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Abstract 

Chapman and Chapman (1973) identified an issue in psychopathology research that has 

since come to be known as the Psychometric Confound (MacDonald, 2008). They 

claimed, essentially, that various traditional inferential methods for drawing conclusions 

regarding ability deficits in a population with some particular pathology were flawed.  

The work of the Chapmans has since been cited frequently in the psychopathology field, 

with most citing authors echoing their concerns, and some applying their proposed 

solutions. However, the precise nature of the phenomenon remains in question. The goal 

of the current work is to elucidate, in mathematics, the issues raised by Chapman and 

Chapman, and their commentators, to a level which allows for an adjudication of the core 

claims of these authors. We begin by providing a clear and concise description of 

Chapman and Chapman’s account of the Psychometric Confound, including a description 

of the research context; an articulation of the general inferential problem; an itemization 

of claims, including claims regarding methodological solutions; and a description of 

problems inherent in Chapman and Chapman’s account. We then consider the influence 

of the Chapmans’ discussion regarding the Psychometric Confound on the 

psychopathology literature as a whole, including a summary of the alternative accounts of 

the problem that have emerged in response to the work of Chapman and Chapman. A full 

mathematization, and consequent adjudication, of the claims of Chapman and Chapman, 

is then provided.  Fundamentally, this involves an elucidation and formalization of the 

test theory, both classical and modern, nascent in all work regarding the Psychometric 

Confound from Chapman and Chapman on. A mathematization and adjudication of the 

claims of the alternative accounts follows. Finally, we determine if valid methodological 

solutions for the quantities of interest are possible, given the technical, test-theory based 

framework established. We show that a structural equation model consistent with the 

proto-framework implied by Chapman and Chapman provides a basis for valid inference 

regarding the quantity of interest. 
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Chapter 1. Introduction 

Beginning in 1973, Loren J. Chapman and Jean P. Chapman published a series of 

papers claiming that methods commonly employed in the psychopathology literature 

were seriously flawed, and consequently, that the conclusions drawn in numerous past 

studies conducted in the psychopathology field were erroneous. They published 

voluminously on this issue, which has since come to be known as the issue of the 

Psychometric Confound (MacDonald, 2008), and offered to the research community a 

multitude of methods by which it could be overcome.   

Soon, other psychopathy researchers joined the fray, providing commentary on 

the account of Chapman and Chapman, and, oft-times, offering up their own, distinct, 

characterizations of the problem, as well as their own novel solutions. Despite such 

attempts at clarification of the issue of the Psychometric Confound, it is viewed as 

“largely unresolved” (Palmer, Dawes & Heaton, 2009, p.368), and “a perennial gremlin 

in the experimental psychopathology literature” (MacDonald, 2008, p. 621). 

Nevertheless, acknowledgment of the issue can, now, be found not only within a broad 

selection of psychopathology research areas1, but also areas of research beyond 

psychopathology, including memory research (Lum, Kidd, Davis, & Conti-Ramsden, 

 
1
 Examples include major depressive disorder (Joorman & Gotlib, 2008), attention-deficit / hyperactivity 

disorder (Huang-Pollock & Karalunas, 2010), learning disorders (Savage, Lavers, & Pillay, 2007), 

autistic disorder (Pellicano, 2010), and bipolar disorders (Kurtz & Garrety, 2009). 
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2009), research into the psychological effects of alcohol (Moberg & Curtin, 2009), and 

research into aging (e.g., Salthouse & Coon, 1994).  

Critically, despite widespread belief that the Chapmans identified a science-

undermining problem referred to by the term “Psychometric Confound”, the nontechnical 

approach to the problem taken by both Chapman and Chapman, and by those who have 

followed in their footsteps, has prevented agreement regarding its precise nature, or even 

proof of its existence. Consequently, virtually all major claims surrounding the 

Psychometric Confound, including the efficacies of the multitude of solutions to the 

problem that have been proposed, remain in doubt. 

The goal of the thesis is to elucidate, in mathematics, the issues raised by 

Chapman and Chapman, and their commentators, under the heading “Psychometric 

Confound” to a level sufficient to allow for an adjudication of the core claims of the 

Chapmans and their commentators. 

The thesis will be organized as follows: In chapter 2, a clear and concise 

description of Chapman and Chapman’s account of the Psychometric Confound will be 

provided, including a description of the research context; an articulation of the general 

inferential problem; an itemization of claims, including claims regarding methodological 

solutions; and a description of problems inherent in Chapman and Chapman’s account. In 

Chapter 3, the influence of the Chapmans’ discussion regarding the Psychometric 

Confound on the psychopathology literature as a whole will be examined, including a 

summary of the alternative accounts of the problem that have emerged in response to the 
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work of Chapman and Chapman. These alternative accounts, and associated claims made, 

will be outlined. In Chapter 4, a full mathematization, and consequent adjudication, of the 

claims of Chapman and Chapman, is undertaken.  Fundamentally, this will involve an 

elucidation and formalization of the test theory, both classical and modern2, nascent in all 

work regarding the Psychometric Confound from Chapman and Chapman on. In Chapter 

5, a mathematization and adjudication of the claims of the alternative accounts will be 

completed. In Chapter 6, we determine if valid methodological solutions for the 

quantities of interest are possible, given the technical, test-theory based framework 

established. In Chapter 7, we summarize the key points of the work.  

 
2
 While divisions between classical and modern test theory differ by author (McDonald, 1999), we, in 

accord with, e.g. Borsboom, 2006, take as central to classical test theory the concept of the true score. In 

contrast, modern test theory is characterized by references to latent variables. 
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Chapter 2.  

 

The Psychometric Confound According to the Chapmans 

Discussion of the issues housed under the term “Psychometric Confound” 

originates in the work of Loren and Jean Chapman, and, in particular, papers that they 

wrote in 1973 and 1978, published in Psychological Bulletin and The Journal of 

Psychiatric Research, respectively. In this chapter, we provide: a) a clear and concise 

description of Chapman and Chapman’s account of the Psychometric Confound, 

including an elucidation of the central claims they made apropos the nature and existence 

of the issue and the methods they put forth as solutions to the problem; b) an overview of 

the problems of the account provided by the Chapmans. 

The structure of the chapter is as follows. Firstly (section 2.1), we consider the 

research context implied by Chapman and Chapman, including the types of tests, 

populations, abilities, and quantities under consideration. Secondly (section 2.2), we 

describe the general inferential problem that they considered. Thirdly (section 2.3), we 

describe two purported flaws (“confounds”) in traditional methods meant to draw 

inferences regarding the quantities of interest, isolating, for each, the core claim. We 

label these purported flaws the “First Confound of Chapman and Chapman” (C&C 

Confound1 for short) and the “Second Confound of Chapman and Chapman” (C&C 

Confound2 for short). It is the general inferential problem, C&C Confound1, and C&C 
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Confound2, that constitute the issue of the Psychometric Confound, according to the 

Chapmans3. Fourthly (section 2.4), we outline Chapman and Chapman’s proposed 

inferential solutions for overcoming C&C Confound2, isolating the core claim on which 

each method is based in section 2.5. Lastly (section 2.6), we highlight problems in 

Chapman and Chapman’s account. 

2.1 Research Context 

The psychopathology research context in which is grounded the concern for the 

Psychometric Confound, and as was implied by Chapman and Chapman (1973, 1978a, 

1978b), is as follows.  There exist:  

a) two populations of individuals, a population C of healthy controls and a 

population P of individuals suffering from some particular 

psychopathology;  

b) a set of k abilities {s1, s2,…,sk}, each individual having a score (which 

is unknown to the researcher) on each ability; 

c) k sets of tests (T1…Tk), all tests tlj, l=1..pj, contained within the j
th

 set, 

invented for the purpose of scaling individuals on ability sj; 

d) composites of the scores of the items contained in a test (known as “test 

composites”), 
1

plj

lj dlj dlj

d

c w I


 , wherein test tlj is comprised of plj items, 

Idlj, d=1…plj, and wd, d=1…plj, is the weight for item  Idlj.  Unless 

otherwise specified, the typical, or default, circumstance should be 

assumed, in which wd = 1, d=1…plj, the test composite clj being, then, 

a unit-weighted composite.  

 
3
 Note that Chapman and Chapman did not, to our knowledge, employ the term “Psychometric Confound”. 

However, the general inferential problem and confounds listed are now considered to fall under this term 

(e.g. Kang and MacDonald, 2010). Further note that the term “Psychometric Confound” refers not only 

to issues raised by Chapman and Chapman, but also those raised by their commentators, as reviewed in 

Chapter 3.  
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The interest of the Chapmans, consistent with the interest of many researchers in the 

psychopathology field, was in the determination of whether a “specific cognitive deficit” 

exists in group P; essentially, whether individuals in P suffer from a deficit, relative to 

those individuals in C, in respect to some particular ability sj. In other words, when ruling 

on a “specific cognitive deficit”, the aim is to determine whether the conditional 

distribution sj|P is stochastically lower than the conditional distribution sj|C (meaning 

that, in general, scores on ability sj are lower in population P, than in population C). 

Though interest is in stochastic differences, in general, it cannot be denied that virtually 

all of the attention has been given to differences in the means, 
js |Pμ  and 

js |Cμ , of the C 

and P distributions. We will call the state of affairs in which sj|P is stochastically lower 

than sj|C, and, in particular, 
js |Pμ  is less than

js |Cμ , a Specific Ability Deficit (in reference 

to ability sj and populations P and C; hereafter, an “S-deficit” in reference to ability sj and 

populations P and C). 

Of secondary interest to the Chapmans, and many other psychopathology 

researchers, was what we shall call a Differential Ability Deficit (hereafter, D-deficit)4.  A 

D-deficit, in reference to abilities sj and sv, and populations P and C, exists when the 

difference sj|P - sj|C is stochastically lower than the difference sv|P – sv|C. Under certain 

 
4
 The Chapmans employed the synonymous but less descriptive term “differential deficit”.  
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conditions, the existence of a D-Deficit can be shown to imply an S-Deficit5.  Once again, 

apropos D-deficits, the focus has been almost exclusively upon mean differences. 

2.2 General Inferential Problem 

According to the Chapmans, considering the research context described above, 

the researcher whose aim it is to determine whether there exists an S-deficit in respect to 

an ability sj faces an inferential problem (the general inferential problem): he does not 

have available to him the distributions sj|P and sj|C (it is held, in fact, that he cannot know 

the scores of individuals apropos an ability such as sj, i.e. the ability is unobservable), but 

only inferential information about the distributions clj|P and clj|C obtained through the 

application of one or more of the tests in set Tj to samples drawn from populations P and 

C.  Hence, he must devise, and then employ, a strategy that takes, as input, inferential 

information about the distributions clj|P and clj|C, and yields, as output, a decision as to 

whether there exists an S-deficit in respect to sj. In the words of Chapman and Chapman,  

“the central problem is how to move from statements about…deficit in performance on 

specific tests to statements about…deficit in ability” (Chapman & Chapman, 1978a, 

p.303). 

 
5
 A D-Deficit in sj with respect to sv implies an S-Deficit in reference to sj under the condition of an existing 

S-Deficit in reference to sv. The logic is as follows: Suppose a D-Deficit as indicated by (  - ) -(

 - ) < 0. Furthermore, suppose an S-Deficit with respect to ability sv as indicated by the 

following: (  - ) = q < 0 , where q is some quantity. Taken together, (  - ) -(q) < 0 , so 

that  (  - ) < q < 0, implying an S-Deficit with respect to sj. 

 

js |Pμ
js |Cμ

vs |Pμ
vs |Cμ

vs |Pμ
vs |Cμ

js |Pμ
js |Cμ

js |Pμ
js |Cμ
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Traditional inferential strategies meant to overcome the general inferential 

problem, however, according to Chapman and Chapman, were flawed. Below, we 

describe the First- and Second- Confound of Chapman and Chapman, which are flaws, or 

confounds6, associated with, respectively, traditional inferential methods which we refer 

to as the First- and Second Strategy of Chapman and Chapman. 

2.3 Flaws in Traditional Inferential Methods 

2.3.1 First Confound of Chapman and Chapman 

2.3.1.1 First Strategy of Chapman and Chapman 

The First Confound of Chapman and Chapman (hereafter, C&C Confound1) can 

be described with reference to the following traditional strategy ( which we call the First 

Strategy of Chapman and Chapman, or C&C Strategy1), still commonly employed by 

psychopathology researchers: a) acquired inferential information about  distributions clj|P 

and clj|C
7 is employed to make an inferential decision as to which of H0:

ljc |Pμ  0
ljc |Cμ   

and H1: 
ljc |Pμ  0

ljc |Cμ  is the case (say, through employment of the standard, two 

independent samples t-test); b) if the decision made is in favour of H1, it is concluded that 

js |Pμ  
js |Cμ , i.e., that there exists an S-deficit in respect to sj. 

 
6
 We employ the term “confound” due to the practice of speaking of the broader issue as the “Psychometric 

Confound”. Note, however, that we are now pointing out that, rather than there being one “confound” 

associated with the broader issue, there are multiple, distinct claimed confounds, including the two 

articulated by the Chapmans.  
7
 Obtained, in this case, by the application of a single test. 
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2.3.1.2 Core Claim 

In light of this strategy, C&C Confound1 can, then, be described as follows:        

a) test tlj scales individuals with respect to not only ability sj, but, also, a general ability, 

g; b) the distributions clj|P and clj|C, therefore, depend (in ways largely unknown) upon 

both specific ability sj and general ability g; c) the distribution g|P can be expected to be 

stochastically lower (to a degree, largely unknown) than the distribution g|C 8; d) thus, 

differences in the distributions clj|P and clj|C, hence, inferred differences in the 

distributions clj|P and clj|C (notably, inferences about the parameter (
ljc |Pμ 

ljc |Cμ )), are 

confounded, as bases for making decisions about S-deficits (notably about the parameter 

(
js |Pμ -

js |Cμ )), by differences in g|P and g|C (notably, as reflected in the parameter (
g|Pμ -

g|Cμ )). 

The state of affairs 
ljc |Pμ  0

ljc |Cμ   could, for example, be produced entirely by 

differences between P and C in respect to general ability g.  In the words of Chapman and 

Chapman, because of the phenomenon of “…generalized performance deficit..”, “…a 

lower than normal score on any single task cannot be interpreted as a deficit of special 

importance..”(p. 303). 

 
8
 The thinking, here, is that it is an empirical fact that individuals who are lesser in respect any ability sj 

(belong to P) tend to be lesser in respect other abilities.  These individuals can be thought of as suffering, 

to a greater or lesser degree, from a global psychopathology, or decrement, in respect g.   
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2.3.2 Second Confound of Chapman and Chapman 

2.3.2.1  Second Strategy of Chapman and Chapman 

The Second Confound of Chapman and Chapman (hereafter, C&C Confound2) 

may be described with reference to the following, commonly employed, strategy (we will 

call this the Second Strategy of Chapman and Chapman, or C&C Strategy2) which, 

interestingly, was invented by psychopathy researchers expressly with the aim of 

overcoming what we refer to as C&C Confound1 (see, e.g. Maher, 1974; Chan, Li, & 

Cheung, 2010): a) two tests, tljTj  and tuvTv, are employed; b) acquired inferential 

information about the distributions clj|P, clj|C, cuv|P, and cuv|C is employed to make an 

inferential decision as to which of H0: (
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  ) 0

uvc |Cμ   and H1: (
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  ) 0

uvc |Cμ  is the case; c) if the decision made is in favour of H1, it is 

concluded that there exists a D-deficit in respect to sj and sv
9.  

Now, the reasoning on which this strategy rests requires some clarification, and 

seems to be as follows: All of the parameters 
ljc |Pμ ,

ljc |Cμ ,
uvc |Pμ , and

uvc |Cμ  are functions of 

their respective test score distributions, and are thus determined, in part, by the ability 

score distributions, g|P, and g|C, as implied in section 2.3.1.2 above. It is thought that, 

because both (
ljc |Pμ 

ljc |Cμ ) and (
uvc |Pμ  )

uvc |Cμ are influenced by g, the subtraction of the 

second of these  quantities, from the first, i.e., (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ , has the 

 
9
 As noted above, D-Deficits are of interest as they imply S-Deficits under certain conditions (as detailed in 

section 2.2). Thus, with respect to the strategy described, Chapman and Chapman comment that 

“…meaningful statements about specific deficit must be made in terms of differential deficit..” (1973, p. 

380). 
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effect of cancelling out  the influence of g; hence, freeing  from the influence of g the 

difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ , and, thereby, making it solely a 

function of the specific abilities sj and sv.  The difference parameter would, then, 

constitute a basis for valid inference regarding the existence of a D-Deficit in respect sj 

and sv, and, under the conditions described on page 7 (footnote 5), a basis for the making 

of a valid inference regarding the existence of an S-deficit in respect to sj. 

