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Abstract

Motivated by a cancer survivorship program, this PhD thesis aims to develop methodology
for risk assessment, classification, and prediction.

We formulate the primary data collected from a cohort with two underlying categories, the
at-risk and not-at-risk classes, using latent class models, and we conduct both cross-sectional
and longitudinal analyses. We begin with a maximum pseudo-likelihood estimator (pseudo-
MLE) as an alternative to the maximum likelihood estimator (MLE) under a mixture Pois-
son distribution with event counts. The pseudo-MLE utilizes supplementary information
on the not-at-risk class from a different population. It reduces the computational intensity
and potentially increases the estimation efficiency. To obtain statistical methods that are
more robust than likelihood-based methods to distribution misspecification, we adapt the
well-established generalized estimating equations (GEE) approach under the mean-variance
model corresponding to the mixture Poisson distribution. The inherent computing and ef-
ficiency issues in the application of GEEs motivate two sets of extended GEEs, using the
primary data supplemented by information from the second population alone or together
with the available information on individuals in the cohort who are deemed to belong to
the at-risk class. We derive asymptotic properties of the proposed pseudo-MLE and the
estimators from the extended GEEs, and we estimate their variances by extended Huber
sandwich estimators. We use simulation to examine the finite-sample properties of the
estimators in terms of both efficiency and robustness. The simulation studies verify the
consistency of the proposed parameter estimators and their variance estimators. They also
show that the pseudo-MLE has efficiency comparable to that of the MLE, and the extended
GEE estimators are robust to distribution misspecification while maintaining satisfactory
efficiency. Further, we present an extension of the favourable extended GEE estimator to
longitudinal settings by adjusting for within-subject correlation.

The proposed methodology is illustrated with physician claims from the cancer program. We
fit different latent class models for the counts and costs of the physician visits by applying
the proposed estimators. We use the parameter estimates to identify the risk of subsequent
and ongoing problems arising from the subjects’ initial cancer diagnoses. We perform risk
classification and prediction using the fitted latent class models.
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Chapter 1

Introduction

The population of cancer survivors has been increasing rapidly as a result of advances in
treatment. In particular, approximately 80% of Canadian children and adolescents diag-
nosed with cancer now survive five or more years from diagnosis (McBride et al., 2010). They
are often at risk of subsequent and ongoing health problems that are primarily treatment-
related. The evaluation of strategies for survivors’ long-term management requires risk
assessments. The risk assessment of the later effects involves finding vulnerable and normal
subgroups within the survivor cohort; identifying the risk factors associated with later effects
and numerically evaluating the effects of these factors; and estimating the overall burden on
the public health system for both subgroups. Risk assessments provide long-term informa-
tion for policy makers regarding survivor care, assisting with the determination of ongoing
support needs, the application of new knowledge, and the identification of new problems
as survivors age and treatments change. This enables the best use of public resources to
maximize the quality of life in cancer survivors. For individual survivors, risk assessments
allow the patients and their families to make better long-term care plans. Physicians also
need risk-assessment information so that they can provide appropriate care for different
survivor groups.

1.1 Background and Motivation

We need studies on the cancer survivorship of young people to improve and evaluate their
care and quality of life. McBride et al. (2010) recommended an ongoing and systematic
follow-up of large cohorts of survivors. The standard methods of cohort research include
tracking and contacting cohort members, obtaining consent, maintaining ongoing contact
for long-term follow-up, and administering questionnaires. It is difficult to recruit a com-
plete study group, retain the individuals, and collect comprehensive quality data. The use
of geographically defined population databases and record-linkage methodology is a cost-

1



effective way to assemble cohorts and to collect detailed long-term data for a population of
survivors, with minimal loss of contact.

1.1.1 General Background

Public health care is mandatory in Canada. According to the Federal Health Act 1984,
the health-care insurance plan of each province must insure all services that are “med-
ically necessary.” Therefore, provincial, person-based, longitudinal health administrative
databases are available for each province. BC started introduction of computerized med-
ical services plan (MSP) database in January 1986. It includes outpatient physician-visit
claim data for every residence. The BC Cancer Agency (BCCA) is a provincial govern-
ment agency responsible for cancer treatment, research, and control in the province of BC.
BCCA has maintained a population-based cancer registry since 1969. These population-
based databases provide comprehensive information on cancer survivorship. The advantages
of using Canadian health administrative databases are that they are intended to capture
all medically necessary care and to eliminate the participant and recall bias of self-report
studies (McBride et al., 2011).

1.1.2 The CAYACS Program

The Childhood, Adolescent, Young Adult Cancer Survivorship (CAYACS) research program
(http://www.cayacs.ca) was established at BCCA to carry out research into later effects
and survivor care in multiple domains and to inform policy and practice (McBride et al.,
2010). Using existing population-based registries, administrative databases, and record-
linkage methodology, researchers have conducted a series of epidemiological, clinical, and
health-service studies relating to the survivorship issues of young cancer survivors.

The CAYACS program developed an ongoing population-based database for survivorship
research by identifying a survivor cohort consisting of all the individuals in BC diagnosed
with cancer before the age of 20 who survived more than five years and linking their records
to the longitudinal administrative databases of outcomes (of Health, 2013). The survivor
cohort was compared with the general BC population. A comparison sample that was 10
times the sample size of the survivor cohort was randomly selected from the population of
BC, matched by birth-year and sex to the cohort; this was also linked to the administrative
databases of outcomes. The use of health services, and especially physician care, is an
indication of health status. Physician claims and demographic information were available
from the MSP. We study the physician claims in this dissertation.

The CAYACS physician-claim data were collected from January 1, 1986 to December
31, 2006, i.e., from the start of the computerized MSP to the end of the study follow-up.
The survivor cohort had n = 1962 subjects diagnosed with cancer from 1981 to 2000. The
sample from the general population of BC contained m = 19, 620 people. The physician
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claims have a longitudinal data structure. Figure 1.1 illustrates the longitudinal claims of
a hypothetical survivor. This individual was diagnosed with cancer on May 18, 1995. After
five years, he/she became a cancer survivor and his/her physician-visit claims were followed
from May 18, 2000 to the end of the study on December 31, 2006. During this period, he/she
visited physicians (GPs or specialists) a total of 68 times. CAYACS recorded each visit date
and the corresponding “fee for services” paid by the government; we will refer to this as
the medical cost. For any subject i in the survivor cohort, suppose the follow-up period is
[Li, Ri] where Li is five years after the cancer diagnosis and Ri is December 31, 2006, the
date of departure from BC, or the date of death, whichever occurs first. For any subject j

Figure 1.1: Physician visits and costs of a hypothetical CAYACS cancer survivor.

in the population sample, the longitudinal physician claims have the same structure as in
Figure 1.1 except that, in the initial CAYACS design, Lj is the date of the fifth birthday
or the date of arrival in BC, whichever occurs later. About 87% of the survivor cohort and
85% of the general population have an Ri/Rj date of December 31, 2006. The others either
died or left BC before this date.

The age at study entry and aging potentially have a nonlinear relationship with the
physician-visit pattern. Therefore, we decided to choose the Lj date for each individual
in the general population according to that of a random survivor with the same birth-year
and sex. This is a crucial step in our data clean-up. In Chapter 2, we compare the initial
physician-claim data with our cleaned-up data. Thereafter, we use the cleaned-up data for
our analyses. This approach to choosing the starting point of the comparison group may
prove useful for other longitudinal studies.

The strengths of the CAYACS program are 1) it provides a population-based database
with a matched general population as a comparison group, and 2) the data are longitudinal,
so we can monitor changes in the outcomes over time. The scientific goals of the CAYACS
physician-claims project are to evaluate the long-term physician visit frequency and the
associated medical costs for young cancer survivors in BC, to identify risk factors and to
conduct risk assessments for later effects, and to compare the results with those for the
general population. A further goal is to assess and predict the long-term health service
utilization and the continuity of care. In cancer survivorship research, it is also necessary
to monitor changes over time.
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1.1.3 Motivation

A recent CAYACS project on physician claims, summarized in McBride et al. (2011), pro-
vides a cross-sectional analysis of physician visits from 1998 to 2000 for a young survivor
cohort of individuals diagnosed with cancer between 1970 and 1992. The analysis compared
the physician-visit patterns of the cohort to those of the general population and identified
factors associated with frequent physician visits. It showed that the demand for physician
care among the survivors is considerably higher than that for a similar age and sex group
in the population, and this need continues for many years after the diagnosis. About 97%
of the survivors had at least one physician visit in the three-year period, and they saw
physicians approximately twice as often as did the individuals in the general population.
This study did not consider the cost of care.

The analysis of McBride et al. (2011) provides insight into the physician-visit patterns
of the survivors and also raises further issues. For example, a comparison of the survivors
as a whole with the general population may implicitly reveal whether a significant number
of survivors are at risk of subsequent or ongoing problems. However, it does not explicitly
relate this risk to the consequences of the original diagnosis. Moreover, the analysis indicates
that the physician-visit frequency of the females in the cohort is significantly higher than
that of the males. It is not clear whether this identifies sex as an important risk factor or
simply reflects an overall pattern of physician visits; this pattern is also seen in the general
population. Another finding is that older survivors visited physicians more frequently than
younger survivors did. This is concluded from physician-visit counts in the three-year period
for subjects of different ages. It would however be interesting to use the longitudinal data
to study the aging effect over time, especially since a long follow-up period of up to 21 years
is available.

Preliminary analyses indicated that while many cancer survivors visit physicians rather
frequently, some survivors in the cohort have physician-visit patterns similar to those of the
population. Many researchers believe that some survivors have the same health utilization
as people without a cancer diagnosis. This motivated us to model the survivor cohort as
a mixture of two latent classes: the groups at-risk and not-at-risk of later effects of the
original diagnoses. A subject’s membership is latent. The individuals in the at-risk class
have a potentially higher frequency of physician visits, resulting in higher medical costs;
while the individuals in the not-at-risk class have the same physician-visit patterns as the
general population.

The formulation of two latent classes provides us with a convenient framework to study
the features of physician visits due to the subsequent and ongoing treatment-related prob-
lems of survivors, and to numerically evaluate the survivors’ risk of later effects. This may
lead to a better risk assessment of the survivors. The survivor cohort can be classified into
two strata. This allows us to evaluate separately the visit frequencies or medical costs of
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the two latent classes. The model also leads to a natural comparison of the survivors in the
at-risk class to the general population, if the not-at-risk class in the cohort is defined as the
class that has the same physician-visit frequency or medical costs as the population.

This dissertation develops inference procedures for analysis under latent class models
(LCMs) of physician claims from both the survivor cohort and the general population.

1.2 Literature Review

This dissertation adopts LCMs for cross-sectional and longitudinal data and develops esti-
mating procedures based on likelihood and generalized estimating equations (GEEs). This
section reviews these three topics.

1.2.1 Latent Class Models

Schlattmann (2009) explained why mixture models are particularly useful in medical appli-
cations. Patients are not alike, and finite mixture models can help to explain unobserved
heterogeneity in the variables of interest. Schlattmann presented theory for finite mixture
models and gave a large range of applications. A common method for handling overdis-
persed counts is negative binomial regression where the Poisson parameter is assumed to
follow a Gamma distribution. This can be conceptualized as an LCM with an infinite num-
ber of classes where the latent variable follows a Gamma distribution. The choice of Gamma
is for the sake of convenience.

LCMs were first introduced by Lazarsfeld and Henry (1968) in the field of social science.
Goodman (1974) formalized the model and derived the maximum likelihood estimation
(MLE) procedure. LCMs were developed for finding unobserved subgroups/latent classes
in multivariate categorical data. The multivariate responses were correlated via the latent
variable; in other words, they were conditionally independent. The MLE procedure is typi-
cally used. LCMs are a way to deal with unobserved heterogeneity that cannot be explained
by the observed covariates; they can be considered a type of finite mixture model. They are
also closely related to many other statistical models, such as other latent structure models,
mixture-of-experts models, and random effects models (Lindsay et al., 1991; Muthén, 2002;
Vermunt and Magidson, 2003). They are analogous to cluster analysis models, sometimes
with a different focus.

LCMs have many applications; see, for example, Magidson and Vermunt (2002), Pepe
and Janes (2007), and Vermunt (2008). The popular zero-inflated Poisson (ZIP) model
(e.g., Lambert, 1992; Hall, 2000) is a special case. LCMs have also been used in many
health applications, such as disease diagnosis without a reference standard (van Smeden
et al., 2014), healthcare costs (Shih and Tai-Seale, 2012), genetic effects (Ekholm et al.,
2012), and medical treatment appropriateness (Uebersax, 1993). Other areas of application
include finance (De Angelis, 2013), market research (Grisolía and Willis, 2012; Varki and
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Chintagunta, 2004), economics (Boxall and Adamowicz, 2002), survey research (Reboussin
et al., 1999), and sociology (Formann and Kohlmann, 1998).

Originally, LCMs did not include any covariates in the latent class probability. These
have been added more recently (Formann and Kohlmann, 1998; Ghosh et al., 2011; Yang
et al., 2011; Wang et al., 2014) to identify important predictors of latent classes. This
development introduced the issue of variable selection in addition to the choice of the
number of latent classes. Bayesian techniques for model diagnosis and model selection
have been proposed (Garrett and Zeger, 2000; Ghosh et al., 2011; Yang et al., 2011), with
corresponding estimation procedures by Bayesian methods (Yang et al., 2011; Desantis
et al., 2012). Varki and Chintagunta (2004) applied an LCM to longitudinal data. Ever
since Goodman (1974) derived the MLE procedure for LCMs, statistical inference for these
models has relied on a distributional assumption for the responses. The computationally
complex MLE procedures limited the use of LCMs. Therefore, Reboussin et al. (1999)
developed a GEE procedure for a latent transition model with longitudinal multivariate
categorical data.

The above examples all concern multivariate categorical data, mostly multivariate binary
data. Wang et al. (2014) proposed an LCM for count data with risk assessment for the
latent classes based on MLE and pseudo-MLE inference procedures. Researchers have often
discussed the practical value of LCMs, and in particular how to determine the number of
latent classes (Reboussin et al., 1999). In this dissertation, we define two latent classes: the
at-risk class and the not-at-risk class.

1.2.2 Cross-Sectional Analysis vs. Longitudinal Analysis

A longitudinal study observes a response variable repeatedly over time. In contrast, cross-
sectional studies measure a single outcome for each individual. In both cases, the scientific
objectives can usually be formulated as regression problems: the goal is to describe the
dependence of the response on the explanatory variables and to evaluate the response for
given values of the explanatory variables. While it is often possible to address the same
scientific questions with a longitudinal study or cross-sectional study, a major advantage
of longitudinal studies is the separation of what in the context of population studies are
called cohort and ageing effects (Diggle et al., 2002). In other words, longitudinal stud-
ies can distinguish changes over time within individuals (ageing effects) from differences
among people at their baseline levels (cohort effects). For instance, consider the CAYACS
physician-claim data. When we summarize the frequency of the physician visits during the
follow-up period into cross-sectional counts and estimate how the counts change with time,
we must assume that the mean of the counts changes proportionally to the observation
length. With a longitudinal summary, this assumption is unnecessary since ageing effects
can be estimated at any time point.
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A study may focus on inference of the average response in the population. With one
observation on each subject, we can model the population average of response. Not only
can do this, longitudinal studies can borrow strength across time for the person of interest
as well as across people. Thus, longitudinal studies can conduct subject-specific inference,
and cross-sectional studies cannot. In longitudinal studies, each person can be thought of as
serving as his or her own control. The subjects can usually be assumed to be independent of
one another. Therefore, another merit of longitudinal studies is their ability to distinguish
the degree of variation in responses across time for one person from the variation in responses
among people. Moreover, longitudinal studies can deal with time-varying covariates.

The choice of the statistical model depends on the type of outcome. For example,
continuous responses can be adequately described by linear regression models, perhaps
after transformation. Generalized linear models (GLMs) will be adopted for binary or
count responses. Any statistical methods for univariate data, e.g., general linear regression
and GLMs, can be applied to cross-sectional analysis, depending on the outcome type and
the objectives.

Longitudinal data require special statistical methods because multiple observations on
one subject are likely to be correlated, and this correlation must be taken into account to
draw valid statistical inference. One can view balanced longitudinal data as realizations of a
multivariate variable and apply well-developed multivariate inferential methods. However,
longitudinal studies typically have unbalanced designs, time-varying covariates, and other
characteristics that make standard multivariate procedures unsuitable (Ware, 1985). The
observations of each individual may not occur at specific time points but instead in a given
interval, as for the CAYACS physician claims.

For cross-sectional data, only the dependence of the response on the covariates must be
specified; there is no correlation. For repeated measurements there are three approaches to
the modelling of correlation within a subject. Each approach models both the dependence
of the response on the explanatory variables and the correlation among the responses for
the same subject. The first approach is a type of marginal moment model, which specifies
only the conditional mean and covariance structure of the longitudinal outcomes. This ap-
proach has the advantage of separately modelling the mean and covariance. Valid inferences
about parameters in the mean model can sometimes be made even when an incorrect form
is assumed for the covariance function (Liang and Zeger, 1986; Zeger and Liang, 1986).
The second approach is the random effects model. It assumes that correlation arises among
repeated responses because the regression coefficients vary across individuals. Here, the ran-
dom variation is explicitly decomposed into between-subject and within-subject variation;
see for example McCulloch et al. (2008). With a combination of fixed and random effects,
these models are referred to as linear mixed models and generalized linear mixed models
(GLMMs) depending on the type of the response. The relationship of these two approaches
will be discussed in detail in Chapter 5. The third approach is a transition model (Ware
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et al., 1988). It specifies a regression model for the conditional expectation as an explicit
function of the covariates and of the past responses. It models the within-subject variation
via Markov structures to account for the correlation of observations within the same sub-
ject. Transition models combine the assumptions about the dependence of the responses on
the covariates and the correlation among multiple responses into a single equation.

Longitudinal analysis introduces theoretical and computational complications. We begin
by studying LCMs for cross-sectional data, and we then extend the approach to longitudinal
data.

1.2.3 Likelihood-Based vs. GEE-Based Estimation

This section explores two popular categories of inferential methods, likelihood-based and
GEE-based estimation.

Likelihood inference is the foundational estimation approach of classical statistics; the
distribution function of the response variable must be fully specified. The likelihood function
has proved to be such a powerful tool for inference and it has been extended in many ways.
For example, quasi-likelihood and quasi-score functions have been developed to overcome
dispersion in GLMs, and various pseudo-likelihood functions have been proposed for more
complicated models. Finding the MLE for the full likelihood function can be computation-
ally intensive. For GLMs the MLE can be found by an iteratively reweighted least-squares
fit. Another common strategy for finding the MLE is approximations from profile likeli-
hood functions for component parameters of high dimension. For more examples, see Reid
(2010). Pseudo-likelihood (also called composite likelihood) methods provide an approxi-
mation to the likelihood function. Varin et al. (2011) discuss the theory and applications
of this approach.

Most inferential methods for longitudinal analysis fall into two categories: likelihood-
based approaches and GEE approaches. The maximum likelihood and its variants are
standard for GLMs and linear mixed models. For example, restricted maximum likelihood
(REML) estimates are particularly important for estimating variance components in linear
models with random effects. Finding the MLE for GLMMs involves numerically evalu-
ating high-dimensional integrals. McCulloch (1997) proposed a Monte Carlo expectation-
maximization (EM) algorithm and a Monte Carlo Newton–Raphson algorithm to obtain the
MLE in GLMMs. Further details of likelihood-based estimation are provided in McCullagh
and Nelder (1989) and McCulloch et al. (2008).

A somewhat different approach to the likelihood-based analysis of complex data is based
on the quasi-likelihood of Wedderburn (1974). This approach starts by specifying paramet-
ric forms for the mean and variance of the response with an additional scale parameter for
the variance function. Therefore, there is no need for a distributional assumption for the re-
sponse. The estimating equation would be the score equation for a GLM with these first two
moments, if such a model existed. Therefore, it is also called the quasi-score equation. The

8



theory of quasi-likelihood inference was developed by McCullagh (1983). Liang and Zeger
extended the quasi-likelihood and GLMs to the analysis of longitudinal data (Liang and
Zeger, 1986; Zeger and Liang, 1986), developing the GEE approach. They proposed using a
“working covariance” function, and they showed that the estimates of the parameters in the
mean were consistent even if the working covariance function was not correct. For longi-
tudinal data, both subject-specific/mixed effects models and population-averaged/marginal
models can be estimated by the GEE-based approach. When the random effects are as-
sumed to follow a Gaussian distribution, simple relationships between the parameters in the
mean function of marginal models and the fixed effects in mixed effects models are available
(Zeger et al., 1988).

1.3 Notation and Framework

We study LCMs for different types of response variables. This section presents the notation
and framework used throughout the thesis. Specific notation will be introduced at the
beginning of each chapter.

Consider a cohort of young cancer survivors, i.e., individuals diagnosed with cancer
before the age of 20 who have survived for at least five years. A random sample of the
general population was selected by matching birth-year and gender with the survivor cohort.
Every subject has longitudinal physician-visit data as shown in Figure 1.1. Let Y be the
summary response variable for the physician data of each individual. The data of Y can be
binary (visit or no visit), discrete (visit counts), or continuous (medical costs). Moreover,
Y can be a univariate variable (Y = Y ; cross-sectional summary for the entire follow-up
period), a vector of variables (Y = Y; longitudinal summary under a discrete time scale,
e.g., yearly) or a stochastic process (Y = Y (t) under a continuous time scale).

Let Z be a vector of p covariates/potential risk factors, which can be a combination
of time-independent and time-dependent variables. Z may include both demographic and
cancer-related variables for the survivor cohort; it includes only demographic variables for
the general population.

To formulate the two strata with unobservable membership, corresponding to the at-
risk and not-at-risk classes in the cohort, we introduce a latent binary variable η to indicate
whether or not a subject belongs to the at-risk class.

LCM specification

• Risk model for latent indicator η:
The conditional risk probability of η can be specified as a parametric functional form
of Z up to α. Let E(η|Z) = P (η = 1|Z) = p(Z;α). In practice, a common form is a
logit(·) transformation of p(Z;α).
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• Regression model for at-risk class (η = 1):
The regression model of response variable Y in the η = 1 class can be specified as
a function of Z up to parameter β. Let E(Y|η = 1,Z) = µ1(Z;β). In practice,
l
(
µ1(Z;β)

)
is commonly considered, where the link function l(·) is the log(·) function

for count responses and the identity function for continuous responses.

• Regression model for not-at-risk class (η = 0):
The regression model of response variable Y in the η = 0 class can be specified as a
function of Z up to parameter θ. Let E(Y|η = 0,Z) = µ0(Z; θ).

Many studies have a cohort of interest and independent information from other sources,
e.g., a comparison group. We define the data from the survivor cohort to be primary data,
denoted P, and we define the information from the general population to be supplementary
information, denoted Q, where P ⊥ Q. Unless stated otherwise, for Q the start of the
follow-up is chosen according to the survivor cohort. In Chapter 2, we compare analysis
under Q to analysis under the original CAYACS general population data, referred to as
Qorig. Moreover, we define [Y|·] to be a conditional probability function of Y in general,
which can be a pdf or pmf according to the type of data.

Our primary interest lies in estimating the parameters α, β, and θ in the LCMs, p(Z;α),
µ1(Z;β), and µ0(Z; θ) using available data from P =

{
(Yi,Zi) : i = 1, . . . , n

}
and Q ={

(Yi,Zi) : i = 1, . . . ,m
}
. For the CAYACS application, a consistent estimator of α gives a

consistent estimator of the risk probability p(Z;α) and then yields a measure of how likely
the survivors with covariates of Z are to have later effects of the original diagnoses. The
estimator of α can also be used to identify risk factors directly associated with the later
effects. Consistent estimators of β and θ, on the other hand, can be used to identify factors
associated with frequent visits and high medical costs of the at-risk class and infrequent
visits and lower medical costs of the not-at-risk class. Moreover, comparisons of β and
θ based on their estimates can detect differences in the visit frequency or medical costs
between the two classes.

In addition to risk assessments, our scientific goals are (1) to compare the patterns of
the physician visits and medical costs Y between the survivor cohort, especially the at-risk
class, and the general population overall, as well as in different strata according to Z; (2) to
develop applications of LCMs to conduct risk classification and risk prediction for η within
the cohort based on the available knowledge Y, Z.

1.4 Outline

This dissertation is motivated by the CAYACS data, and we illustrate the proposed LCMs
and the associated inference procedures using this dataset. The statistical methodology
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is not limited to this specific program and can be applied more broadly. The rest of this
dissertation is organized as follows.

Chapter 2 summarizes the CAYACS physician claims into cross-sectional counts.
Likelihood-based inference procedures, including an MLE and a maximum pseudo-likelihood
estimation, are proposed for a mixture Poisson LCM. Continuing with cross-sectional
counts, Chapter 3 introduces partially available membership information, bridged by
likelihood-based estimations, and develops extended GEE inference procedures for the LCM,
which is distribution-free. In Chapter 4, the CAYACS physician claims are summarized into
longitudinal counts and costs. Conventional approaches for longitudinal data are adopted to
analyze the survivor cohort and the general population separately and together. Chapter 5
extends the extended GEE methods of Chapter 3 to the longitudinal counts and continuous
variables. We analyze the CAYACS physician claims in each chapter using the methodology
described in that chapter. Chapter 6 provides a summary and a discussion of future work.
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Chapter 2

Likelihood-Based Estimation with
Cross-Sectional Counts

2.1 Introduction

In this chapter, we summarize the CAYACS physician claims into cross-sectional counts,
i.e., a count of the physician visits during the entire follow-up period for each subject, for
both the survivor cohort and the general population. Since the development of an MLE
procedure for LCMs (Goodman, 1974), most LCMs have been estimated by the MLE. This
is because one usually needs to specify the underlying probability model in a parametric
form for each of the latent classes to avoid nonidentifiability problems. However, there are
concerns about computational robustness when we implement likelihood-based procedures
with LCMs (e.g., Hall and Shen, 2010). Moreover, the efficiency of the MLE will drop
considerably because of the increased number of parameters. A model with two latent
classes has almost three times as many parameters as a comparable marginal model. On
the other hand, in many practical situations, information is readily available on one of the
two latent classes. In the CAYACS case, the provincial medical insurance system collects
rich information on the general population. These considerations led to a pseudo-MLE
procedure, i.e., a way to estimate the model parameters using supplementary information.
The procedure is potentially more efficient and robust, and it is relatively easy to implement.

This chapter formulates the CAYACS cross-sectional visit counts by an LCM. It also
develops the associated likelihood-based estimating procedures, to evaluate the proportion
of at-risk subjects in the cohort, assess the frequency of physician visits of the at-risk group,
and identify the associated risk factors. We motivate and illustrate the proposed model and
associated inference procedures using the CAYACS program.

The rest of this chapter is organized as follows. Section 2.2 introduces the notation
and a mixture Poisson model for the physician visits of the cohort. In Section 2.3, we first
present the MLE for the model parameters with the primary data and an application of the
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EM algorithm to compute the MLE. We then propose a pseudo-MLE procedure using the
additional information on the not-at-risk class, namely the physician-visit records for a col-
lection of individuals selected from the general population. We establish the consistency and
asymptotic normality of the pseudo-MLE and derive its asymptotic variance. Two variance
estimators for the pseudo-MLE are presented. Section 2.4 reports the simulation studies of
efficiency and robustness that we conducted to examine the finite-sample properties of the
inference procedures and the two variance estimators. Section 2.5 presents an analysis of
the CAYACS data via the proposed methodology. Section 2.6 provides concluding remarks.

2.2 Model Specification

In this chapter and the next, the response variable Y = Y will be a univariate count
representing a subject’s count of physician visits in the time period (0, T ], and Z will be
his/her covariate vector, thus [Y|·] = [Y |·]. The observation period varies from subject to
subject.

As in Section 1.3, the latent variable η indicates the at-risk class. We denote E(η|Z) =
P (η = 1|Z) by p(Z;α) and the conditional expectations of Y for the at-risk and not-at-risk
classes by E(Y |η, T,Z) = µη(T,Z) for η = 1 and 0, respectively. Thus, the expectation of
Y conditional on T and Z is E(Y |T,Z) = µ1(T,Z;β)p(Z;α) +µ0(T,Z; θ)[1− p(Z;α)]. This
LCM is further specified as a finite mixture Poisson model as follows. We assume that the
counts Y of the two classes follow a Poisson distribution with the conditional expectations
µη(T,Z) for η = 1, 0. This formulation includes the popular ZIP model (e.g., Lambert,
1992; Hall, 2000) as a special case with µ0(T,Z) ≡ 0.

The primary goal of this chapter is the estimation of the parameters α, β, and θ of
p(Z;α), µ1(T,Z;β), and µ0(T,Z; θ) using the cohort data P =

{
(Yi, Ti,Zi) : i = 1, . . . , n

}
,

a set of n independent and identically distributed realizations of (Y, T,Z), and the general
population data Q =

{
(Yi, Ti,Zi) : i = 1, . . . ,m

}
.

2.3 Likelihood-Based Inference Procedures

The event count Y conditional on T and Z follows the mixture Poisson distribution

[Y |T,Z;α, β, θ] = [Y |η = 1, T,Z;β]p(Z;α) + [Y |η = 0, T,Z; θ][1− p(Z;α)], (2.1)

where [Y |η, T,Z] is the pmf of the Poisson distribution with a mean of µη(T,Z). We consider
the MLE procedure based only on P. The EM algorithm (Dempster et al., 1977) is adapted
to compute the MLE of the parameters. We then assume that there is a consistent estimator
for θ in µ0(T,Z; θ), the event frequency model for the not-at-risk class. We propose a
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pseudo-MLE procedure to estimate the parameters α in the risk model p(Z;α) and β in the
regression model for the at-risk class, µ1(T,Z;β).

2.3.1 Maximum Likelihood Estimation

Under the mixture Poisson model (2.1), the likelihood function of (α, β, θ) based on P ={
(Yi, Ti,Zi) : i = 1, . . . , n

}
is

L(α, β, θ;P) ∝
n∏
i=1

[Yi
∣∣Ti,Zi;α, β, θ]. (2.2)

The MLE of (α, β, θ) may be attained by directly maximizing (2.2) or its log-transformation.
With the usual regularity conditions, the MLE (α̂, β̂, θ̂) has asymptotic normality, i.e., as
n → ∞,

√
n(α̂ − α, β̂ − β, θ̂ − θ)′ converges in distribution to the multivariate normal

distribution with mean zero and variance FI(α, β, θ)−1. Here, FI(α, β, θ) is the Fisher
information matrix; it can be consistently estimated by −n−1∂2 logL(α, β, θ;P)

/
∂(α, β, θ)2

with the MLE plugged in.
Applying the EM algorithm gives us an alternative procedure for finding the MLE of

(α, β, θ); this algorithm is potentially more intuitive and easier to implement. In particular,
we consider the “complete data”

{
(Yi, ηi, Ti,Zi) : i = 1, . . . , n

}
. The log-likelihood function

based on the complete data is

l(α, β, θ; Y,η|T,Z) = l1(α; η|Z) + l2(β; Y,η|T,Z) + l3(θ; Y,η|T,Z), (2.3)

where
l1(α; η|Z) =

n∑
i=1

[
ηi log p(Zi;α) + (1− ηi) log [1− p(Zi;α)]

]
, (2.4)

l2(β; Y,η|T,Z) =
n∑
i=1

ηi log[Yi|ηi = 1, Ti,Zi;β], (2.5)

and
l3(θ; Y,η|T,Z) =

n∑
i=1

(1− ηi) log[Yi|ηi = 0, Ti,Zi; θ]. (2.6)

The EM algorithm iterates between an E-step and an M-step until convergence is achieved.
The E-step estimates the unobserved ηi’s with their conditional expectations using the cur-
rent estimates of (α, β, θ). The M-step separately maximizes (2.4), (2.5), and (2.6) to update
the estimates of (α, β, θ) using the most recent estimates of the ηi’s. The computational
advantage is obvious, since the complete-data log-likelihood is the sum of (2.4), (2.5), and
(2.6), each of which depends on only one of the three parameter vectors.

