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Abstract

Object detection is to find and localize objects of a specific class in images or videos. This
task is the foundation of image and video understanding, thus it becomes one of the most
popular topics in the area of computer vision and pattern recognition. Object detection is
not only essential for the study of computer vision, pattern recognition and image processing,
but also valuable in the applications of public safety, entertainment and business. In this
research, we aim to solve this problem in two focused areas: the local feature design, and
the boosting learning.

Our research on local features could be summarized into a hierarchical structure with 3
levels. The features in different levels capture different object characteristic information.
In the lower level, we investigate how to design effective binary features, which perform
quite well for the object categories with small intra-class variations. In the middle level,
we consider integrating the gradient information and structural information together. This
results in more discriminative gradient features. In the higher level, we discuss how to
construct the co-occurrence features. Using such features, we may get a classifier with high
accuracy for general object detection.

After the feature extraction, boosted classifiers are learned for the final decision. We work
on two aspects to improve the effectiveness of boosting learning. Firstly, we improve the
discriminative ability of the weak classifiers by the proposed basis mapping. We show that
learning in the mapped space is more effective compared to learning in the original space.
In addition, we explore the efficiency-accuracy trade-off problem in boosting learning. The
Generalization and Efficiency Balance (GEB) framework, and the hierarchical weak classifier
are designed for this target. As a result, the resulting boosted classifiers not only achieve
high accuracy, but also have good generalization and efficiency.

The performance of the proposed local features and boosting algorithms are evaluated using
the benchmark datasets of faces, pedestrians, and general objects. The experimental results
show that our work achieves better accuracy compared to the methods using traditional
features and machine learning algorithms.
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Chapter 1

Introduction

1.1 Research background

Object detection is one of the basic functions of human vision. The related technology is
widely used in many applications, such as image indexing, object recognition, and driver
assistant systems. Object detection is defined as a process which finds the location and
size of any specific objects in the image or video sequence. It could be considered as a
binary classification problem with the labels “object” and “non-object”. From the view of
theoretical research, it belongs to the domain of image analysis and understanding, which
is the foundation of the vision analysis. From the view of technologies, it is related with
many domains such as pattern recognition, image processing, computer vision, and machine
learning.

1.2 Main challenges

The main challenges of object detection come from two aspects: large intra-class variation
and low Signal-to-Noise Ratio (SNR). Large intra-class variation means that the shape and
appearance of the objects in the same category is very different, as shown in Fig. 1.1(a),
the color and viewpoints are totally different for those cars, so that it is very difficult to

Figure 1.1: Challenges in object detection. (a) Large intra-class variation, (b) Low SNR.

1



Figure 1.2: The relationship of the 6 difficulties and the two challenges in object detection.

describe what a car looks like. Low SNR means that compared to the background noise,
the useful object information is very limited in the input image. As illustrated in Fig.
1.1(b), although the pedestrians have already been aligned based on the size and center
location, it is still very difficult to distinguish the pedestrian due to the cluttered back-
ground. More specifically, these two challenges are related with 6 difficulties, including the
appearance variance, the scale variance, the viewpoint variance, the cluttered background,
the illumination variance, and the occlusion. The relationship of these difficulties and the
two challenges are summarized in Fig. 1.2.

- The appearance variance is the main reason of the intra-class variation of the color
and pose, as shown in Fig. 1.3(a). It is also one of the main reasons of low SNR.

- The scale variance mainly occurs in the creature categories, such as pedestrian, cow,
cat, etc. In these categories, different objects have different part size and aspect ratio. As
illustrated in Fig. 1.3(b), the ratio of head to body of a kid is 1/5, while it is 1/6 to 1/8
for a young woman.

- The viewpoint variance is another reason of the intra-class variation. It is one of the
most difficult problems in object detection. In Fig. 1-3(c), the frontal view and side view
of a motorbike are totally different. So we need to use different classifiers to deal with these
two cases.

- The cluttered background will increase the difficulty of classifying the object with the
background. As shown in Fig. 1.3(d), it is difficult to detect the bicycles due to the similar
color with the surrounding background.

- The illumination variance is another reason of low SNR. When the illumination is
weak, it will be relatively difficult to describe the details of the objects, as illustrated in
Fig. 1.3(e).

- The occlusion is common in real object detection. It not only changes the appearance
of the target objects, but also makes the alignment much harder. Some examples are shown
in Fig. 1.3(f).

2



Figure 1.3: The difficulties in object detection. (a) appearance variance, (b) scale variance,
(c) viewpoint variance, (d) cluttered background, (e) illumination variance, (f) occlusion.

1.3 Thesis contribution

1.3.1 Overview of my research

As mentioned in Chapter 1.2, the major challenges in object detection are the large intra-
class variations and low SNR. To solve the intra-class variations problem, we focus on
designing more discriminative and robust local features. More specifically, our research
on local features could be summarized into three aspects, corresponding to different levels
in the “feature hierarchy”. It includes designing binary features, integrating the gradient
information with structural information, and investigate the using of higher-order features,
as shown in Fig. 1.4.

To solve the low SNR problem, we work on the boosted classifiers. Boosted classifiers are
widely used due to their high efficiency and flexible structure. The discriminative ability of a
boosted classifier is mainly decided by the weak classifier. So a feasible way is to strengthen
the learning of the weak classifier. In addition, the efficiency is also an important issue
in real object detection system. We plan to balance the efficiency-accuracy trade-off in
boosting learning. Thus we expect to get the boosted classifiers with both high accuracy
and good efficiency.

The overall framework of our boosted object detection is illustrated in Fig. 1.5. In the
training procedure, a set of images are collected and each object is marked by a bounding
box and the class label. Different local features are evaluated on current training samples
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Figure 1.4: Overview of our approach.

to select the best one as the weak classifier. The final detector is constructed by concate-
nating all weak classifiers. In the detection procedure, given an input image, the first step
is to apply the pre-processing modules such as histogram equalization or mean variance
normalization. Then the scale pyramid is built, and the sliding window search strategy is
adopted to go through the whole pyramid to evaluate all candidate windows. After the
initial detection, a clustering algorithm will be applied to merge the initial results to the
final output.

1.3.2 Our contributions on local features

1. For low-order features, we propose to design more discriminative binary features. Two
works, the Boosted Local Binaries (BLB) [81] and Boosted Binary Patterns (BBP) [83] are
published in ICME 2014 and ICME 2015 respectively. BLB and BBP represent the target
object by a series of binary patterns, where each pattern consists of several rectangle pairs in
different size and location. Different from traditional binary features which are constructed
by fixed binary patterns, the scale and position of the rectangles in BLB and BBP are more
flexible. In addition, these binary patterns are efficiently extracted in both the intensity
domain and the gradient domain. Experimental results on public datasets demonstrate
that these two features work well for object detection and tracking tasks. They are more
discriminative compared to traditional binary features.

2. For middle-order features, we integrate the gradient information and local structural
information together to improve the discriminative ability. Firstly, the Edged Histogram of
Oriented Gradient feature (Edge-HOG) is published in ICIP 2014 [82]. Edge-HOG utilizes
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Figure 1.5: Overall framework of boosted object detection.

the histogram of oriented gradient of a series of regions as the base object description. These
regions are concatenated along an edge, so that the local structure could be implicitly
represented. We further design a method for extracting the structural information of a
local region, which is based on the distance between the gravity centers and the geometric
centers. The experimental results show that the Edge-HOG is more discriminative than the
traditional gradient features. Secondly, we design a novel contour feature called Deformable
Edge Set (DES) [84]. The DES consists of several Deformable Edge Features (DEF), which
deform from an edge template to the actual object contour according to the distribution
model of pixel gradients. The DES is constructed based on the combination of DEF, where
the arrangement and the deformable parameters are learned in a subspace based on the
local structural information. Experimental results show that the proposed DES not only
locates the object bounding boxes, but captures the object contours as well.

3. For high-order features, we investigate the usage of the co-occurrence features in
object detection. The co-occurrence features are defined as the distribution of co-occurring
low-order information (e.g., gradient, intensity) of pixel pairs at a given offset. The 2D co-
occurrence histogram will be utilized to describe the distribution of object characteristics.
Using different low-order information, the co-occurrence features are able to capture the key
characteristics of different object categories. In our work published in ICCV 2015 [85], we
design three kinds of local co-occurrence features constructed by the traditional Haar, LBP,
and HOG respectively. Then the boosted classifiers are learned, where each weak classifier
corresponds to a local image region with a co-occurrence feature. Experimental results
show that the performance of the resulting detector is competitive with the commonly-used
methods for pedestrian detection and general object detection.
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1.3.3 Our contributions on boosting algorithms

Our contributions on boosting could be summarized into two aspects:
1. To enhance the weak classifier learning, we propose a novel mapping method called

basis mapping. This work is published in CVPR 2015 [80]. The key step is a non-linear
mapping on original samples by referring to the basis samples before learning the weak
classifiers, where the basis samples correspond to the hard samples in the current training
stage. We show that the basis mapping based weak classifier is an approximation of kernel
weak classifier while keeping the same computation cost as linear weak classifier. As a
result, boosting with such weak classifiers is more effective. In our work, three different
non-linear mappings are shown to work well. Experimental results show that the basis
mapping consistently improves the detection accuracy and training efficiency of the boosted
classifier. It achieves high performance on public datasets for both pedestrian detection and
general object detection tasks.

2. The efficiency-accuracy trade-off is a classic topic in object detection. We propose
two methods to solve this problem, the Generalization and Efficiency Balanced (GEB)
framework, and the hierarchical weak classifier. The GEB framework is part of our published
paper in ICCV 2015 [85]. In the feature selection procedure, the discriminative ability, the
generalization power, and the computation cost of the candidate features are all evaluated
for decision. Thus, boosting algorithm will arrange the efficient and robust features in
the beginning stages, and highly discriminative features in the following stages. We know
that the overall robustness and efficiency of a boosted detector is mainly decided by the
beginning stages, which filter most of the negative samples. So the boosted classifiers trained
by GEB could achieve both high accuracy and good efficiency. In our latest work of the
hierarchical weak classifier, the boosted classifiers are constructed based on several kinds of
local features. Each weak classifier corresponds to a local image region, from which several
different types of features are organized in a hierarchical way. The weak classifier makes
predictions by checking the features level by level. The decision will move to the next level
when the current level is not confident enough. As a result, the boosted classifier using
hierarchical weak classifiers has good efficiency even with various complicate features.

1.4 Thesis organization

After this introductory chapter, we provide an overview of the current research of object
detection in Chapter 2. Chapter 3 introduces our work on low-order features, which includes
the Boosted Binary Patterns and Boosted Local Binaries. In Chapter 4, we present two
approaches to integrate the gradient information and the structural information. The Edge
Histogram of Oriented Gradient and Deformable Edge Set will be briefly introduced. Chap-
ter 5 describes the generalization form of the co-occurrence features, and several examples
of how to extract co-occurrence vectors based on low-level features. Chapter 6 is the basis
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mapping, which improves the weak classifier learning procedure in boosting training. Chap-
ter 7 consists of two work on the efficiency-accuracy trade-off: the Generalization-Efficiency
Balance framework, and the hierarchical weak classifier. Finally, we conclude this research
and propose the future work in Chapter 9.
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Chapter 2

Recent progress on object
detection

The related research on object detection could be divided into two parts: the feature ex-
traction, and the classifier learning.

2.1 Research on feature extraction

The feature extraction is to generate the feature vectors from a given image to describe the
object characteristic. These feature vectors could be extracted either from the whole image
(global features) or from a specific region (local features). The feature vector reflects the ca-
pability of translating the object shape and appearance information into machine language.
In general, the stronger discriminative ability the feature has, the better detection accuracy
we will get. Designing effective features is also a feasible way to solve the scale variance,
illumination variance, and cluttered background problem. In general, the features could be
divided into 3 categories, binary features, gradient features, and high-order features.

2.1.1 Binary features

Binary features are constructed based on the binary coding of pixels or regions. Compared to
other local features, binary features have lower discriminative power but better efficiency.
They are widely used for the object categories whose intra-class variations are relatively
small, such as frontal faces, or side-view cars. Haar features, which consist of two or more
rectangular regions enclosed in a template, is one of the most successful binary features.
Haar feature based face detector is proposed by Viola and Jones [114], which is the pioneer
work of cascade object detection. Several Haar mutations are proposed in these years.
Lienhart et al. [60] extended Haar features to different rotation angles. Mita et al. [66]
jointed the basic Haar features to increase the discriminative ability. Park et al. [74] utilized
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the same prototype Haar feature but different extraction scheme to solve the illumination
change in object detection.

Another popular binary feature Local Binary Pattern (LBP) is developed for texture
classification [71] and the success is due to its computational simplicity and robustness under
illumination variations. Yan et al. [130] replaced the single pixels in LBP with rectangles
and utilized it in face detection. Ren et al. [81] further extended it to multi-locations
and variable size. LBP is also combined with HOG feature because there two features
are complimentary to each other. Wang et al. [117] firstly integrated HOG and LBP for
pedestrian detection and achieved high detection rate on INRIA dataset. This work was
extended in [135] and further improved in [118] with the combination of covariance matrix.

2.1.2 Gradient features

Gradient features extract the gradient magnitude and orientation to reflect the local edge
characteristic. Compared to binary features, gradient features are more effective and robust.
They work quite well for the object categories with clear contours. One of the typical
gradient features is the edgelet feature [121]. It is mainly used to detect the pedestrians
or cars with long edges and arcs in the contour. The extensions include the image strip
feature [138], which extends single pixel to rectangles; and the Edge-HOG feature [82],
which arranges the HOG rectangles in the same pattern as edgelet feature.

Scale Invariant Feature Transform (SIFT) [61] is invariant to image scaling, translation
and rotation, and partially invariant to illumination changes and affine projection. Using
SIFT feature, objects can be reliably recognized even from different views, low illumination
or under occlusion. Another advantage is that some preprocessing stages such as the accu-
rate alignment are not required using invariant features. The main disadvantage of SIFT
is the low efficiency, which is about 3+ times slower compared to other commonly-used
gradients features. To solve this problem, Bay et al. [8] proposed an accelerated version
called SURF feature, relying on integral images and image convolutions. Another work is
the ORB feature [88], which is also rotation invariant and partial resistant to occlusion.

Histogram of Oriented Gradient (HOG) [19] breaks the image region into a cell-block
structure and generates histogram based on the gradient orientation and spatial location.
Dalal & Triggs [19] proposed the basic form of the HOG feature with 2×2 cells. Multi-
size versions were developed in [140][9][22], and further extended to pyramid structure
[20][68][63][18][129]. HOG feature is also combined with other low-level features. Levi et
al. [58] utilized an accelerated version of the feature synthesis method on the low-level
description of multiple object parts. Bar-Hillel et al. [7] designed an iterative process
including feature generation and pruning using multiple operators for part localization.
Chen et al. [11] proposed the Multi-Order Contextual co-occurrence (MOCO), to implicitly
model the high level context using solely detection responses from the object detection based
on the combination of HOG and LBP. Paisitkriangkrai et al. [72] utilized the HOG built
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on the basis of low-level visual features combination and spatial pooling, which improved
the translational invariance and thus the robustness of the detection process.

2.1.3 High-order features

More complicate features are summarized into the category of “High-order features”. The
word “High-order” is in contrast to the low-order (intensity feature) and mid-order (gradient
feature). One typical example is the covariance matrix [108], which is based on the covari-
ance of low level features, e.g., the color vector, the norm of first and second derivatives
of intensity, etc. Covariance matrices do not lie on Euclidean space, therefore the distance
metric involving generalized eigenvalues which also follows from the Lie group structure of
positive definite matrices is used. With this distance metric, covariance matrix works well
on pedestrian detection [109] and general object detection [118].

Different from the covariance matrix, the co-occurrence features extract the character-
istic of pixel pairs, such as the intensity contrast of two pixels, or the gradient orientation
patterns of neighbouring pixels. According to whether the spatial neighbouring relationship
among features is used in computing the co-occurrence statistics, existing co-occurrence fea-
tures can be sorted into two categories: global co-occurrence features and local co-occurrence
features. In [133], Yuan et al. proposed to mine co-occurrence statistics of SIFT words for
visual recognition. Rasiwasia et al. [78] calculated the co-occurrence statistics on the whole
image without considering the local spatial relationship among features. These works fall
into the category of global co-occurrence features. In the following papers, the spatial co-
occurrence are computed within locally adjacent neighbours instead of the whole image.
Ito et al. [47] integrated the heterogeneous co-occurrence information of colour, edge and
gradient information for object recognition. Yang et al. [131] proposed several pairwise
co-occurrence features for food recognition. Xu et al. [127] designed the GMuLBP feature
which detected co-occurrence orientation through gradient magnitude calculation. A rota-
tion invariant version was proposed by Nosaka et al. [70] for texture classification and face
recognition, and further improved by Qi. et al [76]. Chen et al. [11] proposed Multi-Order
Contextual co-occurrence (MOCO), to implicitly model the high level context using solely
detection responses.

2.2 Research on classifier learning

The classifier learning is to make the decision of whether an input image includes any ob-
jects or not. Training discriminative classifiers is a good way to solve the pose variance,
viewpoint variance, and occlusion problem. There are two kinds of classifiers, the one based
on the generative model, and the one based on the discriminative model. The discriminative
model uses a map from the images to the class labels. Such classifiers could be denoted as
P (label|image, feature). The commonly-used discriminative classifiers include the Linear
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Discriminative Analysis (LDA), the Support Vector Machine (SVM), and the Boosting. In
contrast, the generative model uses a map from the class labels to the images. Such clas-
sifiers are in the format of P (image|feature, label)P (label). Compared to discriminative
model, the discriminative ability of the classifiers based on generative model is lower. The
typical applications in object detection include the Naive Bayesian, the Restricted Boltz-
mann machine, and the mixture models.

2.2.1 Discriminative model based classifiers

LDA is used in statistics, pattern recognition and machine learning to find a linear combi-
nation of features which characterizes or separates two or more classes of objects or events.
Given a set of feature vectors and its corresponding label set, LDA approaches the problem
by assuming that the conditional probability density functions are both normally distributed
with mean and covariance parameter respectively. In object detection, LDA is often ap-
plied together with histogram features. Laptev et al. [55] utilized LDA as weak learner for
multi-valued histogram features and showed how to overcome problems of limited training.
Xu et al. [128] adopted LDA on binary feature histograms in semi-supervised learning for
object detection and classification. Qian et al. [77] integrated the features extracted from
image content (i.e., color moment and edge direction histogram) and multi-classes LDA for
social event classification.

The support vector machines are supervised learning models with associated learning
algorithms that analyse data and recognize patterns, used for classification and regression
analysis. Linear SVM training builds a model that assigns new examples into one category
or the other, making it a non-probabilistic binary linear classifier. Felzenszwalb et al. [28]
described the Deformable Part Model (DPM) with Latent SVM for object detection, which
is one of the best object detectors with traditional machine learning algorithms nowadays.
Zhu et al. [139] presented a latent hierarchical structural learning method for object de-
tection. An object was represented by a mixture of hierarchical tree models, where the
model could be trained discriminatively using latent structural SVM learning. Appel et
al. [21] utilized pyramid HOG feature and exploited the correlations of detector responses
at nearby locations and scales by tightly coupling detector evaluation of nearby windows.
Dollar et al. [20] computed finely sampled feature pyramids and utilized them in SVM weak
classifier for pedestrian detection at a fraction of the cost, without sacrificing performance.
Nam et al. [68] proposed an efficient feature transform that removed correlations in local
neighborhoods. This resulted in an over-complete but locally decorrelated representation
ideally suited for object detectors.

With the kernel trick, SVM is able to implicitly map the samples into the high dimen-
sional space for classification. Kernel SVM replaces the dot product in linear SVM with
the kernel functions, which allows the algorithm to fit the maximum-margin hyperplane
in a transformed feature space. Hoang et al. [41] proposed a classification method based
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on a hybrid cascade boosting technique and RBF kernel SVM. Ren et al. [86] utilized the
HIKSVM as weak classifier to detect pedestrians and cars. Due to the strong discriminative
ability, kernel SVM achieves high accuracy. But the training and testing procedure is very
slow. Maji [63] and Wu [124] investigate the efficient testing and training of additive kernel
SVM respectively for object detection.

Boosting is a widely used machine learning algorithm for classification, which integrates
several weak classifiers into a strong classifier. Y. Freund and R. Schapire proposed the
AdaBoost (Adaptive Boosting) algorithm in 1995 [32]. They proved that the convergence
of AdaBoost algorithm by adding constraint on the upper bound of the classification error.
So AdaBoost algorithm will converge if the weak classifier is stronger than random guess.
Inspired by this finding, several boosting algorithms corresponding to different weak classi-
fiers and error functions are proposed. For example, the RealAdaBoost [93] is constructed
using probability distribution function as weak classifier, the LogitBoost [33] utilizes log
error function and logistic regression weak classifier. The modifications on the structure of
strong classifier lead to other variants of boosting, such as the probabilistic boosting tree
[107], the vector boosting [44], the cluster boosted tree [122], and the shrink boosting [40],
etc.

2.2.2 Generative model based classifiers

In machine learning, naive Bayes classifiers apply Bayes’ theorem with strong independence
assumptions between the features. Since the classification ability of single naive Bayes
classifier is relatively weak, the final decision is based on the combination of several naive
Bayes classifiers. Grabner et al. [36] utilized online AdaBoost algorithm with naive Bayes
classifier for real-time object tracking, where the feature vector composes of color, position,
and gradient. Wu et al. [121] adopted the combination of the inferenced edge responses as
feature vector and trained the pedestrian detection.

The restricted Boltzmann machine (RBM) is a generative stochastic artificial neural
network that can learn a probability distribution over its set of inputs. It is a variant of
Boltzmann machines, with the restriction that their neurons must form a bipartite graph.
This restriction allows for more efficient training algorithms than are available for the gen-
eral class of Boltzmann machines, in particular the gradient-based contrastive divergence
algorithm. Eslami et al. [26] proposed a type of deep Boltzmann machine that called
Shape Boltzmann Machine (SBM) for the task of modelling foreground/background and
parts-based shape images. Tang et al. [105] introduced the Robust Boltzmann Machine
(RoBM), which allowed Boltzmann Machines to be robust to corruptions. In the domain of
visual recognition, the RoBM was able to accurately deal with occlusions and noise by using
multiplicative gating to induce a scale mixture of Gaussian functions over pixels. Srivastava
et al. [101] proposed a Deep Boltzmann Machine for learning a generative model of multi-
model data. The model defined a probability density over the space of multi-model inputs.
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By sampling from the conditional distributions over each data modality, it was possible to
create the representation even when some data modalities are missing.