2.3.2.2 Core Claim 

In light of C&C Strategy2, C&C Confound2 can be explicated as follows: 

Because the sensitivities of test composites clj and cuv to changes in g (i.e., the 

discriminating power of these composites in respect to the scaling of g10), are 

characterized by parameters γclj|g and γcuv|g, respectively, if it is not the case that 

γclj|g=γcuv|g, then the influence of g on (
ljc |Pμ 

ljc |Cμ ) and (
uvc |Pμ  )

uvc |Cμ , respectively, is 

not equal. In that case, the difference parameter (
ljc |Pμ 

ljc |Cμ )  (
uvc |Pμ  )

uvc |Cμ  remains 

influenced by g, and hence is confounded as a basis for making inferences about D-

deficits, by differences in the unknown discriminating powers of the test composites 

employed.  In the words of Chapman and Chapman, “…differential deficit in 

performance does not necessarily indicate a differential deficit in ability…”, and 

differential deficit in performance may result from “…generalized performance deficit 

coupled with the fact that one of the two tasks measures generalized deficit better than 

the other.” (1978a, p. 303). 

 
10

 These parameters are held to be invariant over populations P and C. 
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2.4 Proposed Inferential Solutions 

In response to C&C Confound2, the Chapmans proposed a variety of methods by 

which, they claimed, this confound could be overcome. The methods, reviewed below, 

involved either: a) identification of “equivalent” test composites, b) the construction of 

“matched” test composites, c) comparisons of test composite “true score variances”.  

2.4.1 Equivalent Test Composites 

Chapman and Chapman (1978a, 2001) proposed a method by which, they 

claimed, test composites equivalent in discriminating power in respect to ability g could 

be identified, thus enabling, in cases of equivalence, the use of the C&C Strategy2 to 

identify D-Deficits. The method proposed was rooted in the core claim summarized 

below. 

2.4.1.1 Core Claim 

Suppose C is split into two sub-populations of individuals by the following 

procedure: a) expected scores for each individual in population C on a test composite clj
11, 

i.e., E(clji),  are considered, b) the median of expected scores, 
ljcm , is calculated, c) two 

sub-populations, 
cljHC and 

cljLC are formed, in accordance with the rule: if E(clji)≥
ljcm , i

 
11

 Say the application of a test yields a score for an individual on the variable . Over an infinity of 

replications of this procedure, there is a probability density function for this individual, where the value 

of the probability density at score is . Then the expected value for the individual on the variable 

, the "expected score", is . 

x

x ( )f x x

( )x f x






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cljHC ; else, i
cljLC (the particulars of this procedure are implied in Chapman and 

Chapman, 1978). 

Now, considering the means 
lj cljc Hμ C and 

lj cljc Lμ C , it was claimed that  a) If 

( )
lj clj lj cljc H c Lμ C μ C = ( )

uv cuv uv cuvc H c Lμ C μ C then γclj|g = γcuv|g; b) If ( )
lj clj lj cljc H c Lμ C μ C 

( )
uv cuv uv cuvc H c Lμ C μ C then γclj|g  > γcuv|g. 

2.4.1.2 Control High-Low Scorers Comparison Method 

Given the above claim, a method for overcoming C&C Confound2 was proposed: 

For two tests tlj and tuv, an inference about the relative magnitude of ( )
lj clj lj cljc H c Lμ C μ C  

and ( )
uv cuv uv cuvc H c Lμ C μ C  is drawn. If it is inferred that ( )

lj clj lj cljc H c Lμ C μ C =

( )
uv tuv uv cuvc H c Lμ C μ C  then it is concluded that γclj|g = γcuv|g. If it is concluded that γclj|g = 

γcuv|g, then it is concluded that the influence of g on (
ljc |Pμ 

ljc |Cμ ) and (
uvc |Pμ  )

uvc |Cμ , 

respectively, is equal, and therefore, under this condition there exists a basis for  the 

drawing of valid conclusions regarding D-Deficit by employment of the C&C Strategy2. 

In the words of Chapman and Chapman (2001), test composites for which the 

discriminating power parameters in respect to g are identical “will yield the same size 

mean difference between groups…” of “better and poorer performance normal subjects” 

(p.33); and, with regard to use of the above comparison method, “this cross-validation of 

matching is the gold standard for equivalence…”. At least one attempt to apply the 
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Control High-Low Scorers Comparison Method, Hanlon et al. (2005), exists in the 

literature. 

2.4.2 Test Matching Method 1 

A second means by which, it was claimed, C&C Confound2 could be overcome 

was by the construction of two tests composites matched, item-by-item, in terms of 

particular psychometric characteristics. Suppose that 2 tests, tlj and tuv, are each composed 

of dichotomous items (each taking, as values, 0 and 1), that plj=puv, and that, for each of 

d=1..plj, there exists an item of tuv, say, IdMuv, d=1..puv, such that both of the following 

hold: 
Idlj IdMuv   and ρclj,dlj= ρcuv,dMuv, in which 

Idlj is the difficulty of item Idlj  (difficulty 

will be formally defined in Chapter 4, but is, in the case of a dichotomous [0,1] item, the 

item's mean), and ρclj,dlj is the item-total correlation of item Idlj  (the correlation between 

the item Idlj  and the unit-weighted composite, clj, of the items of tlj). Tests tlj and tuv are, 

then, said to be matched with respect their items (or, simply, matched), and it is claimed 

that, as a consequence of their being matched, γclj|g = γcuv|g. Conclusions about D-Deficits 

can then be drawn, it is asserted, through use of the C&C Strategy2.  

In proposing this method, the Chapmans were inspired by Gullikson’s (1950) 

method of constructing parallel tests. In the words of Chapman and Chapman (2001), 

parallel tests are “designed to be psychometrically identical, including comparable 

content…” and by extension they envisioned pairs of tests that were “…psychometrically 

identical but of differing content” (p.33).   
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If a pair of tests is constructed in the above fashion, Chapman and Chapman held 

that not only would it be the case that the discriminating power parameters would be 

matched, but, also, other test properties would be identical, namely, “reliability, shape of 

the distribution of scores… mean, variance, and shape of the distribution of item 

difficulty… mean item covariance” (Chapman and Chapman, 1973, p.380). 

2.4.2.1 Core Claim 

In light of Test Matching Method 1, a third Core Claim of Chapman and 

Chapman may be explicated as follows: For tests tuv and tlj composed of dichotomous 

items, if,  d, Idlj IdMuv   , and ρclj,dlj= ρcuv,dMuv, then γclj|g = γcuv|g. 

2.4.3 Test Matching Method 2 

An alternative approach to Test Matching Method 1 called, herein, Test Matching 

Method 2, operates as follows: Suppose that 2 tests, tlj and tuv, are each composed of 

dichotomous items (each taking, as values, 0 and 1), that plj=puv, and that, for each of 

d=1..plj, there exists an item of tuv, say, IdMuv, d=1..puv, such that both of the following 

hold:  1Idlj IdMuv    and ρclj,dlj= ρcuv,dMuv, Tests tuv and tlj are, then, said to be Method 2 

Matched in respect to their items, and it is claimed that, as a consequence of their being 

matched, γclj|g = γcuv|g. Accordingly, conclusions about D-Deficits can then be drawn 

through the use of C&C Strategy 2. 

Test Matching Method 2 was created in response to the belief that it was not only 

very difficult to construct two tests comprised of items, pairwise matched  in respect  
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difficulty and item-total correlation, as required by Test Matching Method 1, but 

sometimes undesirable to do so. Miller, Chapman, Chapman, and Collins (1995) stated 

that in some cases, a match on difficulties is obtainable only at the expense of the 

adequacy of scaling of one of the constructed tests. In particular, they were concerned 

that such a match would require one of the tests to scale in respect to an additional ability. 

Recall that, under the claims of C&C Confound1 (section 2.3.1), the two tests employed, 

tljTj  and tuvTv, scale individuals in respect to sj and g, and sv and g, respectively. Now, 

suppose test tlj is modified by the selection of new test items to produce a test, tlj*, the 

constituent items of which are matched in terms of difficulty to items in tuv. The concern 

is that the test tlj* might now scale individuals not only in respect to sj and g, but also in 

respect to an additional ability, sm
12. Hence, the difference parameter of the C&C 

Strategy2, (
ljc *|Pμ 

ljc *|Cμ ) - (
uvc |Pμ  )

uvc |Cμ might be influenced not only by specific 

abilities sj and sv, but also by the additional ability sm, being therefore confounded as a 

basis for making decisions regarding D-Deficits. In the words of Miller et al. (1995), 

speaking in reference to schizophrenia studies, “When one type of task is inherently more 

difficult than the other, the investigator who matches tasks may do so by introducing a 

second variable that raises the difficulty level of the less difficult task… The problem…is 

that one does not know which of the two variables accounts for the schizophrenic 

 
12

 The idea seems to be that for any test tlj scaling only in respect to sj and g, the constituent test items must 

fall within a particular range of difficulty, as appropriate to ability sj. For example, a test of “working 

memory ability” may be composed of more difficult items than a test of “basic attention”. For a modified 

test tlj*,  it follows that if test items do not fall within the appropriate range, the scaling of this new test 

must be understood differently; as one possibility, perhaps the new test scales in respect not only to sj and 

g but also an additional ability. 
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differential deficit” (p. 253)13. Test Matching Method 2, then, was thought to be of value 

in that it purportedly produced two test composites of equivalent discriminating power 

without the need for pairs of test items of identical difficulty14. 

2.4.3.1 Core Claim 

In light of Test Matching Method 2, a fourth Core Claim of Chapman and 

Chapman may be explicated as follows: For tests tuv and tlj composed of dichotomous 

items, if,  d, 1Idlj IdMuv    , and ρclj,dlj= ρcuv,dMuv, then γclj|g = γcuv|g. 

2.4.4 True Score Variance Comparison 

Another means by which, it was claimed, C&C Confound2 could be overcome 

(in addition to the Control High-Low Scorers Comparison Method and test matching 

methods) was through the comparison of test composite true-score variances. The method 

follows from the core claim below. 

 
13

 In this quote, “variable” is taken as equivalent to “ability”. There exists, in the psychometric and 

psychopathology literatures, a wide-spread practice of equating concepts such as “construct”, “factor”, 

“latent variable”, and “ability” (Maraun and Gabriel, 2013). 
14

 The motivation for this method seems to be that since items of a test that scale only in respect to sj and g 

must fall within a particular range of difficulty (as articulated in footnote 12), it is desirable to increase 

the likelihood that this particular range of difficulty is appropriate for matching. The alternative item 

matching method increases this likelihood by enabling matching of items of complementary difficulty 

when matching by identical difficulty is not appropriate. 



 

18 

2.4.4.1 Core Claim 

Under classical test theory, each test composite clj within a population P has a 

property called “true score variance”, denoted 
2

lj
 15. Now, given a second test composite, 

cuv, it is claimed that if 
2

lj
 <

2

uv then γclj|g  < γcuv|g. 

2.4.4.2 True Score Variance Comparison Method 

As a consequence of the above claim, a True Score Variance Comparison Method 

was recommended, in which, a) an inference is made regarding whether                            

(
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  ) 0

uvc |Cμ  , and, if it is inferred that this is the case, b) true score 

variances for clj (
2

lj
 ) and cuv (

2

uv ) are compared. If it is determined that (
ljc |Pμ 

ljc |Cμ )

(
uvc |Pμ  ) 0

uvc |Cμ  and 
2

lj
 <

2

uv , then it is concluded that there exists a D-deficit in 

respect to sj and sv. In the words of Chapman and Chapman, “a task’s discriminating 

power is indexed by its true score variance” (2001, p.33), and an exception to the need to 

match is in the circumstance in which “the… schizophrenic participants respond to two 

unmatched tasks with a greater performance deficit on the task of lesser discriminating 

power” (2001, p.32). 

 
15

 The term “true score variance” is precisely defined in Chapter 4. For now, note that the true score 

variance of a test composite is determined with regard to a particular populations of individuals, in this 

case, the population of healthy control participants, C. In the remainder of the chapter, all references to 

composite test true score variance can be assumed to imply reference to C. 
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2.5 Summary of Core Claims 

In summary, the claims of Chapman and Chapman apropos the Psychometric 

Confound and possible solutions are the following: 

CC1: Differences in the distributions clj|P and clj|C, hence, inferred differences in the 

distributions clj|P and clj|C (notably, inferences about the parameter (
ljc |Pμ 

ljc |Cμ )), are 

confounded, as bases for making decisions about S-deficits (notably about the parameter 

(
js |Pμ 

js |Cμ )), by differences in g|P and g|C (notably, as reflected in the parameter            

(
g|Pμ 

g|Cμ ) (this is the claim of the existence of C&C Confound1). 

CC2: Inferences about the parameter (
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  )

uvc |Cμ are confounded, as 

bases for making decisions about D-Deficits (notably, inferences about the parameter (

js |Pμ 
js |Cμ ) (

vs |Pμ  )
vs |Cμ ), by differences in γclj|g and γcuv|g (this is the claim of the 

existence of C&C Confound2). 

CC3:  For tests tljTj  and tuvTv, a) If ( )
lj clj lj cljc H c Lμ C μ C = ( )

uv cuv uv cuvc H c Lμ C μ C then 

γclj|g = γcuv|g; b) If ( )
lj clj lj cljc H c Lμ C μ C  ( )

uv cuv uv cuvc H c Lμ C μ C then γclj|g  > γcuv|g (this is the 

basis for the Control High-Low Scorers Comparison Method). 

CC4: If two tests tlj and tuv are Method 1 Matched, i.e. plj=puv and, for each of d=1..puv, 

Idlj IdMuv   , and ρclj,dlj= ρcuv,dMuv, then γclj|g = γcuv|g. 
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CC5: If two tests tlj and tuv are Method 2 Matched, i.e. plj=puv and, for each of d=1..puv, 

1Idlj IdMuv    , and ρclj,dlj= ρcuv,dMuv, then γclj|g = γcuv|g. 

CC6: For two test composites clj and cuv, if 
2

lj
 <

2

uv then γclj|g  < γcuv|g (this claim is the 

basis for the True Score Variance Comparison Method). 

2.6 Problems with the Account 

2.6.1 Unsubstantiated Claims 

The most notable ommission in the work of Chapman and Chapman (and, as will 

be seen, those who have commented upon their work) is simply that the existence of the 

Psychometric Confound, as constituted by the general inferential problem, C&C 

Confound1 and C&C Confound2, and as articulated in core claims CC1 and CC2, was 

never proven. Where there was an attempt to support these claims, this effort consisted of 

the use of illustrative examples. For example, Chapman and Chapman (1973) provided a 

data set in which the reliability (which was loosely linked to test composite true score 

variance, and hence to discriminating power through the claim CC6) of various test 

composites appeared to be related systematically to mean differences (in particular the 

quantity (
ljc |Pμ 

ljc |Cμ ), as introduced in section 2.3.1), a finding that was implied to be 

relevant to the truth status of CC2. In general, however, CC1 and CC2 enjoyed only brief 

consideration by the Chapmans, who tended, in their articles, to quickly move to 

discussion of claims CC3-CC6.  
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 Claims CC3-CC6, however, were also unproven. Where support for these claims 

was given, it consisted of passing references to works on classical test theory or, again, 

on illustrative examples. The entirety of the supporting evidence provided for these 

claims is as follows: a) with regard to CC4 and CC5, the classical test theorist Gulliksen 

(1950) was credited with inspiring Test Matching Methods 1 and 2, although it would be 

inaccurate to say that Gulliksen’s work bore on the validity of this approach; b) for CC6, 

invented frequency distributions supporting a relationship between true score variance 

and mean differences were provided (Chapman and Chapman, 1978a), which would 

certainly not constitute proof of the claim; c) in a linking of CC4 and CC5/CC6, data 

from a sample was used to argue for a correspondence between item difficulties and test 

composite true score variances (Chapman & Chapman, 1973), which, again, would not 

constitute proof of any of CC4-CC6. Overall, then, the support offered for CC3-CC6 was 

not adequate. 

2.6.2 Absence of a Technical Treatment  

The claims of Chapman and Chapman tie together a variety of terms in a way that 

suggests that there exists an underlying technical framework by which the relevant 

quantitative concepts (i.e. ability scores, discriminating power, item difficulty, test true 

score variance, etc.) are mathematically related. However, such a framework is not 

recoverable from their work, with the root of this deficiency being a lack of definition of 

the quantitative concepts themselves. We elaborate upon the absence of a technical 

framework and definitions of key terms below. 
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2.6.2.1 Lack of a Technical Framework 

What is recoverable from the Chapmans’ articles in terms of a technical 

framework is only a proto-framework describable as follows (we refer to this as the 

Chapman and Chapman Proto-Framework, or C&CP-f) 16:   

a) each test tlj scales individuals, in a manner that is largely unknown to 

the researcher, with respect to both specific ability sj and a general 

ability g;  

b) each test composite clj is characterized by two parameters, say, γclj|g 

and γclj|sj, the former which characterizes the discriminating power in 

respect to the scaling of g  (i.e., its sensitivity to changes in g), and the 

latter which characterizes the sensitivity to changes in sj
17;  

c) the parameters γclj|sj
18

 and γclj|g determine, in part, the observed-score 

distributions clj|P and clj|C. 

This proto-framework leaves key mathematical relationships, that is, between 

abilities, test composite scores and discriminating power terms, unspecified. 

It should further be noted that while the above proto-framework is consistent 

with Chapman and Chapman’s (1973 and elsewhere) description of their core claims, 

they elsewhere equivocate with regard to the number of abilities associated with a test. 

 

16 The following supports this summary: i) the contrasting of “specific deficit” with “generalized cognitive 

deficit” (Chapman & Chapman, 1973); ii) the contrasting of  “deficit in performance” with “deficit in 

ability” (Chapman & Chapman, 1978a); implying, in combination with point i, the possibility of deficit 

with regard to specific ability and general ability; iii) discriminating power defined as “the extent to which 

the [test] score differentiates the more able from the less able subjects..” (Chapman & Chapman, 1973, 

p.380), implying the discriminating power parameters in reference to the specific and general abilities. 