14



Let the initial values be α(0), β(0), and θ(0). At the lth iteration (l ≥ 1) of the algorithm,
given the (l− 1)th estimates α(l−1), β(l−1), and θ(l−1), the algorithm updates the estimates
as follows:

E-Step. For i = 1, . . . , n, calculate η(l)
i = E{ηi|Yi, Ti,Zi;α(l−1), β(l−1), θ(l−1)} by

E{η|Y, T,Z;α, β, θ} = [Y |η = 1, T,Z;β]p(Z;α)
[Y |η = 1, T,Z;β]p(Z;α) + [Y |η = 0, T,Z; θ][1− p(Z;α)] .

M-Step. Obtain α(l), β(l), and θ(l) by separately maximizing l1(α; η(l)|Z),
l2(β; Y,η(l)|T,Z), and l3(θ; Y,η(l)|T,Z) in (2.3) with respect to α, β, θ, respectively.

Under mild regularity conditions, theM-Step is equivalent to solving each of the estimating
equations:

∂l1(α; η(l)|Z)
∂α

=
n∑
i=1

[η(l)
i − p(Zi;α)] ∂p(Zi;α)/∂α

p(Zi;α)[1− p(Zi;α)] = 0, (2.7)

∂l2(β; Y,η(l)|T,Z)
∂β

=
n∑
i=1

η
(l)
i [Yi − µ1(Ti,Zi;β)]∂µ1(Ti,Zi;β)/∂β

µ1(Ti,Zi;β) = 0, (2.8)

and

∂l3(θ; Y,η(l)|T,Z)
∂θ

=
n∑
i=1

(1− η(l)
i )[Yi − µ0(Ti,Zi; θ)]

∂µ0(Ti,Zi; θ)/∂θ
µ0(Ti,Zi; θ)

= 0. (2.9)

We can verify the conditions that ensure that the resulting sequence {(α(l), β(l), θ(l)) :
l = 1, 2, . . .} converges to the MLE (α̂, β̂, θ̂) from L(α, β, θ;P) in (2.2). This procedure for
the ZIP model coincides with the estimation procedure presented by Hall and Shen (2010).
We use their variation of the EM algorithm to adjust for outliers.

2.3.2 Maximum Pseudo-Likelihood Estimation

Suppose that a set of independent observations from the population, denoted Q ={
(Yi, Ti,Zi) : i = 1, . . . ,m

}
, is available in addition to the data from the cohort P. One

may estimate (α, β, θ) with the likelihood function based on the primary data in combi-
nation with the supplementary information, which is the product of L(α, β, θ;P) in (2.2)
and L(θ;Q) =

∏m
i=1[Yi

∣∣ηi ≡ 0, Ti,Zi; θ]. The efficiency of the MLE for the combined data
is presumably higher than that of the MLE discussed in Section 2.3.1 based only on the
primary data. However, the computational issues remain.

In many practical situations, the sample size m can be large relative to the size n of the
primary data, and thus the supplementary data alone can lead to a consistent estimator of
θ with sufficient efficiency. For a comparison between the cohort and the population, for
example, the CAYACS program collected data from the population with a sample size (m)
10 times the size of the primary data (McBride et al., 2011); m could be larger if necessary.
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We propose the following pseudo-likelihood for estimating (α, β) using such an estimator
of θ from the supplementary data, achieving an easily implementable estimation procedure
with reasonably high efficiency, called the pseudo-MLE.

Assume that Q yields θ̃, an estimator for the parameters in the regression model asso-
ciated with the not-at-risk class, and

√
m(θ̃ − θ) converges in distribution to the normal

distribution with zero mean and variance AVθ̃(θ) as m → ∞. For example, the MLE of θ
from the aforementioned L(θ;Q) satisfies the assumptions about θ̃. It yields a pseudo-MLE
of (α, β), denoted (α̃, β̃), maximizing the pseudo-likelihood function, which is (2.2) with θ
fixed at θ̃, with respect to (α, β). This estimation procedure is considerably simpler than
the procedure for computing the MLE α̂ and β̂ jointly with θ̂ given in Section 2.3.1. The
computational intensity is reduced by roughly one-third in general. The pseudo-MLE can
be found by applying the adapted EM algorithm in Section 2.3.1 with θ = θ̃ throughout
the algorithm.

Following the arguments in Gong and Samaniego (1981), we establish the consistency
and asymptotic normality of (α̃, β̃). Specifically, as n → ∞ and m → ∞, and assuming
that n/m→ k > 0 and θ̃ is independent of the primary data,

√
n(α̃− α, β̃ − β)′ converges

to the normal distribution with mean zero and variance

AV(α̃,β̃)(α, β, θ) = I−1
11 + kI−1

11 I12AVθ̃(θ)I21I
−1
11 . (2.10)

Let FI(α, β, θ) be the Fisher information matrix of the likelihood function L(α, β, θ;P) in
(2.2). Suppose that θ̃ is a consistent estimator from a set of supplementary data of size
m and

√
m(θ̃ − θ) d→ N

(
0, AVθ̃(θ)

)
as m → ∞. For example, the MLE of θ based on the

supplementary data for the not-at-risk class satisfies the assumptions.
Assuming that the primary and supplementary data are independent, the conventional

regularity conditions ensure the limiting joint distribution: 1√
n
∂ logL(α,β,θ;P)

∂(α,β,θ)√
m(θ̃ − θ)

 d→ N

(
0,
(
FI(α, β, θ) 0

0 AVθ̃(θ)

))
. (2.11)

Partition FI(α, β, θ) as follows:

[
I11 I12

I21 I22

]
= −E


∂2 log[Y |T,Z;α, β, θ]

∂(α, β)2
∂2 log[Y |T,Z;α, β, θ]

∂(α, β)∂θ
∂2 log[Y |T,Z;α, β, θ]

∂θ∂(α, β)
∂2 log[Y |T,Z;α, β, θ]

∂θ2

 . (2.12)

Recall that the pseudo-MLE (α̃, β̃) maximizes L(α, β, θ̃;P) and is the solution to
∂ logL(α, β, θ̃;P)

/
∂(α, β) = 0 almost surely. Thus, the first-order Taylor expansion of the
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partial derivative of the pseudo log-likelihood function yields

∂ logL(α, β, θ̃;P)
∂(α, β) + (α̃− α, β̃ − β)∂

2 logL(α, β, θ̃;P)
∂(α, β)2 ≈ 0.

Given the continuity of ∂ logL(α, β, θ;P)
/
∂(α, β) and ∂2 logL(α, β, θ;P)

/
∂(α, β)2 with re-

spect to θ, as n → ∞ and m → ∞, we can show that −n−1∂2 logL(α, β, θ̃;P)
/
∂(α, β)2

converges to I11 a.s. and n−1/2∂ logL(α, β, θ̃;P)
/
∂(α, β) converges to N(0, I∗11) in distribu-

tion. Here I∗11 = I11 + kI12AVθ̃(θ)I21, if n/m → k. Following the standard arguments for
the consistency and asymptotic normality of an MLE, we can then establish the consistency
of the pseudo-MLE (α̃, β̃) and its asymptotic normality with the variance given in (2.10).

The expression for the asymptotic variance in (2.10) shows that the efficiency of the
pseudo-MLE (α̃, β̃) can be close to that of the MLE of (α, β) with a known θ when either
k or AVθ̃ is small. This indicates that the efficiency of the pseudo-MLE (α̃, β̃) may exceed
the efficiency of the MLE of (α, β) jointly obtained with the MLE of θ using the primary
data only.

Note that the corresponding blocks of −n−1∂2 logL(α, β, θ;P)
/
∂(α, β, θ)2 are consis-

tent estimators for the matrices I11, I12, and I21 with the pseudo-MLE plugged in. They,
together with a consistent estimator of AVθ̃(θ), naturally form a consistent estimator of
AV(α̃,β̃)(α, β, θ). The derivation of (2.10) and the aforementioned consistent variance es-
timator require the underlying model specification. In practice, a more robust variance
estimator is often preferable, just as the Huber sandwich variance estimator for the vari-
ance of the MLE is preferred to anticipate possible model misspecification (Huber, 1967).
This consideration leads us to estimate I−1

11 , the first term in (2.10), with the corresponding
Huber sandwich estimator, which results in an extended Huber sandwich estimator.

Following the partition of (2.12), denote the blocks of F̂ I(α, β, θ) =
− 1
n∂

2 logL(α, β, θ;P)
/
∂(α, β, θ)2 by Î11(α, β, θ), Î12(α, β, θ), Î21(α, β, θ), and Î22(α, β, θ).

The following is a consistent estimator for AVα̃,β̃(α, β, θ) in (2.10):

Î−1
11 (α, β, θ) + n

m
Î−1

11 (α, β, θ)Î12(α, β, θ)ÂV θ̃ Î21(α, β, θ)Î−1
11 (α, β, θ) (2.13)

with (α, β, θ) substituted by (α̃, β̃, θ̃) and ÂV θ̃ a consistent estimator of AVθ̃(θ).
Partition the variance matrix of the score function based on the primary data as follows:

Var


∂ log[Y |T,Z;α, β, θ]

∂(α, β)
∂ log[Y |T,Z;α, β, θ]

∂θ

 =
[
Π11 Π12

Π21 Π22

]
.

Denote the block in the sample moment estimator for the variance matrix corresponding to
Π11 by Π̂11(α, β, θ). It yields a robust variance estimator for AVα̃,β̃(α, β, θ) if Î−1

11 (α, β, θ)
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in (2.13) is replaced by
Î−1

11 (α, β, θ)Π̂11(α, β, θ)Î−1
11 (α, β, θ). (2.14)

In fact, (2.14) is the Huber sandwich variance estimator for the MLE of (α, β) with a known
θ.

2.4 Simulation Study

We conducted simulation studies to examine the finite-sample properties of the MLE and
pseudo-MLE in terms of efficiency and robustness to model misspecification. The numerical
studies throughout this dissertation were carried out using the R package for statistical
computing (http://www.r-project.org).

This chapter adopts the common parametric specifications for p(Z) and µη(T,Z), the
logistic and loglinear regression models:

logit{p(Z;α)} = α0 + α
′
1Z, (2.15)

and

log{µ1(T,Z;β)} = β0 + β
′
1Z + β2 log T ; log{µ0(T,Z; θ)} = θ0 + θ

′
1Z + θ2 log T. (2.16)

With slight modifications, our estimation procedures and discussions are applicable to other
parametric specifications.

2.4.1 Description of Data Generation

We simulated n independent individuals from the two latent classes: the at-risk and not-
at-risk groups. We used the outcomes reported by McBride et al. (2011) to choose the
parameter values for the data generation in the simulations. Specifically, we simulated
two potential risk factors: a binary variable sex as the indicator of a male subject, and a
continuous variable (age) as the standardized age of an individual at the beginning of the
study. These two risk factors together with the latent indicator η of the at-risk class and
the individual observation time T were generated as follows. For the ith individual in the
study,

(i) sexi ∼ Bin(1, 1
2), the Bernoulli distribution with a success probability of 1

2 ;

(ii) agei ∼ Beta(0.7, 0.8), the Beta distribution with the parameter values chosen to follow
the distribution of the standardized age variable in the CAYACS program;

(iii) ηi ∼ Bin(1, pi), where logit(pi) = 1− sexi − 0.8agei;

(iv) Ti ∼ Beta(2, 1).
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The event counts Yi were then generated in the following two settings, designed to assess
the efficiency and robustness of the estimators.

Simulation Setting 1: Efficiency Study. Conditional on (ηi, Ti, sexi, agei), Yi was generated
from Poisson distributions as follows:

(i) for ηi = 1, the mean is µ1(Ti, sexi, agei) = Ti exp(1.8− 0.6sexi − 0.5agei);

(ii) for ηi = 0, the mean is µ0(Ti, sexi, agei) = Ti exp(0.5− 0.3sexi − 0.25agei).

Simulation Setting 2: Robustness Study. For individual i, ξi was generated from
the gamma distribution with mean 1 and variance γi: ξi ∼ Gamma(1, γi). Condi-
tional on (ηi, Ti, sexi, agei, ξi), Yi was generated from a Poisson distribution with mean
ξiµηi(Ti, sexi, agei), where µηi(Ti, sexi, agei) was the same as in the efficiency study for
ηi = 1 or 0. Note that if γi > 0, the variance of the simulated event count Yi conditional on
(ηi, Ti, sexi, agei) is (1 + γi)µηi(Ti, sexi, agei). Three model-misspecification scenarios were
simulated:

Case (i) γi = γ > 0 regardless of ηi, i.e., the underlying distributions of both classes were
misspecified;

Case (ii) γi = γ > 0 if ηi = 1 and γi = 0 if ηi = 0, i.e., only the at-risk class was
misspecified;

Case (iii) γi = 0 if ηi = 1 and γi = γ > 0 if ηi = 0, i.e., only the not-at-risk class was
misspecified.

We chose the parameter γ to be 1
2 , 1, or 2 to simulate mild, medium, or severe overdispersed

counts, respectively.
We formed the observed (primary) data as {(Yi, Ti, sexi, agei) : i = 1, . . . , n} in the

simulations. The supplementary information was generated independently as realizations
of (Y, T, sex, age) from a group of m independent individuals with the same distribution as
the not-at-risk class in each of the simulation settings.

2.4.2 Simulation Outcomes

Each of the experimental settings described in Section 2.4.1 was simulated 250 times. For
each simulated data set, we evaluated both the MLE and the pseudo-MLE for the pa-
rameters in the LCM, i.e., the mixture Poisson model in Section 2. We also evaluated
the standard error estimators of the MLE and the pseudo-MLE based on the conventional
variance estimator for the MLE and the Huber sandwich variance estimator, and the two
variance estimators for the pseudo-MLE given in Section 2.3.2. We computed the evalu-
ations of θ̃ used in the pseudo-MLE procedure and the estimates of the parameters θ in

19



the frequency model for the not-at-risk class based on the supplementary information us-
ing the R function glm. We implemented both the MLE and pseudo-MLE procedures by
(a) maximizing the observed data likelihood and the pseudo-likelihood functions via an R
optimization function and (b) applying the EM algorithm described in Section 2.3. The
resulting estimates from (a) were close to the estimates from (b). The estimates from the
EM algorithm are discussed below.

Table 2.1: Simulation Outcomes: Efficiency Study

(Primary data n = 500; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3 θ0 θ1 θ2 θ3

True value 1 -1 -0.8 1.8 -0.6 -0.5 1 0.5 -0.3 -0.25 1
MLE of (α, β, θ)

sm† 1.000 -1.026 -0.770 1.790 -0.599 -0.500 1.006 0.487 -0.295 -0.261 1.009
sse‡ 0.231 0.291 0.397 0.081 0.053 0.070 0.056 0.192 0.090 0.142 0.129
sm†se 0.243 0.302 0.420 0.084 0.058 0.069 0.060 0.197 0.094 0.141 0.133
sm†sw.se 0.248 0.312 0.433 0.083 0.057 0.068 0.058 0.198 0.096 0.142 0.135

Supplementary data m = 5000
Pseudo-MLE of (α, β) MLE of θ

sm 1.003 -1.011 -0.775 1.791 -0.602 -0.499 1.005 0.503 -0.301 -0.251 1.000
sse 0.220 0.266 0.350 0.080 0.048 0.066 0.055 0.030 0.013 0.020 0.021
smse 0.231 0.252 0.382 0.083 0.051 0.066 0.059 0.029 0.014 0.022 0.021
smsw.se 0.232 0.252 0.383 0.081 0.050 0.064 0.058 0.029 0.014 0.022 0.021
†The sample means of the parameter estimates (sm), the conventional standard error estimates (sm†se),
and the sandwich standard error estimates (sm†sw.se).
‡The sample standard errors (sse) of the parameter estimates.

Table 2.1 presents a summary of the parameter estimates and the asymptotic standard
error estimates in the efficiency study with n = 500 and m = 5000 based on 250 replicates.
The sample means (sm) of all the parameter estimators are close to the corresponding true
values of the parameters: the relative differences range from 0% to 3.7%. This verifies the
consistency of both the MLE and the pseudo-MLE. The sample standard errors (sse) of the
pseudo-MLE estimators overall appear smaller than those of the MLE estimators. That is,
the supplementary information along with the smaller number of parameters to be estimated
may compensate for the pseudo-MLE’s potential loss of efficiency, leading to better efficiency
than that for the evaluable MLE with the primary data. Table 2.1 also presents the sm
of the two standard error estimators, the conventional and sandwich estimators, for both
the MLE and the pseudo-MLE. We see that smse (or smpse) and smse.sw (or smpse.sw) are
essentially the same. They are close to the corresponding sse of the estimators, with the
absolute differences ranging from 0.2% to 3.6%. This shows that the accuracy of both
standard error estimators is satisfactory in practice.
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We considered additional simulation settings in the efficiency study. For comparison, we
evaluated the MLE of (α, β, θ) based on the primary data combined with the realizations
of the latent indicator η. The sm and sse were close to those associated with the pseudo-
MLE. To further explore the contribution of the supplementary information, we evaluated
two other sets of estimators of α and β: the MLEs with θ fixed at the true value and the
pseudo-MLEs with θ estimated based on the supplementary information with size m = 500.
As anticipated, the sse of the MLEs with the true θ were smaller than the sse of the MLEs
with θ jointly estimated, and the sse of the pseudo-MLEs for m = 500 were slightly larger
than those for m = 5000, which were close to those for the MLEs with the true θ. We also
evaluated the estimators with the size of the observed primary data set to n = 100. The
findings were the same.

Regardless of the value of the overdispersion parameter γ, the simulation outcomes in the
three cases of the robustness study show that the MLE is sensitive to model misspecification
overall, but the robustness of the pseudo-MLE varies. The sm for the MLE reveal some
serious biases in the simulated situations, especially for the regression coefficients in the
risk model. The differences of the sm for the pseudo-MLE from the true parameter values
are considerably smaller. Particularly in case (iii), which simulated situations where only
the underlying frequency model for the not-at-risk class (i.e., the class where η = 0) was
misspecified, the pseudo-MLE estimates are basically unbiased. In all three cases, the sm
of the standard error estimates based on the conventional variance estimator for MLE have
discrepancies compared with the sse associated with both the MLE and the pseudo-MLE
estimators. The sm of the corresponding sandwich standard error estimator, on the other
hand, is close to the sse. This verifies the robustness of the sandwich estimator. We
summarize the simulation results of the three cases of the robustness study with m = 5000,
γ = 1 in Table 2.2.

We conducted another simulation study to explore the difference in robustness between
the MLE and pseudo-MLE in situations similar to case (iii). We substituted the mixed
Poisson model with a mixture of two Poisson models for the class η = 0: the mean of
one component was the same as the mean of the class η = 0 in the efficiency study, and
the mean of the second component was close to the mean of the group η = 1. We varied
the proportion of the second component in the mixture from 10% to 80%, and observed
that the corresponding bias in the MLE of (α, β) changed from minor to major, while the
pseudo-MLE of the parameters remained close to the true values. This further suggests the
benefit of using supplementary information. See Table 2.3 for a summary of the simulation
outcomes.
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Table 2.2: Simulation Outcomes: Robustness Study

(Primary data n = 500; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3 θ0 θ1 θ2 θ3

True value 1 -1 -0.8 1.8 -0.6 -0.5 1 0.5 -0.3 -0.25 1
Case (i) γ = 1

MLE of (α, β, θ)
sm† -0.864 -0.114 -0.129 2.510 -0.707 -0.528 0.950 0.614 -0.692 -0.537 1.012
sse‡ 0.385 0.416 0.648 0.326 0.214 0.376 0.220 0.346 0.213 0.379 0.236
sm†se 0.216 0.218 0.347 0.041 0.018 0.025 0.029 0.087 0.040 0.055 0.061
sm†sw.se 0.328 0.411 0.612 0.307 0.207 0.308 0.217 0.339 0.226 0.336 0.232

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm -0.704 -0.544 -0.450 2.453 -0.557 -0.425 0.952 0.498 -0.299 -0.252 1.002
sse 0.282 0.299 0.449 0.274 0.165 0.287 0.195 0.062 0.033 0.052 0.044
smse 0.220 0.234 0.369 0.041 0.020 0.026 0.029 0.067 0.032 0.050 0.047
smsw.se 0.266 0.288 0.459 0.259 0.156 0.254 0.191 0.067 0.032 0.050 0.047

Case (ii) γ = 1
MLE of (α, β, θ)

sm -0.877 -0.787 -0.645 2.499 -0.496 -0.389 0.963 0.703 -0.430 -0.343 0.996
sse 0.301 0.353 0.526 0.333 0.189 0.296 0.244 0.199 0.114 0.177 0.139
smse 0.236 0.262 0.409 0.046 0.024 0.029 0.032 0.081 0.035 0.053 0.057
smsw.se 0.301 0.346 0.546 0.297 0.180 0.285 0.219 0.200 0.110 0.174 0.142

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm -0.723 -0.880 -0.704 2.430 -0.464 -0.372 0.973 0.499 -0.301 -0.249 1.000
sse 0.256 0.303 0.445 0.302 0.170 0.256 0.220 0.030 0.014 0.022 0.020
smse 0.229 0.256 0.398 0.043 0.023 0.027 0.030 0.029 0.014 0.022 0.021
smsw.se 0.267 0.297 0.472 0.272 0.163 0.264 0.201 0.029 0.014 0.022 0.021

Case (iii) γ = 1
MLE of (α, β, θ)

sm 1.305 -0.623 -0.462 1.762 -0.606 -0.499 1.003 -0.384 -0.513 -0.418 1.140
sse 0.253 0.247 0.381 0.085 0.051 0.073 0.059 0.575 0.259 0.420 0.422
smse 0.231 0.221 0.351 0.066 0.031 0.047 0.047 0.326 0.122 0.188 0.226
smsw.se 0.244 0.250 0.394 0.083 0.051 0.072 0.060 0.526 0.257 0.407 0.370

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm 1.190 -1.119 -0.845 1.800 -0.507 -0.436 0.980 0.494 -0.297 -0.252 1.003
sse 0.237 0.225 0.358 0.080 0.044 0.066 0.056 0.061 0.035 0.048 0.041
smse 0.243 0.242 0.382 0.079 0.042 0.059 0.056 0.067 0.032 0.050 0.047
smsw.se 0.230 0.229 0.361 0.078 0.045 0.062 0.056 0.067 0.032 0.050 0.047
†The sample means of the parameter estimates (sm), the conventional standard error estimates (sm†se),
and the sandwich standard error estimates (sm†sw.se).
‡The sample standard errors (sse) of the parameter estimates.
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Table 2.3: Simulation Outcomes: Additional Robustness Study

(Primary data n = 500; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3 θ0 θ1 θ2 θ3

True value 1 -1 -0.8 1.8 -0.6 -0.5 1 0.5 -0.3 -0.25 1
Case (iii.A1): Two components in η = 0 in the ratio 9 : 1

MLE of (α, β, θ)
sm† 1.039 -0.975 -0.783 1.796 -0.605 -0.498 1.000 0.472 -0.303 -0.242 1.003
sse‡ 0.257 0.297 0.438 0.077 0.053 0.062 0.055 0.195 0.099 0.140 0.140
sm†se 0.245 0.296 0.421 0.083 0.055 0.068 0.059 0.200 0.096 0.143 0.135
sm†sw.se 0.252 0.311 0.440 0.082 0.057 0.069 0.058 0.206 0.101 0.151 0.139

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm 1.030 -1.002 -0.795 1.799 -0.601 -0.495 0.998 0.514 -0.306 -0.248 1.000
sse 0.245 0.250 0.406 0.077 0.046 0.060 0.055 0.031 0.014 0.023 0.024
smse 0.233 0.251 0.383 0.083 0.051 0.066 0.059 0.031 0.015 0.023 0.022
smsw.se 0.234 0.251 0.384 0.081 0.049 0.064 0.058 0.031 0.015 0.023 0.022

Case (iii.A2): Two components in η = 0 in the ratio 5 : 5
MLE of (α, β, θ)

sm 1.217 -0.744 -0.552 1.775 -0.628 -0.524 1.000 0.335 -0.338 -0.318 1.034
sse 0.285 0.353 0.467 0.091 0.055 0.077 0.059 0.316 0.162 0.264 0.218
smse 0.256 0.288 0.426 0.075 0.046 0.059 0.053 0.240 0.110 0.164 0.163
smsw.se 0.299 0.362 0.526 0.083 0.059 0.077 0.058 0.309 0.175 0.268 0.208

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm 1.147 -1.020 -0.827 1.792 -0.585 -0.490 0.993 0.621 -0.339 -0.269 0.997
sse 0.244 0.272 0.362 0.089 0.045 0.065 0.060 0.034 0.018 0.028 0.024
smse 0.245 0.261 0.401 0.081 0.050 0.065 0.058 0.037 0.018 0.028 0.026
smsw.se 0.245 0.257 0.398 0.081 0.046 0.064 0.058 0.037 0.018 0.028 0.026

Case (iii.A3): Two components in η = 0 in the ratio 2 : 8
MLE of (α, β, θ)

sm 1.408 -0.006 0.142 1.759 -0.705 -0.586 1.002 -0.034 -0.919 -0.941 1.309
sse 0.516 0.573 0.842 0.098 0.068 0.093 0.062 1.161 0.659 0.968 0.778
smse 0.289 0.304 0.474 0.065 0.032 0.048 0.046 0.384 0.199 0.252 0.268
smsw.se 0.484 0.621 0.975 0.101 0.073 0.113 0.064 1.084 0.622 0.970 0.674

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm 1.170 -0.990 -0.773 1.792 -0.591 -0.497 0.992 0.795 -0.385 -0.292 1.000
sse 0.271 0.277 0.430 0.088 0.051 0.071 0.060 0.036 0.017 0.029 0.024
smse 0.267 0.295 0.447 0.083 0.053 0.067 0.059 0.037 0.018 0.027 0.026
smsw.se 0.265 0.288 0.443 0.081 0.048 0.067 0.058 0.037 0.018 0.027 0.026
†The sample means of the parameter estimates (sm), the conventional standard error estimates (sm†se),
and the sandwich standard error estimates (sm†sw.se).
‡The sample standard errors (sse) of the parameter estimates.
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2.5 Analysis I of CAYACS Physician Claims

This section presents an analysis of the CAYACS visit records summarized in cross-sectional
counts using the methodology described in this chapter. We analyze the cohort data P and
the population data Q. The pseudo-MLE result based on P and Qorig from Wang et al.
(2014) is listed in Table 2.6 for comparison and discussed in Section 2.6. The population
data Qorig that does not match the start time to the survivor cohort is not used elsewhere
in this thesis.

2.5.1 Preliminary Analysis

To avoid potential collinearity in the regression analysis, we chose the following six variables
as covariates from the list of the potential risk factors identified by the study team: sex (male
vs. female), age at entry (subjects entered the study five years after the cancer diagnosis),
socioeconomic status (SES, high vs. low based on the income in the neighbourhood at start
of follow-up), relapse or second cancer (RSC, yes vs. no relapse or second cancer at start
of follow-up), diagnosis period (1990s vs. 1980s), and treatment (chemo but no radiation,
radiation but no chemo, both chemo and radiation, or others). A standardized age value
(age− 5)/20 was used in the regression models.

In the population sample Q, the covariates sex, SES, and age at entry are available, but
the cancer-related covariates (RSC, diagnosis period, and treatment) are not. The counts of
visits to both GPs and specialists during the entire follow-up period were calculated for both
the cohort and the population. In the population, an individual’s start time of follow-up
was chosen according to that of a random survivor with the same sex and birth-year. The
data Q has distributions that match the survivor cohort for age at entry and observation
length; see Table 2.4.

We excluded individuals who were missing information for the covariates or had an
observation period of zero length. We also excluded those in the population who were older
than (20+5) = 25 years in 1986, at that time the oldest possible age of the survivors. We also
excluded a few outliers. This reduced the size of P to n = 1, 609 andQ tom = 13, 793. Table
2.4 gives the summary statistics of the covariates, response variable, and observation length
associated with P and Q. To avoid confidentiality issues, we report 5th and 95th percentiles
instead of minimum and maximum values for the continuous variables and counts.

Table 2.5 summarizes the quasi-Poisson regression analyses conducted with the visit
counts from P and Q separately. Adjusted for the independent variables, the frequency
of physician visits appears significantly higher in the cohort. In both data sets, the male
subjects had fewer physician visits than did the females. This is in agreement with the
results reported by McBride et al. (2011). In addition, the analysis found that there is no
significant difference between the two SES groups in both the population and the cohort.
The analysis indicates that the visit counts are highly overdispersed: the estimates for the
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Table 2.5: Quasi-Poisson Regression for General Population and Survivor Cohort

Population Q Cohort P
Factor estimate se p-value estimate se p-value
intercept 1.032 0.031 < .001 2.176 0.095 < .001
male (vs. female) -0.376 0.012 < .001 -0.360 0.038 < .001
age at entry 0.343 0.020 < .001 0.152 0.058 0.009
SES high (vs. low) -0.023 0.013 0.070 -0.008 0.038 0.832
ln(time period) 1.089 0.012 < .001 0.876 0.035 < .001
dispersion parameter 14.67 0.24† 31.78 1.84†

†Standard errors of dispersion parameters estimated by Bootstrap with BS sample size=1000.

overdispersion parameter are 14.67 and 31.78 for the population and the cohort, respectively.
The much larger overdispersion for the cohort, along with the higher overall visit frequency,
signals potential strata of physician visits in the cohort.

2.5.2 Likelihood-Based Analysis of Visit Counts Under a Latent Class
Model

We used the LCM of Section 2.2 to formulate the visit counts of the cohort. We evaluated
the MLE and pseudo-MLE presented in Section 2.3. Table 2.6 summarizes the analysis in
the first two panels. Both the MLE and pseudo-MLE analyses identified several significant
risk factors for later effects: (i) RSC, (ii) diagnosis in 1980s rather than 1990s, and (iii)
treatment with radiation but no chemo or both radiation and chemo rather than other
treatments. The pseudo-MLE also found a significantly higher risk for female survivors.

For illustration, we present in Figure 2.1 the estimated at-risk probability functions
p(α̂; Z) of age at entry together with pointwise approximate 95% confidence intervals (CIs)
from the MLE and pseudo-MLE for three typical groups. Group A contains females di-
agnosed in the 1980s, with RSC, who received radiation treatment; Group B contains
females diagnosed in the 1980s, without RSC, who received radiation treatment; and
Group C contains males diagnosed in the 1990s, without RSC, with treatment other than
chemo/radiation. The risk of later effects for the three groups is found by both the MLE
and pseudo-MLE to be significantly different. People in Group A seem likely to suffer such
effects, and those in Group C have a low risk.

The MLE and pseudo-MLE analyses are consistent with the findings of a significantly
lower visit rate associated with male survivors across the two risk classes and a similar
association with the length of the observation period in the not-at-risk class. The results
indicate slightly different magnitudes of the visit frequency in the not-at-risk class. See
Figure 2.2 for the estimated means of the visit counts over time from the MLE and pseudo-
MLE for the two risk classes. The MLE analysis showed that the visit frequency was not
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significantly associated with either age at entry or SES across the two risk classes. This
disagrees only with the quasi-Poisson regression for age at entry in the not-at-risk class.
The pseudo-MLE analysis, using the quasi-Poisson estimates for the general population for
the not-at-risk class, yielded results for the visit frequency of the at-risk class and for the
risk probability that were similar to those of the MLE analysis. Figure 2.2 presents the
estimated means of the cumulative visit counts of the two risk classes over time, along with
the pointwise approximate 95% CIs, from the MLE and pseudo-MLE for female and male
subjects with low SES and average age at entry.

To verify the findings of the pseudo-MLE and further assess its efficiency, we also eval-
uated the MLE with the data from the cohort in combination with the population, as
described at the beginning of Section 2.3.2. See Section E of the Supplementary Materials
in Wang et al. (2014). The resulting parameter estimates and estimated standard errors
are almost identical to the corresponding estimates from the pseudo-MLE.

We remark that, under the mixture Poisson model assumed in the MLE and pseudo-
MLE analyses, the variance of the counts conditional on T , Z is the mean E(Y |T,Z) plus
p(Z;α)[1− p(Z;α)][µ1(T,Z;β)− µ0(T,Z; θ)]2. This together with the parameter estimates
under the LCM yields estimators for the overall overdispersion parameter for the cohort of
18.11 (for the MLE) and 20.80 (for the pseudo-MLE). Compared with the quasi-Poisson
analysis for the cohort, about two-thirds of the large overdispersion of the visit counts can
be attributed to the two risk classes by the mixture Poisson model. The unexplained part of
the overdispersion indicates a departure of the counts from this model. Caution is necessary
in the application of these results.