The mixture model is a probabilistic model for representing the presence of a subset
within the whole object category. A mixture model corresponds to the mixture distribu-
tion that represents the probability distribution of the objects. The typical mixture models
include Gaussian Mixture Model (GMM), multivariate Gaussian mixture model, and Cat-
egorical mixture model. Cheng et al. [14] introduced a regional contrast based object
detection algorithm, which simultaneously evaluated global contrast differences and spatial
weighted coherence scores based on GMM. Spinello et al. [99] proposed a novel adaptive
fusion approach for object detection based on hierarchical mixtures models. The hierarchy
was a two-tier architecture that for each modality, each frame and each detection computed
a weight function using Multivariate GMM that reflected the confidence of the respective
information.

2.2.3 Deep learning based object detection

In recent years, the neural network becomes one of the hottest topics in object detec-
tion. Due to the good description ability of deep learning features, the resulting classifier
achieves high accuracy on general object detection. Among the deep neural networks, the
Convolutional Neural Network (CNN) is most commonly-used. Sermanet et al. [95] used
convolutional networks for PASCAL-style object detection concurrent with the development
of R-CNNs. Szegedy et al. [102] modeled object detection as a regression problem. Given
an image window, they used a CNN to predict foreground pixels over a coarse grid for
the whole object as well as the object’s top, bottom, left and right halves. Agrawal et al.
[1] trained an R-CNN from a random initialization on VOC 2007 trainval. They achieved
a mAP of 40.7% on VOC 2007 test with using only half the amount of training data as
[102]. He et al. [39] improved R-CNN efficiency by sharing computation through a feature
pyramid, allowing for detection at a few frames per second. Girshick [34] showed that it is
possible to further reduce training and testing times, while improving detection accuracy
and simplifying the training process, using an approach called “Fast R-CNN”.

Some other researchers work on the detection process of the neural networks. We know
that the dominant approach to object detection has been based on sliding-window detectors.
An alternative is to first compute a pool of image regions, each serving as a candidate object,
and then to filter these candidates in a way that aims to retain only the true objects.
Hoiem et al. [42] used multiple segmentation hypotheses to estimate the rough geometric
scene structure. Russell et al. [90] extended it to automatically discover object classes in
a set of images. Van de Sande et al. [110] further proposed an improve version called
the “selective search” for object detection by showing strong results on PASCAL object
detection. Regarding the post-processing in the detection, EdgeBoxes [?] outputed high-
quality rectangular (box) proposals quickly. BING [15] generated box proposals at 3 ms per
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image, but the quality is relatively poor. Other methods focus on pixel-wise segmentation,
producing regions instead of boxes. These approaches include RIGOR [46] and MCG [5],
which took 10 to 30ms per image and GOP [53], a faster methods that took 1s per image.

R-CNNs have been extended to a variety of new tasks and datasets. Karpathy et al. [50]
learned a model for bi-directional image and sentence retrieval. Their image representation
was derived from an R-CNN trained to detect 200 classes on the ILSVRC2013 detection
dataset. Gkioxari et al. [35] used multi-task learning to train R-CNNs for person detection,
2D pose estimation, and action recognition. Hariharan et al. [38] proposed a unification
of the object detection and semantic segmentation tasks, and trained a two-column R-
CNN for this task. They showed that a single region proposal algorithm (MCG [5]) can
be used effectively for traditional boundingbox detection as well as semantic segmentation.
Gupta et al. [37] extended R-CNNs to object detection in depth images. They showed
that a well designed input signal, where the depth map is augmented with height above
ground and local surface orientation with respect to gravity, allowed training an R-CNN
that outperformed existing RGB-D object detection baselines. Song et al. [98] trained an
R-CNN using weak, image-level supervision by mining for positive training examples using
a submodular cover algorithm and then training a latent SVM. Many systems based on,
or implementing, R-CNNs were used in the recent ILSVRC2014 object detection challenge
[89], resulting in substantial improvements in detection accuracy. In particular, the winning
method, GoogleNet [104][103], used an innovative network design in an R-CNN. With a
single network, they improved R-CNN performance to 38.0% mAP from a baseline of 34.5%.
They also showed that an ensemble of six networks improves their result to 43.9% mAP.

2.3 AdaBoost Classifier Learning

Among the above classifier learning algorithms, AdaBoost is commonly-used for object
detection. AdaBoost is a machine learning algorithm formulated by Yoav Freund and Robert
Schapire. It can be used in conjunction with many other types of learning algorithms to
improve their performance. The output of the other learning algorithms (weak classifiers)
is combined into a weighted sum that represents the final output of the boosted classifier.
In some problems, however, it can be less susceptible to the overfitting problem than other
learning algorithms. The individual learners can be weak, but as long as the performance
of each one is slightly better than random guessing (e.g., their error rate is smaller than 0.5
for binary classification), the final model can be proven to converge to a strong classifier.

2.3.1 Discrete AdaBoost

AdaBoost refers to a particular method of training a boosted classifier. Suppose we have a
data set {(x1, y1), . . . , (xN , yN )}, where each item xi has an associated class yi ∈ {−1, 1},
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and a set of weak classifiers {h1, . . . , hT }, each of which outputs a hypothesis d = ht(xi) ∈
{−1, 1} for each item. A boosted classifier is in the following form

Ht(x) =
T∑
t=1

ht(x), (2.1)

where each ht is a weak classifier that takes an object (the feature vector) x as input and
returns a real valued result indicating the class of the object. The sign of the weak classifier
output identifies the predicted object class and the absolute value gives the confidence in
that classification. Similarly, the T-layer classifier will be positive if the sample is believed
to be in the positive class and negative otherwise.

At each iteration t, a weak classifier is selected and assigned a coefficient αt such that
the sum training error Et of the resulting T-stage boosted classifier is minimized

Et =
∑
i

Ht−1(x) + αtdi. (2.2)

HereHt−1(x) is the boosted classifier that has been built up to the previous stage of training,
E(H) is some error function and ht(x) = αtd is the weak classifier that is being considered
for addition to the final strong classifier. In each iteration of the training process, a weight
is assigned to each sample in the training set equal to the current error E(Ht−1(xi)) on that
sample. These weights can be used to inform the training of the weak classifier.

In AdaBoost, the error function in Eq. 2.2 is set as the sum of its exponential loss on
each data point, given as follows

E =
T∑
i=1

e−yiHt(xi). (2.3)

Suppose all the weight at first stage is 1, and the weight of sample i at state t is wti =
e−yiht−1(xi), we have

E =
T∑
i=1

wtie
−yiαtht(xi). (2.4)

We can split this summation between those data points that are correctly classified and
those which are misclassified as

E =
∑

yi=ht(xi)
wtie
−αt +

∑
yi 6=ht(xi)

wtie
αt . (2.5)

Since the only part of the right-hand side of this equation that depends on ht is∑
yi 6=ht(xi)w

t
i , we see that the ht that minimizes E is just the one that minimizes

∑
yi 6=ht(xi)w

(t)
i .

In order to determine the desired weight αt that minimizes E with the ht that we just de-
termined, we differentiate
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Parameters
N number of training samples
T maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for t = 1, 2, . . . , T
2.1 Train the weak classifier ht using current training samples
2.2 Get the classification error εt =

∑
yi 6=ht(xi)w

t
i/
∑N
i=1w

t
i

2.3 Select the minimum error, and caculate αt
2.4 Update sample weight wt+1

i = 1
Zw

t
ie
−αtyiht(xi), Z is the normalization factor

2.5 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)
3. Output classifier H(x) = sign[

∑T
j=1 hj(x)]

Figure 2.1: Discrete AdaBoost Training.

Figure 2.2: Sample weight update in AdaBoost.

dE

dαt
=

∑
yi 6=ht(xi)

wtie
αt −

∑
yi=ht(xi)

wtie
−αt . (2.6)

Setting this to zero and solving for αt yields

αt = 1
2 ln

(∑
yi=ht(xi)w

t
i∑

yi 6=ht(xi)w
t
i

)
(2.7)

We calculate the weighted error rate of the weak classifier to be εt =
∑
yi 6=ht(xi)w

t
i/
∑N
i=1w

t
i ,

so it follows that

αt = 1
2 ln

(1− εt
εt

)
. (2.8)

which is the negative logit function multiplied by 0.5. The workflow of the whole discrete
AdaBoost is illustrated in Fig. 2.1. AdaBoost will reduce the weight of mis-classified samples
(difficult samples), and increase the weight of correct-classified samples (easy samples), as
illustrated in Fig. 2.2. The final strong classifier is the linear combination of several weak
classifiers.
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Parameters
N number of training samples
T maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for t = 1, 2, . . . , T
2.1 Update the sample weight wi using the hth weak classifier output wi = wie

−yiht(xi)

2.2 Build the predict distribution function W+ and W−
2.3 Select the best feature with the lowest classification error Z
2.4 Update weak classifier ht(x)
2.5 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)

3. Output classifier H(x) = sign[
∑T
j=1 hj(x)]

Figure 2.3: RealAdaBoost Training.

2.3.2 RealAdaBoost

The output of discrete AdaBoost is either -1 or 1, so the classification ability is relatively
limited. Schapire et al. [94] extend the output to real numbers, which results in the
RealAdaBoost. In RealAdaBoost, each feature can be seen as a function from the image
space to a real valued range. The sample space is divided into Nb equal sized sub-ranges
B1, . . . , BNb

, and the weak classifier is defined as a piecewise function

h(x) = 1
2 ln(

W j
+ + ε

W j
− + ε

), (2.9)

where ε is the smoothing factor, W± is the probability distribution of the feature response
for positive/negative samples, implemented as a histogram

W j
± = P (x ∈ Bj , y ∈ {−1, 1}), j = 1, . . . , Nb. (2.10)

The best feature is selected according to the classification error Z of the piecewise func-
tion. Better features lead to lower Z

Z = 2
∑
j

√
W j

+W
j
−. (2.11)

The workflow of the RealAdaBoost is illustrated in Fig. 2.3.

2.3.3 LogitBoost

LogitBoost [33] represents an application of established logistic regression techniques to the
AdaBoost method. Suppose there is a binary classification problem, which classifies the
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Parameters
N number of training samples
T maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {0, 1}
1. Initialization wi = 1/N,H(xi) = 0, p(xi) = 0.5
2. Repeat for t = 1, 2, . . . , T
2.1 Compute zi and wi
2.2 Fit the function ht by weighted least square regression from x to zi
2.3 Update H(xi) and p(xi)
2.4 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)

3. Output classifier H(x) = sign[
∑T
j=1 hj(x)]

Figure 2.4: LogitBoost training.

sample x to class {0, 1}. In LogitBoost, the probability of sample xi being a member of
class 1 is represented by

p(xi) = eH(xi)

eH(xi) + e−H(xi)
, (2.12)

where H is the strong classifier

H(x) = 1
2

T∑
j=1

hj(x). (2.13)

The LogitBoost algorithm treats the weak classifiers as a set of regression functions
hj(xi)j=1,2,,T by minimizing the negative binomial log-likelihood of the training samples
l(y, p(xi)) through Newton iterations

l(y, p(xi)) = −
N∑
i=1

[yilog(p(xi))+(1− yi)log(1− p(xi))]. (2.14)

This regression function hj(xi)j=1,2,,T fits the training samples xi to response values zi

zi = y − p(xi)
p(xi)(1− p(xi))

. (2.15)

After regression, H(xi) and p(xi) are updated according to Eq. 2.13 and Eq. 2.12.
Then the sample weights are updated as

wi = p(xi)(1− p(xi)). (2.16)

Fig. 2.4 illustrates the detailed algorithm.
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Figure 2.5: Cascade classifiers.

2.3.4 Cascade boosted classifier

Cascade classifier is a particular case of ensemble learning based on the concatenation of
several classifiers, using all information collected from the output from a given classifier as
additional information for the next classifier in the cascade. As illustrate in Fig. 2.5, the
strong classifier consists of several weak classifiers. A candidate sample will be detected
as positive sample if and only if it goes through all the weak classifiers. Since most of the
negative samples will be rejected by the first several weak classifiers, the overall detection
process will be quite efficient.

The training procedure of the cascade boosted classifier follows the state-by-state strat-
egy. Each stage consists of several weak classifiers selected by the above boosting algorithms.
The termination of the training of each stage is decided by the current false positive rate.
For example, if the reject threshold of each stage is set to 0.5, the training will stop after it
reject 50% of the negative samples.

Since some negative samples are rejected in each stage, we need to fill this gap before
training the next stage. This process is called bootstrap. It is achieved by running the
previous stages on a large negative set. Since the false positive rate will be reduced stage
by stage, the bootstrap will take more and more time.

The cascade classifiers could be generalized to any machine learning algorithms. All the
boosted classifiers in this thesis follow this structure.

2.4 Conclusion

In this chapter, we briefly introduced the commonly-used local features and machine learn-
ing methods for object detection. Traditional local features show considerable accuracy for
some object categories. Unfortunately, these features have some drawbacks. The major
problem for binary features is the fixed binary pattern. The size and position of the pixel
and region pair are fixed, which will limite the discriminative ability. Using more flexible
patterns for feature extraction leads to better object description. The gradient features
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extract the gradient statistic information as the feature vector, which is relatively robust to
some noise. Unfortunately, these features ignore some important structural information in
the histogram calculation procedure. Suppose there are two rectangles, each one contains
only one edge. The length and orientation of these two edges are exactly the same, but
the position inside the rectangle is different. In this case, most of the traditional gradi-
ent features will output the same feature vector. Integrating the structural information
with the gradient vector is a feasible way to solve this problem. Regarding the high-order
features, the existing methods propose to enumerate all possible patterns and extract a
high-dimensional feature vector, which is rather time consuming for real-time applications.
It might also bring useless information in this dense extraction procedure. Localizing these
high-order features and filtering the useless dimensions will be helpful.

On the other hand, the boosted classifier is widely used in object detection. Traditional
boosting algorithms such as AdaBoost or LogitBoost achieve high accuracy for some simple
detection tasks, such as text and faces. For more complicate object categories, the detection
accuracy is still not sufficient. Improving the effectiveness of boosting methods is always an
active topic. In addition, most of the research on the discriminative model based classifier
emphasize the accuracy only. Since the efficiency is one of the basic requirements of real-
time applications, it will be helpful to deal with the accuracy-efficiency trade-off. Some
existing methods try to solve this problem by prior knowledge [126][123], which is limited
to the detection tasks. Solving this trade-off problem in general object detection by some
adaptive methods is a valuable topic.
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Chapter 3

Low-order features

We divide the local features into a “feature hierarchy”. The feature hierarchy consists of
three levels, the low-order features, the mid-order features, and the high-order features, as
shown in Fig. 3.1. From lower level to higher level, the discriminative ability is increased,
but the efficiency is reduced.

Low-order features extract the feature vector based on intensity information. Most of
the binary features belong to this category. Compared to other local features, low-order
features have lower discriminative power but better efficiency. They are widely used for
the object detection tasks whose intra-class variation is relatively small, such as frontal face
detection, or side-view car detection. In this level, we focus on designing effective binary
features. This results in two works, the Boosted Local Binary (BLB), and Boosted Binary
Patterns (BBP).

3.1 Boosted Local Binaries

Due to the high efficiency, binary feature is one of the most commonly-used features in object
detection. The existing binary features such as the Haar [114], LBP [71], or LAB [130] has
been demonstrated on texture analysis, object detection, and face recognition. Despite its
simplicity, a number of the binary feature modifications and extensions have been proposed.
Some of them focus on the post-processing steps which improve the discrimination ability
of binary coding [51]. But the computation cost will also be increased. Others focus on the
definition of the location where gray value measurement is taken [69]. Such improvement
on the discriminative ability is relatively limited because these locations are artificially
designed, and using intensity information might not be sufficient to solve some complex
object detection problems.

We introduce the Boosted Local Binary (BLB) feature in ICME 2014 [81], where the
local region pairs are selected by RealAdaBoost algorithm considering both the discrimi-
native ability and the feature structure diversity. In addition, we identify that using the
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Figure 3.1: Local feature hierarchy.

gradient image and gray image together for binary coding is more effective than only using
the gray image. As a result, the proposed BLB feature is more discriminative and robust
compared to common-used binary features.

3.1.1 Traditional Binary Features

LBP [71] is developed for texture classification and the success is due to its computational
simplicity and robustness under illumination variations. The traditional LBP is constructed
by the binary coding of the intensity contrast of a center pixel and several surrounding pixels.
If the intensity of the surrounding pixels is higher than the center one, the corresponding
bit will be assigned 1, otherwise it will be assigned 0. Given a center pixel c, the number
of surrounding pixels d, and the distance r between the center pixel and the surrounding
pixels i1, . . . , id, the LBP response is denoted by LBPd,r, defined by Eq. 3.1

LBPd,r =
d∑
j=1

sign(Iij − Ic)× 2j−1, r = dis(c, ij) (3.1)

where sign(x) =

 1 x ≥ 0

0 x < 0
, I is the intensity, dis is the Euclidean distance. Fig. 3.2

illustrates an example of LBP with d = 8, r = 1.
Local Assembled Binaries (LAB) [130] replaces single pixels with rectangles, as shown

in Fig. 3.2. The encoding scheme is the same: if the intensity sum of the surrounding
rectangle R1, . . . , Rd is larger than the center rectangle C, the corresponding bit will be
assigned 1; otherwise it will be assigned 0. In this equation, IC is the intensity sum of the
pixels in C.

LAB =
d∑
i=1

sign(IRi − IC)× 2i−1. (3.2)
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Figure 3.2: LBP8,1 feature (top) and LAB feature (bottom).

Figure 3.3: Boosted local binaries.

The computation of LBP is efficient because the binary coding could be calculated by
bit-shift operations. Although LAB uses rectangles instead of single pixels, the intensity
sum in any rectangles could also be easily extracted by the integral image [114].

3.1.2 Boosted Local Binaries (BLB)

The above traditional binary features have certain drawbacks when employed to encode
general object’s appearance. A notable disadvantage is the insufficient discriminative ability.
The feature response of LBP and LAB depend on the intensities of particular locations and
thus vary by object’s appearance. It will be easily influenced by illumination, occlusion, and
noises. In addition, although the size of the rectangles of LAB is flexible, the patterns of
local pixel and adjacent rectangles are fixed. It might not have sufficient ability to describe
the objects in some complicate detection tasks.

Boosted Local Binaries (BLB) comprises of 8 surrounding rectangles C1, C2, . . . , C8 and
the center rectangle C0 with the same size, as illustrated in Fig. 3.3. The centers of
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Figure 3.4: Surrounding rectangles in BLB.

C1, C2, . . . , C8 are arranged in a similar order to LBP and LAB, and none of them are
overlapped. Fig. 3.4 shows the center rectangle C0, left-top rectangle C1, top rectangle C2

and right-top rectangle C3. C2 is located at the left side of C3, and C1 is located at the
left side of C2. All of these three rectangles lay at the top of C0. In addition, to keep the
neighboring patterns, each neighboring pair (e.g., C1 and C2, C2 and C0, C2 and C3) should
overlap at least 50% either on their width or on their height. In Fig. 3.4, the dot-dashed
lines around each rectangle reflect this possible region of its neighbors according to this
constraint. So the possible region for C2 is the cyan region which is intersected by the
corresponding dot-dashed lines of C0, C1 and C3.

If the surrounding rectangles lay far away from the center rectangle, the feature response
will be easily influenced by noises. It means that the classification confidence based on this
feature might be lower. So we define the structure diversity D of the BLB as Eq. 3.3

D = 1
8

8∑
i=1

2dis(Ci, C0)
wi + hi

. (3.3)

The dis(Ci, C0) denotes the Euclidean distance between the centers of rectangle Ci and
rectangle C0. wi and hi are the width and height of the rectangle Ci. This factor will be
used in the penalty term of the feature selection procedure.

Besides using these patterns on intensity image, we also apply them on gradient images.
In consideration of the efficiency, we generate the x-direction gradient image and y-direction
gradient image respectively. The BLB feature response is

f(BLB, t) =
8∑
i=1

sign(g(Ci, t)− g(C0, t))× 2i−1 (3.4)

g(Ci, t) =


∑
j∈Ci

I(j) t = 0∑
j∈Ci

Gradx(j) t = 1.∑
j∈Ci

Grady(j) t = 2
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t is an indicator, Gradx(j), Grady(j) are the gradient magnitude of pixel j on x-direction
and y-direction respectively.

The computation cost of BLB is similar to LBP and LAB because the sum of a region in
both intensity image and gradient image could be calculated by integral images. Compared
to traditional binary features, BLB achieves similar efficiency but better discriminative
ability due to the using of variable patterns.

3.1.3 RealAdaBoost with BLB feature

We follow the RealAdaBoost introduced in Chapter 2.3.2, where each weak classifier is a pdf
(probability distribution function) of the training samples. In consideration of the struc-
ture diversity, we add a structure-aware criterion into RealAdaBoost. The discriminative
criterion of RealAdaBoost is Eq. 3.5

Z = 2
∑
j

√
W j

+W
j
− + a · fp ·D, (3.5)

where the W+,W− are internal parameters of RealAdaBoost, D is the structure diversity
of the features in Eq. 3.3, a is the structure-aware factor to balance the discriminative
capability and the feature diversity, fp is the false positive rate of current stage. The Eq.
3.5 could be explained as follows: in the beginning stages of RealAdaBoost, the samples are
still easy to be classified, so RealAdaBoost will refer to the features with more confident
patterns. In the following stages, the training samples are complicated, then the features
with diverse patterns might be utilized. This strategy makes sense, because the overall
performance and robustness of a cascade boosted classifier are strongly influenced by the
beginning stages which filter most of the candidate windows. In our experiment, we set the
structure-aware factor a to 0.15. More details are given in Fig. 3.5.