17
 These parameters are held to be invariant over populations P and C. 

18
 Note that we have not previously spoken of the parameter γclj|sj, as the Chapmans’ account of the second 

confound was most appropriately summarized by reference only to discriminating power parameters 

linked to g. Nevertheless, as expressed in point 12 above, a broader reading of their work, within the 

context of relevant test theory, suggests also the existence of  γclj|sj, a parameter whose role we will need 

to consider further. However, note that we take the Chapmans’ use of the term “discriminating power” to 

be synonymous, in most contexts, with parameters related to g. 
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Chapman and Chapman stated that, “Discriminating power refers here to the extent to 

which the score… differentiates two groups that differ in the ability [emphasis added] 

measured by the test” (1973, p.380). Similarly, they state, “The term ‘true score’ may be 

misleading… it does not refer to the ability [emphasis added] which the subject truly has” 

(1978a, p.304). These quotes imply that a test scales with respect to one ability, in 

conflict with the two-ability-per-test proto-framework. Such equivocation prevents 

confident extraction of the proto-framework described above. 

2.6.2.2 Failure to Define Key Quantitative Concepts 

2.6.2.2.1 “Ability” 

The general inferential problem considered by the Chapmans (section 2.2) 

depends upon a distinction between test composite scores and abilities. However, no 

definition of the key concept “ability” is to be found in the work of the Chapmans. 

Furthermore, their usage of the term suggests multiple meanings. In one sense, “ability” 

is linked with “ability scores”, and accordingly there is talk of “ability levels” (e.g. 

Chapman & Chapman, 1975, p. 45) and “mean ability level” (Chapman & Chapman, 

1973, p. 382). Such talk is often accompanied by a reference to Lord’s (1952) work A 

Theory of Test Scores, in which ability is conceptualized as “a function of the item 

scores” (p.1), and is itself representable by a score. However, the Chapmans also speak of 

abilities as if these entities, rather than following mathematically from item scores, cause 

such scores and exist independently of such scores. The implication of causality is 

present in the quote, “the extent of the inferiority of score of the pathological subjects 

depends not only on their deficit in ability…” (Chapman and Chapman, 1973, p. 380). 
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The implication of independent existence of abilities is present in the Chapmans’ 

suggestion that tests be matched through administration of the tests to “normal group 

with a wide range of ability [emphasis added]” (2001, p.33), in which it is implied that 

the abilities of individuals within a group exist and can somehow be known previous to 

test administration. Depending on the meaning of “processes”, the belief in an 

independent existence and causal (with respect to item/composite scores) role of abilities 

may also be reflected in their statement, “we infer that processes are, in many cases, 

either a subset of what we call abilities or are a superordinate term for a number of 

abilities” (Chapman & Chapman, 2001, p.36). 

2.6.2.2.2 “Discriminating Power” 

Also of importance to the Psychometric Confound, through its bearing on C&C 

Confound2, is the concept of discriminating power, which, as seen in section 2.3.2.2, is 

characterized by parameters linking test composite scores to abilities. The Chapmans’ 

inconsistent usage of “ability”, then, would obviously threaten the coherence of this 

concept. Further, however, the Chapmans speak of two conflicting “indices” of 

discriminating power, stating “reliability is the index of discriminating power” (1973, 

p.382), but also that discriminating power “is indexed by the true score variance” (2001, 

p.33). Elsewhere, they implied that both indices were inadequate by emphasizing the 

importance of the item matching and Control-High Low Scorers Comparison methods. 

Inadequate definition of “discriminating power” was acknowledged by Chapman and 

Chapman (2001), who stated, “It appears from our reading of the Knight and Silverstein 
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(2001) article that we have failed to distinguish clearly our use of the term discriminating 

power from the more familiar statistical power” (p.33). 

2.6.2.2.3 “Difficulty” 

A key claim of the Chapmans involves a match of item difficulties (see CC4 and 

CC5). As we will detail in coming sections, item difficulty is a technical property of test 

items. However, Chapman and Chapman equivocated in respect to the meaning of 

“difficulty”. Chapman and Chapman (1973) were consistent in characterizing item 

difficulty by the mean of all item scores and the level of test difficulty to the mean item 

difficulty. However, despite acknowledging that there is no clear definition of item 

difficulty in the case in which items are not dichotomously scored (e.g., in the case in 

which scores represent reaction times), Chapman and Chapman claimed that, in such 

cases, “one may nevertheless be sure that differences in difficulty produce differential 

discriminating of groups” (1973, p.382). As we will see in Chapter 3, the absence of 

universal definitions of test and item difficulty (across dichotomous and non-

dichotomous cases) in the work of Chapman was a likely cause of continued confusion in 

respect to these concepts in the literature on the Psychometric Confound.  

2.7 Summary 

This chapter provides a review of the account of the Psychometric Confound put 

forth by Chapman and Chapman. The Psychometric Confound, according to Chapman 

and Chapman, is constituted by a general inferential problem, as well as two flaws in 

methods meant to overcome the general inferential problem (these flaws abbreviated 



 

26 

C&C Confound1 and C&C Confound2, and which are purported to exist as a 

consequence of C&C Strategy1 and C&C Strategy2). The Chapmans proposed three 

means by which C&C Confound2 could be overcome: the detection of “equivalent” tests 

(the Control High-Low Scorers Comparison Method), the construction of “matched” tests 

(Test Matching Method 1 and 2), or the comparison of test composite true score 

variances (the True Score Variance Comparison Method). We have extracted, from the 

work of Chapman and Chapman, six core claims apropos the Psychometric Confound 

and possible solutions (CC1-CC6). The Chapmans did not prove their key claims, this 

being a result of the nontechnical approach taken. It is only possible to detect what we 

call a proto-framework, which we have summarized. In addition, there is an unfortunate 

absence, in the work of the Chapmans, of definitions of quantitative concepts central to 

their account, including “ability”, “discriminating power”, and “difficulty”. 

We have established, in this chapter, the beginnings of a technical account of the 

Psychometric Confound according to Chapman and Chapman. Before further developing 

this account, which will require grounding of the issue in test theory, we turn to an 

overview of work on the Psychometric Confound in the literature more broadly. 
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Chapter 3.  

 

The Psychometric Confound in the Literature 

In this chapter, we survey the impact of the Chapmans’ account of the 

Psychometric Confound on the psychopathology literature as a whole. We outline the 

range of influence of their work, and summarize attempts to apply their recommended 

methods. Over the years, a number of accounts alternative to that of the Chapmans have 

emerged. These accounts were distinct in terms of claims made, and often contradicted 

the account of Chapman and Chapman. We describe several of these alternative accounts. 

As we shall see, the proliferation of alternative accounts has further confused the issues 

housed under the term “Psychometric Confound”, demonstrating the extant need for 

clarification of the problem. 

3.1 Range of Citations 

Although of greatest influence in the schizophrenia literature (e.g., Palmer, 

Dawes, & Heaton, 2009), the Chapmans’ work on the issue of the Psychometric 

Confound has been cited frequently across a wide variety of psychopathology research 

areas, including major depressive disorder (Joorman & Gotlib, 2008), attention-deficit / 

hyperactivity disorder (Huang-Pollock & Karalunas, 2010), learning disorders (Savage, 

Lavers, & Pillay, 2007), autistic disorder (Pellicano, 2010), and bipolar disorders (Kurtz 
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& Garrety, 2009). Concern regarding the issue has also spread to areas outside of 

psychopathology, including research on memory in children (Lum, Kidd, Davis, & Conti-

Ramsden, 2009), the psychological effects of alcohol (Moberg & Curtin, 2009), and 

aging (e.g., Salthouse & Coon, 1994). The majority of citing authors have treated the 

Chapmans as authorities on the matter, echoing their warnings and, in some cases, as 

noted below, attempting to apply their suggested methods. 

3.2 Application of Methods 

The method suggested by Chapman and Chapman that has been most frequently 

applied in the literature is the True Score Variance Comparison Method. Several 

investigators have faithfully applied the method as outlined in 2.4.3.2 (e.g., Chang & 

Lenzenweger, 2001; Delevoye-Turrell, Giersch, Wing, & Danion, 2007; Fuller et al., 

2006; Kerns & Becker, 2008). A variation on the method, that rests on a first step in 

which is tested the hypothesis of cross-test equality in test composite true score variance, 

has also been frequently employed. Horan et al. (2008) produced a pair of memory tests 

for use in research, the use of which was intended to yield similar true score variances; 

others (Van Erp et al., 2008; Hauer, Wessel, Geraerts, Merckelbach, and Dalgleish, 2008; 

Kerns & Berenbaum, 2003) have employed post-hoc comparisons to test the hypothesis 

that true score variance for their test composites was equivalent19. In studies in which true 

score variance equality was inferred, it was claimed (explicitly or implicitly) that such 

 
19

 These authors estimated true score variance by multiplication of reliability and observed variance, a 

practice that can be justified by inter-relationships of properties of test composite scores, as further 

elaborated upon in Chapter 4. 
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equivalence enabled the use of C&C Strategy2 to draw conclusions regarding D-

Deficits20. 

There have been few attempts to faithfully apply the Chapmans’ item matching 

methods, perhaps due to the perceived onerousness of such procedures (as expressed in 

MacDonald & Carter, 2002). Examples of studies that have attempted such matching 

include Corrigan, Silverman, Stephenson, Nugent-Hirschbeck, and Buican (1996), and 

Kagan and Oltmanns (1981). 

As noted above, Hanlon et al. (2005) attempted to employ the Control High-Low 

Scorers Comparison Method (as outlined in 2.4.1.2). These authors compared scores of 

groups presumably drawn from CH  and CL populations on three tests (by comparison of 

effect sizes) and inferred that the tests were equivalent in terms of discriminating power. 

Magnetoencephalography (MEG) was then used to contrast activation across these tests 

in schizophrenic and control subjects, and conclusions regarding D-Deficits were then 

drawn according to C&C Strategy221. 

Some authors, though endorsing the Chapmans’ account of the Psychometric 

Confound, have applied idiosyncratic solutions, the justifications for which are unclear or 

absent22, for example, comparing test composites in terms of their reliabilities (Lencz et 

 
20

 It is unclear whether the Chapmans would consider this variation appropriate. 
21

 Problematically, behavioral test data was used to argue that associated MEG tests (brain activation-

based tests) were equivalent, an inferential leap likely inconsistent with what the Chapmans would 

suggest. 
22

 The frequency of use of idiosyncratic methods is notable, and suggests confusion regarding the basic 

elements of the issue of the Psychometric Confound. 
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al., 2006), or claiming that the addition of a control group resolves the issue of the 

Psychometric Confound (Chan, Cheung, & Gong, 2010). Other endorsers of the 

Chapmans’ views have assumed a simple monotonic relationship between test difficulty 

and discriminating power, a view that is at odds with Chapman and Chapman (1978a), 

and have drawn, as a consequence, the conclusion that C&C Confound2 can be addressed 

through the making of certain inferences in respect test difficulty contrasts. For example, 

Joorman and Gotlib (2008) argued, using reaction time data, that the task yielding the 

larger mean difference between groups was of lesser difficulty (as determined by shorter 

reaction times), and therefore lower in discriminating power, and that conclusions 

regarding D-Deficits in line with C&C Strategy2 were therefore justified (for similar 

examples, see also Chambon et al., 2008; Green, Nuechterlein, Breitmeyer, & Mintz, 

1999; Pickup & Frith, 2001). 

Application of the Chapmans’ methods, then, has occurred with some frequency, 

but a variety of ill-justified idiosyncratic methods meant to address Chapman and 

Chapman’s concerns have also been employed. 

3.3 Alternative Accounts 

Distinct from the ill-justified idiosyncratic methods noted above are the more 

extensive alternative accounts of the issues housed under the term “Psychometric 

Confound”. In general, these alternative accounts of the issue accord, in respect the 

research context considered and the general inferential problem to be overcome, with the 

account of Chapman and Chapman. They deviate from the treatment of Chapman and 
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Chapman in respect the flaws seen to exist in traditional inferential methods, the 

inferential solutions proposed, and/or the proto-frameworks seen as being implied. With 

regard to the issue of inferential solution, some accounts explicitly contest the correctness 

of what the Chapmans have put forth (in particular, core claims CC4-CC6). Four main 

alternative accounts, those of Baron and Treiman (1980), Salthouse and Coon (1994), 

Knight and Silverstein (2001), and Kang and MacDonald (2010), are outlined below. The 

distinct elements of each account are articulated and summarized in a list of core claims.  

3.3.1 Baron and Treiman (1980) 

Baron and Treiman (1980), though claiming to “argue that the methodological 

problems discussed by Chapman and Chapman arise in a wide range of studies of group 

differences and individual differences…” (p. 313), in fact articulated an account distinct 

from that of the Chapmans. They described, in respect to two strategies, C&C Strategy1, 

and a strategy which we call the Baron and Treiman Strategy, two distinct flaws, or 

confounds; they proposed a unique inferential solution; and their work suggests a proto-

framework alternative to that recoverable from the Chapmans’ articles. 

3.3.1.1 Perceived Flaws in Traditional Inferential Methods 

3.3.1.1.1 The First Confound of Baron and Treiman 

In light of C&C Strategy1, the first of Baron and Treiman’s (1980) confounds 

(referred to, herein, as B&T Confound1) can be described as follows: a) “experimental 

test” tlj scales individuals in respect to not only ability sj, but, also, other abilities s1…sk; 

b) the test composite distributions clj|P and clj|C, therefore, depend (in ways largely 
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unknown) upon both specific ability sj and other of the abilities s1…sk; c) thus, 

differences in the distributions clj|P and clj|C, hence, inferred differences in the 

distributions clj|P and clj|C (notably, inferences about the parameter (
ljc |Pμ 

ljc |Cμ )), are 

confounded, as bases for making decisions about S-deficits (notably about the parameter 

(
js |Pμ 

js |Cμ )), by differences between distributions s1|P and  s1|C,  s2|P and  s2|C, … , sk|P 

and sk|C. 

The position put forth by Baron and Treiman in respect to C&C Strategy1, 

therefore, can be considered a variant of CC1, in that, though these authors accepted that 

inferred differences in the distributions clj|P and clj|C are confounded as bases for making 

decisions about S-deficits, they appeared to disagree with Chapman and Chapman as to 

the source of this confounding: Chapman and Chapman claiming  that the source of the 

confounding lies in differences in g|P and g|C; Baron and Treiman claiming, in contrast,  

that the source lies in  differences between distributions s1|P and  s1|C,  s2|P and  s2|C, … , 

sk|P and sk|C. In the words of Baron and Treiman, there are “other influences on the 

experimental task” (p.313) besides the “ability of interest”. They provided an example in 

which there was a single test for which the ability of interest is labelled “distractibility”, 

but the test also scaled in respect to an ability labelled “choice”. The authors stated, “We 

might be tempted to compare the performance of the two groups on the experimental 

task… but we must admit that [group C may]…perform better simply because they are 

better at the choice...” (p. 314). 
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3.3.1.1.2 The Second Confound of Baron and Treiman 

3.3.1.1.2.1 Baron and Treiman Strategy 

Baron and Treiman (1980) summarized a commonly employed strategy meant to 

overcome B&T Confound1, described as follows (we will call this the Baron and 

Treiman Strategy, or B&T Strategy for short):  a) two tests, tljTj  and tuvTv, are 

employed (called, in this case, the “experimental test” and the “control test”, 

respectively); b) there exist composites of the scores of the items in tests tlj and tuv, called 

clj and cuv, respectively; c) acquired inferential information about the distributions clj|P, 

clj|C, cuv|P, and cuv|C is employed to make an inferential decision as to which of H0: (

ljc |Pμ 
ljc |Cμ ) (

uvc |Pμ  ) 0
uvc |Cμ   and H1: (

ljc |Pμ 
ljc |Cμ )  (

uvc |Pμ  ) 0
uvc |Cμ  is the case;  

d) if the decision made is in favour of H1, it is concluded that there exists a S-deficit in 

respect to sj. Note that this strategy differs from C&C Strategy2 in that the conclusion 

drawn is in respect to an S-Deficit, rather than a D-Deficit. 

Now, the reasoning on which this strategy rests requires some clarification, and 

seems to be as follows: a) as above, the “experimental test” tlj, as well as its 

corresponding composite clj, scales individuals in respect to not only ability sj, but, also, 

the other abilities of s1…sk; b) it is thought that the “control test” tuv, as well as its 

corresponding composite cuv, scales individuals in respect to s1…sk; c) because both (

ljc |Pμ 
ljc |Cμ ) and (

uvc |Pμ  )
ucc |Cμ scale in respect to s1…sk, it is thought that the subtraction 

of the second of these  quantities, from the first, i.e., (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ , has 

the effect of cancelling out  the influence of s1…sk ; hence, freeing  from the influence of 
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s1…sk , the difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ , thereby, making it solely 

a function of the specific ability sj. In the words of Baron and Treiman (1980), the control 

test “measures other influences on the experimental task” (p. 313) and the experimental 

and control test composites are contrasted to decide whether the “groups differ on the 

ability of interest” (p. 313). 