2.6 Summary and Discussion

Motivated by the visit count analysis of the CAYACS program, we have proposed an LCM
to formulate the event counts from a cohort with two unobservable classes: the at-risk
class and the not-at-risk class. Under a mixture Poisson model, we have presented two
likelihood-based inference procedures, the MLE and pseudo MLE, for cross-sectional counts.
The pseudo-MLE procedure employs a consistent estimator of the distribution of the not-
at-risk class based on the population data. Compared with the MLE with the primary
data, it requires less computational effort, has consistency and asymptotic normality, and
has potentially higher efficiency. One may apply the proposed methodology with little
modification in situations involving more than two classes.

The population data Qorig that does not match the start times to those of the cohort
was used by Wang et al. (2014). We have seen in Table 2.4 that the population data Q
has a similar distribution to P in age at entry and observation length, with means 14.1 and
8.49, respectively. For Qorig the corresponding values are 10.0 and 12.73 respectively (Wang
et al., 2014). The pseudo-MLE result based on P and Qorig is listed in the last panel of Table
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Figure 2.1: Estimated risk probabilities with approximate 95% CIs for three groups. Group
A: Female, diagnosed in 1980s, with RSC, and treated with radiation. Group B: Female,
diagnosed in 1980s, no RSC, and treated with radiation. Group C: Male, diagnosed in
1990s, no RSC, and treated without chemo/radiation.
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Figure 2.2: Estimated mean function of cumulative visit counts with approximate 95% CIs,
for survivors with low SES and average age at entry.
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2.6 for comparison. The quasi-Poisson regressions for Q and Qorig respectively are rather
different, especially in the magnitudes of intercept and log(time period), which indicates
the nonlinear relationship of visit counts and subject aging. Longitudinal studies may be
necessary. The estimates for the not-at-risk class based on Q are much closer to the MLE
based only on P than to the estimates based onQorig, so the pseudo-MLE withQ has similar
estimates for the at-risk class and the risk probability models. This similarity supports the
use of supplementary information and the pseudo-MLE procedure for the CAYACS data.

The simulation results show that the likelihood-based estimating procedures are quite
efficient under the mixture Poisson model, but they lack robustness to model misspecifica-
tion. Therefore, there is a need for a robust inference procedure. In Chapter 3 we develop
an extension of the GEE approaches (Liang and Zeger, 1986). The new approach can be
straightforwardly extended to analyze the cost data associated with the physician claims in
CAYACS. The model formulation assumes that the time effect for the count of interest is
proportional to the length of the observation period on average. The available longitudinal
data allow us to consider a semiparametric specification for the mean function of the counts
or costs over time, and thus to check this assumption. These longitudinal procedures are
discussed in Chapters 4 and 5.
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Chapter 3

Extended GEE Procedures with
Cross-Sectional Counts

3.1 Introduction

In an analysis with an LCM, one usually needs to specify the underlying probability model
in a parametric form for each of the latent classes to avoid nonidentifiability problems in
general. In the previous chapter we made good use of the rich information from the general
population and developed a so-called pseudo-MLE procedure that did not need a distri-
butional assumption for the not-at-risk class. However, the simulation studies indicated
that the pseudo-MLE procedure lacked robustness to overdispersed counts in the at-risk
class. Overall, the MLE and pseudo-MLE methods for the LCM in Chapter 2 were quite
efficient but lacked robustness to model misspecification, especially for the parameters in
the risk probability of the latent indicator. The analysis of the CAYACS data showed that
the visit counts in both the cohort and the population were heavily overdispersed. Even
when the pseudo-MLE was used, the two latent classes could account for some but not all
of the overdispersion. There are always practical concerns about model misspecification. It
is often necessary to develop robust inferential procedures, particularly in epidemiological
and medical applications. Thus, in this chapter we develop distribution-free estimating
procedures for the LCM.

Table 2.6 shows that RSC status has the greatest impact on survivors at risk to later
effects; see also Figure 2.1. If we choose the cut-off value of the estimated risk probability
P (η = 1|Z; α̂) to be around 0.4, almost all the individuals with RSC (δ = 1) are predicted
to be in the at-risk class (η = 1). This supports the assumption made in this chapter.
On average, the RSC subgroup in the cohort has more frequent physician visits than the
rest of the cohort. They can be considered as representatives of the at-risk class. Based
on this assumption, we are able to develop extended GEE inference procedures for the
LCM. This overcomes the overdispersion issue of the counts in the mixture Poisson model
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and the corresponding likelihood-based methods. The extended GEE approaches can be
straightforwardly applied to analyze the cost data of the CAYACS physician claims. They
can also be easily extended to analyze longitudinal data by introducing within-subject
correlation. The formulation and computation are much easier for these approaches than
for likelihood-based approaches for longitudinal data. The longitudinal extensions will be
presented in Chapter 5.

3.2 Model Specification

The response Y = Y is the cross-sectional count, so [Y|·] = [Y |·], and η is the latent risk
indicator. The regression functions for the risk probability and for the counts in the two
latent classes are specified as p(Z;α), µ1(T,Z;β), and µ0(T,Z; θ), respectively.

Conceptually, if a survivor has RSC, he/she is experiencing ongoing problems. There-
fore, he/she will have more frequent physician visits compared to the general population
and belong to the at-risk class. With this assumption, further descriptive analysis of the
CAYACS data indicated that RSC at any time before or after the start of the study greatly
increased the overall frequency of physician visits. Hence, we can make additional assump-
tions. An RSC implies that the survivor belongs to the at-risk class. Furthermore, the
overall at-risk class has the same visit patterns regardless of RSC status. Let δ be the RSC
indicator. The above assumptions can be formulated as:

Assumption (i) P (η = 1|δ = 1,Z) = 1, i.e., δ = 1 implies η = 1.

Assumption (ii) [Y |η, δ, T,Z] = [Y |η, T,Z].

Assumptions (i) and (ii) imply Assumption (iii): [Y |η = 1, T,Z] = [Y |δ = 1, T,Z].
To complete the model specification when Assumption (i) is used explicitly, we de-

note the conditional probability of a survivor with RSC as P (δ = 1|Z) = q(Z). In prac-
tice, a logistic regression model can be adopted and specified up to a parameter ρ, i.e.,
logit{q(Z; ρ)} = ρ0 + ρ

′
1Z.

Our goal in this chapter is to develop robust estimating procedures for the parameters
α, β, and θ in p(Z;α), µ1(T,Z;β), and µ0(T,Z; θ) without a distributional assumption for
Y , with P =

{
(Yi, δi, Ti,Zi) : i = 1, . . . , n

}
and Q =

{
(Yi, Ti,Zi) : i = 1, . . . ,m

}
. Clearly, δ

is not included in Z, which is the difference between this model and that in Chapter 2.

3.3 Likelihood-Based Estimation with Counts Using Par-
tially Available Membership Information

As in Section 2.3, the event count Y conditional on T and Z is further specified as a mixture
Poisson distribution. The likelihood-based estimations are presented in this section. The
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full MLE procedure based on the distribution of δ and the mixture Poisson of Y jointly is
computationally expensive. Thus, we also propose three pseudo-MLE procedures. They are
computationally less intensive, and the last two are robust to distribution misspecification
in the not-at-risk class because they use estimation based on the general population.

The underlying probability models for Y with the two latent classes, [Y |η = 1, T,Z;β]
and [Y |η = 0, T,Z; θ], are assumed to be Poisson distributions with conditional expectations
µη(T,Z) for η = 1, 0 respectively. The likelihood function for all the parameters φ =
(ρ, α, β, θ) is based on the joint distribution of Y and δ:

[Y, δ|T,Z;φ] = [Y |δ, T,Z;φ][δ|Z; ρ]

= [δ|Z; ρ]
1∑

η=0
[Y |η, δ, T,Z;β/θ][η|δ,Z; ρ, α] (3.1)

= [δ|Z; ρ]
1∑

η=0
[Y |η, T,Z;β/θ][η|δ,Z; ρ, α]. (3.2)

The simplification from (3.1) to (3.2) is based on Assumption (ii). Assumption (i) states
that δ = 1 implies η = 1, but η = 1 des not necessarily imply δ = 1. The conditional
probability [η|δ,Z; ρ, α] can be derived by decomposing P (η = 1|Z):

P (η = 1|Z) = P (η = 1, δ = 1|Z) + P (η = 1, δ = 0|Z)

= P (η = 1|δ = 1,Z)P (δ = 1|Z) + P (η = 1|δ = 0,Z)P (δ = 0|Z)

= P (δ = 1|Z) + P (η = 1|δ = 0,Z)P (δ = 0|Z).

Given P (η = 1|δ = 1,Z) = 1 from Assumption (i),

P (η = 1|δ = 0,Z) = p(Z;α)− q(Z; ρ)
1− q(Z; ρ) . (3.3)

The likelihood function of φ with the primary data P is L(φ;P) ∝
n∏
i=1

[Yi, δi|Ti,Zi;φ] =
n∏
i=1

[Yi|δi, Ti,Zi;φ] ×
n∏
i=1

[δi|Zi; ρ]. We write the log-likelihood function as l(φ) = logL(φ).
Then

l(φ) = l1(φ) + l2(ρ), (3.4)

where l1(φ) =
n∑
i=1

log[Yi|δi, Ti,Zi;φ] and l2(ρ) =
n∑
i=1

log[δi|Zi; ρ]. We will sometimes use l,
l1, and l2 for simplicity.
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3.3.1 MLE with Primary Data

We can directly maximize L(φ) or l(φ) to get the MLE of φ, but this is computationally
intensive and gives a poor result. We instead use an adaptation of the EM algorithm
(Dempster et al., 1977) to compute the MLE of the parameters; see Appendix A. Under the
usual regularity conditions, the MLE (ρ̂, α̂, β̂, θ̂) has asymptotic consistency and normality:

√
n
(
(ρ̂, α̂, β̂, θ̂)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1ΣΠ−1

)
where

1√
n

∂l(φ)
∂φ

d−−−→
n→∞

N
(
0,Σ

)
. (3.5)

Here Π is the Fisher information matrix

− 1
n

∂2l(φ)
∂φ2

a.s.−−−→
n→∞

Π

and Σ = Π for the MLE. It is important to note that the symbols/notation introduced in
the asymptotics in Section 3.3 and Appendix B, i.e., φ, Σ, and Π and their extensions, are
separate from those used in the rest of the thesis, so there is no inconsistency.

Note that for independent but not identically distributed data the variance of the ith

element on the left-hand side of (3.5) depends on Zi for the ith observation. Provided
the Zi’s are chosen randomly or have a limiting distribution (Yuan and Jennrich, 1998),
property (3.5) holds. Similar properties hold for our three pseudo-likelihood functions.

The variance of the likelihood estimating equations, Σ, can be consistently estimated
by 1

n
∂l
∂φ

∂l
∂φ

′ with the MLE plugged in. The Fisher information matrix can be estimated
by − 1

n
∂2l
∂φ2 with the MLE plugged in. Then the asymptotic variance of the MLE can be

estimated by either 1
n Σ̂−1 or 1

nΠ̂−1.

3.3.2 Type A Pseudo-MLE with Primary Data

The log-likelihood function (3.4) is a sum of two terms, where l2(ρ) is a function only of
ρ. We develop a pseudo-MLE procedure to estimate ρ only from l2(ρ), denoted ρ̂A, and to
estimate α, β, θ from l1(φ) with ρ fixed at ρ̂A. The resulting estimator is called the type
A pseudo-MLE and denoted α̂A, β̂A, θ̂A. The method for finding ρ̂A is equivalent to fitting
a logistic regression model with δ as a response to the covariates Z. The type A pseudo-
MLE of (α, β, θ) is obtained by the EM algorithm in Appendix A with ρ fixed at ρ̂A. This
pseudo-likelihood procedure works because l1(φ) carries little information about ρ.

The asymptotic properties of the type A pseudo-MLE have been derived; see Appendix
B. Under the usual regularity conditions, the pseudo-MLE φ̂A = (ρ̂A, α̂A, β̂A, θ̂A) has asymp-
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totic consistency and normality:

√
n
(
(ρ̂A, α̂A, β̂A, θ̂A)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

A ΣA(Π−1
A )′

)
where  1√

n
∂l2(ρ)
∂ρ

1√
n

∂l1(φ)
∂(α,β,θ)

 d−−−→
n→∞

N
(
0,ΣA

)
and

− 1
n

 ∂2l2(ρ)
∂ρ2 0

∂2l1(φ)
∂(α,β,θ)∂ρ

∂2l1(φ)
∂(α,β,θ)2

 a.s.−−−→
n→∞

ΠA.

The variance of the type A pseudo-likelihood estimating equations, ΣA, can be consis-

tently estimated by 1
n

 ∂l2
∂ρ
∂l1

∂(α,β,θ)

 ∂l2
∂ρ
∂l1

∂(α,β,θ)

′ with φ̂A plugged in. ΠA can be estimated by

− 1
n

 ∂2l2
∂ρ2 0
∂2l1

∂(α,β,θ)∂ρ
∂2l1

∂(α,β,θ)2

 with φ̂A plugged in. Then the asymptotic variance of the type A

pseudo-MLE can be estimated by 1
nΠ̂−1

A Σ̂A(Π̂−1
A )′.

3.3.3 Type B Pseudo-MLE with Primary Data and Independent Supple-
mentary Information

The η = 0 class has the same visit patterns as the general population. Chapter 2 developed
a pseudo-MLE where θ was estimated from an independent supplementary data set, and
the pseudo-MLE of the primary parameters (α, β) was efficient, consistent, and robust to
distribution misspecification of the η = 0 class. We can apply this method to the likelihood
function (3.4) to develop another type of pseudo-MLE.

Suppose there is an independent supplementary dataset Q =
{
(Yi, Ti,Zi) : i = 1, . . . ,m

}
with sample size m, where n

m → r > 0 as n → ∞ and m → ∞. As in Section 2.3.2, a
consistent estimator of θ in µ0(T,Z; θ) can be obtained from Q without a distributional
assumption on Y . Let the estimator be θ̃; it has asymptotic normality:

√
m
(
θ̃ − θ

) d−−−−→
m→∞

N
(
0, AVθ̃(θ)

)
. By maximizing the log-likelihood function (3.4) with θ fixed at θ̃, we get a

pseudo-MLE for (ρ, α, β), called the type B pseudo-MLE and denoted ρ̂B, α̂B, β̂B. The type
B pseudo-MLE of (ρ, α, β) can be evaluated by the EM algorithm in Appendix A with θ

fixed at θ̃.
The asymptotic properties of the type B pseudo-MLE have been derived similarly; see

Appendix B. Under the usual regularity conditions, the pseudo-MLE φ̂B = (ρ̂B, α̂B, β̂B, θ̃)
has asymptotic consistency and normality:

√
n
(
(ρ̂B, α̂B, β̂B, θ̃)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

B ΣB(Π−1
B )′

)
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where

ΣB =
(

Σ∗B 0
0 r−1AVθ̃(θ)

)
with 1√

n

∂l(φ)
∂(ρ, α, β)

d−−−→
n→∞

N
(
0,Σ∗B

)
and

− 1
n

 ∂2l(φ)
∂(ρ,α,β)2

∂2l(φ)
∂(ρ,α,β)∂θ

0 −m

 a.s.−−−→
n→∞

ΠB.

The variance of the type B pseudo-likelihood estimating equations, ΣB, can be consis-

tently estimated by Σ̂B =

Σ̂∗B 0
0 m

n ÂVθ̃(θ)

 , where Σ̂∗B = 1
n

∂l
∂(ρ,α,β)

∂l
∂(ρ,α,β)

′ with φ̂B plugged

in. ΠB can be estimated by − 1
n

 ∂2l
∂(ρ,α,β)2

∂2l
∂(ρ,α,β)∂θ

0 −m

 with φ̂B plugged in. The asymp-

totic variance of the type B pseudo-MLE can be evaluated by 1
nΠ̂−1

B Σ̂B(Π̂−1
B )′.

3.3.4 Type AB Pseudo-MLE with Primary Data and Independent Sup-
plementary Information

The third type of pseudo-MLE combines the ideas from the type A and type B pseudo-
MLEs. We plug ρ̂A from Section 3.3.2 and θ̃ from Section 3.3.3 into the log-likelihood
function l1(φ) in (3.4). The estimator of the primary parameters (α, β) that maximizes
the pseudo-likelihood function l1(ρ̂A, α, β, θ̃) is called the type AB pseudo-MLE, denoted
α̂AB, β̂AB. The type AB pseudo-MLE of (α, β) can be evaluated by the EM algorithm in
Appendix A with ρ and θ fixed at ρ̂A and θ̃.

The asymptotic properties of the type AB pseudo-MLE have also been derived; see
Appendix B. Under the usual regularity conditions, the type AB pseudo-MLE φ̂AB =
(ρ̂A, α̂AB, β̂AB, θ̃) has asymptotic consistency and normality:

√
n
(
(ρ̂A, α̂AB, β̂AB, θ̃)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

ABΣAB(Π−1
AB)′

)
where

ΣAB =
(

Σ∗AB 0
0 r−1AVθ̃(θ)

)
with

 1√
n
∂l2(ρ)
∂(ρ)

1√
n
∂l1(φ)
∂(α,β)

 d−−−→
n→∞

N
(
0,Σ∗AB

)
and

− 1
n


∂2l2(ρ)
∂ρ2 0 0

∂2l1(φ)
∂(α,β)∂ρ

∂2l1(φ)
∂(α,β)2

∂2l1(φ)
∂(α,β)∂θ

0 0 −m

 a.s.−−−→
n→∞

ΠAB.

The variance of the type AB pseudo-likelihood estimating equations, ΣAB, can be con-

sistently estimated by Σ̂AB =

Σ̂∗AB 0
0 m

n ÂVθ̃(θ)

 , where Σ̂∗AB = 1
n

 ∂l2
∂ρ
∂l1

∂(α,β)

 ∂l2
∂ρ
∂l1

∂(α,β)

′ with
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φ̂AB plugged in. ΠAB can be estimated by − 1
n


∂2l2
∂ρ2 0 0
∂2l1

∂(α,β)∂ρ
∂2l1

∂(α,β)2
∂2l1

∂(α,β)∂θ
0 0 −m

 with φ̂AB

plugged in. The asymptotic variance of the type AB pseudo-MLE can be evaluated by
1
nΠ̂−1

ABΣ̂AB(Π̂−1
AB)′.

In the type B and AB pseudo-MLEs, θ̃ is estimated from an independent supplementary
data set, so the asymptotic variances of (ρ̂B, α̂B, β̂B) and (α̂AB, β̂AB) can be decomposed
into two terms as for the pseudo-MLE in Chapter 2 (2.10). The first term is the asymptotic
variance when the true value of θ is known, and the second term accommodates the extra
variation arising because θ is estimated from an independent data set. The decomposition
is also valid for the extended GEE estimators, since the supplementary information is again
used to estimate θ. When a set of parameters, e.g., ρ̂A in the type A and AB pseudo-MLEs
and the β estimates from the type P extended GEE (discussed below), is estimated from
other correlated data, the method that we used to derive the asymptotic variances remains
appropriate. If one ignores the estimation of parameters from other sources, dependent or
independent, the estimate of the precision of the estimators is likely to be overly optimistic
(Reid, 2010). Remarkably, the variance estimations presented in Sections 3.3 and 3.4 are
appropriate for the parameters estimated from other dependent and independent sources
and are also robust to distribution misspecification.

3.4 Extended GEE Inference Procedures

The likelihood-based approaches for the LCM presented in the previous section are based on
the distribution assumption of the counts. However, in practice overdispersion is a common
feature of count data with an assumed Poisson distribution. It is also often desirable to
have simple alternatives to MLE methods, such as least squares. We develop extended
GEE methods for LCMs by specifying only the mean and variance functions of Y in the
two classes and not its underlying distribution.

As in Section 3.2, the conditional expectations of Y for the at-risk and not-at-risk groups
are E(Y |η, T,Z) = µη(T,Z), where η = 0, 1. Given the specification of the risk proba-
bility p(Z;α), the marginal expectation of Y given T and Z, E(Y |T,Z;α, β, θ), denoted
Λ(T,Z;α, β, θ), can be derived as

Λ(T,Z;α, β, θ) = p(Z;α)µ1(T,Z;β) + {1− p(Z;α)}µ0(T,Z; θ). (3.6)

The conditional variance functions of Y given T and Z for each class are Var(Y |η, T,Z) =
Ση(T,Z), which may involve other variance-related parameters. Then the marginal variance
of Y given T and Z, denoted Var(Y |T,Z) = Σ(T,Z), which involves the parameters (α, β, θ),
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can be derived as

Σ(T,Z) = p(Z;α)Σ1(T,Z) + [1− p(Z;α)]Σ0(T,Z) + p(Z;α)[1− p(Z;α)]{µ1(T,Z;β)− µ0(T,Z; θ)}2.

A direct GEE application under the weighted least-squares principle can construct esti-
mating equations for the parameters (α, β, θ) based on the mean function Λ(T,Z;α, β, θ)
from the primary data P. It may be weighted by Σ(T,Z).

Let ψ = (α, β, θ). Let d1, d2, and d3 be the dimensions of α, β, and θ, respectively,
and d = d1 + d2 + d3. The d-dimensional GEEs for the parameters (α, β, θ) based on
the marginal expectation Λ(T,Z;ψ) in (3.6) are denoted GEE(ψ) = 0, where GEE(ψ) =∑n
i=1 g(Yi|Ti,Zi;ψ). The d-dimensional parametric function g(Yi|Ti,Zi;ψ), also written

gi(ψ), is a conditionally unbiased function of Y , E[gi(ψ)|Ti,Zi] = 0.
A linear form of gi(ψ) is gi(ψ) = Ai(ψ)[Yi − Λ(Ti,Zi;ψ)], where Ai(ψ) can be any

d-dimensional function such that:

1. Ai(ψ)⊥Yi|Ti,Zi.

2. The following quantities exist: Var{Ai(ψ)[Yi − Λ(Ti,Zi;ψ)]}, ∂Ai(ψ)/∂ψ, and
E
{∂Ai(ψ)

∂ψ [Yi − Λ(Ti,Zi;ψ)]−Ai(ψ)∂Λ(Ti,Zi;ψ)
∂ψ

}
.

For example, Ai(ψ) could be ∂Λ(Ti,Zi;ψ)
∂ψ , ∂Λ(Ti,Zi;ψ)

∂ψ Λ(Ti,Zi;ψ)−1, or ∂Λ(Ti,Zi;ψ)
∂ψ Σ(Ti,Zi)−1.

Godambe (1991) used the term modified least square estimating equations for GEE(ψ) =
0 with the third choice above for Ai(ψ). The solutions of these equations, under some
regularity conditions, converge in probability to the true value, and they are the linear
estimating functions with minimum variance.

The GEE(ψ) consists of three parts: d1-dimensional, d2-dimensional, and d3-
dimensional estimating functions for α, β, and θ, respectively, i.e., GEE(ψ) =
(GEEα(ψ)′, GEEβ(ψ)′, GEEθ(ψ)′)′. We write gi(ψ) = (gαi (ψ)′, gβi (ψ)′, gθi (ψ)′)′.

3.4.1 Type J Extended GEE Estimator

The pseudo-MLE in Chapter 2 and the type B and AB pseudo-MLEs above have shown
the advantages of using a consistent estimator of θ, θ̃, from the supplementary data Q.
Procedures using θ̃ are computationally less intensive and more efficient. For example,
quasi-Poisson regression can be used to estimate θ in the general population without a
distributional assumption on Y . We also use the idea of θ̃ estimated from Q for the GEE
procedures in this chapter.

We construct extended GEEs GEE-J(ψ) = 0 for the parameters α, β, and θ, where
GEE-J(ψ) = (GEEα(ψ)′, GEEβ(ψ)′,m(θ̃ − θ)′)′. We refer to these as type J extended
GEEs. Their joint solution is called the type J extended GEE estimator and denoted
ψ̃J = (α̃J , β̃J , θ̃). The type J extended GEE estimator ψ̃J satisfies GEE-J(ψ̃J) = 0. Re-
arrangement of the first-order Taylor expansion of the functions GEE-J(ψ̃J), whose values
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are equal to zero, yields the following equations:

1√
n


GEEα(ψ)
GEEβ(ψ)
m(θ̃ − θ)

 .= − 1
n


∂GEEα(ψ)

∂α
∂GEEα(ψ)

∂β
∂GEEα(ψ)

∂θ
∂GEEβ(ψ)

∂α
∂GEEβ(ψ)

∂β
∂GEEβ(ψ)

∂θ

0 0 −m

 · √n

α̃J − α
β̃J − β
θ̃ − θ

 . (3.7)

Given the above conditions on Ai(ψ), the estimating function GEE(ψ) has asymptotic
normality, and its first-order derivatives converge to a constant matrix asymptotically surely.
Moreover, because the consistent estimator θ̃ is estimated from an independent sample, the
left-hand side of (3.7) has asymptotic normality:

1√
n


GEEα(ψ)
GEEβ(ψ)
m(θ̃ − θ)

 d−−−→
n→∞

N
(
0,ΦJ

)
, where ΦJ =

(
Φ∗J 0
0 r−1AVθ̃(θ)

)

and the first term on the right-hand side of (3.7) converges to a constant matrix ΨJ asymp-
totically surely:

− 1
n


∂GEEα(ψ)

∂α
∂GEEα(ψ)

∂β
∂GEEα(ψ)

∂θ
∂GEEβ(ψ)

∂α
∂GEEβ(ψ)

∂β
∂GEEβ(ψ)

∂θ

0 0 −m

 a.s.−−−→
n→∞

ΨJ . (3.8)

Therefore, it is easy to derive the asymptotic distribution for the type J extended GEE
estimator ψ̃J as:

√
n
(
(α̃J , β̃J , θ̃)′ − (α, β, θ)′

)
d−−−→

n→∞
N
(
0,Ψ−1

J ΦJ(Ψ−1
J )′

)
.

The variance of (GEEα(ψ), GEEβ(ψ)), Φ∗J , can be consistently estimated by Φ̂∗J =

1
n

∑n
i=1[gαi (ψ), gβi (ψ)][gαi (ψ), gβi (ψ)]′ with ψ̃J plugged in; then Φ̂J =

Φ̂∗J 0
0 m

n ÂVθ̃(θ)

. More-

over, ΨJ can be estimated by the left-hand side of (3.8) with ψ̃J plugged in. Then the asymp-
totic variance of the type J extended GEE estimator can be evaluated by 1

nΨ̂−1
J Φ̂J(Ψ̂−1

J )′.
The type J extended GEE estimator ψ̃J does not use the additional assumptions in

Section 3.2, which basically ignore the information on δ. Although we can establish their
asymptotic properties, the estimating equations may not be sensitive and efficient, since
they rely only on the structure of Λ(T,Z;ψ), which does not provide as much information
as likelihood functions provide. We want to make use of the δ information in GEE, so we
propose the following type P extended GEE.
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3.4.2 Type P Extended GEE Estimator

The type P extended GEE estimator uses Assumption (iii) in Section 3.2 explicitly. The
subgroup δ = 1 is representative of the η = 1 class with the same mean function µ1(T,Z;β)
and variance function Σ1(T,Z) as those of the response variable. Therefore, β can be
estimated from the δ = 1 subgroup alone. Let s be the sample size of the δ = 1 subgroup,
and assume that s/n9 0 as n→∞.

Let GEE∗β(β) = 0 be a d2-dimensional estimating equation about only β, where
GEE∗β(β) =

∑n
i=1 k(Yi, δi|Ti,Zi;β) =

∑n
i=1 ki(β). The d2-dimensional parametric func-

tion ki(β) is a conditionally unbiased function of Y , i.e., E[ki(β)|δi, Ti,Zi] = 0 under our
assumption. A linear form of ki(β) is ki(β) = Bi(β)δi[Yi − µ1(Ti,Zi;β)]. Bi(β) can be any
d2-dimensional function satisfying conditions similar to those on Ai(ψ) to ensure that the re-
sulting estimator has good asymptotic properties. For example, Bi(β) could be ∂µ1(Ti,Zi;β)

∂β ,
∂µ1(Ti,Zi;β)

∂β µ1(Ti,Zi;β)−1, or ∂µ1(Ti,Zi;β)
∂β Σ1(Ti,Zi)−1. A conventional way to estimate β by

GEE∗β(β) = 0 is to fit a quasi-Poisson regression or negative binomial regression for the
δ = 1 subgroup as a sample.

Let the type P extended GEE for the parameters (α, β,θ) be GEE-P(ψ) = 0, where
GEE-P(ψ) = (GEEα(ψ)′, GEE∗β(β)′,m(θ̃ − θ)′)′. We call the solution of GEE-P(ψ) = 0
the type P extended GEE estimator, denoted ψ̃P = (α̃P , β̃P , θ̃). The type P extended GEE
estimator ψ̃P satisfies GEE-P(ψ̃P ) = 0. Rearrangement of the first-order Taylor expansion
of the functions GEE-P(ψ̃P ), whose values are equal to zero, yields the following equations:

1√
n


GEEα(ψ)
GEE∗β(β)
m(θ̃ − θ)

 .= − 1
n


∂GEEα(ψ)

∂α
∂GEEα(ψ)

∂β
∂GEEα(ψ)

∂θ

0 ∂GEE∗β(β)
∂β 0

0 0 −m

 · √n

α̃P − α
β̃P − β
θ̃ − θ

 . (3.9)

Under the conditions on Ai(ψ) and Bi(β), the estimating function GEE-P(ψ) has asymp-
totic normality, and its first-order derivatives converge to a constant matrix asymptotically
surely. Moreover, because θ̃ is estimated from an independent sample, the left-hand side of
(3.9) has asymptotic normality:

1√
n


GEEα(ψ)
GEE∗β(β)
m(θ̃ − θ)

 d−−−→
n→∞

N
(
0,ΦP

)
, where ΦP =

(
Φ∗P 0
0 r−1AVθ̃(θ)

)
,

and the first term on the right-hand side of (3.9) converges to a constant matrix ΨP asymp-
totically surely:

− 1
n


∂GEEα(ψ)

∂α
∂GEEα(ψ)

∂β
∂GEEα(ψ)

∂θ

0 ∂GEE∗β(β)
∂β 0

0 0 −m

 a.s.−−−→
n→∞

ΨP . (3.10)
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Therefore, it is easy to derive the asymptotic distribution for the type P extended GEE
estimator ψ̃P as:

√
n
(
(α̃P , β̃P , θ̃)′ − (α, β, θ)′

)
d−−−→

n→∞
N
(
0,Ψ−1

P ΦP (Ψ−1
P )′

)
.

The variance of (GEEα(ψ), GEE∗β(β)), Φ∗P , can be consistently estimated by

Φ̂∗P = 1
n

∑n
i=1[gαi (ψ), ki(β)][gαi (ψ), ki(β)]′ with ψ̃P plugged in; then Φ̂P =

Φ̂∗P 0
0 m

n ÂVθ̃(θ)

.
Moreover, ΨP can be estimated by the left-hand side of (3.10) with ψ̃P plugged in.
The asymptotic variance of the type P extended GEE estimator can be evaluated by
1
nΨ̂−1

P Φ̂P (Ψ̂−1
P )′.

3.5 Another Class of Extended GEE Estimation

Another way to use the information on δ in GEE is to derive the mean function of Y given δ
explicitly using Assumptions (i) and (ii) in Section 3.2 and the conditional probability P (δ =
1|Z) = q(Z; ρ). The expectation of Y conditional on δ, T , and Z, E(Y |δ, T,Z; ρ, α, β, θ),
denoted Λ∗(δ, T,Z; ρ, ψ), can be derived as

Λ∗(δ, T,Z; ρ, ψ) = µ1(T,Z;β)[p(Z;α)− q(Z; ρ)
1− q(Z; ρ) ]1−δ + (1− δ)µ0(T,Z; θ)1− p(Z;α)

1− q(Z; ρ) .

