1) tsHeadi++;

}
}
tempBody .add (tuple) ;
}
this.head = tempHead;
this.body = tempBody;

81

else

throw new IOException("Horizontal Merge Error: The timestamps of two time series
are NOT identical.");

A.1.2 Vertical Merge (Initial Definition)

public void verticalMergeWIH(TimeSeries ts) throws IOException {
if (ts.getHead().size() != ts.getBody().get(0).getData().size())
throw new IOException("Vertical Merge Error: Head size and Data size of the merging
time series, " + ts + ", are NOT matching.");

if (this.head.isEmpty() && this.body.isEmpty()) {
head.addA11l(ts.getHead());
body.addAll(ts.getBody());

}

else if (this.head.equals(ts.getHead())) {
ArrayList<Tuple> tempBody = new ArrayList<Tuple>();

int bodyi = O;
int tsBodyi =
int celli;

0;

while ((bodyi < body.size()) && (tsBodyi < ts.getBody().size())) {
if

(body.get (bodyi) .getTimestamp () .before(ts.getBody () .get (tsBodyi) .getTimestamp()))
{
tempBody . add (body . get (bodyi)) ;

bodyi++;
}
else if
(body.get (bodyi) .getTimestamp () .after(ts.getBody () .get (tsBodyi) .getTimestamp()))
{
tempBody .add (ts.getBody () .get (tsBodyi)) ;
tsBodyi++;
}
else {
tempBody . add (body.get (bodyi)) ;
bodyi++;
celli = 0;
while (celli < ts.getBody().get(tsBodyi).getData().size()) {
tempBody . get (tempBody.size()-1)
.addRecords2Cell0fData(ts.getBody() .get (tsBodyi) .getRecords0fCell(celli),
celli);
celli++;
}
tsBodyi++;
}

82

}
if (bodyi >= body.size()) {
while (tsBodyi < ts.getBody().size()) {
tempBody.add (ts.getBody () .get (tsBodyi)) ;
tsBodyi++;
}
}
else if (tsBodyi >= ts.getBody().size()) {
while (bodyi < body.size()) {
tempBody .add (body.get (bodyi)) ;

bodyi++;
}
}
this.body = new ArrayList<Tuple>(tempBody) ;
}
else

throw new IOException("Vertical Merge Error: The head of two time series are NOT
identical.");

83

A.2 Initialization of Data Structures

<< Java Class>>
@ Initialization

coreasm

& Initialization()

@ generateSensorOSsStructure| String)void

@ generateObserverOSsStructure(String)void
@ generateReasonerOSsStructure(String):void

Figure A.1: Initialization Class Diagram

public class Initialization {

public void generateSensor0SsStructure(String snr) {
Globals.rawOSs.put(snr, new HashMap<Long, ArrayList<ObservationSegment>>());

}

public void generateObserverOSsStructure(String obs) {
Globals.cleanedOSs.put(obs, new HashMap<Long, ArrayList<0bservationSegment>>());

Globals.merged0Ss.put (obs, new HashMap<Long, ArrayList<ObservationSegment>>());

public void generateReasoner(OSsStructure(String rsn) {
Globals.unifiedOSs.put(rsn, new HashMap<String, HashMap<Long,
ArrayList<ObservationSegment>>>());

Globals.fused0Ss.put(rsn, new HashMap<Long, ObservationSegment>());
Globals.endingTimestamp.put(rsn, new HashMap<Long, HashMap<String, Date>>());

Globals.cfusedOSs.put(rsn, new HashMap<Long, ObservationSegment>());
}

84

A.3 Input/Output Manager

<< Java Clasg=>
(& 10Manager

L]

& 1OMa nageri)
@ readFromCSVFile(String,int)void

Figure A.2: I/O Manager Class Diagram

public class IOManager {
//READ FROM A COMMA-SEPARATED VALUES FILE:
public void readFromCSVFile(String sensorID, int t) throws ParseException,
NumberFormatException, IOException {

