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Abstract

Increased concerns over the limited sources of energy and environmental impact of the

petroleum-based transportation infrastructure have led to increasing interest in an electric

transportation infrastructure. Battery technology and battery management is a key compo-

nent in this regard and has indeed remained as a central challenge in vehicle electrification.

This thesis deals with monitoring and control of Lithium ion batteries. The objective is

to provide novel solutions to some of the challenging issues from a control theoretic per-

spective. The research stream in this thesis is headed towards three general directions, i.e.

monitoring, diagnostics, and control.

The proposed monitoring approaches are introduced as model-based and data-based ap-

proaches. The main objective in model-based approaches is to employ the high-fidelity

physics-based models of the battery for monitoring. In this thesis, two particle-filtering

methods are proposed for state, and joint state and parameter estimation of such models.

The data based approaches try to come up with new ideas to monitor the battery accu-

rately but with minimum computational load. In this regard, two different approaches are

considered. A Takagi-Sugeno fuzzy model is developed for Li-ion battery where by the

virtue of multiple-model structure of T-S model, the non-linearities of battery dynamics

and corresponding parameters can appropriately be accounted for, while keeping the local

models linear and easy-to-implement control/estimation algorithms. In another work, the

“Dynamic Resistance” concept is introduced which can bring a new dimension to battery

monitoring. This parameter considers changes in overall interface resistances that may de-

velop during cell aging and is modeled versus the state of charge and total power throughput

of the battery using a heuristic neural network to monitor the state of charge and state of

health of the battery.

In another study, fault diagnosis problem of Li-ion batteries is rather comprehensively

reviewed, and some of the proposed models for failure mechanism are presented and some

fault-detection algorithms for some common failure mechanism are developed. Finally, the

battery equalization which is essentially a safety measure in battery operation is studied. A

nonlinear model predictive control (NMPC) solution for control of a cell-balancing circuit

composed of Cuk converters is developed.
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Chapter 1

Introduction

1.1 Thesis Motivation

Energy and environmental based issues have become the major areas of concern for policy

makers. In this regard, an ever-increasing trend towards alternative clean sources of energy

such as solar, wind, and geothermal can be observed during the last 20 years. Parallel to

policy shift from fossil fuels to other sources of energy, transportation industries have also

changed their policies and have been constantly searching for alternatives to internal com-

bustion (IC) engines. Currently, energy storage devices mainly include chemical batteries,

flywheels, ultracapacitors and fuel cells. Figure (1.1) shows the energy density and power

density of most widely used energy storage devices.

On average, accumulators such as lead-acid, nickel-metal hydride and lithium-ion (Li-

ion) batteries have a service life of between three and ten years. They function on elec-

trochemical principles. Energy storage devices such as double layer capacitors, in contrast,

store energy electrostatically. They last almost indefinitely and exhibit high power densi-

ties. However, their energy densities are low. Therefore, their primary use is to cover peak

loads such as engine starts or acceleration in hybrid applications. As Figure (1.1) shows,

Lithium ion batteries exhibits the most optimal characteristics in terms of energy density

vs. power density.

Li-ion battery have thus been established as a leading candidate for the next generation

of automotive and aerospace applications. Compared to alternative battery technologies,

they provide one of the best energy-to-weight ratios, exhibit no memory effect, possess

higher life-span, and have low self-discharge when not in use [16, 2].

Despite the consensus about their benefits, their development and recent progress has

been slow due to issues related to improving energy density, power capability, monitoring

and safety aspects of the lithium batteries. Therefore, Li-ion batteries define a broad range

of areas of challenges for research and development. That has been the subject of active

research in the last decade. This study is motivated by the premise that the Li-ion (and like
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chemistry such as Li-polymer, Li-air, etc) batteries represent a promising alternative source

of energy for transportation systems. Particularly, automotive industries have been actively

working on electric vehicles (i.e. EV, HEV and PHEV) in both research and production

phases during the last decade.

Control theory has the capacity to provide solutions to a number of challenges in regards

to Li-ion batteries. Monitoring, safety and optimality of usage are some areas of concern

that can be addressed from a control perspective. Therefore, developing a control theoretic

approach towards these issues can open a new window to some existing challenges of Li-ion

batteries.

In all Li-ion battery applications, prediction of state of charge of the battery has the

highest priority for the user. In particular, for vehicle applications, drivers need to know

how much further they can travel before their vehicle batteries require a recharge. The state

of charge (SoC) of a battery or pack of batteries is analogous to a fuel gauge in an internal

combustion vehicle. Accuracy of the prediction is also very important in optimal utilization

of the battery’s capability. Therefore, as HEVs/EVs grow in popularity and complexity,

new monitoring methods are needed to better track performance.

Furthermore, the design process and the real-time control of the electric vehicles driv-

etrain, including the energy storage, rely on accurate estimations of battery wear as a

function of operating conditions and usage. This is addressed via state-of-health (SOH)

estimation. This parameter is also very crucial in optimal utilization of the battery.

The power and energy capabilities of a battery pack greatly depend on operating con-

ditions, like charge/discharge current rate, state of charge, load characteristics, and tem-

perature. Furthermore, it is important to avoid or contain the circumstances that could

damage the battery or could lead to safety issues for the surrounding environment. Espe-

cially, for a battery chemistry like the lithium-based ones, and especially in a high-power

context, events like overcharge, overdischarge and excessive heating can lead to irreversible

and possibly destructive processes. Hence, fault monitoring and preventive measures such

as cell-balancing plays an important role in safe utilization of the battery.

All the hardware and software associated with battery monitoring, control and pro-

tection are gathered in what is called the “battery management system (BMS)”. This is

a system that keeps the battery ready to deliver full power when necessary and a system

that can extend the life of the battery. The BMS should include systems that control the

charging regime and those that manage thermal issues as well.

Although great improvements have been made in BMS technology, they still fall short

in many areas. Monitoring, fault detection, control, and protection are all areas that need

further development to cope with the users’ demand. Thus, the general objective of this

study is to deepen the insight in the shortcomings and existing challenges and develop

advanced methods for BMS from a control point of view.

2



1.2 Thesis Objective

The research objectives in this thesis are broad, however, all of them are geared toward

advancement of BMS. They are meant to enhance the current estimation and control capa-

bilities of BMS. The main focus in this regard are model-based estimation and monitoring

schemes. The objectives are summarized as follows.

Estimation and Monitoring

In this thesis, as implied earlier, we focus on advanced online battery monitoring methods.

The developed methods aim at estimation of the main parameters of concern for BMS

(i.e. SoC, SoH) using high-fidelity models. The prevailing approach in practice is to use

equivalent circuit models in model-based approaches to battery monitoring. In this thesis,

we strive to explore new methodologies to employ the high fidelity physics-based model

of the system for battery monitoring. Moreover, the main goal is to develop state and

parameter estimation techniques for monitoring of the battery. Considering the parameter

estimation alongside the state estimation is in fact the first step towards embedding the

aging of the battery and its impact on parameters in monitoring scheme.

Modeling

The goal is to develop models that can capture the nonlinearity of battery dynamics, how-

ever need lower computational load to be simulated with respect to physics-based model.

Moreover, a big challenge with physics-based models is that they are composed of par-

tial differential equations where most of the control and estimation methods are developed

for ordinary differential equations. Therefore, we aim at developing models that are more

appropriate for application of the control approaches to for battery monitoring.

Health Monitoring

Health monitoring of the battery is a rather complicated interdisciplinary problem. In this

regard, a complete study on degradation processes, their interaction, associated impact

on model parameters and their model is conducted. From a monitoring point of view,

development of parameter estimation scheme mentioned earlier would be the first step

towards taking the aging processes of battery into account. A fault detection approach for

one of the major failures of the battery system is also developed.

Moreover, a new concept named “Dynamic resistance” is introduced which can con-

tribute to health monitoring of the battery. The main idea is to monitor the spontaneous

response of the battery to a pulse current. This resistance is related to electronic resistance

of the battery and is a function of the charge/discharge cycle number of the battery. Mod-
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eling of dynamic resistance helps to propose a new framework for health monitoring of the

battery.

Cell Balancing

Cell balancing is in fact a preventive measure for protection of the cells. It is also conducive

to optimal utilization of the battery by reducing the conservative safety margins that are

usually considered to prevent overcharge/overdischarge of the battery. The goal is to tackle

the problem of a cell-balancing circuit composed of Cuk-converter using a model-predictive

control approach. To the best of our knowledge, this is the first effort of its kind to apply

a model-based control algorithm to cell-balancing problem. The appealing feature of this

approach is that it can incorporate the dynamic constraints of battery equalization problem

within the control framework and also the optimization objectives can directly be defined

in terms of a minimization problem.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the principles of the

Li-ion battery and presents the physics-based model of the battery. The principles and main

tasks of BMS are also reviewed in this chapter. Monitoring approaches to Li-ion battery

are explored in Chapter 3. Two novel model-based methodologies for state and state and

parameter estimation based on a Bayesian approach are developed in this chapter.

Chapter 4 introduces two new data-based approaches to battery modeling and mon-

itoring. The first study is a fuzzy modeling approach to Li-ion battery to address the

existing challenges with physics-based model. The second approach is a novel methodology

developed for SoC and SoH of the battery based on measurement of introduced param-

eter called “Dynamic Resistance”. The features and potentials of this new methodology

are explored and illustrated through experiment. The diagnostics of the battery and the

existing challenges are reviewed comprehensively in Chapter 5. This study is accompanied

with developing of a fault detection approaches for plating mechanism and positive elec-

trode dissolution which are common and important failures in battery systems. Chapter

6 considers the cell-balancing problem. The basics of the problem is reviewed and a novel

control framework based on model-based predictive control methodology is developed for

this problem. Finally, Chapter 7 draws the conclusion of the work and it glances over open

problems and possible developments.

Due to the abundance of the mathematical equations and models used in this Thesis,

using the same letters for different variables was inevitable. However, the explanation under

each subject clarifies the meaning of the variables completely and removes any ambiguity.

Moreover, nomenclature tables specific to each subject are given in Appendix A to make

the following of the formulas and equations easier for the reader.
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Figure 1.1: Energy density vs power density of different energy-storage devices. The charge
time of them is also shown in the diagonal lines [127].
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Chapter 2

Li-ion Battery Principles and

Battery Management System

2.1 Li-ion Battery

A Li-ion battery generally consists of four main components: porous positive and negative

electrodes, electrolyte and separator. During operation of Li-ion battery, Li ions (Li+) are

the charge carrier inside the battery, and shuttle back and forth between the positive and

the negative electrodes through an electrolyte medium. In charge (discharge) process, the

Li ions are extracted from (inserted into) the positive electrode and are inserted into (ex-

tracted from) the negative electrode. Electrolyte serves as a medium for Li ions transport

between the two electrodes. The positive and negative electrodes are separated electrically

with a separator containing the electrolyte which is in fact an electrical insulator and pre-

vents electron transfer between positive and negative electrodes. The electrons are instead

collected by positive and negative current collectors at the two terminals through an outside

circuit where current flows. Figure (2.1) shows a schematic of the Li-ion battery.

In the following some relevant terms that are used throughout this thesis are explained.

• Lattice: In a typical Li-ion cell, both electrodes have lattice sites that can store

Lithium ion [23]. Lattice sites are related to crystal structure of the negative and pos-

itive electrodes. They are modified during lithium insertion and extraction, and elec-

trodes may go under a rich lattice modifications (e.g. phase changes, lattice gliding,

symmetry changes, bi-phasic transformation) during charge and discharge [30, 31].

• Active Material: The lattice in negative electrode is typically a graphite lattice in

most of the commercial lithium ion batteries, whereas in the positive electrode is a

metal oxide (or a blend of multiple metal oxides) lattice (e.g. LiCoO2, LiMn2O4,

etc). Other types of negative and positive electrode materials are also being used in
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Figure 2.1: Schematic of a Li-ion cell. Positive and negative electrodes are composed of
porous materials and separator is filled with electrolyte that facilitates the ion conduction
between the negative and positive electrodes.

some commercial cells, i.e. polyanion positive electrode, LiFePO4, Li2MnSiO4 and

alloy anode materials such as Li− Si, Li− Sn, etc are under intense development.

• Lithium insertion/extraction: The moving of lithium ions into the lattice site is

called insertion (intercalation) whereas moving of the lithium ions out of lattice site

is called extraction (deintercalation). In the charging (discharging) process, Lithium

insertion in (extraction of) the negative electrode and Lithium extraction of (insertion

in) positive electrode occurs.

• Binder: It refers to an elastomeric polymer added to electrode particles in order to

bond the active electrode material powder together and to the current collector. In

fact, it acts as glue for particles to bond them together and to the current collec-

tor. Carboxymethyl cellulose (CMC) and poly vinylidene difluoride (PVdF) are the

commonly used binders.

• Composite Electrode: It refers to the mixture of active material, binder and other

additives (e.g. conductive carbon for improving the conductivity). For example, the

composite positive electrode is typically a mixture as: x.LiCoO2 +(1−x).LiMn2O4 +

y.C + z.binder where x ranges between 0 − 0.5, and y and z range between 0.03 −
0.1. Recently, battery manufacturers are engineering composite electrode made of

materials with high power capability and materials of high energy to achieve desired

Power/Energy characteristic.

• Current Collector: They are metallic foils at the two ends of the battery that

collect/extract and take in/out the electricity during charge-discharge process. Alu-

minum (Al) foils and Copper (Cu) foils are usually used at the positive and negative

current collectors, respectively. The anode and cathode slurries are coated on to re-
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spective foil types, dried and pressed to adjust desired adhesion thickness and electrode

porosity.

• Solvent: The electrolyte of the Li-ion battery, acting as a Lithium-ion carrier between

the positive and the negative electrodes is usually composed of an organic solvent and

a Lithium salt. The commonly used organic solvents are combinations of cyclic and

linear organic carbonates, such as ethylene carbonate and dimethyl carbonate where

the lithium salt is usually LiPF6. Other lithium salts are also used in lithium battery,

i.e. LiBF4 or LiCIO4. In the following, solvent always refers to the solvent part of

the electrolyte. Solvent free electrolytes such as polymeric and ceramic electrolytes

are also being considered.

• Transport properties: This refers to the properties representing the Li ion trans-

port in the electrolyte or electrode lattice such as diffusion, conductivity, transference

number, ion exchange processes, etc.

• Oxidation: It refers to the loss of electrons or an increase in oxidation state by a

molecule, atom, or ion. For instance, LiCoIIIO2 → CoIV O2 +Li+ + e−, where cobalt

ion is oxidized from oxidation state III to IV by loss of electrons, or Anion− →
Oxidation Products+ e−.

• Reduction: It refers to the gain of electrons or a decrease in oxidation state by a

molecule, atom, or ion. For instance, Cation+ + e− → Reduction Products, this is a

reverse oxidation process.

• Decomposition: It refers to the separation of a chemical compound to simpler com-

pounds or elements. This process is usually involves breaking chemical bonds.

• Porosity: It is a fraction of the volume of voids over the total volume in a material.

2.2 Li-ion Battery Modeling

The battery model plays a key role in the design of the monitoring and control schemes in a

BMS. The mathematical modeling approaches to Li-ion battery can generally be classified

under three main categories, namely Equivalent Circuit Models, Empirical Models and

Electrochemical Models. In the following, the basic principles of each modeling approach is

briefly reviewed.

2.2.1 Equivalent circuit models (ECM)

Conventionally, batteries are modeled as some electrical circuit. Different configurations,

ranging from simple to complex circuits, are proposed for battery simulation. The model

parameters do not necessarily represent any physical significance but the output of the
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circuit (i.e. voltage, in most of cases) shows a rather good correlation with the output of

the battery system. The advantage of the equivalent circuit models is that they are easy

to use, however, not sufficiently accurate. Moreover, the model parameters are usually

accurate for a limited range of SoC and charge/discharge rates. The performance of the

model is also very dependent on the applied driving cycle or charge/discharge schemes,

such as constant voltage-constant current, pulse, etc. In fact, the dynamical behavior of a

Li-ion battery depends on many factors [99] such as temperature, state-of-charge, history

of operation, operating frequency, etc, among which only a few of them are grasped and

considered within the best of the developed models. The passive and interactive equivalent

circuit models have been reviewed in the past [49, 50].

2.2.2 Empirical Models (EPM)

Empirical models consider the battery as a black-box and try to model the battery math-

ematically. The main idea is to derive a model which can be represented in state-space

format and is easily adoptable for control and monitoring purposes. The parameters of the

model do not necessarily bear any physical significance but the objective is to find a model

that can describe the battery under a wide range of operations. They have shown to pos-

sess superior accuracy over the equivalent circuit models, particularly when a wider range

of battery operation in terms of charge/discharge rate is desired. However, if the health of

the battery is concerned, appropriate transformations between the model parameters and

the actual battery parameters are required. To the best of our knowledge, there are no

proposals that can relate the empirical models to actual battery parameters. Plett [87], has

proposed the most prominent empirical models.

2.2.3 Electrochemical models (EM)

Electrochemical models rely on the actual physical laws that govern the motion of lithium

ions in a battery which include mass and charge balances during the charge and discharge of

the battery. They overcome the drawbacks of the aforementioned models, i.e. limited range

validity and physical significance of the model parameters. However, the main problem

with these models is their complicated mathematical nature. Doyle, Fuller and Newman

originally developed the electrochemical models for Li-ion battery model [35, 41]. There

have been many efforts to simplify or reduce the model equations and alleviate the problem

of computational load [121, 120].

Due to the promising features of EM such as accuracy and physical significance of the

model parameters, they are mainly employed for development of monitoring and estimation

approaches in this thesis. This type of model is further discussed in the next section.
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(a) (b)

(c)

Figure 2.2: Schematic of different battery model structures: (a) Equivalent circuit model,
(b) Empirical model where x represents the states of the model and u denotes the input
which is generally composed of current and temperature, and (c) Electrochemical model
which is composed of a set of algebraic partial differential equations describing the dynamics
of the battery at each domain.
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2.3 Electrochemical Model of Li-Ion Cell

In this part, we shall briefly explain the physics-based model of the battery expressed in

terms of electrochemical equations. Fundamentally, the electrochemical governing equations

of a Li-ion battery can be described by considering four basic equations, namely conservation

of mass, which translates into concentration of Lithium in solid electrode phases and in

liquid electrolyte phase, and conservation of charge in solid electrodes and liquid electrolyte

phases.

The electrochemical equations are mainly expressed in terms of four field quantities, i.e.

solid and electrolyte concentration (cs(r, x, t),ce(x, t)) and solid and electrolyte potentials

(φs(x, t),φe(x, t)). These quantities obey Fick’s law for diffusion, Ohm’s law and Kirchhoff’s

law for charge transport, respectively, and are coupled through a well-known Butler-Volmer

electrochemical kinetic equation expressing the rate of electrochemical reaction (JLi,j).

To model the diffusion of Li-ions in solid and electrolyte phases, the active material of

each electrode is approximated with continuum of sphere particles residing in a conducting

porous matrix. The battery model presented here is considered in a pseudo-2 dimensional

plane. The transport of lithium ions is modeled both along the main dimension, i.e. x-axis,

and also within the particles which is modeled by adding a pseudo dimension, i.e. r-axis,

in order to model the radial direction in the active material particles. Figure (2.3) shows

the pseudo-2D dimension considered for the battery modeling. The battery equations are

written for the three different parts of the battery, the negative electrode (j = n), the

separator (j = s), and the positive electrode (j = p).

The conservation of lithium equation considers the flow of Li-ions in solid particles and

electrolyte due to concentration-gradient-induced diffusion as follows:

∂

∂t
cs,j(x, r, t) =

1
r2

∂

∂r

(

Ds,jr
2∂cs,j

∂r

)

, j = n, p (2.1)

∂

∂t
(ǫe,jce(x, t)) =

∂

∂x

(

Deff,j
∂ce

∂x

)

+ (1− t0+)ajFJLi,j(x, t), j = n, s, p (2.2)

The boundary conditions corresponding to Lithium ion conservation equations are given

by:

∂cs,j

∂r
|r=0 = 0,

∂cs,j

∂r
|r=Rs,j

= −JLi,j

∂ce

∂x
|x=0− = 0,

∂ce

∂x
|x=L+ = 0

Deff,n
∂ce

∂x
|x=L− = Deff,s

∂ce

∂x
|x=0sep

Deff,s
∂ce

∂x
|x=Lsep = Deff,p

∂ce

∂x
|x=0+

(2.3)
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Figure 2.3: Schematic of a Lithium-ion battery where the active materials at electrodes are
modeled with particle spheres embedded in a conducting porous matrix [33].

where cs and ce represent the concentration of lithium at solid state and electrolyte state,

respectively. The parameter Ds expresses the diffusion coefficient of Li-ions at solid state,

ǫe is the volume fraction of electrolyte phase, Deff presents the effective diffusion coefficient

at electrolyte phase that can be calculated as Deff = Deǫ
p
e, where De is diffusion coefficient

and p is called Bruggeman coefficient. The conservation of charge in solid and electrolyte

phases is expressed as follows:

∂

∂x

(

σeff,j
∂φs,j(x, t)

∂x

)

= ajFJLi,j(x, t), j = n, p (2.4)

− ∂

∂x

(

κeff,j
∂φe(x, t)
∂x

)

+ β
∂

∂x

(

κeff,j
∂ ln ce

∂x

)

= ajFJLi,j(x, t), j = n, s, p

(2.5)

The boundary conditions corresponding to charge equations are given by:
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−σeff,n
∂φs,n

∂x
|x=0− = −I

−σeff,p
∂φs,p

∂x
|x=L+ = −I

∂φs,n

∂x
|x=L− = 0

∂φs,p

∂x
|x=0+ = 0

(2.6)











































∂φe

∂x
|x=0− = 0

∂φe

∂x
|x=L+ = 0

−κeff,n
∂φe

∂x
|x=L− = −κeff,s

∂φe

∂x
|x=0sep

−κeff,s
∂φe

∂x
|x=Lsep = −κeff,p

∂φe

∂x
|x=0+

(2.7)

where φs and φe represent the electric potential at solid and electrolyte phases, respectively,

σeff and κeff represent the effective conductivity and ionic conductivity at solid electrode

and electrolyte, respectively. These effective values can be calculated as σeff = σǫs and

κeff = κǫpe where σ is solid phase conductivity, κ is electrolyte phase ionic conductivity

and ǫs indicates the active material volume fraction. The parameter aj stands for specific

interfacial area and β is a coefficient representing the diffusion conductivity.

The above set of partial differential equations (PDE) (2.1-2.7) is coupled with the fol-

lowing algebraic Butler-Volmer equation presenting the molar flux JLi,j of lithium ions at

the surface of spherical particle. The value of JLi,j which is related to the rate of reaction

at electrode surface is exponentially related to the positive and negative electrode overpo-

tentials. The overall cell overpotential at various state of charge contains components of

kinetic, ohmic and concentration overpotentials.

JLi,j(x, t) = i0,j(x, t)×
[

exp

(

αaF

RT
ηj(x, t)

)

− exp
(

−αcF

RT
ηj(x, t)

)]

j = n, p (2.8)

where i0,j denotes the exchange current density and ηj the over-potential. They are given

as follows:

i0,j(x, t) = kj (ce(x, t))αa (cs,max,j − cs,surf,j(x, t))αa · (cs,surf,j(x, t))αc (2.9)

ηj(x, t) = φs,j(x, t)− φe(x, t)− Uj (cs,surf,j(x, t)) (2.10)

where cs,surf,j denotes the concentration at the surface of solid particle and Uj the open

circuit voltage. The open circuit voltage is dependent only on the surface concentration. The

overall set of equations (2.4-2.8) constitute a set of partial-differential-algebraic-equations

(PDAE) that can describe the dynamics of a typical Li-ion battery. The nomenclature of
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the battery model and corresponding boundary conditions to this model are given in the

Appendix A. The voltage of the battery is defined as the difference between the potentials

at the two terminals as follows:

V (t) = φs,p(x = L+, t)− φs,n(x = 0−, t) (2.11)

2.3.1 Discretization

Equations (2.1-2.5) are discretized and solved together to find the field quantities of interest

at each (x, r, t) [51]. All domains, i.e. negative electrode, separator and positive electrode,

are discretized along the x-axis into Nn, Ns, and Np control volumes, respectively. The

r-dimension regarding to the diffusion of Lithium ions in solid particles is also discretized

into Nr control volumes. A typical volume for the pseudo 2-dimensional system is shown

in Figure (2.4).