(3.11)

Let the variance function of Y given δ, T , and Z be Σ∗(δ, T,Z). Another set of
GEEs for the parameters (α, β, θ) is based on the mean function of Y given δ, T ,
and Z, Λ∗(δ, T,Z; ρ, ψ), called GEE2. As in Section 3.3, we plug ρ̂A into the mean
function Λ∗(δ, T,Z; ρ, ψ) in the GEE2 procedures. Evaluated at ρ̂A, Λ∗(δ, T,Z; ρ, ψ)
remains a function of ψ only. The second set of d-dimensional GEEs for the pa-
rameters (α, β, θ) based on the mean function Λ∗(δ, T,Z; ρ̂A, ψ) in (3.11) are denoted
GEE2(ψ) = 0, where GEE2(ψ) =

∑n
i=1 h(Yi|δi, Ti,Zi;ψ). The d-dimensional parametric

function h(Yi|δi, Ti,Zi;ψ), also written hi(ψ), is a conditionally unbiased function of Y , i.e.,
E[hi(ψ)|δi, Ti,Zi] = 0. A linear form of hi(ψ) is hi(ψ) = Ci(ψ)[Yi − Λ∗(δi, Ti,Zi; ρ̂A, ψ)],
where Ci(ψ) can be any d-dimensional function satisfying conditions similar to those on
Ai(ψ). For example, Ci(ψ) could be ∂Λ∗(δi,Ti,Zi;ρ̂A,ψ)

∂ψ , ∂Λ∗(δi,Ti,Zi;ρ̂A,ψ)
∂ψ Λ∗(δi, Ti,Zi; ρ̂A, ψ)−1,

or ∂Λ∗(δi,Ti,Zi;ρ̂A,ψ)
∂ψ Σ∗(δi, Ti,Zi)−1.

The GEE2(ψ) also consists of three parts: d1-dimensional, d2-dimensional, and
d3-dimensional estimating functions for α, β, and θ, respectively, i.e., GEE2(ψ) =
(GEEα2 (ψ)′, GEEβ2 (ψ)′, GEEθ2(ψ)′)′. We write hi(ψ) = (hαi (ψ)′, hβi (ψ)′, hθi (ψ)′)′. Similarly
to the type J and P extended GEE estimators in the last section, we propose two extended
GEE2 estimators below.
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3.5.1 Type J Extended GEE2 Estimator

The d-dimensional type J extended GEE2 for the parameters (α, β, θ) is GEE2-J(ψ) = 0,
where GEE2-J(ψ) = (GEEα2 (ψ)′, GEEβ2 (ψ)′,m(θ̃ − θ)′)′. The joint solution is the type J
extended GEE2 estimator, denoted ψ̃2J = (α̃2J , β̃2J , θ̃). The type J extended GEE2 estima-
tor ψ̃2J satisfies GEE2-J(ψ̃2J) = 0. Rearrangement of the first-order Taylor expansion of
the functions GEE2-J(ψ̃2J), whose values are equal to zero, yields the following equations:

1√
n


GEEα2 (ψ)
GEEβ2 (ψ)
m(θ̃ − θ)

 .= − 1
n


∂GEEα2 (ψ)

∂α
∂GEEα2 (ψ)

∂β
∂GEEα2 (ψ)

∂θ
∂GEEβ2 (ψ)

∂α
∂GEEβ2 (ψ)

∂β
∂GEEβ2 (ψ)

∂θ

0 0 −m

 · √n

α̃2J − α
β̃2J − β
θ̃ − θ

 . (3.12)

Given the conditions on Ci(ψ), the estimating function GEE2(ψ) has asymptotic normality,
and its first-order derivatives converge to a constant matrix asymptotically surely. Moreover,
because the consistent estimator θ̃ is estimated from an independent sample, the left-hand
side of (3.12) has asymptotic normality:

1√
n


GEEα2 (ψ)
GEEβ2 (ψ)
m(θ̃ − θ)

 d−−−→
n→∞

N
(
0,Φ2J

)
, where Φ2J =

(
Φ∗2J 0

0 r−1AVθ̃(θ)

)
,

and the first term on the right-hand side of (3.12) converges to a constant matrix Ψ2J

asymptotically surely:

− 1
n


∂GEEα2 (ψ)

∂α
∂GEEα2 (ψ)

∂β
∂GEEα2 (ψ)

∂θ
∂GEEβ2 (ψ)

∂α
∂GEEβ2 (ψ)

∂β
∂GEEβ2 (ψ)

∂θ

0 0 −m

 a.s.−−−→
n→∞

Ψ2J . (3.13)

Therefore, it is easy to derive the asymptotic distribution for the type J extended GEE2

estimator ψ̃2J as:

√
n
(
(α̃2J , β̃2J , θ̃)′ − (α, β, θ)′

)
d−−−→

n→∞
N
(
0,Ψ−1

2J Φ2J(Ψ−1
2J )′

)
.

The variance of (GEEα2 (ψ), GEEβ2 (ψ)), Φ∗2J , can be consistently estimated by Φ̂∗2J =

1
n

∑n
i=1[hαi (ψ), hβi (ψ)][hαi (ψ), hβi (ψ)]′ with ψ̃2J plugged in; then Φ̂2J =

Φ̂∗2J 0
0 m

n ÂVs(θ)

.
Ψ2J can be estimated by the left-hand side of (3.13) with ψ̃2J plugged in. The asymptotic
variance of the type J extended GEE2 estimator can be evaluated by 1

nΨ̂−1
2J Φ̂2J(Ψ̂−1

2J )′.
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3.5.2 Type P Extended GEE2 Estimator

As for the type P extended GEE in Section 3.4.2, the d2-dimensional estimating equation
GEEβ2 (ψ) = 0 in the type J extended GEE2 is replaced by GEE∗β(β) = 0. The result-
ing estimating equations are called the type P extended GEE2, GEE2-P(ψ) = 0, where
GEE2-P(ψ) = (GEEα2 (ψ)′, GEE∗β(β)′,m(θ̃− θ)′)′. Solving GEE2-P(ψ) = 0 gives the type
P extended GEE2 estimator, denoted ψ̃2P = (α̃2P , β̃P , θ̃). The type P extended GEE2 esti-
mator ψ̃2P satisfies GEE2-P(ψ̃2P ) = 0. Rearrangement of the first-order Taylor expansion
of the functions GEE2-P(ψ̃2P ) yields the following equations:

1√
n


GEEα2 (ψ)
GEE∗β(β)
m(θ̃ − θ)

 .= − 1
n


∂GEEα2 (ψ)

∂α
∂GEEα2 (ψ)

∂β
∂GEEα2 (ψ)

∂θ

0 ∂GEE∗β(β)
∂β 0

0 0 −m

 · √n

α̃2P − α
β̃P − β
θ̃ − θ

 .
(3.14)

Under the conditions on Ci(ψ) and Bi(β), the estimating function GEEP2 (ψ) has asymptotic
normality, and its first-order derivatives converge to a constant matrix asymptotically surely.
Moreover, because θ̃ is estimated from an independent sample, the left-hand side of (3.14)
has asymptotic normality:

1√
n


GEEα2 (ψ)
GEE∗β(β)
m(θ̃ − θ)

 d−−−→
n→∞

N
(
0,Φ2P

)
, where Φ2P =

(
Φ∗2P 0

0 r−1AVs(θ)

)
;

and the first term on the right-hand side of (3.14) converges to a constant matrix Ψ2P

asymptotically surely:

− 1
n


∂GEEα2 (ψ)

∂α
∂GEEα2 (ψ)

∂β
∂GEEα2 (ψ)

∂θ

0 ∂GEE∗β(β)
∂β 0

0 0 −m

 a.s.−−−→
n→∞

Ψ2P . (3.15)

Therefore, it is easy to derive the asymptotic distribution for the type P extended GEE2

estimator ψ̃2P as:

√
n
(
(α̃2P , β̃P , θ̃)′ − (α, β, θ)′

)
d−−−→

n→∞
N
(
0,Ψ−1

2PΦ2P (Ψ−1
2P )′

)
.

The variance of (GEEα2 (ψ), GEE∗β(β)), Φ∗2P , can be consistently estimated by
Φ̂∗2P = 1

n

∑n
i=1[hαi (ψ), ki(β)][hαi (ψ), ki(β)]′ with ψ̃2P plugged in; then Φ̂2P =Φ̂∗2P 0

0 m
n ÂVθ̃(θ)

. Moreover, Ψ2P can be estimated by the left-hand side of (3.15) with

ψ̃2P plugged in. The asymptotic variance of the type P extended GEE2 estimator can be
evaluated by 1

nΨ̂−1
2P Φ̂2P (Ψ̂−1

2P )′.
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3.6 Simulation Study

We conduct Monte Carlo simulation studies to examine the finite-sample properties of the
four likelihood-based approaches and the four extended GEE methods in terms of efficiency
(Simulation setting 1) and robustness to distribution misspecification (Simulation setting
2) and the model Assumption (ii) in Section 3.2 (Simulation setting 3). The parametric
specifications for p(Z) and µη(T,Z) are the same logistic and loglinear regression models as
in Chapter 2, (2.15) and (2.16).

3.6.1 Description of Data Generation

We simulated subject i in the primary data with sexi, agei, and Ti as in Section 2.4.1. The
only difference is that the method for generating the latent indicator ηi is related to the
indicator δi. For i = 1, . . . , n,

• δi
indep∼ Bin(1, qi), where logit(qi) = ρ0 + ρ1sexi + ρ2agei,

ρ = (−0.2,−1.5,−1), about 22% δ = 1

• ηi|δi = 1 ≡ 1
ηi|δi = 0 indep∼ Bin(1, πi), where πi = pi−qi

1−qi and logit(pi) = α0 + α1sexi + α2agei,
α = (1,−1,−0.8) , about 53% η = 1

The event counts Yi were generated in the following three settings, designed to assess the
efficiency, robustness to the Poisson distribution assumption, and robustness to the model
Assumption (ii), respectively, of the estimators. The simulation data are generated as in
Section 2.4.1 for simulation settings 1 and 2. Simulation setting 3 is new.

Simulation setting 3: Robustness to model Assumption (ii).
This simulation assesses the robustness of the extended GEE methods to the model

Assumption (ii). Under that assumption, given η = 1, the value of δ does not affect the dis-
tribution of the response variable. Thus, [Y |η = 1, T,Z] = [Y |η = 1, δ = 1, T,Z] = [Y |η =
1, δ = 0, T,Z]. In this setting, the mean function of the η = 1 class remains µ1(T,Z;β).
However, within the η = 1 class, the subgroups δ = 1 and δ = 0 have different distributions
of Y . Given η = 1, the mean function of the δ = 1 subgroup differs from µ1(T,Z;β) with a
random effect γ1i, and the mean function of the δ = 0 subgroup is determined. The random
effect γ1i is generated by γ1i

iid∼ N
(
0, 1
)
within the range

(
log(qi/pi), log(pi/qi)

)
to ensure

that γ0i exists, since γ0i is determined via γ0i = log[pi − exp(γ1i)qi
pi − qi

]. The event counts Yi in
the two latent classes were generated independently from Poisson distributions as follows:

For ηi = 1: Yi|ηi = 1, δi = 1 indep∼ Poisson
(

exp(γ1i)µ1(Ti, sexi, agei;β)
)

Yi|ηi = 1, δi = 0 indep∼ Poisson
(

exp(γ0i)µ1(Ti, sexi, agei;β)
)
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For ηi = 0: Yi|ηi = 0 indep∼ Poisson
(
µ0(Ti, sexi, agei; θ)

)
The simulated general population data was also as in Section 2.4.1. Although the δ = 1

group may no longer be a good representative for the η = 1 class, which may lead to biased
estimation for β in the type P extended GEE estimators, we expect that the α estimates
will still be consistent and efficient.

3.6.2 Simulation Outcomes

Tables 3.1 to 3.9 present summaries of the estimators and their corresponding robust stan-
dard error estimators for 250 Monte Carlo datasets generated under the experimental set-
tings described above. We evaluated the MLE and the three pseudo-MLEs for the pa-
rameters in the LCM presented in Section 3.3 under simulation settings 1 and 2 to study
their efficiency and robustness to distribution misspecification. We also evaluated the ex-
tended GEE-based estimators under simulation setting 3 to assess their robustness to model
Assumption (ii). We computed θ̃ and its asymptotic variance used in the type B and AB
pseudo-MLEs and the extended GEE estimators using the R function glm following a quasi-
Poisson regression based on the supplementary information. The evaluation of ρ̂A via l2(ρ)
alone was used in the type A and AB pseudo-MLEs; we also computed this using the R
function glm to fit a quasi-binomial regression of the data δ in the cohort.

Tables 3.1 to 3.4 present the results for the MLE and the three pseudo-MLEs under
simulation setting 1 and three versions of simulation setting 2, respectively. We implemented
the likelihood-based procedures by (a) maximizing the observed data likelihood or pseudo-
likelihood via an R optimization function and (b) applying the EM algorithm described in
Appendix A. Because of the complication of the likelihood functions, direct maximization
by the R optimization function did not give reliable results. The estimates presented in the
tables and discussed below were evaluated via the EM algorithm.

Table 3.1 presents the efficiency study of the MLE and the three pseudo-MLEs. The
asymptotic variance of the MLE was estimated by the conventional method, the inverse
of the Fisher information matrix, since the model was correctly specified. The asymptotic
variances of the pseudo-MLEs were estimated by the sandwich variance estimator presented
in Section 3.3. The complexity of the implementation reduced as we moved from the MLE
to the type A, type B, and type AB pseudo-MLEs, and the computation became less
expensive too. All four estimators and their variance estimators were consistent, and the
pseudo-MLEs had an efficiency similar to that of the standard MLE. With the estimates
of ρ, the type A pseudo-MLE did not lose any efficiency compared to the MLE. With the
estimates of θ from the supplementary information, the type B and AB pseudo-MLEs were
more efficient in estimating the primary parameters (α, β) compared to the MLE and the
type A pseudo-MLE, respectively.
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Table 3.2 summarizes the performance of the MLE and the three pseudo-MLEs when
only Y in the η = 0 class is misspecified. We can see the advantage of using the supple-
mentary information to estimate θ. The type B and AB pseudo-MLEs were robust to this
type of overdispersion. In contrast, when Y in the η = 1 class is misspecified, none of the
likelihood-based estimators remain consistent. The estimates are especially biased in the
α parameters; see Tables 3.3 and 3.4. Under simulation setting 2, the sandwich variance
estimator for MLE is better; we use it in Tables 3.2 to 3.4. In the distribution misspecifica-
tion cases, the robust variance estimation performs well for the MLE and 3 pseudo-MLEs.
Overall, the likelihood-based approaches lack robustness to the distributional assumption,
at least for the η = 1 class.

In the numerical analyses in this chapter, we set Ai(ψ) to ∂Λ(Ti,Zi;ψ)
∂ψ and Ci(ψ) to

∂Λ∗(δi,Ti,Zi;ρ,ψ)
∂ψ . We use the estimation of β based on the δ = 1 subgroup data in the type

P extended GEE and GEE2 estimators. We compute it using the R function glm following
a quasi-Poisson regression. We find the roots of the estimating equations GEE(ψ) = 0 and
GEE2(ψ) = 0 numerically using the R function dfsane in the package BB.

Tables 3.5 to 3.8 present the results for the extended GEE methods under simulation
setting 1 and three cases of simulation setting 2, respectively. In these tables, θ̃ estimated
from the supplementary information corresponded to the simulation settings in Tables 3.1
to 3.4. These tables summarize the four extended GEE estimators and their asymptotic
standard errors (see Sections 3.4 and 3.5). The type J extended GEE estimator had poor
numerical convergence even when the algorithm started from the true parameter values. The
estimates were especially biased when the η = 1 class was misspecified. The asymptotic
standard error estimation was not consistent with or without overdispersion. The type
J extended GEE estimator for the LCMs without a distributional assumption for each
class and without extra model assumptions did not perform well numerically. The type J
extended GEE2 estimator was consistent and had similar performance to that of the type
P extended GEE and GEE2 estimators in Tables 3.5 and 3.6. However, it lost consistency
when the η = 1 class was overdispersed (Tables 3.7 and 3.8). The starting values for the
type P extended GEE and GEE2 estimators did not affect the results. Without loss of
generality, the results in Tables 3.5 to 3.9 start from all zeros. On the other hand, the type
P extended GEE and GEE2 estimators that use the δ information had similar performance.
They were consistent and also robust to any distribution misspecification in simulation
setting 2, although they were less efficient than the likelihood-based approaches.

Simulation setting 3 evaluates the robustness of the extended GEE methods to the
model Assumption (ii) in Section 3.2. We estimated β from only the η = 1 class data and
verified that the mean of the η = 1 class still followed µ1(T,Z;β) under simulation setting
3. Since the δ = 1 subgroup data randomly varied from the mean function µ1(T,Z;β),
Assumption (iii) was invalid. This resulted in biased β estimation in the type P extended
GEE estimators, which applied Assumption (iii) explicitly. Therefore, we were concerned
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only with the consistency and robustness of the α estimation. Table 3.9 presents the type P
extended GEE and GEE2 and the type J extended GEE2 estimators. These three estimators
had similar performance. The α estimates were slightly inaccurate. Given the relatively
large standard errors in the extended GEE estimators, the true values can easily fall in
the CIs. Therefore, provided the mean of the δ = 1 subgroup is not too different from
that of the η = 1 class, we can still get reasonable estimates for α. Other methods, e.g.,
the generalized method of moments (GMM). may improve on the distribution-free GEE
approaches for LCMs. This will discuss at the end of Chapter 6.

3.7 Analysis II of CAYACS Physician Claims

We now analyze the count data presented in Section 2.5. The characteristics of the data
in the cohort (P: n = 1609) and the population (Q: m = 13793) were presented in Table
2.4. Our descriptive analysis compared the visit patterns for the survivors with RSC before
follow-up, those with RSC during follow-up, and the rest of the cohort. The results showed
that the survivors with RSC have a much higher overall visit frequency than the rest of
the cohort regardless of the timing of the RSC, and the rest of the cohort still has a higher
visit frequency than the general population. These findings motivated our additional model
assumptions in Section 3.2.

In principle, survivors with RSC at any time are at risk of ongoing problems. Let δ0

and δT indicate the RSC status at the beginning and the end of the follow-up, respectively.
We first used δ = δ0 as the RSC status to fit the LCM on the CAYACS data using the
MLE, pseudo-MLEs, and extended GEE estimators developed in this chapter; the results
are presented in Section 3.7.1. In Section 3.7.2, we apply the models from Section 3.7.1 to
predict the at-risk status of the survivors who experienced RSC during the follow-up, i.e.,
δ0 = 0 and δT = 1. Their δ information was not 1 when the models were fitted, but they
should be predicted as η = 1 according to our model assumption. This can to some extent
validate our model and estimation procedures.

Let Pδ with δ = 0, 1, respectively, be the two subsets in the cohort with the correspond-
ing δ values, i.e., P1 ∪ P0 = P. In the cohort (P: n = 1609), P1 has sample size s = 168
and P0 has sample size n− s = 1441.

We wish to compare the visit counts for Q, P, and the two subsets P0 and P1. A plot
of visit counts vs. observation length showed a roughly linear relationship. Therefore, visit
counts/observation length = visit counts per year can also be used for the comparisons.
Table 3.10 presents the contingency tables of the categorical covariates; and Table 3.11
presents the summary statistics of age at entry, observation length, visit counts, and visit
counts per year for the four datasets. The descriptive statistics show that the distributions
of visit counts and visit counts per year decrease from high to low in the order P1, P, P0,
and Q. The δ = 1 subset has much higher values than the δ = 0 subset, although the δ = 1
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subset is only about 10% of the survivors. Taking the population as the reference for the
not-at-risk class, the δ = 0 subset contained some individuals from the at-risk class with
higher visit frequencies. This confirmed our conjecture that the at-risk class in the cohort
consists of the whole δ = 1 subset and part of the δ = 0 subset.

Table 3.10 presents the quasi-Poisson regression analysis for Q, P, P0, and P1. After
we adjusted for the independent variables, the trend of visit counts in the four datasets
was the same as that seen in the descriptive analysis. The subset P1, with about 10% of
the sample, has about 44% more visits than P on average. The analysis also revealed a
varying pattern of the frequency over time in the δ = 1 subset P1: the estimated coefficient
of log(T ) was much smaller than 1, while the coefficients were about 1 for the other three.
Thus, the mean of the visit counts did not increase proportionally to observation length in
the δ = 1 subset. It may be necessary to study the visit trend over time. The analysis also
indicated that the visit counts were highly overdispersed, so the distribution-free extended
GEE estimators may perform better for the CAYACS data than MLEs.

3.7.1 Extended GEE Analysis of Visit Counts Under a Latent Class
Model

We have seen in simulation setting 2 that the likelihood-based methods lost consistency
and provided biased estimation for the parameters in the LCM, especially those in the risk
model, when counts in the η = 1 class were overdispersed. However, the likelihood-based
estimates would not have large biases in the regression models for both latent classes. The
CAYACS counts were highly overdispersed; see Table 3.12. The likelihood-based approaches
may not be valid, but they can still be good reference sets. We analyzed the visit counts
under the LCM using the type P extended GEE and GEE2 estimators, as well as the MLE
and the three pseudo-MLEs as a comparison.

Table 3.13 presents the MLE and the three pseudo-MLEs and their corresponding es-
timated standard errors. All the likelihood-based estimates are similar. They all identify
diagnosis in the 80s and radiation but no chemo as significant factors in the risk model
for η. Table 3.14 lists the type P extended GEE and GEE2 estimators and their standard
errors. In this table, β in the regression model of the at-risk class was estimated from the
δ = 1 subset data, and the estimates were close to the likelihood-based estimates for β. This
confirmed our choice of the δ = 1 subset as representatives to estimate the parameters in the
regression model of the at-risk class. The two GEE estimators for α in the risk model were
similar and identified the same set of significant risk factors, although they differed from the
likelihood-based results. Both GEE methods identified sex, diagnosis in the 80s, radiation
but no chemo, and both chemo and radiation therapy as the significant risk factors for the
risk model. For example, female survivors diagnosed with cancer in the 80s and treated
with radiation were much more likely to be in the at-risk class. An interesting finding was
the opposite direction of the age at entry effects between the risk model for η and the two
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regression models in each class. In both of the latent classes, survivors diagnosed at a later
age tend to have more frequent visits, but the older survivors are less likely to be in the
at-risk class.

In conclusion, the MLE, pseudo-MLEs, and extended GEE estimators gave similar β
and θ estimates but differed in the α estimates. However, in general, they all identified the
most significant factors for the risk model. The extended GEE estimates of the real data
are more reliable, since the counts are overdispersed.

3.7.2 Application: Risk Classification and Prediction in the Survivor Co-
hort

The LCM can also be used for risk classification and prediction. This section uses the type
AB pseudo MLE and type P extended GEE from Section 3.7.1 to classify the cohort into
two categories, the at-risk and not-at-risk categories. In Section 3.7.1, we used δ = δ0 for
the model fitting. In the cohort, the group with δ0 = 0 and δT = 1 (sample size v = 69)
should be in the at-risk class, according to our model. We can compare the predictions for
this group from the two estimators. This also provides a way to validate our model and
estimation procedures.

After estimating the parameters (α, β, θ) in the LCM and the standard error of the
estimator, we can evaluate consistent estimators of the conditional probability of η and
their confidence intervals. For example, a consistent estimator of the probability of η = 1
given covariates Z can be calculated by plugging the estimates of α into the risk model,
P̂ (η = 1|Z) = p(Z; α̂). This quantity estimates the probability of individuals with initial
characteristics Z being in the at-risk class. Using Bayes’ theorem, we can also get a consis-
tent estimator for P (η = 1|Z, T, Y ) by plugging the estimates of (α, β, θ) into the following
formula:

P
(
η = 1|Z, T, Y ;α, β, θ

)
= [Y |η = 1, T,Z;β]p(Z;α)

[Y |η = 1, T,Z;β]p(Z;α) + [Y |η = 0, T,Z; θ](1− p(Z;α)) .

(3.16)

This evaluation needs the distribution of Y in both the latent classes. In the likelihood-based
methods, the distribution of Y given η, T , and Z is assumed to be Poisson. In the extended
GEE approaches, we use negative binomial regressions to approximate the distributions
of Y in the two classes. The quantity P̂ (η = 1|Z, T, Y ) evaluates the probability that a
survivor is at risk with the subject-specific information Y and T observed after the follow-
up, as well as initial characteristics Z. For an individual survivor, a closed form of the
CI for P̂ (η = 1|Z, T, Y ) is not easily derived, given the complication of (3.16). However,
since we have derived the asymptotic distributions of the parameter estimators, a CI for
P̂ (η = 1|Z, T, Y ) can be evaluated via a parametric bootstrap procedure.
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Figure 3.1: Risk probability estimations from the type AB pseudo-MLE.
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Figure 3.2: Risk probability estimations from the type P extended GEE estimator.
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We used the type AB pseudo-MLE in the last column of Table 3.13 and the type P
extended GEE in the first column of Table 3.14 to estimate P̂ (ηi = 1|Zi) and P̂ (ηi =
1|Zi, Ti, Yi) for each individual in the cohort. Figures 3.1 and 3.2 give histograms of the
estimated risk probabilities from the pseudo-MLE and the GEE estimator. The histograms
on the left are for P̂ (ηi = 1|Zi), and those on the right are for P̂ (ηi = 1|Zi, Ti, Yi). In
the overall cohort, the estimated proportion (see Lin et al., 2000) of subjects in the at-
risk class,

∑n
i=1 P̂ (ηi = 1|Zi)/n, was about 40.3% for the pseudo-MLE and 49.5% for the

GEE estimator. The first plots of Figures 3.1 and 3.2 also show that the GEE estimator
provided a higher risk probability estimation. Given the overdispersed visit counts, the
GEE estimation may be more reliable. Comparing the top right plots of Figures 3.1 and 3.2
shows that the estimated risk probabilities, P̂ (ηi = 1|Zi, Ti, Yi), from the GEE estimator
were evenly distributed from 0 to 1, whereas those from the pseudo-MLE were extremely low
or high. This is because the distribution of Y was approximated by the negative binomial
to overcome the overdispersion in the GEE method. The middle rows of Figures 3.1 and
3.2 show the distributions of the estimated risk probabilities of the RSC before follow-up
subset of the cohort (s = 168). The final rows of Figures 3.1 and 3.2 show the distributions
of the estimated risk probabilities of another subset in the cohort, the RSC during follow-up
group (v = 69). Compared to the distributions of the overall cohort, both of the estimated
risk probabilities, P̂ (ηi = 1|Zi) and P̂ (ηi = 1|Zi, Ti, Yi), of the subsets had a much higher
rate of large values, especially the estimates from the GEE estimator in Figure 3.2.

We classify the cohort by the estimated risk probabilities P̂ (ηi = 1|Zi) and P̂ (ηi =
1|Zi, Ti, Yi) at a cut-off value. A cut-off value can be chosen subjectively or based on
expert opinions. We used the estimated proportions of subjects in the at-risk class, 0.4
and 0.5 as cut-off values, for the estimated risk probabilities from the pseudo-MLE and
the GEE estimator, respectively. Table 3.15 summarizes the risk classification (at-risk and
not-at-risk) vs. RSC status (no, before follow-up, and during follow-up). The first column
uses the criterion that when P̂ (ηi = 1|Zi) > cut-off, subject i is classified into the at-
risk group, i.e., η̂i = 1; otherwise, η̂i = 0. The second column uses the criterion that
when P̂ (ηi = 1|Zi, Ti, Yi) > cut-off, η̂i = 1; otherwise, η̂i = 0. Survivors with high risk
characteristics or a high visit frequency can be at risk of later effects, so the last column
used the criterion that when either P̂ (ηi = 1|Zi) or P̂ (ηi = 1|Zi, Ti, Yi) > cut-off, η̂i = 1;
otherwise, η̂i = 0. Comparing the risk predictions for the RSC during follow-up group shows
that the false negative rates from the extended GEE estimator were always better than those
from the pseudo-MLE, and the best false negative rate was only about 10% (7/69). This to
some extent validated our model, estimating procedures, and the superiority of the extended
GEE methods. The survivors with RSC during the follow-up who were not predicted to
be at risk by the LCM had infrequent visits and did not have high risk characteristics. We
suspect that is because the CAYACS data do not include oncologist visits.
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3.8 Summary and Discussion

We have developed robust estimating procedures for the LCM. Our estimators extend the
well-established GEE approach and are robust to distribution misspecification.

We introduced a binary variable δ as partial information about the latent risk indicator
η, where δ = 1 is a subgroup of η = 1. We proposed three pseudo-MLEs for the counts
and compared them to the MLE under a mixture Poisson distribution. To obtain more
robust statistical methods, we proposed two sets of extended GEEs for the parameters in
the LCM. We developed two types of extended GEE estimators for each set of extended
GEEs by using the supplementary dataset for the estimation of one class alone or together
with the partial information about the other class. We derived the asymptotic properties
of the pseudo-MLEs and the extended GEE estimators, and we estimated the variances
using extended Huber sandwich estimators. We examined the finite-sample properties of
the estimators for both efficiency and robustness. Our simulation studies verified that the
pseudo-MLEs were efficient but lacked robustness to distribution misspecification, while the
extended GEE estimators were robust to distribution misspecification and had satisfactory
efficiency. We analyzed the CAYACS counts under the LCM using the estimators. We also
performed an application of risk classification and prediction under the fitted LCM. Given
the overdispersed counts, the type P GEE methods performed better than likelihood-based
estimators in terms of predicting the RSC during follow-up group.