BufferedReader bufferReader = null;
String strLine = null;

Calendar time = Calendar.getInstance();
time.setTime (Globals.BASE_TIME.getTime());
time.add(Calendar.SECOND, t);

String file = Globals.SENSOR_FILENAME_PREFIX + sensorID.trim() +
Globals.SENSOR_FILENAME_POSTFIX;

FileReader inputFile = new FileReader(file);
bufferReader = new BufferedReader (inputFile);

ArrayList<Feature> head = new ArrayList<Feature>();
strLine = bufferReader.readLine();
for (String feature : strLine.split(",")) {
if (feature.equals("Timestamp")) /*Nothing*/;
else if (feature.equals("MMSI")) /#Nothing+/;
else if (feature.equals("S0G")) head.add(Feature.S0G);
else if (feature.equals("CO0G")) head.add(Feature.COG);
else if (feature.equals("Heading")) head.add(Feature.Heading);
else if (feature.equals("ROT")) head.add(Feature.ROT);
else head.add(Feature.UNDEFINED) ;

while ((strLine = bufferReader.readlLine()) != null) {
String[] data = strLine.split(",");
String timeStamp = data[0]; //READING TIMESTAMP
if (Globals.DATE_FORMAT.parse(timeStamp) .equals(time.getTime())) {
ObservationSegment os = new ObservationSegment();
os.setOwner (sensorID);

os.setStatus(Status.Undef);

TimeSeries timeSeries = new TimeSeries(head);
Tuple tuple = new Tuple(head.size());

tuple.setTimestamp(Globals.DATE_FORMAT.parse(timeStamp)) ;

85

String objectID = datal1]; //READING OBJECT ID

Vessel vessel = new Vessel();

if (!(objectID.isEmpty())) {
vessel.setID(Long.parseLong(objectID));
os.setObject(vessel);

}

else
os.setObject (null);

for (int celli = 2; celli < data.length; celli++) {
String element = datal[cellil;

Record record = new Record();
record.setSensorID(sensorID);

if (Utilities.isNumeric(element))
record.setValue(Integer.parselnt (element));
else
record.setValue(null);

tuple.addRecord2Cell0fData(record, celli-2);

}
timeSeries.addToBody(tuple) ;
os.setTimeSeries(timeSeries);

if (Globals.raw0Ss.containsKey(sensorID)){
if (Globals.raw0Ss.get(sensorID).containsKey(os.getObject().getID()))
Globals.raw0Ss.get (sensorID) .get (os.getObject() .getID()) .add(os);
else {
ArrayList<ObservationSegment> tempList = new
ArrayList<ObservationSegment>() ;
tempList.add(os);

Globals.raw0Ss.get (sensorID) .put(os.getObject () .getID(), tempList);

}
}
else {
throw new I0Exception("I/0 Manager Error: The Sensor ID, " + sensorID + ",
is not valid.");
}

86

A.4 TImplementation of Rules in Java

A.4.1 CleanObservations

== Java Class>>
(8 CleanObservations

Coreasm

{fCIeanDbsewatinns[}
@ clean(Time3eries). TimeSeries
@ cleanedOSs(String, String):void

Figure A.3: Clean Observations Class Diagram

public class CleanObservations {

public void cleaned0Ss(String observerID, String sensorID) throws IOException {
if (!Globals.rawOSs.containsKey(sensorID))
throw new IOException("Clean Observations Error: The sensor ID, " + sensorID + ",
is NOT valid.");
if (!Globals.cleanedOSs.containsKey(observerID))
throw new IOException("Clean Observations Error: The observer ID, " + observerID +
", is NOT valid.");

if (!(Globals.raw0OSs.get(sensorID).isEmpty())) {
for (Entry<Long, ArrayList<ObservationSegment>> entry :
Globals.raw0OSs.get (sensorID).entrySet()) {
for (ObservationSegment ros : entry.getValue()) {
if (!(ros.getStatus().equals(Status.Cleaned))) {
ObservationSegment cos = new ObservationSegment();

cos.setOwner (observerID);
cos.setObject (ros.getObject());