Thus, at every x-coordinate, we have Nr + 3 unknowns for electrode domains which are

corresponding to cs,j(1 : Nr), ce, φs, and φe and 2 unknowns for separator domain which

are due to ce, and φe. Discretization of the Equations (2.1-2.5) gives the following system:

dcs1

dt
=

Ds

r2
1

r2
2(cs2 − cs1)

∆2
r

dcsq

dt
= Ds

[

1
∆2

r

(csq+1 + csq−1)− 2
∆2

r

csq

+
1

∆r

1
rq

(csq+1 − csq−1)

]

, q = 2, . . . , Nr − 1

dcsq

dt
= −

r2
q+1

r2
q∆r

JLii

Ds
− Ds

r2
q

r2
q−1(csq − csq−1)

∆2
r

, q = Nr

ǫ
dce

dt
= Deff

cei+1 − 2cei
+ cei−1

∆2
x

+ (1− t0+)ajFJLii

ajFJLii
= σeff

φsi+1 − φsi
− φsi−1

∆2
x

ajFJLii
= −

κeff
i+ (φei+1 − φei

)− κeff
i−

(φei
− φei−1)

∆2
x

+
κD

eff
i+

(cei+1 − cei
)− κD

eff
i−

(cei
− cei−1)

∆2
x

(2.12)

where ∆x = Lj/Nj for 3 domains of j = n, s, p, ∆r = Rs/Nr, rq = q∆r, κD
eff = κeff · β/ce,

κeff
i∓

=
2κeffi∓1κeffi

(κeffi∓1 + κeffi
)

and similarly for κD
eff

i∓
. The above system is solved for i = {1 :

Nn +Ns +Np} and the respective values of each domain is substituted for each parameter.

The surface concentration is indicated as cs,surf = csNr
.
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Figure 2.4: A typical control volume

2.3.2 Model Reduction

For automotive applications, a simplified battery model that delivers a good accuracy while

ensuring the maximum computational cost reduction is required. Hence, due to the compli-

cated nature and high computational load of associated PDAEs of the battery model, there

has been many efforts to reduce the order of the model or approximate the model with a

state space model.

As discretization of the full model Eq. (2.12) shows, most of the unknowns are extracted

from the discretization of the diffusion equation (2.1) inside the particle with associated

boundary conditions (2.3). Therefore, simplifying or reduction of diffusion equation has

been the core of many of the reduction methods. This is generally called Macro-Micro scale

coupled simulation or reformulation of diffusion in solid phase [51]. In this Thesis, we have

adopted a Macro-Micro model proposed by Subramanian et. al. [121].

In this model, the electrolyte concentration ce(x, t) is assumed to be uniform and the

radial distribution of the Li concentration in solid phase is approximated with a fourth order

polynomial as follows:

cj(x, r, t) = γ1,j(t) + γ2,j(t)
r2

R2
s,j

+ γ3,j(t)
r4

R4
s,j

, j = n, p. (2.13)

The mass transfer in the solid material is expressed in terms of volume averaged con-

centration (c̄s(x, t)), particle surface concentration (cse(x, t)), and averaged concentration

flux (q̄s(x, t)), where the volume is VR = 4/3 πR3
s .

c̄s(x, t) = 1/VR

∫ Rs

r=0
cs(r, x, t) · 4πr2dr (2.14)

q̄s(x, t) = 1/VR

∫ Rs

r=0

(

d

dr
cs(r, x, t)

)

.4πr2dr (2.15)

cse(x, t) = cs(r = Rs, x, t) (2.16)
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Substitution of Eq.(2.13) into Eqs.(2.1) and (2.3) and evaluating the values given in

Eqs.(2.14)-(2.16) will result in the following equations for coefficients in Eq.(2.13):

γ1,j(t) =
39
4
cse,j − 3Rsq̄s,j −

35
4
c̄s,j (2.17)

γ2,j(t) = −35cse,j + 10Rsq̄s,j + 35c̄s,j (2.18)

γ3,j(t) =
105
4
cse,j − 7Rsq̄s,j −

105
4
c̄s,j (2.19)

Hence, the concentration profile given by Eq.(2.13) is now derived in terms of the volume-

averaged concentration (c̄s(x, t)), the volume-averaged concentration flux (q̄s(x, t)), and the

surface concentration (cse(x, t)). Now, we shall derive three equations to solve for the

average concentration, the surface concentration, and the average flux. The equation for

the volume-averaged concentration is obtained by volume averaging the entire governing

Eq.(2.1) as follows:

∫ Rs

r=0
3
r2

R2
s

[

∂cs

∂t
−Ds

1
r2

∂

∂r

(

r2∂cs

∂r

)]

d

(

r

Rs

)

= 0 (2.20)

The second equation for the volume-averaged flux is obtained by volume averaging the

differential of the governing equation (2.1) as follows:

∫ Rs

r=0
3
r2

R2
s

∂
[

∂cs

∂t −Ds
1
r2

∂
∂r

(

r2 ∂cs

∂r

)]

∂r
d

(

r

Rs

)

= 0 (2.21)

The third equation is also obtained by evaluating the boundary condition at r = Rs and

the total set of equations is given as:

∂

∂t
c̄s,j(x, t) = − 3

Rs,j
JLi,j(x, t) (2.22)

∂

∂t
q̄s,j(x, t) = −30Ds,j

R2
s,j

q̄s,j(x, t)− 45
2R2

s,j

JLi,j(x, t) (2.23)

cse,j(x, t) = c̄s,j +
8Rs,j

35
q̄s,j −

Rs,j

35Ds,j
JLi,j(x, t) (2.24)

Considering the assumption of the uniformity of the electrolyte concentration, ce, will

also simplify the Eqs.(2.2,2.4,2.5) for negative and positive electrode (i.e. j = n, p) as

follows:

∂

∂x
ie,j(x, t) =

3ǫs,j

Rs,j
FJLi,j(x, t) (2.25)
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∂

∂x
φs,j(x, t) =

ie,j(x, t)− I(t)
σeff,j

(2.26)

∂

∂x
φe(x, t) = − ie,j(x, t)

κeff,j
(2.27)

The electrolyte dynamics in separator is also simply added by:

∂

∂x
φe(x, t) = − I

κeff,s
(2.28)

The molar flux follows the Eq.(2.8) where

i0,j(x, t) = kj (ce(x, t))αa (cs,max,j − cse,j(x, t))αa · (c̄s,j(x, t))αc (2.29)

ηj(x, t) = φs,j(x, t)− φe(x, t)− Uj (cse,j(x, t)) (2.30)

The set of Equations (2.22-2.28) can be solved by considering the following set of initial

and boundary equations using control volume discretization.

c̄s,j(x, t = 0) = c̄0
s,j , j = n, p

q̄s,j(x, t = 0) = q̄0
s,j , j = n, p

ie,n(x = 0−, t) = 0, ie,n(x = L−, t) = I(t)

ie,p(x = 0+, t) = I(t), ie,p(x = L+, t) = 0

φs,n(x = 0−, t) = 0. (2.31)

The simulation studies shows some discrepancy between the macro-micro model and full

model in high charge/discharge rates. However, in low/medium rates, the results of this

model can track the full model results [51].

2.4 Battery Management System

BMS is considered as the brain of the battery, which consists of electrical circuits and em-

bedded algorithms to operate battery system safely and efficiently according to the demands

of other vehicle components. It is basically comprised of sensors, actuators and controllers

which have various algorithms and signal wires [70]. There is still no consensus about the

BMS tasks, however we adopt the broad view of an advanced BMS tasks. Its tasks can

generally be classified under “Monitoring” and “Control” categories. Figure (2.5) shows the

schematic of a typical BMS and some basic functions. In the following, some of the main

features and function requirements of BMS are reviewed.
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Figure 2.5: An overview of BMS functions.

2.4.1 Monitoring

Monitoring includes all the functions that measure or estimate the main parameters of

concern and pass it either to the user or control functions. The main monitoring functions

can be defined as:

1. Measurement (Data Acquisition): It includes measurement of physical parame-

ters such as current and voltage of the battery cells and the temperature distribution

inside and outside of the battery pack. This information forms the basis for other

tasks of BMS. Measurement of other parameters of the battery such as impedance,

etc would also be highly desirable from control point of view, however, with the cur-

rent technology normally is infeasible during the normal operation of the battery. As

a result, certain parameters of the battery are usually need to be estimated.

2. Estimation: The condition of the battery is mainly described through three indica-

tors which are state of charge (SoC), state of health (SoH), and state of life (SoL).

These parameters are not directly measurable and thus need to be inferred based on

the available measurement from the battery along with estimation of other quantities

of interest. Depending on the adopted estimation method, certain other parameters

of the battery might also be needed.

Safety monitoring of the battery might also require certain parameters of the battery

such as impedance, physical properties of battery components such as electrolyte or
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solid material, etc. Those parameters would also need estimation schemes if they are

not directly measured. This will be explored more in the Chapter 3.

3. Fault Detection and Diagnosis (Safety Monitoring): There are a number of

different sources for faults within the battery management system including sensor

faults, actuator faults, power electronics circuits faults (i.e. charging circuit, safety

circuits, cell balancing circuit, etc), network faults and battery faults. The BMS is

responsible to monitor the system and detect all the faults and produce appropriate

signals.

Battery faults can generally be classified into two category of abrupt and gradual

faults. Gradual faults can be attributed to the aging of the battery and thus need to be

considered within the battery estimation module. The abrupt faults are those failures

that might lead to immediate hazardous conditions and need immediate treatment

by the BMS. They can generally be identified as overcharge, overdischarge, electrical

leakage, high temperature, short-circuiting, case rupture, over-fast temperature rise,

etc. These processes need immediate action and response by the BMS.

2.4.2 Control

The control tasks of BMS are generally concerned with the management of charge/discharge

scheme and thermal management of the battery. The objective is to control these processes

such that the demands of the system are met with maximum efficiency, the life-span of the

battery is enhanced, and safety of the system is guaranteed.

1. Safe and Optimal Utilization of the Battery: The charge/discharge scheme of

the battery should be controlled such that the battery is kept within the safe margins.

Moreover, another control objective is to optimize the battery’s life-time. Therefore,

information collected by monitoring from the age of the battery is crucial to optimal

utilization of the battery. This also has a close link with energy optimization in hybrid

vehicles.

2. Cell Balancing: The aim of the cell balancing circuit is to balance the cells within

a pack while they are charging or discharging to make sure that their state of charge

remain the same or within a very narrow band, and hence, there is no danger of over-

charge or over-discharge of the cells. Even an over-charge/discharge of one single cell

within a pack can put the cell in danger of a thermal runaway that can eventually lead

to an explosion in the whole pack. This topic is visited with more details in Chapter

6.

3. Thermal Management: Advanced BMS should be capable of collecting the tem-

perature distribution over the battery pack. Based on the demands of the system and
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the desired performance requirements, it can then decide to cool or heat the battery

system.

4. Energy Optimization: Hybrid vehicles have multiple sources of energy, i.e. battery

and gasoline-powered internal combustion engine or ultra capacitor, fuel cell, etc.

Hence, a unit is required to optimally manage the contribution of each source to

satisfy the overall energy demands of the vehicle. Different characteristics such as

energy efficiency, emission, and battery life time, are considered to formulate the

energy optimization algorithm.

2.5 Summary

This chapter provides an introduction to Li-ion battery principles. The main focus of this

Thesis is on model-based approaches and therefore, the modeling approaches developed

for battery are reviewed. The first principles physics-based model of the Li-ion battery is

reviewed with some details. The monitoring approaches that are developed in the next

chapter are centered around this model. Moreover, the objectives, components, tasks and

challenging issues of a battery management system are also briefly reviewed.
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Chapter 3

Battery Monitoring

3.1 Performance Metrics in a Battery

Monitoring of the battery is a field in which the current battery conditions are studied and

future performance of the battery is predicted in terms of certain measurements. The most

desirable performance metrics for a battery are basically a measure of how much energy is

stored in the battery and how long the stored energy can be used given the load demand (i.e.,

current I(t)). For this purpose, the most commonly used parameters for characterizing a

battery’s performance are the state of charge (SoC) and state of health (SoH) of the battery.

3.1.1 State of Charge (SoC)

The ratio of concentration of lithium in the solid electrode to its maximum possible concen-

tration is defined as the state of charge (SoC) of the battery [23]. This definition assumes

100% of useable lithium ion in negative electrode at full charge state (100% SoC), and

100% lithium ion extraction from the negative electrode in fully discharged cell (0% SoC),

assuming no excess anode or cathode. The SoC term in fact characterizes the available en-

ergy in the battery. In other words, it is the fuel gauge of the battery, and hence, represents

the most prominent parameter in BMS design. Bulk SoC is a measure of average utilization

of the entire electrode and is defined as follows [23]:

SoCb
j (t) ,

3
LjR3

s,j

∫ Lj

x=0j

∫ Rs,j

r=0
r2 cs,j(x, r, t)

cs,max,j
drdx, j = n(−), p(+) (3.1)

Surface SoC is also defined as the utilization at the surface of the solid particle. This

measure is directly related to the instantaneous available power in the cell, and is generally

defined as:

SoCs
j (t) ,

1
Lj

∫ Lj

x=0j

cs,surf,j(x, t)
cs,max,j

dx (3.2)
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3.1.2 State of Health (SoH)

In contrast to SoC, there is not an established definition for state of health (SoH) of a bat-

tery. This parameter, though very important in battery management, has found different

definitions in the literature. In a broad physical meaning, SoH has been defined as the

“ability of a cell to store energy, source and sink high currents and retain charge over ex-

tended periods relative to its initial or nominal capabilities” [11, 57]. From this perspective,

SoH covers a broad range of physical conditions of a battery such as loss of nominal capac-

ity due to aging (external behavior), or corrosion (internal behavior) [62]. In some cases,

particularly for HEV applications, initial SoH is defined in terms of the energy density of

fresh cell, and life span of the battery is considered to the point that final SoH reaches the

minimum of 80% of the initial energy density. However, this definition has not yet been

considered as a common performance metric among the researches.

There is also another variable defined for battery health monitoring, identified as State

of Life (SoL). It refers to the remaining life of the battery. SoL tries to predict how many

more (charge/discharge) cycles the battery would be usable. However, SoL prediction is

a very complicated problem that has a close relationship with monitoring the age of the

battery and needs much more research scrutiny from an electrochemical point of view.

3.2 Literature Review

In this section, we will briefly review the proposed methods for SoC and SoH estimation

available in the literature. The features of each method, and the remaining challenges are

also explored in this section.

3.2.1 SoC Estimation

SoC estimation methods are generally divided into direct and indirect methods [22]. Direct

methods measure the SoC based on the calculation of energy usage of the battery and are

generally recognized as ampere-hour (coulomb) counting methods. The general formula for

the method is given in Eq.(3.3), where Q denotes the nominal capacity of the battery and I

is the current. The drawback is that initial SoC needs to be known and these methods suffer

from accumulation of error due to the integration involved in the process. Conventionally,

η is considered equal to 1, however, there have been some modifications using intelligent

methods to improve the performance of the method by adjusting η adaptively [22, 45].

SoC = SoC0 − 1/Q
∫ t

t0

ηI(τ)dτ (3.3)

Indirect methods try to estimate the SoC using the measurement or calculation of some

other parameter. They are generally divided into data-based and model-based methods.
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Data-based methods employ the impedance [98, 19, 36] or open-circuit voltage of the bat-

tery [114, 91] to evaluate the SoC. The drawback of these methods is that they need some

extra measurements that is generally not available in real-time. Another category of data-

based methods are artificial intelligence-based methods where fuzzy logic [68, 110] or neural

network [21] methodologies are adopted to develop a SoC estimation technique. The draw-

back of these methods is that their accuracy is highly dependent to the training data.

Therefore, they are only accurate for a specific battery chemistry with the characteristics

that are captured by training data set. Hence, model-based methods have attracted the

most research efforts due to the feasibility of real-time application and promising results.

The model-based methods consider a model for the battery, i.e. the models discussed in

Chapter 2, and apply estimation approaches to evaluate the SoC. The main applied esti-

mation techniques are as follows:

1. Filter Design: Suppose the discrete-time model for the battery is provided as follows:

x(k + 1) = F (x(k), u(k)) +G(x(k), u(k))w(k)

y(k) = H(x(k), u(k)) + v(k)
(3.4)

where x denotes the states of the system, y the output and u the input. v and w

indicate the process (state) and observation (measurement) noise, respectively. Func-

tion F , G and H represent some nonlinear mapping. In the battery model, the states

of the system include SoC and maybe some other quantities of the system, output

is usually the voltage and the input could be current and temperature of the sys-

tem. The aim is to estimate the states of the system, given the outputs. Filtering

methods consider this problem in a stochastic setting where the goal is to determine

conditional density of state given the outputs (i.e. measurements) as px|y(x(T )|Y (T ))

where Y (T ) = {y(0), y(1), . . . , y(T )}, and T denotes the current sample time. Kalman

filter-based methods are the major filtering approaches that have been developed for

this problem [109, 95].

Kalman Filter: Kalman filter (KF) is derived as the optimal solution to the above

problem for unconstrained, linear systems (i.e. F and H are linear mappings) subject

to normally distributed process and measurement noise (i.e. G = I, w and v are

normal Gaussian noise). However, the battery model is usually a nonlinear system

, so the KF is not directly applicable. For nonlinear system estimation, extended

Kalman filter (EKF) and unscented Kalman filter (UKF) are developed based on the

principles of KF. EKF linearizes the nonlinear system, then applies the Kalman filter

to obtain the state estimates [115]. EKF has extensively employed for SoC estimation

using different model structures [33, 101, 88, 64, 65].
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In contrast, UKF do not linearize the model at a single point but represent the nonlin-

ear response by several points, namely sigma points and their associate weights [52].

UKF is also applied for battery state estimation [102, 89]. The interested reader is

referred to [109] for more details on principles of Kalman filter-based methods.

2. Observer Design: Another approach to the state estimation problem is to design

a new system, namely an observer, that attempts to estimate the internal states of

the original system. Consider the system (3.4), the idea of an observer is to design a

system as:

xo(k + 1) = Fo(xo(k), u(k), y(k))

yo(k) = Ho(xo(k), u(k))
(3.5)

where the residual e = xo − x converges to zero as k increases. A few observers

have been developed for battery estimation. Klein et al. [60] applies a Luenberger

observer to electrochemical model of the battery where the stability of the observer is

not proved. Kim [56] develops a sliding mode observer for an equivalent circuit model

of the battery. Moura et. al. [76] reduces the electrochemical model of the battery

and then applies a back-stepping observer for the SoC estimation.

3. Challenge: The proposed algorithms are compared along with their features in Table

3.1. As mentioned, the model-based algorithms present the most promising algorithms

for advanced BMS. Nevertheless, there are still a number of challenging issues regard-

ing the accuracy, complexity, computational load and universality of the proposed

algorithms. Some of the existing challenges are reviewed in the following:

(a) The electrochemical model (EM) of the battery presents the most accurate model

of the battery, however the complexity of partial differential equations (PDE) in-

volved, pose many challenges for available estimation techniques. In fact, the

literature in the control community dealing with PDEs is rather limited and nar-

row, where most of the observer or filter design methods are basically developed

for systems described by a set of ordinary of differential equations (ODE). Hence,

most of the work have been centred around reduction of the PDEs to ODEs and

deriving a state space model (Eq.3.4) [33, 101] or simplification of PDEs such

that limited existing tools for systems described by PDEs would be applicable

[76].

(b) Most of the work in the area of battery modeling and estimation, particularly

algorithms using EM, is developed for a battery electrode and single cell. In

reality, and for vehicle applications, we have to deal with battery modules and
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packs. Battery module is a set of battery cells connected in series or parallel and

battery pack is then assembled by connecting modules together, again either in

series or parallel or a mix of both to deliver the desired voltage, capacity, or

power density.

A number of issues such as large number of cells, spatial distribution of cells

and their implication on the modeling, or temperature distribution in a battery

module/pack, present new challenges and add another dimension to the battery

modeling and estimation that needs to be investigated. The work developed in

this chapter falls under the category of “Indirect Model-based Method” where

unlike Kalman filter methods, reduction of battery equations are not required.

Table 3.1: Comparison of the SOC estimation methods.

Methods Category Advantages Disadvantages

Coulomb (A-h)
counting

Direct Method Easy to implement Inaccurate due to error
accumulation unless the
initial SoC is exactly known

Open-Circuit
Voltage

Indirect Data-based
Method

Accurate, Low
computational load

Offline (needs the battery
to be in the resting mode
before measurement)

Impedance
Spectroscopy

Indirect Data-based
Method

Accurate, Complete
information about battery
conditions

Difficult to implement,
Expensive method, Offline

Intelligent Method
(Fuzzy - Neural
Network)

Indirect Data-based
Method

Doesn’t need model, Easy
to implement

Accuracy is strongly
dependent to the richness of
training data,
chemistry-specific and not
universal

Kalman Filter Indirect Model-based
Method

Accurate (if the model is
accurate)

High computational load,
needs reduction of
electrochemical models to
be implemented

Observer Design Indirect Model-based
Method

Accurate (if the model is
accurate)

Nonlinear, Not easy to
implement

3.2.2 Estimation of SoH

As mentioned in Section 3.1.2 , SoH determination has not found an established framework

in the literature. This metric generally refers to deterioration of the battery condition

with respect to its nominal condition. In general, different parameters that have a strong

correlation to performance fade of battery are utilized for this purpose. Hence, different

laboratory methods have been developed and used for measuring the health of a battery.

X-ray methods, Voltammetry, Impedance spectroscopy, Galvanostatic intermittent method,
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voltage or current pulse, are to name but a few [38, 80]. However, most of these methods

are not suitable for real-time monitoring of a battery and thus not appropriate for practical

use. A common practice in this field has been impedance measurement method [98, 36].

Despite its good accuracy, this method is not appropriate for online monitoring and requires

off-line operation of the battery where a frequency rich test signal is applied and extensive

measurements are taken.

Recent approaches for online monitoring of battery are mostly based on equivalent

circuit model of the battery [57], or an empirical model [88], and they exploit estimation

techniques to evaluate the state of the health of the battery. In the proposed methods, some

parameter in the battery model are attributed to SoH, and parameter estimation methods

are employed to determine the SoH. For instance, monitoring of a particular resistance or

capacitance in equivalent circuit model is associated with SoH prediction [57]. Different

algorithms such as least-square methods [77, 96] and Kalman filter [88] have been employed

for this purpose. Considering a dynamic for the SoH and augmenting it to the battery

model and employing state estimation techniques is also examined in [57]. However, the

parameters of empirical or equivalent circuits do not necessarily represent any physical

quantity but may only point to a phenomena within the battery. Hence, monitoring of the

electrochemical model parameters can provide a more comprehensive framework for SoH

determination. In this regard, Moura et. al. [77] has developed a parameter estimation

technique of a reduced-order electrochemical model.

Development of appropriate models that could incorporate the battery’s aging process

is promising for health monitoring of the battery and deserves further research. This topic

is explored with more details in Chapter 5.

3.3 Proposed Methodology

3.3.1 State Estimation

As discussed in Section 2.2.3, the focus of this Thesis is to employ the EM model for

monitoring and estimation due to its desirable features such as accuracy, scalability and

physics-based significance of the parameters in comparison with ECM and EPM models.

There have been some attempts in recent years to use EM model for battery estimation by

applying Kalman filtering (KF) or observer design techniques. Nevertheless, still most of

these works resort to a simplified model (e.g. Single-Particle model) [101, 102] for estimation

where spatial distribution of Li concentration and current density in the battery is not being

engaged in the equations. The operating range over which the model is valid is also limited.

Observer-design is also hindered by some issues affecting the observability of the system

when both electrodes are considered [33].

Santhanagopalan and White [101, 102] apply both EKF and UKF to single particle (SP)

model of the battery to estimate the SoC. However, as reported by [101], SP model is valid
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for a limited range of charge/discharge rates. Moreover, voltage and current density are

basically dependent on solid and electrolyte potentials where the corresponding equations

are not considered in SP model. Hence, the applied filter needs to resort to numerical calcu-

lation of output derivatives which could be a source of error accumulation and impractical

in a noisy environment. The work in [33] presented a more accurate model, namely average

model, where the spatial dependence of Butler-Volmer current is still ignored. Based on

this model, an EKF is applied for state of charge estimation. This algorithm is limited to

a confined range of operation in terms of charge/discharge rate and temperature as well.

In this Thesis, we have proposed new estimation methodology for SoC based on particle

filtering method. Particle filter (PF) has emerged as a powerful estimation technique where

it removes the restrictive assumptions imposed on dynamic and form of conditional density

(e.g. the requirement for it to be Gaussian) by Kalman filtering methods. In fact, PF

presents an implementation of the Bayes Filter that can approximate the posterior distri-

bution of the states with a set of weighted samples. This property introduces PF as an

appealing estimator candidate to handle a wide range of general, non-Gaussian and nonlin-

ear processes. Recent works have demonstrated the superiority of PF over Kalman based

variants in dealing with nonlinear systems [95]. More importantly, the enticing feature of

PF for us is that it is not necessary to simplify the partial differential equations describing

the battery dynamics to a similar-state space model to be KF- applicable. Particle filters

are applicable to any kind of equations without the need to change them. Hence, it can

provide us with the desired feature of tracking the system in its entire range.

3.3.2 State and Parameter Estimation

Another area of concern in battery monitoring is SoH monitoring. This Thesis present a

method for parameter estimation of the battery where the result can be helpful in assess-

ment of the degradation of the battery. In fact, battery degradation reflects on battery

parameters’ variations over time. In this capacity, the proposed method can be viewed as

a significant contribution towards the estimation of SoH.

To date most of the research works on battery estimation consider the model parameters

to be known and constant for the estimation purposes. However, it is well known that

batteries degrade over time and thus the parameters of the batteries slowly change over

time. This consideration has been missing in most of the works in the area of battery

estimation.