The type P extended GEE and GEE2 estimators performed equally well in the simulation
and the real-data analysis. Because its computation is simpler, we extend the favorable
type P extended GEE method to longitudinal settings in Chapter 5 by adjusting for within-
subject correlation. This will be referred to as the extended GEE estimator.
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Table 3.5: Simulation Outcomes of Extended GEEs. Setting 1: Efficiency Study

(Primary data n = 1000; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3
True value 1 -1 -0.8 1.8 -0.6 -0.5 1

Type J extended GEE estimator of (α, β)
sm 0.953 -1.046 -0.669 1.809 -0.572 -0.517 0.998
sse 0.220 0.235 0.232 0.131 0.128 0.116 0.087

smse 11.049 3.557 1.008 2.370 1.880 0.650 0.132
Type P extended GEE estimator of (α, β)

From δ = 1 subgroup
sm 1.009 -0.998 -0.821 1.798 -0.603 -0.495 1.000
sse 0.209 0.227 0.341 0.075 0.050 0.060 0.052

smse 0.210 0.224 0.356 0.072 0.049 0.059 0.052
Type J extended GEE2 estimator of (α, β)

sm 1.008 -0.998 -0.822 1.803 -0.604 -0.505 1.000
sse 0.222 0.226 0.345 0.080 0.054 0.065 0.058

smse 0.209 0.224 0.362 0.084 0.051 0.063 0.061
Type P extended GEE2 estimator of α

From δ = 1 subgroup
sm 1.007 -1.004 -0.823
sse 0.223 0.225 0.341

smse 0.207 0.220 0.354

Table 3.6: Simulation Outcomes of Extended GEEs. Setting 2: Case 1 with κ = 1

(Primary data n = 1000; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3
True value 1 -1 -0.8 1.8 -0.6 -0.5 1

Type J extended GEE estimator of (α, β)
sm 0.911 -1.048 -0.634 1.826 -0.562 -0.543 1.000
sse 0.327 0.242 0.301 0.145 0.156 0.129 0.093

smse 9.895 4.930 1.054 2.204 1.996 0.763 0.145
Type P extended GEE estimator of (α, β)

From δ = 1 subgroup
sm 1.021 -1.014 -0.842 1.800 -0.602 -0.498 1.000
sse 0.231 0.249 0.429 0.077 0.048 0.059 0.055

smse 0.231 0.262 0.403 0.073 0.049 0.060 0.052
Type J extended GEE2 estimator of (α, β)

sm 1.008 -1.023 -0.783 1.797 -0.602 -0.504 1.003
sse 0.234 0.258 0.416 0.094 0.051 0.064 0.068

smse 0.229 0.264 0.411 0.091 0.052 0.064 0.066
Type P extended GEE2 estimator of α

From δ = 1 subgroup
sm 1.009 -1.026 -0.792
sse 0.234 0.255 0.412

smse 0.227 0.259 0.400
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Table 3.7: Simulation Outcomes of Extended GEEs. Setting 2: Case 2 with κ = 1

(Primary data n = 1000; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3
True value 1 -1 -0.8 1.8 -0.6 -0.5 1

Type J extended GEE estimator of (α, β)
sm 1.340 -0.961 -0.501 1.399 -0.587 -0.616 0.773
sse 2.176 0.608 0.713 1.636 0.340 0.511 1.000

smse 14.968 6.204 1.532 3.281 2.134 0.690 0.440
Type P extended GEE estimator of (α, β)

From δ = 1 subgroup
sm 1.053 -0.975 -0.810 1.807 -0.602 -0.502 0.985
sse 0.496 0.608 0.865 0.234 0.182 0.250 0.174

smse 0.482 0.608 0.841 0.283 0.194 0.235 0.204
Type J extended GEE2 estimator of (α, β)

sm 1.739 -0.869 -0.634 0.978 -0.706 -0.680 0.781
sse 2.569 0.878 1.194 2.246 0.368 0.647 0.885

smse 0.576 0.695 1.004 0.299 0.208 0.301 0.224
Type P extended GEE2 estimator of α

From δ = 1 subgroup
sm 1.085 -1.052 -0.838
sse 0.519 0.610 0.779

smse 0.507 0.610 0.860

Table 3.8: Simulation Outcomes of Extended GEEs. Setting 2: Case 3 with κ = 1

(Primary data n = 1000; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3
True value 1 -1 -0.8 1.8 -0.6 -0.5 1

Type J extended GEE estimator of (α, β)
sm 1.236 -0.963 -0.527 1.489 -0.585 -0.576 0.790
sse 2.074 0.579 0.694 1.516 0.370 0.485 0.936

smse 15.081 6.674 1.387 3.545 3.004 1.084 0.520
Type P extended GEE estimator of (α, β)

From δ = 1 subgroup
sm 1.151 -1.077 -0.927 1.780 -0.575 -0.477 0.994
sse 0.602 0.588 0.915 0.238 0.179 0.237 0.191

smse 0.542 0.605 0.918 0.238 0.171 0.243 0.177
Type J extended GEE2 estimator of (α, β)

sm 1.517 -0.793 -0.524 1.278 -0.691 -0.674 0.896
sse 2.285 0.860 1.230 2.157 0.314 0.668 0.768

smse 2.733 3.016 9.224 82.164 2.625 0.933 54.715
Type P extended GEE2 estimator of α

From δ = 1 subgroup
sm 1.083 -0.885 -0.761
sse 0.907 0.884 0.911

smse 0.493 0.674 0.891
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Table 3.9: Simulation Outcomes of Extended GEEs. Setting 3

(Primary data n = 1000; 250 repetitions)
Parameter α0 α1 α2 β0 β1 β2 β3
True value 1 -1 -0.8 1.8 -0.6 -0.5 1

Type P extended GEE estimator of (α, β)
From δ = 1 subgroup

sm 0.819 -1.329 -0.900 1.836 -0.443 -0.437 0.999
sse 0.232 0.278 0.394 0.116 0.118 0.121 0.085

smse 0.231 0.252 0.394 0.136 0.088 0.111 0.098
Type J extended GEE2 estimator of (α, β)

sm 0.830 -1.326 -0.903 1.831 -0.443 -0.440 1.002
sse 0.245 0.279 0.380 0.133 0.127 0.123 0.095

smse 0.226 0.257 0.390 0.127 0.119 0.118 0.093
Type P extended GEE2 estimator of α

From δ = 1 subgroup
sm 0.820 -1.326 -0.904
sse 0.230 0.270 0.378

smse 0.225 0.247 0.385

Table 3.10: Summary of Categorical Variables for General Population, Survivor Cohort,
and Cohort Subsets

Sex SES Diagnosis period Treatment
F M High Low 80s 90s Chemo no Rad Rad no Chemo Both Others

Survivor cohort P: n = 1609
708 901 659 950 649 960 660 139 402 408

δ = 1 subset P1: s = 168
72 96 68 100 63 103 63 19 35 51

δ = 0 subset P0: n− s = 1441
636 805 591 850 586 857 597 120 367 357

General population Q: m = 13793
6009 7784 5124 8669
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Table 3.11: Summary of Continuous Variables for General Population, Survivor Cohort,
and Cohort Subsets

percentile
mean SD 5th 25th median 75th 95th

Survivor cohort P: n = 1609
age at entry 14.37 6.30 5.78 8.50 13.70 20.26 24.19
observation length (year) 9.70 5.43 2.19 5.05 9.22 14.00 19.09
visit counts 56.39 52.05 <5† 17 39 79 169
visit counts/year 6.34 7.28 0.86 2.58 4.62 7.71 16.83

δ = 1 subset P1: s = 168
age at entry 13.61 6.17 5.47 8.22 12.65 19.24 23.89
observation length (year) 8.37 5.54 0.86 3.29 8.06 12.06 18.23
visit counts 70.77 60.49 8 24 50 106 204.55
visit counts/year 12.26 13.55 1.25 4.49 7.72 14.82 40.68

δ = 0 subset P0: n− s = 1441
age at entry 14.46 6.31 5.84 8.54 13.93 20.34 24.22
observation length (year) 9.86 5.40 2.35 5.16 9.35 14.16 19.13
visit counts 54.71 50.73 <5† 17 37 77 168
visit counts/year 5.65 5.78 0.81 2.46 4.36 7.23 14.55

General population P: m = 13793
age at entry 14.07 6.17 5.71 8.39 13.05 19.96 23.89
observation length (year) 8.49 5.08 1.83 4.29 7.80 12.16 17.89
visit counts 27.88 27.93 <5† 6 18 42 89
visit counts/year 3.13 2.85 <5† 1.13 2.43 4.33 8.47
†Because of confidentiality concerns, counts below 5 are not displayed.
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Table 3.12: Quasi-Poisson Regression with General Population, Survivor Cohort, and Co-
hort Subsets

General Population Q: m = 13793 Survivor Cohort P: n = 1609
Factor estimate se p-value estimate se p-value
intercept 1.032 0.031 < .001 2.176 0.095 < .001
male (vs. female) -0.376 0.012 < .001 -0.360 0.038 < .001
age at entry 0.343 0.020 < .001 0.152 0.058 0.009
SES high (vs. low) -0.023 0.013 0.07 -0.008 0.038 0.832
ln(time period) 1.089 0.012 < .001 0.876 0.035 < .001
dispersion parameter 14.67 0.24a 31.78 1.84a

δ = 0 subset P0: n− s = 1441 δ = 1 subset P1: s = 168
Factor estimate se p-value estimate se p-value
intercept 1.904 0.101 < .001 3.144 0.212 < .001
male (vs. female) -0.388 0.038 < .001 -0.200 0.110 0.072
age at entry 0.140 0.059 0.018 0.332 0.174 0.058
SES high (vs. low) 0.010 0.039 0.796 -0.109 0.113 0.339
ln(time period) 0.974 0.038 < .001 0.558 0.078 < .001
dispersion parameter 28.39 1.89a 36.08 3.91a

aStandard error of dispersion parameters estimated by Bootstrap (B=1000).
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Table 3.13: Analysis of CAYACS Data by Likelihood-based Approachesa

MLE type A pseudo-MLE type B pseudo-MLE type AB pseudo-MLE
Factor estimate sw.se estimate sw.se estimate sw.se estimate sw.se

ρ estimates in the δ Model
from δ glm fit

intercept -1.698 (0.260) -1.778 (0.253) -1.704 (0.261)
male (vs. female) -0.042 (0.176) 0.037 (0.166) -0.032 (0.178)
age at entry -0.612 (0.279) -0.554 (0.272) -0.606 (0.279)
SES high (vs. low) -0.029 (0.167) -0.016 (0.167) -0.032 (0.167)
diagnosis in 90s (vs. 80s) 0.135 (0.173) 0.143 (0.175) 0.129 (0.174)
treatment (vs. other)
chemo but no rad -0.372 (0.202) -0.385 (0.204) -0.368 (0.203)
rad but no chemo 0.229 (0.297) 0.217 (0.299) 0.234 (0.298)
both -0.415 (0.235) -0.392 (0.233) -0.417 (0.235)

α estimates in the Risk Model
intercept 0.253 (0.179) 0.234 (0.179) 0.201 (0.174) 0.185 (0.174)
male (vs. female) -0.169 (0.130) -0.150 (0.130) -0.209 (0.116) -0.192 (0.116)
age at entry -0.349 (0.215) -0.339 (0.215) -0.456 (0.189) -0.448 (0.189)
SES high (vs. low) 0.131 (0.136) 0.135 (0.137) 0.137 (0.117) 0.141 (0.117)
diagnosis in 90s (vs. 80s) -0.690 (0.121) -0.685 (0.121) -0.592 (0.116) -0.586 (0.116)
treatment (vs. other)
chemo but no rad -0.192 (0.145) -0.197 (0.145) -0.127 (0.137) -0.133 (0.137)
rad but no chemo 0.550 (0.215) 0.546 (0.215) 0.464 (0.208) 0.460 (0.209)
both 0.077 (0.152) 0.081 (0.151) 0.129 (0.148) 0.133 (0.148)

β estimates in the Regression Model for the At-risk Class
intercept 3.267 (0.123) 3.266 (0.123) 3.181 (0.117) 3.182 (0.117)
male (vs. female) -0.252 (0.051) -0.252 (0.051) -0.232 (0.047) -0.233 (0.047)
age at entry 0.152 (0.080) 0.152 (0.080) 0.185 (0.071) 0.185 (0.071)
SES high (vs. low) -0.050 (0.048) -0.050 (0.048) -0.050 (0.044) -0.050 (0.044)
ln(time period) 0.595 (0.044) 0.595 (0.044) 0.625 (0.042) 0.625 (0.042)

GEE estimates based on
θ estimates in the Regression Model for the Not-at-risk Class Supplementary Data: m=13793

intercept 1.423 (0.104) 1.423 (0.104) 1.032 (0.031)
male (vs. female) -0.415 (0.051) -0.415 (0.051) -0.376 (0.012)
age at entry 0.233 (0.077) 0.234 (0.077) 0.343 (0.020)
SES high (vs. low) -0.041 (0.054) -0.041 (0.054) -0.023 (0.013)
ln(time period) 0.938 (0.041) 0.938 (0.041) 1.089 (0.012)
aSignificant effect with p-value ≤ 0.05 in Boldface.
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Table 3.14: Analysis of CAYACS Data by Extended GEE methodsa

type P extended GEE type P extended GEE2

Factor estimate sw.se estimate sw.se
α estimates in the Risk Model

intercept 1.051 (0.646) 1.251 (0.685)
male (vs. female) -0.857 (0.460) -0.806 (0.449)
age at entry -1.175 (0.740) -1.223 (0.759)
SES high (vs. low) 0.332 (0.435) 0.369 (0.438)
diagnosis in 90s (vs. 80s) -0.813 (0.333) -0.841 (0.310)
treatment (vs. other)
chemo but no rad 0.032 (0.240) -0.122 (0.234)
rad but no chemo 1.209 (0.573) 0.711 (0.418)
both 0.779 (0.302) 0.482 (0.282)

β estimates in the Regression Model for the At-risk Class
GEE estimates based on
δ = 1 subgroup: s = 168

intercept 3.144 (0.212)
male (vs. female) -0.200 (0.110)
age at entry 0.332 (0.174)
SES high (vs. low) -0.109 (0.113)
ln(time period) 0.558 (0.078)
aSignificant effect with p-value ≤ 0.05 in Boldface.

Table 3.15: Comparison of Risk Classification and RSC status

Criterion P̂ (ηi = 1|Zi) > cut-off P̂ (ηi = 1|Zi, Ti, Yi) > cut-off either > cut-off
Classification η̂i = 0 η̂i = 1 η̂i = 0 η̂i = 1 η̂i = 0 η̂i = 1
RSC status By type AB pseudo-MLE (cut-off = 0.4)
No 786 586 935 437 594 778
Before follow-up 95 73 65 103 39 129
During follow-up 21 48 18 51 8 61
RSC status By type P extended GEE (cut-off = 0.5)
No 718 654 757 615 568 804
Before follow-up 86 82 55 113 41 127
During follow-up 21 48 10 59 7 62

64



Chapter 4

Analysis III of CAYACS Physician
Claims: Conventional Longitudinal
Analysis

Why do we choose longitudinal analysis for the CAYACS data? As described in Section 1.1
and depicted in Figure 1.1, the CAYACS program collected physician claims longitudinally
over about 20 years for the survivor cohort and the general population. Our cross-sectional
analyses have provided insight into the visit frequency for the population and the at-risk
class in the cohort, and the risk assessment and classification of the cohort. However, such
analyses cannot reveal the visit trend over time for each class. From the quasi-Poisson
analysis in Table 3.12, we see that the visit trend over time (the coefficient of log T ) in the
population is especially different from that of the RSC group in the cohort.

Longitudinal analysis is effective for studying change over time. It can distinguish
variation in responses over time for one person from the overall variation in response (Diggle
et al., 2002). For the CAYACS data it allows us to distinguish variations in the visit
pattern due to an individual’s ageing from variations due to differences in individuals.
Longitudinal studies on the CAYACS data also offer other benefits. First, they can handle
time-varying covariates. For example, the survivors’ SES potentially changes over time; in
census years this information can be updated. Second, they can evaluate time-dependent
effects. The effects of some time-independent covariates may change over time. For example,
the sex effect may vary over time because women visit physicians more frequently during
pregnancy. Third, they can conduct subject-specific inference with repeated outcomes from
each subject. With cross-sectional data, averaging across people to overcome measurement
error ignores natural differences between individuals. With repeated values, we can borrow
strength across time for the person of interest and the group (Diggle et al., 2002).

In this chapter and the next, we study the CAYACS yearly visit counts and yearly
medical costs. This chapter analyzes the longitudinal data by conventional GEE approaches,
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first for the cohort and the population separately for a descriptive comparison, and then
for the combined data to test their differences formally. In Chapter 5, we will extend the
extended GEE estimator for the LCM developed in Chapter 3 to longitudinal data and
analyze the CAYACS data under LCMs.

4.1 CAYACS Longitudinal Data Structure and Description

4.1.1 Discrete Time Scales

The main advantage of a longitudinal study is its effectiveness for studying change over
time (Diggle et al., 2002). The choice of the time scale depends on the scientific objectives.
For the CAYACS analysis, we use a discrete time unit of one year.

Figure 4.1 illustrates the calendar time scale vs. the individual time scale for hypothetical
CAYACS individuals. The calendar time scale, based on the calendar year, is appropriate if,
for example, we want to study resource usage by calendar year for administrative purposes.
When the patients are the focus, the individual time scale is appropriate.

Figure 4.1: Calendar time scale vs. individual time scale for hypothetical individuals.

In the CAYACS data, we have two choices for the starting points of the individual
time scale. The first is the individual’s birthday, i.e., age as time scale according to the
individual’s age. This is a good choice if we want to compare the visit patterns between the
cohort and the population at all ages. It may distinguish the effects of diagnosis age and
ageing. As mentioned before, most of the matched population sample was followed from
the age of five by the CAYACS program. With this starting point, we do not need to choose
the starting points of the population according to the cohort. During the follow-up period,
the ages of the subjects range from 5 to 46. However, the physician claims of the cohort are
available only five years after diagnosis up to 20 years, and we want to study the patterns of
survivors. The second choice of starting point is the start date of the individual’s follow-up.
We use this option, because it focuses on the visit pattern during follow-up. The starting
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point of each individual in the population should be the start of follow-up of a matched
individual from the cohort.

For the CAYACS data we assume noninformative censoring for the cohort, since the rate
of death or departure from BC was quite low (about 13%). We also assume noninformative
censoring for the population, since this rate was again quite low (about 15%).

4.1.2 Clean-up for Yearly Data

In this chapter and the next, the response Y = Y is a vector of variables and [Y|·] = [Y|·].
Let Nij represent subject i’s visit count from the (j−1)th year to the jth, where j = 1, . . . , Ji
and Ji varies from individual to individual and Ni0 ≡ 0. Ji is the cluster size of individual i.
There is a medical cost corresponding to each physician visit. Let Cij represent subject i’s
medical cost from the (j− 1)th year to the jth year; it is a nonnegative continuous variable,
and Cij = 0 whenever Nij = 0.

We exclude individuals in the cohort with missing information on SES or initial treat-
ment. We calculate full-year visit counts Nij for each individual. We exclude individuals
with less than one year of follow-up, and we exclude the last few observations if they cover
less than one year, so Ji varies from 1 to 20. The resulting cohort has n = 1609 subjects
and N =

∑n
i=1 Ji = 15354 yearly observations. Figure 4.2 compares the distributions of

diagnosis year and cluster size Ji. The distributions are almost the same and are almost de-
termined. For the population, we exclude individuals with missing SES information, and we
calculate full-year visit counts Nij . We exclude individuals with less than one year of follow-
up, and we exclude the last few observations if they cover less than one year, so Ji varies
from 1 to 20 and has a similar distribution to that of the cohort, after matching with the
cohort; see Figure 4.3. The population has m = 14289 subjects and M =

∑m
i=1 Ji = 124823

yearly observations.
Each physician visit had a code indicating the fee paid by the government. Only about

1% of the visits had a missing code. We imputed the missing codes by the median values of
the codes appearing in the cohort only, or the population only, or both the cohort and the
population. We also calculated the full-year costs Cij in Canadian dollars for the cohort
and the population.

Let Zi be a vector of the p covariates of the ith subject. We are interested in how sex,
SES, and age at entry (standardized as values from 0 to 1 in the regression) affect visit counts
and costs, so Zi = (sexi, SESi, agei)′. The cohort data P =

{
(Nij , Cij ,Zi) : i = 1, . . . , n; j =

1, . . . , Ji
}
and the population data Q =

{
(Nij , Cij ,Zi) : i = 1, . . . ,m; j = 1, . . . , Ji

}
are

summarized in Table 4.1.
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Figure 4.2: Survivor cohort yearly data: Diagnosis year vs. cluster size.
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Figure 4.3: General population yearly data: Cluster size.

Table 4.1: Yearly Visit Data: Survivor Cohort vs. General Population

Sample # subjects # observations mean(Ji) mean(Nij) mean(Cij)
Survivor Cohort P 1609 15354 9.5 6.95 378.09
General Population Q 14289 124823 8.7 4.44 194.89
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4.1.3 Description of Yearly Visit Counts and Costs

Figure 4.4 shows the means and the corresponding CIs of the yearly visit counts in the
twenty years of the follow-up for the cohort and the population. The numbers at the top
and bottom of the figure are the sample sizes used to calculate the means and CIs. Over
the twenty-year period, the sample sizes decrease and the CIs become wider. On average,
the counts are much higher for the cohort than for the population. However, the cohort
counts tend to decrease and the population counts tend to increase; the difference between
them therefore decreases, especially in the final four years. Figure 4.5 shows the yearly costs
during the follow-up period; the trends are similar.

Figure 4.4: Mean and CI of yearly visit counts during follow-up: Survivor cohort vs. general
population.

The medical costs are nonnegative continuous measurements. The rates of zero yearly
costs are 12% and 23% in the cohort and population, respectively. For the model fitting,
we perform a log-transformation of the yearly costs. We set Yij = log(Cij + 5) to avoid log-
transformation of zeros. The addition of 5 is somewhat arbitrary, but it does not affect the
results. Figure 4.6 shows the yearly cost distribution before and after the transformation.
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Figure 4.5: Mean and CI of yearly costs during follow-up: Survivor cohort vs. general
population.
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Figure 4.6: Distribution of yearly costs and log-transformed yearly costs.

4.2 Separate Analysis for Cohort and Population

To unify the model specifications, let Yij represent both the yearly visit counts and the
transformed yearly costs. The yearly visit counts are overdispersed and the transformed
yearly costs are not normally distributed; see Figure 4.6. Marginal models only need specifi-
cations of the mean and variance functions, but not a distributional assumption. Therefore,
to study the effects of sex, SES, and age at entry on the longitudinal visit counts and costs,
we fit regression models using GEEs to the yearly counts and yearly costs. We focus on
inference for the population, not a specific individual. These analyses allow us to descrip-
tively compare the visit patterns of the cohort P =

{
(Yij ,Zi) : i = 1, . . . , n; j = 1, . . . , Ji

}
and the population Q =

{
(Yij ,Zi) : i = 1, . . . ,m; j = 1, . . . , Ji

}
.

4.2.1 Mean and Variance Function Specification of Response Variables

Marginal models are designed to separately model the regression of Y on Z and the as-
sociation among repeated observations of Y for each individual. In addition to mod-
elling the effects of covariates on the expectation, we must specify a model for the as-
sociation among the observations from each subject. Let the conditional expectation
E(Yij |Zi) = µ(Zi; bj) for the regression. Let Yi = (Yi1, Yi2, . . . , YiJi)′ be the Ji-dimensional
response vector of subject i. The variance function Var(Yi|Zi) can be decomposed into
Var(Yi|Zi) = T

1
2
i (b, φ)Γi(σ)T

1
2
i (b, φ). Ti(b, φ) is a Ji × Ji diagonal variance matrix, and the
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jth element on the diagonal is Var(Yij |Zi), the structure of which can vary according to the
data type. When Yij represents the yearly count, the variance function of Yij can be speci-
fied as Var(Yij |Zi) = φµ(Zi; bj), where φ is a dispersion parameter that can also depend on
Zi. When Yij is the transformed yearly cost, for example, we can specify Var(Yij |Zi) = φj

instead, where the φj ’s are scale parameters and can be time-varying. Γi(σ) is a Ji × Ji
correlation matrix, and σ is a vector of correlation parameters, For example, it may be the

compound symmetric (CS) structure, Γi(σ) =


1 σ · · · σ

σ 1 . . . ...
... . . . . . . σ

σ · · · σ 1

. It may also be indepen-

dent or a time-series structure such as AR(1). Let l(·) be the link function: l(·) = logit(·)
for yearly binaries, l(·) = log(·) for yearly counts, and l(·) = I(·) for yearly transformed
costs.

In general, for longitudinal responses, the effects of time-independent covariates can be
time-dependent. Therefore, we specify the mean function as follows:

l{µ(Zi; bj)} = b0j + b1jsexi + b2jSESi + b3jagei. (4.1)

We label the marginal models Ma0a1a2a3.A based on the structure of the linear predictor
in (4.1) and the structure of Γi(σ). Here ak indicates whether or not coefficient bkj is time-
dependent, for k = 0, 1, 2, 3; when ak = 0, bkj ≡ bk. Moreover, A gives the correlation
structure of Γi(σ): A = 0 is independent correlation, Γi(σ) = Ii; A = 1 is CS correlation,
Corr(Yij , Yij′) = σ, j 6= j′; and A = 2 is AR(1) correlation, Corr(Yij , Yij′) = σ|j−j

′|,
j 6= j′. For example, the label M1101.1 indicates that in (4.1) b2j ≡ b2; SES has a
time-independent effect and intercept, sex, and age all have time-dependent effects on the
longitudinal response; and the correlation of observations from the same subject has a CS
structure.

There are 24 × 3 = 48 combinations of models. We investigated M0000.0/1/2,
M1000.0/1/2, M1100.0/1/2, M1001.0/1/2, M1101.0/1/2, and M1111.0/1/2 for both
yearly counts and costs, and we separately fitted these models to the cohort and the popu-
lation.

4.2.2 Results and Comparison of Yearly Counts

We now separately analyze the yearly visit counts for the cohort and the population and
compare them graphically. When Yij = Nij , the link function l(·) = log(·) and Var(Yij |Zi) =
φµ(Zi; bj) are used in the GEEs. Tables 4.2 and 4.3 present the results for M0000.0/1/2,
M1000.0/1/2, M1100.0/1/2, M1001.0/1/2, M1101.0/1/2, and M1111.0/1/2 for the cohort
and the population, respectively, including the dispersion and correlation parameters. The
tables present averages when the effects are time-varying. Both the constant effects and
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the averaged time-varying effects are similar in all the models for both the cohort and the
population. However, the time-varying effect is more informative when it changes over time,
as shown in Figures 4.7 to 4.11.

Figure 4.7 plots the models from the second column of Table 4.2 for the cohort. Under
CS correlation, there are time-varying effects in M1000, M1100, M1001, M1101, and M1111
compared with M0000 (in black) the effects are all constant. Figure 4.8 compares the three
correlation structures under the mean model M1101 (M0000 in red); these are the models
in the fifth row of Table 4.2. Figures 4.9 and 4.10 are the corresponding plots for the
population.

Figures 4.7 and 4.9 show that the cohort and the population have similar time trends.
The overall time effect is not obvious if only the intercept is time-dependent. However, we
can see a clear curved time trend when sex and age at entry also have time-varying effects.
Although the sex effect is always negative, i.e., males have fewer visits on average, the effect
is especially stronger during the 10 to 17 follow-up years, because this is the pregnancy
period for most of the female subjects. For the cohort, age at entry also measures the age
of the cancer diagnosis. The time-varying intercept effects can be considered visit trends as
a result of ageing for survivors at the youngest diagnosis age, and the time-varying age at
entry effects add to the intercept effects over time for older survivors. The trends show that
the subjects tend to visit physicians less at first and noticeably more a decade later, and
this trend is less noteworthy for older subjects. Although the age at entry of the population
was randomly chosen according to the cohort, the time-varying effects of intercept and age
at entry reflect visit trends as a result of ageing at different starting ages for people without
cancer. The effect of SES does not change significantly over time. Therefore, M1101 is the
preferred model.

The GEE estimator of the regression parameters remains consistent even when the
correlation structure is misspecified, and the correct specification of the correlation improves
the efficiency of the estimator (Liang and Zeger, 1986; Zeger and Liang, 1986). Figures 4.8
and 4.10 show the time-varying effects under the three different correlation structures for
M1101 for the cohort and the population respectively. The effects over time are similar for
different correlation structures, and the CS correlation has the best efficiency.

Figure 4.11 compares the time-varying effects of intercept, sex, and age at entry for
the cohort and the population under the chosen model M1101.1 with CS correlation. The
intercept of the cohort is always larger than that of the population, but the difference
decreases over time. The time trends of the sex and age at entry effects are similar, although
on average males and females are closer in the cohort.

4.2.3 Results and Comparison of Yearly Costs

We now separately analyze the yearly medical costs for the cohort and the population.
When Yij = log(Cij +5), the identity link function l(·) = I(·) and Var(Yij |Zi) = φj are used
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Figure 4.7: Time-dependent coefficients of survivor cohort yearly counts under CS correla-
tion structure.
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Figure 4.8: Time-dependent coefficients of survivor cohort yearly counts under M1101.
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Figure 4.9: Time-dependent coefficients of general population yearly counts under CS cor-
relation structure.
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Figure 4.10: Time-dependent coefficients of general population yearly counts under M1101.
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Figure 4.11: Time-dependent coefficients: SC vs. GP comparison for yearly counts under
M1101.1.
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in the GEEs, where the φj ’s are scale parameters and change over time. Tables 4.4 and 4.5
give the results forM0000.0/1/2, M1000.0/1/2, M1100.0/1/2, M1001.0/1/2, M1101.0/1/2,
and M1111.0/1/2 for the cohort and the population, respectively, including the scale and
correlation parameters. The tables present averages when the effects are time-varying.
Figures 4.12 to 4.16 show the time-varying effects over time. These figures correspond to
Figures 4.7 to 4.11 for the yearly costs, with an extra row presenting the estimations of the
time-varying scale parameters.

The trends are similar to those for the yearly counts in Section 4.2.2. The main difference
is that the time-varying effects of age at entry for the cohort tend to increase from negative
to positive over time. This means that older survivors tend to see physicians more frequently
but cost less than younger survivors at the beginning, but they catch up the cost later. We
can see this by comparing Figures 4.16 and 4.11, where the cohort and the population are
contrasted under M1101.1.
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Figure 4.12: Time-dependent coefficients of survivor cohort yearly costs under CS correla-
tion structure.
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Figure 4.13: Time-dependent coefficients of survivor cohort yearly costs under M1101.
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Figure 4.14: Time-dependent coefficients of general population costs under CS correlation
structure.
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Figure 4.15: Time-dependent coefficients of general population costs under M1101.
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Figure 4.16: Time-dependent coefficients: SC vs. GP comparison for costs under M1101.1.
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4.3 Analysis of Combined Cohort and Population Data

We now combine the cohort P and the population Q into O and introduce an indicator
variable gi to indicate that subject i is from the cohort:

gi =

1 if i ∈ P

0 if i ∈ Q.

We fit marginal models to the combined data O =
{
(Yij ,Zi, gi) : i = 1, . . . , n + m; j =

1, . . . , Ji
}
using GEEs for the yearly visit counts and costs. These analyses allow us to make

formal inference on the differences between the the cohort and the population and whether
or not the differences are time-varying.

4.3.1 Model Specification for Combined Data

As in Section 4.2.1, we must specify E(Yij |Zi) = µ(Zi; bj) for the regression model and
the variance function Var(Yi|Zi). We have seen in Section 4.2 that the intercept, sex,
and age have time-varying effects on the longitudinal responses in both the cohort and the
population. For the combined data, the effects of g, g*sex, g*SES, and g*age numerically
measure the differences between the cohort and the population, and they can also be time-
dependent. Therefore, the mean function for the combined data is as follows:

l{µ(Zi; bj)} = b0j+b1jsexi+b2jSESi+b3jagei+c0jgi+c1jgi∗sexi+c2jgi∗SESi+c3jgi∗agei.
(4.2)

We label the models for the combined data Ma0a1a2a3.A.B0B1B2B3. The ak’s are again
based on the structure of the linear predictor in (4.1) indicating whether or not the coefficient
bkj is time-dependent, and A is again based on the correlation structure of Γi(σ). The Bk’s
present the group effects ckj in the last four terms of (4.2), for k = 0, 1, 2, 3. Bk = 0
indicates that the factor is not in the model; Bk = 1 indicates that it is time-independent;
and Bk = 2 indicates that it is time-dependent. For example, M1101.1.2101 indicates that
in (4.2) c2j ≡ 0, g*SES is not in the model, the effect of SES is the same for the cohort and
the population; the effects of sex and age are different in the two groups but the difference
is constant over time (c1j ≡ c1 and c3j ≡ c3); and the intercept is different in the two groups
and the difference is also time-varying.

4.3.2 Results and Comparison of Yearly Counts

We now analyze the yearly counts for the combined data and perform inference on the
differences between the cohort and the population. When Yij = Nij , the link function
l(·) = log(·) and Var(Yij |Zi) = φµ(Zi; bj) are used in the GEEs.
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As in Section 4.2.2, M1101.1 is preferred for the yearly counts of both the cohort and
the population. We first investigate M1101.1.1111. The results show that the SES effect
does not differ significantly between the cohort and the population, but the sex and age
effects do.

The first panel of Table 4.6 gives the results for M1101.1.2202. We conduct Wald-type
tests to test whether or not the six time-varying effects are constant; these results are also
listed. We see that the tests c1j ≡ c1 for group*sex (p = .544) and c3j ≡ c3 for group*age
(p = .064), so the effects of sex and age are different in the two groups but the difference
is time-independent, and the other effects are time-varying (p < .0001). Therefore, we use
M1101.1.2101 to analyze the yearly counts in the combined data. The model estimates are
presented in the second panel of Table 4.6. Figure 4.17 shows the time-varying effects over
the follow-up period for M1101.1.2101 and compares the two groups. The intercept effect
is different in the two groups, and the difference decreases over time.

4.3.3 Results and Comparison of Yearly Costs

We now analyze the yearly costs for the combined data and perform inference on the dif-
ferences between the cohort and the population. When Yij = log(Cij + 5), the link function
l(·) = I(·) and Var(Yij |Zi) = φj are used in the GEEs, where the φj ’s are scale parameters
and change over time.