TimeSeries tempRosTimeseries = new TimeSeries();
tempRosTimeseries.assignTimeSeries(ros.getTimeSeries());
cos.setTimeSeries(clean(tempRosTimeseries));

for (Tuple tuple : tempRosTimeseries.getBody())
for (ArrayList<Record> cell : tuple.getData())
for (Record record : cell)
record.setObserverID(observerID);

cos.setStatus(Status.Undef);
ros.setStatus(Status.Cleaned);

if
(Globals.cleaned0Ss.get (observerID) .containsKey(ros.getObject () .getID()))
Globals.cleanedOSs.get (observerID) .get(cos.getObject() .getID()) .add(cos);
else {
ArrayList<ObservationSegment> cosList = new
ArrayList<ObservationSegment>() ;
cosList.add(cos) ;

87

Globals.cleaned0Ss.get (observerID) .put(cos.getObject() .getID(),
cosList);

88

A.4.2 AffiliateObservations

=< lava Class=>>
(9 AffiliateObservations

Coreasm

& AffiliateObservations()
@ MergedOSs(String)rvoid

Figure A.4: Affiliate Observations Class Diagram

public class AffiliateObservations {

public void MergedOSs(String observerID) throws IOException {
if (!Globals.cleanedOSs.containsKey(observerID))

throw new IOException("Affiliate Observations Error: The Observer ID, " +
observerID + ", is NOT valid.");
if (!Globals.mergedOSs.containsKey(observerID))
throw new IOException("Affiliate Observations Error: The Observer ID, " +
observerID + ", is NOT valid.");

if (!(Globals.cleaned0Ss.get (observerID) .isEmpty())) {
HashSet<Long> observerObjectSet = new HashSet<Long>();
observerObjectSet.addA11(Globals.cleaned0Ss.get (observerID) .keySet ());

for (Long object : observerObjectSet) {
for (ObservationSegment cos : Globals.cleanedOSs.get (observerID).get(object)) {
if (!(cos.getStatus().equals(Status.Merged))) {
ObservationSegment mos = new ObservationSegment();

mos .setOwner (observerID) ;
mos.setObject(cos.getObject());

TimeSeries tempCosTimeseries = new TimeSeries();
tempCosTimeseries.assignTimeSeries(cos.getTimeSeries());

for (ObservationSegment mergingCos
Globals.cleanedOSs.get (observerID) .get(object)) {
if ((!(mergingCos.equals(cos))) &&
(! (mergingCos.getStatus() .equals(Status.Merged))) &&
(mergingCos.getTimeSeries() .getTimestampSet ()
.equals (tempCosTimeseries.getTimestampSet()))) {

TimeSeries tempMergingCosTimeseries = new TimeSeries();
tempMergingCosTimeseries.assignTimeSeries(mergingCos.getTimeSeries());

tempCosTimeseries.horizontalMergeWIT (tempMergingCosTimeseries) ;
mergingCos.setStatus(Status.Merged) ;

}

mos.setTimeSeries (tempCosTimeseries);

mos .setStatus(Status.Undef) ;

89

cos.setStatus(Status.Merged) ;

if (Globals.merged0OSs.get (observerID).containsKey(object))
Globals.mergedOSs.get (observerID) .get (object) .add (mos) ;
else {
ArrayList<ObservationSegment> mosList = new
ArrayList<ObservationSegment>();
mosList.add(mos) ;