There are few works that have considered parameter estimation for the lithium-ion

battery. Santhanagopalan et. al. [103] have made the most contribution to this field. They

have presented a framework for estimation of the battery parameters using the Levenberg-

Marquardt method. This method, however powerful, has two drawbacks. First, it needs

calculation of Jacobian of the output with respect to the battery parameters, where in the

complicated structure of battery dynamics, as shown in Section 2.3, this is a troublesome
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task. Second, this method is an offline method or at least requires an accurate set of data in

advance. Moura et. al. [77] recently tackled this problem from another angle by proposing

an interesting PDE estimation technique using PDE swapping identifiers and least square

methods. To implement this, however, they simplified the battery model significantly where

many parameters do not appear in the battery model. Moreover, [77] assumes full-state

measurements which is not a realistic assumption unless the parameter estimation and state

estimation are being merged in one framework.

In present work, we approach the problem by proposing a simultaneous state and pa-

rameter estimation in a Bayesian framework. In this framework, the parameters and states

of the system can be estimated in an online manner where full electrochemical model of

the battery is taken into account. This algorithm provides an appropriate framework for

study of battery degradation as well. Considering the fact that parameters are changing

in a slower time-scale than the states, the algorithm introduces a multi-rate estimation

framework in which the states and parameters are being estimated on different time scales.

3.4 An Electrochemical Model-Based Particle Filter Approach

for Lithium-ion Battery Estimation

The objective is to estimate the state of charge of battery using the electrochemical model.

A particle-filter approach is developed for this purpose. In this work, the reduced-order

model (see Section 2.3.2) is considered for simulations, however, the developed algorithm

would be well extendible to the full electrochemical model of the battery, albeit with much

higher computational load.

The parameter of interest in estimation is often the SoC of the battery for which Bulk

SoC and Surface SoC (Eqs.(3.1),(3.2)) were defined. Since the reduced order model is

employed, surface SoC (3.2) is considered for estimation where cs,surf,j(x, t) = cse,j(x, t),

and cse,j is given in (2.24). The particle filter algorithm is presented in the following

subsection.

3.4.1 An Overview on State Estimation Problem

Before discussing the particle filter algorithm, the state estimation problem in a proba-

bilistic framework is briefly reviewed. The basic statement of state estimation problem

is to determine an estimate of the system states given its model and a sequence of noisy

observations (measurements) from the system. This implies that the complete solution to

the estimation problem is provided by the probability density function p(xt|Ys)1, where xt

represent the states of the system at time t, and Ys = {y1, ..., ys} the observation vector up

1Probability density function p(a|b) means the relative likelihood for the random variable a to take on a
given value, if the value of b is known.

28



to time s. This density function contains all available information about the state variable.

Depending on the relation between t and s in p(xt|Ys), three different estimation problems

are obtained. When we have t = s a filtering problem, when t > s a prediction problem,

and when t < s a smoothing problem. Let the model of the system be generally defined as:

xt+1 ∼ p(xt+1|xt)

yt ∼ p(yt|xt)
(3.6)

Development of the probability density functions of interest is established based on

the Bayes Theorem and the Markov property. Bayes Theorem describes the conditional

probability densities of two stochastic variables ψ and ϕ as follows:

p(ψ|ϕ) =
p(ϕ|ψ)p(ψ)

p(ϕ)
=
p(ϕ,ψ)
p(ϕ)

(3.7)

Moreover, a stochastic process has Markov property if the conditional probability distri-

bution of future states of the process (conditional on both past and present values) depends

only upon the present state, not on the sequence of events that preceded it. Now, the

filtering density can be written as:

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt, Yt−1)p(xt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)

(3.8)

where p(yt|Yt−1) can be calculated according to:

p(yt|Yt−1) =
∫

Rnx

p(yt, xt|Yt−1)dxt =
∫

Rnx

p(yt|xt, Yt−1)p(xt|Yt−1)dxt

=
∫

Rnx

p(yt|xt)p(xt|Yt−1)dxt

(3.9)

where, Rnx denotes the nx-dimensional vector space over the field of real numbers. Similarly,

one step-ahead density p(xt+1|Yt) and smoothing density p(xt|YN ) expressions could be

derived [105]. The main results are collected in Theorem 1.

Theorem 1. If the dynamic model is given by (3.6), the filter density p(xt|Yt), the one step

ahead density p(xt+1|Yt), and the marginal smoothing density p(xt|YN ) are given by:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(3.10)
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p(xt+1|Yt) =
∫

Rnx

p(xt+1|xt)p(xt|Yt)dxt (3.11)

p(xt|YN ) = p(xt|Yt)
∫

Rnx

p(xt+1|xt)p(xt+1|YN )
p(xt+1|Yt)

dxt+1 (3.12)

where

p(yt|Yt−1) =
∫

Rnx

p(yt|xt)p(xt|Yt−1)dxt

Proof. See [105].

Deriving an analytical solution to the multidimensional integrals involved in Theorem

1 is not possible but in a few special cases. The most important special case is when the

dynamic model is linear and the involved stochastic variables are normal, which has been

extensively discussed in the literature and the optimal solution to the estimation problem

would be Kalman Filter [53]. However, most of the real-world applications do not lend

themselves to linear algorithms. Therefore, a number of solutions for state estimation

problem of nonlinear systems are presented in literature. Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF), Moving Horizon Estimation (MHE), Particle Filter (PF)

are some of the prominent solutions proposed for this problem. As discussed earlier, our

focus would be on particle filter in this thesis due to its attractive features.

Unlike most other nonlinear filtering methods, particle filter does not assume a fixed

shape for densities (e.g. Kalman-based methods assume a Gaussian distribution). Instead,

in particle filtering the densities of interest are approximated via a set of evolving samples

or particles as:

p(x(t)) ≈ ΣNp

i=1q
i(t)δ(x(t)− xi(t)) (3.13)

where, Np indicates the number of particles or samples in the approximation, xi the sample

location and qi the sample weight. Thus PF can effectively capture the time-varying nature

of distributions commonly encountered in nonlinear dynamic problems. Furthermore, this

sampling based approach can solve the estimation problem in a recursive manner without

resorting to model approximation. This method is also identified as “Sequential Monte

Carlo method (SMC)” and has recently received a great deal of interest in the literature

[95]. SMC is discussed in more detail in the next section.

3.4.2 Sequential Monte Carlo Methods-Particle Filtering

Problem Statement

The internal state of the system (not measurable) {xt, t ∈ N}, is modeled as a Markov

process with initial distribution p(x0) and transition equation p(xt|xt−1). The observations

{yt, t ∈ N}, are assumed to be conditionally independent given the process {xt, t ∈ N} and of

marginal distribution p(yt|xt). The cumulative state and observations (measurements) are
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denoted by x0:t , {x0, . . . , xt} and y1:t , {y1, . . . , yt}, respectively, up to time t. According

to the Bayesian approach, we are interested in recursive estimation of posterior probability

density function (pdf): p(x0:t|y1:t).

Following Theorem 1, the recursive formula for the joint distribution p(x0:t|y1:t) could

be simply derived as:

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
(3.14)

where, p(x0:t|y1:t) = p(y1:t|x0:t)p(x0:t)
∫

p(y1:t|x0:t)p(x0:t)dx0:t
. The marginal distribution p(xt|y1:t) also satisfies

the following recursion:

Prediction: p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.15)

Updating: p(x0:t|y1:t) =
p(yt|xt)p(xt|y1:t−1)

∫

p(yt|xt)p(xt|y1:t−1)dxt
(3.16)

In this recursion, prediction step uses both the knowledge of the previous state estimate

and the process model to generate the a priori state pdf estimate for the next time instant.

On the other hand, the updating (also called filtering) step applies the Bayes Formula to

generate the posterior state pdf. As mentioned earlier, the evaluation of complex high-

dimensional integrals in these expressions is analytically intractable in most cases. Thus,

applying Monte Carlo (MC) methods is inevitable to reach a favorable solution which is not

subject to constraints such as linearity or Gaussianity. The key idea underlying the Monte

Carlo methods is to represent the probability density function (pdf) by a set of samples

(particles) and their associated weights.

The density function p(xt|y1:s) is approximated with an empirical density function:

p(xt|y1:s) ≈ ΣNp

i=1w
i
tδ(xt − xi

t|s) (3.17)

where Np denotes the number of particles, wi
t the associated weight of particle xi

t|s while

normalized as ΣNp

i=1w
i
t = 1, and δ(.) is the Kronecker delta function. As the number of

samples becomes very large, this MC characterization becomes an equivalent representation

to the usual functional description of the posterior pdf, and the obtained filter approaches

the optimal Bayesian estimate.

Particle Filter Algorithm

Different recursive algorithms are proposed to implement the above technique. They are

generally categorized as particle filters or sequential Monte Carlo methods. They are also

known as bootstrap filtering [43], condensation algorithm [71], and survival of the fittest
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[54]. In this Thesis we review the “sampling importance resampling (SIR)” algorithm. SIR

is organized in four basic steps:

1. Initialization:

In the initialization stage, a finite number of particles are selected. Each particle is

randomly initialized within an acceptable range wherein x0 (i.e. initial state of the

system) has the chance to sit. The number of particles is determined by a compro-

mise between the desired accuracy and computational load. The other steps of the

algorithm would run recursively.

2. Prediction (time update):

This step considers the evolution of the system over time. It uses the stochastic model

of the system to generate a possible future state for each sample. In other words, for

all particles, the posterior system states are calculated.

3. Correction (measurement update):

In this stage, each sample is weighted by the likelihood of seeing the observations

in the (updated) state represented by the sample. Consequently, the samples that

predict the observations well would have high weight, and samples that are unlikely

to generate the observations would have low weight.

4. Resampling:

This stage produces a uniformly weighted posterior. The key idea of resampling step

is to eliminate the particles with low importance weights and to replicate particles

with high importance weights.Therefore, the probability that a new sample is a copy

of a particular sample s is proportional to the weight of s, so high-weight samples

may be replaced by several samples, and low-weight samples may disappear

The above algorithm is represented as follows:
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Algorithm 1 SIR Particle Filter

1. Initialization:

For i = 1, . . . , Np, sample xi
0 from the prior distribution p(x0) at t = 0 and then set

t = 1.

2. Prediction and Correction:

• For i = 1, . . . , Np, sample x̃i
t ∼ p(xt|xi

t−1).

• For i = 1, . . . , Np, evaluate the importance weights according to w̃i
t ∼ p(yt|x̃i

t).

• Normalize the weights

3. Resampling:

Resample Np new particles {xi
t, i = 1, . . . , Np} with replacement from the set {x̃i

t, i =

1, . . . , Np} according to the importance weights. A new sample xi
t is a copy of a

particular particle x̃i
t with a probability proportional to the weight of x̃i

t. Interested

reader can consult with [105, 5] on different algorithms proposed for resampling.

4. Set t = t+ 1 and go to step 2.

The block-diagram of this algorithm is illustrated in Figure(3.1). The interested reader

is referred to [34, 5] for more details about the theories behind this PF algorithm and other

variants of this algorithm.

Figure 3.1: The major computational steps of a particle filter algorithm is shown in this
block diagram.
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3.4.3 Application of PF to the Battery Equations

The PF algorithm (Algorithm 1) was applied for battery estimation. The particles repre-

sent the concentration at the surface of the electrode (i.e. cse,j). The particles are updated

through the transition distribution, p(xt|xt−1), and posterior pdf is calculated. The pre-

dicted output for each particle ỹt
i is calculated and compared with the measured output yt.

The weight associated with each particle is determined as follows:

{

ei
t = yt − ỹt

i

w̃i
t = exp((ei

t)
2/2ζy)/

√

2πζy

, i = 1, . . . , Np (3.18)

where, ζy is the variance of observation noise. The weights are normalized, the states of the

interest are determined and the particles are resampled to produce a priori distribution for

the next time step. The schematic of the procedure is shown in Figure (3.2).

3.5 Online State and Parameter Estimation of the Li-ion

Battery

The objective is to develop an algorithm capable of simultaneous estimation of the states

and parameters of the system in a Bayesian framework. The proposed estimation method

is based on a particle filter proposed by [69] and [24] for simultaneous joint parameter and

state estimation.

3.5.1 Combined Parameter and State Estimation

Dynamic Model and Analysis Perspective

Assume a Markovian dynamic model for sequentially observed data vectors y1:t in which

the state vector at time t is xt and the parameter vector is θt. The state equation defined

by transition density as p(xt|xt−1, θt), and the observation equation is defined by the ob-

servation density as p(yt|xt, θt). Similar to SMC algorithm (Section 3.4.2), it is assumed

that each y1:t is conditionally independent of past states and observations given the current

state xt and the parameter θt, and also, xt is conditionally independent of past states and

observations given xt−1 and θt.

The objective is to develop a sequential Monte Carlo method to sequentially update

Monte Carlo sample approximations to the sequences of posterior distributions p(xt, θt|y1:t).

The main focus of this Thesis would be on a modification of Auxiliary Particle Filter as

proposed by [69] and [24] to tackle the problem.

If both states and model parameters are to be estimated, Bayes’s rule gives the following

joint posterior distribution:
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p(xt, θt|y1:t) ∝ p(yt|xt, θt)p(xt|θt, y1:t−1)p(θt|y1:t−1) (3.19)

Joint state and parameter estimation is achieved through the augmentation of the state

space with the parameter vector. If the parameters are considered as constant, a Gaussian

random walk is considered for the parameters as follows:

θt = θt−1 + ζt

ζt = G(0,Wt)
(3.20)

This strategy has been widely adopted in conventional state and parameter estimation

techniques, such as the EKF [59]. However, as noted by some researchers [69], the random

walk implies an increase in the magnitude of the covariance, resulting in posterior distribu-

tions that are more diffuse than they should be [24]. Hence, “Kernel Smoothing” is applied

to alleviate this problem [69].

Kernel Smoothing

Let θ̄t−1 and Λt−1 be the Monte Carlo mean and covariance matrices computed from all

the particles with weights, {θi
t−1, w

i
t−1, i = 1, . . . , Np}. It is noted that the distribution

p(θt|y1:t−1) ≈ ΣNp

i=1w
i
t−1G(θt|θi

t−1,Wt) would have a mean of θt−1 and covariance matrix

Λt−1 + Wt. Thus, to reduce the covariance the kernel smoothing with smoothing factor

0 < h < 1 is employed as:

p(θt|y1:t−1) ≈ ΣNp

i=1w
i
t−1G(θt|mi

t−1, h
2Λt−1) (3.21)

where, the kernel locations mi
t−1 are specified by a shrinkage rule that forces the particles

to be closer to their mean [24]:

mi
t−1 = (

√

1− h2)θi
t−1 + (1−

√

1− h2)θ̄t−1 (3.22)

As a consequence, the probability in Eq.(3.21) would have the mean of θ̄t−1 and covari-

ance matrix Λt−1.

The parameter h is the manipulating parameter to deal with the changes of unknown

parameters. Small values of h (e.g. 0 < h < 0.2) are utilized for a fixed or slowly-varying

unknown parameter where large values (e.g. 0.8 < h < 1) are being employed for parameters

with significant changes over time [24].
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Auxiliary Particle Filter for State and Parameter Estimation

The importance function p(xt|xt−1) used in Algorithm 1 has an obvious defect in the sense

that the state-space is explored without direct knowledge of the measurement yt. The idea

of incorporating this information in the importance function is explored in the Auxiliary

Particle Filter (APF) introduced by Pitt and Shephard (1999) [86]. The combined state and

parameter estimation particle filter presented here is in fact a modification of this algorithm

presented by [24]. The interested reader is referred to [86] for more details about APF. The

algorithm is presented as following:

Algorithm 2 Auxiliary SIR Particle Filter for State and Parameter Estimation

1. Initialization:

For i = 1, . . . , Np, initialize the particles {xi
0, θ

i
0} with equal weights of {wi

0 = 1/Np}
and then set t = 1.

2. Find the prior point estimates:

(a) For i = 1, . . . , Np,

i. Calculate µi
t = E(xt|xi

t−1, θ
i
t−1) and mi

t−1 = (
√

1− h2)θi
t−1 + (1 −√

1− h2)θ̄t−1

ii. Calculate wi
t ∝ p(yt|µi

t,m
i
t−1)wi

t−1

(b) Normalize the weights

(c) Resample Np new particles {xparent(i)
t−1 ,m

parent(i)
t−1 , µ

parent(i)
t , i = 1, . . . , Np} with

replacement from the set {xi
t−1,m

i
t−1, µ

i
t, i = 1, . . . , Np} according to the impor-

tance weights wi
t.

3. Prediction and Correction:

(a) For i = 1, . . . , Np, draw θi
t from Gaussian distribution G(.|mparent(i)

t−1 , h2Λt−1)

(b) Draw xi
t from p(xt|xparent(i)

t−1 , θi
t)

(c) Assign weights according to wi
t = p(yt|xi

t,θi
t)

p(yt|µ
parent(i)
t ,m

parent(i)
t−1 )

(d) Normalize the weights

4. Set t = t+ 1 and go back to 2.

The particles µi serve as an auxiliary variable for deriving the importance density. By

utilizing them, the new particles are generated from particles at the previous time step,

conditional on the current measurement yt, which will be closer to the true states. Concep-

tually, in contrast to standard particle filter, the auxiliary particle filter can be interpreted

as a look ahead method, which at time t − 1 predicts which samples will be in regions of
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high likelihood at time t. As a result, the cost of sampling particles from regions of very

low likelihoods is reduced [40].

3.5.2 Multi-Rate APF for State and Parameter Estimation of the Battery

In order to address the computational load of this algorithm, a multi-rate particle filter is

proposed in this Thesis, where parameters are estimated in a slower time-scale than states.

Provided that a sufficient number of particles is being used for estimation, the stability of

the filter is guaranteed. The parameter estimation stage is stopped whenever the variance of

estimated parameters at consecutive time steps is dropped below a certain threshold (Vth)

which means that the parameter estimate has converged to its value.

In other words, we have two time scales Ts1, and Ts2 used for state and combined

state and parameter estimation, respectively. At sample times k′ that mod(t = kTs1 =

k′Ts2, Ts2) = 0, the parameter particles vector is initialized and the combined particle filter

is performed. This continues with Ts1 until the parameter vector converges (the stopping

condition is considered as the variance of the parameters in a window of 10 time steps).

Thereafter, we only perform the state parameter estimation given in Algorithm 1 until the

next sample time is reached.

Applying this filter helps to reduce a great deal of computational load. Given the fact

that parameters of the battery are slowly changing, this makes sense to perform state and

parameter estimation at different rates. The proposed algorithm is given in Algorithm 3.

Algorithm 3 Multi-Rate Particle Filter Algorithm for Combined State and Parameter
Estimation

for t = 0 : Ts1 : tend do

if t = 0 or mod(t, Ts2) = 0 then

Initialize parameter particles

t̂← t

Run Algorithm 2

else if var{θτ}tτ=t−10Ts1
> Vth then

Run Algorithm 2

else

Run Algorithm 1

end if

end for
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3.6 Simulation Studies

In two separate studies the effectiveness of the proposed algorithms are examined for Li-ion

battery estimation. The Li-ion battery parameters used in simulations are adopted from

the work in [51] and are given in Table 3.2.

The dynamic state evolution of the battery is obtained by discretizing the PDE equations

(Eqs.(2.22)-(2.28) ) by applying finite difference method choosing a proper step-length for

time and position. This set of differential equations along with the algebraic equation

corresponding to surface concentration (2.24) and volumetric rate (2.8) constitute a DAE

set of equations that need to be solved at each time instant. The algorithms are applied and

estimated values are compared with actual values obtained from solving the full dynamic

model of the battery. The impact of different factors such as number of particles, and noise

level present in the system are also studied on the performance of the algorithms. The

performance results show that the proposed algorithms are effectively capable of tracking

the SoC of the battery as well as desired parameters. They can also estimate other battery

quantity variables that are often absent in the current monitoring approaches.

3.6.1 SoC Estimation of Li-ion Battery

The effectiveness of Algorithm 1 is investigated through the SoC estimation of a Li-ion cell.

The current profile exerted for simulation tests is the one considered in [33] corresponding

to FreedomCAR test procedure [124]. The particle filter is initiated with 100 particles

corresponding to initial concentration of Lithium at solid phase (see Figure (3.2)). The

number of particles is selected based on a study on the impact of number of particles on the

accuracy that will follow. The results are shown in Figure (3.3). It is apparent that after a

very short transient the proposed algorithm is capable of finding the correct SoC and tracks

the correct value (3.3b). The SoC estimation error |SoC − ˆSoC|/SoC is shown in Figure

(3.3c) for a few first time steps to demonstrate how the algorithm converges toward the

correct value. Normally, if the set of initial particles is diverse enough such that the exact

value of interest have some representatives in the initial particles, then PF is very fast to

catch up with the exact value of SoC. It is however very important to maintain the diversity

of the particles at some reasonable level by injecting artificial noise, or other methods to

prevent the sample impoverishment problem [5].

The beauty of PF algorithm is that in addition to SoC which is the main parameter of

concern for all battery estimation algorithms, the spatial distribution of other parameters

would also be obtainable. Figure (3.4) demonstrate this ability of PF algorithm. The mean

squared error (MSE) error (i.e. MSE = 1/N
∑M

i=1 e
2
i ) of φse = φs−φe with respect to x ,at

negative and positive electrode, is calculated as: MSE−(t) = 1/Ln
∫ L−

0− (φse(t)− φse(t))2dt

and MSE+(t) = 1/Lp
∫ L+

0+ (φse(t) − φse(t))2dt and shown in Figure (3.4a) versus time.
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Table 3.2: Li-ion Battery Parameters

Symbol Value Unit
cs,p,max 22860 [mol m−3]
cs,n,max 26390 [mol m−3]
ce 2000 [mol m−3]
Ds,p 1.0× 10−13 [m2s−1]
Ds,n 3.9× 10−14 [m2s−1]
De 7.5× 10−11 [m2s−1]
F 96485.3365 [C mol−1]
kp 2.3× 10−11 [mol/m2s/(mol/m3)1.5]
kn 2.3× 10−11 [mol/m2s/(mol/m3)1.5]
Lp 183 [µm]
Ls 52 [µm]
Ln 100 [µm]
p 1.5
R 8.3144621 [JK−1mol−1]
Rs,p 8 [µm]
Rs,n 12.5 [µm]
αa , αn 0.5
σp 3.8 [Ω−1m−1]
σn 100 [Ω−1m−1]
ǫs,p 0.444
ǫs,n 0.357
ǫe 1
Up = 4.199 + 0.0566tanh(−14.555θp + 8.609)− 0.0275[(0.998− θp)−0.492 − 1.901]

−0.157exp(−0.0474θ8
p) + 0.81exp[−40(θp − 0.134)], θp = cse,p/cs,p,max

Un = −0.16 + 1.32exp(−3θn) + 10.0exp(−2000θn)), θn = cse,n/cs,n,max

κeff,j = (4.1253× 10−2 + 5.007× 10−4ce − 4.7212× 10−7c2
e + 1.5094× 10−10c3

e

−1.6018× 10−14c4
e)ǫps,j , j = n, e, p

Figure (3.4b) illustrates the spatial distribution of lithium ions in active material at the

negative electrode. It is shown at three time instances versus x ∈ [0−, L−].

Estimation of other battery quantities such as solid and electrolyte potential, or spatial

distribution of Lithium ion concentration is specifically advantageous in health monitoring

and fault diagnostics of the battery. Many degradation mechanisms in the battery manifest

themselves through unexpected values for these quantities, or deviation of the their spatial

distribution from its normal profile. Chapter 5.1 elaborates more on this point and discusses

the effectiveness of these algorithms on fault monitoring of Li-ion batteries. In the following,

the impact of number of particles, and observation noise level is studied.
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Impact of Number of Particles

To study the impact of number of particles on the algorithm performance, the MSE error

due to SoC estimation is tabulated in Table 3.3. The results demonstrate that as the

number of particles increases the accuracy of the algorithm gets improved. However, there

is always a compromise between the desired accuracy and computational load. Hence, our

simulations were carried out with 100 particles which also provides good results.

Table 3.3: The impact of number of particles on the accuracy of estimation

Number of Particles MSE
20 1.568× 10−4

50 1.4619× 10−4

100 7.8041× 10−5

250 5.6214× 10−5

350 4.5390× 10−5

Impact of Noise

The robustness of the algorithm is studied by increasing the noise and observing the MSE

error for different noise levels. A normal Gaussian observation noise with different standard

deviation (SD) is applied to the system for this purpose. Table 3.4 summarizes the results.

In this study the number of particles is considered as N = 50. The results show that

although generally the accuracy drops as the noise SD level goes up, the algorithm remains

robust by providing a good accuracy. Also, comparing the results for SD values of 0.01 and

0.02, or 0.1 proves the robustness of algorithm and shows that the change in accuracy is not

necessarily due to noise level. In other words, the filter can reject the noise in the system to

a good extent. The difference between MSE values of SD = 0.01, and SD = 0.02 is partly

due to the random initialization of the filter. Decrease in the accuracy in the high noisy

environment is however inevitable.