3.1.4 Experiments

Frontal face detection

We train a face detector utilizing the proposed BLB feature and evaluate its performance
on CMU + MIT frontal face dataset [87]. This dataset consists of 130 images containing
507 frontal faces with various conditions such as facial expression, occlusion, pose, and
scale variations. Most images include more than one face on various backgrounds. 5-folds
cross-validation is applied on this dataset to evaluate the proposed BLB feature. Fig. 3.6
plots the Receiver Operating Characteristics (ROC) curves of our method as well as other
popular binary features and commonly-used face detection algorithms, including Haar [114],
LBP [71], LAB [130], and heterogeneous features [73], in terms of the number of false
positives with respect to the detection rate. As shown in Fig. 3.6, our detector achieves
96.0% detection rate at 0 false positive. To our knowledge, it is the best result for 0 false
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Parameters:
N number of training samples
Nf number of randomly evaluated features in each iteration
T maximum number of weak classifiers
a penalty factor of the structure diversity

Input: Training set {(xi, yi)},xi ∈ Rd, yi ∈ {−1, 1}
1. Initialize
wi = 1

N , H(xi) = 0, i = 1, . . . , N
2. Repeat for t = 1, 2, . . . , T
2.1 Update the sample weight wi using the tth weak classifier output wi = wie

−yiht(xi)

2.2 For m = 1 to Nf

For n = 0 to 2
2.2.1 Randomly generate a BLB feature F with structure diversify D
2.2.2 Calculate the BLB response following Eq. 3.4
2.2.3 Select the best BLB which minimizes Eq. 3.5

2.3 Update weak classifier ht(x)
2.4 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)

3. Output classifier H(x) = sign[
∑T
j=1 hj(x)]

Figure 3.5: Selecting BBP feature using RealAdaBoost.

positive among the traditional features on the CMU + MIT frontal face dataset. Obviously,
compared with other algorithms using single binary feature, the detection rate of our method
is improved dramatically, especially for cases at low false alarms. The performance of our
method is also similar to the classifier using heterogeneous features [73], which is trained
by kernel SVM. In addition, we find that the boosted classifier with the penalty term (blue
curve) on feature diversity achieves better accuracy than the one without penalty term
(green curve), especially for lower false positive rate. The reason is that the features with
larger structure diversity might be easily influenced by the noise, so that the corresponding
classifier performs poor on object detection in real images.

Pedestrian detection

We evaluate the proposed BLB feature using the INRIA pedestrian dataset [19]. The INRIA
database contains 1,774 human annotations (3,548 with reflections) and 1,671 person free
images. Detection on INRIA pedestrian dataset is challenging since it includes subjects
with a wide range of variations in pose, clothing, illumination, background and partial
occlusions. In the experiments, we firstly follow the training and testing protocols at patch
level proposed by Dalal and Triggs [19]. In Fig. 3.7, we plot the miss rate tradeoff False
Positive rate Per Window (FPPW) curves on a log-log scale by tuning the rejection threshold
of the classifiers. We compare the BLB with the traditional HOG (Histogram of Oriented
Gradient) [19], and the covariance matrices mapped to Riemann Manifold [109]. It can be
seen that the BLB achieves 2% less miss rates at 10−4 FPPW comparing to HOG. The
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Figure 3.6: BLB experiments on CMU face dataset.

accuracy is also comparable with covariance matrix. But BLB’s computation cost is much
less compared to HOG and covariance matrix. In addition, the performance of the classifiers
with penalty term (blue curve) is similar to the one without penalty (green curve) at lower
FP. The reason is that FPPW evaluation utilizes patch windows, which is quite different
from real detection.

Furthermore, we evaluate our method under the criteria of the detection rate versus False
Positive rate Per Image (FPPI) [117]. Fig. 3.8 gives the comparison with the algorithms
based on single feature [19][114][63] on INRIA dataset. Our algorithm shows competitive
result with Haar [114], LBP, and HOG [19][63] feature.

Side-view car detection

The side-view car detection performance is evaluated on the UIUC car dataset [2]. This
dataset contains a single scale test set (170 images with 200 cars), a multi-scale test set (108
images with 139 cars), and a training set of 550 side-view car images. The car patches from
the training images are resized to 100× 40 pixels and horizontally flipped, so that there are
totally 1,100 car patches in the positive training set. We also collect 1,000 images without
any cars on the internet as the negative training set.

We compare our method with previous approaches following the Equal Precision and
Recall rate (EPR) method. The results are listed in Table 3.1. It can be seen that the
proposed method has high performance competitive to other methods on both single scale
and multi-scale testing sets.
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Figure 3.7: BLB FPPW evaluation on INRIA dataset.

Figure 3.8: BLB FPPI evaluation on INRIA dataset.

Table 3.1: BLB experimental results (EPR) on UIUC car dataset.

Method Single-scale Multi-scale
Leibe [57] 0.975 0.95
Lowe [67] 0.999 0.906
Wu [121] 0.975 0.935

Zheng [138] 0.980 0.960
Lampert [54] 0.985 0.986

BLB no penalty 0.990 0.986
BLB with penalty 0.993 0.986
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Figure 3.9: Convergence speed of the classifiers with different binary features on INRIA
dataset.

Figure 3.10: Selected first two BLBs of faces, pedestrians, and cars.

Feature analysis

We compare the convergence speed of the training process in INRIA pedestrian dataset.
Fig. 3.9 plots the FPPW against the number of weak classifiers for different methods. The
RealAdaBoost with penalty term on the feature diversity is utilized. This figure shows that
BLB converges faster, at the rate of approximately two times faster than LAB and LBP.
In addition, the performance of boosted classifier is shown to be positively proportional to
the convergence speed in training. This signifies that the proposed BLB performs better on
the training accuracy and the training speed of boosted classifiers. Moreover, we test the
resulting face detector on a desktop PC with dual core 3.0GHz CPU and 8 GB memory.
It only takes less than 10ms to detect all faces in a 640× 480 input image if the minimum
face size is 30× 30.

Fig. 3.10 shows the first two selected BLB features of the faces, pedestrians and cars.
These features could capture the typical structures of the objects, which might not be well
covered by traditional binary features. For example, the two features in Fig. 3.10(c) reflect
the car wheel and body pattern.
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Figure 3.11: BBP features with adjacent pairs. Each ellipse shows an example of adjacent
pair. There are 4 adjacent pairs in BBP-4, 12 in BBP-6, and 12 in BBP-8.

3.2 Boosted Binary Pattern

3.2.1 Boosted Binary Pattern (BBP)

Another important application of the binary feature is the object tracking. Since the track-
ing system considers the efficiency as an important factor as well as the accuracy, the binary
features have great advantage compared to other local features. The above BLB feature
achieves considerable accuracy for detection tasks. But for general object tracking, the key
object characteristics might be beyond the description ability of the 8-bins binary coding in
BLB. To solve this problem, we further generalized the BLB feature to the Boosted Binary
Patterns (BBP), which is published in ICME 2015 [83]. Similarly, BBP comprises of the
center rectangle C and n non-overlapped surrounding rectangles R1, R2, . . . , Rn. We denote
it by BBP-n in Eq. 3.6, where the (xi, yi) is the left-top corner of each rectangle, (wi, hi) is
the width and height

BBPn = {C,R1, R2, . . . , Rn}, Ri = {xi, yi, wi, hi}, i = 1, . . . , n. (3.6)

The surrounding rectangles Ri are numbered from 1 to n, which starts at the top-middle one
and increases in clockwise way. In our case, the n could be 4, 6, or 8. Fig. 3.11 illustrates
the examples for BBP-4, BBP-6, and BBP-8 respectively.

In BLB, it has been proved that the geometric relationship between rectangles pairs
could contribute to the overall accuracy in the classification. So we define the adjacent pairs
illustrated as the ellipses in Fig. 3.11. There are 4 adjacent pairs in BBP-4, 12 in BBP-6,
and 12 in BBP-8. Similar to BLB, the overlap ratio of BBP-4, BBP-6, and BBP-8 is set
to 0.5, 0.25, and 0.5 respectively. Fig. 3.12(a) illustrates a BBP-4 feature. In the adjacent
pair {C,R1}, R1 should overlap at least 50% with C’s width, so the available region of R1

restricted by C is the cyan region bounded by the dot-dashed lines around C. Similarly, in
Fig. 3.12(b), R1 is included in three related adjacent pairs, {C,R1}, {R6, R1}, {R2, R1}, so
it should overlap at least 25% with C’s width, R2’s height, and R6’s height. These three
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Figure 3.12: Constraint of the adjacent pairs. For BBP-4, the rectangles in adjacent pair
should overlap at least 50%. For BBP-6, the rectangles in adjacent pair should overlap at
least 25%.

constraints correspond to the dot-dashed lines around C, R2 and R6 respectively. As a
result, the possible region of R1 is the cyan region crossed by these dot-dashed lines.

Similarly, we use both the intensity image and the gradient image for BBP extraction.
We still adopt the x-direction gradient image and y-direction gradient image instead of
the true gradient. Given a BBP-n feature BBPn = {C,R1, R2, . . . , Rn}, the final feature
response is given by

f(BBPn, t) =
n∑
i=1

sign(g(Ri, t)− g(C, t))× 2i−1. (3.7)

g(Ri, t) =


∑
j∈Ri

I(j) t = 0∑
j∈Ri

Gradx(j) t = 1.∑
j∈Ri

Grady(j) t = 2

The definations of t, Gradx,Grady are the same as in Eq. 3.4. The structure diversity term
of BBP is the same with BLB in Eq. 3.3.

3.2.2 Tracking with BBP

In the tracking procedure, we use RealAdaBoost to select the meaningful BBP features to
describe the target frame by frame. Since the robustness is an important factor in object
tracking, using confident features clearly reduces the possibility of losing target or false
alarms. Thus it is better to consider the robustness for each feature in addition to the
discriminative ability.

In each frame, the RealAdaBoost solves the classification task of several positive patches
located on the target and negative patches around the target. We know that the margin
of the weak classifier h on x is y · h(x), where the h is normalized to [−1, 1]. This margin
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Input: Training set {(xi, yi)},xi ∈ Rd, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 0.01, H(xi) = 0

2. Repeat for t = 1, 2, . . . , 10
2.1 Update the sample weight wi using the tth weak classifier output wi = wie

−yiht(xi)

2.2 For m = 1 to 20
2.2.1 Randomly generate a BBP feature
2.2.2 Calculate the BBP response following Eq. 3.7
2.2.3 Build the predict distribution function W±
2.2.4 Select the best BBP which minimizes the sum of Eq. 3.9 in
three consecutive frames

2.3 Update weak classifier ht(x)
2.4 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)

Figure 3.13: Selecting BBP feature using RealAdaBoost.

represents the classification ability. Larger margins imply lower generalization error and
better robustness [94]. We define the normalized margin as

K(h,x) = y · h(x)
k

, (3.8)

where x is the sample vector, h is the weak classifier, y ∈ {−1, 1} is the class lable, k is
a parameter related with the structural diversity D in Eq. 3.3, calculated as a sigmoid
function

k =


1 D ≤ 3

1.5− 1
1 + exp3−D D > 3

.

The above equation means that we believe the BBP features with D ≤ 3 are more confident,
which include LBP8,1, LBP16,1, LBP16,2, LAB, and BBPs whose average distance between
the surrounding rectangles and the center rectangle is 3 times smaller than the rectangle
size. For the BBPs with larger structural diversity, the confidence in the tracking will
decrease. Integrating this term with the classification error Z in the following feature
selection protocol

Z = 2
∑
j

√
W j

+W
j
− −

α

n

n∑
i=1

K(h,xi). (3.9)

In consideration of the information in time domain, we accumulatively calculate Eq. 3.9
in three consecutive frames after the initialization for the first and second frames. In each
frame, we collect 50 positive and 50 negative samples around the target. 20 random BBP
features are evaluated and 10 of them with minimum Z will be selected to describe the
target. The detail algorithm is illustrated in Fig. 3.13.
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Table 3.2: Success rate SR(%) of different BBP features. Bold fonts indicate the best
performance.

Sequence BBP-4 BBP-6 BBP-8 BBP-ALL
Bolt 77 79 82 85
Biker 59 64 74 76

Cliff bar 66 69 77 80
David 77 80 85 88
Kitesurf 60 68 75 82

Occluded face 86 89 96 100
Skiing 64 66 70 77
Tiger 63 64 68 68

Twinings 82 85 88 92
Walking person 84 82 88 92

Average 72 74 80 84

3.2.3 Experiments

We evaluate our tracking algorithm on 10 challenging publicly available sequences. These
sequences are from [92], [136], and [6]. The Success Rate(SR) is utilized to evaluate the
performance of our algorithm, which is calculated based on the following score

score = area(RT ∩RG)
area(RT ∪RG) , (3.10)

where RT is the tracking bounding box and RG is the ground truth bounding box. The
tracking result is considered as a success if the score is larger than 0.5.

Firstly, we compare the performance of different BBP features, including BBP-4, BBP-6,
BBP-8, and the combination of all BBP features (BBP-All) using the algorithm described
in Fig. 3.13. The single block size of BBP varies from 2 × 2 to one third of the size of
tracking target. The tracking accuracy is given in Table. 3.2. It shows that the accuracy
of the BBP feature increases along with the number of the surrounding rectangles. The
BBP-8 consistently achieves better accuracy compared to BBP-6 and BBP-4. If we combine
all BBP features together, the accuracy could be further improved. This result shows the
effectiveness of variable binary patterns. It could also be seen that using the gradient
information, the tracking accuracy is clearly improved for all BBP features. We know that
in general object tracking, it is relatively difficult to classify the target and background only
through the intensity information. The advantage of utilizing gradient information is clear.

In addition, we compare the performance of different binary features by integrating
them into the same RealAdaBoost framework. To improve the accuracy, the Haar, LBP,
and LAB are also applied on both the intensity domain and the gradient domain. For
Haar and LAB feature, the single block size is the same as BBP. For LBP feature, the
LBP8,1, LBP16,1, LBP16,2 are integrated together. The first 6 columns in Table 3.3 show
the experimental results. It could be seen that in all 10 sequences, BBP consistently achieves
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Table 3.3: Success rate SR(%) in comparison with the traditional binary features and state-
of-the-arts. Bold fonts indicate the best one. Italic fonts indicate the second best.

Sequence Haar LBP LAB BBP CT [136] MIL [6] OAB [36] TLD [48]
Bolt 71 76 73 85 79 83 61 41
Biker 59 69 62 76 75 66 42 42

Cliff bar 64 67 71 80 89 65 23 77
David 78 59 66 88 89 68 31 98
Kitesurf 47 44 55 82 68 90 31 65

Occluded face 96 94 90 100 100 99 47 56
Skiing 70 71 68 77 70 62 69 59
Tiger 60 59 65 68 60 55 37 41

Twinings 90 77 88 92 89 72 98 46
Walking person 86 65 67 92 89 62 86 60

Average 72 74 73 84 81 72 51 59

Figure 3.14: The first two selected BBP features of faces and bikers.

at least 5% better accuracy compared to Haar, LBP, and LAB. This signifies the advantage
of variable binary patterns. We also notice that using the penalty term of robustness, the
average accuracy could be further improved 4%, especially for those targets with large pose
variant such as bolt, kitesurf, and skiing. This implies the importance of balancing the
discriminative ability and robustness in the tracking system.

Moreover, we compare our method with commonly-used algorithms, including compres-
sive tracking [136], online AdaBoost (OAB) [36], MIL [6], and TLD [48]. These algorithms
achieve the state-of-the-art results in these sequences. Since all of these trackers involve
randomness, we run them 5 times and report the average result for each video clip. The
last four columns in Table 3.3 give these quantitative results. It can be seen that the pro-
posed algorithm achieves the best or second best results in most sequences in terms of the
success rate. We find that if the tracking target has clear region contrast or rigid shape, the
tracking accuracy will be better. As shown in Fig. 3.14, in the “Occludedface” sequence,
the eye and mouth region show a clear contrast to the surrounding regions. In the “Biker”
sequence, the body contour of the biker is also a clear feature. These typical structures are
well captured by the first select two BBPs. We test our tracker on a Intel Dual-Core 3.0
GHz PC with 8GB memory. It runs at 30+ frames per second (FPS), which also shows
comparable efficiency with the state-of-the-art methods.
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3.3 Conlcusion

In this chapter, we give a brief introduction of the commonly-used binary features LBP and
LAB. Although these features has good efficiency, their discriminative ability is relatively
low due to the limited binary patterns. To solve this problem, we build a large binary
feature pool with variable-location and variable-size blocks for both the intensity domain
and the gradient domain, called Boosted Local Binaries. We further utilize RealAdaBoost
algorithm to select informative features by evaluating different blocks pairs while considering
the structure diversities. Experimental results show that the proposed BLB achieves high
accuracy on face, pedestrian and car detection tasks. It also speeds up the convergence
compared to standard binary features.

Although BLB shows promising results on some object categories, it does not work well
for general object tracking. We further design Boosted Binary Patterns with more flexible
patterns. A boosting framework which is capable of balancing the discriminative ability and
robustness of the binary features is further proposed to online update the tracking model.
Experimental results show that BBP achieves very good results in the public challenging
videos.
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Chapter 4

Mid-order features

Mid-order features utilize the gradient information to reflect specific characteristic. The
commonly-used mid-order features include the histogram features such as SIFT [61], HOG
[19], and the wavelets such as Gabor. In our research, we propose two mid-order features, the
Edge Histogram of Oriented Gradient (Edge-HOG), and the Deformable Contour Feature
(DEF).

4.1 Edge Histogram of Oriented Gradient

Histogram of Oriented Gradient (HOG) [19] is one of the most commonly-used gradient
features in object detection and recognition. HOG breaks the image region into a cell-block
structure and generates histogram based on the gradient orientation and spatial location.
The input region (block) is first divided into small connected regions, called cells, and
for each cell a histogram of edge orientation is computed. The histogram channels are
evenly spread from 0 to 180 degrees. Furthermore, the histogram counts are normalized for
illumination compensation. This can be done by accumulating a measure of local histogram
energy over the somewhat larger connected regions and using the results to normalize all
cells in the block. The combination of these histograms represents the final HOG feature.
A figure of the HOG extraction is shown in Fig. 4.1.

HOG ignores some important structural information in each cell. If two cells contain
the same edge but at different positions, the resulting feature vectors will be the same. To
solve this issue, we propose a enhanced version of HOG feature named Edge-HOG in ICIP
2014 [82]. Edge-HOG arranges the cells along an edge template to gain additional structure
information. In addition, we extract a complementary feature vector based on the gravity
centers, so that it captures more discriminative information than the traditional HOG does.
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Figure 4.1: Traditional HOG feature extraction.

Figure 4.2: Edge-HOG features.

4.1.1 Edge Histogram of Oriented Gradient (Edge-HOG)

An Edge-HOG feature consists of a series of cells along an edge template, as shown in Fig.
4.2. The edge template (dot-dashed lines) can be lines and arcs in variable length, positions
and directions. 4 pixels (blue dots) are uniformly sampled on these edges as the center pixels
of Edge-HOG cells. These cells could overlap or lay far away from each other. To reduce
the size of the feature pool, we add a constraint on the distance of the two neighboring
center pixels d and the cell size (w, h) as 0.75max(w, h) < d < 2min(w, h). Since the
cells are arranged along an edge template, the Edge-HOG not only extracts the statistical
information of the local region, but also reflects the edge position and direction.

In Edge-HOG, each bin of the gradient vector is the weighted sum of all pixels with
the same gradient orientation in a cell. It can be readily extracted using the integral image
algorithm. Besides the cell arrangement, we induce some structure information into the
feature extraction to further improve the discriminative ability of Edge-HOG. An 8-bins
structure vector for each cell in the Edge-HOG feature will be calculated based on the
geometric information. We first divide the cell into 8 regions according to angle of each
pixel and the cell center. For each region, the gravity centers are calculated, and the distance
of the gravity center and the cell center is used to generate the structure vector. As shown
in Fig. 4.3, the cell is divided into 8 regions numbered from 0 to 7. The ri illustrates the
Euclidean distance between the gravity center of ith region and the cell center, which will
be used in the structure vector extraction. Denote the coordinate of cell center by (xc, yc),
the ith bin of the structure vector dgrav is calculated as Eq. 4.1
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Figure 4.3: Edge-HOG feature extraction.

dgrav,i =
∑

(x,y)∈Ri
ri × gradx,y∑

(x,y)∈Ri
gradx,y

, (4.1)

where Ri is one of the 8 regions of each cell in Edge-HOG, grad is the gradient magnitude.
L1-normalization is applied on all cells after the feature extraction.

4.1.2 RealAdaBoost with Edge-HOG

We adopt RealAdaBoost to train the detectors based on Edge-HOG. In each iteration,
the candidate Edge-HOG features are evaluated on all positive and negative samples. To
learn the best weak classifiers, the most intuitive way is to look through the whole feature
pool, which is rather time consuming. So we resort to a sampling method to speed up the
feature selection process. More specifically, a random sub-sample of size log0.05/log0.95 =
59 will guarantee that we can find the best 5% features with a probability of 95%. For
each candidate block, the feature vectors are extracted and further used to train a linear
classification plane using least squares. Then the final feature value used to build the
probability distribution as the weak classifier. Fig. 4.4 gives more details.

4.1.3 Experiments

Experiments on INRIA pedestrian dataset

We first evaluate the proposed Edge-HOG feature using the INRIA pedestrian dataset.
Multi-scale Edge-HOG features from 8×8 to 32×32 cell sizes are utilized to train a cascade
classifier for the 64× 128 scanning window. 6,738 Edge-HOG features are generated.

In Fig. 4.5(a), we plot the miss rate tradeoff False Positive rate Per Window (FPPW)
curves. We first compare the performances of the boosted classifiers with different cell
arrangements and feature vectors. It can be seen that the Edge-HOG (green curve) shows
better results compared to the traditional HOG [140] using the same gradient feature vector
and AdaBoost training algorithm (red curve). If we use the Edge-HOG with the proposed
structure vector, the accuracy (blue curve) is further improved. We also compare our
method with three commonly-used methods, HOG with Linear SVM [19], HOG with Kernel
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Parameters
N number of training samples
M number of evaluated features each iteration
T maximum number of weak classifiers

Input: Training set {(xi, yi)},xi ∈ Rd, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for t = 1, 2, . . . , T
2.1 Update the sample weight wi using the hth weak classifier output wi = wie

−yiht(xi)

2.2 For m = 1 to M
2.2.1 Extract Edge-HOG features vectors
2.2.2 Train a classify plane to map the Edge-HOG vector to {−1, 1}
2.2.3 Select the best feature with the lowest classification error

2.3 Update weak classifier ht(x)
2.4 Update strong classifier Ht+1(xi) = Ht(xi) + ht(xi)

3. Output classifier H(x) = sign[
∑T
j=1 hj(x)]

Figure 4.4: Learning the Edge-HOG features using RealAdaBoost.

SVM [63], and the covariance matrix with AdaBoost [109]. It can be seen that the proposed
Edge-HOG method achieves detection rate of 92.9% at FPPW 10−4, which is similar to the
covariance matrix. But the computation cost is much lower.

Furthermore, we evaluate our method under the criteria of the detection rate versus
False Positive rate Per Image (FPPI). Fig. 4.5(b) shows that our algorithm also achieves
competitive result with Haar [114] and HOG [19]q[63]. The accuracy is similar to the
multi-feature combination [120].

Next, we compare the convergence speed of the training process in INRIA pedestrian
dataset. Fig. 4.6 plots the FPPW against the number of weak classifiers for different meth-
ods. This figure shows that the Edge-HOG converges faster, at the rate of approximately
two times faster than the HOG. When we utilize the proposed structure vector, the con-
vergence speed is further improved. In addition, the performance of boosted classifiers is
shown to be positively proportional to the convergence speed in training. This signifies that
the Edge-HOG performs better on the training accuracy and speed of boosted classifiers
compared to the traditional HOG.