3.3.1.1.2.2 Core Claim 

In light of the B&T Strategy, the second of Baron and Treiman’s (1980) 

confounds (B&T Confound2) may be described as follows: i) test tlj scales individuals in 

respect to not only ability sj, but, also, abilities s1…sk, while test tuv scales in respect to 

abilities s1…sk; ii) test tlj is characterized by parameters, say γclj|s1 … γclj|sk, that 

characterize the sensitivities of the corresponding test composite clj to changes in each of 

s1…sk , while test tuv is characterized by parameters, say γcuv|s1 … γcuv|sk,  that characterize 

the sensitivities of the corresponding test composite cuv to changes in each of s1…sk (these 

parameters characterize a test’s discriminating power in respect to each of the abilities);  

iii) the difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ  is influenced by abilities 

s1…sk, and hence is confounded as a basis for making inferences about S-deficits (in 

particular, with respect to sj), by differences in the unknown discriminating powers of the 

tests employed. In the words of Baron and Treiman (1980), “When an interaction 

between groups and tasks is found, it is possible that both tasks measure the same 

individual difference variables, but that Task E (the experimental task) is more sensitive 

to them than task C (the control task).” (p. 314).  
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3.3.1.2 Proposed Inferential Solution 

In response to the perceived existence of B&T Confound1 and B&T Confound2, 

Baron and Treiman (1980) suggested an alternative method for drawing conclusions 

regarding S-Deficits. The method was rooted in the Core Claim and sub-claims 

summarized below. 

3.3.1.2.1 Core Claim 

Let:  A be a dichotomous [0,1] indicator variable, with the property that, if iC, 

A=1, and if iP, A=0;, 
ljAc and 

uvAc be the correlations of A with clj and cuv, respectively; 

and 
lj ljc c 

 and 
uv uvc c 

 be the reliabilities of clj and cuv, respectively. 

It was claimed by Baron and Treiman, then, that if both 
lj uvAc Ac    and 

lj lj uv uvc c c c 
    hold, then (

js |Pμ 
js |Cμ ) < 0, in other words, that there exists an S-Deficit in 

respect to ability sj and populations P and C. 

3.3.1.2.1.1 Sub-Claims 

The Core Claim above is justified by several implied sub-claims, these labelled 

sC1-sC8 below: 

sC1. 
ljAc  is an increasing function of 

js |Pμ 
js |Cμ . 

sC2. 
ljAc  is a function of the distributions ljc C and ljc P and is thus 

determined (as implied in section 3.3.1.1.2.2), in part, by ability score 

distributions js P and js C , as well as ...1 ks P s P and ...1 ks C s C . 

sC3. 
ljAc is not a function of the parameters γclj|s1 … γclj|sk (introduced in 

section 3.3.1.1.2.2 above). 
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sC4. 
ljAc  is a function of 

lj ljc c 
 . 

sC5. 
uvAc  is a function of the distributions uvc C and uvc P and is thus 

determined (as implied in section 3.3.1.1.2.2), in part, by ability score 

distributions ...1 ks P s P and ...1 ks C s C . 

sC6. 
uvAc  is not a function of γcuv|s1 … γcuv|sk (introduced in section 

3.3.1.1.2.2 above). 

sC7. 
uvAc  is a function of 

uv uvc c 
 . 

sC8. The functions referred to in sC7 and sC4 are identical. 

Now, the following appears to be the reasoning of Baron and Treiman: because a) given 

that sC2 and sC5 are true,  both 
ljAc  and 

uvAc  are influenced by ...1 ks P s P and 

...1 ks C s C , but, given that sC3 and sC6 are true, not by by γclj|s1 … γclj|sk  and γcuv|s1 … 

γcuv|sk, the subtraction of 
uvAc  from 

ljAc 23 has the effect of cancelling out the influence of 

...1 ks P s P and ...1 ks C s C ; b)  by sC8, 
uvAc and 

ljAc  are influenced to the same degree 

by their reliabilities; when it occurs that both 
lj lj uv uvc c c c 

    and  
lj uvAc Ac    , the latter 

state of affairs cannot have arisen in consequence of a difference in reliabilities, hence, 

must have arisen as a consequence of  sC1, sC1 implying, in turn, the existence of  an S-

Deficit. 

 

23
 A decision on whether it is the case that  is equivalent to a decision as to whether 

, the latter illustrating the subtraction referred to herein. 

lj uvAc Ac  

0
lj uvAc Ac  
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3.3.1.2.2 Baron and Treiman Method 

As a consequence of the Core Claim above, Baron and Treiman (1980) proposed 

a method for drawing conclusions about S-Deficits as follows: 

Step 1. Acquired information about the joint distribution of [A, clj, cuv] is employed to 

make an inferential decision as to whether Ho: 
lj uvAc Ac   or H1: 

lj uvAc Ac   (the quantities 

defined in section 3.3.1.2.1)  If a decision is made in favour of H1, proceed to step 2. If 

not, draw no conclusion regarding S-Deficits. 

Step 2. Acquired information about the test score distributions 
ljc C , and 

uvc C  is 

employed to make an inferential decision as to whether Ho: 
lj lj uv uvc c c c 

   or H1: 

lj lj uv uvc c c c 
   . If a decision is made in favour of H1, it is concluded that there exists an S-

Deficit in respect to sj. 

3.3.1.3 Summary of Core Claims 

In summary, the claims of Baron and Treiman are as follows: 

BTC1. Baron and Treiman asserted that: a) inferred differences in the distributions clj|P 

and clj|C (notably, inferences about the parameter (
ljc |Pμ 

ljc |Cμ )), are, indeed, confounded 

as bases for making decisions about S-deficits (notably about the parameter (
js |Pμ -

js |Cμ ); 

b) the source of this confounding is not, as claimed by Chapman and Chapman, 

differences in g|P and g|C (notably, as reflected in the parameter ( g|Pμ - g|Cμ )), but, rather 
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differences between distributions s1|P and  s1|C, s2|P and s1|C ,…, sk|P and sk|C (this is the 

claim of existence of B&T Confound1). 

BTC2. Baron and Treiman claimed that there exists a confound in respect to the B&T 

Strategy, wherein it is asserted that: a) inferences about the parameter                                

(
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ are confounded as bases for making decisions about S-

Deficits; b) the source of this confounding is differences in the unknown discriminating 

powers of the tests employed, i.e., differences between γclj|s1 … γclj|sk  and γcuv|s1 … γcuv|sk  

(this is the claim of existence of B&T Confound2). 

BTC3. It was claimed that if 
lj uvAc Ac    and 

lj lj uv uvc c c c 
    then there exists an S-Deficit 

in respect to sj and populations P and C (this is the basis for the Baron and Treiman 

Method). 

3.3.1.4 Proto-framework 

The above summary of the position of Baron and Treiman (1980), suggests a 

proto-framework alternative to that recoverable from the Chapmans’ work, this 

describable as follows (we shall call this the Baron and Treiman Proto-Framework, 

hereafter, B&TP-f): 

a) “control test” tuv scales individuals, in a manner that is largely 

unknown to the researcher, with respect to abilities s1…sk; 

b) an “experimental test” tlj scales individuals with respect to the ability 

sj, as well as abilities s1…sk; 

c) test tuv  is, for each ability s1…sk, characterized by a parameter that 

quantifies discriminating power in respect to the scaling of that ability, 
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and which determines, in part, the observed-score distributions cuv|P 

and cuv|C ; 

d) test tlj, is, for each ability s1…sk, characterized by a parameter that 

quantifies discriminating power in respect to the scaling of that ability, 

and which determines, in part, the observed-score distributions clj|P 

and clj|C. 

3.3.2 Salthouse and Coon (1994) 

Salthouse and Coon (1994), though, apparently, agreeing with Chapman and 

Chapman regarding the research context and general inferential problem in play, as well 

as that C&C Confound2 exists, did not acknowledge the inferential solutions proposed by 

the Chapmans, instead, putting forth  a distinct method.  

3.3.2.1 Proposed Inferential Solution 

In response to C&C Confound2, Salthouse and Coon (1994) suggested an 

alternative method for drawing conclusions regarding D-Deficits (note that their method 

involves a ruling on S-Deficits as well, but only in the service of drawing conclusions 

regarding D-Deficits, as explained in the “Summary of Logic” section below). The 

method was rooted in the following Core Claims. 

3.3.2.1.1 Core Claims 

Let: a) A be a dichotomous [0,1] indicator variable, with the property that, if iC, 

A=1, and if iP, A=0; b) clj and cuv be, as above, test composites of items in tlj and tuv , 

tests drawn from Tj and Tv; c) 
( . )lj uvA c c  be the semi-partial correlation between clj and A, 

holding constant cuv, d) B be a nominal variable, the values {1,2} of which stand for test 
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composite (1=clj, 2=cuv); e) the A X B interaction variance component ( 2

AB ) be defined 

under the two-factor mixed model (A, between subject, B, within subject). 

The core claims are, then, as follows: 

SC1.  If 
( . ) 0

lj uvA c c  , then there exists an S-Deficit in respect to sj and populations P and 

C. 

SC2. If 
( . ) 0

lj uvA c c   and 2

AB  0 then there exists a D-Deficit in respect abilities sj and sv 

and populations P and C.  

3.3.2.1.2 Salthouse and Coon Method 

Following from the above claims, a two-step method for drawing conclusions 

regarding a D-Deficit was outlined: 

Step 1. Acquired information about the test score distributions ljc C , ljc P , uvc C and 

uvc P  is employed to make an inferential decision as to whether H0: 
2

AB = 0 or              

H1: 
2

AB  0. If a decision is made in favour of H1, proceed to step 2. If not, draw no 

conclusions regarding D-Deficits. 

Step 2. Acquired information about the test score distributions ljc C , ljc P , uvc C and 

uvc P  is employed to make an inferential decision as to whether Ho: ( . ) 0
lj uvA c c  or         

H1: ( . ) 0
lj uvA c c   (the quantities in H0 and H1 being semi-partial correlations). If a decision 
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is made in favour of H1, it is concluded that there exists an S-Deficit in respect to sj and 

populations P and C, as well as a D-Deficit in respect to sj and sv and populations P and 

C. 

3.3.2.1.2.1 Summary of Logic 

The logic of the above solution requires explanation, and seems to be as follows. 

There exist two possible explanations for the state of affairs that 2

AB  0, which is 

equivalent, in fact, to the condition that (
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  ) 0

uvc |Cμ  : a)  a D-

Deficit, in respect to abilities sj and sv, does not exist, i.e., ( ) ( ) 0
j j v vs P s P s P s P
      

and, hence,the state of affairs 2

AB  0 is solely a consequence of the existence of  

differences in γclj|g and γcuv|g (the parameters referenced in CC2); b) a D-Deficit, in respect 

to abilities sj and sv, does, in fact, exist, and is responsible, to an unknown degree, for the 

state of affairs 2

AB  0.  

In the case in which a decision is made, at Step 1, in favour of H1, it is concluded 

that one of these two explanations is correct. The decision as to which of these 

explanations is correct, is made at Step 2, the decision-making, therein, relying on the 

following assumption: If there exists an S-Deficit in respect to sj (i.e. 
js |Pμ  

js |Cμ ), then  

( ) ( ) 0
j j v vs P s P s P s P
       . Thus, at Step 2, a conclusion is drawn, via Core Claim 

SC1, as to whether there is an S-Deficit in respect sj. If the answer is in the affirmative, it 

is concluded that there exists a D-Deficit in respect to abilities sj and sv. 
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3.3.2.2 Summary of Core Claims 

To review, the claims of Salthouse and Coon (1994) apropos the Psychometric 

Confound and possible solutions are the following: 

SC1. If 
( . ) 0

lj uvA c c   then there exists an S-Deficit in respect to sj and populations P and C.  

SC2. If 
( . ) 0

lj uvA c c   and 2

AB  0 then there exists a D-Deficit in respect abilities sj and sv 

and populations P and C.  

3.3.2.3 Proto-Framework 

Salthouse and Coon (1994) appeared to employ the proto-framework recoverable 

from the Chapmans’ work, and summarized in section 2.6.2.1. 

3.3.3 Knight and Silverstein (2001) 

Knight and Silverstein (2001) offered an account distinct in several respects from 

that of the Chapmans. They described a distinct flaw, or confound; they proposed unique 

inferential methods; they contested the validity of certain of the Chapmans’ key claims; 

and their work suggests a proto-framework alternative to that recoverable from the work 

of Chapman and Chapman. 

3.3.3.1 Flaws in Traditional Inferential Methods 

Although Knight and Silverstein (2001) made reference to C&C Confound2, and 

claimed to present a “solution” to this confound, their explanation of the flaw inherent in 

C&C Strategy2, in fact, implied a distinct confound. This claimed confound, which we 
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call the Knight and Silverstein Confound and abbreviate K&S Confound, is described in 

the Core Claim below (as this is the first of several  core claims they put forth, we label it 

KSC1). 

3.3.3.1.1 Core Claim 

KSC1: a) test tlj scales individuals in respect to not only ability sj, but, also, other abilities 

s1…sk, and, similarly, tuv scales individuals in respect to not only ability sv, but, also, 

other abilities s1…sk; b) test tlj is associated with discriminating power parameters, γclj|s1 

… γclj|sk  , that characterize the sensitivity of the test composite clj to changes in s1…sk, 

and test tuv is associated with parameters, γcuv|s1 … γcuv|sk ,  that characterize the sensitivity 

of test composite cuv to changes in s1…sk ; c) the difference parameter                                

(
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ  is influenced by abilities s1…sk, and hence is confounded 

as a basis for making inferences about D-deficits by differences in the unknown 

discriminating powers of the tests employed.24 In the words of Knight and Silverstein 

(2001), “The differential performance deficit could simply be an artifact of the 

differential discriminatory power of the tasks used.” (p. 15). 

3.3.3.2 Proposed Inferential Solutions 

While not contradicting the research context and general inferential problem of 

the Chapmans, and, in particular, the desirability of identifying S- and D-Deficits, Knight 

 
24

 The following supports this summary: i) Knight and Silverstein’s (2001) reference to “differential 

discriminatory power”, ii) talk of the problem inadvertently scaling in respect to additional abilities 

(similar to the discussion found in Miller et. al., 1995, and reviewed about in section 2.4.3), and, most 

explicitly, iii) Silverstein’s (2008) follow-up work, in which he writes formula for a “typical 

neuropsychological test” based the “common factor model” containing the equivalent of sj and other 

abilities s1…sk, as well as terms for the test’s scaling in respect to each. 
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and Silverstein (2001) proposed, as solutions to the K&S Confound, several methods that 

side-stepped the problem of identifying S- and/or D-Deficits by focusing on other mean 

differences. The methods were rooted in the Core Claims summarized below. 

3.3.3.2.1 Core Claims 

For the following, let: a) A be a dichotomous [0,1] variable, wherein 0 = C and 1 

= P; b) B be a nominal variable, the values {1,2} of which stand for test composite (1=clj, 

2=cuv); c) 2

AB be the A X B interaction variance component defined under the two-factor 

mixed model (A, between subject, B, within subject). 

KSC2: If 2

AB = 0 then (
1s |Pμ 

1s |Cμ ) = (
2s |Pμ 

2s |Cμ ) = … = (
ks |Pμ 

ks |Cμ ) and γclj|s1 = 

γcuv|s1, γclj|s2 = γcuv|s2 … γclj|sk = γcuv|sk (these quantities defined in KSC1). 

KSC3: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvc P c P

  , then 
j vs C s C
  and 

j vs P s P
  . 

KSC4: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvc P c P

  , then 
j vs C s C
  and 

j vs P s P
  . 

KSC5: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvc P c P

  , then 
j vs C s C
  and 

j vs P s P
  . 

KSC6: If 
ljc |Pμ  0

ljc |Cμ   then 
js |Pμ  0

js |Cμ  . 

KSC7: If 
lj uvc C c C

   and 
lj uvc P c P

  then 
j vs C s C
  and 

j vs P s P
  . 

KSC8: If 
lj uvc C c C

   and 
lj uvc P c P

  then 
j vs C s C
  and 

j vs P s P
  . 
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3.3.3.2.2 Methods 

3.3.3.2.2.1 Disconfirmation Method 

According to Knight and Silverstein (2001), the Disconfirmation Method involves 

the demonstration of a “predicted… pattern of differences among conditions or levels of 

a task that parallels the same pattern for controls” (p.18). Examination of applications of 

this method (e.g., Knight, Manoach, Elliott, & Hershenson, 2000) reveals the two steps 

involved in this method: 

Step 1. Acquired information about the test composite distributions ljc C , ljc P , uvc C

and uvc P  is employed to make an inferential decision as to whether H0: 
2

AB = 0 or         

H1: 
2

AB   0 is true. Given that KSC2 is true, if a decision is made in favour of H0, it is 

concluded that the following is the case: 

 (
1s |Pμ 

1s |Cμ ) = (
2s |Pμ 

2s |Cμ ) = … = (
ks |Pμ 

ks |Cμ ). (3.1) 

If a decision is made in favour of H1, no conclusion is drawn regarding stochastic 

differences in ability scores. 