Table 3.4: The impact of observation noise on the performance of the algorithm

Observation Noise SD MSE
0.001 7.369× 10−5

0.01 1.9702× 10−4

0.02 3.8070× 10−5

0.05 6.4098× 10−5

0.1 1.8412× 10−5

0.2 3.2074× 10−4

A main feature of PF algorithms is that, unlike Kalman-based methods, they are in-

sensitive to the type of the noise. Hence, to study this feature, the performance of the
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algorithm with respect to colored noise is investigated in the following. The colored noise

is generated as follows:

vc[n] = 0.5× vc[n− 1] + v[n] (3.23)

where vc represents the colored noise and v the white Gaussian noise with variance of ζ2
v .

Therefore, the variance of the colored noise can be determined as: ζ2
v/(1−0.52). The results

are shown for noise SD of 0.02 in Figure (3.5). The inset in Figure (3.5b) shows that the

error percentage (i.e. EP (%) = 100 × | SoC − ˆSoC |/SoC(%)) remains in a 0.2% band

which demonstrates a very good performance and also insensitivity of PF algorithm to the

noise type.

3.6.2 State and Parameter Estimation of Li-ion Battery

For simulation studies, the estimation of parameters of diffusion coefficient (i.e. Ds,j) and

the volume fraction of active material (i.e. ǫs,j) at negative electrode (j = n) are selected.

These parameters are selected due to the fact that some of the common degradation mech-

anisms that affect the lithium mobility in lattice of active material, or lead to loss of active

area would impose a direct impact on these parameters and thus their estimation is desired

to predict and detect the battery faults (The principles of degradation processes are dis-

cussed in Chapter 5). Changes to this set of parameters would also consequently affect the

accuracy of the SoC estimation. Hence, these coefficients are being estimated along with

the SoC of the negative electrode.

Figure (3.6) shows the results when the Algorithm 3 is employed for separate estimation

of Ds,n and ǫs,n. The results are achieved with filters consisting of 100 particles. It can be

seen that parameters can track the true values (Figure (3.6)). The parameter estimation is

stopped when the estimated parameter converged and from thereon only the state estimation

continues.

3.7 Summary and Discussion

This Chapter discussed the battery monitoring methodologies. First, the literature about

battery monitoring, parameters of concern, and existing challenges were briefly reviewed.

Then, a Bayesian approach towards battery monitoring was proposed as a novel solution

that can address some of the current challenges. This approach can open a new window

towards battery monitoring by considering the electrochemical model of the battery. The

proposed methods are capable of estimating of both states and parameters of the battery.

Moreover, in addition to state of charge of the battery, other parameters such as solid and

electrolyte potential, and distribution profile of lithium concentration in the battery are

also estimable through this methodology which makes it unique. Considering the electro-
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chemical model in battery estimation is also itself desirable since its parameters possess

physical significance, and thus their estimation provides some necessary information for

fault diagnostics of the battery.
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Figure 3.2: Schematic of the application of PF to battery estimation.
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Chapter 4

Data-Based Approaches to Battery

Monitoring

4.1 Introduction

Model-based approaches to battery monitoring was discussed in the last chapter. The pro-

posed particle-filtering-based algorithms present a universal methodology to battery moni-

toring. However, they suffer from the high computational load of the algorithm that make

them not the best choice for real-time monitoring. In this chapter, two new methodologies

that are inherently data-based and empirical also but take into account the physics of the

battery are considered.

In section 4.2, a new methodology based on Takagi-Sugeno (T-S) fuzzy modeling is

presented. This work attempts to establish a bridge between the complicated partial differ-

ential equations of the electrochemical model (see section 2.3) with linear like state-space

models by proposing a Takagi-Sugeno (T-S) fuzzy system. In fact, fundamental EM model

is approximated using multiple state space models using a data-based approach. The key

idea is to solve the basic EM model using finite volume method (section 2.3.1) in the range

of normal battery operation and then fit a T-S fuzzy model to the provided data. The

proposed T-S fuzzy model provides a multiple state-space model and then a T-S observer

fuzzy model is applied to estimate the unknown states.

In section 4.3, a new concept of “dynamic resistance” is introduced and is intended to

provide a novel framework for battery monitoring where state estimation and aging effect

are considered. This methodology has the potential to estimate both SoC and SoH in a

unified framework. It is shown through extensive experiments that the introduced param-

eter of dynamic resistance is strongly dependent to the battery SoC and charge/discharge

cycle number or aging. Hence, this parameter carries important information about the

degradation and capacity fading of the battery. Moreover, it presents a viable and simple

method to monitor the degradation of the battery whereas most of the previously proposed
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methods are based on non-physical quantities, or destructive methods to gain access to the

state of battery materials.

An appealing feature of the methods presented in this chapter is their extremely low

computational load which makes them an appropriate choice for real-time monitoring of

the battery.

4.2 Takagi-Sugeno Fuzzy Model

A Takagi-Sugeno (T-S) fuzzy model which is essentially an empirical model and attempts

to include advantages of both ease-of-calculation of experimental models and accuracy of

electrochemical models is proposed and developed in this section. The input space is de-

composed into a set of fuzzy spaces and the output space is represented with multiple linear

state space models. The main advantage is that while the inherent nonlinearity of the

model is preserved, each local model is a linear model for which development of control and

estimation strategy is straightforward. Moreover, the reliability range of the model can also

be increased by consideration of the multiple models each of which representing a differ-

ent region of the battery operation. A data-approach is adopted to identify the T-S model

where the data is collected from extensive simulation of EM to have a fair extended range of

data. By virtue of local state-space linear models, many of the available control/estimation

strategies would be applicable to battery equations. A Luneberger-based fuzzy observer is

developed to estimate the SoC in this section. For a good review of TS based modeling and

control theory see [39].

4.2.1 T-S Fuzzy Modelling and Identification

The proposed TS model is composed of c fuzzy inference rules where each one is associated

with one local state-space model. The lth rule can be described as:

Rl : IF z1,k is Fl,1 and ... and zq,k is Fl,q

THEN
x(k + 1) = Alx(k) +Blu(k) + ϑl

y(k) = Clx(k) +Dlu(k)

(4.1)

where, z1:q,k denotes the premise variables which include the previous states and current

input, i.e. x(k) and u(k), of the system and Fl,1:q the fuzzy sets. The vectors x(k) ∈ R
n

represents the state vector, u(k) ∈ R
m the input vector, y(k) ∈ R the output vector,

respectively. Matrices (Al, Bl, ϑl, Cl, Dl) represent the lth local affine state-space model.

Applying singleton fuzzifier, product fuzzy inference and center-average defuzzifier, the T-S

fuzzy model can be expressed as:
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x(k + 1) = A(µ)x(k) +B(µ)u(k) + ϑ(µ)

y(k) = C(µ)x(k) +D(µ)u(k)
(4.2)

where

(A,B, ϑ,C,D)(µ) =
c
∑

l=1

µl(Al, Bl, ϑl, Cl, Dl). (4.3)

µl(z) ≥ 0 is the normalized membership function defined as:

µl(z) =
βl(z)

∑c
i=1 βi(z)

, βi(z) =
q
∏

j=1

Fi,j(z), (4.4)

where Fi,j(z) is the grade of membership of z and βi is the degree of fulfillment of ith rule.

The fuzzy sets Fi,j , are represented by Gaussian membership functions as follows:

Fi,j(zj,k) = exp

(

−1
2

(zj,k − vi,j)2

σ2
i,j

)

(4.5)

where vi,j denotes the center and σ2
i,j the variance of the Gaussian membership functions.

The applied data-based method for the generation of a TS fuzzy model (4.1) is based on

Levenberg-Marquardt (LM) and fuzzy clustering. It is adopted from [1], [39] and modified

by adoption of LM method for the estimation of local model parameters and eigenvalue

decomposition for simplification of fuzzy-rule database. The proposed method is discussed

in the following.

Model Identification

The objective is to identify both the membership functions and the local affine model

parameters. The number of rules (i.e. c) could be considered as pre-set or determined within

an iterative procedure where the identification begins from a minimum number of rules and

it is increased until a certain stopping criteria is reached. The key idea of identification

of membership functions is based on clustering and partitioning the identification data.

The clustering is established based on the minimization of an objective function, V , which

includes two basic terms, i.e. the sum of weighted squared distances between data points,

zk and the cluster prototypes (η), and estimation error of the local linear models (e).

min
η
V : V (z, U, η) = min

η

c
∑

i=1

N
∑

j=1

(µi,k)D2
i,k

where D2
i,k(zk, ηi) = ωi ·

n
∏

j=1

exp(−1
2

(zj,k − vi,j)2

σ2
i,j

.
exp(−eT .e)
√

2πσ2
i
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e = yk − g(z, θ) (4.6)

where ωi represents the weight of each rule, vi,j and σ2
i,j the centers and standard deviation

of the Gaussian membership functions, respectively, yf
k the output of the fuzzy system and

e is the modelling error.

The above optimization problem can be solved with different methods. The popular

Alternating Optimization (AO) method is adopted here [1]. The main algorithm is sum-

marized in Algorithm 4.

The minimization problem (4.8) is solved using a nonlinear least-squares regression

technique called Levenberg-Marquardt method [75, 94]. LM is in fact a parameter learning

method that adaptively averages between Gauss-Newton and gradient-descent methods.

The objective is to estimate the parameters, θ, of a model such as y = g(x, θ), provided the

observed values of dependent variable, y∗. This algorithm is reviewed in Algorithm 5.

Using algorithms 4 and 5, a T-S fuzzy model with c number of rules is developed.

Now, the question is how to select the set of most important fuzzy rules. To improve

the generalization ability of the model as well as its compactness, it is better to remove

the redundant or less important fuzzy rules. To achieve this goal, a modified version of

“eigenvalue decomposition (ED) method” introduced by [135] and [81] is adopted in this

Thesis.

Simplifying T-S Model using Eigenvalue Decomposition (ED)

The main idea is to apply the eigenvalue decomposition to the partition matrix, and hence

the rule space, and employ a measure index to rule out the redundant or less important

rules.

Based on the partition matrix, U = [µi,k] ∈ R
c×N , the correlation matrix is defined as:

Φuu , UUT ∈ R
c×c. Applying eigenvalue decomposition on Φuu gives:

Φuu = ΨΛΨT (4.14)

where Λ = diag(λ1, λ2, ..., λc) ∈ R
c×c is a diagonal matrix whose diagonal entries are eign-

values of Φuu, and Ψ = [ψ1, ψ2, . . . , ψc] ∈ R
c×c is an orthogonal matrix whose columns are

the corresponding eigenvector. The matrix Φuu is symmetric and Φuu ≥ 0 and thus all of

its eigenvalues are real and non-negative. Therefore, all eigenvalues can be arranged in a

descending-order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λc ≥ 0, and all eigenvectors are arranged accord-

ingly. The number of first r largest eigenvalues indicates the number of fuzzy rules that

should be retained. The number of preserved rules, r, is either pre-determined or it can be

determined as the number of eigenvalues that are not less than some certain threshold.

In order to determine which rules should be discarded, a measure index vector IED ∈ R
c

is defined as:
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Algorithm 4 T-S Fuzzy Model Identification

1. Choose a weighting exponent m > 1, a termination threshold ǫ > 0 and a set of initial
membership values U0 = [µi,k]c×N such that µi,k > 0 and

∑c
i=1 µi,k = 1. Set l = 1.

2. Calculate the prototypes of clusters (i.e center and standard deviation) as follows:

vi
(l) =

∑N
k=1 µ

(l−1)
i,k zk

∑N
k=1 µ

(l−1)
i,k

,

σ2
i,j

(l)
=

∑N
k=1 µ

(l−1)
i,k (zj,k − vj,k)2

∑N
k=1 µ

(l−1)
i,k

, 1 ≤ i ≤ c
(4.7)

where vi
(l) = [vi,1, vi,2, . . . , vi,q] and z = [z1, z2, . . . , zN ]T .

3. Estimate the parameters of local models (gi, 1 ≤ i ≤ c) using Levenberg-Marquardt
(LM) method. The parameters of each local model is estimated by solving the follow-
ing minimization problem:

min
θi

= ‖y− gi(z, θi)‖2 · ζi = ‖y
√

ζi − gi(z, θi)
√

ζi‖
2

(4.8)

where gi(z, θi) designates the output of the local fuzzy model for z = [z1, z2, . . . , zN ]T ,
and y = [y1, y2, . . . , yN ]T , and ζi denote a diagonal matrix having membership degrees
as follows:

ζi =













µi,1 0 . . . 0
0 µi,2 . . . 0
...

...
. . .

...
0 0 . . . µi,N













The standard deviation of the modeling error is given as:

σ2
i

(l)
=

∑N
k=1 (yk − gi(z, θi))

T (yk − gi(z, θi)) · µ(l−1)
i,k

∑N
k=1 µ

(l−1)
i,k

(4.9)

The probability of the cluster and the impact of rules are also defined as:

p(ηi) =
1
N

N
∑

k=1

µi,k, ωi = p(ηi)
n
∏

j=1

1
√

(2πσ2
i,j)

(4.10)

4. Compute the distance measure D2
i,k(zk, ηi) (4.6)

5. Update U (l−1) → U (l) according to

µ
(l)
i,k =

1
∑c

j=1( Di,k(zk,ηi)
Dj,k(zk,ηj))2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N (4.11)

6. If ‖U (l) − U (l−1)‖ < ǫ stop, else l = l + 1 and go back to Step 2.
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Algorithm 5 LM Method for Model Parameters Identification

1. Initialize the parameter vector, θ(0) and the damping factor γ. Choose the thresholds
of the stop conditions, ǫ1 and ǫ2.
Calculate the chi-square error criterion for m = 0:

χ(m)(θ(m)) =
N
∑

i=1

[

(y∗
i − yi(θ(m))

wi

]2

=
(

Y ∗ − Y (θ(m))
)T
W
(

Y ∗ − Y (θ(m))
)

(4.12)

where W is the weighting diagonal matrix with Wii = 1/w2
i . The value of wi is a

measure of the error in measurement yi.
For m = 1, 2, . . . follow steps 2-5.

2. Find the Jacobian matrix:

J =
∂g(x, θ)
∂θ

3. Find the correction vector ∆θ:

∆θ = (JTWJ + γ diag(JTWJ))
−1
JTW (Y ∗ − Y ) (4.13)

4. Update the parameter vector:

θ(m) = θ(m−1) + ∆θ

5. Find χ(m) (4.12) and do the following:

(a) If ‖χ(m) − χ(m−1)‖ < ǫ1, or ‖θ(m) − θ(m−1)‖ < ǫ2: Stop.

(b) Otherwise: If χ(m) > χ(m−1), reduce γ (e.g. γ = γ/4). Else, keep the old
parameters: θ(m)=θ(m−1) and increase γ (e.g. γ = 2γ).
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IED = diag(ΨrΨT
r ) = diag(ψ1ψ

T
1 + ψ2ψ

T
2 + . . .+ ψrψ

T
r ) (4.15)

where Ψr = [ψ1, ψ2, . . . , ψr] ∈ R
c×r includes the first r columns of Ψ, i.e. the eigenvectors

corresponding to the r biggest eigenvalues. The position of r largest indexes in IED deter-

mines the r rules that should be retained. The rest of c− r rules are removed, and the T-S

state model parameters are estimated using a LM method.

Algorithm 6 Eigenvalue Decomposition Algorithm for T-S Model Reduction

1. Compute the eigenvalue decomposition of Φuu (4.14) and sort out the eigenvalue, and
corresponding eigenvectors in a descending order in matrices Λ and Ψ, respectively.
Determine the number of fuzzy rules that should be retained: r.

2. Partition Ψ into Ψ = [Ψr,Ψc−r] where Ψr corresponds to the first r columns of Ψ.

3. Compute the measure index IED (4.15) . Find the r largest indexes in IED. Their
position indicates those rules that should be retained.

4. Keep the r rules with indexes found in Step 3 and estimate the parameters of local
state space models corresponding to r rules using a LM method. Note that the
membership functions are already determined in Algorithm 4.

4.2.2 Observer Synthesis

The SoC is not directly measurable in Li-ion battery and the main objective of this modeling

exercise is in fact to find a systematic model-based approach to estimate the all important

SoC. Given the type of the model used, different observers have been employed to estimate

SoC. In the past works, Kalman filter and its variants [122, 102, 89, 88] have received

the most attention in this regard for both ECM and EPM. Given the freedom that ECMs

provide, due to the availability of state-space model, other observers such as sliding model

observers [56] are also proposed. Luenberger observer [60], Extended Kalman filter [33],

[101], and Particle filter [100] are also exploited for the Electrochemical model of the bat-

tery. There are however some issues with observer design for electrochemical model of the

battery. Observability of the general system is an important issue, and also, the stability

and robustness of the observers are other challenging issues that need to be addressed prop-

erly. In the case of the filters, i.e. Extended Kalman or Particle filter, stability remains

to be a concern. There are however a few observer design cases for reduced EM models

[76, 32, 132].

In this section, we discuss the design of an appropriate observer for the TS model (4.1)

identified using Algorithms 4-6. The simple Luenberger type observer and a generalized

H2 observer design is adopted for this system to address the robustness of the observer.

The advantage of the applied observers is that the observer gains are selected such that the
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stability and robustness of observer is analytically proved using Lyapunov Theorem. The

observer designs are adopted from [39]. The fuzzy observer for TS model (4.1) is designed

as a TS fuzzy system with the same number of rules (i.e. l ∈M := {1, 2, . . . , r}).
Consider the T-S fuzzy model 4.1 where the noise is also considered:

Rl : IF z1,k is Fl,1 and ... and zq,k is Fl,q

THEN

x(k + 1) = Alx(k) +Blu(k) + ϑl + Elw(k)

y(k) = Clx(k) +Dlu(k) +Glw(t)

q(k) = Hx(k)

(4.16)

where, q is a linear combination of the state variables to be estimated, and w denotes the

noise variable that belongs to l2[0,∞). The fuzzy observer for TS model (4.16) is designed

as a TS fuzzy system with the same number of rules (i.e. l ∈M := {1, 2, . . . , r}) as follows:

R(l)
o : IF z1,k is Fl,1 and ... and zq,k is Fl,q

THEN

x̂(k + 1) = Alx̂(k) +Blu(k) + ϑl + Ll(ŷ(k)− y(k))

ŷ(k) = Clx̂(k) +Dlu(k)

q̂(k) = Hx̂(k).

(4.17)

where x̂ and ŷ are the estimated state and output matrices, respectively. The vectors

Ll, l ∈ M are the observer gains to be determined. Therefore, the fuzzy observer error

dynamic equation derived from (4.16) and (4.17) can be written as:

x̃(k + 1) =
r
∑

j=1

r
∑

l=1

µjµl(Al + LlCj)x̃(k)

−
r
∑

j=1

r
∑

l=1

µjµl(El + LlGj)w(k)

q̃(k) = Hx̃(t)

(4.18)

where x̃(k) = x̂(k) − x(k), and q̃(k) = q̂(k) − q(k) are the observer errors. Provided error

dynamics (4.18) , the objective is to design the observer such that the two conditions are

satisfied:

1. The observer error system is globally exponentially stable.

2. The observer error system has a prescribed level ζ in the generalized H2 sense under

the zero initial condition.
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Ξ := sup{‖q̂(Tf )− q(Tf )‖|x̃(0) = 0, Tf ≥ 0,ΣTf

t=0w
Tw ≤ 1} < ζ (4.19)

It means that the observer error system is globally exponentially stable and the in-

duced l2-norm of the operator from w to the observer error, q̂− q, is less than ζ under

zero initial condition for all nonzero w ∈ l2[0,∞).

The following Theorem helps to design the observer’s gains.

Theorem 2. [39] Given a constant ζ > 0, the observer error system (4.18) is globally

exponentially stable with generalized H2 performance ζ, if there exists a positive definite

matrix P , a matrix R, and a set of matrices Ql, l ∈ M , such that the following LMIs are

satisfied:

[

P HT

H ζ2I

]

> 0, (4.20)









P −R−RT RAl +QlCj −REl −QlGj

AT
l R

T + CT
j Q

T
l −P 0

−ET
l R

T −GT
j Q

T
l 0 −I









< 0, l, j ∈M. (4.21)

Furthermore, the observer gains are determined as:

Ll = R−1Ql, l ∈M. (4.22)

Proof. See [39].

The performance index ζ described above is also optimized using the following convex

optimization problem.

Algorithm 7

min
P,R,Ql

ζ2, subject to LMIs (4.20) and (4.21).

The simple Luenberger observer is also designed using the following Theorem. In this

design, noise is not considered, and thus, no robustness performance index is considered for

this observer.

Theorem 3. In the absence of noise, the fuzzy observer error system (4.18) is globally

exponentially stable if there exists a positive definite matrix P and a set of matrices Ql, l ∈M
such that the following LMIs are satisfied:

[

−P AT
l P + CT

j Q
T
l

PAl +QlCj −P

]

< 0, l, j ∈M. (4.23)

56



0 10 20 30 40 50 60
−50

0

50

C
ur

re
nt

 D
en

si
ty

 (
A

/m2 )

0 10 20 30 40 50 60
3

4

5

V
ol

ta
ge

 (
V

)

0 10 20 30 40 50 60
0

0.5

1

S
oC

Time (min)

Figure 4.1: A typical charge-rest-discharge cycle for I = 21A/m2 and T = 293◦K.

Furthermore, the observer gains are determined as:

Ll = P−1Ql, l ∈M. (4.24)

Proof. See [39].

4.2.3 Simulation Studies

A Li-ion battery with the parameters given in Table 3.2 is considered. The battery equations

are solved using COMSOL package for temperature range of [244− 303]◦K and current in

the interval of [17.5−35]A/m2. The range of operation can easily be extended to any other

region. A typical voltage and SoC profile for one cycle is shown in Figure (4.1).

For the modeling purposes, the state, input and voltage vectors are considered as follows:

x(k) = SoC(k), u(k) = [I(k), T (k)]T , y(k) = V (k). (4.25)

where V (k) denotes the battery voltage, I(k) the current, and T (k) the temperature, where

I(k) < 0 is considered for charge and I(k) > 0 for discharge. The SoC estimation is carried

out using the T-S fuzzy systems with different number of rules (i.e. c). The modeling

performance of the T-S models is shown in Figure (4.2) where the developed T-S model

is not specifically trained for this current and temperature profile but they are within the

range for which the model is trained. The percentage error due to each fuzzy system is
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(b) c = 5
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Figure 4.2: Performance of the T-S model for the Li-ion battery dynamics for I = 28A/m2

and T = 273◦K.

compared in Figure (4.2d). The Mean-Squared-Error (MSE) error corresponding to this set

of test-data is given in Table 4.1 . Figure (4.2d) and Table 4.1 confirm that, as expected,

the accuracy of the model will increase as the number of rules are increased. However, too

many rules might cause generalization problem as it is discussed in the next section. The

impact of T-S model simplification using ED is also demonstrated in Figure (4.3). The

error percentage corresponding to a fuzzy system with c = 5 rules and a simplified version

of the same system with r = 3 rules are compared.

The performance of the T-S model is quite convincing to be considered as an accurate

model for control design objectives. In fact, the relative flexibility and much lower com-

putational load that it provides to implement control schemes can justify its employment

versus electrochemical model.
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Table 4.1: MSE error versus number of rules for a typical cycle

No. of rules (c) 3 5 8
MSE 1.45× 10−4 7.99× 10−5 3.4× 10−5
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Figure 4.3: Percentage of error for a fuzzy system with c = 5 and its simplified counterpart
with r = 3.

Observer Design

Provided the model developed in Section 4.2, the LMI problems derived in (4.21) and (4.23)

are solved to find the observer gains Ll of local models. For this purpose, “cvx” which is a

Matlab software for disciplined convex programming is used to solve the LMI problems [44].

The performance of H2 observer and Luenberger observer is investigated and compared in

Figure(4.4) for a TS-fuzzy model with c = 3 rules. The two cases of no noise and noise

injection of σw = 0.2 on the output (El = 0, Gl = I) are considered to highlight the

performance of H2 observer in a noisy environment. The performance index obtained by

solving the optimization problem (7) is ζ = 0.0142. Since this high performance provide a

very slow observer dynamics, the convergence speed of the observe is enhanced by imposing

a decay rate on the observer ([123, 136]). Note that based on (4.25), the (Al, Cl) cannot be

unobservable unless one of them is zero which would never happen in model identification.

It is also assumed that the whole T-S model is observable.

Remark 1. As noted by [3], without the zero initial condition assumption (in system (4.18):

x(0) = (x̂)(0)), it is impossible to derive the LMIs in theorems (2 and 3). This assumption

is typically made in design of H∞ and H2 observers. However, it should be noted that this

is a sufficient condition. Simulation evidence verifies that the system is robust enough to

the nonzero initial condition as well.
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Figure 4.4: Performance of the T-S Luenberger and H2 observers for c = 3 rules.

Pulse Modulation

To demonstrate the generalization ability of the developed model, a pulse modulation of

the input is considered. The input is a continuation of different currents with multiple

periods, however, the magnitude of the current is within the trained region. An observer

for each case is designed and the performance of the estimation is shown in Figure (4.5)

where Figure (4.5a) shows the applied current to the system.