Moreover, we investigate how the Edge-HOG captures the structure information. We
show the first 5 selected features in the boosting training in Fig. 4.7. The black rectangles
in each picture represent the cells in one Edge-HOG feature. The bright background reflects
the average profile of a pedestrian. From the figure, it can be seen that the first 5 selected
features are basically along the profile of the pedestrian, which shows that the proposed
Edge-HOG feature is able to describe the structure of the human body.
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Figure 4.5: Edge-HOG accuracy evaluation on INRIA pedestrian dataset.

Edge-HOG experimental results (EPR) on UIUC car dataset

We evaluate our algorithm on UIUC car dataset. The car patches from the training images
are resized to 64×32 pixels and horizontally flipped. We also collect 10,000 images without
any cars from the internet as the negative training set. 1,764 Edge-HOG features are
generated for 64× 32 window.

We compare our approach with previous approaches following the Equal Precision and
Recall (EPR) rate method. The results are listed in Table 4.1. It can be seen that our
algorithm achieves competitive performance to other methods on both single scale and
multi-scale test sets.

4.2 Deformable Contour Feature

The local shape features are relatively consistent to illumination variance, occlusions and
background noises, so that they are able to classify the target object with the background
[97]. In the ideal case, the local shape features should not only describe the object contour,

40



Figure 4.6: Convergence speed of the boosted detectors base on Edge-HOG in INRIA
pedestrian dataset.

Figure 4.7: The first 5 selected Edge-HOG features.

but also classify the background edges with the foreground edges. Most of the traditional
deformable edge features solve the matching problem in a local region, so that it may
mismatch to inner contours or background edges. In addition, the geometric relationship
between the deformable edge features is also important. Grouping the deformable edges
has certain advantage because it is consistent with the perceptual grouping and recognition
of human vision. It will also contribute to the description ability of continuous contours.

Inspired by these issues, we propose the Deformable Edge Set (DES) in ICIP 2015 [84].
The key idea is to encode the local shape using deformable templates and then to group
them to capture higher level shape characteristics. Our contributions are two folds. Firstly,
the Deformable Edge Feature (DEF) is designed based on a set of edge templates and the

Table 4.1: Experimental results on UIUC car dataset.

Approach single scale multi-scale
Saberian et al. [91] 99.0% 92.1%

Xu et al. [127] 99.5% 98%
Wu et al. [121] 97.5% 93.5%

Lampert et al. [54] 98.5% 98.6%
Karlinsky et al. [49] 99.5% 98.0%

Edge-HOG 99.5% 98.6%
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Figure 4.8: Illustration of DEF. (a) Edge template (blue lines) and matched edges (green
lines) in 5 swans. (b) and (c) show the deformation of the first and second principal
components (the eigenvalue increases from pink to red lines).

distribution model of pixels [30]. In addition, the DES is constructed to encode the geometric
relationship between neighboring DEFs. This process is achieved by efficiently learning the
DEF arrangement and model parameters in a subspace. Compared to traditional shape
features, the DES focuses on the continuous contours rather than other shape characteristics.

4.2.1 Deformable Edges

In this section, we will introduce how to represent the local shape information by DEF.
DEF extraction consists of two steps, template matching and edge deformation. In the
template matching procedure, we generate a set of lines from 6 pixels to 1/3 of the object
window size as the edge templates. Given an input edge image E, each edge template t is
matched to the edges in E to get the best matching result e∗ following

e∗ = argmin
|e|=|t|,e∈E

D(e, t), (4.2)

where |e| is the length of edge e, D(e, t) is the normalized distance between two edges e and
t with the same length

D(e, t) = 1
|e|

|e|∑
i=1

(d(ei, ti)+α|O(ei)−O(ti)|). (4.3)

In Eq. 4.3, ei and ti are the ith pixel of e and t respectively, d(ei, ti) is the Euclidean
distance between these two pixels, O(·) is the normalized orientation, and α is the constant
to balance the weight of the geometric location and the orientation. Fig. 4.8(a) shows two
templates and the matched contours in 5 swan images of ETHZ database.

In the edge deformable procedure, the distribution model of the pixels in the matched
edges is utilized. For each edge template, denote the matched edge e∗ in an image by a 2|e∗|
dimensional vector based on its coordinate {e∗1,x, e∗1,ye∗2,x, e∗2,y, . . .}, the DEF f is generated
by applying PCA on all training images
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Figure 4.9: Illustration of DES. (a) DES which consists of 3 DEFs (green lines). (b) and (c)
show the deformation of the first and second principal components (the eigenvalue increases
from pink to red lines).

fa1,...,ap = µ+
p∑
i=1

aivi, (4.4)

where µ is the mean edge over all samples, v is the eigenvector, the parameter ai is bounded
by |ai| ≤ 2

√
λi, and λ is the eigenvalue. The Eq. 4.4 means that DEF encodes the

deformation of edges by v with the weight ai. Fig. 4.8(b) and Fig. 4.8(c) show the
deformation described by the first two components. It could be seen that the edge deforms
from pink lines to red lines, along with the increasing of ai.

In our implementation, we utilize the first three components so that it allows us to keep
at least 95% energy. Given an input edge graph E and a DEF fa1,...,ap , the matching cost
is calculated by

C(E, f) = min
i,j,k,e∈E

D(e, fai,aj ,ak
). (4.5)

We quantize the ai, aj , ak to 15 bins, 10 bins, and 6 bins respectively. The distance transform
[97] is utilized to calculate the optimal a∗i , a∗j , a∗k efficiently.

4.2.2 Constructing Deformable Edge Set (DES)

The Deformable Edge Set (DES) is defined as a set of DEF

F = {f1, f2, . . . , fn}, (4.6)

where the DEFs in DES are arranged in a chain to describe the continuous contour. Each
f i, 1 < i < n is adjacent to f i−1 and f i+1, which leads to two constraints. Firstly, the two
adjacent DEFs should not lay far away from each other, so one vertex of these DEFs need
to be close enough. In addition, to describe the continuous contour, the other vertex of
these two DEFs should not be too close. These constraints are formulated as

43



dis(µi|µi|, µ
i+1
1 ) ≤ 6 dis(µi1, µi+1

|µi+1|) ≥
1
4(|µi|+ |µi+1|), (4.7)

where µi is the mean of f i over all images, µij is the jth pixel of µi, |µ| is the length of µ,
dis is the Euclidean distance.

Given an edge map E and a DES F , the matching cost of DES is the sum of the matching
cost of each DEF in Eq. 4.5 and the cost of all adjacent DEFs

C(E,F ) =
n∑
i=1

C(E, f i) + β
n−1∑
i=1

C(f i, f i+1), (4.8)

where

C(f i, f i+1) = |D(f i, µi)−D(f i+1, µi+1)|, (4.9)

β is the weight of the adjacent cost, set as 1.25 in our experiments. The adjacent cost in
Eq. 4.9 is calculated by accumulating the deformation differences of two adjacent DEFs.
This cost will be small in a well-matched object since the adjacent edges in any objects has
similar deformations. Fig. 4.9(a) gives the example of a DES which consists of 3 DEFs.

4.2.3 Using DES for recognition

Because we utilize 3 components in DEF extraction, for a DES F = {f1, f2, . . . , fn},
minimizing Eq. 4.8 requires us to solve the optimization problem with 3n parameters.
Using brute force to enumerating the possible solutions is not realistic. Then we consider
the 3n−dimensional parameter space M = {a1,i, a1,j , a1,k . . . an,i, an,j , an,k}. Similar to the
strategy use in Chapter 4.2.1, we move the optimization problem to the subspace by PCA.
The model parameters of DES are estimated by

Mb1,...,bp = µ′ +
p∑
i=1

biv
′
i, (4.10)

where µ′ is the average parameters for all training samples, v′i is the eigenvector, the pa-
rameter bi is bounded by |bi| ≤ 2

√
λ′i, and λ′ is the eigenvalue. We still use the top three

principal components bi, bj , bk and quantize them to 15 bins, 10 bins, and 6 bins respectively.
As a result, the learning process of DES parameters takes O(15× 10× 6) time, which is far
more efficient than the brute force strategy.

In the training process, we begin with an initial DEF and incrementally grow it into a
DES. In each iteration, we search all adjacent DEFs following the constraint in Eq. 4.7.
For each candidate DEF, the matching cost function of adding it to current DES (Eq. 4.8)
is updated, and the model parameter M is calculated to update the parameter subspace
in Eq. 4.10. Then the DEF with the minimum cost will be added to current DES. This
process is repeated until the subspace fail to keep 95% of the energy or the total number
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Figure 4.10: Examples of object and contour location result in the ETHZ database.

Table 4.2: Comparison of Average Precision (AP) with commonly-used algorithms on ETHZ
shape database.

Felz.[28] Ma [62] Wang [116] Srinivasan [100] Li [59] DEF DES
Applelogos 89.1 88.1 88.6 84.5 82.3 90.1 92.0
Bottles 95.0 92.0 97.5 91.6 90.0 92.0 97.5
Giraffes 60.8 75.6 83.2 78.7 69.2 80.4 81.8
Mugs 72.1 86.8 84.3 88.8 98.0 86.8 89.8
Swans 39.1 95.9 82.8 92.2 81.0 88.2 92.6
Mean 71.2 87.7 87.3 87.2 84.1 87.5 90.2

of DEF exceeds 12. Fig. 4.9(b) and Fig. 4.9(c) illustrate a DES deformed by the first and
second principal component.

We utilize DEF and DES as shape features for object recognition in RealAdaBoost
framework. The minimum matching cost in Eq. 4.7 is utilized as the feature response.
The objects are detected using the classifier trained to 10−6 false positive rate. After the
detection, the object contours will be located in the detected bounding box. Given a pixel x
in a detection window, the probability of x being in any edges is the sum of the confidence
of DEFs f including x

P (x) =
∑
x∈f i

W+
Cx

W+
Cx

+W−Cx

, (4.11)

where Cx is the matching score corresponding to f i, W± is the distribution on positive
samples and negative samples respectively. The final contours are obtained by averaging
Eq. 4.11 in the sliding windows of multiple scales.

4.2.4 Experiments

We show the performance of the proposed method using the ETHZ shape dataset [29],
which consists of 5 classes including applelogo, bottle, giraffe, mug and swan. This dataset
is challenging since the objects appear in a wide range of scales with intra-class shape
variations. We follow the training and testing protocol in [29]. For applelogos and giraffes,
80× 80 windows with 6,154 edge templates are utilized. For mugs, 100× 90 windows with
6,982 edge templates are adopted. 100× 60 windows and 5,610 edge templates are used for
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Table 4.3: Accuracy of localized object boundaries. Each entry is the AC/AP.

Bounding boxes [30] Ferrari [30] DEF DES
Applelogos 42.5/40.8 91.6/93.9 91.4/91.5 92.7/93.2
Bottles 71.2/67.7 83.6/84.5 83.7/83.1 84.5/87.2
Giraffes 26.7/29.8 68.5/77.3 65.0/75.2 73.3/79.2
Mugs 55.1/62.3 84.4/77.6 82.7/77.6 83.9/80.1
Swans 36.8/39.3 77.7/77.2 74.3/75.2 80.2/84.4

swans, while 40× 100 windows and 2,772 edge templates for bottles. The α in Eq. 4.3 are
set to 4 for applelogos, swans and giraffes, 6 for mugs, and 3 for bottles.

In Table 4.2, we compare the Average Precision (AP) of our algorithm with the commonly-
used algorithms [116][100][28][62][59]. These algorithms achieve the best results among the
non-deep learning methods on this database. It could be seen that DEF shows comparable
result with these algorithms. The DES achieves about 3% better accuracy compared to
DEF, which also shows the best result on 2 categories, and the second best results on the
other 3 categories. This signifies the advantage of grouping DEF to capture the continuous
contour information.

In Table 4.3, we compare the performance of the boundary location with [30] using
both the AP and the Average Coverage (AC) as the evaluation protocol. It shows that only
using DEF, the accuracy is slightly lower than [30]. Combining DEF to DES, the accuracy is
significantly improved, especially for the swans and giraffes. This result is reasonable since
compared to DEF, DES is able to filter some false matches on the inner or background edges.
For the swans images which include a lot of background edges in the water surface, or the
giraffes images where the giraffes are surrounded by the forest and prairie, the advantage
of using DES is clear. Fig. 4.10 shows some recognition examples and localized contours.

4.3 Conclusion

In this chapter, we introduce two works of the mid-level features. The Edge Histogram of
Oriented Gradient arranges the blocks along an edge to combine the geometric information
and gradient statistic. In addition, a new feature extraction method is proposed based on
the local structural information, as complementary to the traditional gradient histogram.
Experimental results show that the Edge-HOG performs better on both the accuracy and
training efficiency compared to traditional HOG feature.

Another work is the Deformable Edge Set. DES consists of several deformable edge
features (DEF). The local shape information is encoded by the pixel distribution model
in each DEF. They are further grouped based on the geometric relationship to describe
continuous contour by DES. All the deformable parameters are learned in the subspace.
The experimental results show that the boosted classifiers trained on DEF and DES work
well on both the object detection and boundary localization tasks.
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Chapter 5

High-order features

High-order features extract more complicated information as feature vector, such as second-
order gradient, or the covariance matrix of low-level information. Recently, the co-occurrence
features have become a hot topic. The co-occurrence information extracted by these fea-
tures are able to capture some complicate object characteristics. Unfortunately, they also
lead to heavy computation cost because the dense feature vector is time-consuming to cal-
culate. In addition, we know that the performance of an object detector is decided not only
by the discriminative ability of the features, but also by their generalization power, which is
defined as the ability to deal with the cases that are not part of the training process. Due
to the fact that some diverse co-occurrence patterns are sensitive to background noise, most
of the co-occurrence features have poor generalization power. The detector succeeding in
one scene might fail in another scene with different conditions, such as pose, illumination,
etc. This is actually a trade-off problem. Although using stronger features may contribute
to the training accuracy, it will increase the risk of both low generalization power and high
computation cost.

To solve this problem, we design a set of localized co-occurrence features which can be
computed efficiently. We generalize a kind of co-occurrence patterns that could be applied
on any low-level features. Three kinds of co-occurrence features, CoHaar, CoLBP, and
CoHOG are constructed as examples. In addition, the proposed co-occurrence features
could be easily integrated with a Generalization and Efficiency Balance framework (details
in Chapter 7.1) to further improve the accuracy and robustness. With the experiments on
PASCAL VOC dataset, the proposed co-occurrence features are proved to be one of the
most discriminative traditional features. This research is part of our ICCV paper [85].

5.1 Co-occurrence patterns

The co-occurrence features can be constructed based on the statistics information of several
pre-defined co-occurrence patterns. Each co-occurrence pattern {U, V, F1, F2} is a constraint
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Figure 5.1: The pixel pairs in co-occurrence patterns. Each black pixel and center pixel
correspond to a pixel pair. The highlight parts show the pairs with offsets U ≤ 4, V ≤ 4.

on a pixel pair a = {x1, y1, f1} and b = {x2, y2, f2}. (a, b) should satisfy the following
condition

|x1 − x2| = U, y1 − y2 = V, f1 = F1, f2 = F2. (5.1)

In Eq. 5.1, the (x1, y1), (x2, y2) are the coordinates of a and b. The offset U, V ≥ 0 show
the spatial distance of pixel a and b. f1, f2 are scores of a and b generated by feature
extraction algorithms. F1, F2 are constants in the score space F . As shown in Fig. 5.1,
each black pixel and the center pixel correspond to the pixel pair of a co-occurrence pattern
with U ≤ 4, V ≤ 4.

To compute a stable distribution that is robust against noise, we utilize the histogram
based on the division of score space F as the co-occurrence feature vector. Given an input
window R, the offset U, V , and an extraction method to generate F , we divide F into n bins
{F1, . . . , Fn}. The co-occurrence feature C is a n2 dimension vector, where each dimension
ci,j is the number of the pixel pairs in R satisfying the co-occurrence pattern (U, V, Fi, Fj)

C(U, V ) = [c1,1, c1,2, . . . , c1,n, . . . , cn,n], (5.2)

ci,j = Count(a, b) satisfying (U, V, Fi, Fj) in R, 1 ≤ i, j ≤ n.

As shown in Fig. 5.2, the two axes correspond to the divided score space F , and the
co-occurrence feature vector has 8× 8 = 64 dimensions.

Compared to the covariance matrix, the co-occurrence features utilize the co-occurrence
histogram to describe the distribution of object characteristics instead of the covariance.
Our co-occurrence features are based on single co-occurrence pattern, so the extraction
will be relatively fast if we adopt efficient methods to generate F . In our case, we utilize
the methods inherited from Haar, LBP, and HOG to construct the CoHaar, CoLBP, and
CoHOG features respectively.
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Figure 5.2: 8× 8 co-occurrence histograms.

Figure 5.3: Haar features. Black regions have -1 weight, and white regions have +1 weight.

5.2 CoHaar feature

Haar-like features [114], shown in Fig. 5.3, consist of two or more rectangular regions
enclosed in a template. Such features produce a feature value as

F =
l∑

t=1
wtIt, (5.3)

where t iterates through all l rectangles, the It represents the mean intensity of the pixels
enclosed within the tth rectangle. Every rectangle in the Haar feature is assigned a weight
that is represented by wt. The weights are set such that

∑l
t=1wt = 0 is satisfied. The

computation of Haar feature is quite efficient because the intensity sum in any rectangles
can be easily calculated by the integral image [114].

To construct the CoHaar feature, we extend the Haar feature extraction to the gradient
domain. In consideration of the efficiency, we utilize the x and y directional gradient image
respectively. The F of CoHaar feature in Eq. 5.2 is replaced with the Haar feature extraction
equation 5.3 on the intensity domain, gradient-x domain or gradient-y domain. We quantize
F to n = 8 bins, so the CoHaar feature dimension is 8× 8 = 64. Given an input window R

and an indicator k, the CoHaar feature is formulated as

CoHaar(U, V, k) = [c1,1, c1,2, . . . , c1,8, . . . , c8,8] (5.4)

ci,j = Count(a, b) satisfying (U, V, Fi, Fj) in R

F =
l∑

t=1
wtIt(k), 1 ≤ i, j ≤ 8,
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Figure 5.4: 58 uniform patterns of LBP8,1 feature. Each row corresponds to a cluster in
the CoLBP extraction.

where Fi, Fj are the quantized Haar feature response, k ranges from 0 to 2, I(k) is the
intensity sum when k = 0, the gradient sum on gradient-x image when k = 1, and on
gradient-y image when k = 2.

5.3 CoLBP feature

We have already introduced the non-uniform LBP feature in Chapter 3.1.2. Uniform LBP
is a subset of LBP, defined by ∆ in Eq. 5.5, which shows the number of bitwise transitions
from 0 to 1 or vice versa when the bit pattern is considered circular

∆(LBPd,r) = |sign(Id−1 − Ie)− sign(I0 − Ie)|+
d−1∑
i=1
|sign(Ii − Ie|)− sign(Ii−1 − Ie).

(5.5)

Fig. 5.4 shows all uniform patterns for LBP8,1. The binary patterns are reduced to 59,
where all the non-uniform patterns are merged into another pattern.

Ojala et al. [71] has shown that over 90% local structures belong to uniform patterns
when using the parameter of d = 8, r = 1. Thus, the value calculated by uniform LBP is
more stable and less prone to noise. Then we propose the CoLBP based on these uniform
patterns. Similarly, the LBP extraction is applied on both the intensity and gradient do-
main. In consideration of the rotation invariance, we merge the 58 uniform LBP8,1 patterns
to 8 clusters based on the number of ‘1’ values, shown as the 8 rows in Fig. 5.4. All the
non-uniform patterns construct another cluster. As a result, the LBP response space is
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divided into n = 9 bins, so the CoLBP histogram consists of 9× 9 = 81 dimensions. Given
an input window R and an indicator k, the CoLBP feature vector is generated by

CoLBP (U, V, k) = [c1,1, c1,2, . . . , c1,9, . . . , c9,9] (5.6)

ci,j = Count(a, b) satisfying (U, V, Fi, Fj) in R

F = LBPd,r,k, 1 ≤ i, j ≤ 9,

where Fi, Fj are the cluster number of LBP response F , LBPd,r,k is the LBP response on
intensity image when k = 0, on gradient-x image when k = 1, and on gradient-y image
when k = 2.

5.4 CoHOG feature

HOG breaks the image region into a cell-block structure and generates histogram based
on the gradient orientation and spatial location. Watanabe et al. [119] proposed a dense
version extracting all possible co-occurrence patterns of the gradient orientation in the whole
image, which is rather time consuming. Instead, we build our CoHOG based on single co-
occurrence pattern. The gradient orientation on both the intensity domain and the gradient
domain are utilized as the F in CoHOG feature and further quantized to 8 bins. Therefore,
there are 8 × 8 = 64 elements in the co-occurrence histogram. Given an input window R

and an indicator k, the CoHOG histogram is formulated as

CoHOG(U, V, k) = [c1,1, c1,2, . . . , c1,8, . . . , c8,8] (5.7)

ci,j = Count(a, b) satisfying (U, V, Fi, Fj) in R

F = GradientOrientationk, 1 ≤ i, j ≤ 8,

where Fi, Fj are the quantized gradient orientation, F is the gradient orientation on original
image when k = 0, the gradient orientation on gradient-x image when k = 1, and on
gradient-y image when k = 2.

5.5 Experiments

We evaluate the proposed method on pedestrian detection and general object detection
tasks. For pedestrian detection, the INRIA dataset and Caltech dataset are utilized. The
Caltech dataset [23] consists of about 250,000 frames with a total of 350,000 bounding boxes
and 2,300 unique pedestrians are annotated. The individuals in these datasets appear in
many positions, orientations, and background variety. We use 64× 128 pedestrians and co-

51



Figure 5.5: Comparison of different co-occurrence features and feature combinations on
INRIA pedestrian dataset.

occurrence windows from 6×6 to 56×112. The locations of the window centers are sampled
every 4 pixels. As a result, this will generate 7, 997 different windows. The evaluation is
based on the detection rate versus False Positive rate Per Image (FPPI) [117].

We first evaluate the performance of different co-occurrence features with conventional
RealAdaBoost on INRIA dataset. Fig. 5.5(a) illustrates the performance of the boosted
classifiers with different co-occurrence features and traditional features. It can be seen
that all the detectors with co-occurrence features clearly outperform the detectors with
corresponding traditional features. The CoHOG detector performs better than CoLBP and
CoHaar detector, which shows that gradient orientation co-occurrence is more discriminative
compared to intensity and gradient magnitude co-occurrence. In addition, we notice that the
accuracy of the detectors trained on larger offset (> 4) CoFeatures are lower, which explains
the influence of structure diversity. In fact, 90% offsets of the selected CoFeatures in “CoX
(All offsets)” curves are within (4,4). Compared to the existing co-occurrence features,
our co-occurrence features are histograms of quantized feature response on selected co-
occurrence patterns, which are more discriminative than the combination of Haar responses
(JointHaar [66]). In addition, using dense feature vector (CMLBP [70], dense CoHOG [119])
might lead to the dimension redundant. So the accuracy of our co-occurrence features are
better.