Globals.mergedOSs.get (observerID) .put(object, mosList);
}

90

A.4.3 AssociateObservations

<< Java Class>>
GASSDEIEtEDhSEWEtIDhS

Coreasm

@ AssociateObservations()
@ Unified0Ss(String, String):void

Figure A.5: Associate Observations Class Diagram

public class AssociateObservations {

public void Unified0Ss(String reasonerID, String observerID) throws IOException {
if (!(Globals.unifiedOSs.get (reasonerID).equals(null)))
if (!(Globals.unified0Ss.get(reasonerID).containsKey(observerID)))
Globals.unified0Ss.get (reasonerID) .put (observerID, new HashMap<Long,
ArrayList<ObservationSegment>>());

if (!Globals.merged0Ss.containsKey(observerID))
throw new IOException("Associate Observations Error: The Observer ID, " +
observerID + ", is NOT valid.");
if (!Globals.unified0Ss.containsKey(reasonerID))
throw new IOException("Associate Observations Error: The Reasoner ID, " +
reasonerID + ", is NOT valid.");

if (!(Globals.merged0Ss.get (observerID).isEmpty())) {
HashSet<Long> observerObjectSet = new HashSet<Long>() ;
observerObjectSet.addA11(Globals.merged0Ss.get (observerID) .keySet());

for (Long object : observerObjectSet) {
for (ObservationSegment mos : Globals.mergedOSs.get(observerID).get(object)) {
if (!(mos.getStatus().equals(Status.Unified))) {
if
(Globals.unified0Ss.get (reasonerID) .get (observerID) .containsKey(object))
{
for (ObservationSegment uos :
Globals.unified0Ss.get (reasonerID) .get (observerID).get(object)) {
if
(mos.getTimeSeries () .getHead () .equals(uos.getTimeSeries () .getHead()))
{

TimeSeries tempMosTimeseries = new TimeSeries();
tempMosTimeseries.assignTimeSeries (mos.getTimeSeries());

uos.getTimeSeries() .verticalMergeWIH(tempMosTimeseries) ;

for (int tuplei = ((uos.getTimeSeries().getBody().size()) -
(tempMosTimeseries.getBody() .size())); tuplei <
uos.getTimeSeries() .getBody () .size(); tuplei++)
for (int celli = 0; celli <
uos.getTimeSeries() .getBody() .get (tuplei) .getData() .size();
celli++)
for (int recordi = 0; recordi <
uos.getTimeSeries() .getBody() .get (tuplei) .getData()

91

.get(celli).size(); recordi++)
uos.getTimeSeries() .getBody() .get (tuplei) .getData() .get (celli)
.get (recordi) .setReasonerID(reasonerID) ;

uos.setStatus (Status.Undef) ;
mos.setStatus(Status.Unified);

}
else {
ObservationSegment newUos = new ObservationSegment();

newUos.setOwner (reasonerID);
newUos.setObject (mos.getObject ());

TimeSeries tempMosTimeseries = new TimeSeries();
tempMosTimeseries.assignTimeSeries (mos.getTimeSeries());
newlUos.setTimeSeries (tempMosTimeseries) ;

for (Tuple tuple : tempMosTimeseries.getBody())
for (ArrayList<Record> cell : tuple.getData())
for (Record record : cell)
record.setReasonerID(reasonerID) ;

newUos.setStatus(Status.Undef);
mos.setStatus(Status.Unified);

ArrayList<ObservationSegment> uosList = new
ArrayList<ObservationSegment>() ;
uosList.add(newUos) ;

Globals.unifiedOSs.get (reasonerID) .get (observerID) .put (newUos.getObject ()
.getID(), uosList);