Figures (4.5b) and (4.5b) demonstrate the SoC estimation and percentage of error of

different T-S fuzzy systems. The results show that increasing the number of rules might lead

to overestimation and will decrease the generalization ability of the model. Figure (4.5b)

illustrates that the performance of the system with c = 3 is remarkably better than the

systems with c = 5 and c = 8 rules, and also the system with c = 5 rules shows a relatively

better performance than c = 8. Looking at the Figure, it appears that the main problem

lies at the positive edge of each pulse. The fuzzy observer with c = 3 rules is however able

to track the actual SoC with less than 2% error reasonably quick after each positive edge

of the input. Moreover, considering the data with similar pulse input profile in the training

data set would address this problem. The here aim was however to study the generalization

ability of the model, and thereby no such data were present in the training data set.
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Figure 4.5: Generalization performance of the method. (a) The applied input to the system
(b) SoC estimation performance of the T-S fuzzy system with different number of rules.
(c) Comparison between the percentage of error between different systems.
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4.3 Dynamic Resistance

Most of the battery model parameters are usually a nonlinear function of SoC. Nevertheless,

this fact is usually disregarded in many of the battery modeling and simulation approaches

due to the complexity of processes with a battery under load. For instance, most of the

parameters involved in electrochemical model of the battery such as diffusion coefficients

or changes in active materials resistance are functions of state of charge [46, 74, 85, 128].

On the other hand, most of EM-based simulation and estimation schemes apply constant

parameters as a simplifying measure. Moreover, model parameters are also time depen-

dent, changing with time and are a function of the cycle number and aging of the battery.

To Measure battery parameters associated with active materials destructive methods are

needed and hence not practical for real-time monitoring. Also, there are no models that can

appropriately take into account the relationship between the parameters and cycle num-

ber. Thus, the problem that arises with model-based monitoring using constant parameters

is that the estimation precision degrades as the battery cycles. Additionally, there is no

clear understanding of the cycle life of the battery in the monitoring process of the battery.

Hence, there is a need to consider battery cycle number, and parameters degradation due to

aging, in battery modeling to be able to provide a more realistic picture for battery health

monitoring within an appropriate framework.

In this Thesis, we have introduced “Dynamic Resistance” as a resistance which is a

function of cycle number and state of charge of battery that can be easily monitored during

the normal operation of the battery. Moreover, dynamic resistance shows different profiles

for “charge” or “discharge” cycles of the battery that can include the intrinsic hysteresis

phenomenon of voltage profile during charge-discharge processes. Unlike impedance spec-

troscopy which is a known methodology to measure the health of the battery and needs

application of a frequency-rich signal [47, 98], the proposed technique does not need extra

circuitry and would not need application of external signals to the battery-in-use.

4.3.1 Methodology

In this subsection, measurement of dynamic resistance is discussed. At a particular SoC, a

current pulse of ∆I is applied to the battery and the voltage variation (i.e. ∆V ) is measured.

The electronic resistance and capacitive response can then be calculated. The response of

the battery to the applied pulse is composed of different components whereas each compo-

nent is triggered due to different processes occurring inside the battery. Figure (4.6) shows

a typical pulse response where IRe is spontaneous response related to electronic resistance

and capacitive charging, and IRd is the response of diffusion related processes, including

the dominant Lithium diffusion in active materials. Each resistance can be decomposed as:
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Re = Ra +Rc +RSEI +Rel +Rcontacts (4.26)

Rd = Ract +Rct +Rdiffusion +Rconcentration (4.27)

Figure 4.6: Battery response to applied current pulse (a) The current pulse of I with length
of t. (b) Voltage response is composed of two components, IRe and IRd.

where Re represents the overall electronic resistance, including electronic resistance of the

anode Ra, electronic resistance of the cathode Rc, electronic resistance of surface layers

formed on electrodes due to electrolyte decomposition (solid electrolyte interface) RSEI ,

electronic resistance at the electrode / current collector interface Rel, and contact resistances

at the battery tabs Rcontacts. The Rd indicates the overall diffusion-related resistance com-

ponents involving transport of ions and proceeding chemical reactions, such as activation

resistance Ract, charge transfer resistance Rct, and Lithium ion diffusion in solid phase that

dominates the ionic resistances Rdiffusion, and resistance due to concentration polarization

at the electrode/electrolyte interfaces impeding ion diffusion processes Rconcentration.

The system demonstrates different responses with respect to Re and Rd. The electronic

resistances show an immediate response to the applied current and voltage pulses. However,

the diffusion related processes leading to resistances, Rd, are slow with longer relaxation

time. There is also an intrinsic relation between the Re and Rd which is material dependent.

In this work, the length of the pulses, t, is small (i.e. t = 10 sec) and thus the immediate

change in resistance at the beginning of pulse application that manifest electronic resistance

(i.e. Re) is measured. The electronic resistance in the cell follows Ohm’s law as:

Re =
∆V
∆I

(4.28)

4.3.2 Feasibility of Technology in Vehicle Application

Implementation of this methodology on vehicle for battery monitoring would not require

excessive development of the current battery management system design. Application of

current pulse during the charge cycle can be simply implemented by reducing/increasing
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Figure 4.7: Experimental Setup: Maccor Battery Cycler and Tester (Maccor 4300) and
temperature chamber.

the current for short periods of time whenever the measurement of SoC or SoH is desired.

Moreover, it should be noted that although the notion of dynamic resistance was explained

and simulated by applying a pulse to the battery, however during the discharge cycle, the

driving cycle can itself provide the necessary information to deduce the dynamic resistance.

Change of the vehicle speed leads to different loads on the battery and thus the battery

current would change accordingly. Hence, in contrast to other methods such as impedance

spectroscopy [47, 98] or resistance measurement methods [58], no extra circuitry is needed

and also the proposed technique possess the real-time feasibility which can also provide

important information about the conditions of the battery-in-use.

4.3.3 Experiment

A prismatic 2 Ah cell with graphite anode and nickel-cobalt aluminum oxide (NCA) cath-

ode chemistry was used to collect data for model validation. The tests were carried out

with a Maccor Battery Cycler (Maccor 4300) (Figure (4.7)). The current pulses of 0.1 A

magnitude and duration of 10 sec was mounted on the main charge/discharge current of

0.5 A. A sample charge/discharge cycle with the applied pulse is shown in Figure (4.8). The

voltage response due to applied current pulse was analyzed to evaluate “dynamic resistance”

of the cells as a function of state of charge. The pulse current - voltage measurements are

performed to obtain voltage profile hysteresis during charge and discharge processes (see

Figure (4.9)). The dynamic voltage-current profiles are analyzed to obtain cell characteris-

tics, mainly the SoC, and SoH.

Figure (4.10) shows the dynamic resistance versus SoC for different cycle numbers and

also different charge - discharge cycles. The dependency of Re on SoC and cycle number
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Figure 4.8: A charge/discharge cycle with short pulses mounted on the main
charge/discharge current. The inset show the current and voltage for a few minutes to
provide a more clear graph of the pulses and their response.

can be well observed in Figure (4.10). Results clearly show significant variation of cell

resistances as a function of SoC and cycle number. In the following we will discuss an

approach employed for modeling of dynamic resistance versus SoC.

4.3.4 Modeling

The objective is to find a model that can describe SoC in terms of Re and cycle number.

However, often the cycle number of the battery used is not available. Moreover, the cycle

number alone without any knowledge about the history usage is not a good indicator of

the current condition of the battery. For example, two identical batteries that experience

different usage patterns would exhibit different characteristics at the same cycle number.

Hence, a more practical parameter is the total power throughput, Ptot, of the battery and

that is considered to account for cycle number and different battery usage patterns in this

work.
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Figure 4.9: The hysteresis phenomenon is clear between charge/discharge cycles. The
introduced method would also take care of this fact by consideration of two different models
for charge/discharge cycles.

For the purpose of modeling, a particular neural network that can provide a fixed mathe-

matical model description of the mapping between output and input is exploited. The main

idea is to try different combination of mathematical functions in the network’s topology and

choose the best fit as the output of the network. The basic principles of this network are

discussed in the following.

GMDH Neural network using heuristic self-organization method

Consider the following model

y(t) = f(x1(t), x2(t), . . . , xN (t)) (4.29)

where xi(i = 1, . . . , N) are the inputs and y(t) is the output of the nonlinear system of

interest. The problem is to determine the unknown model f using the available data, i.e.

[X,Y ].

Group Method of Data Handling (GMDH) algorithm provides a solution to the posed

problem using a nonlinear system identification method which employs an inductive learning

scheme to construct a description of the system using heuristic self organizing map [72].

The identification process is fulfilled through a neural network where the topology of the

network is self-organized using some heuristic rules [61, 82]. The proposed network has
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Figure 4.10: 2D dependence of dynamic resistance versus state of charge for different cycle
numbers. (a) Charging Cycles (b) Discharging Cycles.
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a multilayer perceptron-type structure in which the inputs of previous layer construct the

possible combinations of the inputs in the next layer. The best results are chosen in this

layer from which the next layer will be constructed. This process is continued to reach a

certain level of accuracy at some layer. The final result is a mathematical description of

output y in terms of xi(i = 1, . . . , N) that is built in the network.

The mathematical model built via GMDH algorithm is in fact a combination of partial

descriptions (PDs) of data. The partial description of data is formed through a base function

involving two or more number of inputs. The Kolmogorov-Gabor polynomial is commonly

used as the function to form the PD as following:

YP D(x1, x2, ..., xp) = a0 + Σp
i=1aixi + Σp

i=1Σp
j=1aijxixj+

Σp
i=1Σp

j=1Σp
k=1aijkxixjxk + . . .+ a12...px

n1
1 xn2

2 . . . xnp
p + . . . (4.30)

YP D is a partial description of inputs (x1, x2, x3, . . . , xp) which is a subset of the total

number of inputs. A PD of order r possesses all possible terms generated from (x1, x2, x3, . . . , xp)

where n1 +n2 + . . .+np ≤ r for all terms. For instance, a PD of order 3 from input variables

xi and xj using Kolmogorov-Gabor polynomial is constituted as:

PD = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j + a6x

2
ixj + a7xix

2
j + a8x

3
i + a9x

3
j

The successive generation of PDs at different layers will gradually converge to the op-

timal structure of network that can predict the output with a desired precision. The algo-

rithmic procedure of construction of GMDH neural network for a set of input-output data

is described as following.

Procedure of constructing the GMDH neural network:

Step 1 Select the input variables xi(i = 1, . . . , N) and choose the structure of network. The

number of input variables for each PD, i.e. p, the order of polynomials for each PD, i.e.

r, and the number of neurons in each layer, i.e. L, are chosen in this step. The available

data are divided to two training and validation sets. Training data set is used to train the

network and validation data set is used to validate the prediction performance of network.

Step 2 Calculate the PD corresponding to each set of input variables (zm). Each PD is recorded

in a neuron at the first layer. If the number of input variables for each PD is p,
(n

p

)

would

be the total number of neurons in the current layer.
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The coefficients of PD is derived by minimizing the mean squared error between the YP D

and actual output y, using regression analysis as follows:

Y = XA (4.31)

A = (XTX)
−1
XTY (4.32)

where A represents the vector of coefficients of each PD, Y denotes the output data from

the training data set and X is a matrix of the values of all terms (e.g. xixj , x2
ixj , . . . )

calculated using the training data set.

Step 3 Determine the prediction error of each neuron (i.e. m) using both the training and vali-

dation data as follows.

Em =
√

1
M

ΣM
i=1(yi − zmi)

2 (4.33)

where M is equal to the total number of validation and training data. zmi is calculated

using the coefficients estimated in step 2 for each PD.

Step 4 Keep the L neuron with best predictive capability and discard the rest.

Step 5 If the current layer is the first layer, continue to the next layer and go to 2.

Step 6 If the minimum value of prediction error is not decreased from previous layer stop the

algorithm. Otherwise go to 2 and constitute the next layer.

Once the algorithm is stopped, the node (neuron) characterized by the best performance

(i.e. minimum prediction error) is selected as the output node. All the remaining nodes

in that layer (and probably next layers) are discarded. This node is traced back to the

first layer and all the nodes that have no contribution to this node will be discarded from

previous layers as well. The resulting network is shown in Figure (4.11). The mathematical

description of input/output can be extracted from the network using the mathematical

description of each contributed PD.

4.3.5 Simulation Studies

A fresh Li-ion battery cell, with the characteristics described in 4.3.3, was extensively cycled

to collect enough information about cycling of the battery. An impulse current of 0.1−0.5(A)

and length of 10(sec) was applied to the system to measure the dynamic resistance of battery

based on Eq.(4.28). The state of charge of battery is measured based on a coulomb-counting

method as follows.
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Figure 4.11: Schematic view of the GMDH neural network

SoC(t) = SoC(t0)− 1
Q

t
∫

t0

I(τ)dτ (4.34)

where Q(Ah) denotes the nominal capacity of the battery and I is the current of the battery

where I < 0 is conventionally considered for charging. It is worthwhile mentioning that

since the battery was fully charged and discharged in experiments, the SoC(t0) is known

based on the abrupt drop of voltage when the battery is fully discharged (i.e. SoC = 0) at

each cycle.

The acquired data are smoothed using a Savitzky-Golay filter [104] in order to suppress

the impact of varying temperature and other measurement and environment noises inherent

in the system during the cycling tests.

As mentioned, the effect of cycle number is incorporated to the model via the total power

throughput of the battery (Ptot). The battery power is considered as P (t) = I(t)V (t), where

I represent the current, V the voltage and the total power throughput is evaluated as the

integration of P over the usage time, Ptot(t) =
∫ t

0 P dt. All of this data are readily avail-

able in a vehicle battery management system and can be easily embedded in the proposed

framework.

SoC estimation

In this work, dynamic resistance Re, current voltage V and square root of total power

throughput
√
Ptot are considered as the inputs of the first layer of GMDH neural network

and the output is considered as the SoC of the battery. The following measure,
√
Ptot is

considered instead of Ptot since it reduces the variation range of the variable and shows

better estimation performance. Hence, X = [Re(t), V (t),
√
Ptot] and y = SoC(t). A GMDH
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neural network is considered to model the nonlinear function of y = f(X). The result of

the network is a closed-form polynomial function that expresses y = SoC in terms of x1,

x2, and x3. For the sake of brevity, the long equation of y = f(x1, x2, x3) is not listed here.

Table 4.2 show the mean square error (MSE) of SoC estimation for a few different cycles.

The acquired results show the effectiveness of this approach.

Table 4.2: MSE of SoC estimation using GMDH neural network for a few random samples.

Cycle number 15 57 97 197 251 296
MSE 0.0145 0.0232 0.0124 0.0150 0.0140 0.0128

SoH estimation

As discussed in 3.1.2, SoH is generally referred to deterioration of the battery conditions with

respect to its nominal conditions. It is also mentioned that for HEV and EV applications,

the end of battery life is considered to be the condition that battery can only deliver 80%

of initial capacity. Monitoring of the dynamic resistance and comparison with dynamic

resistance of a fresh cell is proposed as a new technique for SoH monitoring. It is a real-

time technique that is easily implementable on the current BMS technology. Figure (4.12)

shows the strong correlation between the average dynamic resistance and capacity fade.

The average dynamic resistance is calculated as the average of dynamic resistance versus

SoC within one cycle (i.e. charge or discharge) (Eq. 4.35). Capacity fade is calculated as

the difference between maximum useable capacity of each cycle (i.e. Cn) and the fresh cell

capacity (i.e. C0) (Eq. 4.36).

Rave
e =

∫ 1

0
Re(SoC) dSoC (4.35)

∆C% =
Cn − C0

C0
× 100% (4.36)

4.4 Summary

This Chapter dealt with data-based methods for battery estimation and monitoring. The

main purpose of the developed methods are to provide methodologies that can address

the real-time implementation of monitoring algorithms while also taking the physics of the

system into account. In this regard, two different approaches were considered: i) Fuzzy

Modeling of Battery System, ii) Monitoring Using Dynamic Resistance

In the first work, a Takagi-Sugeno Fuzzy model was developed for the battery system

where the data were extracted from the electrochemical model of the battery. The nonlinear

behaviour of the battery dynamics is dealt with clustering the data and fitting a linear state-
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Figure 4.12: Correlation of capacity fade versus average dynamic resistance for 50 cycles.

space model to each cluster. The final response of the system is then a fuzzy mixture of all

local linear models. It was shown that this strategy can provide a tools to effectively address

the battery modeling. This would also obviate the need for look-up tables in battery model

parameters which are usually required if the reliability of the model in a wide range of

operation is concerned. The other feature of this model is that it facilitates the application

of control theory algorithms to the system. A robust observer design was conducted in this

regard.

In another work, the parameter “dynamic resistance” was introduced as a new means to

monitor the battery behaviour. This parameter is dependent on SoC as well as battery

aging conditions. Therefore, it provides a framework to incorporate the aging in SoC

monitoring of the battery. The dynamic resistance was modeled versus SoC and power

throughput as an indicator of aging condition, using a neural network model. Monitoring

of dynamic resistance is also very advantageous from SoH monitoring standpoint since as it

was investigated, this parameter shows a one-to-one relationship with SoH of the battery.

The beauty of the proposed methodology is that it is implementable using the data collected

during the normal operation of the battery.
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Chapter 5

Diagnostics of Lithium-Ion

Batteries

5.1 Introduction

As discussed in Section 2.4, fault detection and diagnosis is one of the main tasks of an

advanced BMS. However, battery diagnostics is an area that is less developed, particularly

from an industrial point-of view. Nevertheless, developing a robust fault diagnosis system

for electric-based transportation is a crucial step in improving performance, reliability, and

high margin of safety for a sustainable HEV and EV markets. Complicated nature of

failure processes, lack of enough experimental evidence and hence lack of understanding

of the physics of the problem and sheer size of the corresponding mathematical models

are perhaps the major barriers to developing appropriate algorithms for diagnostics of the

battery. This Chapter presents a model-based approach towards the diagnostic problem of

the battery. The physics of the problem including the degradation and failure mechanisms

are reviewed and also, some physics-based models that have been presented for modeling

of some degradation mechanisms of the battery are briefly discussed. Finally, particle

filtering-based algorithms for fault-detection of the battery is developed for a few common

degradation processes.

5.2 Degradation

In this Thesis, degradation and aging of the battery refers to “irreversible” changes in the

normal battery properties. They are also referred to as “failure” mechanisms in this Thesis.

Failures in a battery can be classified as incipient or gradual and abrupt faults. Under the

class of gradual faults, battery normally perform but in a degraded mode, whereas abrupt

faults affect the battery performance in such a way that the normal operation of battery

would be no longer possible. Although battery aging is inevitable, an intelligent BMS could
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manage the battery’s utilization and charge-discharge process so that the battery life is

elongated. Besides, aging effects should be estimated in order to have a valid prediction of

the life of the battery and modify the state of charge estimation of the battery.

Abrupt faults, in contrast to gradual faults are avoidable by careful monitoring of the

battery. Some of them could be the result of aging mechanisms that gradually result in

a big shut-down, for instance stress build-up at the electrode / current collector interface

may cause sudden delamination and disconnect of active materials from current collector.

Hence, if aging mechanisms are controlled effectively, these faults can be avoided. However,

in the case of their occurrence, they should be detected as quickly as possible and corrective

actions should be taken before damaging other equipment.

Due to the advantages of model-based control and fault detection strategy in a battery

system, it is very important to have a good understanding of the aging phenomena and its

relationship to the battery’s electrochemical model. Some of the faults manifest themselves

in certain parameters in the model of the battery while others could follow specific dynamic

models that should be incorporated into a model-based analysis of the battery. It should be

noted that development of appropriate models that could incorporate the battery’s aging

process is an area that requires much more research. Darling and Newman [29], and more

comprehensively, Ramadass and his colleagues [93, 90], originally initiated modeling of

aging processes from a first-principles point of view. Most of the other works [12, 18, 13,

118], however, present empirical models for this purpose, and hence, are battery specific,

and cannot be generalized for all battery systems. The major challenge here is a lack of

deep understanding of various phenomenon including degradation and failures of various

types within the battery system. In addition, many of the aging processes are chemistry

dependent, and may significantly vary from one class of battery to the next. In the following,

a list of well-known failure mechanisms in Li-ion batteries is provided. Modeling of these

mechanisms is also discussed briefly.

5.2.1 Degradation and Failure Mechanisms

i. Formation of resistive films on the active particle surface, solid/electrolyte interface

(SEI) layer:

Principally, SEI is the solid electrolyte interphase which refers to a protective layer

that is formed in the initial charge-discharge cycles and is permeable for lithium ion

transport but rather impermeable to other electrolyte components and electrons [30].

Conventionally, however, SEI term has been used for all sorts of protective layers re-

gardless of the functionality and formation procedure of the layer.

Different chemical processes, i.e. side reactions, can lead to film formation on the

surface of electrode particles. Passivation of the negative electrode, cell oxidation and

deposition of metallic lithium onto the negative electrode due to overcharge are the
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main examples. Note that metallic lithium deposition, due to its particular significance

is discussed in a separate part individually.

Electrode passivation refers to passive film formation on the electrodes. Reduction of

solvent (for the electrolyte) is the main reaction accountable for passive film formation

[93]. Although, formation of elastic flexible passive film on the anode is vital for stability

of the cell [7], it is also a source of degradation of the battery which increases the

impedance of the battery. Hence, in order to have a valid estimation of the performance

of the battery, this process needs to be considered while studying the degradation

processes.

Electrolyte oxidation, on the other hand, leads to build up of surface film on both

positive and negative electrodes. In negative electrode, electrolyte may react with

negative electrode and cause delithiation (oxidation) of lithiated carbon ( LixC6 −→
ye− + yLi+ +Lix−yC6) and result in deposition of Li2CO3, polymeric film, Li2O, and

LiF on the negative electrode [14]. In the positive electrode, experimental evidence

shows that by increasing the potential at the positive electrode/electrolyte interface,

electrolyte oxidation may occur which could be detected by noticing the increase of the

surface resistance [137].

As battery ages, growth of SEI and passivation layer can further penetrate the pores

of electrode and clog them and may also penetrate into the pores of separator. As a

consequence, this will lead to decrease of active surface area of the electrode [130, 17].

In effect, it will decrease the charging capability (particularly in negative electrode) of

the battery.

The reduction and oxidation of electrolyte components deteriorate the performance of

the battery. Electrolyte decomposition is the cause of several degradation mechanisms

taking place in the battery. It could also be considered as a contributing process

accountable for self-discharge of the battery.

Electrode decomposition leads to electrolyte loss and further SEI formation (at elec-

trode/electrolyte interface). Moreover, as a result of electrolyte decomposition (i.e.

reduction), gaseous products may also be released. These gaseous products will in-

crease the internal pressure of the cell for which exceeding the pressure over a certain

limit will cause severe safety problems in the cell.

From a modeling point of view, each side-reaction is represented by a physical model.

Moreover, this mechanism has a major influence on the internal parameters of the

generic battery model, e.g. loss of rate capability, decrease of electrolyte conductivity,

and loss of cell capacity [4].

ii. Deposition:

Surface films on the electrodes are composed of lithium ion conducting materials. Ap-
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plying an electrical field to electrodes results in Li dissolution or deposition on the

surface films. The lithium deposition in the form of metallic lithium occurs when the

rate of lithium ion diffusion in the bulk of electrode is less than the rate of incoming

lithium. This phenomenon often takes place at high charge rates. Hence, lithium de-

position is basically a parasitic side reaction occurring during high rate charging. This

problem is more pronounced at low temperatures as the diffusion of lithium in bulk of

electrode is lower.

a. Plating: Refers to a rather uniform metallic lithium deposition.

b. Dendrite Formation: Non-uniform deposition which could be assumed as the major

failure of Li electrodes at the anodes. Deposition and dissolution of Li inherently

leads to morphological change of Li surface. When the surface film cannot accommo-

date these changes, it will result in breakdown of the surface films and consequently

highly non-uniform deposition of Lithium. Dendrite formation can lead to severe

safety issues such as shorting (dendritic growth through separator), formation of

high area reactive lithium, etc [7].

iii. Positive electrode dissolution:

This mechanism is related to the dissolution of metal ions from electrode lattice into the

electrolyte and is the primary reason for capacity loss of positive electrode. In addition

to the chemical nature of the positive electrode (i.e. positive electrodes containing

Mn), structural defects in the positive active material, reactive impurities, and high

charging potentials are the main reasons leading to metal dissolution [4, 92]. Electrode

dissolution might result in metal deposition (e.g. manganese dissolution in LiMn2O4

electrodes, or cobalt leaching from LiCoO2 electrodes) which eventually leads to loss

of active material, deposition on and clogging of the negative electrode pores, and

dendrite formation. Generally, overvoltage and high temperature promote the rate of

metal dissolution.

iv. Loss of active material:

There are several reasons that have been identified causing loss of active material, in-

cluding: dissolution at the positive electrode, volume change of carbon electrode, and

particle isolation in the both negative and positive electrodes. In the positive electrode,

dissolution is the main reason that leads to active material loss and consequently ca-

pacity loss (see part iii). In the negative electrode, during insertion of lithium into

solid particles, the volume of the carbon electrode increases (about 10%) and causes

the degradation of surface film where it consumes lithium to repair the surface layers

and hence loss of active material occurs [126].