Next, we compare the combination of the proposed 3 co-occurrence features with other
feature combinations. From Fig. 5.5(b) we could find that the combination of the co-
occurrence features clearly show better accuracy compared to the combination of low-level
features “Haar+LBP+HOG”. The groups of “X+Co-X” achieve slightly better compared to
using “Co-X”, which is still lower than the combination of CoFeatures. The best one among
these groups, which combines all co-occurrence feature together, achieves 15% average miss
rate. It is a significant improvement compared to using single co-occurrence feature. These
results reflect the advantage of using multiple co-occurrence features in pedestrian detection.
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Figure 5.6: Comparison of the co-occurrence features with the commonly-used algorithms.
(a) INRIA. (b) Caltech.

Furthermore, we compare our results with the commonly-used methods on pedestrian
detection in Fig 5.6. We notice that using the combination of all 3 co-occurrence features,
the accuracy is much better than some boosting family methods (Multiftr, FPDW, pAUC-
Boost, FisherBoost, Crosstalk), but the detectors with single co-occurrence feature achieve
lower accuracy compared to other methods with high accuracy (SketchTokens, Spatialpool-
ing, LDCF, ACF-Caltech+). The reason is that the proposed co-occurrence features are
extracted on single scale, so that the discriminative ability might be lower compared to
the evolution of channel features, such as the dense sampled multi-scale feature in ACF-
Caltech+ [68], or the decorrelated features in LDCF [68]. But this gap can be compensated
by the combination of multiple co-occurrence features. In addition, our detector is also
better than the MOCO [11] (46% on Caltech) , which is a combination of zero-order, first-
order, and second-order co-occurrence information. The major advantage of our method is
that we select the meaningful co-occurrence patterns by RealAdaBoost, while MOCO uses
all possible patterns with Latent SVM. There will be some redundant information in the
dense feature vector.

5.6 Conclusion

In this chapter, we introduce how to use the co-occurrence features for better object de-
tection. The proposed co-occurrence features could be used on any traditional low-level
features, so that they are quite flexible for general object detection. We show that the
accuracy of co-occurrence feature is much better compared to low-level features. It is also
comparable with some feature fusion framework. This demonstrates the effectiveness of
extracting co-occurrence information on low-level features.
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Chapter 6

Enhancing the weak classifiers

Boosting integrates several weak classifiers into a strong classifier. The efficiency and ac-
curacy of a boosted classifier is strongly related to the weak classifier. However, since the
boosting procedure focuses on the hard samples gradually, it gets more and more difficult
to find the weak classifiers that can efficiently improve the classification power of the strong
classifier. For those more complicated objects such as the multi-view and multi-pose pedes-
trian, the problem becomes much more serious that in later training rounds the current
classification task might be beyond the ability of the weak classifier [122]. As a result, the
training may converge very slowly or can not converge at all.

To solve this problem, one part of our research lays on the weak classifier enhancement,
which results in the basis mapping method published in CVPR 2015 [80].

6.1 Basis mapping

In the boosting training, the weight of the correctly classified sample is decreased, and the
weight of the mis-classified sample is increased. As a result, the weak classifier learning will
gradually focus on the hard samples in the training set. It will be more and more difficult
to find the appropriate weak classifiers in the later round. Therefore, the effectiveness of
the boosting will be improved if we could facilitate the weak classifier training on these
hard samples. In this chapter, we plan to restrict the learning of the weak classifier into a
constrained region instead of the whole sample space. That means, we propose to map the
original samples into the constraint region subject to the hard samples. Intuitively, such
mapping “moves” the original samples into a region “around” the hard samples. Therefore,
the weak classifier learning can specifically learn the classification hyperplane within the
region. This learning task will be much easier compared to that in the whole sample space.

The basis mapping is defined as a process that condenses the sample space into a region
referring to a hard sample, namely basis sample. It could be formulated as
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Φ(x) = ϕ(x,xb) ϕ : Rm ×Rm → Rn, (6.1)

where x ∈ Rm is the sample in the original space, and xb ∈ Rm is the basis sample. This
Φ maps the original space Rm to a new space Rn.

We present a kind of mapping that restricts the mapped samples to a “hypersphere”
around the Φ(xb) with the same dimension (m = n), and we set the radius as 2||Φ(xb)||.
This mapping could be denoted as

∀x ∈ Rm : ||Φ(x)− Φ(xb)|| ≤ 2||Φ(xb)||, (6.2)

where x(i) is the ith dimension of x, and ||x|| represents the sum of all dimensions x(i) in x

∀x ∈ Rm : ||x|| ≡
m∑
i=1
||x(i)||. (6.3)

We further give Eq. 6.4, which is a sufficient condition of Eq. 6.2 to constrain the
mapping function

||Φ(x)− Φ(xb)|| ≤ ||Φ(x)||+ ||Φ(xb)|| ≤ ||2Φ(xb)||. (6.4)

If the mapping satisfies Eq. 6.4, it will also satisfy Eq. 6.2. Therefore, we use Eq. 6.5 as a
constraint of the mapping function

∀x ∈ Rm : ||Φ(x)|| ≤ ||Φ(xb)||. (6.5)

Substituting ϕ in Eq. 6.1 into Eq. 6.5, we may find that ||ϕ(•, •)|| is a kind of similarity
measure for vectors in Rm. In object detection, histogram features such as HOG and LBP
are commonly-used due to their good description ability. If we utilize histogram features
as x, the ||ϕ(•, •)|| could be constructed by histogram distance metrices. Therefore, we
adopt three similarity metrics of histograms, the Histogram Intersection, the Chi-Square
Distance, and the Bhattacharyya Distance respectively to conduct the function ||ϕ(•, •)||.

Histogram intersection [63] is usually used as a similarity metric for histogram-based
representations of images. It can be formulated as

SHI(x, z) =
m∑
i=1

min(x(i), z(i)). (6.6)

Then we define the Histogram Intersection Mapping (HIM). Each dimension of the mapped
vector can be calculated as

Φ(i)(x) = ϕ
(i)
HIM (x,xb) = min(x(i),x(i)

b ). (6.7)
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Figure 6.1: Sample distribution before and after Histogram Intersection Mapping (HIM).

Defining the basis mapping based on this measurement has certain advantage because
the L-1 distance based measurement is more robust to outliers. To evaluate the effectiveness
of the HIM, we train a classifier using HOG feature and LogitBoost algorithm on Caltech
pedestrian dataset. The sample distributions on the first selected HOG feature are plotted
in Fig. 6.1. The X-axis and the Y-axis represent the two most important dimensions of
the HOG feature respectively. They correspond to the two largest weights in the linear
regression. Fig. 6.1(a) and 6.1(c) show the positive and negative sample distributions
before the HIM. Fig. 6.1(b) and 6.1(d) show the distributions after the HIM referring the
basis sample (9, 3) in original space. We may find that it is relatively difficult to use a linear
classification plane to separate the positive samples and negative samples in the original
space. The HIM maps the original samples into a condensed space, where the pattern
distributions become much more separable. It is much easier to learn the classification
hyperplane in the mapped space.

The Chi-Square Distance is another distance metric between histograms [3], as formu-
lated in Eq. 6.8

SCHI(x, z) = C −
m∑
i=1

w(m) (x(i) − z(i))2

x(i) + z(i) . (6.8)

Then we construct the CHi-square Mapping (CHM) by setting all the w(m) to 1 and omitting
the constant C

Φ(i)(x) = ϕ
(i)
CHM (x,xb) = (x(i) − x(i)

b )2

x(i) + x(i)
b

. (6.9)
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Figure 6.2: Sample distribution before and after CHi-Square Mapping (CHM).

The Bhattacharyya Coefficient [113] can also be employed to measure the similarity
between two histograms

SBHA(x, z) =
m∑
i=1

√
x(i)z(i). (6.10)

Then the BhattaCharyya Mapping (BCM) could be defined as

Φ(i)(x) = ϕ
(i)
BCM (x,xb) =

√
x(i)x(i)

b . (6.11)

Similarly, the sample distribution of CHM and BCM on Caltech dataset are shown in
Fig. 6.2 and Fig. 6.3 respectively, where the basis sample is (2, 3) and (9, 6). It can be
seen that both the CHM and BCM map the original samples into a more condense space
around the basis sample, which makes the mapped space more appropriate for learning a
classification hyperplane. These results show that the CHM and BCM also play the similar
role as the HIM.

With these basis mappings, the classification task is moved from original space to a
shrinked space around the hard samples. Learning the weak classifiers in the shrinked
space will be easier compared to learning in the original space.

6.2 Basis Mapping and Kernel Method

Kernel methods map the original samples into an implicit high-dimension space, where the
linear classification is subsequently applied. As a result, kernel classifiers achieve better
accuracy compared to linear classifiers. In boosted classifier, the overall accuracy is mainly
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Figure 6.3: Sample distribution before and after BhattaCharyya Mapping (BCM).

decided by the weak classifier [93]. If we utilize the kernel weak classifiers instead of the
conventional weak classifiers, the accuracy of the overall boosted classifier will be clearly
improved. In this section, we will show that the basis mapping is an approximation of
applying additive kernel methods as weak classifiers in the boosting algorithm.

Generally, linear classification in the implicit space can be implemented in the original
space through the kernel trick. Given two m-dimension samples x, z in the original space
and a kernel function K(x, z) that satisfies the Mercer’s Condition, there exists a function
ψ,

K(x, z) = ψ(x) • ψ(z), (6.12)

where • is the dot product of two vectors.
In boosting training, learning weak classifier h could be considered as finding an optimal

classification hyper-plane based on the training samples in the originalm-dimensional space.
If the kernel method is applied in the procedure of weak classifier learning, denote the
optimal classification hyper-plane in the implicit space by w∗, given a sample in the original
m-dimension space by x = [x(1), . . . ,x(m)], the optimal weak classifier h∗(x) is the dot
product of the ψ(x) and w∗

h∗(x) = w∗ • ψ(x). (6.13)

In the extreme case, if there is a vector x∗ ∈ Rm satisfies ψ(x∗) = w∗, Eq. 6.13 can be
implemented by Eq. 6.14
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h∗(x) = w∗ • ψ(x) = ψ(x∗) • ψ(x) = K(x,x∗). (6.14)

Using Eq. 6.14 as the weak classifier is relatively convenient. So the only problem is to find
out such an x∗.

Unfortunately, in most of the cases, ψ is not invertible or even ψ itself could not be
explicitly described, so it seems to be impossible to find such an x∗. But in boosting
framework, we could approximate x∗ by selecting one of the current training samples x′.
After evaluating several training samples to select the best one to approximate x∗, the
optimal h∗ could be approximated as the h in Eq. 6.15

h∗(x) ≈ h(x) = w′ • ψ(x) = K(x,x′), (6.15)

where w′ = ψ(x′). This implies that by referring to an appropriate sample x′, the linear
classification in the implicit space could be approximated by the above kernel function.

Then we turn back to the basis mapping. In all three proposed basis mappings, each
dimension of the feature vector x is independent with each other, so the basis mapping
Φ(x) could be written as

Φ(x) = ϕ(x,xb) = [ϕ(x(1),x(1)
b ), . . . , ϕ(x(m),x(m)

b )]. (6.16)

Notice that all these basis mappings correspond to the additive kernels in Eq. 6.17.
The HIM corresponds to the histogram intersection kernel, the CHM corresponds to the
chi-square kernel, and the BCM corresponds to the bhattacharyya kernel

K(x,x′) =
m∑
i=1

k(x(i),x′(i)). (6.17)

So the ϕ in Eq. 6.16 is exactly the same as the k in Eq. 6.17 for these basis mappings.
Then the weak classifier in Eq. 6.15 could be written as

h(x) = K(x,x′) =
m∑
i=1

ϕ(x(i),x′(i)). (6.18)

As mentioned above, in the boosting framework, we could use x′ to approximate x∗. This
is achieved by evaluating different hard samples in current training stage to get the best
one xb. Then Eq. 6.18 is achieved by Eq. 6.19

h(x) =
m∑
i=1

ϕ(x(i),x′(i)) =
m∑
i=1

ϕ(x(i),x(i)
b ). (6.19)

We further fit the parameters a and b on Eq. 6.19 as the final weak classifier
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Parameters
N number of training samples
Nb number of basis samples per iteration
Nf number of features per iteration
T maximum number of weak classifiers
θ threshold of false positive rate

Input: Training set {(xi, yi)},xi ∈ Rm, yi ∈ {0, 1}
1. Initialization

wi = 1/N,H(xi) = 0, p(xi) = 0.5
2. Repeat for t = 1, 2, . . . , T
2.1 Compute zi and wi 2.2 For m = 1 to Nf

For n = 1 to Nb

2.2.1 Randomly select a basis sample xb with top 20% weights
2.2.2 Calculate the original feature vectors xi
2.2.3 Calculate the mapped vectors Φ(xi) = ϕ(xi,xb)
2.2.4 Fit the function h Eq. 6.20 by weighted least square regression
from Φ(xi) to zi
2.2.5 Select the best feature and basis sample with minimum regression error
2.2.6 Calculate the false positive rate. If it is lower than θ, break

2.3 Update H(xi) and p(xi)
3. Output classifier H(x) = sign[

∑T
j=1 hj(x)]

Figure 6.4: LogitBoost training with basis mapping.

h(x) =
m∑
i=1

a(i)ϕ(x(i),x(i)
b ) + b. (6.20)

According to Eq. 6.16, Eq. 6.20 is the linear classification on the mapped space Φ(x) around
the basis sample. The kernel classification Eq. 6.14 is finally transformed to a linear classi-
fication. So we get the conclusion that the weak classifier based on the basis mapping Φ is
an approximation of additive kernel classification in the original space, which significantly
has better discriminative ability than simple decision stump or linear weak classifiers. Be-
cause the performance of a boosted classifier mainly depends on the weak classifiers. The
proposed basis mapping will contribute to the overall accuracy of the boosted classifier. In
addition, the basis mappings constructed by Eq. 6.6, 6.8, 6.10 are computational efficient,
they does not increase the feature dimension. Therefore, the computation cost will not
increase much compared to the linear weak classifiers.

6.3 LogitBoost based on Basis Mapping

The proposed basis mapping is integrated into the LogitBoost framework as an independent
module in each training round. The parameters a, b in the weak classifier hj(x) are learned
by regularized least square. In the basis mapping, the key issue is how to select a hard
sample as the basis sample. We know that the hard sample should be the sample close
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to the classification hyperplane, i.e. H(xi) ≈ 0. It can be seen from Eq. 2.12 that those
samples with p(xi) ≈ 0.5 result inH(xi) ≈ 0, which can be considered as the “hard samples”.
The weight wi gets the maximum value when p(xi) is 0.5, so we consider the samples with
top 20% weights as candidate basis samples and randomly select one at each time for the
basis mapping.

To learn the best weak classifier, several basis samples and features are evaluated in each
iteration. The basis samples will be randomized Nb = 10 times. To learn the best feature,
the most intuitive way is to look through the whole feature pool, which is rather time con-
suming. So we resort to a sampling method to speed up the feature selection process. More
specifically, as mentioned in [140], a random sub-sample of size Nf = log0.05/log0.95 = 59
will guarantee that we can find the best 5% features with a probability of 95%.

The stopping criteria are two folds, either the weak classifier number achieves the max-
imum number, or the current false positive rate is lower than 10−6. The current false
positive rate could be calculated by the bootstrap. The first bootstrap will be called when
50% of the negative samples are filtered by current strong classifier. Then new samples are
bootstrapped to replace the filtered negative samples, and the training is ongoing. Every
time 50% of the negative samples are filtered, the bootstrap will be called. This procedure
is repeated until one of the two stopping criterions above is satisfied. Fig. 6.4 illustrates
the detailed algorithm.

6.4 Experiments

6.4.1 Histogram features

We utilize the commonly-used histogram features, HOG and LBP histogram to train the
boosted classifiers based on basis mapping. For HOG feature, we extract 4 cells (2 × 2)
and 8 gradient orientation bins for each candidate block. The final HOG feature dimension
is 32. For LBP feature, we extract the uniform patterns of LBP8,1, and then generate a
59-dimensional histogram. This histogram consists of 58 uniform patterns of LBP8,1, and
another pattern which integrates all the non-uniform patterns together. So the LBP feature
dimension is 59.

6.4.2 Databases

We evaluate the proposed method on pedestrian detection and general object detection
tasks. For pedestrian detection, the INRIA dataset and Caltech dataset are utilized. The
64 × 128 pedestrians are utilized for the pedestrian detection experiments. For the HOG
feature, the cell size ranges from 4×4 to 28×60. Both the cell size and the locations of the
window centers are sampled every 4 pixels. As a result, 5,672 HOG features are generated
for boosting training. For the LBP feature, the window size ranges from 8× 8 to 56× 120,
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and the window center is also sampled every 4 pixels. So the LBP feature number is the
same as HOG. Both of the FPPW ande the FPPI protocols are used for evaluation.

For general object detection, the standard benchmark datasets PASCAL VOC 2007 and
2010, are employed. These two datasets contain images from 20 different categories. The
training sample size and feature window size are different for different object categories. For
the aeroplane, bird, bottle, chair, diningtable, person, pottedplant, sofa, and TV monitor
category, all the samples are used together to train a single detector. For other categories,
the training samples are divided into the front/rear view samples and side-view samples
according to the aspect ratio, and then train two detectors respectively. The final detection
result is based on the NMS of these two detectors. The sample size (w, h) used to train
these classifiers are listed in Table 6.1 of Chapter 6.4.5. The size of both the HOG and
LBP windows ranges from 8 × 8 to w′ × h′, where w′, h′ are the maximum multiple of 4
smaller than w− 8 and h− 8. As a result, the number of the windows ranges from 1,764 to
5,672. The detection performance is measured using the average precision (AP). A detection
result is considered as correct if it has an intersection-over-union ratio of at least 50% with
a ground-truth object instance.

6.4.3 Experiments on INRIA dataset

Firstly, we use the INRIA dataset to evaluate the performance of different basis mappings.
The training samples and testing samples are the same as [19]. In Fig. 6.5, the performance
of the boosted classifiers with different basis mappings and without the basis mappings are
compared using FPPW protocol. It can be seen that all the algorithms with basis mappings
clearly outperform the algorithms without basis mapping for both the HOG, LBP, and the
concatenation of these two features. The basis mappings consistently achieve about 3% less
miss rates at all FPPW. The accuracy is similar to the curve “X+HIKSVM”, which directly
using conventional HIKSVM as weak classifier. These results show that the weak classifier
based on basis mapping is a good approximation of kernel weak classifier. In addition, the
accuracy of HIM and CHM is a bit better compared to BCM, which implies that histogram
intersection kernel and chi-square kernel is better compared to bhattacharyya kernel in
pedestrian detection. Since conventional boosted HOG works better than boosted LBP, the
boosted HOG enhanced by basis mapping is also better compared to the boosted LBP. If
we concatenate these two features together, the accuracy could be further improved.

Next, we test the boosted classifiers using different basis samples. The experimental
results are illustrated in Fig. 6.5(b). The curves with the “hard” label are trained using the
hard samples as the basis samples. The curves with the “random” label are trained with
random selecting current training samples as basis samples. It could be seen that the basis
mappings with hard samples consistently achieve better accuracy than randomly picking
basis samples. So it shows the effectiveness of concentrating the classification around the
hard samples.
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Figure 6.5: FPPW evaluation on INRIA dataset. (a) Comparison of the boosted classifiers
based on different basis mappings. (b) Comparison of the boosted classifiers based on
different basis samples.

Figure 6.6: FPPI evaluation on INRIA dataset. (a) Comparison of the boosted classifiers
based on different basis mappings. (b) Comparison to other commonly-used methods.
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Moreover, the above boosted classifiers are evaluated under the criteria of FPPI. In Fig.
6.6(a), it could be seen that the basis mappings clearly improve the detection accuracy of
the object detector using the same histogram features and traditional boosting algorithm.
The combination of the HOG and LBP shows better accuracy compared to using them
individually. The best one, HOG+LBP+HIM, reduces the miss rate from 26% to 11%,
which achieves a similar level with using HIKSVM as weak classifier. But the efficiency is
much better for both the training and the testing procedure. In Fig. 6.6(b), we compare
our methods with the commonly-used methods. Since HIM performs the best in the 3 pro-
posed basis mappings, we only illustrate the HIM curves with different histogram features.
It could be seen even using simple HOG or LBP feature, the HIM based boosted classifier
achieves 15% and 20% miss rate, which is similar to some methods with complicate features
(ConvNet, WordChannels). Our methods also achieve the best accuracy among the boost-
ing family algorithms (Crosstalk, ACF, Veryfast, Wordchannels), which implies that using
boosted kernel weak classifiers with simple features is effective. Our result is comparable
with the SpatialPooling.

6.4.4 Experiments on Caltech dataset

Next, we evaluate our method using the Caltech pedestrian dataset. We follow the training
and evaluation protocol proposed by Dollar et al. [23]. The pedestrians at least 50 pixels
tall under no or partial occlusion are evaluated. Fig. 6.7(a) illustrates the experimental
results of our approach. It could be seen that the accuracy of all the histogram features
are significantly improved by the basis mappings. The miss rate of HOG is greatly reduced
from 46.9% to 26% (HOG+HIM), 28% (HOG+CHM), and 30% (HOG+BCM). It is similar
to the LogitBoost with HIKSVM as weak classifier (27%). Using LBP feature, the miss rate
is also reduced about 15%. If we combined the HOG and LBP together, we may achieve
36% miss rate, which is better compared to using HOG and LBP individually. It could be
further improved to 22% based on the basis mappings. Among the 3 basis mappings, HIM
and CHM still perform better than BCM, which is similar to the experimental results in
INRIA dataset.

In Fig. 6.7(b), we compare our methods with the commonly-used algorithms. Using
the same HOG feature, our method performs better than MT-DPM. At the same accuracy
level (30%-40%), our method is much simpler compared to the methods using complicated
features (WordChannels, ACF+SDT). The group with the best accuracy, which integrates
HOG and LBP together with HIM, achieves 22% miss rate, which outperforms most of the
algorithms listed in this figure. Therefore, we prove the effectiveness of the proposed basis
mapping.
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Figure 6.7: FPPI evaluation on Caltech pedestrian dataset. (a) Comparison of the boosted
classifiers based on different basis mappings. (b) Comparison to other commonly-used
methods.