Step 2. If, in Step 1, a decision is made that H0 is true, hypothesis sets pre-specified by 

the researcher concerning each pair of tests are then considered. For each pair of test 

composite clj and cuv , there are three possible sets of hypotheses (one set is pre-specified 

by the researcher for each pair of tests): 

 



 

46 

Possible Hypothesis Set 1:  

 
0H C : 

lj uvc C c C
    and   

0H P : 
lj uvc P c P

     (3.2) 

Given that KSC3 is true, if an inferential decision is made in favour of 
0H C and 

0H P , 

the researcher concludes that 
j vs C s C

   and 
j vs P s P

   . 

Possible Hypothesis Set 2: 

 
0H C : 

lj uvc C c C
   and   

0H P : 
lj uvc P c P

   (3.3) 

Given that KSC4 is true, if an inferential decision is made to reject 
0H C and 

0H P , the 

researcher concludes that 
j vs C s C
  and 

j vs P s P
  . 

Possible Hypothesis Set 3: 

 
0H C : 

lj uvc C c C
   and   

0H P : 
lj uvc P c P

   (3.4) 

Given that KSC5 is true, if an inferential decision is made to reject 
0H C and 

0H P , the 

researcher concludes that 
j vs C s C

  and 
j vs P s P
  . 

3.3.3.2.2.1.1 Summary of Logic 

For the Disconfirmation Method, the logic seems to be as follows: Given that 

KSC2 is true, in the case in which 2

AB = 0, the influence of s1...sk  (the “other abilities” 
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referred to in KSC1) on the means 
ljc C

 and 
uvc C

 is equivalent, and the testing of 

hypotheses regarding the equality or inequality of these quantities (or, equivalently, the 

subtraction of these quantities) has the effect of cancelling out the influence of s1...sk, and 

bears upon the relative values of 
js C

  and
 vs C
 .  

3.3.3.2.2.2 Superiority Method 

According to Knight and Silverstein (2001), the Superiority Method involves 

inferring a “performance advantage” for population P on a single test. The strategy is as 

follows: a) a single test tlj Tj, is employed; b) acquired inferential information about the 

distributions clj|P and clj|C is employed to make an inferential decision as to whether H0: 

ljc |Pμ  0
ljc |Cμ  or H1: 

ljc |Pμ  0
ljc |Cμ   is the case; c) given that KSC6 is true, if a decision 

is made in favour of H1, it is concluded that 
js |Pμ  0

js |Cμ  . 

3.3.3.2.2.2.1 Summary of Logic 

The Superiority Method has as a basis KSC6, which states that if 
ljc |Pμ  0

ljc |Cμ   

then 
js |Pμ  0

js |Cμ  . The logic of KSC6 seems to be as follows: For abilities s1…sk, the 

distribution 1s P is expected to be stochastically lower than 1s C , 2s P is expected to be 

stochastically lower than 2s C ,… , ks P is expected to be stochastically lower than ks C . 

Furthermore, the sensitivity of test composite clj to changes in scores on abilities s1…sk is 

believed to be such that the above state of affairs would cause clj|P to be stochastically 

lower than clj|C, and, in particular,  
ljc |Pμ  0

ljc |Cμ  . Therefore, if this is not the case, in 
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particular, if  
ljc |Pμ  0

ljc |Cμ   , it is thought that this cannot be due to the influence of 

s1…sk (the “other abilities” referred to in KSC1) and, instead, must be due to            

js |Pμ  0
js |Cμ  . 

3.3.3.2.2.3 Relative Superiority Method 

According to Knight and Silverstein (2001) the Relative Superiority Method 

involves a “specific reversal, compared to controls in the relative performance of at least 

two tasks” (p. 19). Like the Disconfirmation Method, there are two steps involved, as 

follows: 

Step 1. Acquired information about the composite test score distributions ljc C , ljc P , 

uvc C and uvc P  is employed to make an inferential decision as to whether H0: 
2

AB = 0 or 

H1: 
2

AB  0. If a decision is made in favour of H1, it is concluded that (
js |Pμ 

js |Cμ )   (

vs |Pμ 
vs |Cμ ). If the decision is in favour of H0, no conclusion is drawn regarding 

stochastic differences in ability scores.  

Step 2. If, in step 1, a decision is made in favour of H1, hypothesis sets pre-specified by 

the researcher are then considered. For the pair of tests {tlj , tuv}, there are two possible 

sets of hypotheses (one set is pre-specified by the researcher): 

Possible Hypothesis Set 1 

 
0H C : 

lj uvc C c C
   and   

0H P : 
lj uvc P c P

   (3.5) 
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Given that KSC7 is true, if an inferential decision is made that these hypotheses are false, 

the researcher concludes that 
j vs C s C
  and <

j vs P s P
  . 

Possible Hypothesis Set 2 

 
0H C : 

lj uvc C c C
   and   

0H P : 
lj uvc P c P

   (3.6) 

Given that KSC8 is true, if an inferential decision is made that these hypotheses are false, 

the researcher concludes that 
j vs C s C
  and 

j vs P s P
  . 

3.3.3.2.2.3.1 Summary of Logic 

The Relative Superiority Method has as bases KSC7 and KSC8, which state that if 

lj uvc C c C
   and 

lj uvc P c P
  then 

j vs C s C
  and 

j vs P s P
   (KSC7), and if 

lj uvc C c C
   and 

lj uvc P c P
  then 

j vs C s C
  and 

j vs P s P
   (KSC8). The logic of these 

claims seems to be as follows: For all abilities s1…sk (the “other abilities” referred to in 

KSC1) scores tend to be stochastically equal to or lower than 0 for both populations C 

and P. Say test composite clj is more sensitive to changes in s1…sk than test composite cuv. 

Then, it would be expected that 
lj uvc C c C

   and
lj uvc P c P

  . However, if it is the case 

(as in KSC7) that 
lj uvc C c C

   and 
lj uvc P c P

   then this must be due to the additional 

dependence of the distributions clj|P and cuv|P on the distributions sj|P and sv|P, and 

furthermore, it must be the case that that 
j vs C s C
  and 

j vs P s P
  . Similarly, if it is 

the case (as in KSC8) that 
lj uvc C c C

   and 
lj uvc P c P

   then this must be due to the 
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additional dependence of the distributions clj|C and cuv|C on the distributions sj|C and sv|C, 

and furthermore, it must be the case that that 
j vs C s C
  and 

j vs P s P
  . 

3.3.3.3 Criticisms of the Chapmans’ Account 

Knight and Silverstein (2001) expressed direct objections to the account provided 

by Chapman and Chapman, and rooted in the Core Claims below. 

3.3.3.3.1 Core Claims 

KSC9: It is not the case that if, for all item pairs Idlj  and IdMuv, d=1..puv, ρclj,dlj= ρcuv,dMuv, 

and either: i) Idlj IdMuv   , or ii) 1Idlj IdMuv    then conclusions about D-Deficits may 

be drawn through use of C&C Strategy2 (in contradiction to the implication of CC4 and 

CC5).   

KSC10: It is not the case that if, for two tests clj  and cuv, if 
2

lj
 <

2

uv then the C&C 

Strategy2 may be employed to draw conclusions in regard D-Deficits (in contradiction to 

the implication of CC6). 

3.3.3.3.1.1 Summary of Logic 

In regard to KSC9, Knight and Silverstein (2001) stated that “matching tasks on 

psychometric characteristics, particularly difficulty level, often can only be achieved at 

the expense of confounding the hypothetical constructs being compared.” (p.15). This is 

interpreted as follows: the selection of item pairs such that ρclj,dlj= ρcuv,dMuv  and either: i) 

Idlj IdMuv   , or ii) 1Idlj IdMuv   has the effect of changing the values of the parameters  
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γclj|s1 … γclj|sk  and γcuv|s1 … γcuv|sk  in unknown ways, and, hence, KSC1 remains the case, 

i.e., the difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ  is influenced by abilities 

s1…sk, and hence is confounded as a basis for making inferences about D-deficits. 

In regard to KSC10, CC6 implies that comparison of test true score variances may 

remove from consideration the influence of abilities other than sj and sv upon the 

difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ , allowing conclusions regarding D-

Deficits. Recall that, as stated in KSC1, Knight and Silverstein considered the case in 

which test tlj scales individuals in respect to not only ability sj, but, also, other abilities 

s1…sk, and, similarly, tuv scales individuals in respect to not only ability sv, but, also, 

other abilities s1…sk . In this case, then, the implication would be that comparison of test 

composite true score variances may remove from consideration the influence of abilities 

s1…sk. However, according to Knight and Silverstein, the true score variance of 

composite clj reflects the variances of s1…sk as well as parameters, γclj|s1 … γclj|sk , whereas 

the contribution of composite clj to the difference parameter (the contribution being 

ljc |Pμ 
ljc |Cμ ) reflects the parameters γclj|s1 … γclj|sk as well as the differences                       

(
1s |Pμ 

1s |Cμ ),(
2s |Pμ 

2s |Cμ ),…,(
ks |Pμ 

ks |Cμ ). It is thought, then, that the comparison of 

test composite true score variances cannot remove from consideration the influence of 

abilities s1…sk, as composite true score variance does not reflect differences                      

(
1s |Pμ 

1s |Cμ ),(
2s |Pμ 

2s |Cμ ),…,(
ks |Pμ 

ks |Cμ ). In the words of Knight and Silverstein 

(2001), “power reductions occur when the increase in true score variance does not 

increase group discrimination (i.e., treatment effect or numerator in the F-ratio)” (p. 17). 
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Silverstein (2008) elaborated on this point, stating, “For the purposes of maximizing 

effect sizes between groups, the sources of variance that must be eliminated are those that 

do not discriminate between groups. To do this, we need to… eliminate all ‘nonspecific’ 

sources of true score variance…”(p.645). These quotes vaguely illustrate the components 

of KSC10.  

3.3.3.4 Summary of Core Claims 

In summary, the claims of Knight and Silverstein (2001) apropos the 

Psychometric Confound and possible solutions are the following: 

KSC1: a) test tlj scales individuals in respect to ability sj, and other abilities s1…sk, and, 

similarly, tuv scales individuals in respect to sv and other abilities s1…sk; b) test tlj is 

associated with parameters, γclj|s1 … γclj|sk  , that characterize the sensitivities of composite 

clj to changes in s1…sk, and test tuv is associated with parameters, γcuv|s1 … γcuv|sk ,  that 

characterize the sensitivities of composite cuv to changes in s1…sk (these known as 

discriminating power parameters); c) the difference parameter                                            

(
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ  is a function of abilities s1…sk, and hence is confounded as 

a basis for making inferences about D-deficits by differences in the unknown 

discriminating powers of the tests employed. 

KSC2: If 2

AB = 0 then (
1s |Pμ 

1s |Cμ ) = (
2s |Pμ 

2s |Cμ ) = … = (
ks |Pμ 

ks |Cμ ) and γclj|s1 = 

γcuv|s1, γclj|s2 = γcuv|s2 … γclj|sk = γcuv|sk. 

KSC3: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvc P c P

  , then 
j vs C s C
  and 

j vs P s P
  . 
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KSC4: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvt P t P

  , then 
j vs C s C
  and 

j vs P s P
  . 

KSC5: If 2

AB = 0, 
lj uvc C c C

   and 
lj uvc P c P

  , then 
j vs C s C
  and 

j vs P s P
  . 

KSC6: If 
ljc |Pμ  0

ljc |Cμ   then 
js |Pμ  0

js |Cμ  . 

KSC7: If 
lj uvc C c C

   and 
lj uvc P c P

  then 
j vs C s C
  and 

j vs P s P
  . 

KSC8: If 
lj uvc C c C

   and 
lj uvc P c P

  then 
j vs C s C
  and 

j vs P s P
  . 

KSC9: If, for all item pairs Idlj  and IdMuv, d=1..puv, 0.5 0.5Idlj IdMuv    and ρclj,dlj= 

ρcuv,dMuv, it is not the case that conclusions about D-Deficits may be drawn through use of 

C&C Strategy2 (in contradiction to an implications of CC4 and CC5).   

KSC10: It is not the case that if, for two tests clj  and cuv, if 
2

lj
 <

2

uv then the C&C 

Strategy2 may be employed to draw conclusions in regard D-Deficits (in contradiction to 

an implication of CC6). 

3.3.3.5 Proto-Framework 

The above summary of the position of Knight and Silverstein (2001), suggests a 

proto-framework alternative to that recoverable from the Chapmans’ work, as follows 

(we shall call this the “Knight and Silverstein” proto-framework, hereafter, K&SP-f) : 

a) each test tlj scales individuals, in a manner that is largely unknown to 

the researcher, in respect to ability sj as well as other abilities s1…sk. 
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b) test tlj is associated with parameters, γclj|s1 … γclj|sk, that characterize the 

sensitivity of associated composite clj to changes in s1…sk, (these 

known as discriminating power parameters) 

c) The parameters γclj|s1 … γclj|sk determine, in part, the observed score 

distributions clj|P and clj|C. 

3.3.4 Kang and MacDonald (2010) 

Kang and MacDonald (2010) provided an account distinct from that of the 

Chapmans, articulating a unique confound and contesting the validity of certain of the 

Chapmans’ key claims. 

3.3.4.1 Flaws in Traditional Inferential Methods 

Although Kang and MacDonald (2010), like Knight and Silverstein (2001), made 

reference to C&C Confound2, and sought to evaluate proposed solutions to this 

confound, their explanation of the flaw inherent in C&C Strategy2, in fact, implied a 

distinct confound. We call this new claimed confound the Kang and MacDonald 

Confound (abbreviated K&M Confound), and describe it as a core claim of Kang and 

MacDonald below.  

3.3.4.1.1 Core Claim 

In light of C&C Strategy2, Kang and MacDonald’s (2010) confound may be 

described as follows:  

KMC1: a) test tlj scales individuals in respect to not only ability sj, but, also, other 

abilities s1…sk, as well as a general ability, g, and, similarly, tuv scales individuals in 

respect to not only ability sv, but, also, g and other abilities s1…sk; b) test tlj is associated 
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with parameters, γclj|s1 … γclj|sk  and γclj|g, that characterize the sensitivities of associated 

composite clj to changes in s1…sk and g, and test tuv is associated with parameters,       

γcuv|s1 … γcuv|sk  and γcuv|g, that characterize the sensitivities of associated composite cuv to 

changes in s1…sk  and g; c) the difference parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ  is 

influenced by g and abilities s1…sk, and hence is confounded as a basis for making 

inferences about D-deficits by differences in the unknown discriminating powers. In the 

words of Kang and MacDonald (2010), “Although cognitive tests are intended to be 

sensitive to a particular cognitive ability, their measurement inevitably includes variance 

from other common cognitive and noncognitive factors… In addition… patients show 

generalized performance deficits.” (p. 300). 

3.3.4.2 Criticisms of the Chapmans’ Account 

In addition to claiming the existence of a distinct confound from those articulated 

by the Chapmans, Kang and MacDonald (2010) expressed direct objections to the 

account provided by Chapman and Chapman, rooted in their Core Claim below. 

3.3.4.2.1 Core Claim 

KMC2: It is not the case that 
2

lj
 (true score variance for composite clj) provides an 

estimate of γclj|g , and therefore it is not the case that if 
2

lj
 <

2

uv then γclj|g  < γcuv|g  (in 

contrast to CC6). 



 

56 

3.3.4.2.1.1 Summary of Logic 

In support of KMC2, Kang and MacDonald (2010) conducted a simulation study 

in which composite scores were constructed by the following procedure: First, each 

individual was assigned what they called a “replicable ability score” (RAS); second, an 

“item ability score” was constructed for each item by summing the RAS and an error 

score; third, this “item ability score” was dichotomized using a particular threshold; 

lastly, for each individual, groups of dichotomized item scores were summed to produce 

composite scores. After constructing simulated test composite scores in this manner, 

Kang and MacDonald employed a “direct index of discriminating power” for each 

composite, this being the correlation of ability scores (RAS scores) and composite scores. 

The authors then generated an estimated true score variance (ETSV) for each composite 

by multiplying observed-score variance by estimated reliability. It was found that ETSV 

and the index of discriminating power were only weakly related.  

3.3.4.3 Summary of Core Claims 

In summary, the core claims of Kang and MacDonald (2010) are the following: 

KMC1: Inferences about the parameter (
ljc |Pμ 

ljc |Cμ ) (
uvc |Pμ  )

uvc |Cμ are confounded, as 

bases for making decisions about D-Deficits (notably, inferences about the parameter        

(
js |Pμ 

js |Cμ ) (
vs |Pμ  )

vs |Cμ ), by differences in between the groups of parameters     

(γclj|s1 … γclj|sk  , γclj|g) and (γcuv|s1 … γcuv|sk, γcuv|g). 
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KMC2: It is not the case that 
2

lj
 provides an estimate of γclj|g , and therefore it is not the 

case that if 
2

lj
 <

2

uv then γclj|g  < γcuv|g  (in contrast to CC6). 

3.3.4.4 Proto-Framework 

The above summary of the position of Kang and MacDonald (2010), suggests a 

proto-framework alternative to that recoverable from the Chapmans’ work, as follows 

(we shall call this the “Kang and MacDonald” proto-framework, hereafter, K&MP-f) : 

a) each test tlj scales individuals, in a manner that is largely unknown to 

the researcher, in respect to ability sj as well as other abilities s1…sk 

and “general ability” g; 

b) associated composite clj is associated with parameters, γclj|s1 … γclj|sk, 

that characterize its sensitivities to changes in s1…sk, and a parameter, 

γclj|g, that characterizes its sensitivity to change in g (these known as 

discriminating power parameters); 

c) the parameters γclj|s1 … γclj|sk  and γclj|g determine, in part, the observed 

score distributions clj|P and clj|C. 