92

A.4.4 CombineObservations

=< Java Class>>
(¥ CombineObservations

Coreasm

{}CCnmbinEDbsewatiﬂns[}
@ FusedOss(String):void

Figure A.6: Combine Observations Class Diagram

public class CombineObservations {

public void FusedO0Ss(String reasonerID) throws IOException {
if (!Globals.unified0Ss.containsKey(reasonerID))
throw new IOException("Combine Observations Error: The Reasoner ID, " + reasonerID
+ ", is NOT valid.");
if (!Globals.fused0Ss.containsKey(reasonerID))
throw new IOException("Combine Observations Error: The Reasoner ID, " + reasonerID
+ ", is NOT valid.");

if (!(Globals.unifiedOSs.get (reasonerID) .isEmpty())) {
HashSet<Long> reasonerObjectSet = new HashSet<Long>();

for (String observer : Globals.unified0Ss.get(reasonerID).keySet())
reasonerObjectSet.addA11(Globals.unified0Ss.get (reasonerID) .get (observer) .keySet());

for (Long object : reasonerObjectSet)
if (!(Globals.endingTimestamp.get (reasonerID).containsKey(object)))
Globals.endingTimestamp.get (reasonerID) .put (object, new HashMap<String,
Date>());

if (!(reasonerObjectSet.isEmpty())) {
for (Long object : reasonerObjectSet) {
if (Globals.fused0Ss.get(reasonerID).containsKey(object)) {
for (String observer : Globals.unifiedOSs.get(reasonerID).keySet()) {
if
(Globals.unified0Ss.get (reasonerID) .get (observer) .containsKey (object))
{
for (ObservationSegment uos :
Globals.unified0Ss.get (reasonerID) .get (observer).get(object)) {
if (! (uos.getStatus() .equals(Status.Fused))) {

TimeSeries tempUosTimeseries = new TimeSeries();
tempUosTimeseries.assignTimeSeries(uos.getTimeSeries());
tempUosTimeseries

.splitTimeSeriesFromTimestamp (Globals.endingTimestamp.get (reasonerID)
.get (object) .get (observer)) ;
Globals.fused0Ss.get (reasonerID) .get (object) .getTimeSeries ()
.verticalMergeWIH(tempUosTimeseries);

Globals.fused0Ss.get (reasonerID) .get (object) .setStatus(Status.Undef);
uos.setStatus(Status.Fused);

93

Globals.endingTimestamp.get (reasonerID) .get (object) .put (observer,
tempUosTimeseries
.getEndTimestamp()) ;

}
else {
ObservationSegment newFos = new ObservationSegment();

newFos.setOwner (reasonerID);

for (String observer : Globals.unified0Ss.get(reasonerID) .keySet()) {
if
(Globals.unifiedOSs.get (reasonerID) .get (observer) .containsKey(object))
{
for (ObservationSegment uos :
Globals.unifiedOSs.get (reasonerID).get (observer).get(object)) {
if (! (uos.getStatus() .equals(Status.Fused))) {

TimeSeries tempUosTimeseries = new TimeSeries();
tempUosTimeseries.assignTimeSeries(uos.getTimeSeries());

Globals.endingTimestamp.get (reasonerID) .get (object) .put (observer,
tempUosTimeseries
.getEndTimestamp());

for (String mergingObserver :
Globals.unified0Ss.get (reasonerID) .keySet()) {

if (Globals.unifiedOSs.get (reasonerID).get (mergingObserver)
.containsKey(object)) {

for (ObservationSegment mergingUos :

Globals.unifiedOSs.get (reasonerID)
.get (mergingObserver) .get (object)) {
if ((!(mergingUos.getStatus().equals(Status.Fused))) &&
(! (mergingUos.equals(uos)))) {

TimeSeries tempMergingUosTimeseries = new
TimeSeries();

tempMergingUosTimeseries

.assignTimeSeries(mergingUos.getTimeSeries());

Globals.endingTimestamp.get (reasonerID) .get (object)

.put (mergingObserver, tempMerginglUosTimeseries

.getEndTimestamp()) ;

tempUosTimeseries.verticalMergeWIH(tempMergingUosTimeseries) ;

mergingUos.setStatus(Status.Fused);

}

newFos.setTimeSeries (tempUosTimeseries) ;

newFos.setObject (uos.getObject());

94

uos.setStatus(Status.Fused);