6.4.5 Experiment on PASCAL VOC 2007 and 2010 dataset

Next, we utilize the PASCAL VOC 2007 and 2010 datasets to test our method on general
object detection. We follow the requirement of the training set and testing set of the PAS-
CAL challenge [27]. Table 6.1 lists the training sample sizes of the 20 categories. These size
are utilized in both the VOC 2007 and VOC 2010 experiments. In Table 6.2 and 6.3, we
compare the boosted classifiers based on different basis mappings and histogram features
on VOC 2007 and VOC 2010 respectively. From the results we could find that the basis
mapping significantly improves the mAP 12% for HOG feature, 8% for LBP feature, and
11% for the combination of these two features. The accuracy is similar to applying kernel
SVM as weak classifier, but the speed is much faster. These results are reasonable because
it is difficult to solve the general object detection problem by linear classifiers. Using kernel
classifier clearly contributes to the overall accuracy. In addition, we find that if the diffi-
culty of the detection task is beyond the description ability of histogram feature, the basis
mappings will fail to locate the object. In the experiments, we notice that some of the false
positives of the basis mappings are exact the same with the version without basis mapping.
This is similar to [115], where the false positives are due to the insufficient description
ability of features rather than the classifiers. In addition, we notice that although BCM
did not work as well as HIM and CHM in pedestrian detection, the mAP in general object
detection is pretty good. It achieves similar mAP compared to HIM on both VOC 2007 and
VOC 2010. The best group among the basis mappings, HOG+LBP+HIM, achieves 49.1%
mAP on VOC 2007 and 43.6% mAP on VOC 2010, which is greatly improved compared
to the detectors using single features. Compared to the top non-deep learning algorithms
[11][17][28][118][13] using conventional learning algorithms, it could be seen that even using
single HOG feature, our performance is better compare to the SIFT fisher vectors [17],
pyramid HOG [28], heterogeneous features [118] and co-occurrence features [11]. Although
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Table 6.1: Training sample size of PASCAL VOC 2007 and 2010 datasets.

Side-view Frontal/rear view
aeroplane 128× 64 -
bicycle 128× 64 40× 100
bird 100× 100 -
boat 100× 100 -
bottle 40× 120 -
bus 128× 64 100× 100
car 100× 60 100× 100
cat 100× 60 100× 100
chair 100× 100 -
cow 100× 60 60x100
table 100× 60 -
dog 100× 60 80× 100
horse 100× 100 60× 100
motor 128× 64 40× 100
person 60× 100 -
plant 60× 100 -
sheep 100× 100 60× 100
sofa 100× 100 -
train 128× 64 100× 100
tv 100× 100 -

the features used in these algorithms are stronger, this blank could be compensated by the
proposed basis mapping which enhances the classification to the kernel level. With the
combination of HOG and LBP, the accuracy of our methods outperform all other methods
listed in these two tables. Compared to the method using same HOG+LBP [13] but dif-
ferent learning method, our accuracy is still 5% better. Compared to the best result in the
VOC 2010 challenge [27], the accuracy is also 11% better.

Table 6.2: Experimental results of the basis mappings on PASCAL VOC 2007 dataset.

VOC2007 test aero bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pla. she. sofa tra. tv mAP
HOG 37.8 52.3 19.9 17.2 18.3 31.0 47.9 23.5 18.3 23.2 22.1 19.2 39.0 46.0 30.1 17.2 23.4 24.4 42.1 38.3 29.6

HOG+HIKSVM 54.9 58.3 26.2 25.5 31.5 56.4 62.1 42.2 22.9 35.5 47.3 30.1 55.4 54.4 46.2 20.9 37.1 41.8 50.1 51.1 42.4
HOG+HIM 55.5 61.9 25.6 25.3 31.4 57.2 62.4 42.9 23.7 35.2 45.1 29.6 58.4 55.6 45.1 20.9 36.8 42.5 49.0 52.8 42.8
HOG+CHM 53.7 54.4 22.9 26.9 27.2 56.6 61.2 43.8 21.4 34.7 49.1 29.3 56.1 50.6 47.2 20.0 37.1 41.9 49.0 49.1 41.6
HOG+BCM 54.3 60.4 26.0 24.8 30.6 56.1 61.8 44.1 25.0 36.4 50.5 28.4 59.4 55.1 43.0 19.3 37.4 40.6 49.3 51.6 42.8

LBP 28.8 43.8 20.4 18.3 19.2 31.5 49.4 24.5 19.1 24.4 22.1 21.2 38.0 37.0 33.1 18.1 24.5 20.0 43.5 39.3 28.8
LBP+HIKSVM 35.5 52.9 27.2 25.1 27.7 39.2 59.1 34.0 27.9 30.2 30.1 29.6 46.4 45.3 44.1 27.3 31.8 27.5 53.0 47.8 37.1

LBP+HIM 36.5 52.7 28.8 26.3 26.5 40.2 59.7 35.1 28.7 30.1 30.7 27.5 45.0 45.3 44.2 26.4 30.1 27.3 54.2 46.0 37.1
LBP+CHM 35.7 50.4 26.9 26.3 27.2 41.2 58.2 33.8 26.4 30.2 30.2 29.7 45.5 43.6 45.9 25.3 32.1 28.9 53.0 47.3 36.9
LBP+BCM 35.0 52.0 28.1 26.5 27.0 40.4 57.2 33.8 29.2 30.5 30.1 28.9 47.7 44.8 42.1 27.3 31.1 28.4 54.1 46.3 37.0
HOG+LBP 51.8 57.5 28.3 27.3 23.9 40.8 55.9 28.5 23.3 28.5 34.1 29.2 47.3 54.0 44.1 27.2 30.5 32.4 49.2 43.3 37.9

HOG+LBP+HIK. 66.9 63.4 36.1 34.4 34.3 55.3 67.1 50.2 30.6 39.4 51.3 40.5 62.2 65.4 56.3 32.2 40.2 45.6 56.4 58.3 49.3
HOG+LBP+HIM 65.3 62.9 35.9 35.0 32.4 56.2 67.4 49.9 30.7 39.2 51.1 40.0 62.4 65.6 56.5 32.3 39.8 45.5 55.9 57.7 49.1
HOG+LBP+CHM 62.7 64.4 36.0 32.2 34.0 54.6 66.2 49.8 30.4 38.7 51.8 39.3 61.1 64.2 56.1 31.0 40.1 45.3 55.3 55.9 48.4
HOG+LBP+BCM 66.3 63.0 35.3 33.9 35.5 56.1 67.1 50.7 31.0 38.4 50.5 41.4 61.4 65.1 52.3 31.9 40.4 44.6 55.3 56.6 48.8

Chen [11] 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2 29.1 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7
Cinbis [17] 56.1 56.4 21.8 26.8 19.9 49.5 57.9 46.2 16.4 41.4 47.1 29.2 51.3 53.6 28.6 20.3 40.5 39.6 53.5 54.3 40.5
Wang [118] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

Felzenszwalb [28] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6 26.6 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4
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Table 6.3: Experimental results of the basis mappings on PASCAL VOC 2010 dataset.

VOC2010 test aero bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pla. she. sofa tra. tv mAP
HOG 40.6 30.9 12.1 11.7 15.7 32.3 44.6 23.1 10.1 13.1 11.7 16.5 29.3 38.3 29.4 8.3 22.9 18.1 33.6 26.2 24.9

HOG+HIKSVM 55.3 48.4 18.2 22.5 21.5 55.3 59.0 39.3 13.6 22.9 27.3 27.3 44.1 47.8 37.2 12.2 35.2 28.7 43.7 36.2 36.9
HOG+HIM 55.6 48.1 17.7 22.6 21.4 54.2 59.2 38.9 13.4 23.2 25.3 26.6 44.6 47.6 35.6 11.9 34.9 27.9 43.0 36.8 36.6
HOG+CHM 54.3 46.4 16.5 22.0 21.2 55.0 58.9 39.8 12.0 22.7 27.4 26.5 41.7 46.2 37.1 12.0 35.0 27.3 42.6 33.1 36.0
HOG+BCM 53.4 47.9 18.0 21.3 21.6 55.3 57.6 39.3 13.4 23.5 26.9 27.0 44.2 48.3 33.0 12.3 35.3 27.7 44.3 36.6 36.4

LBP 26.2 24.8 20.4 9.0 13.9 30.4 45.1 22.7 7.8 14.8 9.3 13.9 26.9 29.4 24.3 6.7 18.5 14.2 31.4 24.3 22.1
LBP+HIKSVM 34.7 37.7 13.4 16.2 18.4 38.5 54.0 32.5 11.3 20.1 17.6 21.3 36.1 35.6 34.0 10.1 28.7 21.3 39.0 32.5 29.5

LBP+HIM 33.9 36.5 13.1 15.7 18.1 38.9 54.6 32.1 11.7 20.1 16.9 21.3 35.0 33.2 34.2 9.4 28.1 23.6 39.2 31.9 29.2
LBP+CHM 34.3 37.7 13.4 16.3 18.4 38.5 53.7 31.8 10.4 20.7 17.2 19.6 35.6 34.1 35.1 9.3 29.0 24.2 38.3 32.3 29.3
LBP+BCM 34.5 37.5 13.7 16.5 17.9 39.1 54.4 32.5 11.2 20.8 17.6 21.9 36.4 35.3 31.5 9.3 28.8 25.0 39.1 31.3 29.5
HOG+LBP 47.4 39.2 15.5 18.0 19.6 37.9 46.5 28.1 14.0 18.7 17.4 24.5 36.8 45.1 32.3 9.9 28.4 22.4 35.8 27.9 30.2

HOG+LBP+HIK. 63.3 53.9 26.1 27.4 26.8 57.2 56.2 49.2 20.4 30.4 34.2 38.3 49.9 58.5 47.3 14.2 41.0 34.7 51.0 45.3 43.7
HOG+LBP+HIM 61.2 53.9 26.1 26.8 25.3 57.5 56.4 49.6 20.9 31.0 34.5 38.0 49.7 58.0 47.5 14.3 40.8 34.2 51.3 45.7 43.6
HOG+LBP+CHM 62.7 52.2 24.3 27.0 26.0 55.3 56.2 48.5 20.7 30.7 33.7 37.5 50.2 57.3 45.9 14.0 39.9 33.3 51.3 41.9 42.9
HOG+LBP+BCM 62.5 54.3 26.7 26.1 26.7 56.4 55.9 49.0 20.2 30.6 33.9 37.9 49.6 56.9 44.9 14.9 41.3 34.6 51.7 44.6 43.4

Chen [13] 54.6 53.7 16.2 12.5 31.2 54.0 44.2 40.0 16.7 32.2 29.1 30.1 54.3 57.2 43.9 12.5 35.4 28.8 51.1 40.7 36.9
Everingham [27] 56.7 39.8 16.8 12.2 13.8 44.9 36.9 47.7 12.1 26.9 26.5 37.2 42.1 51.9 25.7 12.1 37.8 33.0 41.5 41.7 32.9

Wang [118] 65.0 48.0 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
Felzenszwalb [28] 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4

Figure 6.8: Convergence speed of the boosted object detectors based on different basis
mappings on INRIA pedestrian dataset.

6.4.6 Speed analysis

Next, we analyze the speed issues of the basis mappings. Firstly, Fig. 6.8 plots the false
positive rate against the number of weak classifiers for detectors trained on INRIA dataset.
All the detectors are trained to 10−6 false positive rate. This figure shows that it is difficult
for the conventional training using LogitBoost with histogram features to converge, espe-
cially when the FPPW is lower. On the other hand, the algorithms with the basis mappings
converge faster for all histogram features. Among them, the HIM algorithm is found to be
the fastest, at the rate of approximately three times faster than the conventional training
without any basis mapping. The convergence speed is a little slower than LogitBoost with
HIKSVM, which is due to the fact that the basis mapping is an approximation rather than
exact equivalence. In general, the performance of boosted classifier is shown to be positively
proportional to the convergence speed in training. This signifies that the proposed basis
mapping can consistently enhance the training accuracy and the training speed of boosted
classifiers. It also somehow explains why the accuracy of BCM is a bit lower compared to
HIM and CHM in pedestrian detection.
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Table 6.4: Training and testing speed of the boosted classifiers with and without basis
mapping.

Approach Training speed Patches/sec
HOG 47 hours 167k

HOG+HIKSVM 242 hours 8k
HOG+HIM 14 hours 181k
HOG+CHM 15 hours 174k
HOG+BCM 18 hours 154k

LBP 43 hours 247k
LBP+HIKSVM 211 hours 10k

LBP+HIM 12 hours 255k
LBP+CHM 14 hours 249k
LBP+BCM 16 hours 234k
HOG+LBP 55 hours 122k

HOG+LBP+HIKSVM 342 hours 5k
HOG+LBP+HIM 20 hours 137k
HOG+LBP+CHM 22 hours 129k
HOG+LBP+BCM 26 hours 128k

We test the training and detection speed of the above INRIA detectors on an Intel I7
dual core PC with 8GB memory. The results are listed in Table 6.4. It could be seen
that the training speed is greatly improved using the basis mapping compared to using
conventional linear weak classifiers, while the testing speed is still similar. Since there is a
root operation in the BCM, the execution time of BCM will be a bit slower compared to HIM
and CHM. Compared to the boosting utilizing efficient HIKSVM [63] as weak classifier, both
the training speed and testing speed are far better. Compared to the boosting with linear
weak classifier, the training speed is 3 times improved. The testing time is also slightly
improved because there are few weak classifiers in the resulting detector. In addition,
although LBP extraction is faster compared to HOG, the training time is similar because
the number of the LBP weak classifier is 2-3 times greater than HOG weak classifiers when
converging to 10−6 false positive rate. So we can get the conclusion that the basis mapping
contributes to the accuracy and efficiency at the same time.

6.5 Conclusion

In this chapter, we describe how to improve the weak classifier learning in boosting procedure
through the proposed basis mapping method. The basis mapping is capable of improving
accuracy and training speed of boosted classifiers. The original samples are mapped to a
closed, restricted local region defined by the hard-to-classify samples in current stage. Such
mapping modifies the distribution of the samples so that the classification performed on
mapped space is enhanced over classification on original un-mapped space. This results in
more efficient boosting. In addition, we show the relationship of the basis mapping and
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kernel method. The linear classification in the mapped space achieves similar performance
with the non-linear classification in the original space. Three basis mappings (namely HIM,
CHM, and BCM) are proposed and shown their effectiveness on INRIA, Caltech, PASCAL
VOC 2007 and 2010 datasets. With the commonly-used HOG and LBP histograms, the
resulting classifier achieves the best results among the detectors based on conventional
machine learning algorithms.
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Chapter 7

Efficiency-accuracy trade-off

Another part of our research is dealing with the efficiency-accuracy trade-off in boosted
training. Most of the traditional machine learning algorithms focus on the accuracy. They
always prefer the high discriminative features. In general, such features may solve some
complicate object detection tasks, but they will also lead to low generalization ability and
poor efficiency. If the generalization ability is low, the detector will fail to process the cases
which are different from the training set. If the efficiency is low, the resulting detector
could not be applied in real systems. So solving the efficiency-accuracy trade-off problem
is important.

7.1 Generalization and Efficiency Balanced (GEB) frame-
work

Our first work is the Generalization and Efficiency Balanced (GEB) framework. This work
aims to balance the discriminative ability, generalization, and efficiency in the feature se-
lection procedure. It is part of our ICCV submission [85], together with the co-occurrence
features in Chapter 5.

7.1.1 GEB framework with RealAdaBoost

For the binary object/background classification problem, denote the input data as (xi, yi), 1 ≤
i ≤ n where xi is the training sample and yi ∈ {−1, 1} is the class label. Each feature can
be seen as a function from the image space to a real valued range. We utilize RealAdaBoost
to train the boosted classifiers. As mentioned in Eq. 2.11, the feature selection protocol In
RealAdaBoost is

Z = 2
∑
j

√
W j

+W
j
−. (7.1)
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If the discriminative ability is the only objective, using the features minimizing Eq.
7.1 seems to be a good idea. In our case, the generalization power and computation cost
are also considered. Firstly we discuss the influence of the generalization power. The
classification margin of the weak classifier h on x is y · h(x), where the h is normalized to
[−1, 1]. This margin represents the classification ability of the classifier. Larger margins
imply lower generalization error [94]. So we define the term used to evaluate the influence
of the generalization power as

S(h,x) = y · h(x)
s

, (7.2)

where s is a parameter related with the features used to construct this weak classifier.
For example, if we use the co-occurrence features, s is related with the offsets (U, V ) in
co-occurrence pattern, calculated as

s =


1 max(U, V ) ≤ δ

1.5− 1
1 + expδ−max(U,V ) max(U, V ) > δ

.

This equation means that we believe the co-occurrence patterns within δ pixels offset are
confident. Balancing the generalization power and the discriminative ability requires us to
evaluate both Eq. 7.1 and Eq. 7.2. So we add a generalization penalty term into the Eq.
7.1, where α is the generalization-aware factor

Z = 2
∑
j

√
W j

+W
j
− −

α

n · s

n∑
i=1

y · h(xi). (7.3)

If the confidence of the selected feature is lower, which corresponds to a smaller margin and
larger s. Then the second term will be smaller, and Z will be larger. So this feature will
have less probability to be selected.

Then we discuss the influence of the computation cost. In real object detection, an object
detector will go around the input image to check every candidate detection window. The
number of the false positive windows is far larger compared to the true positive windows,
especially at the beginning stages. As a result, the execution time of the whole detection
procedure mainly depends on the number of false positive windows

T ≈
l∑

i=1
Nneg,iti, (7.4)

where l is the stage number, Nneg is the number of false positive windows, t is the compu-
tation cost of the weak classifiers. Because Nneg depends on the current false positive rate,
Eq. 7.4 is equal to Eq. 7.5, where N is the total window number, fpi is the false positive
rate of the ith stage
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T ≈
l∑

i=1
Nfpiti = N

l∑
i=1

fpiti. (7.5)

Then we add another term into Eq. 7.3 as

Z = 2
∑
j

√
W j

+W
j
− −

α

n · s

n∑
i=1

y · h(xi) + β · fp · t, (7.6)

where β is the efficiency-aware factor. The trade-off of discriminative ability and efficiency
in Eq. 7.6 can be explained as follows: in the beginning stages of RealAdaBoost, because
the false positive rate is larger, and the target object is still easy to be classified with the
background, so RealAdaBoost will refer to efficient features. In the following stages when
the false positive rate is smaller and the problem becomes more difficult, the features with
higher computation cost will be considered. This strategy makes sense, because the overall
efficiency of a cascade boosted classifier is mainly influenced by the beginning stages, which
filter most of the negative windows. Using efficiency features in the beginning stages clearly
contributes to the overall efficiency. Using the GEB framework, we are able to construct
the classifier based on the features not only has sufficient discriminative ability, but also
extracted efficiently.

7.1.2 Integrating co-occurrence features with GEB framework

We train the boosted classifier based on co-occurrence features and GEB framework. The
training procedure is illustrated in Fig. 7.1. To learn the best feature, the most intuitive
way is to look through the whole feature pool, which is rather time consuming. So we
sample M = 60 windows per iteration to speed up the feature selection process. The offsets
(U, V ) range from (1,1) to (15,30). O = 15 offsets are sampled per window, while at least
5 of them are within (4, 4). For CoHaar feature, the four patterns illustrated in Fig. 5.3
are utilized, and the block size of single Haar feature ranges from 4 × 4 to 20 × 20. For
CoLBP feature, the block size is set from 1 × 1 (traditional LBP) to 8 × 8 (LBP variant).
After picking a window and an offset, a random co-occurrence feature is generated and
evaluated according to Eq. 7.6. We set the computation cost of CoHaar to 2, CoLBP to 4,
and CoHOG to 10. The generalization-aware factor α is set to 0.1, and the efficiency-aware
factor β is set to 0.15, which is decided by the experimental results of several detectors with
different parameters trained on Caltech database.

In the training process, the first bootstrap will be called when 50% of the negative
samples are filtered by current strong classifier. Then new samples are bootstrapped to
replace the filtered negative samples, and the training is ongoing. Every time 50% of the
negative samples are filtered, the bootstrap will be called. This procedure is repeated until
the overall fp is lower than 10−6 or the number of weak classifiers exceeds T .
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Parameters
N number of training samples
M number of evaluated windows each iteration
O number of evaluated offsets each iteration
T maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for t = 1, 2, . . . , T
2.1 Update the sample weight wi using the tth weak
classifier output wi = wie

−yiht(xi)

2.2 For m = 1 to M
For o = 1 to O
For k = 0 to 2
2.2.1 Generate a random R and (U, V )
2.2.2 Calculate feature response C(U, V, k) on R
2.2.3 Build the W+ and W−
2.2.4 Select the best feature minimizing Z in Eq. 7.6
2.2.5 If the false positive rate is lower than 10−6, break

2.3 Update weak classifier ht(x) using
2.4 Update strong classifier Ht+1(xi)

3. Output classifier H(xi) = sign[
∑t
j=1 hj(x)]

Figure 7.1: Selecting co-features using RealAdaBoost with GEB.

7.1.3 Experiments

We apply the experiments on several computer vision tasks to show the effectiveness of
GEB, including pedestrian detection, general object detection, gender recognition, and age
estimation.

Datasets

For pedestrian detection, the Caltech dataset is utilized. We use 64 × 128 pedestrians
and co-occurrence windows from 6 × 6 to 56 × 112. The locations of the window centers
are sampled every 4 pixels. As a result, this will generate 7, 997 different windows. The
evaluation is based on the detection rate versus False Positive rate Per Image (FPPI) [117].

For general object detection, the standard benchmark dataset PASCAL VOC 2007, is
employed. Similar to the experiment setting in Chapter 6.4.2, the training samples are
divided into the front/rear view samples and side-view samples according to the aspect
ratio. The final detection result is based on merging the outputs of the detectors based on
different aspect ratio. The sample size (w, h) used to train these detectors are the same as
Table 6.1. We also list them in the second column of Table 7.2 for reference.

For gender recognition, FERET and LFW databases and are utilized to show the effec-
tiveness of the feature fusion and the GEB framework. The FERET database [75] contains
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gray scale images of 1,199 individuals with uniform illumination but different poses, and the
LFW database [45] contains 13,233 color face photographs of 5,749 subjects collected from
the web. We manually label the groundtruth regarding gender for each face. The faces that
are not (near) frontal, with rotation larger than 45 degree, small scale, and strong occlusion
are not considered.