As in Section 4.2.3, M1101.1 is preferred for the yearly costs of both the cohort and the
population. We first investigate M1101.1.1111 ; see the first panel of Table 4.7. The effects
of group*sex and group*SES are not significant, which means that the effects of sex and
SES are the same for the two groups. Therefore, we fit M1101.1.2002 with time-varying
group effects on intercept and age and no group effects on sex and SES; see the second
panel of Table 4.7. We conduct Wald-type tests to test whether or not the five time-varying
effects are constant, e.g., c3j ≡ c3 for group*age (p = .039). These results are also listed,
and they are all time-varying. Figure 4.18 shows the time-varying effects over the follow-up
period for M1101.1.2002 and compares the two groups. The difference of age effect in the
two groups over time is consistent with the result analyzed separately in Section 4.2.3.

4.4 Summary and Discussion

We have described the CAYACS longitudinal data, conducted analyses of the yearly counts
and costs by the conventional GEE approach, and compared the trends of the cohort and
the population through their time-varying effects.

Figures 4.11 and 4.16 to 4.18 show that whether we model these two groups separately
or together, the difference over time arises mainly from the time-varying intercept and tends
to decrease over time. To see the trends over time, it is necessary to conduct longitudinal
analysis. The time-varying effect of age has different trends in the two groups, especially
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Figure 4.17: Time-dependent coefficients of yearly counts for combined data under
M1101.1.100.
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Figure 4.18: Time-dependent coefficients of yearly costs for combined data under
M1101.1.100.
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for the yearly costs, but the sex effect has similar trends. The results imply that females
see physicians more frequently and cost more especially during their pregnancy periods, but
this is true for both the population and the cohort. Sex may not be a risk factor for later
effects of the cancer diagnosis. The LCMs developed in the previous chapters can help to
detect the risk factors for the latent at-risk indicator. We will extend the LCM methodology
to longitudinal data in the next chapter.

Another benefit of longitudinal analysis is that it permits subject-specific inference by
random effect models, which can deal with unexplained variation. This will also be explored
in the next chapter.
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Table 4.2: Full Survivor Cohort: GEE Analysis of Yearly Visit Counts

independent CS AR(1)
est se p-value est se p-value est se p-value
M0000

intercept 2.018 0.054 0.000 1.987 0.052 0.000 1.981 0.051 0.000
sex -0.384 0.053 0.000 -0.326 0.052 0.000 -0.325 0.050 0.000
SES -0.010 0.056 0.856 0.004 0.054 0.947 -0.005 0.051 0.919
age at entry 0.240 0.082 0.004 0.243 0.081 0.003 0.213 0.077 0.006
dispersion 12.632 1.542 12.535 1.529 12.841 1.584
correlation 0.428 0.028 0.821 0.016

M1000
intercept 1.968a 0.059b 1.934a 0.057b 1.877a 0.058b

sex -0.384 0.053 0.000 -0.320 0.052 0.000 -0.320 0.051 0.000
SES -0.011 0.056 0.841 0.005 0.054 0.923 -0.002 0.052 0.967
age at entry 0.241 0.082 0.003 0.238 0.081 0.003 0.207 0.079 0.009
dispersion 12.617 1.538 12.631 1.537 13.089 1.594
correlation 0.431 0.027 0.823 0.016

M1100
intercept 1.981a 0.059b 1.982a 0.059b 1.912a 0.062b

sex -0.432a 0.069b -0.405a 0.067b -0.400a 0.069b

SES -0.011 0.056 0.848 0.007 0.054 0.899 -0.006 0.053 0.909
age at entry 0.242 0.082 0.003 0.204 0.081 0.011 0.198 0.079 0.012
dispersion 12.509 1.498 12.573 1.510 13.019 1.563
correlation 0.431 0.027 0.823 0.015

M1001
intercept 1.994a 0.067b 1.948a 0.067b 1.861a 0.073b

sex -0.384 0.053 0.000 -0.330 0.052 0.000 -0.331 0.052 0.000
SES -0.010 0.056 0.858 0.003 0.054 0.953 -0.008 0.054 0.886
age at entry 0.184a 0.104b 0.217a 0.098b 0.249a 0.104b

dispersion 12.515 1.511 12.545 1.515 13.011 1.571
correlation 0.433 0.027 0.824 0.016

M1101
intercept 2.014a 0.064b 2.007a 0.065b 1.909a 0.077b

sex -0.433a 0.069b -0.416a 0.068b -0.413a 0.070b

SES -0.009 0.056 0.867 0.005 0.055 0.926 -0.011 0.055 0.840
age at entry 0.175a 0.104b 0.162a 0.098b 0.215a 0.105b

dispersion 12.409 1.470 12.495 1.486 12.942 1.537
correlation 0.433 0.027 0.824 0.015

M1111
intercept 2.024a 0.063b 2.019a 0.065b 1.928a 0.077b

sex -0.431a 0.069b -0.412a 0.068b -0.393a 0.069b

SES -0.052a 0.074b -0.036a 0.070b -0.081a 0.074b

age at entry 0.179a 0.103b 0.159a 0.097b 0.205a 0.105b

dispersion 12.359 1.451 12.459 1.471 12.881 1.517
correlation 0.433 0.027 0.825 0.016
aaverage value over 20 estimates
bse of the 20 averaged estimates
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Table 4.3: General Population: GEE Analysis of Yearly Visit Counts

independent CS AR(1)
est se p-value est se p-value est se p-value
M0000

intercept 1.475 0.019 0.000 1.389 0.018 0.000 1.401 0.018 0.000
sex -0.498 0.020 0.000 -0.469 0.018 0.000 -0.475 0.018 0.000
SES -0.063 0.020 0.002 -0.067 0.018 0.000 -0.064 0.019 0.001
age at entry 0.586 0.032 0.000 0.604 0.030 0.000 0.558 0.030 0.000
dispersion 9.618 0.542 10.262 0.582 10.405 0.588
correlation 0.384 0.013 0.777 0.009

M1000
intercept 1.519a 0.024b 1.419a 0.024b 1.383a 0.024b

sex -0.498 0.019 0.000 -0.476 0.019 0.000 -0.476 0.018 0.000
SES -0.063 0.020 0.002 -0.067 0.019 0.000 -0.063 0.019 0.001
age at entry 0.587 0.032 0.000 0.592 0.030 0.000 0.560 0.030 0.000
dispersion 9.355 0.486 10.005 0.534 10.309 0.566
correlation 0.379 0.013 0.774 0.009

M1100
intercept 1.524a 0.025b 1.440a 0.026b 1.408a 0.025b

sex -0.511a 0.037b -0.506a 0.039b -0.539a 0.039b

SES -0.062 0.020 0.002 -0.063 0.019 0.001 -0.062 0.019 0.001
age at entry 0.586 0.032 0.000 0.569 0.031 0.000 0.557 0.030 0.000
dispersion 9.358 0.486 10.034 0.534 10.377 0.577
correlation 0.379 0.013 0.775 0.009

M1001
intercept 1.596a 0.030b 1.502a 0.033b 1.435a 0.031b

sex -0.498 0.019 0.000 -0.494 0.019 0.000 -0.480 0.018 0.000
SES -0.063 0.020 0.001 -0.067 0.019 0.000 -0.064 0.019 0.001
age at entry 0.430a 0.055b 0.435a 0.059b 0.453a 0.058b

dispersion 9.301 0.477 9.974 0.529 10.262 0.559
correlation 0.380 0.013 0.776 0.009

M1101
intercept 1.606a 0.034b 1.537a 0.036b 1.468a 0.034b

sex -0.524a 0.037b -0.546a 0.040b -0.553a 0.040b

SES -0.063 0.020 0.001 -0.062 0.019 0.001 -0.063 0.019 0.001
age at entry 0.427a 0.056b 0.399a 0.060b 0.439a 0.058b

dispersion 9.307 0.481 10.029 0.537 10.338 0.574
correlation 0.381 0.013 0.776 0.009

M1111
intercept 1.607a 0.034b 1.539a 0.037b 1.471a 0.033b

sex -0.525a 0.037b -0.546a 0.040b -0.552a 0.040b

SES -0.064a 0.035b -0.069a 0.037b -0.070a 0.038b

age at entry 0.426a 0.056b 0.399a 0.059b 0.439a 0.058b

dispersion 9.295 0.479 10.019 0.534 10.325 0.570
correlation 0.382 0.013 0.777 0.009
aaverage value over 20 estimates
bse of the 20 averaged estimates
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Table 4.4: Full Survivor Cohort: GEE Analysis of Yearly Visit Costs

independent CS AR(1)
est se p-value est se p-value est se p-value
M0000

intercept 5.369 0.066 0.000 5.354 0.063 0.000 5.326 0.062 0.000
sex -0.584 0.058 0.000 -0.500 0.055 0.000 -0.516 0.055 0.000
SES -0.001 0.060 0.982 0.026 0.057 0.648 0.025 0.056 0.650
age at entry -0.119 0.093 0.199 -0.176 0.087 0.043 -0.159 0.087 0.067
scale 2.520 0.054 2.523 0.054 2.522 0.054
correlation 0.363 0.015 0.765 0.010

M1000
intercept 5.217a 0.070b 5.151a 0.069b 5.087a 0.067b

sex -0.564 0.057 0.000 -0.453 0.055 0.000 -0.482 0.055 0.000
SES -0.008 0.058 0.895 0.015 0.056 0.785 0.017 0.055 0.765
age at entry -0.131 0.090 0.146 -0.233 0.087 0.008 -0.186 0.087 0.032
scale 2.692a 0.074b 2.707a 0.073b 2.714a 0.073b

correlation 0.361 0.014 0.000 0.764 0.010 0.000
M1100

intercept 5.269a 0.078b 5.234a 0.074b 5.180a 0.071b

sex -0.661a 0.085b -0.611a 0.077b -0.656a 0.077b

SES -0.007 0.058 0.903 0.017 0.056 0.761 0.018 0.055 0.739
age at entry -0.128 0.090 0.157 -0.229 0.087 0.008 -0.182 0.086 0.034
scale 2.678a 0.075b 2.685a 0.074b 2.696a 0.074b

correlation 0.360 0.014 0.000 0.763 0.010 0.000
M1001

intercept 5.181a 0.080b 5.040a 0.078b 4.988a 0.076b

sex -0.565 0.057 0.000 -0.455 0.055 0.000 -0.484 0.055 0.000
SES -0.010 0.058 0.869 0.014 0.056 0.796 0.014 0.055 0.806
age at entry -0.053a 0.133b 0.000a 0.114b 0.023a 0.118b

scale 2.684a 0.075b 2.700a 0.075b 2.710a 0.075b

correlation 0.362 0.014 0.000 0.764 0.010 0.000
M1101

intercept 5.236a 0.086b 5.124a 0.085b 5.086a 0.081b

sex -0.663a 0.085b -0.606a 0.077b -0.654a 0.077b

SES -0.009 0.058 0.878 0.016 0.056 0.773 0.015 0.055 0.780
age at entry -0.056a 0.132b -0.005a 0.114b 0.010a 0.117b

scale 2.670a 0.075b 2.680a 0.076b 2.693a 0.076b

correlation 0.361 0.014 0.000 0.763 0.010 0.000
M1111

intercept 5.252a 0.084b 5.129a 0.083b 5.090a 0.081b

sex -0.661a 0.084b -0.604a 0.076b -0.652a 0.077b

SES -0.059a 0.090b 0.007a 0.079b 0.004a 0.079b

age at entry -0.058a 0.132b -0.014a 0.113b 0.006a 0.116b

scale 2.663a 0.075b 2.673a 0.076b 2.688a 0.076b

correlation 0.361 0.014 0.000 0.763 0.010 0.000
aaverage value over 20 estimates
bse of the 20 averaged estimates

93



Table 4.5: General Population: GEE Analysis of Yearly Visit Costs

independent CS AR(1)
est se p-value est se p-value est se p-value
M0000

intercept 4.370 0.022 0.000 4.277 0.021 0.000 4.291 0.021 0.000
sex -0.614 0.020 0.000 -0.558 0.019 0.000 -0.582 0.019 0.000
SES -0.050 0.020 0.014 -0.051 0.020 0.010 -0.055 0.020 0.005
age at entry 0.399 0.034 0.000 0.348 0.032 0.000 0.334 0.032 0.000
scale 2.715 0.014 2.723 0.014 2.724 0.014
correlation 0.332 0.005 0.724 0.004

M1000
intercept 4.375a 0.025b 4.193a 0.024b 4.211 0.024b

sex -0.612 0.020 0.000 -0.549 0.019 0.000 -0.578 0.019 0.000
SES -0.050 0.020 0.014 -0.050 0.020 0.012 -0.054 0.020 0.006
age at entry 0.401 0.033 0.000 0.349 0.032 0.000 0.333 0.032 0.000
scale 2.775a 0.024b 2.820a 0.025b 2.820a 0.025b

correlation 0.333 0.005 0.000 0.725 0.003 0.000
M1100

intercept 4.432a 0.027b 4.269a 0.027b 4.288a 0.026b

sex -0.718a 0.031b -0.687a 0.029b -0.721a 0.029b

SES -0.049 0.020 0.015 -0.049 0.020 0.013 -0.053 0.020 0.007
age at entry 0.400 0.033 0.000 0.347 0.032 0.000 0.332 0.032 0.000
scale 2.764a 0.025b 2.804a 0.026b 2.806a 0.026b

correlation 0.333 0.005 0.000 0.725 0.003 0.000
M1001

intercept 4.403a 0.030b 4.237a 0.029b 4.214a 0.028b

sex -0.612 0.020 0.000 -0.549 0.019 0.000 -0.579 0.019 0.000
SES -0.050 0.020 0.013 -0.050 0.020 0.012 -0.054 0.020 0.006
age at entry 0.342a 0.050b 0.253a 0.046b 0.332a 0.046b

scale 2.771a 0.024b 2.818a 0.025b 2.816a 0.025b

correlation 0.334 0.005 0.000 0.725 0.003 0.000
M1101

intercept 4.469a 0.033b 4.324a 0.032b 4.299a 0.031b

sex -0.725a 0.031b -0.697a 0.030b -0.724a 0.029b

SES -0.049 0.020 0.015 -0.049 0.020 0.013 -0.053 0.020 0.007
age at entry 0.327a 0.050b 0.235a 0.047b 0.314 0.046b

scale 2.759a 0.025b 2.801a 0.025b 2.802a 0.025b

correlation 0.333 0.005 0.000 0.725 0.003 0.000
M1111

intercept 4.471a 0.034b 4.328a 0.032b 4.307a 0.031b

sex -0.725a 0.031b -0.697a 0.030b -0.724a 0.029b

SES -0.055a 0.032b -0.057a 0.030b -0.073a 0.029b

age at entry 0.327a 0.050b 0.234a 0.047b 0.313a 0.046b

scale 2.759a 0.025b 2.801a 0.025b 2.802a 0.025b

correlation 0.333 0.005 0.000 0.725 0.003 0.000
aaverage value over 20 estimates
bse of the 20 averaged estimates
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Table 4.6: Combined General Population and Survivor Cohort: Analysis of Yearly Visit
Counts

M1101.1.2202 M1101.1.2101
est se p-value test p-value est se p-value

intercept 1.530a 0.037b b0j ≡ b0 < .0001 1.520a 0.034b

sex -0.547a 0.040b b1j ≡ b1 < .0001 -0.548a 0.035b

SES -0.051 0.018 0.005 -0.051 0.018 0.005
age 0.398a 0.060b b3j ≡ b3 < .0001 0.417a 0.054b

group (SC vs. GP) 0.493a 0.072b c0j ≡ c0 < .0001 0.555a 0.057b

group*sex (SC vs. GP) 0.131a 0.078b c1j ≡ c1 0.544 0.143 0.055 0.009
group*SES (SC vs. GP) - - - -
group*age (SC vs. GP) -0.228a 0.114b c3j ≡ c3 0.064 -0.363 0.086 < .0001
dispersion 10.3 0.507 10.3 0.508
correlation 0.39 0.012 0.389 0.012
aaverage value over 20 estimates
bse of the 20 averaged estimates

Table 4.7: Combined General Population and Survivor Cohort: Analysis of Yearly Visit
Costs

M1101.1.1111 M1101.1.2002
est se p-value est se p-value test p-value

intercept 4.290a 0.031b 4.310a 0.031b b0j ≡ b0 < .0001
sex -0.604a 0.025b -0.687a 0.028b b1j ≡ b1 < .0001
SES -0.049 0.020 0.014 -0.042 0.019 0.025
age 0.247a 0.041b 0.235a 0.047b b3j ≡ b3 < .0001
group (SC vs. GP) 1.096 0.066 < .0001 0.885a 0.071b c0j ≡ c0 < .0001
group*sex (SC vs. GP) 0.068 0.058 0.240 - -
group*SES (SC vs. GP) 0.072 0.059 0.225 - -
group*age (SC vs. GP) -0.531 0.092 < .0001 -0.248a 0.121b c3j ≡ c3 0.039
scale 2.800a 0.025b 2.790a 0.024b

correlation 0.336 0.005 < .0001 0.336 0.005 < .0001
aaverage value over 20 estimates
bse of the 20 averaged estimates
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Chapter 5

Extended GEE Procedures for
Longitudinal Data

5.1 Introduction

Chapters 2 and 3 formulated an LCM for cross-sectional counts of the CAYACS data. We
believe that the survivor cohort (P) consists of two latent classes, indicated by a latent
variable η. Let Pη be the two latent classes: the at-risk class (P1) and the not-at-risk class
(P0). Class P0 has the same visit patterns as the population (Q), and P1 has more frequent
visits. Let Pδ be the subsets of the cohort with or without RSC, indicated by δ. Subjects
with RSC in the cohort (P1) form a part of the at-risk class (P1 ⊂ P1).

5.1.1 Motivation

The cross-sectional analyses in Chapters 2 and 3 do not reveal the visit trends over time.
The longitudinal analysis in Chapter 4 showed that the cohort has different visit trends than
the population. It is especially important to distinguish the variation in patterns due to an
individual’s aging from the variation due to individual differences, given the long follow-up
period. The full cohort P includes a not-at-risk component with the same visit trends as
the population (P0 ≡ Q). Therefore, we wish to identify the at-risk class and study its
visit trends and medical costs over time. LCMs can achieve this. This chapter will extend
the extended GEE methodology developed in Chapter 3, in particular, the type P extended
GEE estimator, to the longitudinal counts and medical costs.

Some subjects in the cohort experienced RSC. Conceptually, they were suffering con-
sequences of the original diagnoses. Let δ = δT , then P1 is the subset of survivors with
RSC before the end of follow-up. Under additional assumptions in Section 3.2, this group
served as representatives of the at-risk class (P1 ≡ P1). Chapter 4 explains how we get
the CAYACS yearly data. Table 5.1 summarizes the yearly data from P1, P, and Q. They
have similar means for the cluster size Ji. The overall mean of the yearly counts of P1 is
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more than double that of Q, and the overall mean of the yearly costs of P1 is about triple
that of Q. The overall means of P are between those of P1 and Q.

Table 5.1: Yearly Visit Data Summary: P1 vs. P vs. Q

Sample # subjects # observations mean(Ji) mean(Nij) mean(Cij)
Subset of SC P1 237 2283 9.6 9.63 607.45
Survivor Cohort P 1609 15354 9.5 6.95 378.09
General Population Q 14289 124823 8.7 4.44 194.89

Similarly to Figures 4.4 and 4.5, Figures 5.1 and 5.2 compare the means and the corre-
sponding CIs in the twenty years of the follow-up for P1, P, and Q. The numbers at the
top are the sample sizes used to calculate the means and CIs of P1 in each year. The grey
lines and numbers correspond to the black ones in Figures 4.4 and 4.5, which presented the
full cohort P. On average, the cohort values started about twice as high as those of the
population, and the differences gradually decreased until the values were about the same.
We can see that P1 has much higher visit counts and costs than P or Q. In general, P tends
to be stable over the years, and Q tends to increase. However, there is a clear decreasing
trend for P1. The cohort P is about halfway between P1 and Q, except in the final four
years, when the sample sizes become small and the estimates are less reliable.

The overall mean summary and the yearly mean plots confirm our conjecture that P is
a combination of an at-risk class and a not-at-risk class.

5.1.2 Model Specification

The CAYACS data was described in Section 4.2, and as before Yij represents the yearly
visit counts or the transformed yearly costs; η is the latent risk indicator. We also use Yij
as a longitudinal binary variable to indicate whether or not there are physician visits in the
jth year for subject i, i.e., Nij > 0, so Cij > 0.

Let Zij be a vector of p covariates observed in the jth year for the ith subject. As
in Section 3.2, we assume that P (η = 1|δ = 1,Z) = 1, i.e., δ = 1 implies η = 1, and
δ = 1 is a representative subgroup of η = 1 with the same distribution of the responses:
[Y|η = 1,Z] = [Y|δ = 1,Z].

We first focus on inference for the population average within each class, so marginal
models are appropriate (Diggle et al., 2002). Marginal models do not specify the joint
distribution of the repeated measurements from the same subject, but they specify both the
regression model of Y on Z and the association among repeated observations of Y for each
individual, separately. Therefore, they are appropriate for the CAYACS data, because the
yearly counts are overdispersed and the yearly costs are not normally distributed. Marginal
models for LCMs are specified as follows:
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Figure 5.1: Mean and CI of yearly visit counts during follow-up: Subset of survivor cohort
with RSC vs. full survivor cohort vs. general population.
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Figure 5.2: Mean and CI of yearly costs during follow-up: Subset of survivor cohort with
RSC vs. full survivor cohort vs. general population.
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LCMs for longitudinal data

• Risk model for η:
Given a set of time-independent covariates Zi, let the mean of ηi be E(ηi|Zi) =
P (ηi = 1|Zi) = p(Zi;α), which can be specified up to parameter α. A typical logistic
regression form is

logit{p(Zi;α)} = α
′Zi. (5.1)

• Regression model for the at-risk class η = 1:
For the η = 1 class, the mean of the response Yij given a p-dimensional time-
dependent covariate vector Zij can be specified up to parameter β: E(Yij |ηi =
1,Zij) = µ1(Zij ;βj), where the effects of Zij can be time-varying. For each sub-
ject i, the Ji-dimensional mean vector of the longitudinal responses Yi is E(Yi|ηi =
1,Zi) = [µ1(Zi1;β1), . . . , µ1(ZiJi ;βJi)]′ = µ1(Zi; β) = µ1i. Let l(·) be the link func-
tion: l(·) = logit(·) for yearly binaries, l(·) = log(·) for yearly counts, and l(·) = I(·)
for yearly transformed costs. For example, the regression model of the longitudinal
responses can be specified in a generalized linear form:

l{E(Yij |ηi = 1,Zij)} = β
′
jZij . (5.2)

In marginal models, the within-subject association for each individual must also
be specified explicitly. Let the Ji × Ji variance-covariance function of subject i be
Var(Yi|ηi = 1,Zi) = Σ1(Zi; β, ψ1) = Σ1i, where ψ1 is the additional parameter vector
in the variance-covariance function for the η = 1 class. For example, the variance-
covariance function can be decomposed into

Σ1(Zi; β, ψ1) = T
1
2
i (β, φ1)Γi(σ1)T

1
2
i (β, φ1), (5.3)

where ψ1 = (φ′1, σ′1)′. Ti(β, φ1) is a Ji × Ji diagonal variance matrix, and the jth ele-
ment on the diagonal is Var(Yij |ηi = 1,Zij), the structure of which can vary according
to the data type. When Yij represents the count, the variance function of Yij can be
specified as a quasi-Poisson form Var(Yij |ηi = 1,Zij) = φ1(Zij)µ1(Zij ;βj), where φ1

is a dispersion parameter that can also depend on Zij . When the Yij ’s are continuous
responses, we can for example specify Var(Yij |ηi = 1,Zij) = φ1(Zij) instead, where
φ1(Zij) is the scale parameter. φ1(Zij) ≡ φ1 is a special case. Γi(σ1) is a Ji×Ji corre-
lation matrix and σ1 is a vector of correlation parameters, which can also depend on
Zij , e.g., σ1(Zij) ≡ σ1. Liang and Zeger (1986) called Γi(·) the “working” correlation
matrix, which makes (5.3) hold if it is indeed the true correlation matrix for Y|η. For
example, it can be an independent structure, a compound symmetric structure, or a
time-series structure such as AR(1). Other choices of the correlation structure include
one-dependent correlation, exponential correlation, and Gaussian correlation.
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• Regression model for the not-at-risk class η = 0:
For the η = 0 class, the mean and variance functions of the longitudinal responses Yi

are specified in marginal models with different parameters. Let E(Yij |ηi = 0,Zij) =
µ0(Zij ; θj), and let the Ji-dimensional mean response vector be E(Yi|ηi = 0,Zi) =
[µ0(Zi1; θ1), . . . , µ0(ZiJi ; θJi)]′ = µ0(Zi; θ) = µ0i. For example, the regression model
for the η = 0 class can also be specified in a generalized linear form:

l{E(Yij |ηi = 0,Zij)} = θ
′
jZij . (5.4)

Define the Ji × Ji variance-covariance function of Yi for the η = 0 class to be
Var(Yi|ηi = 0,Zi) = Σ0(Zi; θ, ψ0) = Σ0i, and

Σ0(Zi; θ, ψ0) = T
1
2
i (θ, φ0)Γi(σ0)T

1
2
i (θ, φ0). (5.5)

The structure of Σ0i is similar to that of Σ1i.

Our primary objective in this chapter is to develop extended GEE inference procedures
to estimate the parameters α, β, and θ in (5.1), (5.2), and (5.4) based on data from P ={
(Yij , δi,Zij) : i = 1, . . . , n; j = 1, . . . , Ji

}
and Q =

{
(Yij ,Zij) : i = 1, . . . ,m; j =

1, . . . , Ji
}
. The additional parameters ψ1 and ψ0 in the covariance functions are treated as

nuisance parameters (Liang and Zeger, 1986).
The regression parameters in marginal models for continuous measurements are equiv-

alent to population-average coefficients in linear mixed effects models, and their variance-
covariance functions can have a determined relationship in certain situations (Fitzmaurice
et al., 2012). This is not always the case for GLMMs. One exception is for counts when
the random effect is only for the intercept in the GLMM (Fitzmaurice et al., 2012). The
determined relationships between marginal models and mixed effects models allow us to
perform subject-specific inference for the LCMs. Subject-specific inference by the mixed
effects model will be discussed in detail in Section 5.4.

5.2 Extended GEE Inference Procedures

The mean and variance functions for the full cohort, E(Yi|Zi) and Var(Yi|Zi), can be
derived as follows. Define the Ji-dimensional vector of the mean function to be E(Yi|Zi) =
Λ(Zi;α, β, θ) = Λi; then

Λi = p(Zi;α)µ1(Zi; β) + [1− p(Zi;α)]µ0(Zi; θ). (5.6)
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The corresponding Ji × Ji variance-covariance function is defined to be Var(Yi|Zi) =
Σ(Zi;α, β, θ, ψ) = Σi, where ψ = (ψ′1, ψ′0)′. Then

Σi = p(Zi;α)Σ1i + [1− p(Zi;α)]Σ0i + p(Zi;α)[1− p(Zi;α)]{µ1i − µ0i}{µ1i − µ0i}′. (5.7)

Zeger and Liang (1986) extended quasi-likelihood approaches (Wedderburn, 1974; Mc-
Cullagh, 1983) to longitudinal data by introducing a working correlation matrix for the
observations for each subject, giving the GEEs. We follow this idea and introduce an ex-
tension of the extended GEE estimator in Chapter 3 for longitudinal data. The GEEs for
the parameters (α,β,θ) in the longitudinal LCMs are based on the mean and covariance
functions (5.6) and (5.7). This method can be applied to not only counts but also continu-
ous measurements and other data types. In the extended GEE method, the estimation of
β and θ can be readily obtained from P1 and Q, respectively. The estimation procedure is
as follows:

α estimated by GEE in P The overall mean and covariance functions of P have been
derived in (5.6) and (5.7). This leads to a set of GEEs for α in LCMs:

Sα =
n∑
i=1

∂Λi

∂α

′
Σ−1
i {Yi −Λi} = 0. (5.8)

In (5.8), both Λi and Σi are functions of α, which results in a complicated nonlinear
form in the estimating equations. With starting values of α, we can solve (5.8) with fixed Σi

with respect to α, then we update Σi with the new values of α, and we repeat this process
until convergence. This results in a natural iterative estimating algorithm. Our experience
shows that the iterative algorithm is more reliable and faster than estimating α by directly
solving (5.8).

β and ψ1 estimated by GEE in P1 As discussed earlier, P1 is a representative group
of the latent at-risk class P1. Therefore, the parameters of the η = 1 class can be estimated
from the longitudinal data of P1 alone. For example, the GEE estimator can be used to
estimate β in the regression model (5.2) via the following estimating equations:

Sβ =
n∑
i=1

δi
∂µ1i
∂β

′
Σ−1

1i {Yi − µ1i} = 0. (5.9)

Liang and Zeger (1986) suggested using consistent moment estimates for ψ1 in the covariance
function. This yields an iterative scheme that switches between estimating β from (5.9) for
fixed ψ̂1 and estimating ψ1 for the moment estimator with fixed values of β̂.
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θ and ψ0 estimated by GEE in Q The latent not-at-risk η = 0 class has the same
visit patterns as the general population. The general population is independent of the
survivor cohort, i.e., P ⊥ Q. The parameters of the η = 0 class can be estimated from
the longitudinal data Q alone. For example, the GEE estimator can be used to estimate θ
in the regression model (5.4) via the following estimating equations (5.10), and ψ0 in the
covariance function (5.5) can be estimated by a consistent moment estimator.

Sθ =
m∑
i=1

∂µ0i
∂θ

′
Σ−1

0i {Yi − µ0i} = 0. (5.10)

Asymptotic Properties Let the extended GEE estimator of (α,β,θ) in the longitudi-
nal LCM found by solving (5.8)–(5.10) be (α̂L, β̂L, θ̂L). It reduces to the extended GEE
estimator in Chapter 3 when the independent working correlation matrix is used in both
latent classes, i.e., Γi(·) = Ii(·). We have established the asymptotic properties of the
extended GEE estimator (α̂, β̂, θ̂) in Chapter 3, i.e., (α̂, β̂, θ̂) has consistency and asymp-
totic normality as n → ∞ and m → ∞, with a sandwich-form asymptotic variance. With
the within-subject correlation explicitly specified in the extended GEEs (5.8)–(5.10), the
asymptotic properties of (α̂L, β̂L, θ̂L) follow from those of (α̂, β̂, θ̂) in Chapter 3, following
the extension of Theorem 1 to Theorem 2 in Liang and Zeger (1986). As stated in Liang
and Zeger (1986), both the GEE estimator of the regression parameters and its variance
are consistent even when the independent working correlation is adopted, given only a cor-
rect specification of the regression. Taking the correlation into account increases efficiency
while maintaining the other properties; see Theorem 2 in Liang and Zeger (1986). GEE
methods for longitudinal data avoid the need for multivariate distributions by assuming a
functional form for only the marginal mean and variance. The covariance structure across
time is treated as a nuisance. The GEE estimator and its variance are consistent even if
the covariance structure is misspecified, which is expected to happen often. Therefore, the
extended GEE estimator (α̂L, β̂L, θ̂L) has an asymptotic normal distribution following the
Chapter 3 results:

√
n
(
(α̂L, β̂L, θ̂L)′ − (α,β,θ)′

)
d−−−→

n→∞
N
(
0,Ψ−1Φ(Ψ−1)′

)
,

where Φ is the asymptotic variance of the estimating functions (Sα, Sβ, Sθ)′,

Φ =


V(Sα) Cov(Sα, Sβ) 0

Cov(Sα, Sβ)′ V(Sβ) 0
0 0 V(Sθ)

, with zero covariances in Φ since P ⊥ Q.

Here Ψ is the limited constant matrix of the first derivatives of (Sα, Sβ, Sθ)′ with respect
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to (α,β,θ), Ψ =


E(−∂Sα

∂α
) E(−∂Sα

∂β
) E(−∂Sα

∂θ
)

0 E(−∂Sβ
∂β

) 0

0 0 E(−∂Sθ
∂θ

)

. Since P ⊥ Q, the asymptotic

variance of α̂L, β̂L, AV(α̂L, β̂L) can be separated from AV(θ̂L) just as in Chapters 2 and 3.
Then,

AV(α̂L, β̂L) = 1
n

Ψ−1
1 Φ1(Ψ−1

1 )′ + 1
m

Ψ−1
1 Ψ2AV(θ̂L)Ψ′2(Ψ−1

1 )′, (5.11)

where Φ1 is the 2× 2 block in the top left of Φ, Ψ1 is the 2× 2 block in the top left of Ψ,
and Ψ2 is the 2× 1 block in the top right of Ψ.