Particle isolation as another factor of loss of active material may also occur in both

negative and positive electrodes [26]. In positive electrode, oxidation of solvent at

76



high potentials forms a film that electronically isolates the active material, whereas in

negative electrode, isolation occurs due to accumulation of electrolyte decomposition

products on the surface of the particles [26, 55].

v. Growth of large inactive materials:

Different side reactions taking place in a battery may lead to inactive mass formation

on the electrodes (particularly on the cathode) and volume of inactive materials will

increase as the battery ages. This phenomenon could be modeled by considering the side

reactions occurring in the battery and is more pronounced at elevated temperatures. It

essentially leads to capacity fading of electrodes.

vi. Current collector corrosion:

Corrosion here is mostly regarded as pitting corrosion which refers to local creation

of small holes in the surface of metal. It usually results from a chemical reaction

between the electrolyte and electrodes. Pitting corrosion may initiate from surface

defect sites, local surface impurities, or due to surface adsorption of aggressive ions or

polar molecules. Current collector corrosion is a major cause of self-discharge process

occurring in some batteries [139]. In critical case, corrosion of the current collector

may induce a short-circuit, affecting battery’s safety, particularly in batteries with bi-

polar electrode design [78]. This problem is however more pronounced for positive

current collector (Al). Overcharge and overdischarge are the main factors causing this

mechanism. The reader is referred to [78, 15, 10] for more on electrochemical analysis

of corrosion process in both positive and negative current collectors.

vii. Loss of electrical contact between metallic grids and active materials:

This failure refers to electronic isolation of active mass from current collector occurring

due to expansion-contraction of active material during charge-discharge process, and

surface film formation. As the electrode expands, it generates new surfaces that may

react with electrolyte and form insulation surface film. This fault is more significant

in anode side, where formation of thick layers of solvent reduction products can lead

to electric isolation of graphite particles and consequently, their deactivation [7]. This

mechanism depends on the morphology of the particles (i.e. graphite particles) and

possible gas formation between the reactive electrode’s surface and solution species [8].

Furthermore, volume changes of the active negative electrode material can cause me-

chanical disintegration and delimitation of the composite electrode which eventually

may lead to loss of electrical contact between current collector and the electrode active

material (i.e. carbon) [130]. The loss of active materials due to mechanical disintegra-

tion is more severe in high capacity silicon anode, where the lattice expansion due to

Li− Si alloy formation may exceed 300%.
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viii. Electrode distortion, disorder or fracture in lattice structure of electrodes:

Fast charging/discharging of a battery can lead to fracture in the crystallites structure

of the electrode. This phenomenon is more prominent during fast charging. It can

lead to non-uniform charging of surface to bulk and may create stress at the interface

of fully charged portion of the particle and the charge deficient part. Both cracking

and structural damage might occur on the carbon electrode due to structural changes

during lithium uptake (i.e. insertion of Lithium in the graphite lattice) that will create

mechanical stress. In the other side, lithium ion insertion in the positive electrode which

leads to molar volume changes, or phase transitions, can cause lattice distortion and

mechanical stress. This in turn leads to change of the capacity ratio of the individual

electrodes and imbalance of the electrode capacity.

ix. Electrochemical grinding and pulverization of active materials:

The electrode particles, particularly oxide particles (in the positive electrode), pulverize

into finer powders under chemical and mechanical stress. This crushing process is

termed “electrochemical grinding” [25]. The two originating factors for stress build-

up in the cell are mainly volume changes in the lattice and phase transformation, i.e.

coexistence of different phases such as lithium deficient and lithium rich phase [97].

Particle fragmentation, i.e. crushing of the particles into finer powders, can increase

the dissolution rate by increasing the surface area which can eventually lead to loss of

contact between particles. It is noticeable that higher electric fields, i.e. high potential,

can be a promoting factor for pulverization of the particles by increasing the mechanical

stress and fatigue during multiple cycles [25].

x. Loss of plate active surface area:

This phenomenon is a consequence of repeated metal dissolution and recrystallization.

For example, dissolved manganese (or other metals) formed as a result of positive

electrode dissolution can be reduced at the negative electrode and blocks the pores and

thus reduce the active surface area [4]. Partial delamination due to stress at electrode

- current collector interface and formation of isolated islands also leads to loss of active

surface area.

xi. Porosity change of the electrode:

Formation of the side-reaction products that block the pores with inactive materials

leads to porosity change in the electrodes. This, in effect, will have impact on the

capacity and power fade of the battery [108]. Another significant factor is the volume

changes of the active material (due to lithium insertion/extraction) that can largely

affect the electrode porosity as well [42]. Porosity change will lead to variation of

surface area and diffusion rate in the electrode.
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xii. Change in the diffusion coefficient:

Diffusion coefficient value is mainly related to the structure-composition of active ma-

terials and represents the lithium mobility in the lattice. A low value of the diffusion

coefficient can limit charge and discharge rates and induce large concentration gradi-

ents in the electrolytic solution during cell operation. It consequently increases the

polarization losses and boosts the side-reactions, thus advancing failure mechanism,

as the battery cycles [108, 119]. It is important to note that diffusion coefficient in

battery electrode is a dynamic component and varies significantly as the concentration

of lithium in electrode active material changes during charge and discharge. In the

negative electrode, disorder or fracture of the lattice, reduction of metal on the elec-

trode, and other side reactions may lead to change of diffusion rate leading to slow

charge-discharge process. In the positive electrode, electrochemical grinding of the ox-

ide particles (see part ix) influence the diffusion coefficient in the lattice of cathode

particles. This also affects the lithium mobility in positive electrode significantly [79].

xiii. Battery swelling:

Battery swelling occurs mainly due to gas evolution in the cell. Gas forms from the de-

composition of electrolyte (i.e. reduction or oxidation of electrolytes at the electrodes).

The effect of gas evolution is reduction of the interfacial area between active material

and electrolyte and consequently pressure build up in the cell which eventually leads

to mechanical stress within the electrodes [106]. The gas bubbles also may trap in

electrode pores and have an impact on electrode porosity and loss of contact.

In rare cases, gas evolution could cause very high pressures which can eventually lead

to explosion. This is however usually controlled by venting mechanisms in the battery

(particularly in cylindrical cell design). Apart from side effects such as porosity change,

loss of contact, etc, this process changes the transport properties in electrolyte such as

diffusion rate and penetration of electrolyte in electrode pores [106].

xiv. Increase of electrode’s impedance:

Formation of surface films, formation of cracks in the surface film, gradual thickening

of surface layer due to repetitive breakdown and repair of the surface layers, fracture in

lattice structure of electrodes (i.e. graphite), loss of contact, etc, leads to an unavoid-

able increase of the electrode’s impedance. Thus, essentially, the resistance against

Lithium ion transport gradually increases. This phenomenon has been identified with

the effect of electrode’s impedance increase on the degradation. The impedance rise

may have components related to kinetic, ohmic, and concentration polarizations. In

general, contribution of various degradation processes to impedance rise in the cell can

be analyzed in time or frequency domain because they have different characteristic

times. However, physics of those processes must be carefully studied first.
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xv. Binder degradation:

The binder material (e.g. fluorine-containing polymers, PVdF) can react with the

charged anode (i.e. forming LiF) which leads to decomposition of the binder. This

process leads to loss of Lithium as well as loss of mechanical integrity of the coated

electrode [130]. Role of binder in electrodes with significant volume breathing during

charge-discharge is very important.

xvi. Abrupt faults:

A. Thermal runaway

In the event of exothermic reaction between electrode/electrolyte, the internal tem-

perature in the cell would increase. If the cell cannot dissipate this temperature rise

properly, it will lead to further acceleration of exothermic reactions and will finally

result in thermal runaway and perhaps battery explosion [9]. This failure is often

a consequence of battery abuse such as overcharge, exposure to high temperatures,

short-circuit, nail penetration, and crushing of the cell [117].

B. Short-circuiting

Melting or destruction of separator, and the growth of dendrite through separator

are the two main reasons that can lead to internal short-circuiting. Internal short-

circuiting is itself a fault of the battery that may lead to thermal runaway and

cause more damage to the battery [9, 138]. Manufacturing defects, impurities, and

existence of conductive foreign object in electrode may also cause short circuit in

the cell.

C. Case rupture

Pressure buildup in the cell due to gas evolution, or as a result of exothermic

reactions, in the extreme cases, can lead to cell rupture. Chemical hazards such as

leakage or venting of corrosive or toxic materials could be the dangerous results of

cell case rupture. Besides its safety concern, it will have a severe and abrupt impact

on the battery performance [9].

5.2.2 Modeling of Degradation Processes

In order to have a valid estimation of the health condition and life-time of a battery, it is

imperative to assess the individual and mutual impact of different failure mechanisms on the

performance of the battery. Hence, a scalable and systematic model-based approach which

is applicable to different batteries with different usage histories is extremely appealing. For

this, a good physical understanding of the processes that are occurring in the battery is

needed.

There are however two big challenges to model-based approach. First, the physics of

some of the failure mechanisms is not yet well understood, and has not yet been modeled
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in terms of first principles (i.e. physical laws). Second, the mutual impact of different

mechanisms on each other, makes it very difficult to track each single individual process.

Besides, the run-time and complexity of a physics-based model which incorporate all relevant

processes, is costly for real-time monitoring. Nevertheless, with the every-day advancements

in computers technology and given the fact that SoH measurement needs not be as fast as

SoC monitoring, this problem could be addressed by a model based approach.

In this section, we try to introduce some of the modeling efforts that have been made in

this area. Some of the degradation and failure processes of a battery have been translated

into physics-based mathematical models. The developed models of degradation processes

are not exhaustive by any means; nonetheless, many of the major failure modes of the

battery have been modeled.

Degradation mechanisms have different impacts on the normal battery model from a

control point-of-view. Some of them will add a set of equations to the existing set of battery

equations where other ones may manifest themselves through changing the parameters of

the battery model. In the language of control theory, the first set of mechanisms add state

equations to the model of the battery, whereas the second set, i.e. parameter changes,

might be observed by suitably designed parameter estimation methods. Design of proper

observers or filtering methodologies are the potential solutions that can address the model-

based monitoring of the battery. In this regard, combination of the frequency analysis

along with time-domain model analysis can provide a complete picture about the battery.

Frequency analysis could be particularly promising in detection of failure mechanisms.

i. Side-reactions:

Many of the aforementioned degradation mechanisms correspond to different chemical

side-reactions taking place in the battery. At least, the major side-reactions leading

to degradation mechanism is known, and thus, considering the dynamics of the cor-

responding reaction is the key to model a failure. In order to model a reaction, it

is sufficient to consider the conservation of mass and rate expression for each species

involved in the reaction. The conservation of charge equation for each phase (i.e. solid

and electrolyte phase) in porous electrodes will then couple the rate equations of the

reactions. A Butler-Volmer equation is considered to determine the rate of each reac-

tion where some parameters such as open-circuit potential of the reaction, and other

kinetic rates need to be calculated from experimental data.

ik = i0,k

[

exp

(

αakF

RT
ηs,k

)

− exp
(

−αckF

RT
ηs,k

)]

(5.1)

where k refers to reaction number. The exchange-current density, i0,k, in general format

can be expressed as:
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i0,k = µk

∏

j

[

Cj

C0
j

]γj

(5.2)

where j indicates the phase (i.e. solid or solution phase). The driving force of the

reaction is the overpotential, ηs,k, which can be written as:

ηs,k = φs − φe − Uk (5.3)

where Uk represents the open-circuit potential of the side-reaction which is a function

of the concentration. The kinetic parameters αak, αck, µk, and γj should be calculated

experimentally. Assuming independent reactions, the total current density at each

electrode can be written as: i = Σkik.

In order to simplify the equation, while considering an irreversible side-reaction, which

is true for most of the failure side-reactions, a Tafel expression can be replaced with

Butler-Volmer equation (5.1) at higher rates as:

ik = i0,kexp

(

αakF

RT
ηs,k

)

(5.4)

For concentration of species i, Ci, the material balance shall be written as [4]

∂Ci

∂t
= −∇.Ni +Ri (5.5)

where Ni the molar flux of species i is calculated using the concentrated solution theory

as follows.

Flux of dilute nonionic component : Ni = −D0i∇Ci

Flux of dilute ionic component : Ni = −D0i∇Ci − zi
D0i

RT
FCi∇φ (5.6)

and Ri, the net rate production of species i is calculated using the porous electrode

theory.

Ri = −Σkak
si,k

nkF
ik (5.7)

For more details on modeling of a side-reaction see [4].

ii. Film formation on the electrodes:

Electrode/electrolyte interface is accountable for many of aging mechanisms particu-

larly at the carbon electrode side. Hence, modeling of the side reactions occurring on
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this interface is very important to keep track of the battery degradation processes. In

this regard, amongst the degradation processes, the formation and growth of passive

film on the anode side has attracted most of the efforts. The SEI formation on the an-

ode and its dynamic growth during battery aging contribute to overall cell impedance

which can also be correlated to the predicted SoH.

Film formation modeling is nothing but the modeling of the side-reactions that lead

to growth of a surface film on the electrodes. Reference [93] considers the problem of

growth of film on the negative electrode due to slow solvent diffusion/reductions in the

charge mode. It is reasonable to assume less or no capacity fade during a discharge

cycle in comparison to charge cycle due to the growth of film on the negative electrode.

It is important to note that chemical reactivity of the lithiated graphite is a function of

lithium concentration, and at high state of charge, the electrode is most reactive, even

at open circuit condition (i.e. self discharge).

The basic current density, JLi, that appeared in the basic EM-model of the battery

(2.2,2.3,2.4,2.5) can be decomposed as JLi = Jm + Jsd, where Jm represents the main

Lithium insertion reaction current density and Jsd is the side reaction current density.

Main reaction kinetics, Jm, as mentioned, was expressed using a Butler-Volmer equation

(2.8). The irreversible kinetics of the side-reaction leading to film formation (on the

anode side) can be approximated by a Tafel equation as follows.

Jsd = −i0,sdanexp(−
αc,nF

RT
ηsd) (5.8)

where the overpotential of the side reaction ηsd, is written as:

ηsd = φs − φe − Usd −
JLi

an
Rfilm (5.9)

The rate of the growth of resistive film which is being created by the above side reaction

can be estimated as:

∂δsd

∂t
= −JsdMp

anρpF
(5.10)

This film adds up to the total resistance of the negative electrode by considering the

following equation.

Rfilm = RSEI +
δsd

κp
(5.11)
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where κp is the conductivity of the film. Note that RSEI refers to the resistance of the

film layer that has been created in the very first few cycles. The value of RSEI is often

considered as known for most types of the battery chemistry.

iii. Lithium Deposition: Under overcharge conditions, or when high charging rate is applied,

metallic lithium may be deposited on the negative electrode. The corresponding side

reaction ( Li+ + e− −→ Li(sol)) can be modeled in a similar manner to what was done

about solvent reduction on the negative electrode. However, it is pointed out in [4]

that lithium deposition reaction is a facile process, and the surface overpotential will

be low and therefore can be approximated adequately by linearizing the Butler-Volmer

equation.

Jd = −i0,dan
(αa,n + αc,n)F

RT
ηd (5.12)

The film growth on the surface due to deposition can then be modeled as

∂δd

∂t
= − JdMp

LnanρpF
(5.13)

The dendrite formation which is due to non-uniform deposition on the electrode is more

complicated in nature and needs more careful consideration. Due to non-uniformity of

the dendrites, the spatial distribution of the deposited layer needs to be considered in

modeling of this phenomenon.

Note that in order to incorporate the effect of film layers on the impedance of the

electrode, the conductivity and dielectric constants of layers need to be known. For

example, if conductivity is known, the resistance of the deposited layer can be deter-

mined as δd/κp. Furthermore, if the film layer has some porosity or if it is not a pure

ion conductor, the diffusion limitations should also be taken into consideration in the

model of the battery [125].

iv. Loss of active area:

As mentioned, different side reaction such as passivation of negative electrode, crystal-

lization, etc, will lead to reduction of the active area that is available for electrochemical

reactions. This phenomenon can be simply modeled by considering the volume fraction

of the precipitated layer [131]

a = a0 [1− (ǫlayer/ǫ0)gp ] (5.14)

where ǫlayer is the volume fraction of the passivated layer on the interface and ǫ0 is the

porosity of the electrode. The term gp is a geometrical factor varying from 0 to 1 which

indicates the shape of the precipitated layer and how it has blocked the active area.
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v. Loss of active material:

Different processes and side-reactions are responsible for loss of active material on both

electrodes. By considering the side-reactions, the current density corresponding to each

of the reactions can be estimated with a Tafel equation because we are only interested

in irreversible reactions that lead to irreversible loss of active material. The loss of

active material can then be estimated as:

Qloss =
∫ t

t=0
JsdAjdt, j = n, p (5.15)

vi. Volume and porosity changes in the porous electrodes:

Volume changes in electrode may affect both the dimensions and porosity of the elec-

trode. Reference [42] developed a model for volume changes for three different type of

electrodes. For Li-ion batteries, we will have the volume change both due to deposi-

tion of side-reaction products on electrode surface and insertion/extraction of Lithium

into/out of porous electrodes. In total, we can write:

rate of change in porosity + rate of change of volume (i.e. electrode dimensions) =

rate of change due to product formation + volume change due to intercalation.

The components of this equation can be expressed mathematically as:

rate of change in porosity =
1

1− ǫ

[

∂

∂t
(1− ǫ) + u.∇(1− ǫ)

]

rate of change of volume = ∇.u

rate of change due to product formation = − sV̂
nF

J

1− ǫ
volume change due to intercalation =

1
Vp

[

∂Vp

∂t
+ u.∇Vp

]

where u is the vector of local electrode velocity. Variable Vp indicates the volume of

electrode particle, and V̂ represents the molar volume reaction product. Parameter J

is the local volumetric electrochemical reaction rate which is calculated from a Tafel

equation. For more details on boundary conditions, and solution of this equation, see

[42].

vii. Stress analysis on the battery:

Reference [97] models the effect of hydrostatic stress on diffusion of lithium by modifying

the diffusion equation of lithium in solid phase as follows:
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∂

∂t
Cs,j(x, t) =

1
r2

∂

∂r

{

Ds,j

[

r2∂Cs,j

∂r
+
Cs,j

RT

(

V̄s,j −
Mj

ρj

)

r2∂σh,j

∂r

]}

, j = n, p (5.16)

where σh represents the hydrostatic stress, M the molecular mass, V̄s is the partial

molar volume of lithium in the intercalation material and ρ indicates the density of the

particle.

In order to take into account the phase transformation during the process of inser-

tion/extraction of lithium into electrode, the above diffusion equation should be written

for both coexisting phases in the electrode particle. The movement of phase bound-

ary is assumed to be controlled by the diffusion process in the adjacent phases. The

equation can thus be written as:

(

Cα
eq,j − Cβ

eq,j

) drj

dt
= Dα

s,j

∂Cα
s,j

∂r
−Dβ

s,j

∂Cβ
s,j

∂r
, j = n, p (5.17)

where α and β refers to two phases, i.e. lithium rich and lithium deficient phases. Terms

Cα
s,j and Cβ

s,j represent the lithium concentrations, and Cα
eq,j and Cβ

eq,j the maximum

soluble concentrations of Li in α and β phases, respectively. The boundary condition

of diffusion equation (Eq. 2.3) can be modified as:

Di
s,j

∂Ci
s,j

∂r
|r=Rj

= − Jj

ajF
, j = n, p; i = α, β (5.18)

where it refers to lithium flux at particle/electrolyte interface and i = α, β during

deintercalation/intercalation, respectively.

The stress distribution in intercalation particles arising due to diffusion process is mod-

eled by relating the elastic deformation of the material to intercalation process. The

following equations are presented to model the stress tensor components, where hydro-

static stress σh is the average of principal components as σh = (σr +2σt)/3. Parameters

σr and σt represent the radial and tangential components of the stress tensor, respec-

tively.
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∂σi
r,j

∂r
+

2
r

(σr,j − σt,j) = 0, j = n, p; i = α, β

σi
r,j =

Ei
j

(1 + νi
j)(1− 2νi

j)

[

(1− νi
j)
∂wj

∂r
+ 2νi

j

wj

r
− (1 + νi

j)Ωi
jC

i
s,j

]

, j = n, p; i = α, β

σi
t,j =

Ei
j

(1 + νi
j)(1− 2νi

j)

[

νi
j

∂wj

∂r
+
wj

r
− (1 + νi

j)Ωi
jC

i
s,j

]

, j = n, p; i = α, β

(5.19)

where wj is radial displacement in region j, E indicates the modulus of elasticity for

the material, ν the Poisson’s ratio, and Ω the expansion coefficient due to intercalation

(i.e. Ωi
j = V̄ i

j /3) . See [97] for more details.

viii. Battery Swelling:

The gas evolution in the battery affects the electrolyte volume fraction. The reduction

in electrolyte volume fraction of the electrolyte can be modeled as [106]:

ǫe(x, t+ ∆t) = ǫe(x, t)−∆ǫgas(x, t) (5.20)

where ∆ǫgas(x, t) = ∆Vgas(y(x))/Vcell and y is the local state of charge. Change of

ǫe will in turn change the effective diffusion coefficient and conductivity in electrolyte

phase. The volume fraction of active material remains rather unchanged due to gas

evolution. Thus, battery swelling does not affect the transport properties in solid phase.

The volume fraction of inert materials (i.e. binder, conductive additives) increase by

∆ǫgas as the result of swelling.

ix. Frequency Analysis

The aforementioned equations are all time-based equations that often express the spatial

distribution of different states of the battery or some physical parameters of the battery.

On the other hand, frequency response of a battery can also present valuable knowledge

about the status of the battery and its degradation processes. Reference [111] presents

the analytical impedance models of the battery. However, for deriving these models,

the author resorts to some simplifying assumptions such as constant properties of the

battery where it could not be a valid assumption in the study of state of health and

degradation processes in battery systems. Given the varying nature of the battery and

coupled set of partial differential equations involved in its model, deriving an analytical

impedance response would not be feasible. Instead, a measured impedance response

along with the model analysis (time domain analysis) can significantly help in analyzing

the effect of each one of individual failure mechanisms.
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Reference [126] characterized the degradation processes with an impedance spectroscopy.

The method presented therein opens a window to the methodologies which apply

impedance stereoscopy for real-time monitoring. This article exploits a parameter es-

timation method on an equivalent circuit model to identify the impedance response of

the battery for different components of the battery. These impedance measurements

are then used to measure the health of the battery. Alternatively, we propose to use the

EM-model of the battery, the impedance response of battery components (i.e. porous

electrodes, electrolyte) can be extracted and used for health monitoring of the battery.

5.3 Fault Detection Using Particle-Filtering

The diversity of different degradation mechanisms and complexity of the associated models

are so abundant that it requires a number of research works to address all of them. In this

section, it is shown that how the particle filtering methods can be employed for detection

and estimation of the battery faults using the electrochemical model of the battery. For

this purpose, “positive electrode dissolution” and “plating mechanism” as two types of the

common degradation mechanisms are considered and appropriate monitoring approaches

are developed. The particle filtering methods developed in Sections (3.4) and (3.5) are

employed as the estimation engines in the developed fault detection algorithms.

5.3.1 Plating Mechanism

Plating is a common degradation process in Li-ion batteries and degrades the battery’s life

and durability [48]. To the best of our knowledge, there is no systematic modeling of plating

mechanism. However, it is reported that lithium plating side reaction is likely to occur at

the negative electrode surface when

φs − φe < Uk (5.21)

where Uk corresponds to the equilibrium potential (i.e. open circuit potential) of the side

reaction of lithium plating on the electrode surface and is considered as Uk = 0 [129, 112].

Therefore, during the charge of Li-ion battery the φse = φs−φe is estimated at the negative

electrode surface and maintained positive to prevent the plating mechanism.

For this purpose, the state estimation algorithm proposed in Section (3.4.2) is employed

and the solid/electrolyte phase potential difference at negative electrode/electrolyte inter-

face φse(x = L−) is estimated to insure the plating mechanism does not occur. A safety

margin of 10 mV is considered, and whenever the φse(x = L−) drops below this threshold,

a fault alarm is made to control the charging rate and prevent the plating. Therefore, the

proposed detection system consists of two stages as shown in fFigure (5.1): 1) estimation,

2) comparison and alarm generation.
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Figure 5.1: The proposed algorithm for the Plating Mechanism Detection

Simulation Studies

A battery with the characteristics given in Table 3.2 was used to investigate the performance

of the algorithm. The plating condition is simulated by instantly increasing the charge rate

by 4 times. The battery is being charged with the rate of 8.75 A when after 200 sec the

current is instantly increased to 30 A. This can reproduce conditions under which plating

is very likely to occur.

The application of PF for φse(x = L−) estimation is shown in Figure (5.2). The straight

line shows the simulation without any fault detection algorithm. It is clear that in this case,

φse passes the margin of 0 V (i.e. dotted line) which can lead to plating that would degrade

the performance as well as life of the battery. The dashed line shows the performance of

the fault detection algorithm where a PF algorithm estimates the φse and as soon as it hits

the margin of 10 mV (i.e. dash-dot line), a fault alarm is generated and the charging is

stopped. A viable solution is to reduce the rate of charge sufficiently to give the negative

electrode enough time to absorb all the Li-ions that are released from the positive electrode.