For age estimation, the PAL and FG-NET databases are utilized. The PAL aging
database [65] contains 430 18-93 years old Caucasians. This database includes various
expressions such as smiling, sadness, anger, or neutral faces. We use only neutral faces in
order to exclude the facial expression effect. The FG-NET aging database [31] is one of the
most frequently used database for estimating age in the previous works. This database has
1,002 images composed of 82 0-69 years old Europeans. Individuals in the database have
one or more images included at different ages. There are also extreme variations in lighting,
expression, background, pose, resolution and noise.

Pedestrian detection

We first conduct the experiments on Caltech dataset. Fig. 7.2 gives the results of the conven-
tional detectors, the detectors with the generalization penalty (gen.) and efficiency penalty
(eff.) respectively, and using the whole GEB. Firstly we notice that the co-occurrence fea-
tures also work better compared to traditional features and their combinations on Caltech
database. Using the generalization penalty, the accuracy is improved at least 3% for both
single co-occurrence feature and its combinations. Using the efficiency penalty term will
not influence the accuracy very much. We know that in image-based object detection, the
overall accuracy is decided not only by the discriminative ability of the detector, but also by
the generalization power. So using the GEB framework to balance them could contribute
to the accuracy of the resulting classifier.

Moreover, We test the resulting classifiers on a desktop dual core I7 PC with 8 GB
memory. The average execution speed for 640× 480 images is shown in Table 7.1. It could
be seen that although CoHOG has better discriminative ability compared to CoHaar and
CoLBP, but the computation is relatively slow because there is no efficient implementation
on the algorithm level to get the gradient orientation co-occurrence. If we combine these
features together and use the GEB framework, the execution time is significantly reduced
from 82.2ms per frame to 50.8ms per frame. These results show the effectiveness of the
GEB framework on improving the efficiency.

General object detection

In Table 7.2, we compare our method with the top methods using local features on PASCAL
VOC 2007 dataset, in terms of detection AP on the test set. The GEB is applied for all
the CoHaar, CoHOG, and CoLBP here. Firstly, it could be seen that the mAP of using
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Figure 7.2: Experiments of GEB framework on Caltech dataset.

Table 7.1: Execution speed of the detectors trained by co-occurrence features on Caltech
database.

Approach Detection time(ms) per frame
CoHaar 27.5
CoLBP 36.5
CoHOG 89.4

All features 82.2
All features+GEB 50.8

Table 7.2: Average precision(%) of the co-occurrence features + GEB on PASCAL VOC
2007 dataset. In the second column, the ‘f’ means the sample size for front/rear images.

Sample size CoHaar CoLBP CoHOG All All+GEB [11] [17] [118] [28]
aero 128× 64 30.1 39.7 42.3 51.5 56.7 41.0 56.1 54.2 36.6
bic. 128× 64 40× 100(f) 45.5 51.2 59.9 59.7 61.6 64.3 56.4 52.0 62.2
bird 100× 100 22.3 26.3 25.4 24.8 26.0 15.1 21.8 20.3 12.1
boat 100× 100 16.3 21.6 27.0 24.2 26.6 19.5 26.8 24.0 17.6
bot. 40× 120 18.9 25.9 25.1 28.1 30.9 33.0 19.9 20.1 28.7
bus 128× 64 100× 100(f) 31.3 43.9 52.2 55.9 58.2 57.9 49.5 55.5 54.6
car 100× 60 100× 100(f) 46.2 58.4 55.9 62.6 66.5 63.2 57.9 68.7 60.4
cat 100× 60 100× 100(f) 27.2 38.6 38.0 41.9 44.2 43.8 46.2 42.6 25.5
cha. 100× 100 19.1 24.6 23.0 23.7 24.5 23.2 16.4 19.2 21.1
cow 100× 60 60× 100(f) 22.5 29.5 36.9 37.7 40.9 28.2 41.4 44.2 25.6
din. 100× 60 26.0 33.4 41.7 43.8 44.0 29.1 47.1 49.1 26.6
dog 100× 60 80× 100(f) 18.6 21.8 24.9 26.7 29.3 16.9 29.2 26.6 14.6
hor. 100× 100 60× 100(f) 39.1 46.8 49.7 51.2 55.3 63.7 51.3 57.0 60.9
mot. 128× 64 40× 100(f) 44.2 48.5 48.3 49.1 54.5 53.8 53.6 54.5 50.7
per. 60× 100 29.4 44.7 48.6 47.2 48.4 47.1 28.6 43.4 44.7
pla. 60× 100 15.5 19.6 17.7 20.5 21.2 18.3 20.3 16.4 14.3
she. 100× 100 60× 100(f) 32.3 30.9 35.4 34.9 37.7 28.1 40.5 36.6 21.5
sofa 100× 100 22.9 30.9 37.9 39.7 42.7 42.2 39.6 37.7 38.2
tra. 128× 64 100× 100(f) 39.6 49.2 48.9 50.0 53.8 53.1 53.5 59.4 49.3
tv 100× 100 28.4 38.2 42.3 43.8 47.5 49.3 54.3 52.3 43.6

mAP - 28.5 36.2 39.1 40.8 43.7 38.7 40.5 41.7 35.4
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all CoFeatures is 0.408, which is better compared to using single co-occurrence feature. So
combining boosted co-occurrence features is also effective for general object detection. In
addition, we notice that the co-occurrence features based on binary information (CoHaar,
CoLBP) work relatively well on some object categories with specific structural informa-
tion, such as the pottedplant with a consistent base, or the chair which consists of several
rigid parts. In this case, such co-occurrence features are easier to capture the binary in-
formation. In contrast, the gradient information based CoHOG works better on the object
categories with complicate appearance such as sheep or sofa. Compared to other methods,
the combination of the CoFeatures are more effective than pyramid HOG [28], MOCO [11],
SIFT fisher vectors [17], and heterogeneous features [118] including multi-scale HOG and
covariance matrix. It implies that using the combination of co-occurrence features is better
compared to the combination of traditional features.

Gender recognition

We utilize the SIFT, HOG, Gabor and LBP feature together with the GEB framework for
gender recognition. Since it is difficult to generalize structure diversity term in the feature
fusion framework, we remove the generalization term, and only consider the efficiency-
accuracy trade-off. The computation cost C for these 4 features are set to 25, 5, 9, and 1
respectively.

For FERET database, similar to Makinen and Raisamo’s work [64], the faces of the
Fa subset are used and the duplications are eliminated. Therefore, 199 female and 212
male images are used. A 5-fold cross validation testing scheme is applied, where the same
ratio between male and female faces are kept for each fold. 15 classifiers are trained,
which include the classifiers utilizing single feature (e.g., SIFT), the classifiers using the
combination of two features (e.g., HOG+LBP), the classifiers with the combination of 3
features, and the classifiers using all 4 features. The experimental results are shown in
the second column of Table 7.3. Firstly, we notice that the accuracy of LBP is lower
compared to other features, which is due to the fact that the gradient information is more
effective than the binary information in the gender recognition. In addition, it can be found
that using multiple features, the average recognition rate is clearly improved compared
to using single feature. Both of LBP and Gabor are good complementary to gradient
features. This result is reasonable, because the local edge characteristic extracted by the
gradient features could be complemented by different information extracted by Gabor or
LBP. Moreover, the GEB framework will not influence the overall accuracy much for all the
feature combinations, which indicates that it emphasizes the accuracy and the efficiency at
the same time. Compared to other methods [106][24][4] which are also based on multiple
complicated features, our method achieves competitive accuracy. These results show that
the feature fusion with GEB is effective for gender recognition.
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Table 7.3: Gender recognition on FERET and LFW database.

Approach FERET LFW
SIFT 94.89% 94.62%
HOG 92.18% 93.23%
Gabor 93.77% 94.94%
LBP 82.44% 81.12%

SIFT + HOG 95.86% 96.15%
SIFT + HOG + GEB 95.86% 96.10%

SIFT + Gabor 96.45% 96.93%
SIFT + Gabor + GEB 96.35% 96.97%

SIFT + LBP 95.70% 95.20%
SIFT + LBP + GEB 95.62% 95.24%

HOG + LBP 93.95% 94.00%
HOG + LBP + GEB 93.88% 94.10%

HOG + Gabor 96.15% 95.69%
HOG + Gabor + GEB 96.09% 95.69%

Gabor + LBP 95.36% 95.80%
Gabor + LBP + GEB 95.29% 95.84%
SIFT + HOG + LBP 97.69% 97.66%

SIFT + HOG + LBP + GEB 97.73% 97.62%
SIFT + Gabor + LBP 98.50% 98.05%

SIFT + Gabor + LBP + GEB 98.43% 97.90%
HOG + Gabor + LBP 97.97% 97.44%

HOG + Gabor + LBP + GEB 97.91% 97.39%
SIFT + HOG + Gabor 98.78% 97.95%

SIFT + HOG + Gabor + GEB 98.78% 98.01%
All four features 99.48% 98.90%

All four features + GEB 99.44% 98.85%
El-Din [24] 97.11% -
Tapia [106] 99.13% 98.01%

Alexandre [4] 99.07% -
Shan [96] - 94.81%

We also conduct similar experiments on the LFW database. Similar to [96], 4,500
males and 2,340 females are chosen. The experimental results are obtained using 5-folds
cross-validation. Duplicate images of the same person are placed in the same fold. The
experimental results are given in the third column of Table 7.3. It is also observed that
using multiple features clearly achieves better accuracy compared to using single features.
The negative effect on the recognition accuracy of the GEB could also be neglected. Using
all the 4 features, the accuracy is 98.90% without GEB and 98.85% with it. These results
are better compared to the methods [96][106] using dense features. In addition, the resulting
classifier using all the 4 features with the GEB framework consists of 12 SIFT features, 38
HOG features, 15 Gabor features, and 23 LBP features. The overall feature dimension is
around 6,000, which is also much smaller than [96][106]. So using the proposed feature
fusion is more discriminative.

Next, we draw the first 8 features selected by the GEB RealAdaBoost algorithm on the
LFW database, as shown in Fig. 7.3. There are one SIFT feature, 3 HOG features, 3 Gabor
features, and one LBP feature. Only one SIFT feature and LBP feature are selected, which
indicates that the GEB selects the features based on both the discriminative ability and
the computation cost. In addition, it could be seen that most of the features lay on the
upper part of the face. This result is reasonable, because it is much easier to recognize the
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Figure 7.3: The first 8 features selected by the RealAdaBoost with GEB on the LFW
database.

Table 7.4: Execution speed of gender classifiers.

Approach Time per face(ms)
SIFT 30.54
HOG 15.22
Gabor 20.83
LBP 12.87

SIFT + HOG 28.86
SIFT + HOG + GEB 22.77

SIFT + Gabor 25.42
SIFT + Gabor + GEB 18.90

SIFT + LBP 24.18
SIFT + LBP + GEB 17.77

HOG + Gabor 18.93
HOG + Gabor + GEB 15.49

HOG + LBP 14.18
HOG + LBP + GEB 12.43

Gabor + LBP 17.75
Gabor + LBP + GEB 14.97
SIFT + HOG + Gabor 25.62

SIFT + HOG + Gabor + GEB 18.59
SIFT + Gabor + LBP 20.11

SIFT + Gabor + LBP + GEB 14.98
SIFT + HOG + LBP 19.88

SIFT + HOG + LBP + GEB 15.64
HOG + Gabor + LBP 15.10

HOG + Gabor + LBP + GEB 13.63
All four features 21.22

All three features + GEB 12.44

gender by eye, eyebrow and nose rather than by mouth, which will be easily influenced by
expression variation.

Moreover, we test the resulting gender classifiers on a desktop PC with 3.0 GHZ Intel
I7 CPU and 8 GB memory. The execution speed is listed in Table 7.4. We find that
SIFT is relatively slow compared to other features. Although LBP is more efficient than
others, but the classifier using only LBP requires a large amount of features to achieve a
considerable accuracy, so that the overall execution speed of the resulting classifier is not
very fast. If we combine the features together and use the GEB framework, the execution
time will be reduced, shown as the rows with asterisks. If all four features are used, the
speed is significantly improved from 21.22ms per face to 12.44ms per face. So we can get
the conclusion that the GEB framework contributes to both the accuracy and the efficiency
of the gender recognition.
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Table 7.5: Age estimation on PAL and FG-NET database. Units: years old.

Approach MAE on PAL MAE on FG-NET
SIFT 5.98 5.93
HOG 6.44 6.16
Gabor 5.88 5.68
LBP 6.98 6.54

SIFT + HOG 5.52 5.47
SIFT + HOG + GEB 5.54 5.47

SIFT + Gabor 5.06 5.27
SIFT + Gabor + GEB 5.05 5.24

SIFT + LBP 5.93 5.55
SIFT + LBP + GEB 5.95 5.54

HOG + Gabor 5.54 5.39
HOG + Gabor + GEB 5.57 5.40

HOG + LBP 5.85 5.66
HOG + LBP + GEB 5.87 5.67

Gabor + LBP 5.82 5.24
Gabor + LBP + GEB 5.82 5.27
SIFT + HOG + Gabor 4.22 4.48

SIFT + HOG + Gabor + GEB 4.24 4.49
SIFT + Gabor + LBP 4.53 4.55

SIFT + Gabor + LBP + GEB 4.55 4.58
SIFT + HOG + LBP 4.85 4.70

SIFT + HOG + LBP + GEB 4.88 4.73
HOG + Gabor + LBP 4.91 4.83

HOG + Gabor + LBP + GEB 4.95 4.82
All four features 4.07 4.27

All four features + GEB 4.09 4.28
Choi [16] 4.33 4.66

Kilinc [52] - 5.05
Chen [12] - 4.67

Age estimation

In this section, we adopt the PAL and FG-NET database to show the effectiveness of the
proposed method on age estimation. Similar to gender recognition experiments, the GEB
framework consists of the accuracy and efficiency term. For the PAL database, five-folds
cross validation is performed, while the age and gender are evenly distributed in each fold.
For the FG-NET aging database, Leave-One-Person-Out (LOPO) is utilized because it
contains a number of images of the same person. That means, 82-folds are used.

We train 15 age estimators, which includes the classifiers utilizing single feature, and
the combination of multiple features. These age estimators consist of two steps, the age
group classification and the exact age estimator. The age group classification to classify
the ages into 3 groups, child, adult, and seniors; while the exact age estimator is to get
the accurate age. The MAE (Mean Absolute Error) of these age estimators on PAL and
FG-NET databases are listed in Table 7.5. It can be seen that SIFT and Gabor are more
effective compared to HOG and LBP in the age estimation. All the feature combinations
including SIFT and Gabor achieve considerable results. This implies that the rotation-
invariant gradient and Gabor wavelet are more suitable to describe the age characteristic.
Using the feature fusion, the MAE is significantly reduced compared to using single feature.
The MAE of the classifiers based on 3 features is similar compared to [16][52][12]. If all 4
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Figure 7.4: The first 8 features selected by the RealAdaBoost with GEB on the FG-NET
database.

features are adopted, the MAE is 4.09 on PAL and 4.28 on FERET, which is 0.3 lower than
the best result. So it shows the effectiveness of the proposed local feature fusion, compared
to [16] based on the global feature, and [52][12] using dense feature vectors. Without the
GEB framework, the MAE is only 0.01-0.04 worse. This indicates that the GEB framework
will not influence the accuracy much for age estimation either.

The first 8 features selected by the GEB RealAdaBoost for age estimation on the FG-
NET database are illustrated in Fig. 7.4, there are 2 SIFT features, 3 HOG features, 2
Gabor features, and one LBP feature. It could be seen that these features lay on the eyes,
forehead and mouth region, which is different from the features used for gender recognition
in Fig. 7.3. We know that the wrinkles in the forehead or the shape of mouth are more
useful in the age estimation rather than in the gender recognition. For example, the wrinkles
exist in both male and female’s faces, but never in child’s faces. So extracting features on
these regions is effective for age estimation.

Similarly, we test the resulting age estimators on the same desktop PC. The execution
speed is shown in Table 7.6. It could also be seen that the estimators based on SIFT and
Gabor are relatively slow compared to HOG or LBP. Using the GEB framework to select
features will clearly improve the efficiency. The more features we integrate, due to the fact
than using more features will increase the overall discriminative ability so that reduce the
feature dimension, the more efficient estimator we will get. If all four features are used, the
GEB is able to reduce the execution speed from 23.32ms per face to 13.20ms per face. So
the GEB framework is also efficient and effective for age estimation.

7.2 Hierarchical weak classifier

We know that a second way to improve the effectiveness in constructing the weak classifier
is to integrate multiple feature types. Since different features reflect different characteristic,
using more information will lead to better decision. The GEB is able to balance the discrim-
ination ability, generalization power, and computation cost for the same kind of feature.
For different kinds of features, GEB only balance the efficiency-accuracy trade-off. In this
section, we will introduce our latest work, the hierarchical weak classifier, which solve this
trade-off for general feature fusion.

Traditional boosted feature fusion has two major problems. Firstly, the traditional way
of feature selection is to evaluate all features before decision. That means, several compu-
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Table 7.6: Execution Speed of age estimators.

Approach Time per face(ms)
SIFT 37.54
HOG 19.09
Gabor 26.13
LBP 16.72

SIFT + HOG 32.78
SIFT + HOG + GEB 27.11

SIFT + Gabor 29.08
SIFT + Gabor + GEB 24.22

SIFT + LBP 25.67
SIFT + LBP + GEB 19.67

HOG + Gabor 18.09
HOG + Gabor + GEB 14.94

HOG + LBP 15.55
HOG + LBP + GEB 12.24

Gabor + LBP 20.77
Gabor + LBP + GEB 16.37
SIFT + HOG + Gabor 22.08

SIFT + HOG + Gabor + GEB 17.22
SIFT + Gabor + LBP 19.65

SIFT + Gabor + LBP + GEB 15.07
SIFT + HOG + LBP 18.37

SIFT + HOG + LBP + GEB 13.67
HOG + Gabor + LBP 17.00

HOG + Gabor + LBP + GEB 14.33
All four features 23.32

All four features + GEB 13.20

tationally expensive feature are always calculated. Secondly, the feature space of different
features are also different. For example, the space of the histogram features (e.g. HOG)
are different from and the space embedded nonlinear manifold (e.g., covariance matrix).
Directly applying the traditional classification techniques based on Euclidean distance will
result in the error in other spaces. Therefore, simple concatenation or Cartesian product
before the classification is not always effective.

We solve the boosted feature fusion problem by training a detector based on the proposed
hierarchical weak classifier. Each weak classifier corresponds to a region of the image and
different types of features are extracted from this region. These features are arranged
in a hierarchical structure, where each level corresponds to a specific feature type. The
classification function for each feature type is learned in its own space. This hierarchical
structure weak classifier makes prediction by checking the features level by level. When the
confidence of the higher level is not sufficient, the classification will move to the lower level.
As illustrated in Fig. 7.5(c), each weak classifier consists of several levels. The decision will
start from the first level, and might terminate at any levels. It is different from the tradition
ways, such as concatenating all the feature vectors for each weak classifier (“fusion con.” in
Fig. 7.5(a)) or mixturing different feature types (“fusion mix.” in Fig. 7.5(b)). The order in
which the features are evaluated is determined based on the GEB measurement in Chapter
7.1.

Compared to traditional feature fusion algorithms, our method has clear advantage.
Firstly, we select the hierarchical features considering all the discrimination, the generaliza-

81



Figure 7.5: Boosted classifier based on hierarchical weak classifier.

tion, and the efficiency. The complicate features are evaluated only when necessary. The
resulting boosted classifier performs well on both the accuracy and the efficiency in real
object detection task. Secondly, the classification functions of different types of features are
learned in their own spaces. The features are organized in a hierarchical way, so that we do
not need to consider the concatenation or normalization of these feature vectors.

7.2.1 Weak Classifier Design

Overview

Boosting selects a series of weak classifiers to construct the strong classifier. Each weak
classifier corresponds to a specific image region R. Suppose k different types of local features
{f1, . . . , fk} are extracted from this region, denote the weak classifier by h, which could be
considered as a mapping from the input space X to a confidence space. The output of h
indicates the predicted class, positive for object and negative for non-object. The absolute
value represents the classification confidence. Denote the feature space by F , given an
input sample x, the weak classifier based on the subset of features {f1, . . . , fk} could be
formulated as

h(x) = h(f1, . . . , fk,x) = h(S(x),x) (7.7)

where S : X → F is a feature type selector.
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In traditional boosting methods, the only objective is to maximize the accuracy. In
our case, we also consider the generalization power and computation cost in the feature
selection, which are important factors in real object detection systems. We directly use our
previous GEB framework as the feature evaluation score.

Our weak classifier is approximated by a combination of several single-feature classifiers,
each of which is based on one feature type. The computations of different features are
independent. We want to use the subset of features with the highest GEB score

S∗(x) = argmax
{f1,...,fk}∈F

{GEB(h(f1, . . . , fk,x))}. (7.8)

Then the expected GEB score of h(S∗(x),x) on X is

E =
k∑
i=1

P (S∗ = Fi)E(GEB(h(Fi,x))|S∗ = Fi), (7.9)

where Fi = {f1, . . . , fi}.

Construction of Hierarchical Weak Classifier

In the implementation, it is impossible to compute S∗, since it needs to know the best
features before evaluating the images. In our work, we propose a hierarchical weak classifier
to approximate h(S∗(x),x). This weak classifier h(f1, . . . , fk,x) = h(Fk,x) consists of k
levels, where each level hi, i = 1, . . . , k corresponds to one feature type. It could be defined
recursively

h(Fi,x) =

 h(Fi−1,x), ifx ∈ C(i− 1, X)

h(fi,x), otherwise
, (7.10)

where h(fi,x) is the weak classifier based on the ith feature, C(i−1, X) is the set of samples
where the prediction of the previous levels h(Fi−1,x) is confident, defined as

C(i,X) = C(i− 1, X)
⋃
{x|βi < |h(fi,x)|}. (7.11)

βi is a confidence threshold for feature fi

βi = argmin
β

P (β < |h(fi,x)|) ≤ P (S∗ = Fi)

1−
i−1∑
j=1

P (S∗ = Fj)
.

(7.12)

If the feature types used are fully independent, P (S∗ = Fi) = P (x ∈ {C(i,X) − C(i −
1, X)}). Denote C(i) = C(i,X)− C(i− 1, X), if x ∈ C(i), then S = Fi = {f1, . . . , fi}, and
h(S,x) = h(Fi,x) = h(f1, . . . , fi,x). The expected GEB of the hierarchical weak classifier
in Eq. 7.9 will be equalized to
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E =
k∑
i=1

P (x ∈ C(i))E(GEB(h(Fi,x)|x ∈ C(i))). (7.13)

Using Eq. 7.13, the classification power of the hierarchical weak classifier with multiple
features is measured by its expected GEB. At each boosting round, we evaluate several
regions. For each of them, we find the best feature of each feature type and combine them
to form h(Fk,x). The one with the largest expected GEB is added to the current cascade
classifier.