3.3.5 Problems with Alternative Accounts 

Many of the problems noted in the Chapmans’ work (as reviewed in section 2.6) 

are also apparent in the works of their critics. In particular, these authors did not specify a 

technical framework, and therefore their claims were unproven. Only alternative and 

mathematically incomplete proto-frameworks, as summarized above, are recoverable 

from these works. As should be apparent from the above summary of accounts, the critics 

of the Chapmans have, in general, continued to employ nontechnical language to describe 

the issues housed under the term “Psychometric Confound”, and have, as a result, left the 

meanings of key terms, including “discriminating power” and “ability”, in question  
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3.4 Summary 

Chapman and Chapman’s work on the Psychometric Confound has been widely 

referenced, and their proposed solutions have been applied occasionally. More often, 

endorsers of Chapman and Chapman’s account have employed idiosyncratic methods, the 

justifications for which are unclear, in an attempt to deal with C&C Confound1, C&C 

Confound2, and similar confounds. Notwithstanding the popularity of the Chapmans’ 

account of the Psychometric Confound, a number of alternative accounts have emerged, 

with additional and often competing claims, as summarized above. However, the 

alternative accounts have, in general, failed to resolve the problems identified. There is 

therefore a pressing need for a definitive technical articulation of the issues surrounding 

the term “Psychometric Confound”, which would enable adjudication both the claims 

made by the Chapmans and those made in the alternative accounts. We take up this task 

in Chapter 4. 
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Chapter 4.  

 

Mathematization and Evaluation of Claims: Chapman and 

Chapman 

Running tacitly through the accounts of both Chapman and Chapman and their 

commentators is test theory, both of the classical variety, as when Chapman and 

Chapman, 1978a, decompose test composite scores into “true” and “error" components, 

and of the modern sort, as when (see section 2.6.2.1) a distinction between specific and 

general ability is implied.  

In this chapter, we: a) make explicit the test theory that is nascent within the work 

of Chapman and Chapman, b) complete, employing this test theory, the proto-framework 

that, in Chapter 2, was extracted from this work; c) elucidate, given this test theory and 

completed proto-framework, the claims of Chapman and Chapman by mathematizing 

them; d) adjudicate, given this mathematization, the Chapmans’ claims (an analogous 

treatment of the various alternative accounts authored by the Chapmans' commentators, 

and described in Chapter 3, is undertaken in Chapter 5).   

We begin by providing a general review of the classical test theory (in particular 

the multivariate classical true-score model) and the modern test theory (in particular the 
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multi-population linear factor model) that is nascent in all work carried out, to date, on 

the issue of the psychometric confound. 

4.1 A Review of the Classical Test Theory 

4.1.1 Properties of an item 

An item I is a rule that assigns to any individual in a population a score on a 

corresponding variable X.  A single application of I to an individual is called a trial.  

Because I can, in theory, be applied to an individual an infinity of times, associated with 

each individual is an infinite universe of trials, hence, an infinite population of scores on 

X, a notion that is the very foundation of CTT (see, e.g., Lord & Novick, 1968). 

Let us formalize these ideas.  Consider a particular individual i belonging to a 

population Δ, and a particular item I yielding scores on a variable X.  Then the population 

of scores on X yielded by an infinity of trials on individual i is called the propensity 

distribution of i in respect I, and is represented as follows: 

 ~ ( )2
i, εiτX σi .    (4.1) 

In expression 4.1, iτ  = E( )X|i is called the true score of person i in respect item I, and 

2EV( | ) ) ]- |[( 2
iεiσ  X τX i i , the error variance of i in respect item I  (sometimes, also, 

the person-specific error variance). 
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It follows from expression 4.1 that the unconditional distribution of X (over all 

individuals belonging to Δ) is 

 ~ ( , )2

X XX u σ , (4.2) 

in which  

 = |E( ) E ) E )E( ( iX iX X       (4.3)  

and 

 
2 22 2| )] V[EV( ) E ( | )] E( ) V( )[V(X ii Ei X iX X            .   (4.4) 

Expression 4.4 shows, importantly, that the variation in X, over trials and 

individuals, is decomposable into two fundamental variance parameters: a) 2

E , which is 

the average, over all i , of the person-specific error variances, and is called the error 

variance of item I; b) 2

 , which is the variance, over i , of the true-scores, and is 

called the true-score variance of item I. 

The reliability of item I, in population Δ, is, then, by definition 

 '

2

2XX
X

  


, (4.5) 

and the reliability index (the Pearson Product Moment Correlation, over all i , 

between the true score variable and X), the square root of (4.5). 
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4.1.2 Special case of a dichotomous [0,1] item 

A dichotomous [0,1] item is a rule that assigns to any i  either a 0 or a 1 on an 

associated variable X.  As a consequence, 

 E( )X|i = iτ  = P(X=1|i), (4.6) 

i.e., the true-score of individual i is equal to the proportion of unities he yields on the item 

over an infinity of trials, and 

 V( )X|i = P(X=1|i)(1- P(X=1|i)) = (1 )i iτ τ . (4.7) 

The unconditional mean of X is, then, 

 E( ) ( ) E(P( 1 ))iX E X i    , (4.8) 

a parameter that has, traditionally, been called the difficulty of the item.  The 

unconditional variance assumes, in this case, the rather unusual form 

 V(X) = (1 )  , (4.9) 

by which it is deduced that V(X): a) is a quadratic function of item difficulty; b) has a 

maximum of .25, attained when   is equal to .5 (i.e., when half the total number of 

scores on the item, over trials and individuals, are equal to 1, and half to 0).  
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4.1.3 Properties of a set of items  

Consider, now, a set of p items {I1,I2,...,Ip} yielding scores on a p-element 

variable X, and a particular individual i .  An infinity of trials of {I1,I2,...,Ip} on i, 

induces, now, a p-dimensional propensity distribution for i: 

 ~ ( )i  ii , τX Σ . (4.10) 

In expression 4.10, E( )i i X  and i  is the p   p covariance matrix of the errors,

( - ) |i iX τ .25  It follows from 4.10 that the unconditional distribution of X (over all i ) 

is: 

 ~ ( , )X XX μ Σ  (4.11) 

in which  

 Xμ = EE( iX ) = E( )iτ  (4.12) 

and 

 C(E( )) E(C( ) C( ) E( )i ii i     X X X τ  Σ   . (4.13) 

The matrix τ  is sometimes called the true-score covariance matrix; E , the error 

covariance matrix. 

 
25

 In CTT, this matrix is taken, as an axiom of CTT, to be diagonal, meaning that, conditional on any 

individual i, the items are uncorrelated. 
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4.1.4 Properties of a composite of items 

We have already (see 2.1) introduced the notion of a linear composite of test 

items, and, in fact, have employed the notation 
ljc to stand for a linear composite of the 

items of a test tlj, tlj being the lth test of the j
th

 set, the jth set containing tests invented for 

the purpose of scaling individuals on ability sj.  More generally, a composite of items 

(popularly, a test composite) is, simply, a function f(X) of X, of type either linear  or non-

linear. Once again, in the special case of a linear composite, 

 clj

1

p

y y

y

w X


  w X , (4.14)  

in which wy is the item weight for item y, and w is the vector of item weights.  As is well 

know, it is only for the class of linear composites that exact, general, results apropos 

moments can be derived.  In consequence of these results, the propensity distribution of i 

in respect a linear composite w X of items is 

 ( , )i ii  w X w w w  . (4.15)  

In consequence of (4.15), the unconditional distribution (over all i ) of w X is 

 2( , ) 


w X w Xw X   , (4.16) 
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in which 
w X Xw  , called the linear composite mean, 2


 w X w w w w     , the  

linear composite variance, and in which w w  is the error variance of the linear 

composite, and w w , the true score variance of the composite. 

Thus, the reliability of the linear composite w X  is 

 ' 




 

w w X
X

X

w w

w w





 .   (4.17) 

4.1.5 Special case of a composite of dichotomous [0,1] items 

For the case of a linear composite of p dichotomous [0,1] items, it follows from 

expressions 4.7 and 4.14 that 

 
2

1

( , (1 ))
p

i y iy iy

y

i w


  w X w   , (4.18) 

in which iy is the score of i  of item y . The unconditional distribution of w X is, then, 

 2( , ) 


w X w Xw X   , (4.19) 

in which  
w X w  , the yth element of β, βy, and in which, as usual,  

2


 w X w w w w     . 
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If the linear composite happens to be the average of the p items, i.e., all of the elements 

of w are equal to 
1

p
, then the parameter 

 
1

'd =
p

 
 1w X w     (4.20) 

is called the difficulty of the composite. 

4.2 A Review of the Multi-Population Linear Factor Model 

Consider the research context in which random p-vectors, rX , r = 1..s, are 

distributed over each of s populations Δr of individuals.  Define the p   p covariance 

matrices E( )( )r r r r r
  X X   and mean vectors E( )r r X , r = 1..s. The rX ,        

r = 1..s, are said to be representable by the m-dimensional, multi-population, linear factor 

model26 if   

 r r r r r  X    , r = 1..s, (4.21)  

wherein r is a vector of m common factor random variables and r is a p-vector of 

random uniquenesses.  The parameters of the representation are: r , r = 1..s, each r  a    

p   m matrix of regression coefficients (factor loadings); r ,  r = 1..s, each r  a p-vector 

 
26

 In the above section, X was a p-element variable, the elements of which were item variables. As the 

multi-population linear factor model may be applied to items or tests, X, in this section, is simply a p-

element variable, without specification as to whether the p variables are item variables or test variables. 
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of intercepts; r , r = 1..s, r , the m   m covariance matrix of r ; r , r = 1..s, r the p 

  p, diagonal, positive definite, covariance matrix of r ; and r , r = 1..s, r , the mean 

vector of r .  

It is fundamental to linear factor analytic representations that E( )r  0  and 

C( , )r r  0  , r = 1..s.  A first identification constraint is that, for r = 1..s, r is a 

correlation matrix, implying that the variances of the common factors are set to unity27. 

If each rX is representable as in expression 4.21, i.e., the multi-population, linear 

factor model holds for Δr, r = 1..s, then the following  factor- and mean structures hold in 

these populations:   

 
r r r r r

        (4.22) 

 r r r r     . (4.23)   

In respect to the parameters r , r , and r , there are various possibilities with 

regard to cross-population invariance, including the constituents of the following, oft-

tested, nested hierarchy: i) configural invariance. r , r = 1..s, have their null elements in 

the same locations (Thurstone, 1947); ii) weak or pattern invariance. r   ,  r = 1..s 

 
27

 In the absence of additional constraints, the model will not be identified, and even if enough constraints 

are placed to identify the model, certain parameters may remain unrecoverable, unless further, specific, 

restrictions are imposed. 
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(Thurstone, 1947); iii) strong factorial invariance. r   , r   , r = 1..s;  iv) strict 

factorial invariance. r   , r   , r   , r = 1..s. Joreskog’s (1971) invention of 

Multigroup Confirmatory Factor Analysis (MGCFA) provided researchers with easily 

implementable statistical tools by which they could carry out tests of a wide variety of 

invariance hypotheses. 

4.3 Completion of Proto-Framework  

The reader will recall that the research context and elements of the proto-

framework extracted in Chapter 2 are as follows: 

a) there are two populations of individuals, a population C of healthy 

controls and a population P of individuals suffering from some 

particular psychopathology;  

b) there is, in play, a set of k abilities {s1, s2,…,sk}, each individual 

having a score (which is unknown to the researcher) on each ability; 

c) there are k sets of tests (T1…Tk), all tests tlj, l=1..pj, contained with the 

j
th

 set, invented for the purpose of scaling individuals on ability sj; 

d) there are linear composites of the items of tests, 
1

plj

lj dlj dlj

d

c w I


 , 

wherein test tlj is comprised of plj items, Idlj, d=1…plj, and wdlj, 

d=1…plj, is the weight for item  Idlj.  Unless otherwise specified, it 

should be assumed that wdlj=1, d=1…plj, the test composite clj being, 

then, a unit-weighted composite;   

e) each test composite clj scales individuals, in a manner that is largely 

unknown to the researcher, with respect to both specific ability sj and a 

general ability g;  

f) each test composite clj is characterized by two parameters, say, γclj|sj 

and γclj|g, that quantify its discriminating power in respect to the 

scaling of each of sj and g  (i.e., its sensitivity to changes in sj and g, 

respectively); 

g) as is clear from the fact that they are not subscripted  in respect C and 

P, the γclj|sj and γclj|g are invariant over populations C and P;   



 

69 

h) the parameters γclj|sj and γclj|g determine, in part, the observed-score 

distributions clj|P and clj|C. 

We, now, complete this proto-framework.  Let: a) once again, i stand for individual; b) 

r={C,P}; and c) X be the (pj+pv)-element random vector 
j

v

 
 
 

X

X
, the first pj elements of 

which are the test composites of the tests in Tj (these, it will be recalled, invented to scale 

individuals with respect ability sj), and the final  pv, the test composites of the tests of  Tv 

(which scale in respect, sv)
28.    

From their frequent references to classical test theorists such as Gullikson (1950) 

and Lord (1952), as well as their use of classical test theory terms such as “true score 

variance”, “reliability”, etc., it is clear that Chapman and Chapman invoke (4.10).  That is 

to say, 

 ,i rX ~ ( , )ir ir  , ir , diagonal, ir, r={C,P}. (4.24) 

From the references to general ability, specific abilities, discriminating power, 

and the multi-population context in which concern for the psychometric confound is 

situated, we deduce that (4.21) is invoked as a representation, or model, of the (pj+pv) 

vector ir , i.e., 

 , , 1...ir r r ir ir ri r s         , (4.25) 

 
28

 In this section, unlike section 4.1, X takes on the specific meaning of a vector of test composite variables. 
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with the following particularizations, restrictions, and clarifications being made:  

a) s=2, i.e., r ={C,P}; m=3, in which  

 ir  = 

ir

ir

ir

j

v

g

s

s

 
 
 
 
  

; (4.26) 

b) r   , (pj+pv) by 3, and structured as follows: 

 
j

v v

p

p

 
 
 
 

 

 

jjg js

vg vs

0

0
,  (4.27) 

in which the vector 
jg contains the loadings of the pj elements of jX  on ability g, 

jjs , 

the loadings of the  pj  elements of jX  on ability sj, etc.29;  

c) over iΔr, and for r ={C,P}, 

 ( )ir
i

C  = r  I ,  (4.28) 

 ( )ir
i

C  = r ,   (4.29) 

 
29

 The 0 vectors express the fact that the elements of Xj  do not load on  sv, and those of Xv  do not load on sj. 
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in which r is an (pj+pv) by (pj+pv), diagonal,  positive definite matrix, structured as 

j r

r

v r

 
  
  

0

0





  and 

 ( , )ir ir
i

C   = 0, (4.30) 

a 3 by (pj+pv) null matrix. 

The reader should note that, under this mathematization: a) over populations C 

and P, weak or pattern invariance holds; b) discriminating power parameters γclj|sj and 

γclj|g are taken to be factor loadings, i.e., elements of  .  This implies, in particular, that 

γclj|sj is the l
th

 element of 
jjs (this element notated [ ]

jjs l ) and γclj|g, the l
th

 element of 

jg (notated [ ]jg l ). By mathematizing the concept of discriminating power of, say, test 

composite clj in respect to ability sj, as a factor loading, we quantitatively paraphrase it as 

“the number of units change in the lth element of jX  associated with a one standard 

deviation increase in sj (the second element of r )”. 

All told, we have, thus, the following, fully articulated, mathematical framework:  

 ,i rX ~ ( , )r r ir ir ir     , i r r, r={C,P} (4.31) 

with consequence that 

 rX ~ ( , )r r r
     , r = {C,P}, (4.32) 
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in which r Er r     , diagonal,  r={C,P}, with E( )Er ir  30.    

4.4 Mathematization of Claims 

We are, now, ready to mathematize the core claims of Chapman and Chapman, 

i.e., CC1 to CC5. 

4.4.1 Mathematization of Core Claims (CC1-CC5) 

CC1: As will be recalled (see Section 2.5), CC1 asserts that differences in the 

distributions clj|P and clj|C, hence, inferred differences in the distributions clj|P and clj|C 

(notably, inferences about the parameter (
ljc |Pμ 

ljc |Cμ )), are confounded, as bases for 

making decisions about S-deficits (notably about the parameter (
js |Pμ -

js |Cμ )), by 

differences in g|P and g|C (notably, as reflected in the parameter ( g|Pμ - g|Cμ )).  Now, 

under the proto-framework of section 4.3,
ljc P

 is the lth element of the vector 
j PX

  

(notated [ ]
j P

l
X

 31), and 
ljc P

 , the lth element of 
j P


X

. Presupposing, then, that 

expressions (4.31)-(4.32) hold, CC1 can be interpreted as follows: The bias in estimating 

 

30
 Note that is the expectation of . 

31
 Note that square brackets denote an element of the vector or matrix preceding the brackets. 

E( )ir ir
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[2] [2]P C  32 by [ ] [ ]
j jP C

l l
X X

  ,  i.e., [ ] [ ]) ( [2] [2])
j j

P CP C
l l   

X X
   , is a 

function of the quantity [1] [1]P C  . 