We evaluate Φ and Ψ taking into account the within-subject correlation by following
Liang and Zeger (1986). The evaluation borrows strength across the independence of the
subjects to estimate a working correlation matrix and hence explicitly account for the time
dependence to achieve greater asymptotic efficiency. Following Liang and Zeger (1986) we
have

E(∂Sα
∂α

) = 1
n

n∑
i=1

∂Λi

∂α

′
Σ−1
i

∂Λi

∂α
;

E(∂Sα
∂β

) = 1
n

n∑
i=1

∂Λi

∂α

′
Σ−1
i

∂Λi

∂β
;

E(∂Sα
∂θ

) = 1
n

n∑
i=1

∂Λi

∂α

′
Σ−1
i

∂Λi

∂θ
;

E(∂Sβ
∂β

) = 1
n

n∑
i=1

δi
∂µ1i
∂β

′
Σ−1

1i
∂µ1i
∂β

;

V(Sα) = 1
n

n∑
i=1

∂Λi

∂α

′
Σ−1
i cov(Yi)Σ−1

i

∂Λi

∂α
;

V(Sβ) = 1
n

n∑
i=1

δi
∂µ1i
∂β

′
Σ−1

1i cov1(Yi)Σ−1
1i
∂µ1i
∂β

;

Cov(Sα, Sβ) = 1
n

n∑
i=1

δi
∂Λi

∂α

′
Σ−1
i cov1(Yi)Σ−1

1i
∂µ1i
∂β

.

We obtain the estimate of the asymptotic variance AV(α̂L, β̂L), ÂV(α̂L, β̂L)by replacing
in (5.11) cov(Yi) by (Yi − Λi)(Yi − Λi)′, cov1(Yi) by (Yi − µ1i)(Yi − µ1i)′, and the
parameters by their estimates. The consistency of the extended GEE estimator and its
variance depends only on the correct specification of the mean, not on the correct choice
of the working correlation matrix. Moreover, the asymptotic variance estimation does not
depend on the estimator of the nuisance parameters provided it is consistent.

If we assume that the GEE estimate of β from P1 and the GEE estimate of θ

from Q are true values, a naive way to estimate the asymptotic variance of α̂L is
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via AV.naive(α̂L) = 1
n

{
E(−∂Sα

∂α
)
}−1V(Sα)

{
E(−∂Sα

∂α
)′
}−1. We evaluate and compare

ÂV(α̂L, β̂L) and ÂV.naive(α̂L) in Section 5.3.1; they are called sw.se and sw.se.naive, re-
spectively.

5.3 Analysis IV.A of CAYACS Physician Claims

Longitudinal analysis allows regression effects to change over time. We have seen in Chapter
4 that there is an obvious nonlinear trend overall and in the sex and diagnosis-age effects
for both the yearly counts and costs. The trends may differ between the cohort and the
population.

A natural longitudinal yearly binary variable can be constructed to indicate whether or
not there are physician visits in the jth year for subject i. There are 29023 observations
(23%) in the population with no visits during the corresponding year, and 1844 observations
(12%) in the cohort, and only 222 observations (9.7%) in the subset of the cohort with
RSC. The longitudinal yearly binaries also carry some information about the later effects
of survivors, so we also analyze them, but they are not our focus.

This section analyzes the CAYACS longitudinal yearly binaries, counts, and costs by
the LCMs and the corresponding extended GEE inference procedure presented in Section
5.2. We then perform risk assessments of the cohort for later effects, and we classify the
cohort into at-risk and not-at-risk classes in the next section.

We consider the following five variables as covariates in the risk model for η in (5.1):
sex (male vs. female), SES (high vs. low), age at entry (five years after the diagnosis),
diagnosis period (1990s vs. 1980s), and initial cancer treatment (chemotherapy but no
radiation, radiation but no chemotherapy, both chemotherapy and radiation, or others).
A standardized age value (age − 5)/20 was used in all the regression models. Of these
covariates, only sex, SES, and age at entry are included in the regression models on Yij ,
(5.2) and (5.4), for each latent class. The linear predictor parts of (5.2) and (5.4) are
specified as for (4.1), where the effects are time-varying. We choose the working correlation
matrix Γi(·) in (5.3) and (5.5) as in Chapter 4. We adopt the model structure expression
Ma0a1a2a3.A based on the form of the linear predictor and the choice of Γi(·).

5.3.1 Results Under Latent Class Models

The extended GEE estimating procedure for longitudinal LCMs estimates the parameters
in the η = 0 class from the general population, as in Section 5.2. Therefore, the results
from Chapter 4 for longitudinal counts and costs for the population are the estimates for
the η = 0 class of LCMs in this chapter.

We investigated M0000.0/1/2, M1000.0/1/2, M1100.0/1/2, M1001.0/1/2,
M1101.0/1/2, and M1111.0/1/2 for both yearly counts and costs for P1, which are
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the estimates for the η = 1 class in the LCMs. Figures 5.3 and 5.4 (yearly counts) and
5.6 and 5.7 (yearly costs) compare the different models, as in Chapter 4. We see similar
trends over time for both counts and costs compared to the analysis in Chapter 4. Figure
5.3 compares M0000, M1000, M1100, M1001, M1101, and M1111 under a compound
symmetric correlation structure. It shows that sex and age at entry have clear time-varying
effects on the yearly counts and the intercept. The SES effect is almost time-independent
and not significant, except for the final two years, when the sample sizes are small and
unreliable. We also study M1101 under different correlation structures; see Figure 5.4.
The results are similar, except that the compound symmetric correlation gives slightly
more efficient estimates. Therefore, M1101.1 is more informative about visit trends over
time for both the at-risk and not-at-risk classes. Figure 5.5 compares the time-varying
coefficients of the yearly counts in both latent classes under M1101.1. The at-risk class
has more frequent visits than the not-at-risk class throughout the follow-up period. Both
time-varying intercepts first decrease and then increase, but the intercept of the not-at-risk
class increases overall, and that of the at-risk class fluctuates around the constant estimate.

Figures 5.6 and 5.7 compare different models for the yearly costs for the P1 data; the
results are similar. Figure 5.8 compares the time-varying coefficients of the yearly costs
in both latent classes under the preferable model, M1101.1. The at-risk class has higher
medical costs than the not-at-risk class throughout the follow-up period, except for the last
year. The intercept of the not-at-risk class increases overall, but that of the at-risk class
tends to slightly decrease. The time-varying sex effects are similar in both classes. An
interesting discrepancy between the two classes is that the time-varying age at entry effect
decreases overall in the not-at-risk class but increases in the at-risk class.

Tables 5.2 to 5.5 present the extended GEE estimates and their standard errors (sw.se)
of (α,β,θ) in the longitudinal LCMs for M0000.1, M1001.1, M1100.1, and M1101, respec-
tively. When the coefficients are time-varying, their averages and the standard errors of
the averages are reported. The yearly binary data provide limited information, so they
appear only in Tables 5.2 and 5.3 under the simplest all-constant coefficients, M0000.1 and
M1001.1, where only the intercept and age effects are time-varying, respectively. When the
sex effect is constant in the regression models of the yearly counts for both latent classes,
it is not significant for the at-risk class; see the middle panel of Tables 5.2 and 5.3. On
the other hand, the average time-varying effect of sex is significant in Tables 5.4 and 5.5.
Figure 5.3 shows that the effect of sex changes over time in a curvilinear fashion. The
constant coefficient of sex averages out the changes over time, which results in sex being a
significant risk factor for later effects of survivors (Table 5.3). This is the only disagreement
with the other results in the tables. Table 5.4 compares the standard error estimates for
the extended GEE estimators of α, sw.se, and sw.se.naive introduced in Section 5.2, for the
yearly counts and costs under M1100.1. The estimated standard error sw.se can be either
greater or smaller than sw.se.naive which is derived under the assumption that the GEE
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Figure 5.3: Time-dependent coefficients of yearly counts for at-risk class under CS correla-
tion structure.
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Figure 5.4: Time-dependent coefficients of yearly counts for at-risk classs under M1101.
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Figure 5.5: Time-dependent coefficients of yearly counts under M1101.1 : not-at-risk class
vs. full SC vs. at-risk class.
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Figure 5.6: Time-dependent coefficients of yearly costs for at-risk class under CS correlation
structure.
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Figure 5.7: Time-dependent coefficients of yearly costs for at-risk class under M1101.
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Figure 5.8: Time-dependent coefficients of yearly costs under M1101.1 : not-at-risk class vs.
full SC vs. at-risk class.
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estimates of β and θ are true values. Interestingly, if sw.se.naive is used for the costs, both
sex and SES are significant factors for later effects in the risk model, which does not agree
with the other results.

Table 5.5 considers the preferred model M1101. We contrast the extended GEE esti-
mates and their standard errors under M1101.1 and M1101.2, under compound symmet-
ric and AR(1) correlation structures, for both yearly counts and costs. Both correlation
structures lead to the same significant factors for later effects. Figure 5.8 compares the
time-varying coefficients in the at-risk (blue) and not-at-risk (red) classes for yearly costs.
We can see that the sex effects over time are similar in both latent classes. Females need
more medical care especially during about 8 to 17 years after follow-up, which can be their
pregnancy period for most women. Therefore, in the corresponding risk model for η, sex
is not a significant factor for later effects. Both the count and cost analyses found a signif-
icantly higher risk of later effects associated with treatment with radiation therapy rather
than other treatments. The analysis of counts also identified diagnosis in 1980s rather than
1990s and treatment with chemo but no radiation rather than other treatments as significant
risk factors of later effects. This indicates that different choices of the metrics for classi-
fication can lead to the identification of different risk factors. In our context, the results
show that survivors diagnosed in the 1990s have fewer physician visits than those diagnosed
in the 1980s, but the yearly medical costs may not be lower, although we adjusted for
inflation. This may be because new treatments are more expensive. The survivors who
initially received chemotherapy but not radiation may see physicians more often but do not
necessarily cost more than the other survivors.

5.3.2 Results Under Latent Class Models: Subject-Specific Modelling

In the regression models for longitudinal response Y in each of the latent classes, even for
the same covariates, the regression coefficients can differ from subject to subject because of
heterogeneity. Such models are called subject-specific models or mixed effects models, which
are another extension of GLMs for longitudinal data (Diggle et al., 2002). Contrasted to
marginal models, mixed-effects models specify only one regression model for subject-specific
mean and the within-subject correlation is induced from random effects. Marginal models
for continuous measurements are equivalent in coefficients to linear mixed effects models
and have a determined relationship in the variance-covariance functions (Fitzmaurice et al.,
2012). Therefore, we can estimate the random effects for each latent class after estimating
the marginal models by the GEE estimators from Section 5.3.1.

In contrast with marginal models, (5.2) and (5.3) for the at-risk class, in mixed effects
models, the covariate effects and within-subject association are modelled through a single
equation by introducing random effects bi for each subject i in the η = 1 class,

l{E(Yij |ηi = 1,Zij , bi)} = β
′
jZij + b

′
iXij , (5.12)
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Table 5.2: Analysis of Yearly Binaries vs. Counts vs. Costs by LCMs: Under M0000.1
Compound Symmetrica

M0000.1
binaries counts costs

Factor estimate sw.se estimate sw.se estimate sw.se
α estimates in the Risk Model

intercept -0.123 (0.851) -0.303 (0.464) 0.134 (0.356)
male (vs. female) -0.226 (0.772) -0.443 (0.326) -0.260 (0.285)
SES high (vs. low) 0.914 (1.027) 0.337 (0.322) 0.292 (0.290)
age at diagnosis 0.844 (1.294) -0.450 (0.530) -0.498 (0.455)
diag in 90s (vs. 80s) 0.764 (0.485) -0.513 (0.259) 0.199 (0.173)
treatment (vs. other)
chemo no rad 0.980 (0.538) 0.572 (0.279) 0.304 (0.201)
rad no chemo 3.061 (3.275) 1.010 (0.415) 1.520 (0.470)
both 1.698 (0.897) 1.282 (0.382) 1.014 (0.269)

β estimates in the Regression Model for the At-risk Class
GEE estimates based on δ = 1 subgroup

intercept 3.133 (0.435) 2.367 (0.105) 5.944 (0.188)
male (vs. female) -0.665 (0.324) -0.095 (0.103) -0.305 (0.162)
SES high (vs. low) -0.328 (0.295) -0.065 (0.106) -0.102 (0.166)
standardized age -0.657 (0.494) 0.111 (0.169) -0.370 (0.263)
dispersion/scale parameter 1.12 (0.587) 11.1 (1.4) 2.770 (0.195)
correlation parameter 0.36 (0.235) 0.318 (0.038) 0.393 (0.049)

θ estimates in the Regression Model for the Not-at-risk Class
GEE estimates based on general population

intercept 1.466 (0.029) 1.389 (0.018) 4.277 (0.021)
male (vs. female) -0.559 (0.025) -0.469 (0.018) -0.558 (0.019)
SES high (vs. low) -0.043 (0.024) -0.067 (0.018) -0.051 (0.020)
standardized age -0.022 (0.040) 0.604 (0.030) 0.348 (0.032)
dispersion/scale parameter 0.958 (0.009) 10.3 (0.582) 2.723 (0.014)
correlation parameter 0.214 (0.005) 0.384 (0.013) 0.332 (0.005)
aSignificant effect with p-value ≤ 0.05 in Boldface.
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Table 5.3: Analysis of Yearly Binaries vs. Counts vs. Costs by LCMs: Under M1001.1
Compound Symmetrica

M1001.1
binaries counts costs

Factor estimate sw.se estimate sw.se estimate sw.se
α estimates in the Risk Model

intercept 0.529 (0.503) 0.004 (0.402) 0.191 (0.318)
male (vs. female) -0.218 (0.414) -0.503 (0.296) -0.313 (0.250)
SES high (vs. low) 0.624 (0.529) 0.304 (0.300) 0.270 (0.254)
age at diagnosis -0.374 (0.697) -0.501 (0.518) -0.256 (0.395)
diag in 90s (vs. 80s) 0.724 (0.425) -0.798 (0.241) 0.028 (0.179)
treatment (vs. other)
chemo no rad 0.427 (0.392) 0.556 (0.233) 0.278 (0.182)
rad no chemo 0.715 (0.692) 1.310 (0.397) 1.707 (0.528)
both 0.853 (0.505) 1.348 (0.354) 0.927 (0.242)

β estimates in the Regression Model for the At-risk Class
GEE estimates based on δ = 1 subgroup

intercept 3.190b (0.542)c 2.220b (0.127)c 5.630b (0.208)c

male (vs. female) -0.686 (0.334) -0.096 (0.102) -0.306 (0.155)
SES high (vs. low) -0.342 (0.312) -0.067 (0.107) -0.102 (0.159)
standardized age -0.749b (0.602)c 0.199b (0.183)c -0.081b (0.288)c

dispersion/scale parameter 1.17 (1.11) 10.8 (1.35) 2.690b (0.225)c

correlation parameter 0.387 (0.385) 0.329 (0.040) 0.398 (0.048)
θ estimates in the Regression Model for the Not-at-risk Class

GEE estimates based on general population
intercept 1.350b (0.035)c 1.502b (0.033)c 4.237b (0.029)c

male (vs. female) -0.567 (0.025) -0.494 (0.019) -0.549 (0.019)
SES high (vs. low) -0.041 (0.025) -0.067 (0.019) -0.050 (0.020)
standardized age 0.009b (0.054)c 0.435b (0.059)c 0.253b (0.047)c

dispersion/scale parameter 0.955 (0.009) 9.97 (0.529) 2.818b (0.025)c

correlation parameter 0.217 (0.005) 0.38 (0.013) 0.334 (0.005)
aSignificant Effect with P-value ≤ 0.05 in Boldface.
bAverage values over 20 estimates
cse of the 20 averaged estimates
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Table 5.4: Analysis of Yearly Counts and Yearly Costs by LCMs: sw.se vs. sw.se.naive
Under M1100.1 Compound Symmetrica

M1100.1
counts costs

Factor estimate sw.se sw.se.naive estimate sw.se sw.se.naive
α estimates in the Risk Model

intercept -0.231 (0.423) (0.347) 0.209 (0.329) (0.235)
male (vs. female) -0.312 (0.337) (0.236) -0.279 (0.258) (0.163)
SES high (vs. low) 0.341 (0.329) (0.254) 0.299 (0.257) (0.164)
age at diagnosis 0.367 (0.544) (0.381) -0.425 (0.400) (0.267)
diag in 90s (vs. 80s) -1.105 (0.260) (0.255) 0.009 (0.174) (0.160)
treatment (vs. other)
chemo no rad 0.534 (0.259) (0.263) 0.293 (0.187) (0.186)
rad no chemo 1.476 (0.474) (0.479) 1.812 (0.518) (0.478)
both 1.498 (0.393) (0.365) 0.991 (0.244) (0.228)

β estimates in the Regression Model for the At-risk Class
GEE estimates based on δ = 1 subgroup

intercept 2.399b (0.116)c 5.839b (0.214)c

male (vs. female) -0.312b (0.123)c -0.482b (0.203)c

SES high (vs. low) -0.062 (0.109) -0.096 (0.158)
standardized age 0.014 (0.174) -0.380 (0.250)
dispersion/scale parameter 10.697 (1.307) 2.690b (0.223)c

correlation parameter 0.324 (0.041) 0.399 (0.048)
θ estimates in the Regression Model for the Not-at-risk Class

GEE estimates based on general population
intercept 1.440b (0.026)c 4.269b (0.027)c

male (vs. female) -0.506b (0.039)c -0.687b (0.029)c

SES high (vs. low) -0.063 (0.019) -0.049 (0.020)
standardized age 0.569 (0.031) 0.347 (0.032)
dispersion/scale parameter 10.034 (0.534) 2.804b (0.026)c

correlation parameter 0.379 (0.013) 0.333 (0.005)
aSignificant effect with p-value ≤ 0.05 in Boldface.
bAverage values over 20 estimates
cse of the 20 averaged estimates
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Table 5.5: Analysis of Yearly Counts and Yearly Costs by LCMs: Under M1101 Compound
Symmetric vs. AR(1)a

M1101.1 M1101.2
counts costs counts costs

Factor estimate sw.se estimate sw.se estimate sw.se estimate sw.se
α estimates in the Risk Model

intercept 0.179 (0.435) 0.196 (0.314) -0.120 (0.488) 0.389 (0.350)
male (vs. female) -0.329 (0.341) -0.286 (0.247) -0.217 (0.331) -0.155 (0.262)
SES high (vs. low) 0.365 (0.342) 0.280 (0.248) 0.123 (0.322) 0.224 (0.260)
age at diagnosis 0.097 (0.590) -0.302 (0.389) -0.014 (0.539) -0.232 (0.422)
diag in 90s (vs. 80s) -1.347 (0.283) 0.017 (0.178) -1.161 (0.277) -0.237 (0.199)
treatment (vs. other)
chemo no rad 0.474 (0.246) 0.269 (0.181) 0.769 (0.288) 0.234 (0.197)
rad no chemo 1.524 (0.525) 1.729 (0.509) 1.228 (0.423) 1.566 (0.575)
both 1.463 (0.413) 0.946 (0.241) 1.514 (0.406) 0.961 (0.282)

β estimates in the Regression Model for the At-risk Class
GEE estimates based on δ = 1 subgroup

intercept 2.360b (0.128)c 5.664b (0.232)c 2.203b (0.148)c 5.479b (0.217)c

male (vs. female) -0.293b (0.124)c -0.421b (0.201)c -0.257b (0.128)c -0.420b (0.197)c
SES high (vs. low) -0.078 (0.111) -0.094 (0.159) -0.050 (0.107) -0.087 (0.156)
standardized age 0.070b (0.186)c -0.071b (0.287)c 0.208b (0.186)c 0.244b (0.269)c

dispersion parameter 10.59 (1.302) 2.641b (0.224)c 10.92 (1.330) 2.659b (0.220)c
correlation parameter 0.331 (0.042) 0.401 (0.048) 0.739 (0.034) 0.798 (0.029)

θ estimates in the Regression Model for the Not-at-risk Class
GEE estimates based on general population

intercept 1.537b (0.036)c 4.324b (0.032)c 1.468b (0.034)c 4.299b (0.031)c

male (vs. female) -0.546b (0.040)c -0.697b (0.030)c -0.553b (0.040)c -0.724b (0.029)c
SES high (vs. low) -0.062 (0.019) -0.049 (0.020) -0.063 (0.019) -0.053 (0.020)
standardized age 0.399b (0.060)c 0.235b (0.047)c 0.439b (0.058)c 0.314b (0.046)c

dispersion parameter 10.029 (0.537) 2.801b (0.025)c 10.338 (0.574) 2.802b (0.025)c
correlation parameter 0.381 (0.013) 0.333 (0.005) 0.776 (0.009) 0.725 (0.003)
aSignificant effect with p-value ≤ 0.05 in Boldface.
bAverage values over 20 estimates
cse of the 20 averaged estimates
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where Xij is a subset of Zij . The mixed effects models explicitly distinguish between-subject
and within-subject sources of variability (Fitzmaurice et al., 2012). When the link function
l(·) is the identity function, (5.12) is a linear mixed effects model. The part of population-
averaged mean of Yij in (5.12), β′jZij , is the same as in (5.2), and the β’s have the same
interpretation. The second part in the right hand side of (5.12) is the additional subject-
specific mean for i in the at-risk class. Assume we have the random effects bi with mean 0’s
and variance-covariance G1, and a vector of residuals ei of (5.12) with mean 0’s and diagonal
variance R1i = Var(Yi|ηi = 1,Zi, bi), and that bi and ei are independent of each other.
When the linear mixed effects model specified for the η = 1 class, the variance of Yi|ηi =
1,Zi can be derived as Σ1i = XiG1X

′
i+R1i, a compound symmetric form; see the derivation

of Fitzmaurice et al. (2012). In this form, G1 introduces the within-subject correlation
and R1i presents the between-subject variation. Thus, the introduction of random effects,
bi, for the η = 1 class induces correlation among the components of Yi, for which the
variance-covariance function has a determined relationship with a compound symmetric
specification in the marginal model (5.3). Therefore, for continuous responses, the marginal
model specification (5.2) and (5.3) with a compound symmetric correlation and the the
linear mixed effects model specification (5.12) are equivalent. After the model parameters
are estimated, it is possible to obtain predictions of the subject-specific effects, bi, or of the
subject-specific response trajectories, β′jZij + b

′
iXij , from the linear mixed effects model.

The best linear unbiased predictor (BLUP) of bi is E(bi|ηi = 1,Yi,Zi) = G1X
′
iΣ−1

1i (Yi −
β̂
′
Zi). Replacing the estimated parameters in the variance-covariance function, the resulting

predictor, the empirical BLUP, is

b̂i = Ĝ1X
′
iΣ̂−1

1i (Yi − β̂
′
Zi). (5.13)

These relationships between marginal models and mixed effects models are based on the
linear functional form, which is not the case for GLMMs. For nonlinear link functions, the
fixed effects in GLMMs are not comparable to the regression parameters in marginal models.
One exceptional case where they are almost comparable is for repeated counts data when a
log-linear model is adopted and the model has a single random intercept (Fitzmaurice et al.,
2012). The compound symmetric specification for within-subject association is equivalent
to the random intercept model (Lee and Nelder, 2004), log{E(Yij |ηi = 1,Zij , bi)} = β0 +
bi + β

′
1Zij , where bi is a singular random effect and β = (β0, β

′
1)′ .

Mixed effects models for the η = 0 class can be introduced as

l{E(Yij |ηi = 0,Zij , ci)} = θ
′
jZij + c

′
iXij . (5.14)

The relationships between the marginal models (5.4) and (5.5) and the mixed effects models
(5.14) are the same as for the η = 1 class. In particular, when the link function l(·) is the
identity function and (5.14) follows the same assumptions and notation as in the η = 1
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class, the variance of Yi|ηi = 0,Zi can be derived as Σ0i = XiG0X
′
i+R0i and the empirical

BLUP of the random effects ci in the η = 0 class is

ĉi = Ĝ0X
′
iΣ̂−1

0i (Yi − θ̂
′
Zi). (5.15)

We specify the population-averaged part of linear mixed effects models (5.12) and (5.14)
for each latent class and the risk model for η in the LCMs for yearly costs the same as in
Section 5.3.1. As an illustration, the linear mixed effects models for yearly costs are specified
with only a random intercept:

E(Yij |ηi = 1,Zi, bi) = β0j + bi + β1jsexi + β2jSESi + β3jagei (5.16)

E(Yij |ηi = 0,Zi, ci) = θ0j + ci + θ1jsexi + θ2jSESi + θ3jagei (5.17)

As discussed earlier, these LCMs with random effects are equivalent to those ones with
CS correlation marginal specifications for yearly costs. The parameters in variance func-
tions have a simple determined relationship. For the η = 1 class, G1 = φ1σ1 and
Ri = φ1(1 − σ1)IJi , where IJi is a Ji × Ji identity matrix; same for the η = 0 class. The
two kinds of models have these relationships theoretically, while numerically, linear mixed
effects models are estimated by MLE and marginal models are estimated by GEE methods.
For example, Tables 5.2 and 5.5 included the LCMs for yearly costs under M0000.1 and
M1101.1 estimated by the extended GEE method. We estimated the regression models
(5.16) and (5.17) by MLE in R, and the results are similar to the corresponding equivalent
models in Tables 5.2 and 5.5. The differences only appear at about the third digit after
decimal point. Therefore, the LCMs with random effects under M0000.1 and M1101.1
have the same estimates of regression parameters in Tables 5.2 and 5.5 and the estimated
variance parameters can be calculated from the scale and correlation parameters in those
two tables. Under M0000.1, the within-subject and between-subject variations are 1.09
and 1.68 respectively for the at-risk class, and 0.90 and 1.82 respectively for the not-at-risk
class. Under M1101.1, the within-subject and between-subject variations are 1.06 and 1.58
respectively for the at-risk class, and 0.93 and 1.89 respectively for the not-at-risk class.
We conduct risk classification under the subject-specific models based on these two models
in the next section.

5.4 Analysis IV.B of CAYACS Physician Claims: Risk Clas-
sification/Prediction in Cohort by Yearly Costs

One of CAYACS’s important goals is to conduct risk classification/prediction in the survivor
cohort. This section classifies the survivor cohort into at-risk and not-at-risk classes based
on analysis of yearly costs. We consider two types of classification procedures, one using
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estimated subject-specific means (Section 5.4.1) and the other via three estimators for the
risk probability (Section 5.4.2). An approximate ROC method is proposed in Section 5.4.3
to evaluate the performance of the second type of risk classification procedures. In addi-
tion, Section 5.4.4 presents estimates of the risk probability for the individuals with their
dynamically updated information. It exemplifies how to use the classification procedures of
Section 5.4.2 adaptively for prediction. The proposed risk prediction procedures are applied
and evaluated in Section 5.4.5 using the additional RSC information collected during the
the study follow-up.

5.4.1 Risk Classification by Subject-Specific Mean

This subsection demonstrate risk classification by subject-specific means estimated from
the LCM under M0000, where all coefficients are time-independent for the yearly costs. We
make use of the merit of longitudinal analysis to conduct risk classification based on the
subject-specific effects bi and ci, i.e., to predict ηi given Zi, bi and ci. The empirical BLUP
formula (5.13) and (5.15) show that b̂i and ĉi for each subject are linear combinations of
multiple responses from subject i, given η = 1 or η = 0 respectively. They summarize
subject-specific information of responses Yi after adjusted by the covariates. We develop
a risk classification strategy based on subject-specific effects of the LCM from the idea of
Fisher’s (linear or quadratic) discriminant analysis for multivariate variables; for example,
see Jobson (2012). We can consider the risk classification problem is to seek partitioning
the longitudinal responses Y into at-risk and not-at-risk regions, also adjusted by covariates
Z. Fisher’s idea was to transform multivariate variables to a univariate variable in a linear
function form. For longitudinal responses Y whose dimension is different from subject to
subject, we can summarize them to subject-specific mean given covariates Z.

To evaluate distributions of means with random effects for the two classes, the continuous
covariate age at entry, which is equivalent to diagnosis age for survivors, is truncated into 4
categories, 0 to 5, 5 to 10, 10 to 15 and 15 to 20, and the mean of each category is used to
calculate the means of responses. Therefore, we have 16 covariate combination cohorts (2
for sex, 2 for SES and 4 for age). The parameters in (5.17) are estimated from the general
population, and the distribution of estimated subject-specific mean of the not-at-risk class
Ê(Yij |ηi = 0,Zi, ci) is evaluated for each of the 16 cohorts. The distribution of estimated
subject-specific mean of the at-risk class Ê(Yij |ηi = 1,Zi, bi) in (5.16) is also evaluated for
each of the 16 cohorts according to estimates of the parameters from the RSC subgroup of
survivor cohort. The distributions of Ê(Yij |ηi = 0,Zi, ci) (green) vs. Ê(Yij |ηi = 1,Zi, bi)
(red) are contrasted for each of the 16 cohorts in each plot of Figure 5.9, respectively.

Each of these plots depicts the subject-specific means of the at-risk and not-at-risk
classes given specific covariates. The membership of an individual in the survivor cohort is
unobserved, while his/her subject-specific mean can be evaluated by the LCM and compare
to see which class he/she is closer to. Formally speaking, it is from the idea of linear
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discriminant analysis (LDA) which starts from the Bayesian perspective: we want to find
the distribution of η given a subject-specific mean, while we have distributions of the subject-
specific means given classes. A prior distribution of classes in the population need to be
assumed, which is π1, π0 and π1 +π0 = 1 in this risk classification problem. Typically, when
we choose π1 = π0 = 0.5 regardless of Z, the same density value of the two distributions
points the decision boundary for classification on x-axis (blue lines) in Figure 5.9. The
range of these decision boundary values is from 4.62 to 5.23 among the 16 cohorts.

For any individual i in the survivor cohort, his/her subject-specific mean by the LCM is
calculate by Ê(Yi|Zi, bi, ci) = p(Zi; α̂)[µ1(Zi; β̂) + b̂i] + {1− p(Zi; α̂)}[µ0(Zi; θ̂) + ĉi], where
b̂i and ĉi are evaluated from the empirical BLUP (5.13) and (5.15), respectively. This value
is then compared to the decision boundary given corresponding covariates in Figure 5.9.
When it is larger than the boundary value, this subject belongs to the at-risk class; the
not-at-risk class, otherwise. The risk classification result for the survivor cohort is listed in
Table 5.6 and compared to the RSC status. The false negative rate is 26% (63/237) when
56% of the survivors are classified in the at-risk class.

This risk classification strategy is intuitive for M0000, where we assume that repeated
responses from the same subject have the same mean regardless of time. This may not be
true all the time. The limitation of this procedure is the difficulty to allow time-varying
effects on longitudinal responses.

Table 5.6: Comparison of Risk Classification by Subject-Specific Means and RSC Status

Criterion Ê(Yi|Zi, bi, ci) vs. Figure 5.9
δi η̂i = 0 η̂i = 1 (56%)
0 643 729
1 63 174

5.4.2 Risk Classification by Risk Probability

Another way to conduct risk classification is by estimated risk probabilities of ηi for each
subject with available information and choosing a particular cut-off value. The estimated
risk probabilities of η we consider are as follows.
(i) P̂ (ηi = 1|Zi) = p(Zi; α̂L), which is a risk probability estimation based only on subject
i’s covariates;
(ii) P̂ (ηi = 1|Yi,Zi) through plugging in (α̂L, β̂L, θ̂L) in

P (ηi = 1|Yi,Zi;α,β,θ) = [Yi|ηi = 1,Zi]P (ηi = 1|Zi)
[Yi|ηi = 1,Zi]P (ηi = 1|Zi) + [Yi|ηi = 0,Zi]P (ηi = 0|Zi)

.