The results show the effectiveness of the algorithm and its capability to detect the problem

soon enough to prevent plating mechanism to begin.

Employment of the fault detection algorithms such as plating mechanism detection, not

only prevents the hazardous conditions but also help to utilize the battery more efficiently

by reducing the conservative margins that usually would be considered if no fault detection

algorithm is placed.

5.3.2 Positive Electrode Dissolution

It was discussed in item (iii), Section (5.2.1), that Positive “Electrode Dissolution” is related

to the dissolution of metal ions from electrode lattice into the electrolyte and is the primary

reason for capacity loss of positive electrode. This process leads to decrease of the volume

fraction of active material. Park et. al. [84] studies the impact of positive electrode

dissolution in Li-ion batteries with LiMn2O4 as the cathode and shows that the following

relationship describes the volume changes in cathode due to material loss.

V (t) = Vi

(

1− 0.304
2

Xa

Xa + 1

)

(5.22)
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Figure 5.2: Performance of the fault detection algorithm. (a) Applied current and measured
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where, Vi represents the initial volume, and Xa the dissolution reaction. Therefore, the

volume fraction of the cathode active material (ǫs,p) is changed as:

ǫs,p = ǫis,p

(

1− 0.304
2

Xa

Xa + 1

)

(5.23)

where, ǫis,p is the initial volume fraction value of the cathode active material. The volume

fraction changes in composite electrodes affect the specific interfacial area and the effective

transport properties in the electrochemical model of Li-ion batteries as following:

ap = 3
ǫs,p

Rs,p
(5.24)

σeff,p = σǫs,p (5.25)

Simulation Studies

It was shown that the dissolution of positive electrode would lead to decrease of the volume

fraction of active material at positive electrode. Hence, a proper parameter estimation

algorithm capable of estimation of the value of positive volume fraction ǫp can provide the

framework for detection of this fault. In the proposed framework, certain thresholds shall

be defined for ǫp and rate of its drop based on experimental results. Then, if the value of

ǫp drops below that defined threshold, it means that the battery is approaching the end of

its useful life. Also, if the rate of drop of ǫp is higher than a certain threshold, it can be

either a sign of the end of life of the battery, or the battery might be under abuse and its

usage pattern have to be changed; hence a fault alarm has to be generated. The schematic

of the fault detection algorithm for positive electrode dissolution is depicted in Figure(5.3).

However, a comprehensive experimental research study is required to relate the State of

Life (SoL) of battery to the value of battery parameters and their associated rate of change.

The parameter estimation method developed in Section (3.5) is examined for two differ-

ent values of ǫp = 0.29 as the normal value and ǫp = 0.15 as the degraded value. If it was

possible to estimate the value of volume fraction, then one can relate the values to the SoL

of the battery and extract a better prediction of the state of life of the battery. The results

are shown in Figure(5.4) and (5.5). Figure(5.4b) and (5.5b) show that the error converges

to a 2% error bound and stays there after a reasonable transient.

5.4 Summary and Discussion

This chapter presented a rather comprehensive survey of the different chemical and mechan-

ical mechanisms that degrade the operation of a Li-ion battery. We have tried to collect all

the major degradation or aging mechanisms of the battery in this list. However it is noted
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Figure 5.4: Performance of the parameter estimation algorithm on ǫp. (a) Estimation of
the normal value ǫp = 0.29 due to fresh cell (b) Percentage of error

that what occurs as a fault in the battery might be originated from multiple mechanisms

or a complex combination of them.

The degradation of Li-ion batteries was studied from a control theoretic perspective. In

order to prepare the fundamentals for a model-based approach towards the diagnostics of

battery, some physics-based models that have been presented for modeling of some degra-

dation mechanisms of the battery are briefly reviewed. However, not all the degradation

processes are yet modeled in the literature. This is, in fact, an area that needs much more

research investigations to address all the problems in modeling of the degradation mecha-

nisms within the battery. Understanding the physics of the degradation processes is a major

challenge towards the modeling of them.

Incorporation of the main electrochemical model (EM) in the battery monitoring, and

estimation of the model parameters can provide an appropriate framework for analyzing

the degradation and failures of the battery. Therefore, the methodologies developed in

Chapter (3) capable of dealing with EM are very instrumental in battery diagnostics. The

degradation of the battery is however a colossal problem with enormous electrochemical

complications.
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As a proof of concept, particle filtering based techniques developed in Chapter (3) were

employed to estimate the onset of faults or measure the degree of degradation occurred in

the battery. The estimated states/parameters acquired from the proposed methods can also

be very helpful to attain an assessment of the state of life the battery. This however needs

an independent electrochemical research study to relate the parameter variations to the

state of life of the battery. To the best of our knowledge, this work is the first of its kind to

analyze the diagnostics of the battery from a control theoretic point of view. Development

of the analysis to other degradation mechanisms such as film formation on the anode, stress

buildup, etc, and eventually embed all this information in a unified framework to study the

state of life of the battery can be considered as a road map to battery diagnostics studies.
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Chapter 6

Cell Balancing

6.1 Introduction

Although battery packs are integrated with batteries of the same type and specification,

there exists certain discrepancies between cells’ characteristics that would intensify as the

battery pack ages. Different factors such as manufacturing variance in the battery character-

istics from production, different aging processes, temperature distribution across the pack,

etc, can cause and magnify the imbalance between cells. Due to existing mismatches, the

cells do not necessarily possess the same amount of charge and thereby charging/discharging

of the pack with the same rate might lead to overcharge/overdischarge of the cells with

higher/lower SoC, respectively. Hence, “cell balancing” or “battery equalization” is intro-

duced as a preventive measure to avoid over-charge/discharge of the battery cells by keeping

the cells balanced at the same level of SoC. In contrast to Lead-acid and Nickel-based bat-

tery systems, the cell balancing problem is more crucial for Li-ion batteries from a safety

perspective since they can not tolerate overcharge/overdischarge which could lead to serious

cell damage.

Preventing the over-usage of cells would also contribute to health of the battery and help

to enhance the life-span of the battery. An appropriate and reliable cell balancing circuit

would also indirectly help to attain the maximum usable capacity of the battery by insuring

the safety of the batteries, reducing the conservative safety margins and thus increasing the

efficiency of the system.

Design of an efficient and effective cell balancing circuit is conducted at three levels:

i) circuit design, ii) construction, and iii) control. From the circuit design point of view,

the literature is rather rich and a multitude of appropriate circuit topologies are proposed

for battery equalization [20, 28]. They can generally be divided to dissipative and non-

dissipative categories. Dissipative methods simply try to balance the cells by extracting

energy from the higher charged cells and dissipating it on shunts or resistors [20], or se-

lectively disconnecting imbalanced cells from the battery pack [107]. Simple implementa-
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tion, low production cost, and stable operations are the main advantages of these methods

whereas energy dissipation poses a major drawback for these schemes. Hence, the main

effort has been toward development of non-dissipative methods where the main idea is to

transfer the charge between the cells and/or pack instead of dissipating it. Three types

of charge-type, discharge-type, and charge- and discharge-type equalization methods are

developed in this regard. In the charge-type, the energy extracted from the battery stack is

transferred to the under-charged battery, whereas in the discharge-type the charge from the

overcharged cell is transferred back to the battery stack or a few of battery cells. In this re-

gard, different structures with capacitor, inductor or transformer as the medium for charge

transfer are developed [20]. In the charge- and discharge-type, or bi-directional schemes,

the equalizing currents flow from any over charged cells into other under charged cells via

some sort of converter [83].

Although, design of optimal cell-balancing circuits is extensively discussed in power elec-

tronics community, the technical issues associated with implementing the designed circuits

such as cost, speed, and technical difficulties with switches, has impeded the application of

the circuits in an industrial scale. Therefore, the current BMS technology mostly rely on

dissipative methods despite their inefficiency. More research efforts is required to address

the existing technical issues and advance the cell balancing technology.

Control of balancing circuits also need further research. Most of the control schemes

are developed based on the voltages of the cells and adopt a simple logic-based control

algorithm to control the switches [116]. The parameters of the switches are usually fixed

and a logic-based algorithm manages the switching between cells. There are however a

few works that have tackled this problem using a control theory approach. Speltino et al.

[116] implement a cell-balancing algorithm where the SoC is employed as the main decision

variable of the algorithm. Lee and Cheng [66] address this problem by adopting a fuzzy

controller where the voltage is considered as the balance indicator and the premise variables

of the fuzzy rules are voltages of the cells. Yan et al. [134] improved the previous work by

developing a fuzzy controller based on the SoC values. The sum of and difference between

SoC values as well as total internal resistance are adopted as the inputs of the fuzzy system.

Danielson et al. [27] opens an optimal control view into the problem where however the

battery and balancing circuit dynamics are not considered in formulation.

This chapter tackles the problem of cell balancing within an optimal control framework.

The control objectives are defined as a minimization problem and a control horizon is consid-

ered to cast the problem into a nonlinear model predictive control (NMPC) structure. The

solution to the optimization problem, which involves hybrid system dynamics, is found using

a gradient descent based algorithm. Moreover, in contrast to previous works, the model of

the cells is completed by considering an equivalent circuit model. The cell-balancing circuit

is a bi-directional topology composed of Cuk converter [67]. In the following, an equivalent

circuit model of the battery employed in this work is reviewed and the cell balancing circuit
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is analyzed. Then, the cell-balancing problem is formulated in a NMPC framework and

the proposed solutions are discusses. Finally, the chapter is concluded with discussion of a

simulation study.

6.2 Battery Model and Balancing Circuit Analysis

6.2.1 Li-ion Battery Model

In this work, an equivalent circuit model adopted from [63] is considered for battery simula-

tion. This model is much more complete in comparison with previously considered models

in balancing circuits. The model schemes is shown in Figure (6.1).

Figure 6.1: The equivalent circuit model of the battery.

The battery equations are given as:















V̇ts = 1
RtsCts

(−Vts +RtsIbatt)

V̇tl = 1
RtlCtl

(−Vtl +RtlIbatt)

Vbatt = Voc −RsIbatt − Vts − Vtl

(6.1)

where the open circuit voltage and circuit elements are functions of SoC as following:

Voc = −1.031e−35SoC + 0.2156SoC

−0.1178SoC2 + 0.3201SoC3 + 3.685

Rs = 0.1562e−24.37SoC + 0.07446

Rts = 0.3208e−29.14SoC + 0.04669

Cts = −752.9e−13.51SoC + 703.6

Rtl = 6.6038e−155.2SoC + 0.04984

Ctl = −6056e−27.12SoC + 4475

(6.2)

A coulomb counting method is adopted for SoC calculation. This method facilitates the

formulation of the dynamics of the battery and balancing circuit in a state space format.

However, other SoC estimation methodologies can also be incorporated in the proposed

structure. The coulomb counting method can be represented as:
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SoC(t) = SoC(t0)− 1/Q
∫ t

t0

I(η)dη (6.3)

where Q (Ah) indicates the nominal capacity of the battery and I the charge/discharge

current of the battery, where the convention of I < 0 is considered for discharge in formu-

lations.

6.2.2 Balancing Circuit Principle and Analysis

In this work, a bidirectional balancing circuit is considered for analysis. In bi-directional

configurations, the equalizing currents can flow from any over charged cells into other under

charged cells via some sort of converter. This would present the most efficient and fastest

non-dissipative balancing circuit topology. The balancing circuit in this work is adopted

from [67, 66] where a Cuk converter is considered as the equalizing unit between each two

cells in the battery string. The schematic of the cell balancing circuit is shown in Figure

(6.2). The battery string continues from points A and B and each two adjacent cells are

equalized via a similar topology.

Figure 6.2: Schematic of cell balancing circuit using a modified Cuk converter.

The charge is transferred from the cell with the higher charge (i.e. higher SoC) through

the two inductors and the energy-transferring capacitor. The MOSFETs with embodied

diodes are the switches which control the balancing circuit. A PWM signal is applied to

MOSFETs to control their on/off conditions.
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For the circuit analysis, the two batteries are replaced with the equivalent circuit model

shown in Figure (6.1). Without loss of generality, we assume that cell 1 has higher charge

than cell 2. The frequency of the PWM signal is considered as fs and thus the period of one

control cycle is Ts = 1/fs. The duty cycle is denoted as D ∈ (0, 1) and the MOSFET Q1 is

on for [0, T0] and off for (T0, Ts] where T0 = D×Ts. For the circuit elements, the general hint

is to select inductors L1 and L2 large enough to operate in “Continuous Inductor Current

Mode (CICM)”, where the inductor current never reaches zero during one switching cycle.

In addition, the capacitor is also sufficiently small so it can be fully discharged during the

switching period.

In the initial state, provided the appropriate values for circuit elements, the capacitor

(C) is instantly charged to VC(t) = VB1(t) + VB2(t), where VC denotes the voltage of

capacitor C and VB1 and VB2 represent the voltages of cells 1 and 2. In the period [0, T0],

Q1 is on, i1 > 0 and charge is transferred from cell 1 to L1 and is stored in the inductor.

In this period, C discharges to cell 2 and L2 stores some of energy. During the conduction

mode of Q1, the state space equations are denoted as follows:















i̇L1 = 1
L1
VB1

V̇C = 1
C (−iL2)

i̇L2 = 1
L2

(VC − VB2)

, 0 < t ≤ T0, Q1 : On (6.4)

The current that passes through cells is considered as Ibatt1 = Is−iL1 and Ibatt2 = Is+iL2,

where Is represents the current of battery string that is charged from source or discharged

to the load. Substituting VB1 and VB2 from Eq. (6.1) in (6.4) and taking the derivative of

both sides of Eq. (6.3) gives the state space equations Ẋ = f1(X) for 0 < t ≤ T0, where X

the state vector and f1 are given as:

X = [iL1, VC , iL2, SoC1, SoC2, Vts1 , Vtl1 , Vts2 , Vtl2 ]T (6.5)

f1 =













































1/L1(Voc1 −Rs1(Is −X(1))−X(6)−X(7))

1/C(−X(3))

1/L2(X(2)− (Voc2 −Rs2(Is −X(1))−X(8)−X(9)))

1/Q(Is −X(1))

1/Q(Is +X(3))
1

Rts1 Cts1
(−X(6) +Rts1(Is −X(1)))

1
Rtl1

Ctl1
(−X(7) +Rtl1(Is −X(1)))

1
Rts2 Cts2

(−X(8) +Rts2(Is +X(3)))
1

Rtl2
Ctl2

(−X(9) +Rtl2(Is +X(3)))













































(6.6)

The series resistors, Rs1 , Rs2 , and open circuit voltages, Voc1 , Voc2 , are themselves nonlinear

functions of X(4) and X(5) as given in Eq. (6.2).
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In the period (T0, Ts], Q1 turns off and D2 gets on. During this period, cell 1 continues

to discharge its excess charge to L1 inductor, and L1 charge back the capacitor C using its

stored energy. Note that the charge of capacitor has been decreased during the last period.

On the other part, the inductor L2 continuously charges cell 2 until its stored energy is

totally transferred. The circuit will reach the steady state when iL2 = 0. While Q1 is off,

the circuit equations are described as:















i̇L1 = 1
L1

(VB1 − VC)

V̇C = 1
C iL1

i̇L2 = 1
L2

(−VB2)

, T0 < t ≤ Ts, Q : Off (6.7)

Similar to (6.6), the state equations, Ẋ = f2(X) are derived as following:

f2 =













































1/L1(Voc1 −Rs1(Is −X(1))−X(6)−X(7)−X(2))

1/C X(1)

1/L2(−(Voc2 −Rs2(Is −X(1))−X(8)−X(9)))

1/Q(Is −X(1))

1/Q(Is +X(3))
1

Rts1 Cts1
(−X(6) +Rts1(Is −X(1)))

1
Rtl1

Ctl1
(−X(7) +Rtl1(Is −X(1)))

1
Rts2 Cts2

(−X(8) +Rts2(Is +X(3)))
1

Rtl2
Ctl2

(−X(9) +Rtl2(Is +X(3)))













































(6.8)

This sequence is repeated by the frequency of fs until the cells 1 and 2 reach an approx-

imately same level of charge (a 2% margin is usually considered as acceptable). It is worth

noting that the currents iL1 and iL2 are limited to 0 by the diode D2 if they get less than

zero. This means that we might have three more state dynamics f3, f4, and f5 which is

similar to Eq.(6.8), except that iL1, iL2 or both are zero, respectively. When SoC1 < SoC2,

the analysis is similar, except that Q2 and D1 plays the main role in the balancing circuit.

The dynamics of the system present a hybrid system which has two type of switching

or transitions, namely controlled (i.e. externally forced) and autonomous (i.e. internally

forced). The controlled transitions refers to the transitions which are induced by an external

control event, where autonomous transitions are specified by a certain guard condition on

states. If the continuous state satisfies the guard condition, then the system transitions to

a new dynamic mode. In this balancing circuit, the switching from f1 to f2 is induced by

the duty cycle of PWM signal which is an external control event, and switching from f2 to

either f3, f4 and f5 is imposed by states (i.e. X(1) and X(3)) when they pass through a

certain guard (i.e. X(1) < 0 and X(3) < 0) and thus is internally forced.
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6.3 Problem Formulation and Methodology

6.3.1 Problem Formulation

There are two variables that can control the balancing circuit, namely the frequency fs and

duty cycle D of PWM signal, given the circuit elements are considered constant. Due to the

implementation difficulties, the frequency is usually considered as constant, and the duty

cycle is the only variable that is used to control the balancing circuit. We will also consider

the duty cycle as the manipulating variable in this work while the proposed methodology

also has the capacity to encapsulate the frequency of PWM as a manipulating variable as

will be discussed.

The main objective is to balance two adjacent batteries while minimizing the energy

loss. The charges drawn from Cell 1 are always larger than that filled into Cell 2. Hence,

the ratio of iL2 to iL1 is used as an indicator of equalizing efficiency [134]. It is clear from

equation (6.3) that as I = iL1 + iL2 increases, the time required to balance the cells would

decrease. Therefore, the inverse of total equalizing current, i.e. 1/(iL1 + iL2), is another

objective in the defined cost function. This problem is cast into a nonlinear model predictive

control (NMPC) framework as follows:

min
{D}H

1

J({D}H1 , X) = min
{D}H

1

∫ t0+H×Ts

t0

[

Γ1
1

X(1) +X(3)
+ Γ2

(

1− X(3)
X(1)

)]

dt

subject to

{

Ẋ = F (X, {D}H1 ), t ∈ [t0, t0 +HTs]

{D}H1 ∈ (0, 1)

(6.9)

where Γ1 and Γ2 are positive constants and indicate the weight of each objective in the cost

function. They are selected adaptively based on the difference between the state of charge

of the two cells (see section 6.4 for details). For the sake of simplicity the prediction and

control horizon are assumed equal to H. The process dynamics which is essentially hybrid

is represented by F . It is also noted that the system is an autonomous hybrid system since

it does not explicitly depend on any independent variable (input) but only on switching

times and initial condition. The cost function J , is defined as the integral of SoC difference

and is minimized subject to the duty cycle of PWM signal in control horizon. The duty

cycle as the minimization parameter is defined as

D = T0/Ts (6.10)

where T0 is the duration in which the Q1 is on.

The general practice in solving the power electronics control problems that involve con-

verters has been to consider the average model and design the controller for the average

model and small-signal model (e.g. [73]). However, in this problem, the voltage source and
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load (as appears in Cuk converter circuits) are battery cells 1 and 2, respectively, which

are two dynamic systems whose equations are changing with time and hence average model

would not converge for this problem. This is also verified through simulation in MATLAB

and POWERSIM, that the average model would not converge for this problem. Hence, we

need to consider the complete hybrid system arrangement to solve this problem.

As mentioned, the PWM signal frequency and hence Ts, is considered as constant,

therefore optimizing in terms of D is equal to optimizing in terms of T0 (see Eq. (6.10))

which is the the switching time of MOSFET. In order to solve this problem, it is cast into an

optimal control framework where optimization of the switching time of the hybrid system

is considered in the control horizon.

In general, the system shows hybrid dynamics: (6.11) for 0 < t ≤ HTs where H is

the control horizon. The switching of f1 to f2 is externally forced and always occurs at

T = D · Ts within each Ts period, but other switchings are dependent on the value of T h
0

and initial values, and might occur or not within a cycle. When Q1 is off, depending on

the initial conditions, either of X(1) or X(3) might get less than zero first and the system

switches to f3 or f4, respectively. Thereafter, if both are limited by diode to zero, the

system switches to f5. Therefore, the switching times τh
1 and τh

2 are internally forced and

either of them could be equal to hTs. The optimization problem (6.9) is solved subject

to the switching times’ vector {T0}H1 = [T 1
0 , T

2
0 , . . . , T

H
0 ], i.e. min{T0}H

1
J . The optimal

switching time of T 1
0 is applied and the control horizon window is moved forward in time.

In the following we will discuss the proposed method for a solution of this problem.

Ẋ = F (X) =



































f1(X) t ∈ ((h− 1)Ts, T
h
0 ]

f2(X) t ∈ (T h
0 , τ

h
1 ]

{

f3(X)

f4(X)
t ∈ (τh

1 , τ
h
2 ]

f5(X) t ∈ (τh
2 , hTs]

, h = 1, 2, . . . , H. (6.11)

6.3.2 Proposed Methodology

There is an extensive body of literature that deals with the switching time optimization

in hybrid systems ([140] and references therein). In this regard, two types of “internally

forced” switching (IFS) and “externally forced” switching (EFS) are generally distinguished.

As mentioned, IFS is labelled by certain guard conditions on internal states of the system,

where EFS refers to switching that occurs as a result of an external control event (e.g. a

pre-determined switching time, external command). Algorithms are generally developed

for systems with only IFS or only EFS. In this problem, however, both of the IFS and

EFS are involved. Nevertheless, the system is autonomous and IFS times are a function of

EFS times. In other words, once the EFS times (i.e. {T0}H1 ) are known, the IFS times
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(i.e. {τ1, τ2}H1 ) are also determined since there is no control action on the system. Hence,

in the proposed methodology only {T0}H1 is the minimization parameter of concern. The

optimization problem is thereby formulated as following:

min
θ
J(θ,X)

subject to

{

Ẋ = F (X, θ), t ∈ [t0, t0 +HTs]

θ ∈ Θ

(6.12)

where J is defined in (6.9), θ = {T0}H1 = [T 1
0 , T

2
0 , . . . , T

H
0 ] and Θ = {θ |t0 < T 1

0 < t0 + Ts <

T 2
0 < t0 + 2Ts < . . . < TH

0 < t0 +HTs}.
A gradient-descent based scheme is employed to solve this problem. The body of the

algorithm is summarized at Algorithm 8.

Algorithm 8 Gradient-descent algorithm to find the optimal switching times

1. Set the iteration index k = 0. Choose an initial θk.

2. Find the gradient of cost function ∇(J) = ∂J
∂θ (θk).

3. Find an appropriate step size ζk and a feasible direction h(θk) and update the θk to

be θk+1 = θk + ζkh(θk). The feasible direction is defined as the projection of (−∇J)

on the Ψ(θ) = {h(θ) ∈ R
H |∃ζ̂ > 0,∀ζ ∈ [0, ζ̂], θ + ζh(θ) ∈ Θ} where ζ denotes the

Armijo step size.

4. Set k = k + 1 and return to step 2 if a predetermined termination condition is not

satisfied. The termination condition can be defined based on the norm of feasible

direction (h), the increment of θ, etc.

The Armijo stepsize ζ is defined as follows:

m = min{m ≥ 0 | θ + βmh(θ) ∈ Θ,

J(θ − βmh(θ))− J(θ) ≤ αβm < h(θ),∇J(θ) >} ∈ N

ζ = βm

(6.13)

where α ∈ (0, 1), β ∈ (0, 1) and < . , . > refers to the inner product of two vectors.

The main difficulty that arises in Algorithm 8 is due to calculation of the gradient of

cost function with respect to the switching times, i.e. ∇J . The proposed method is adopted

from [37] when a costate function is employed to calculate ∇J as follows.

Let the cost function be defined as J =
∫ T

0 W (x)dt where ẋ = fi(x(t)), for all t ∈
[τi−1, τi], i = 1, . . . , N + 1 with the given initial condition x(0) = 0. The feasible set of
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switching times is represented by Λ := {τ̄ = (τ1, . . . , τN )T : 0 = τ0 ≤ τ1 ≤ . . . τN ≤ τN+1 =

T}. For every τ̄ ∈ Λ, the costate p(t) ∈ R
n is defined backwards according to the following

differential equation:

ṗ = −
(

∂fi+1

∂x
(x, t)

)T

p−
(

∂W

∂x
(x)
)T

,

t ∈ [τi, τi+1], i = N,N − 1, . . . , 0
(6.14)

with the boundary condition p(T ) = 0. Then the following proposition is given for calcula-

tion of ∇J [37].