CC2:  As will be recalled, CC2 asserts that inferences about the parameter (
ljc |Pμ 

ljc |Cμ )

 (
uvc |Pμ  )

uvc |Cμ are confounded, as bases for making decisions about D-Deficits 

(notably, inferences about the parameter (
js |Pμ 

js |Cμ ) (
vs |Pμ  )

vs |Cμ ), by differences in 

γclj|g and γcuv|g. Under the proto-framework of section 4.3, and presupposing that (4.31)-

(4.32) hold, CC2 can be interpreted as follows: The bias in estimating 

[2] [2]) [3] [3])P C P C       by [ ] [ ]) [ ] [ ])
j j v vP C P C

l l u u   
X X X X

    , i.e., 

[ ] [ ]) [ ] [ ])) ( [2] [2]) [3] [3]))
j j v v

P C P CP C P C
l l u u        

X X X X
        , is a 

function of the quantity [ ] [ ]jg vgl u  . 

CC3:  As will be recalled (see section 2.5), CC3 asserts that for tests tljTj  and tuvTv, a) 

If ( )
lj clj lj cljc H c Lμ C μ C = ( )

uv cuv uv cuvc H c Lμ C μ C then γclj|g = γcuv|g; b) If ( )
lj clj lj cljc H c Lμ C μ C

 ( )
uv cuv uv cuvc H c Lμ C μ C then γclj|g  > γcuv|g.   

Now, under the proto-framework of section 4.3, and considering the pj-element 

random vector jX , there is a corresponding pj-element vector ( )
j H j Lclj clj

C C


X X
  , in 

 

32
  and represent the second element of each of and , which are the mean vectors of 

 and . 

[2]P [2]C P C

iP iC
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which 
j Hclj

CX
 is a vector of means for sub-populations of C defined, for each test 

composite clj, by , [ ] [ ]
cljH ij ji C l l   m , in which [ ]j lm  is the lth element of a vector of 

medians, and [ ]ij l  is the true score of person i in respect test composite clj. Similarly, 

j Lclj
CX

  is a vector of means for sub-populations of C defined, for each test composite clj, 

by , [ ] [ ]
cljL ij ji C l l  m . The quantities ( )

lj clj lj cljc H c Lμ C μ C and ( )
uv cuv uv cuvc H c Lμ C μ C

are simply elements of ( )
j H j Lclj clj

C C


X X
   and ( )

v H v Lcuv cuv
C C


X X

  . Presupposing that 

expressions 4.31-4.32 hold, we, then, interpret CC3 as follows: a) If 

( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
     then [ ] [ ]jg vgl u  ; b) If 

( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
     then [ ] [ ]jg vgl u  . 

CC4: As will be recalled, CC4 asserts that if two tests tlj and tuv are method 1 matched, 

i.e., plj=puv, and that, for each of d=1..plj, Idlj IdMuv   and ρclj,dlj= ρcuv,dMuv, then             

γclj|g = γcuv|g. Let it be the case, then, that jX  and  vX  are method 1 matched, and  X = 

j

v

 
 
 

X

X
, the first pj elements of which, now, are items contributing to a unit-weighted test 

composite cj = j
1 X  (wherein, 1  is a pj-element vector of 1s), and the second pv elements 

of which are items contributing to a unit-weighted test composite                     cv= v
1 X  
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33(wherein, 1  is a pv-element vector of 1s). Note that, since 
jX  and  vX  are method 1 

matched, pj=pv. Let, further, X be describable as per section 4.3.  Then, it can be shown 

that the expression for the mean of population Δr is 

 ( [1]) ( [2]))
jj j

jg r js rc r X r j r
     1 1       (4.33) 

wherein 1 is a pj - element vector of 1s. This shows that the discriminating power term 

γclj|g referenced in CC4 is translated as 
jg

1  , and the term γcuv|g is translated as
vg

1  . 

Now, the claim above is translated as follows: If, ,l  ] ]j vl l    , and 

[ ], [ ],j j v vl l  
X 1 X X 1 X , then 

jg
1  =

vg
1  , in which 

j is the pj-vector of difficulties 

associated with 
jX , v is the pj-vector of difficulties associated with vX , and [ ],j jl X 1 X , 

the correlation of 
j

1 X with [ ]j lX . 

CC5. As will be recalled, CC5 asserts that if two tests tlj and tuv are method 2 matched, 

i.e., plj=puv, and that, for each of d=1..plj, 1Idlj IdMuv   and ρclj,dlj= ρcuv,dMuv, then         

γclj|g = γcuv|g. Let it be the case that jX  and  vX  are method 2 matched and describable as 

per the mathematization of CC4 above. Then the claim is translated as follows: If, ,l  

] 1 ]j vl l     , and [ ], [ ],j j v vl l  
X 1 X X 1 X , then jg

1  = vg
1  , in which j is the pj-vector 

of difficulties associated with jX , [ ],j jl X 1 X , the correlation of j
1 X with [ ]j lX . 

 
33

 Note that, in this section, X takes on the specific meaning of a vector of items, rather than, as introduced 

in section 4.3, a vector of test composite variables. 
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CC6. As will be recalled, CC6 states that for two tests clj and cuv, if 
2

lj
 <

2

uv then         

γclj|g  < γcuv|g. Under the proto-framework outlined in section 4.3, the claim is translated as 

follows: if [ , ] [ , ]
j v

l l u u    then [ ] [ ]jg vgl u  , in which 
j

 is, consistent with 

expression 4.13, the true score covariance matrix in respect 
jX . 

4.5 Adjudication of Core Claims 

CC1:  From 4.23,  

 r r r r    . (4.34) 

Since, under the proto-framework of section 4.3, P C    , 

 ( )P C P C P C          . (4.35) 

Thus, for the first pj test composites (each formed of the items of a particular test 

contained in Tj), it follows from expression 4.35 that,  

 ( [1] [1]) ( [2] [2])
jj j

jg P C js P CX P X C j P j C
               , (4.36) 

in which 
j P

 and 
j C

 are pj-vectors of intercepts. Considering the l
th

 test composite 

among the pj composites, then, the difference in means may, from expression 4.36, be 

expressed as follows: 
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 [ ] [ ] [ ] [ ] [ ]( [1] [1]) [ ]( [2] [2])
jj j

jg P C js P CX P X C j P j C
l l l l l l                .(4.37) 

By rearrangement of expression 4.37, 

( [2] [2])P C    

 (( [ ] [ ]) ( [ ] [ ] [ ]( [1] [1])) / [ ]
jj j

jg P C jsX P X C j P j C
l l l l l l            . (4.38) 

It follows that CC1 is true, i.e., [ ] [ ]) ( [2] [2])
j j

P CP C
l l   

X X
    is a function of the 

quantity [1] [1]P C  , except in the special case in which [ ] 0jg l  . Therefore, under 

the proto-framework of section 4.3, CC1 is true, and C&C Confound1 exists. 

CC2: CC2 is interpreted under the proto-framework articulated in section 4.3. Therefore, 

to repeat expression 4.37,  

[ ] [ ] [ ] [ ] [ ]( [1] [1]) [ ]( [2] [2])
jj j

jg P C js P CX P X C j P j C
l l l l l l                . (4.39) 

Analogously, for the u
th 

 composite of the pv  composites contained in vX , 

 [ ] [ ] [ ] [ ] [ ]( [1] [1]) [ ]( [3] [3])
vv v

vg P C vs P CP C v P v C
u u u u u u      

X X
          .(4.40) 

It follows that 

 [ ] [ ]) [ ] [ ]) ( [ ] [ ]) ( [ ] [ ])
j j v vX P X C X P X C j P j C v P v C

l l u u l l u u                
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 [ ] [ ])( [1] [1]) [ ]( [2] [2]) [ ]( [3] [3])
j vjg vg P C js P C vs P Cl u l u                .(4.41) 

From this expression, it is apparent that 

[ ] [ ]) [ ] [ ])) ( [2] [2]) [3] [3]))
j j v v

P C P CP C P C
l l u u        

X X X X
        , is, in 

part, a function of the quantity [ ] [ ]jg vgl u  , unless [1] [1] 0P C   . Therefore, CC2 is 

true and C&C Confound2 exists under the proto-framework of section 4.3. 

CC3: To repeat, CC3 is interpreted as: a) If ( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
     

then [ ] [ ]jg vgl u  ; b) If ( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
     then 

[ ] [ ]jg vgl u  . From expression (4.25), the vector of true scores for the distribution of 

,i rX (the distribution of all composites for individual i in population r) may be 

expressed as follows: 

 , , 1...ir r r ir ir ri r s         . (4.42) 

Taking an expectation over all 
cljHi C , the expression for the vector of means of the test 

composites in jX is 

 ( [1]) ( [2]) ( ),
H j H H cljclj clj cljj Hclj

jg C js C iC Hj CC
i C   

X
       , (4.43) 
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in which )
H Hclj clj

C iC   , the expectation over all 
cljHi C . The expressions for 

j Lclj
CX

 , 

v Hcuv
CX

 , and
v Lcuv

CX
  are of a form, analogous. Considering the l

th
 element of the vector 

jX , then (composite clj), the mean over all 
cljHi C is expressed as follows: 

 [ ] [ ] [ ]( [1]) [ ]( [2]) ( [ ])
H j H Hclj clj cljj Hclj

jg C js C iCj CC
l l l l l  

X
       . (4.44) 

Similarly, for the u
th

 element of the vector, vX  (composite cuv), 

 [ ] [ ] [ ]( [1]) [ ]( [3]) ( [ ])
H v H Hcuv cuv cuvv Hcuv

vg C vs C iCv CC
u u u u u  

X
       . (4.45) 

The expressions for [ ]
j Lclj

C
l

X
  and [ ]

v Lcuv
C

u
X

  are, in form, analogous. 

It follows, then, that 

 )[ ] ( [ ])( [1] [1]) ( [ ])( [2] [2])
H L j H Hclj clj clj cljj H j Lclj clj

jg C C js C CX C X C
l l l               

 E( [ ]) E( [ ])
H Lclj clj

iC iCl l  , (4.46) 

and 

)[ ] ( [ ])( [1] [1]) ( [ ])( [3] [3])
H L v H Hcuv cuv cuv cuvv H v Lcuv cuv

vg C C vs C CX C X C
u u u               

 E( [ ]) E( [ ])
H Lcuv cuv

iC iCu u  , (4.47) 
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from which it follows that 

)[ ] )[ ]
v H v Lj H j L cuv cuvclj clj

X C X CX C X C
l u         

( [ ])( [1] [1]) ( [ ])( [1] [1])
H L H Lclj clj cuv cuv

jg C C vg C Cl u          

( [ ])( [2] [2]) ( [ ])( [3] [3])
j H H v H Hclj clj cuv cuv

js C C vs C Cl u          

 (E( [ ]) E( [ ])) (E( [ ]) E( [ ]))
H L H Lclj clj cuv cuv

iC iC iC iCl l u u      . (4.48) 

By inspection of 4.48, it is evident that )[ ] )[ ]
v H v Lj H j L cuv cuvclj clj

X C X CX C X C
l u       is a 

function of a number of quantities besides [ ]jg l and [ ]vg u . CC3 is therefore false, for: 

a) If ( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
    , and hence the left side of expression 

4.48 is equal to 0, it need not be the case that [ ] [ ]jg vgl u  ; b) If 

( )[ ] ( )[ ]
v H v Lj H j L cuv cuvclj clj

C CC C
l u  

X XX X
    , and hence the left side of expression 4.48 is 

a positive quantity, it need not be the case that [ ] [ ]jg vgl u  . 

CC4: To repeat, the claim is that, if, ,l  ] ]j vl l    , and [ ], [ ],j j v vl l  
X 1 X X 1 X , then 

jg
1  = vg

1  . Note that, if ] ]j vl l    , then [ ](1 [ ]) [ ](1 [ ])j j v vl l l l      . Now, from 

equations (4.9) and (4.32), 

 
2 2[ ](1 [ ]) [ , ]) ( ]) ( ]) [ , ]

j j jj j js jgl l l l l l l l     X       , (4.49) 
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wherein 
j

  is the pj × pj covariance matrix of 
j . Similarly, 

 
2 2[ ](1 [ ]) [ , ]) ( ]) ( ]) [ , ]

v v vv v vs vgl l l l l l l l     
X

       . (4.50) 

Therefore, 

 
2 2[ ](1 [ ]) [ ](1 [ ]) (( ]) ( ]) [ , ]) -

j jj j v v js jgl l l l l l l l              

 
2 2(( ]) ( ]) [ , ])

v vvs vgl l l l     . (4.51) 

The above expression shows that if ] ]j vl l    , and hence 

[ ](1 [ ]) [ ](1 [ ])j j v vl l l l      , then the elements of  
jg and 

vg  remain free to vary. 

Therefore, it is not that case that if, ,l  ] ]j vl l    , alone, then 
jg

1  =
vg

1  . However, 

it remains to evaluate the case in which both ] ]j vl l    , and [ ], [ ],j j v vl l  
X 1 X X 1 X . 

Now, it can be shown that  

 
1

[ ],

[ ]

[ , ]
j

j

j j

j j

p

y

l

l

y l


 









 X

X 1 X

1 X X



, (4.52) 

the constituent parts of which are worked out as follows: 

[from 4.22] 
1 1

[ , ] [ ] [ ] [ ] [ ] [ , ])
j j

j j j j

p p

js js jg jg

y y

y l y l y l y l
 

    X      ; (4.53) 
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[from 4.22] 2 ( )
j j jX j j  

   1 X 1 1 1 1    34; (4.54) 

[from 4.22] 
2

[ ] [ , ])
j jl l l  X X . (4.55) 

Now, in the case in which, ,l  ] ]j vl l    , then, by expression 4.49, 

[ , ] = [ , ]
j v

l l l l
X X

  . Therefore, under condition that [ ], [ ],j j v vl l  
X 1 X X 1 X , and, ,l  

] ]j vl l    , 

1

[ ] [ ] [ ] [ ] [ , ])

( )

j

j j j

j

p

js js jg jg

y

j j

y l y l y l





  


 

     

  1 1
 

 
1

[ ] [ ] [ ] [ ] [ , ])

( )

j

v v v

v

p

vs vs vg vg

y

v v

y l y l y l





  

 

     

  1 1
. (4.56) 

By inspection of expression 4.56, it is evident that the elements of jg and vg  remain 

free to vary, and, consequently, 
jg

1  and 
vg

1   are free to vary.  Therefore, 

[ ], [ ],j j v vl l  
X 1 X X 1 X , and, ,l  ] ]j vl l    , do not jointly imply that jg

1  = vg
1  . Under 

the the proto-framework in play, then, CC4 is false. 

 

34
 wherein  

j jj jg js p
 
 

0  
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CC5. To repeat, the claim is that if, ,l  ] 1 ]j vl l     , and [ ], [ ],j j v vl l  
X 1 X X 1 X , then 

jg
1  =

vg
1  . Note that if ] 1 ]j vl l     , then [ ](1 [ ]) [ ](1 [ ])j j v vl l l l      . By the 

same logic as in the adjudication of CC4, then, CC5 is false under the proto-framework in 

play. 

CC6. Under the proto-framework outlined in section 4.3, the claim is translated as 

follows: If [ , ] [ , ]
j v

l l u u    then [ ] [ ]jg vgl u  . Now, From 4.32 and 4.13, 

  = r
   , (4.57) 

hence, 

 [ , ]
j

l l =
2 2[ ]) [ ]) [ , ]

jjs jg j C
l l l l    ,  (4.58) 

and  

 [ , ]
v

u u =
2 2[ ]) [ ]) [ , ]

vvs vg v C
u u u u     , (4.59) 

Therefore, if [ , ] [ , ]
j v

l l u u   , then 

 
2 2 2 2[ ]) [ ]) [ , ]) ( [ ]) [ ]) [ , ])

j jjs jg js jgj C j C
l l l l l l l l          , (4.60) 

by which it is evident that it is not the case that if [ , ] [ , ]
j v

l l u u    then [ ] [ ]jg vgl u  , 

as [ ]jg l  and  [ ]vg u  remain free to vary. Consequently, CC5 is false. 
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4.6 Summary 

In this chapter we have, 1) described the multivariate classical true score model 

and multi-population linear factor model nascent within the work of Chapman and 

Chapman; 2) mathematized Chapman and Chapman’s focal claims (CC1-CC6); 3) 

adjudicated claims CC1-CC6. To review, we concluded that: a) CC1 and CC2, asserted 

under the proto-framework of section 4.3, are true. This implies that, under this proto-

framework, it is true that there are flaws inherent in C&C Strategies 1 and 2, these flaws 

called C&C Confound1 and C&C Confound2; b) CC3, asserted under the proto-

framework of section 4.3, is false, implying that conclusions drawn regarding D-Deficits 

via the Control High-Low Scorers Comparison Method are faulty; c) CC4 and CC5, 

asserted under a modification of the proto-framework of 4.3, are false, such that 

conclusions drawn regarding D-Deficits via the test matching methods 1 and 2 are faulty; 

d) CC6, asserted under the proto-framework of section 4.3, is false, implying that 

conclusions drawn regarding D-Deficits via the True Score Variance Comparison method 

are faulty. 

In the next chapter, we turn to a mathematization and adjudication of the claims 

of the alternative accounts outlined in Chapter 3. 
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Chapter 5.  