Globals.fusedOSs.get (reasonerID) .put (object, newFos);
}

95

A.4.5 Resolvelnconsistencies

<<Java Class>>

(9 Resolvelnconsistencies
coreasm

& Resolvelnconsistencies()

@ ConsistentFused0Ss(String):void

= ConflictResolution(TimeSeries) TimeSeries

= Resolve(ArraylList<Record>):ArrayList<Record>

Figure A.7: Resolve Inconsistencies Class Diagram

public class ResolvelInconsistencies {

public void ConsistentFused0Ss(String reasonerID) throws IOException {
if (!Globals.fused0Ss.containsKey(reasonerID))
throw new IOException("Resolve Inconsistencies Error: The Reasoner ID, " +
reasonerID + ", is NOT valid.");

if (!(Globals.fused0Ss.get(reasonerID).isEmpty())) {
for (Long object : Globals.fusedOSs.get(reasonerID).keySet()) {
if (!(Globals.fused0Ss.get(reasonerID).get(object).getStatus()
.equals(Status.Consistent))) {
ObservationSegment cFos = new ObservationSegment();

cFos.setOwner (reasonerID) ;
cFos.setObject (Globals.fused0Ss.get (reasonerID) .get (object) .getObject ());

TimeSeries tempFosTimeSeries = new TimeSeries();
tempFosTimeSeries.assignTimeSeries(Globals.fused0Ss.get (reasonerID)
.get(object) .getTimeSeries());

cFos.setTimeSeries(ConflictResolution(tempFosTimeSeries));

cFos.setStatus(Status.Undef);
Globals.fusedOSs.get (reasonerID) .get (object) .setStatus(Status.Consistent) ;

Globals.cfused0Ss.get (reasonerID) .put (object, cFos);

96

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Overview
	Thesis Contributions
	Thesis Organization

	Marine Traffic Monitoring Systems
	Automatic Identification System (AIS)
	How AIS Works
	Different Classes and Information
	Type of Vessel
	AIS Range
	AIS Accuracy
	Drawbacks of AIS

	Satellite AIS and How it Works
	Marine Radar
	How Radar Works
	Drawbacks of Radar

	Abstract State Machines
	Lack of Model Designing
	The Notion of ASM
	Basic Concepts
	Fundamental Concepts

	Ground Model
	Refinement
	Formal Definition of Refinement

	ASM Systems Engineering Method
	Distributed ASM

	Time Series Analysis
	Connecting the Dots – From Time Series to Trajectories
	Definition of Time Series and its Related Operations
	Initial Definition: Time Series with One Value per Feature and Precise Timestamps
	First Refinement: Time Series with a Set of Values per Feature and Precise Timestamps
	Second Refinement: Time Series with Approximate Timestamps (Practical Approach)

	Maritime Situation Analysis: A Formal Semantic Framework
	Formal Approaches to Situation Analysis (Related Work)
	JDL (Joint Directors of Laboratories) Data Fusion and State Transition Data Fusion (STDF) Models

	Challenges and Key Concepts
	Agent Network Structure
	Observation Segment
	Maritime Situation Analysis Framework
	Observer Controller
	Reasoner Controller

	Formal Definition of Trajectory

	Implementation
	Implementation of the Framework (CoreASM Part)
	Network Configuration Module
	Environment Module
	Observer and Reasoner Modules
	Situation Analysis (SA) Module

	Implementation of the Framework (Java Part)
	Data Structure
	Implementation of Rules
	Empirical Results

	Conclusions and Future Work
	Future Work

	Bibliography
	Appendix Implementation Details
	Time Series Operations
	Horizontal Merge (Initial Definition)
	Vertical Merge (Initial Definition)

	Initialization of Data Structures
	Input/Output Manager
	Implementation of Rules in Java
	CleanObservations
	AffiliateObservations
	AssociateObservations
	CombineObservations
	ResolveInconsistencies