(5.18)
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Figure 5.9: Distributions of estimated means of each class with random intercepts.
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Even subjects with the same characteristics, i.e., the same Zi, may have different risk
probabilities after we include their physician-claim data Yi.
(iii) P̂ (ηi = 1|Yi,Zi, bi, ci) with (α,β,θ) = (α̂L, β̂L, θ̂L) and b̂i, ĉi estimated by empirical
BLUP in

P (ηi = 1|Yi,Zi, bi, ci;α,β, θ) = [Yi|ηi = 1,Zi, bi]P (ηi = 1|Zi, bi, ci)
[Yi|ηi = 1,Zi, bi]P (ηi = 1|Zi, bi, ci) + [Yi|ηi = 0,Zi, ci]P (ηi = 0|Zi, bi, ci)

.

(5.19)

Moreover, after estimating the random effects, b̂i and ĉi, of each subject, we can add more
class information to predict the probability of η = 1 given Y, Z, b, and c. But P (ηi =
1|Zi, bi, ci) in (5.19) is not available in our LCMs. One way to get it is to jointly model
the longitudinal responses Y and the latent indicator η through sharing the same random
effects. Another way is to approximate P (ηi = 1|Zi, bi, ci) by the second risk probability
P (ηi = 1|Yi,Zi) to get an approximation of P (ηi = 1|Yi,Zi, bi, ci). The approximate to
P (ηi = 1|Yi,Zi, bi, ci;α,β,θ) is

P̃ (ηi = 1|Yi,Zi, bi, ci;α,β, θ) = [Yi|ηi = 1,Zi, bi]P (ηi = 1|Yi,Zi)
[Yi|ηi = 1,Zi, bi]P (ηi = 1|Yi,Zi) + [Yi|ηi = 0,Zi, ci]P (ηi = 0|Yi,Zi)

.

(5.20)

We evaluate these three estimators for risk probability under M1101.1 for illustration.
When Yi is a response vector, [Yi|ηi,Zi] is the joint pdf of Yi given ηi. We assume
that it follows a multivariate normal distribution with mean µηi and variance Σηi, while
given bi and ci, the joint pdf of [Yi|ηi,Zi, bi, ci] is independent. These three estimated risk
probabilities of η = 1 are calculated for each subject in the full cohort, and Figure 5.10
shows the histograms of the estimates. We see that the histogram of risk probability (i) is
concentrated in between 0.45 to 0.9. By using more information in P (ηi = 1|Yi,Zi), the
risk probability (ii) distributes from 0 to 1. And the distribution of risk probability (iii) is
more towards extreme values, so (iii) is less sensitive to the choice of cut-off value. To study
the variability of the three risk probabilities, we estimate 9 replicates of them by parametric
bootstraps, which are correspondingly placed on the right hand side of each histogram in
Figure 5.10. We can see that the risk probability (i) varies a lot, while the other two are
relatively stable.

The estimated proportion of subjects in the at-risk class is about 62.1% based on∑n
i=1 P̂ (ηi = 1|Zi)/n. The estimated proportion based on

∑n
i=1 P̂ (ηi = 1|Yi,Zi)/n is

about 62.5%; while it is about 63.4% based on
∑n
i=1 P̂ (ηi = 1|Yi,Zi, bi, ci)/n. Based on

P̂ (ηi = 1|Yi,Zi), we calculate the estimated proportion at-risk in different treatment co-
horts: about 59.0% of the survivors with chemotherapy but no radiation are in the at-risk
class; about 82% of those with radiation but no chemotherapy are in the at-risk class; about
73.9% of those with both chemotherapy and radiation are in the at-risk class; and about
50.2% of those with other treatments are in the at-risk class.

To conduct classification by the three estimated risk probabilities, we need to choose a
cut-off value. When the estimated risk probability is larger than the cut-off value, η̂i = 1;
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Figure 5.10: Histograms of estimated risk probabilities of η for the full survivor cohort and
parametric bootstraps.
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otherwise, η̂i = 0. Table 5.7 presents the risk classification results by these three estimated
risk probabilities at different cut-off values, and compared with RSC status.

Table 5.7: Comparison of Risk Classification and RSC Status at Different Cut-off Values

Criterion P̂ (ηi = 1|Zi) P̂ (ηi = 1|Yi,Zi) app P̂ (ηi = 1|Yi,Zi, bi, ci)
δi η̂i = 0 η̂i = 1 η̂i = 0 η̂i = 1 η̂i = 0 η̂i = 1
cut-off = 0.1 (100%) (95%) (89%)
0 0 1372 79 1293 170 1202
1 0 237 7 230 12 225
cut-off = 0.2 (100%) (88%) (82%)
0 0 1372 188 1184 262 1110
1 0 237 14 223 21 216
cut-off = 0.3 (100%) (81%) (78%)
0 0 1372 284 1088 336 1036
1 0 237 24 213 26 211
cut-off = 0.4 (99%) (75%) (73%)
0 8 1364 379 993 406 966
1 2 235 25 212 31 206
cut-off = 0.5 (82%) (68%) (67%)
0 262 1110 480 892 491 881
1 32 205 33 204 37 200
cut-off = 0.6 (52%) (60%) (61%)
0 674 698 591 781 573 799
1 102 135 49 188 49 188
cut-off = 0.7 (30%) (49%) (54%)
0 983 389 754 618 674 698
1 151 86 64 173 59 178
cut-off = 0.8 (9%) (36%) (45%)
0 1260 112 928 444 815 557
1 198 39 95 142 74 163
cut-off = 0.9 (0%) (22%) (31%)
0 1372 0 1126 246 1008 364
1 237 0 130 107 101 136

5.4.3 Evaluation of Risk Classification by Risk Probability

Now, we want to evaluate and compare the performance of the three risk probability esti-
mators in risk classification. Formally, in a classification problem, a ROC curve, which is
sensitivity against 1-specificity, performs this task if we know the true value of η for at-risk
membership. However, η is latent in our application. Given the available RSC status, par-
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tial information about the latent indicator η, we propose the following approximate ROC
method.

To estimate the two conditional probabilities, sensitivity and specificity, one needs the
numbers of true negative (TN), false positive (FP), false negative (FN) and true positive
(TP). Instead, we have only information summarized in 2 by 2 contingency tables such as
Table 5.7, which are based on to RSC status (δ) instead of η. Under our additional model
assumptions, the δ = 1 group belongs to at-risk class (η = 1), while the δ = 0 group is a
combination of η = 1 and η = 0. We assume the same sensitivity for with (δ = 1) or without
(δ = 0) RSC groups. We can use the observed sensitivity to approximate sensitivity of the
classifier. Here, the observed sensitivity is the ratio of the number of η̂ = 1 given δ = 1
divided by the number of δ = 1.

Figure 5.11 plots the approximate false negative rate (1-sensitivity) and the classified
at-risk rate (rate of η̂ = 1) of the three estimated risk probabilities at different cut-off values.
The false positive rate is positive proportional to the classified at-risk rate, i.e., the higher
the classified at-risk rate results in higher false positive rate. The false negative rate for
P (η = 1|Z) is 102/237 = 43%, and drops to 49/237 = 21% for P (η = 1|Y,Z) when cut-off
is 0.6.

Figure 5.11: Approximate false negative rate and classified at-risk class rate at different
cut-off values.
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To get specificity, besides the same sensitivity assumption, we also need assume the
prevalence of at-risk, which is the rate of η = 1 in survivors. At each prevalence level,
we can decompose the numbers of η̂ = 0 and η̂ = 1 in the δ = 0 group into real η = 1
and η = 0 classes to calculate TN and FP, then 1 − specificity = FP

TN+FP . Figure 5.12
shows approximate ROC curves at different prevalence levels and contrasts with the three
estimated risk probabilities.

Figure 5.12: Approximate ROC at different prevalence.
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From these four plots in Figure 5.12, we can see that both the risk probabilities (ii)
and (iii) dramatically improve risk probability (i), P̂ (ηi = 1|Zi). The performance of risk
probabilities (ii) and (iii) are quite close when cut-off values are between 0.5 and 0.75, and
risk probability (ii) is slightly better than (iii) in this range. In other ranges, risk probability
(iii) is much better than (ii). In general, risk probability (iii) is more stable and less sensitive
to cut-off value choices.

5.4.4 Dynamic Estimates for Risk Probability

We consider the risk probability P (η = 1|Z) which only depends on individual’s characteris-
tics, as the risk probability at time 0. For each survivor in the cohort, we can estimate their
risk probabilities dynamically at different follow-up years. For example, we can estimate
the dynamic risk probabilities at time 0 by P̂ (η = 1|Z), at time 5 years by P̂ (η = 1|Z,Y5)
up to 5 years observations after follow-up, and at every 5 more years until use all 20 years
observations. Figure 5.13 are histograms of dynamic estimated risk probabilities at time 0,
up to 5 years, up to 10 years, up to 15 years, and up to 20 years, respectively, for the full
survivor cohort.

We illustrate this procedure by a sub-cohort of 40 subjects, who are diagnosed with
cancer in 1981 and followed until 2006. They are the people who have all 20 years follow-
up. Within this sub-cohort, 9 of them have RSC and 31 of them don’t have. We evaluate
the following five dynamic risk probabilities: P̂ (η = 1|Z) 7→ P̂ (η = 1|Z,Y5) 7→ P̂ (η =
1|Z,Y10) 7→ P̂ (η = 1|Z,Y15) 7→ P̂ (η = 1|Z,Y20) for each of them, and plot these dynamic
risk probability curves for each individual in the upper panel of Figure 5.14 and contrast
them separately according to their RSC status. We also classify them into at-risk (in red)
and not-at-risk (in grey) classes. As we assumed, the RSC group belongs to at-risk class,
while the no RSC group is a combination and need to be classified. By using cut-off value
0.5 at the 20’s year, the no RSC group is categorized to two classes.

We take the means at each time point within each of the classes and plot at the bottom
panel of Figure 5.14 in different RSC groups, respectively. In the two classes of the no RSC
group, the at-risk class (red line) is quite similar to the red line in the RSC group. At time
0, the at-risk and not-at-risk classes in the no RSC group are quite close. As more and
more data are collected, the two latent classes are separated obviously.
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Figure 5.13: Histograms of dynamic estimates for risk probability for full survivor cohort.
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Figure 5.14: Dynamic estimates for risk probability of survivors diagnosed in 1981 and
followed until 2006 (40 in total) and means of each risk class.

130



5.4.5 Risk Prediction for RSC during Follow-up

As in Section 3.7.2, to validate the model and estimating procedure, we predict the RSC
during follow-up group using the LCM, when it is not used in model fitting. This application
uses δ = δ0 to fit the LCM. The δ = 1 subset has s = 165 survivors with RSC before follow-
up, and v = 75 survivors had RSC during the follow-up. As in Figures 5.1 and 5.2, Figures
5.15 and 5.16 compare yearly counts and costs in the δ = 1 subset with the full cohort
and the general population, respectively. The sample size of the δ = 1 subset became too
small to fit the model in the final few years. We illustrate this application using the yearly
costs for the first 16 years of the follow-up under M1101.1. We estimated P̂ (ηi = 1|Zi) and
P̂ (ηi = 1|Yi,Zi) after fitting the model and classified the cohort into at-risk and not-at-risk
groups using these estimated risk probabilities as in Section 5.4.2. Table 5.8 compares the
risk classification and prediction with the RSC status.

Table 5.8: Comparison of Risk Prediction and RSC Status

Criterion P̂ (ηi = 1|Zi) > 0.6 P̂ (ηi = 1|Yi,Zi) > 0.6 either > 0.6
Classification η̂i = 0 η̂i = 1 (54%) η̂i = 0 η̂i = 1 (60%) η̂i = 0 η̂i = 1 (74%)
RSC status
No 674 722 590 779 367 1002
Before follow-up 78 87 37 128 24 141
During follow-up 22 53 20 55 7 68

The false negative rates for predicting RSC during follow-up by P (η = 1|Z) and P (η =
1|Y,Z) are 22/75 = 29% and 20/75 = 27%, respectively. Predicting η̂i = 1 provided any
of the estimated probabilities are larger than 0.6, only 7/75 = 9% are falsely predicted to
be in the η = 0 class.

5.5 Summary and Discussion

We have extended the extended GEE estimator developed in Chapter 3 for cross-sectional
counts to longitudinal LCMs. We have shown that the procedure can readily be used
for any type of longitudinal data provided it is suitable for GEE approaches. We have
applied the methodology to the CAYACS data in yearly binaries, counts, and costs. We
have also conducted risk classification and prediction based on the longitudinal LCMs. In
addition to marginal models and the extended GEE procedure for the longitudinal LCMs,
we considered mixed effects models for each latent class and developed risk classification
based on the prediction of random effects for the LCMs.

In further investigation we could consider continuous time scales rather than yearly
data, viewing the longitudinal data as stochastic processes.
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Figure 5.15: Mean and CI of yearly counts during follow-up: Subset of survivor cohort with
RSC (before follow-up) vs. full survivor cohort vs. general population.
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Figure 5.16: Mean and CI of yearly costs during follow-up: Subset of survivor cohort with
RSC (before follow-up) vs. full survivor cohort vs. general population.
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Chapter 6

Final Discussion

6.1 Summary

This thesis was motivated and illustrated by the CAYACS physician claim project, but
the proposed modelling and inference procedures can be applied rather broadly to data
with multiple unobserved classes. We formulated LCMs and developed associated inference
procedures and applications. We also established the asymptotic properties of the estimators
and conducted simulation studies to study their finite-sample performance. We analyzed
the CAYACS data using all the methodologies as an illustration.

The CAYACS project primarily studies the risk of later effects arising from the original
diagnosis. We formulated the risk assessment problem into LCMs. When survivors experi-
ence later effects, they need more physician care and thus have higher medical costs than
those in the general population of the same gender and age. We defined the two subgroups
in the survivor cohort as at-risk and not-at-risk classes. The at-risk membership indicator
η is latent.

We first specified the LCM as a mixture Poisson distribution for cross-sectional counts.
We presented the MLE and proposed a pseudo-MLE procedure that used the supplemen-
tary data to estimate the parameters in the η = 0 class (Chapter 2). Simulation studies
showed that the pseudo-MLE is more efficient than the MLE and robust to η = 0 class
misspecification. However, both methods lack robustness to distribution misspecification
of the η = 1 class, especially when estimating the parameters in the risk model. In the
analysis of CAYACS visits, we suggested that the starting time of the follow-up for the
general population should be chosen to match that of a random survivor with the same
sex and birth year. This makes the general population a better comparison group in terms
of age at entry and length of observation period. This made a noticeable difference in the
quasi-Poisson regression, which showed that the visit counts were affected nonlinearly by
the aging of the subject. It is therefore necessary to study the CAYACS data longitudinally.
The similarity in the real-data analysis by the MLE and pseudo-MLE in which the general
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population (Q) was used, validated the pseudo-MLE procedure. The approach to choosing
the starting time for the comparison group may prove useful for practitioners, especially in
longitudinal studies.

Chapter 3 developed robust estimating procedures for the LCM. We introduced a binary
variable δ as partial information about the latent risk indicator η, where δ = 1 was a sub-
group of η = 1. We proposed three pseudo-MLEs and compared them to the MLE under a
mixture Poisson distribution for the counts. These likelihood-based methods validated the
use of δ as a partially observed η, but they suffered when the distribution of the counts was
misspecified. To obtain more robust statistical methods, we proposed two sets of extended
GEEs for the parameters in the LCM. We developed two types of extended GEE estimators
for each set of extended GEEs by using the supplementary dataset for the estimation of one
class alone or together with the partial information about the other class. The estimators
from the extended GEEs where we specified the mean and variance functions but not the
underlying distribution for each of the latent classes were robust to distribution misspecifi-
cation and maintained satisfactory efficiency. The computational advantage of the extended
GEE methods was clear, since the estimating equations are much simpler than likelihood
functions. We adapted the extended GEEs (Chapter 5) to longitudinal counts and medical
costs.

In Chapters 4 and 5 we summarized the CAYACS data in yearly counts and medical
costs. Longitudinal analysis of the LCMs can explore questions for which cross-sectional
analysis is not suitable. In Chapter 4, we analyzed the full survivor cohort and compared
it with the general population separately and together, using conventional longitudinal
approaches. We demonstrated the merits of longitudinal analysis. For example, the time-
varying effects of age at entry showed that the cohort and the population have different
visit trends as they age.

Chapter 5 adapted the robust extended GEE method developed for LCMs (Chapter 3)
to the longitudinal data analyzed in Chapter 4 by adjusting for within-subject correlation
for both yearly counts and medical costs. The analysis of the longitudinal data under LCMs
achieved our objective of risk assessment; we explored the visit trends over time for each
latent class. We investigated different ways to classify the cohort due to the risk of later
effects by specifying the regression model in each class as either marginal or subject-specific
models.

6.2 Future Investigation

In this thesis we have built pseudo-MLEs and extended GEE procedures for LCMs and
comprehensively analyzed the CAYACS data using conventional approaches and our LCMs.
There are several possibilities for future investigation.
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When we extended the GEE-based method from cross-sectional to longitudinal data, we
introduced within-subject correlation, with the subjects being independent of one another.
It would be interesting to extend the proposed modelling and inferential procedures to
investigate the potential correlation of the subjects, similarly to, for example, the approach
of Lee et al. (2006).

We used physician-claim records to determine the medical care related to the later
effects experienced by survivors. The records were collected from the BC MSP and did
not include oncologist visits. The BC Cancer Agency does not yet have electronic oncology
records available, and it has a different payment system. In addition, oncologists do not
provide regular care for survivors after the age of 18. A combination of all the relevant
medical information including BC MSP physician visits, oncologist visits, and periods of
hospitalization would lead to a more reliable risk assessment.

In our research, the latent risk indicator η is constant over time. A time-dependent
indicator η(t) could accommodate evolving cohorts. Another way to extend the LCMs is to
consider more than two classes. The determination of number of classes can be viewed as
a model selection problem, or can conduct cluster analysis to pre-determine the number of
classes.

Another issue is noninformative censoring. For example, the death rates during the
follow-up period are about 4%, 17%, and 0.4% for the cohort, the RSC subgroup, and the
population, respectively. This may not be an issue for cross-sectional analysis, since the
cross-sectional data summarized the information for the entire follow-up period. Moreover,
the death rates are quite low in the full cohort and the population. However, for the
RSC subgroup we saw sudden drops in the visit counts and medical costs in the final few
years. This may have occurred because survivors with serious later effects had died. Future
research may need to adopt informative censoring, especially for the RSC subgroup.

One advantage of longitudinal analysis over cross-sectional analysis is the ability to deal
with time-varying covariates. The SES of young survivors may change more over time than
that of their peers, which could be an important factor. We used the SES at the study
entry as a constant covariate, but it could be updated using census data and recorded
address changes. Another recommendation is that one should choose the time scale for the
longitudinal analysis according to the study objectives. As mentioned before, a calendar
time scale could be used for administrative purposes. For an individual time scale, the
starting point could be the individual’s birthday, allowing the age and cohort effects to
be totally separated. The response Y = Y (t) could instead be viewed as a mixture of
stochastic processes using real time scales. It would be challenging to develop LCMs and
the corresponding inference procedures for stochastic processes.

The physician visit counts and costs are highly correlated. We can construct the
counting process of visits (N(t)) and costs corresponding to each visit (cj) together as
C(t) =

∑N(t)
j=1 cj . This compound Poisson process may serve as a better model of the CAY-
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ACS data and answer more scientific questions. For example, costs corresponding to each
visit may measure the severity of the visit.

6.2.1 Generalized Methods of Moments

We did some work on the GMM approach and it showed promise. In Chapter 3, we proposed
two sets of extended GEEs for the same set of parameters in the LCM. Therefore, the number
of estimating equations is greater than the number of parameters. This scenario falls into the
GMM framework, so we could combine the estimating equations using a GMM estimator.
In simulation setting 3, the GMM estimators performed well even when the assumption
that the at-risk class has the same distribution of visit counts as the δ = 1 subgroup was
not valid and the extended GEE estimators were slightly biased. The GMM estimator for
LCMs deserves further theoretical and numerical study.

GMM was developed in 1982 as a generalization of the method of moments in econo-
metrics (Hansen, 1982). It has since been widely applied to analyze economic and financial
data, and numerous inference techniques based on GMM estimators have been developed
(Hall, 2005). For recent developments, see Yin (2009) and Yin et al. (2011). As is well
known, the optimality of the MLE stems from its distributional assumption for the data.
The statistical properties of the MLE are quite sensitive to this assumption, and the MLE
is often computationally burdensome. In contrast, the GMM framework provides a compu-
tationally convenient method that avoids the need to specify the likelihood function (Hall,
2005).

GMM has had a significant impact in econometrics. Hall (2005) declared “a set of
population moment conditions which are deduced from the assumptions of the econometric
model” to be the cornerstone of GMM estimation. We constructed a GMM framework based
on statistical estimating functions and developed a GMM estimator robust to distribution
misspecification, as well as the model assumptions in Section 3.2, since some estimating
equations without those model assumptions play an important role in GMM estimators by
weighting. As stated in Section 3.4.1, the type J GEE estimator did not use the model
assumptions of Section 3.2; it ignored the information about δ. As a result, it suffered
nonidentifiability problems in the LCM, i.e., it failed to distinguish classes. However, it may
be a good candidate if we wish to relax Assumption (ii). In contrast, the type P extended
GEE estimators applied Assumption (iii) explicitly. This simplified the implementation,
avoided nonidentifiability problems, and was totally robust to distribution misspecification.
However, they were not robust enough for the model assumptions. Every GEE estimator
is double-edged. If we can use the GMM framework, combining the estimating equations
properly to balance the different assumptions, we will be able to develop GMM estimators
for the LCM that avoid nonidentifiability problems and are also robust to distribution
misspecification and the model assumptions. Simulation studies have demonstrated the
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advantages of GMM, at least for the estimates of α in the risk model. Further theoretical
derivation of GMM for the LCM is needed.

Another advantage of the GMM framework is that the overidentifying restrictions can
be used in diagnostic tests of misspecification of the population moment conditions. We
could apply these theories to develop tests for the assumption that δ = 1 is a subgroup of
the η = 1 class.
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Appendix A

Application of EM Algorithm for
the Likelihood-based Estimations
in Chapter 3

An alternative way to get the MLE of φ described in Section 3.2.1 is to apply the EM-
algorithm via a full-data likelihood function. Let the “full data” be F =

{
(Yi, ηi, δi, Ti,Zi) :

i = 1, . . . , n
}
in this application. We can verify the conditions that ensure that the resulting

sequence of estimates converges to the MLE φ̂ from L(φ;P). The likelihood function of φ
based on F is

L(φ;F) =
n∏
i=1

[Yi, ηi, δi|Ti,Zi;φ]

=
n∏
i=1

[Yi|ηi, δi, Ti,Zi][ηi, δi|Zi]

=
n∏
i=1

[Yi|ηi, Ti,Zi][ηi, δi|Zi]

=
n∏
i=1

[Yi|ηi = 1, Ti,Zi;β]ηi
n∏
i=1

[Yi|ηi = 0, Ti,Zi; θ]1−ηi

×
n∏
i=1

q(Zi; ρ)δiηi [p(Zi;α)− q(Zi; ρ)](1−δi)ηi [1− p(Zi;α)](1−δi)(1−ηi).

Then the F log-likelihood function is

lF (φ) = lF1(β) + lF2(θ) + lF3(ρ, α),

where

lF1(β) =
n∑
i=1

ηi log[Yi|ηi = 1, Ti,Zi;β], (A.1)
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lF2(θ) =
n∑
i=1

(1− ηi) log[Yi|ηi = 0, Ti,Zi; θ], (A.2)

lF3(ρ, α) =
n∑
i=1

δi log q(Zi; ρ) + (ηi − δi) log[p(Zi;α)− q(Zi; ρ)] + (1− ηi) log[1− p(Zi;α)].

(A.3)

The EM algorithm for the MLE of φ iterates between an E-step and an M-step that maxi-
mizes the F likelihood function. The computational advantage is obvious, since the full-data
log-likelihood is the summation of three terms, each of which depends on only β, θ, and
(ρ, α), separately. Starting with the initial values (ρ(0), α(0), β(0), θ(0)), at the lth iteration
of the algorithm with l ≥ 1 and the (l − 1)th estimates (ρ(l−1), α(l−1), β(l−1), θ(l−1)), the
algorithm updates the estimates as follows:

E-Step For i = 1, . . . , n, η(l)
i = 1 if δi = 1, otherwise calculate η

(l)
i = E{ηi|Yi, δi =

0, Ti,Zi;φ(l−1)} via

E
(
η|Y, δ = 0, T,Z;φ

)
=

[Y |η = 1, T,Z;β]p(Z;α)−q(Z;ρ)
1−q(Z;ρ)

[Y |η = 1, T,Z;β]p(Z;α)−q(Z;ρ)
1−q(Z;ρ) + [Y |η = 0, T,Z; θ]1−p(Z;α)

1−q(Z;ρ)

.

(A.4)

M-Step Obtain β(l), θ(l), (ρ(l), α(l)) by separately maximizing lF1(β; η(l)), lF2(θ; η(l)), and
lF3(ρ, α; η(l)) with respect to β, θ, and (ρ, α), respectively.

The EM algorithm can be applied to the three pseudo-MLEs by using the above procedure
with ρ and/or θ fixed to ρ̂A and θ̃.
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Appendix B

Asymptotic Derivations of the
Pseudo-MLEs in Chapter 3

Type A Pseudo-MLE This estimating procedure is equivalent to solving ∂l2(ρ)
∂ρ = 0 and

∂l1(φ)
∂(α,β,θ) = 0, simultaneously, to get zeros at φ̂A = (ρ̂A, α̂A, β̂A, θ̂A). The first-order Taylor
expansion of the functions ∂l2(ρ)

∂ρ |ρ=ρ̂A and ∂l1(φ)
∂(α,β,θ) |φ=φ̂A , whose values are zeros, yields the

following equations: 1√
n
∂l2(ρ)
∂ρ

1√
n

∂l1(φ)
∂(α,β,θ)

 .= − 1
n

 ∂2l2(ρ)
∂ρ2 0

∂2l1(φ)
∂(α,β,θ)∂ρ

∂2l1(φ)
∂(α,β,θ)2

√n((ρ̂A, α̂A, β̂A, θ̂A)′ − (ρ, α, β, θ)′
)
.

(B.1)
The left-hand side of (B.1), by the central limit theorem (CLT), converges to a multivariate
normal distribution with mean zero and variance ΣA, as n→∞: 1√

n
∂l2(ρ)
∂ρ

1√
n

∂l1(φ)
∂(α,β,θ)

 d−−−→
n→∞

N
(
0,ΣA

)
.

The coefficient of the right-hand side of (B.1) converges to a constant matrix ΠA almost
surely, by the strong law of large numbers (SLLN):

− 1
n

 ∂2l2(ρ)
∂ρ2 0

∂2l1(φ)
∂(α,β,θ)∂ρ

∂2l1(φ)
∂(α,β,θ)2

 a.s.−−−→
n→∞

ΠA.

Therefore, by Slutsky’s Theorem, the asymptotic distribution for the type A pseudo-MLE
(ρ̂A, α̂A, β̂A, θ̂A) is

√
n
(
(ρ̂A, α̂A, β̂A, θ̂A)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

A ΣA(Π−1
A )′

)
.

Type B Pseudo-MLE This estimating procedure is equivalent to solving the equations
∂l(φ)

∂(ρ,α,β) = 0 and m(θ̃ − θ) = 0, simultaneously, to get zeros at φ̂B = (ρ̂B, α̂B, β̂B, θ̃). The
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first-order Taylor expansion of the function ∂l(φ)
∂(ρ,α,β) |φ=φ̂B , whose value is zero, yields the

following equation:

1√
n

∂l(φ)
∂(ρ, α, β)

.= − 1
n

∂2l(φ)
∂(ρ, α, β)2

√
n
(
(ρ̂B, α̂B, β̂B)′ − (ρ, α, β)

)
− 1
n

∂2l(φ)
∂(ρ, α, β)∂θ

√
n(θ̃ − θ).

(B.2)
By the properties of the likelihood estimator, the left-hand side of (B.2) converges
to a multivariate normal distribution with mean zero and variance Σ∗B, as n → ∞,

1√
n

∂l(φ)
∂(ρ,α,β)

d−−−→
n→∞

N
(
0,Σ∗B

)
. Combined with the assumed distribution for θ̃, 1√

n
m
(
θ̃ −

θ
) d−−−−→
m→∞

N
(
0, r−1AVs(θ)

)
, and since the two limiting distributions are from two indepen-

dent samples, the combination vector has a normal distribution 1√
n

∂l(φ)
∂(α,β,θ)

1√
n
m
(
θ̃ − θ

)
 d−−−→

n→∞
N
(
0,ΣB

)
where

ΣB =
(

Σ∗B 0
0 r−1AVs(θ)

)
.

The coefficients of the right-hand side of (B.2) combined with 1√
n
m
(
θ̃ − θ

)
converge to a

constant matrix ΠB almost surely, by SLLN:

− 1
n

(
∂2l(φ)

∂(ρ,α,β)2
∂2l(φ)

∂(ρ,α,β)∂θ
0 −m

)
a.s.−−−→
n→∞

ΠB.

Therefore, by Slutsky’s Theorem, the asymptotic distribution for the type B pseudo-MLE
(ρ̂B, α̂B, β̂B, θ̃) is

√
n
(
(ρ̂B, α̂B, β̂B, θ̃)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

B ΣB(Π−1
B )′

)
.

Type AB Pseudo-MLE Finding the type AB pseudo-MLE φ̂AB = (ρ̂A, α̂AB, β̂AB, θ̃) is
equivalent to solving the equations ∂l2(ρ)

∂ρ = 0, ∂l1(φ)
∂(α,β) = 0, and m(θ̃− θ) = 0, simultaneously.

The first-order Taylor expansion of the functions ∂l2(ρ)
∂ρ |ρ=ρ̂A and ∂l1(φ)

∂(α,β) |φ=φ̂AB , whose values
are zero, yields the following equations:

1√
n

∂l2(ρ)
∂ρ

.= − 1
n

∂2l2(ρ)
∂ρ2

√
n(ρ̂A − ρ) (B.3)

and

1√
n

∂l1(φ)
∂(α, β)

.= − 1
n

∂2l1(φ)
∂(α, β)∂ρ

√
n(ρ̂A−ρ)− 1

n

∂2l1(φ)
∂(α, β)2

√
n
(
(α̂AB, β̂AB)′−(α, β)

)
− 1
n

∂2l1(φ)
∂(α, β)∂θ

√
n(θ̃−θ).

(B.4)
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By the CLT, the left-hand sides of (B.3) and (B.4) converge to a multivariate normal
distribution with mean zero and variance Σ∗AB, as n→∞, 1√

n
∂l2(ρ)
∂ρ

1√
n
∂l1(φ)
∂(α,β)

 d−−−→
n→∞

N
(
0,Σ∗AB

)
.

Combined with the assumed distribution for θ̃, 1√
n
m
(
θ̃ − θ

) d−−−−→
m→∞

N
(
0, r−1AVθ̃(θ)

)
, and

since the two limiting distributions are from two independent samples, the combination
vector has a normal distribution

1√
n
∂l2(ρ)
∂ρ

1√
n
∂l1(φ)
∂(α,β)

1√
n
m
(
θ̃ − θ

)
 d−−−→

n→∞
N
(
0,ΣAB

)

where
ΣAB =

(
Σ∗AB 0

0 r−1AVθ̃(θ)

)
.

The coefficients of the right-hand sides of (B.3) and (B.4) combined with 1√
n
m
(
θ̃ − θ

)
converge to a constant matrix ΠAB almost surely, by SLLN:

− 1
n


∂2l2(ρ)
∂ρ2 0 0

∂2l1(φ)
∂(α,β)∂ρ

∂2l1(φ)
∂(α,β)2

∂2l1(φ)
∂(α,β)∂θ

0 0 −m

 a.s.−−−→
n→∞

ΠAB.

Therefore, by Slutsky’s Theorem, the asymptotic distribution for the type AB pseudo-MLE
(ρ̂A, α̂AB, β̂AB, θ̃) is

√
n
(
(ρ̂A, α̂AB, β̂AB, θ̃)′ − (ρ, α, β, θ)′

)
d−−−→

n→∞
N
(
0,Π−1

ABΣAB(Π−1
AB)′

)
.
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