Proposition 1. Suppose that L and {fi}N+1
i=1 satisfy the following assumptions:

i. The functions are twice continuously differentiable.

ii. There exists a constant K > 0 such that, for every x ∈ R
n, and for all i ∈ {1, . . . , N}:

‖fi(x)‖ ≤ K(‖x‖+ 1) (6.15)

For every point τ̄ in the Λ, and for all i = 1, . . . , N + 1, the derivative (dJ/dτi)(τ̄) is

given by:

dJ

dτi
(τ̄) = p(τi)T (fi(x(τi))− fi+1(x(τi))) (6.16)

Proof. See [37].

In our case, dynamics of the system is given by (6.11) and cost function is defined in

(6.9) where W (x) = Γ1(X(4)−X(5))+Γ2(X(1)+X(3)). There exist two types of switching

instants in the system, i.e. {T0}H1 and {τ1, τ2}H1 , where {τ1, τ2}H1 are dependent on {T0}H1 .

Hence, the derivative would be adjusted as:

dJ

dT h
0

=
∂J

∂T h
0

+
∂J

∂τh
1

· dτ
h
1

dT h
0

+
∂J

∂τh
2

· dτ
h
2

dT h
0

(6.17)

and based on Eq.(6.16), the ∇J is derived as:

dJ

dT h
0

=p(T h
0 )T (f1(X)− f2(X)) +

p(τh
1 )T (fi(X)− f2(X))

dT h
0

dτh
1

+ p(τh
2 )T (f5(X)− fi(X))

dT h
0

dτh
2

(6.18)

where i = 3, 4 (Eq. (6.11)). The gradient of J is calculated from (6.18) and is replaced

in Algorithm 8 to find the optimal switching instants at each control horizon. For this
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purpose the system dynamics (6.11) and the costate equation (6.14) are solved forward and

backward, respectively.

6.3.3 Problem Extension

In PWM-controlled converter problems, duty cycle of PWM is usually the only parameter

of concern and frequency would be considered constant. This is so since changing of the

frequency of the PWM signal would pose implementation challenges and might not be

economically feasible. Nevertheless, frequency of PWM signal is potentially a manipulating

variable that can play a role in optimal control problem. The manipulation of duty cycle

was addressed above in a switching time optimization framework. If one wants to extend

the problem such that both D and fs are considered as control variables, the problem would

be solvable in the same manner as follows.

The new problem is defined as:

min
D,fs

J(X,D, fs) = min
D,fs

∫ t0+T

t0

[Γ1(X(4)−X(5)) + Γ2(X(1) +X(3))] dt

subject to















Ẋ = F (X,D, fs), t ∈ [t0, t0 + T ]

D ∈ (0, 1)

fs,min < fs < fs,max

(6.19)

As discussed, D is translated into switching time to be incorporated into the problem.

In the new problem, however, fs would also change. From the switched hybrid system

perspective, it means that not only the switching times are changing but also the number of

switchings would be subject to change. In the previous problem, in a fixed HTs interval, the

number of switchings from system 1 to 2 would exactly be equal to H. In the newly defined

problem, in a fixed T interval, Ts is also variable and thus the number of switchings can vary.

It should be noted that the sequence of switched systems, i.e. 1→ 2→ 3/4→ 5→ 1 would

not be altered but only the number of such sequences might change. The new problem can

conceptually be solved in a two-stage algorithm as shown in Algorithm 9 [133]:

Algorithm 9 Two stage algorithm to optimize both switching times and frequency of PWM
signal
• Stage 1.

a) Fix the number of switchings to be S.

b) Minimize J with respect to switching times, i.e. {T0}S1 . (Algorithm 8)

• Stage 2. Vary the number of switchings S to find an optimal solution for problem

(6.19).
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The stage 2 of Algorithm 9 is a searching problem that can be implemented indepen-

dently of stage 1. Although this solution exists for frequency optimization, the focus of

simulation studies would be on optimal control based on D which is more relevant, in

practice.

6.4 Simulation Studies

For the simulation studies, the battery model (Figure(6.1)) by the model elements given in

(6.2) is employed. The following elements are considered for the balancing circuit: L1 =

L2 = 100µH and C = 470µF . The frequency of the PWM signal is considered as fs =

5KHz. The control horizon for the controller is considered as H = 3. The simulations are

conducted for multiple cases in terms of the initial state of the batteries as follows, i. There

is a big SoC gap between cells (i.e. ∆SoC > 0.3), ii. The SoC difference is in intermediate

range (i.e. ∆SoC ≃ 0.2), iii. The SoC values are close (i.e. ∆SoC ≤ 0.1). The results for

the SoC trajectory and the Efficiency values is shown in Figure(6.3). All the results are

shown for the first 500 seconds of the simulation which can demonstrate the effectiveness

of the controller.

Figure (6.3) demonstrates that as the cells are very off the controller would push more

aggressively towards balancing, and thus the efficiency would be sacrificed to some extent.

In contrast, when the cells are within the similar range, the efficiency plays more important

role in determining of the manipulation variable which is duty cycle. Please note that a

resolution of 0.05 is considered for Duty cycle manipulation.

The impact of capacitance value C, and frequency of PWM signal fs is also investi-

gated in the simulation studies. The balancing circuit is simulated for different values of

capacitance as shown in Figure(6.4). Normally, as C increases the balancing time would

decrease, however the efficiency would be compromised. Please note that the large values

of capacitance (e.g. C = 4.7mF ) would not be very practical in real application. Therefore,

the simulations were conducted with C = 470µF . Figure (6.5) demonstrates the results for

different frequency values. The selection of frequency of PWM signal is in fact a compro-

mise between the speed of balancing, efficiency, and the practicality. As frequency increases,

the balancing time would decrease but the practicality would be affected, and efficiency is

also slightly reduced. As discussed and formulated in Section (6.3.3), frequency can also

be considered as one of the manipulating variables in the controller which however it is not

practically favorable.

The applied method obtains the optimal solutions in terms of switching instants. How-

ever, the problem is that it imposes a high computational load which would not be very

feasible for online implementation. The remedy to this problem would be two fold. First,

we can extract the rules using this method to adjust a fuzzy controller that fulfills the sub-

optimal controller for the system. The next solution is to solve the optimal control within
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Figure 6.3: Simulation results of the trajectory of SoC values and efficiency value for 500sec.
The simulation is conducted for multiple cases with different initial ∆SoC

larger time-steps. In other words, a sub-optimal controller can be developed that does not

update D at each sample time. Due to the slow dynamics of the battery, this would not

alter the performance of the balancing circuit significantly.

6.5 Summary

Cell balancing is defined and practiced as a preventive measure to overcome the cell mis-

matches and ensure the safety of the battery operation in battery packs and cell stacks.

It also leads to improved efficiency as well as increased overall capacity and lifetime of

the battery cell stack. The technology of cell balancing circuits is shifting from passive

methodologies to active ones in order to address the efficiency. The semiconductor and mi-

crocontroller companies has also shown interest to active methods recently [6]. This work

is also moving towards this direction to propose an appropriate controller for implementing

a fast and reliable cell balancing circuit on chip.
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Figure 6.4: Simulation results for different capacitance values.

This Chapter developed an optimal control approach to cell balancing problem of Li-ion

batteries. The proposed approach is novel in its structure and formulation. The previous

works are also enhanced by taking a more comprehensive model of the battery. The opti-

mal control of cell balancing circuit with Cuk converter is reformed into a switching time

optimization problem of switched hybrid systems. The proposed methodology provides a

framework to address the balancing problem by optimally setting the duty cycle of PWM

signals. It was also discussed that how this method can be extended to incorporate the

frequency of PWM signals as a manipulating control variable. A drawback of this method

is high computational load for which the potential remedies are proposed. Moreover, digi-

tal implementation of the proposed methodology with appropriate hardware design is also

another solution that can address the real-time implementation of the proposed algorithm.
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Figure 6.5: Simulation results for different frequency values.

108



Chapter 7

Conclusions and Future Work

We believe that Lithium ion batteries are an important field of study for future of electrified

transportation industry. They present an opportunity to move from the current internal

combustion engine vehicles to all-electric fleet where many current challenges with regards

to emission, and fuel economy can be addressed. To reach this goal, however, the existing

challenges regarding their manufacturing, control, and safety should be effectively address.

Thus, they provide an interesting field of research with enticing challenges and numerous

opportunity. Our hope is that this Thesis may shed some light on the control and mon-

itoring challenges of Li-ion batteries, and planted some ideas that might grow to become

mainstream in the future. In this Chapter we summarize and point out the main results

that have been achieved in this thesis. In addition several directions and ideas for future

research are presented.

7.1 Conclusions and Contributions

In this thesis, the problem of control and monitoring of Li-ion batteries was investigated

from multiple angles. The problem of state of charge estimation, state of health estimation,

and parameter estimation of Li-ion batteries was explored. In this regard, new approaches

to battery modeling was also examined. Moreover, the diagnostics and health monitoring

of the battery was also studied using a control oriented approach. Another area of fo-

cus was cell-balancing of the battery which is essentially a protection measure to prevent

overcharge/overdischarge of the battery cells. The concluding remarks of each developed

methodology would be briefly explained in the following.

7.1.1 SoC and Parameter Estimation

Two algorithms for state and state and parameter estimation of Li-ion batteries were pre-

sented in Chapter 3. The proposed algorithms employ a particle filter engine for estimation

and are developed based on the fundamental electrochemical model. The appealing feature
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of this algorithm is that it provides the opportunity to consider the very basic electro-

chemical model of the battery. In comparison with Kalman filter-based algorithms, there

is no need to average the field variables in order to eliminate the position dimension (x-

dimension) of equations. Therefore, the spatial distribution of field variables in a battery

can be obtained using this algorithm. This feature is in fact exploited later in Chapter 5

for battery diagnostics.

The goal of the first algorithm is to estimate the state of charge of the battery where

the results confirm the effectiveness of the proposed algorithm. A multi-rate particle filter

was developed in the second algorithm for simultaneous parameter and state estimation

of a lithium-ion cell. In this algorithm, parameter and states of the battery are estimated

at different time rates in order to efficiently use the computational capacity. Merging of

the parameter estimation in the state estimation scheme, opens a window to study of the

degradation of the battery and taking the parameter changes into account.

7.1.2 T-S Fuzzy Approach to Battery Modeling

A T-S fuzzy model was employed to model the dynamics of a Li-ion battery. The proposed

model can be fitted to data produced by simulation of electrochemical model or experimental

data and thus reduce the computational load for real-time monitoring tasks. The inherent

multiple-model structure of T-S model help to capture the non-linearities of the model and

also cope with the parameter dynamics in different operation regions of the battery which

is usually disregarded in practice.

The importance of obtaining a state-space model is that a broad spectrum of control

theories would be available where in the case of electrochemical model, we would be limited

to a narrow band of options for control/estimation tools. In this regard, a robust observer

design using the developed model was conducted to estimate the SoC value which is the

unmeasured state in the system. Robustness of the observer (filter) means that it can

cope with a certain level of noise/disturbance/uncertainty in the system and the observer

performance is guaranteed. The observer gains were obtained analytically by solving a

number of linear matrix inequalities. The effectiveness of the method was verified through

extensive simulation and was demonstrated for some typical cases.

7.1.3 Battery Monitoring Based on Dynamic Resistance

“Dynamic resistance” was introduced as a novel methodology to model the behaviour of the

Li-ion battery versus state of charge and cycle number of the battery. A mathematical de-

scription of this resistance was obtained using a GMDH neural network using experimental

data gathered from extensive cycling of the battery. Simulation studies show a good level

of precision for the acquired model. The practical aspect of this method for monitoring

of battery is that a battery management system can be easily equipped with the ability
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to measure the dynamic resistance of the battery at some particular SoC of the battery

without need of excessive extra circuitry or some external signals that affect the normal

operation of the battery. This information can be applied to either estimate the SoC or

predict the state of health of the battery.

7.1.4 Battery Diagnostics

A control-oriented look towards the diagnostics challenges of Li-ion batteries was presented

in chapter 5. The main problem was defined by a rather comprehensive survey of the dif-

ferent chemical and mechanical mechanisms that degrade the operation of a Li-ion battery.

Also, some physics-based models that have been presented for modeling of some degrada-

tion mechanisms of the battery were briefly reviewed. However, not all the degradation

processes are yet modeled in the literature. This is, in fact, an area that needs much more

research investigations to address all the problems in modeling of the degradation mecha-

nisms within the battery. Understanding the physics of the degradation processes is a major

challenge towards the modeling of them. In fact, the problem of fault diagnostics of the

battery deserves a number of Ph.D. theses to be addressed.

However, Bayesian-based fault detection algorithms were developed for “plating mech-

anism” and “positive electrode dissolution” as two of common battery degradation mecha-

nisms. It was shown that by proper estimation of the states of the battery, the conditions

that lead to plating process can be prevented. Also, it was studied and discussed that

how the estimation of electrochemical model can be employed to measure and quantify the

degree of “positive electrode dissolution” fault.

7.1.5 Cell Balancing

Cell balancing plays an important role in safety of Li-ion battery packs operation. However,

the optimality of cell balancing is not usually considered in the proposed control method-

ologies. The control scheme should be designed such that different, sometimes conflicting,

objectives such as fast balancing, energy efficiency in the circuit, optimization of SoH of

batteries are all considered. An analytical approach towards the control problem of cell

balancing was considered in this thesis. A nonlinear model predictive control is proposed

for this purpose. The proposed approach is novel in its structure and formulation. The pre-

vious works are also enhanced by taking a more comprehensive model of the battery. The

proposed methodology provides a framework to address the balancing problem by optimally

setting the duty cycle of PWM signals. It can also be extended to include the frequency of

PWM signals as a manipulating control variable.

7.1.6 Contributions

The most important contributions of this Thesis are summarized in the following list.
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• To the best of our knowledge, the algorithms developed in this Thesis were the first

attempt to employ full electrochemical model in the battery monitoring. The na-

ture of the algorithms that are based on particle filtering makes it possible to cope

with complicated dynamics of the battery described by nonlinear partial differential

algebraic equations.

• In addition to SoC which is the common parameter of concern in battery monitoring

algorithms, estimation of other battery quantities such as potential of solid and elec-

trolyte state material, and concentration of Lithium, as well as battery parameters are

also incorporated in the proposed estimation algorithms. This feature not only im-

proves the accuracy of SoC estimation but also facilitates the use of these algorithms

in battery diagnostics due to the fact that the electrochemical model of the battery is

not a mere mathematical model but actually describes the real physics of the system.

• Development of a multiple-model structure in a fuzzy sense to deal with nonlinearities

of battery dynamics is another contribution of this Thesis. Although it is a data-

based model but due to its nature it can provide a reliable model on an extended

range of operation. Moreover, the developed robust observers are able to deal with

uncertainties inherent in the model.

• Dynamic Resistance is a new parameter introduced in this Thesis to bring a new idea

in battery monitoring. This easy-to-monitor parameter provides a new framework

to consider aging effect on SoC monitoring. It was also investigated that dynamic

resistance shows a strong correlation with SoH of the battery. Hence, it can also

provide a potential solution to a major challenge of incorporation of SoH in SoC

monitoring.

• The work presented on fault monitoring is the first of its kind to analyze the diagnostics

of the battery from a control theoretic point of view. It was shown that how particle

filtering methods can be employed to develop a fault diagnostics framework. The

results of this work can also be extended to SoL estimation by further studies.

• Considering the desired objectives explicitly in the control design of cell balancing cir-

cuits is another contribution of this Thesis. Logic-based or heuristic-based algorithms

were often considered for control of these circuits. In this work, the control design was

conducted analytically in an optimal control structure where efficiency of balancing

strategy as well as the speed of balancing are optimized adaptively.

7.2 Future Work

We believe that monitoring, control and diagnostics of Li-ion battery would be an important

active field of research in the years to come and have the potential to provide an appropriate
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framework for safe and optimal utilization of the battery. Our hope is that this Thesis will

help instigate more research efforts in this area. In the following, we review some directions

that seem promising for future research efforts in this field.

1. Cell estimation versus pack estimation:

Most of the work in the area of battery modeling and estimation is conducted for

a battery electrode and cell. In reality, however, for most of the applications we

have to deal with battery modules or packs. Battery module is a set of battery

cells connected in series or parallel and battery pack is then assembled by connecting

modules together, again either in series or parallel or a mix of both to deliver the

desired voltage, capacity, or power density.

Large number of cells, spatial distribution of cells and its implication on the modeling,

temperature distribution in a battery module/pack, present new challenges and adds

another dimension to battery modeling and estimation problem that calls for further

investigation. Reference [113] for instance studies the temperature distribution in a

battery pack and derives a PDE model for thermal dynamics in a large Li-ion battery

pack. However, more studies are needed to address the challenges in both modeling

and estimation of battery modules/packs.

2. T-S fuzzy modeling:

The T-S fuzzy structure provide an appropriate framework for battery modeling where

nonlinearity of the model and parameters is accounted for in a multiple-model struc-

ture. The proposed model however only considers the state of charge and models

the time evolutions of this state. The information about spatial distribution of other

quantities such as solid and electrolyte potential as well as the spatial distribution of

concentration in solid material is also particularly important in health monitoring of

the battery. Thus, development of 2D T-S fuzzy models that incorporates time evo-

lution and spatial distribution of the battery quantities can introduce a future field

of study with potential results for health monitoring of the battery.

3. Dynamic resistance and frequency analysis:

A major problem with battery equations monitoring is that so many parameters and

states are involved in the equations but only current, voltage and temperature are

measurable in a real-time application. This is actually the main reason that causes

difficulty with the observability issue of the equations as well. There does not appear

to be any solution for this because most of the battery states can only be measured if

we stop the normal operation of the battery, and in most cases, it needs destructive

methods to measure the states such as concentration or battery parameters.

Introduction of “dynamic resistance” in this Thesis was indeed an effort to import

new information in the battery monitoring. It was actually quite successful and have
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the capacity to be expanded more with more experiments particularly to find the

correlation of dynamic resistance to state of health of the battery under different

conditions. Incorporation of temperature in the experiments can also define another

important extension to the current work. Development of similar ideas to correlate

possible real-time observation to main electrochemical battery quantities would open

new windows to battery monitoring.

Moreover, many processes occurring in the battery are frequency sensitive and can

be distinguished in frequency domain. Hence, development of the real-time methods

that can incorporate the frequency analysis to the current model-based time analysis

would enhance the battery monitoring schemes considerably. In particular, it would

have a promising potential in battery diagnostics.

4. Incorporation of SoH in battery control:

A parameter that is missing from most of the current control strategies of the battery

is state of health of the battery. This is mainly due to lack of appropriate models

or estimation methods for this parameter. However, incorporation of SoH in energy

management strategies in HEV and cell-balancing methods would help to optimize

the utilization schemes in terms of the battery life span.

5. Development of PDE-system observers and observers for uncertain nonlinear systems :

The literature in the control community dealing with partial differential equations is

rather limited and narrow. Most of the observer or filter design methods are appropri-

ate for systems described by ordinary set of differential equations (ODE). The battery

dynamics are however described by partial differential algebraic equations (PDAE),

and for this class of systems, there are not many results available for design of proper

observers or filters. Many theories and methods developed for ODEs are not applica-

ble or at least not directly applicable to PDAE equations. The particle filter method

proposed in this thesis is quite powerful in dealing with such dynamics but suffers from

high computational load. Hence, development of appropriate observers for the high

fidelity physics-based model of the battery would be promising for battery monitor-

ing. There has been some efforts such as [76], however they have reduced the battery

equations quite considerably and maybe unjustified in some operational conditions.

In order to counteract the problem of observer design for battery systems, there has

also been many efforts to reduce the order of the equations, simplify the equations,

reformulate them into fast and slow modes, and etc [121, 111, 101, 33]. However,

all those models would inherently possess uncertainties in both process and observa-

tion equations. Therefore, development of appropriate nonlinear observers that can
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effectively cope with uncertainties can provide a promising solution to state of charge

estimation of the battery.
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Appendix A

Nomenclature

The nomenclature of the models and algorithms presented in this thesis are summarized in
this appendix.

A.1 Battery

as,j active surface area of an electrode [cm−1]
cs,j solid concentration [mol cm−3]
c̄s,j volume averaged concentration [mol cm−3]
cs,surf,j solid concentration at the surface of sphere [mol cm−3]
ce electrolyte concentration [mol cm−3]
Ds,j diffusion coefficient in solid phase [cm2s−1]
De,j diffusion coefficient in electrolyte phase [cm2s−1]
F Faraday’s constant [C mol−1]
i0,j exchange current density [A cm−2]
i0,sd side reaction current density [A cm−2]
I applied current density to the cell [A cm−2]
JLi,j volumetric rate of electrochemical reaction [A cm−3]
Jsd local volumetric rate for side reactions [A cm−3]
kj rate constant of reaction
Lj length of each domain [cm]
Mj molecular weight [kg mol−1]
Mp molecular weight of side reactions [kg mol−1]
Ni molar flux of species i, [mol cm−2 s−1]
p Bruggeman coefficient
q̄s,j volume averaged concentration flux [mol cm−4]
R gas constant [JK−1mol−1]
Rf current collector contact resistance [Ω cm2]
Rfilm film resistance at anode/solution interface [Ω cm2]
RSEI film resistance due to solid electrolyte interface [Ω cm2]
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Rs,j radius of particle spheres at each electrode [cm]
t0+ Li+ transference number
T temperature [K]
u local velocity vector in the electrode velocity [cm s−1]
Uj open circuit voltage at the electrode [V ]
V cell voltage [V ]
Vp volume of electrode particle [cm3]
V̂ molar volume of reaction product [cm3 mol−1]
V̄s,j partial molar volume of lithium in the intercalation material [cm3 mol−1]
wj displacement vector [cm]

Greek
αa anodic transfer coefficient of electrochemical reaction
αc cathodic transfer coefficient of electrochemical reaction
δ thickness [cm]
ǫ volume fraction-porosity
ǫs,j volume fraction of active material
ǫe,j volume fraction of electrolyte phase
ηj overpotential [V ]
ηsd local overpotential for side reaction [V ]
κeff,j electrolyte phase effective conductivity [Ω−1 cm−1]
κD

eff,j effective diffusional conductivity [Ω−1 cm−1]
ν Poisson’s ration
ρp density of active material [kg cm−3]
σeff,j conductivity of electrode [Ω−1 cm−1]
σh,j hydrostatic stress [N cm−2]
σr radial component of stress [N cm−2]
σt tangential component of stress [N cm−2]
φs,j solid potential [V ]
φe,j electrolyte potential [V ]

Subscript
e electrolyte phase
eff effective
i species index
j battery domains: negative electrode (n), positive electrode (p), separator (s)
k reaction number
n negative electrode
p positive electrode
s solid phase (if comes first)
sd due to side reaction
surf surface
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Superscript
− negative electrode boundaries
+ positive electrode boundaries
b bulk
s surface
sep separator boundaries
i particle/electrolyte interface
α lithium rich phase
β lithium deficient phase

A.2 Fuzzy Model and Observer

c number of initiated fuzzy rules
D distance measure between local models and data points
e modeling error
F fuzzy set
IED measure index for ED algorithm
m weighting exponent
M rule set
N size of data
r number of reduced fuzzy rules
u input
U partition matrix
v center of cluster
V Objective function for clustering
W weighting matrix for LM algorithm
x state
x̂ estimated state by observer
x̃ state estimation error using observer
y output
ŷ estimated output by observer
z premise variables of fuzzy rules

Greek
β degree of fulfilment
γ damping factor for LM algorithm
ǫ threshold for stopping conditions of algorithms
ζ diagonal matrix of membership degrees
η cluster prototypes
θ parameter of the local models
λ eigen values of correlation matrix
µ normalized membership function
σ2

i standard deviation of the modeling error
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σ2
i,j standard deviation of cluster

Φuu correlation matrix
χ chi-square criterion
ψ eigen vector of correlation matrix
ω impact of rules

Superscript
l iteration index of T-S identification algorithm
m iteration index of LM algorithm

Subscript
i cluster index
j premise variable index
k time index
l rule index
q number of premise variables in each rule

A.3 Dynamic Resistance

A vector of coefficients of each PD
C useable capacity of battery
E prediction error of each PD
I battery current
L No. of neurons in each layer
M No. of data points
N No. of input variables
p No. of input variables of each PD
P power
Ptot total power throughput of battery
r order of PD
Re Dynamic resistance (electronic resistance)
Rd diffusion related resistance
V battery voltage
x input of the model
y output of the model

Subscript
m neuron index

A.4 Cell Balancing

D duty cycle of PWM signal
fs frequency of PWM signal
F hybrid dynamics of the whole circuit
h(.) feasible direction in optimization algorithm
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H control and prediction horizon
iLi current of inductor i
J cost function
p(t) costate
Q nominal capacity of battery
T0 Mosfet switching time (on to off)
Ts period of PWM signal
VC voltage of capacitor
X system states

Greek
α constant parameter in optimization algorithm
β constant parameter in optimization algorithm
Γ weight of objectives in cost function
ζ step-size in gradient descent algorithm
θ optimization parameters (i.e. switching times)
Λ feasible set of switching times
τ switching time

Superscript
h control horizon index
k iteration index in gradient descent algorithm
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