7.2.2 Implementation Details

Features

We use four features to construct the hierarchical weak classifier, including LBP, HOG,
COV, and CoHOG.

The HOG, LBP, CoHOG are the same as mentioned in previous chapters. The COV
is extracted from a 7-D raw feature vector: {x, y, I, |dx|, |dy|, |dxx|, |dyy|}, where x and y
are the pixel location, I is the intensity, and |dx|, |dy|, |dxx|, |dyy| are the first/second order
intensity derivatives. The covariance matrices lie in a connected Riemannian manifold [109].
Using similar method as [109], we first map the covariance matrices to a linear tangent space
of the manifold, and then perform regularized least square in the tangent space to map the
feature vector to single dimension. The dimension of the tangent vector is 28.

Boosting learning

The details of the boosted learning based on hierarchical weak classifiers are illustrated in
Fig. 7.6. In each iteration, we randomly sample M = 50 regions and search for the locally
best LBP, HOG, COV, and CoHOG features. For each region R, the local search is done
by randomly evaluating O = 20 features for each feature type. These features should cover
at least 50% of R. The feature vectors are calculated and mapped to one dimension. Then
theW+ andW− are calculated to build the single weak classifier for each candidate feature.
After getting the best feature f1, . . . , fk for each feature type, the hierarchical weak classifier
h(f1, . . . , fk,x) is constructed along with estimating βk and C(k) level by level. The one
with the largest GEB score will be selected to construct the strong classifier.

The computational costs of the four feature types are different. Computing a LBP
is based on binary matching, while the HOG extraction requires caculating the gradient
magnitude and orientation to generate the integral image. Computing covariance matrix
requires singular value decomposition. After applying experiments on several computers,
we set the computational cost t of these four features to 1, 2, 10, 5 respectively.

The parameters α, β in the GEB score are determined by several experiments on PAS-
CAL VOC 2007 and 2010 datasets. In our final implementation, we set α = 0.15, β = 0.2.
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Parameters
N number of training samples
M number of evaluated regions each iteration
K number of feature types
O number of random evaluated features for each feature type
T maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for t = 1, 2, . . . , T
2.1 Update the sample weight wi using the tth weak classifier output
wi = wie

−yiht(ft,1,...,ft,k,xi)

2.2 For m = 1 to M
2.2.1 Generate a random region R
2.2.2 For k = 1 to K

For o = 1 to O
2.2.2.1 Generate a random LBP, HOG, COV, and CoHOG
2.2.2.2 Calculate the feature vectors and map to single dimension
2.2.2.3 Select the one with best GEB score to construct single

weak classifier ht(fk,x)
2.2.3 For k = 1 to K
2.2.3.1 Estimate βk and C(k)
2.2.3.2 Add ht(fk,x) to the hierarchical weak classifier as ht(f1, . . . , fk,x)
2.2.3.3 Calculate expected GEB score of the hierarchical weak classifier

2.3 Choose the hierarchical weak classifier with the maximum expected GEB score
2.4 Update strong classifier Ht+1(x)
2.5 Update fp. If the fp is lower than 10−6, break

3. Output classifier H(x) = sign[
∑t
j=1 hj(x)]

Figure 7.6: Boosting training with hierarchical weak classifiers.
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The first bootstrap will be called when the current false positive rate is lower than 0.5.
Then all the filtered negative samples will be removed, and new negative samples will be
used to fill this gap. Every time when the false positive rate achieves 0.5 or lower, the
bootstrap will be applied. The whole training will terminate when the overall false positive
rate is lower than 10−6 or the weak classifier number exceeds the maximum T .

7.2.3 Experimental Results

Experiments on Caltech dataset

Firstly, we evaluate our method using the Caltech pedestrian dataset. We follow the training
and evaluation protocol proposed by Dollar et al. [23]. The pedestrians at least 50 pixels tall
under no or partial occlusion are evaluated. Fig. 7.7(a) illustrates the experimental results
of our methods compare to using single feature and traditional feature fusion methods. It
could be seen that compared to using single LBP, HOG, COV, and CoHOG, our feature
fusion achieves significant better performance. We also compare our method with other
two traditional feature fusion strategies, labeled as “fusion concatenation (fusion con.)” and
“fusion mix”. The “fusion concatenation” is to directly concatenating all feature vectors and
then project them to single dimension. The “fusion mix” is to mix all the feature pools for
LBP, HOG, COV, and CoHOG, and select only one of them for each weak classifier. The
results show that our hierarchical classifier clearly outperforms these two fusion strategies.
Since different features lay on different distance space, simply concatenating them is not
a good idea. The “fusion mix” achieves 2% lower accuracy compared to our hierarchical
solution, and the efficiency is also 6 times lower. This result is reasonable, because the
“fusion mix” fails to consider both the generalization and computation cost in the training
procedure.

In addition, instead of using our level-by-level evaluation strategy, we use all features in
the hierarchical weak classifier for decision (labelled as “our hierar. sum” in the figures).
This is achieved by summing all the output of the features in our hierarchical classifier.
It can be considered as the accuracy upper bound of our hierarchical strategy. From Fig.
7.7(a) we can find that it is slightly better than our hierarchical decision. This indicates
that the proposed method based on GEB feature selection and hierarchical decision is a
good approximation. The efficiency of summing all of them will be 8 times lower compared
to our solution.

In Fig. 7.7(a), the last two curves are utilized to show the effectiveness of GEB. Using
the same feature pool, we train two detectors while keeping the generalization term but
removing the efficiency penalty term (Our hierar. gen.), and keeping the efficiency penalty
term but removing the generalization term (Our hierar. eff.). It could be seen that without
the generalization term, the accuracy is reduced 4.1%, which indicates that considering the
generalization in the training process will contribute to the accuracy. In addition, adding
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Figure 7.7: FPPI evaluation on Caltech pedestrian dataset. (a) Comparison of the boosted
classifiers based on different features and feature fusions. (b) Comparison to other methods.

Table 7.7: Frequencies of different feature types as the first, second, third, and fourth level
in the hierarchical weak classifiers.

Feature LBP HOG COV CoHOG
First level 34% 47% 2% 17%
Second level 14% 27% 14% 45%
Third level 9% 30% 22% 39%
Fourth level 5% 27% 38% 30%

the computation penalty will not influence the accuracy much. So the GEB evaluation is
effective.

In Fig. 7.7(b), we compare our results with the commonly-used algorithms on pedes-
trian detection. We notice that using the hierarchical boosted classifier, the accuracy is
much better than other boosting family methods (Multiftr, FPDW, pAUCBoost, Fisher-
Boost, Crosstalk, SketchTokens, Spatialpooling, LDCF, ACF-Caltech+). So the proposed
hierarchical feature fusion framework achieves high accuracy.

7.2.4 Feature analysis

Here we analyze the trained detectors on Caltech database. Firstly, we count the frequencies
of different types of features selected as the first/second/third/fourth level in the weak
classifiers, shown in Table 7.7. It can be seen that though COV and CoHOG are stronger
than HOG and LBP for classification, they are much more computationally expensive so
that they are mostly used as the lower level in the hierarchical weak classifier.

Next, we count the evaluation frequencies for the four levels in the hierarchical weak
classifiers. In the detection procedure, each 64× 128 window will evaluate 22.76 first level
features, 4.67 second level features, 1.19 third level features, and 0.44 fourth level features.
Since the first features are mostly LBP and HOG, the evaluation process will be relatively
efficient.
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Table 7.8: Testing speed of the boosted classifiers with different feature and feature fusion
methods.

Approach Patches/sec
HOG 247k
LBP 377k
COV 40k

CoHOG 77k
fusion con. 24k
fusion mix 38k
Ours hierar. 224k

Ours hierar. sum 27k

Table 7.9: Experimental results of the hierarchical weak classifier on PASCAL VOC 2007
dataset.

VOC2007 test aero bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pla. she. sofa tra. tv mAP
HOG 37.8 52.3 19.9 17.2 18.3 31.0 47.9 23.5 18.3 23.2 22.1 19.2 39.0 46.0 30.1 17.2 23.4 24.4 42.1 38.3 29.6
LBP 26.8 41.8 18.4 16.3 17.2 29.5 47.4 22.5 17.1 22.4 20.1 19.2 36.0 35.0 31.1 16.1 22.5 18.0 41.5 37.3 26.8
COV 30.0 47.0 23.1 21.5 22.0 35.4 52.2 28.8 24.2 25.5 25.1 23.9 42.7 39.8 37.1 22.3 26.1 23.4 49.1 41.3 32.0

CoHOG 32.7 47.4 23.9 23.3 24.2 38.2 55.2 30.8 23.4 27.2 27.2 26.7 42.5 40.6 42.9 22.3 29.1 25.9 50.0 44.3 33.9
fusion con. 45.5 53.9 25.2 23.1 25.7 37.2 57.1 32.0 25.9 28.2 32.1 27.6 44.4 43.3 42.1 25.3 29.8 30.5 51.0 45.8 36.1
fusion mix 53.8 59.5 30.3 29.3 25.9 42.8 57.9 30.5 25.3 30.5 36.1 31.2 49.3 56.0 46.1 29.2 32.5 34.4 51.2 45.3 39.9
Our hierar. 61.3 58.0 31.3 28.9 30.5 51.1 63.1 45.7 26.0 34.4 46.5 36.4 57.4 60.1 47.3 26.9 36.4 40.6 50.3 52.6 44.2

Our hierar. sum 61.9 58.4 31.1 29.4 29.3 50.3 63.1 45.2 26.6 34.4 46.3 35.5 57.2 62.4 51.3 27.2 36.2 40.6 52.4 53.3 44.6
Chen [11] 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2 29.1 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7

Cinbis [17] 56.1 56.4 21.8 26.8 19.9 49.5 57.9 46.2 16.4 41.4 47.1 29.2 51.3 53.6 28.6 20.3 40.5 39.6 53.5 54.3 40.5
Wang [118] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7
Felz. [28] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6 26.6 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4

Moreover, we test the detection speed of the above detectors on an Intel I7 dual core
PC with 8GB memory. The results are listed in Table 7.8. It could be seen that the testing
speed of the hierarchical boosted classifier is far better compared to the traditional feature
fusion algorithms (fusion con., fusion mix). Compared to using single COV or CoHOG,
the efficiency is also better. Although the sum of all hierarchical features is able to achieve
slightly better accuracy, the speed is 8 times slower. So we can get the conclusion that the
propose method also achieves considerable efficiency.

Experiment on PASCAL dataset

Next, we utilize the PASCAL VOC 2007 and 2010 dataset to test our method on general ob-
ject detection. We follow the requirement of the training set and testing set of the PASCAL

Table 7.10: Experimental results of the hierarchical weak classifier on PASCAL VOC 2010
dataset.

VOC2010 test aero bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pla. she. sofa tra. tv mAP
HOG 40.6 30.9 12.1 11.7 15.7 32.3 44.6 23.1 10.1 13.1 11.7 16.5 29.3 38.3 29.4 8.3 22.9 18.1 33.6 26.2 24.9
LBP 24.2 22.8 18.4 7.0 11.9 28.4 43.1 20.7 5.8 12.8 7.3 11.9 24.9 27.4 22.3 6.7 14.5 12.2 29.4 22.3 20.1
COV 28.5 27.5 13.7 11.5 12.9 34.1 49.4 27.5 11.2 15.8 12.6 16.9 31.4 30.3 26.5 9.3 23.8 20.0 34.1 26.3 24.8

CoHOG 34.3 37.7 13.4 16.3 18.4 38.5 53.7 31.8 10.4 20.7 17.2 19.6 35.6 34.1 35.1 9.3 29.0 24.2 38.3 32.3 29.3
fusion con. 47.7 40.7 16.4 19.2 21.4 41.5 47.0 35.5 14.3 23.1 20.6 24.3 39.1 48.6 37.0 13.1 31.7 24.3 37.0 30.5 32.5
fusion mix 55.4 47.2 23.5 26.0 27.6 45.9 54.5 41.1 22.0 25.7 25.4 32.5 44.8 53.1 40.3 17.9 36.4 30.4 43.8 35.9 38.2
Our hierar. 62.7 52.2 24.3 27.0 26.0 55.3 56.2 48.5 20.7 30.7 33.7 37.5 50.2 57.3 45.9 14.0 39.9 33.3 51.3 41.9 42.9

Our hierar. sum 63.3 53.9 26.1 27.4 26.8 57.2 56.2 49.2 20.4 30.4 34.2 38.3 49.9 58.5 47.3 14.2 41.0 34.7 51.0 45.3 43.7
Chen [13] 54.6 53.7 16.2 12.5 31.2 54.0 44.2 40.0 16.7 32.2 29.1 30.1 54.3 57.2 43.9 12.5 35.4 28.8 51.1 40.7 36.9

Everingham [27] 56.7 39.8 16.8 12.2 13.8 44.9 36.9 47.7 12.1 26.9 26.5 37.2 42.1 51.9 25.7 12.1 37.8 33.0 41.5 41.7 32.9
Wang [118] 65.0 48.0 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
Felz. [28] 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
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challenge [27]. These size are utilized in both the VOC 2007 and VOC 2010 experiments.
In Table 7.9 and 7.10, we compare our method with the top methods using conventional
machine learning methods on PASCAL VOC 2007 and 2010, in terms of detection AP
on the test set. Firstly, it could be seen that the mAP of our feature fusion is 0.442 on
VOC 2007 and 0.429 on VOC 2010, which is better compared to using single feature. So
combining boosted features is also effective for general object detection. In addition, we
notice that the our hierarchical feature fusion still works better compared to concatenation
(fusion con.) and mixing (fusion mix.). It is also a good approximation compared to the
optimal case (our hierar. sum). Compared to other methods with conventional learning
algorithms, our hierarchical boosted classifier is more effective than pyramid HOG [28],
HOG+LBP+Context [13], MOCO [11], and SIFT fisher vectors [17]. Our accuracy is also
better than heterogeneous features [118], which is a published work on using multi-scale
HOG and COV fusion.

7.3 Conclusion

In this chapter, two methods dealing with the efficiency-accuracy trade-off problem in boost-
ing training are introduced. The Generalization and Efficiency Balanced (GEB) framework
considers all the discriminative ability, generalization power, and computation cost in the
feature selection procedure. The boosting algorithm will emphasize the efficient and robust
features in the beginning stages. As a result, we may get the boosted classifier both efficient
to compute and robust to noise. The hierarchical weak classifier organizes different types
of features in a hierarchical way. The features are ranked according to the GEB protocol,
which ensures the robustness and efficiency. Computationally expensive features are only
used if the confidence of previous features are not sufficient enough. The resulting boosted
classifiers show good performance on the general object detection task.
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Chapter 8

Conclusion and future work

8.1 Conclusion

Object detection is an indispensable technology in many applications such as artificial intel-
ligence systems, mobile devices, and video surveillance. This thesis summarizes the difficul-
ties in object detection into two aspects, the large intra-class variations and low SNR. Large
intra-class variation means that the object shape and appearance in the same category are
very different. Low SNR means that the useful object information is very limited compared
to the noise. To overcome these two difficulties, we work on the local features and boosting
methods respectively.

To solve the large intra-class variations problem, we focus on designing more discrimi-
native and robust local features. We organize the local features into a “feature hierarchy”.
Different strategies are applied for the features in different levels. For the low-level features,
we focus on how to extract the binary information. For mid-level features, we work on
improving the discriminative ability of the gradient features. The local structural infor-
mation will be integrated in addition to the gradient information. For high-level features,
we generalize a kind of co-occurrence patterns, which show promising accuracy in general
object detection.

To solve the low SNR problem, we work on the boosted classifiers. Firstly, we try to
enhance the weak classifier learning procedure. Since the discriminative ability of a boosted
classifier is decided by the weak classifier, strengthening the weak classifier learning will
contribute to the overall accuracy. In addition, we design two methods to balance the
accuracy and efficiency in boosting training. As a result, we may get the boosted classifiers
that not only have high accuracy, but also achieve good efficiency.

More specifically, the contribution of this thesis could be summarized as follows:
1. For low-order features, we propose the Boosted Local Binaries (BLB) [81] and Boosted

Binary Patterns (BBP) [83]. These two features use a series of binary patterns with variable
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size and location to represent the target object. Experimental results show that these two
features show good performance for object detection and tracking.

2. For mid-order features, we first introduce Edged Histogram of Oriented Gradient
feature (Edge-HOG) [82]. Edge-HOG extracts the gradient vector from a series of regions.
These regions are arranged along an edge to represent the local structural information.
The experimental results show that the Edge-HOG achieves better accuracy compared to
traditional gradient features. In addition, we design the Deformable Edge Set (DES) [84],
which is a combination of several short contour segments. Each segment is deformed from
the edge template to the actual object contour according to the distribution model of pixel
gradients. Experimental results show that the proposed DES is good at detecting the objects
with clear contours.

3. For high-order features, we design a kind of co-occurrence features [85]. The co-
occurrence features are defined as the distribution of co-occurring variables at a given offset.
These variables are constructed by low-order information such as intensity or gradient.
Using different low-order information, the co-occurrence features are able to capture the
key characteristics of different object categories. Experimental results show that the co-
occurrence features outperform other traditional features in pedestrian detection and general
object detection.

4. In order to enhance the weak classifier learning, we propose the basis mapping
approach [80]. Basis mapping is a non-linear mapping on original samples by referring to
the basis samples before learning the weak classifiers, where the basis samples correspond to
the hard samples in the current training stage. We show that the basis mapping based weak
classifier is an approximation of kernel weak classifier while keeping the same computation
cost as linear weak classifier. Experimental results show that the basis mapping consistently
improves the detection accuracy and training efficiency of the boosted classifier.

5. In order to deal with the efficiency-accuracy trade-off, we first design the the General-
ization and Efficiency Balanced (GEB) framework [85]. In the feature selection procedure,
the discriminative ability, the generalization power, and the computation cost of the candi-
date features are all evaluated for decision. In addition, we propose the hierarchical weak
classifier for feature fusion. The weak classifier makes predictions by examining the fea-
tures level by level. Highly computational features are used if the efficient features could
not make a confident decision. As a result, we could get the boosted detectors with both
high accuracy and good efficiency.

8.2 Discussion

As mentioned in Chapter 3, deep network is one of the hottest topics in current object
detection. Deep learning algorithms are able to achieve better accuracy compared to tra-
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ditional learning algorithms. However, the research on traditional features and machine
learning algorithms are still important.

Firstly, as mentioned in the LeCun’s talk in CVPR 2015 [56], deep learning has a
long way to go in the theoritical part. For example, although deep networks achieve high
accuracy, it is still difficult to explained why it is better compared to SVM or AdaBoost.
It is also not clear if a deepnet has converged or not [112]. In contrast, we have a good
understanding of how to model multiple modalities with traditional tools. That is currently
an active field of research in the deep learning land.

Secondly, there are many parameters for the neural network, and they are difficult to
interpret. Although this case occurs in some traditional learning algorithms, the difficulty
is far smaller compared to the one in the deep learning. As a result, it is very difficult
to debug the deep networks. For example, in most of the time, it is not clear about how
many layers and free parameters we really need. The only way is to try different parameters
based on some empirical heuristics. In addition, The scale of a deepnet’s weights (and of the
weight updates) is also very important for performance. When the features are of the same
type (pixels, word counts, etc.), this is not a problem. When the features are heterogeneous
(e.g., text+image), we need to standardize the inputs in some way. This also motivates the
research on traditional features.

Thirdly, deep networks do not show promising performance when the size of the dataset
is small, e.g., less than 10k. Larger dataset means long training time and long period before
seeing the result. So it might not satisfy the requirement of some applications, especially
for some industrial projects with short periods. In addition, many problems do not need the
fire power of a deep neural network. For example, the usage of CCA for OCR has already
been commercialized for 20+ languages. Using binary features with AdaBoost could achieve
99% detection rate for the faces less than 30 in-plan rotation degrees. In these cases, the
traditional features and learning methods will be more useful.

We also consider the relationship of our research and deep learning. On one hand, deep
networks try to derive the high-level information based on the traditional features. The
resulting deep features could be considered as the refined version of a super feature pool.
Some current deep networks use raw images as input. It might be better to use both the
raw image and some feature maps. Utilizing more discriminative traditional features has
the potential to further improve the accuracy. As mentioned in [85], the proposed features
explore the co-occurrence information explicitly, while the convolution networks use such
information implicitly. On the other hand, after we get the deep features, traditional
machine learning algorithms such as SVM or Boosting are applied to generate the final
classification result. Our research on Boosting further improves the performance of these
algorithms.
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8.3 Future work

While we have provided multiple contributions on local features, much more can be done to
further improve the accuracy and robustness. Firstly, the proposed co-occurrence features
are designed as the co-occurrence matrix for the information at the same level, e.g., gradient
versus gradient, intensity versus intensity. We have not discussed how to extract the co-
occurrence information between different levels, e.g., gradient versus intensity. Our latest
experimental results show that such co-occurrence information is a good complementary to
the one based on the same level. Further studying this topic seems to be a good idea. In
addition, we have not investigated how to fuse the local features from different levels in the
feature hierarchy, e.g., how to combine the binary features with gradient features. Some
prior work only use the feature fusion as prior knowledge (e.g., HOG+LBP, HOG+COV),
without further explanation. It might be better to analyze why fusing these features is
good. Our hierarchical weak classifier fuse these features from the view of balancing the
accuracy-efficiency trade-off. It will be better if we could find the reason from the context
or semantic level.

Our research on machine learning is designed for boosting framework, we also consider
to apply similar ideas to other classifiers. For example, the idea of the proposed basis
mapping is due to the fact that boosting emphasizes the difficult samples. There are other
classifiers doing similar things, such as in the support vector machine, where the support
vectors are the samples closet to the classification plane. These samples are also considered
as the difficult samples. In addition, the efficiency-accuracy trade-off is a classic problem in
any machine learning tasks. Extending them to other classifiers such as deep networks is a
valuable topic.

Moreover, our work is applicable not only for object detection, but also for other appli-
cations. Since most of the tasks in the computer vision share the same feature, the proposed
local features could also be applied to other applications. For example, the BBP feature is
a super set of BLB feature, so it is effective for both object detection and object tracking.
The co-occurrence feature is also proved to work well in face recognition and food recogni-
tion. Regarding the boosting, most of our research does not change the infrastructure. It
will not influence the error function and weight update, which is the essential of boosting
convergence. That means, our research is able to be applied for other boosting algorithms.
In this thesis, we have already shown that how to use RealAdaBoost and LogitBoost with
our work. It could be generalized to other boostings such as GentleBoost. In addition, our
work might be suitable for other applications using boosting algorithm. We have already
proven the effectiveness of our work on object detection, object tracking, gender recognition,
and age estimation. It is possible to investigate more potential applications.
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