 

Mathematization and Evaluation of Claims of Alternative 

Accounts 

In Chapter 3, accounts of the Psychometric Confound alternative to that put 

forward by Chapman and Chapman were reviewed, and the Core Claims of these account 

summarized. We now turn to an adjudication of these claims, account by account. For 

each alternative account, we: i) complete the proto-framework that was implied by each 

author or group of authors, the beginnings of which were extracted in Chapter 3 (note that 

all of the proto-frameworks completed below are extensions of the general Multi-

Population Linear Factor Model of section 4.2); ii) elucidate, given the completed proto-

framework and the test theory of section 4.1, the claims of the alternative account by 

mathematizing them, iii) adjudicate, given this mathematization, the claims.  

5.1 Baron and Treiman 

5.1.1 Completion of Proto-Framework 

As will be recalled (see section 3.3.1.4) the elements of B&TP-f extracted in 

Chapter 3 are as follows: 

a) a “control test” tuv scales individuals, in a manner that is largely 

unknown to the researcher, with respect to abilities s1…sk; 
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b) an “experimental test” tlj scales individuals with respect to the ability 

sj, as well as abilities s1…sk; 

c) test tuv  is, for each ability s1…sk, characterized by a parameter that 

quantifies discriminating power in respect to the scaling of that ability, 

and which determines, in part, the observed-score distributions cuv|P 

and cuv|C ; 

d) test tlj, is, for each ability s1…sk, characterized by a parameter that 

quantifies discriminating power in respect to the scaling of that ability, 

and which determines, in part, the observed-score distributions clj|P 

and clj|C. 

We, now, complete this proto-framework.  Let: a) once again, i stand for 

individual; b) r={C,P}; and c) X be the (pj+pv)-element random vector 
j

v

 
 
 

X

X
, the first pj 

elements of which are the items contributing to a unit-weighted test composite clj , in 

which clj j
 1 X , 1  being a pj-element vector of 1s, and the second pv items of which are 

items contributing to a unit-weighted test composite cuv, in which cuv v
 1 X , 1  being, in 

this case, a pv-element vector of 1s. 

From references to the classical test theory concept “reliability”, etc., it is clear 

that (4.10) is invoked, that is to say, 

 ,i rX ~ ( , )ir ir  , ir , diagonal, ir, r={C,P}. (5.1) 

From the references to multiple abilities, and the multi-population context in 

which concern for the psychometric confound is situated, we deduce that (4.21) is 

invoked as a representation, or model, of the (pj+pv) vector ir , i.e., 
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 , , 1...ir r r ir ir ri r s         , (5.2)  

with the following particularizations, restrictions, and clarifications being made: 

a) s=2, i.e., r ={C,P}; m=k+1, in which  

 

 ir  = 
1

ij

i

ik

s

s

s

 
 
 
 
 
 

; (5.3)  

b) r   , (pj+pv) by (k + 1), and structured as follows: 

 
1

1

j k

j k

js js js

p vs vs

 
 
 
 

  

 0
,  (5.4) 

in which the vector 
jjs contains the loadings of the pj elements of jX  on ability sj, 

1vs , 

the loadings of the  pv  elements of vX  on ability s1, etc.35;  

c) over iΔr, and for r ={C,P}, 

 ( )ir
i

C  = r  I ,  (5.5)  

 
35

 The 0 vector express the fact that the elements of Xv  do not load on  sj. 
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 ( )ir
i

C  = r ,   (5.6) 

in which r is an (pj+pv) by (pj+pv), diagonal,  positive definite matrix, structured as 

j r

r

v r

 
  
  

0

0





  and 

 ( , )ir ir
i

C   = 0, (5.7) 

a (k+1) by (pj+pv) null matrix. 

Under this mathematization: a) over populations C and P, weak or pattern 

invariance holds; b) for composite clj there exists discriminating power parameters in 

respect sj and s1…sk that are sums of the factor loadings, i.e. elements of  . The concept 

discriminating power of say, test composite clj in respect to ability sj, is, in this case 

quantitatively paraphrased as “the number of units change in the test composite clj 

associated with a one standard deviation increase in sj (the first element of r )”. 

All told, we have, thus, the following, fully articulated, mathematical framework:  

 ,i rX ~ ( , )r r ir ir ir     , i r r, r={C,P}, (5.8)  

with consequence that 

 rX ~ ( , )r r r
     , r = {C,P}, (5.9)  
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in which r Er r     , diagonal,  r={C,P}, with E( )Er ir  . 

5.1.2 Mathematization of Claims 

BTC1: As will be recalled (section 3.3.1.3), Baron and Treiman asserted that: a) inferred 

differences in the distributions clj|P and clj|C (notably, inferences about the parameter       

(
ljc |Pμ 

ljc |Cμ )), are, indeed, confounded as bases for making decisions about S-deficits 

(notably about the parameter (
js |Pμ -

js |Cμ ); b) the source of this confounding is not, as 

claimed by Chapman and Chapman, differences in g|P and g|C (notably, as reflected in 

the parameter ( g|Pμ -
g|Cμ )), but, rather differences between distributions s1|P and  s1|C, 

s2|P and s1|C ,…, sk|P and sk|C (this is the claim of existence of B&T Confound1). 

Now, under the proto-framework of section 5.1.1, the expression for the mean of 

the composite clj in population P is: 

 
lj jc P X P

   , (5.10)  

wherein 1  is a pj-element vector of 1s. Similarly, the expression for the mean of the 

composite clj in population C is: 

 
lj jc C X C

   , (5.11) 

wherein 1  is a pv-element vector of 1s. The parameter (
js |Pμ -

js |Cμ ) is translated as 

[1] [1]P C  . Analogous to the mathematization of CC1 in section 4.4.1, then, BTC1 is 
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translated as follows: The bias in estimating [1] [1]P C   by  
j jX P X C

      is a 

function of the quantities [2] [2]), [3] [3]),..., [ 1] [ 1])P C P C P Ck k          . 

BTC2: As will be recalled (see section 3.3.1.3) Baron and Treiman claimed that there 

exists a confound in respect to the B&T Strategy, wherein it is asserted that: a) inferences 

about the parameter (
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ are confounded as bases for making 

decisions about S-Deficits; b) the source of this confounding is differences in the 

unknown discriminating powers of the tests employed, i.e., differences between γclj|s1 … 

γclj|sk  and γcuv|s1 … γcuv|sk  (this is the claim of existence of B&T Confound2).   

Now, the existence of an S-Deficit is defined by the quantity (
js |Pμ -

js |Cμ ), which 

is translated under the proto-framework above as [1] [1]P C  .  The parameter                 

(
ljc |Pμ 

ljc |Cμ ) is, from equations (5.10) and (5.11), written as 
j jX P X C

     , wherein, as 

above, 1  is a pj-element vector of 1s. Similarly, the parameter (
uvc |Pμ 

uvc |Cμ ) is written as 

v vX P X C
     , wherein, in this case, 1  is a pv-element vector of 1s. The parameter        

(
ljc |Pμ 

ljc |Cμ ) - (
uvc |Pμ  )

uvc |Cμ
 
is, therefore, written as 

) )
j j v vX P X C X P X C

              . The discriminating powers are sums of elements of 

 , i.e. 
1js

  ... 
kjs

   (in which 1  is a pj-element vector of 1s) and 
1vs

  ...
kvs

  (in 

which 1  is a pv-element vector of 1s). 



 

91 

The claim is therefore translated as follows: The bias in estimating [1] [1]P C   

by ) )
j j v vX P X C X P X C

              , i.e. 

[1] [1]) ( ) ))
j j v v

P C X P X C X P X C
                   is a function of differences 

between 
1js

  ... 
kjs

   and  
1vs

  ...
kvs

  .  

BTC3: As will be recalled (see section 3.3.1.3) It was claimed that if 
lj uvAc Ac    and 

lj lj uv uvc c c c 
    then there exists an S-Deficit in respect to sj and populations P and C (this 

is the basis for the Baron and Treiman Method). 

Under the proto-framework of 5.1.1, and the definition of reliability (4.17), 
  

 '
j jlj lj

j

j

c c   




   

w X w X
X

1 1

1 1






=

( + )

( + + )
j

j j j r

j j E r j r





1 1

1 1

  

   
, (5.12) 

in which
1

...
j j kjs js js

 
 

    , and  

 
0

0

j

v

E r

Er

E r

 
  
  





 . (5.13) 

Furthermore, it can be shown that 

 2/ 2
lj ljj j

Ac cX P X C
        , (5.14) 
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in which 

2

ljc is calculated over a combined population of P and C. The claim is therefore 

translated as follows: If 

 2/ 2
ljj j

cX P X C
      > 2/ 2

uvv v
cX P X C

       (5.15) 

and 

 
( + )

( + + )
j r

j j j r

j j E j r





1 1

1 1

  

   
<

( + )

( + + )
v r

v v v r

v v E v r





1 1

1 1

  

   
 (5.16) 

then [1] [1]P C  < 0. 

5.1.3 Adjudication of Claims 

BTC1. As will be recalled, BTC1 states that the bias in estimating [1] [1]P C   by  

j jX P X C
      (the means of composite clj in populations P and C) is a function of the 

quantities [2] [2]), [3] [3]),..., [ 1] [ 1])P C P C P Ck k          . 

From 4.23,  

 r r r r    . (5.17) 

Since, under the proto-framework, P C    , 

 ( )P C P C P C          . (5.18) 
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It follows that 

 
j jX P X C

     = ( ( ))j P Cj P j C
    1 1      , (5.19) 

in which 

( ))j P C
       

 
1

( [1] [1]) ( [2] [2]) ... ( [ 1] [ 1])
j kjs P C js P C js P Ck k                    . (5.20) 

This shows that bias in estimating [1] [1]P C   by  
j jX P X C

      is, under the proto-

framework employed, a function of the quantities 

[2] [2]), [3] [3]),..., [ 1] [ 1])P C P C P Ck k          , as claimed by Baron and 

Treiman. Hence, we conclude that BTC1 is, under the proto-framework, correct. 

BTC2. As will be recalled, BTC2 states that 

[1] [1]) ( ) ))
j j v v

P C X P X C X P X C
                   is a function of differences 

between 
1js

  ... 
kjs

   and  
1vs

  ...
kvs

  . 

From expression 5.18, under the proto-framework implied, 

 
j jX P X C

     = ( ( ))j P Cj P j C
    1 1      , (5.21) 

and 



 

94 

 
v vX P X C

     = ( ( ))v P Cv P v C
    1 1      , (5.22) 

wherein, again, 1  is a pj-element vector of 1s in (5.21), and a pj-element vector of 1s in 

(5.22). Now, 

 ( ))j P C
        

 
1

( [1] [1]) ( [2] [2]) ... ( [ 1] [ 1])
j kjs P C js P C js P Ck k                    , (5.23) 

and 

 
1

( )) ( [2] [2]) ... ( [ 1] [ 1])
kv P C vs P C vs P Ck k                     . (5.24) 

Therefore, 

 [1] [1]) ( ) ))
j j v v

P C X P X C X P X C
                    

 
1 1

[1] [1]) ( ( [1] [1]) ( )( [2] [2]) ...
jP C js P C js vs P C

                    

 ( )( [ 1] [ 1]))
k kjs vs P Ck k          . (5.25) 

This establishes that [1] [1]) ( ) ))
j j v v

P C X P X C X P X C
                   is, in part, a 

function of differences between 
1js

  ... 
kjs

   and 
1vs

  ...
kjvs

  . Therefore, it may be 

concluded that BTC2 is, under the proto-framework, correct, i.e., the bias in estimating 



 

95 

[1] [1]P C   by ) )
j j v vX P X C X P X C

              , is a function of differences 

between 
1js

  ... 
kjs

   and  
1vs

  ...
kvs

  . 

BTC3. As will be recalled, BTC3 states that if 

 2 2/ 2 / 2
lj uvj j v v

c cX P X C X P X C
                (5.26) 

and 

 
( + )

( + + )
j r

j j j r

j j E j r





1 1

1 1

  

   
<

( + )

( + + )
v r

v v v r

v v E v r





1 1

1 1

  

   
 (5.27) 

then [1] [1]P C  < 0. 

Now, note that under expression 5.27, , , , , ,
j rj j v v Ej r v r

         and 
v rE

remain free to vary. Let us now consider expression 5.26. Firstly, it can be shown that 

 2 2 2 20.5 0.5 0.25( )
lj lj lj lj lj

c c C c P c P c C
        . (5.28) 

By the proto-framework of section 5.1.1, then 

 2 0.5( ( ) ( ) )
lj j C j Pc j j E j j Ej C j P

        1 1 1 1           

 20.25( )
j jX P X C

  1 1  . (5.29) 
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Secondly, note that 

 
j jX P X C

     = ( ( ))j P Cj P j C
    1 1      . (5.30) 

Similarly, 

 
v vX P X C

     = ( ( ))v P Cv P v C
    1 1      . (5.31) 

Therefore, 

2 2/ 2 ) ( / 2 )
lj uvj j v v

c cX P X C X P X C
                 

2

( ( )))

2 0.5( ( ) ( ) ) + 0.25( )
j C j P j j

j P Cj P j C

j j E j j Ej C j P X P X C

    


         



 

    

       

1 1

1 1 1 1 1 1

 

2

( ( )))

2 0.5( ( ) ( ) ) + 0.25( )
v C v P v v

v P Cv P v C

v v E v v Ev C v P X P X C

    


         



 

    

       

1 1

1 1 1 1 1 1

. 

  (5.32) 

It is evident, by inspection of this equation, that if this quantity is positive as in 

expression 5.26, then several quantities, including P C  , are free to vary. Furthermore, 

as noted above, expression 5.27 does not cause the quantities 

, , , , ,
j rj j v v Ej r v r

         and 
v rE to be further restricted. Hence, the elements of 
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P C  , including [1] [1]P C  , remain free to vary, under the inequalities expressed in 

5.26 and 5.27. Therefore, BTC3 is false. 

5.2 Salthouse and Coon 

5.2.1 Completion of Proto-framework 

As noted in section 3.3.2.3, Salthouse and Coon (1994) appeared to employ the 

proto-framework recoverable from the Chapmans’ work, C&CP-f, which was completed 

in section 4.3 above.  

5.2.2 Mathematization of Claims 

SC1: As will be recalled (section 3.3.2.2), Salthouse and Coon asserted that if 

( . ) 0
lj uvA c c  , then there exists an S-Deficit in respect to sj and populations P and C. Now 

in the proto-framework of section 4.3, clj is translated as [ ]j lX  and cuv is translated as 

[ ]v uX . Therefore, the claim is translated as: If 
( [ ]. [ ]) 0

j vA X l X u  , in which 
( [ ]. [ ])j vA X l X u  is 

calculated over the combined C and P populations, then [2] [2]P C  < 0.  

SC2: As will be recalled (section 3.3.2.2) Salthouse and Coon asserted that if 
( . ) 0

lj uvA c c   

and 2

AB 0 then there exists a D-Deficit in respect abilities sj and sv and populations P 

and C. As noted in section 3.3.2.1.1, the condition of 0, is equivalent, in fact, to the 

condition that ( ) ( , which is translated, under the proto-



2

AB 

ljc |Pμ 
ljc |Cμ 

uvc |Pμ  ) 0
uvc |Cμ 
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framework of section 4.3, as . The claim is, 

then, translated as follows: If  and 

, then <0. 

5.2.3 Adjudication of Claims 

SC1: To repeat, SC1 states that if , in which  is calculated over 

the combined C and P populations, then < 0. 

From the general part correlation formula: 

 . (5.33) 

Now, the components of expression 5.32 can be expressed as follows: 

i) It can be shown that 

 , (5.34) 

in which 

 , (5.35) 

and, from 4.36, 

[ ] [ ]) [ ] [ ]) 0
j j v vP C P C

l l u u       
X X X X

( [ ]. [ ]) 0
j vA X l X u 

[ ] [ ]) [ ] [ ]) 0
j j v vP C P C

l l u u       
X X X X [2] [2]) [3] [3])P C P C      

( [ ]. [ ]) 0
j vA X l X u  ( [ ]. [ ])j vA X l X u

[2] [2]P C 

[ ] [ ] [ ] [ ]

( [ ]. [ ])
2

[ ] [ ]1

j v j v

j v

j v

AX l AX u X l X u

A X l X u

X l X u

  
 



2

( [ ]) [ ]( [ ] [ ]) / 2
j jj j

A l lC P
l l   X XX X

 

2 2 2 2

[ ] [ ] [ ]
0.5 0.5 0.25( [ ] [ ])

j j j j j
l l C l P P C

l l      X X X X X
 
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 ;(5.36) 

ii) It can be shown that  

 , (5.37) 

in which 

 , (5.38) 

and, from 4.36, 

   

 ; (5.39) 

iii) From equation 4.32, 

 , (5.40) 

in which the expressions for and are presented as in 5.35 and 5.38. Now, 

from equations 5.34, 5.37, and 5.40, 

[ ] [ ] [ ] [ ] [ ]( [1] [1]) [ ]( [2] [2])
jj j

jg P C js P CX P X C j P j C
l l l l l l               

2

( [ ]) [ ]( [ ] [ ]) / 2
v vv v

A X u X uX C X P
u u    

2 2 2 2

[ ] [ ] [ ]
0.5 0.5 0.25( [ ] [ ])

v v v v v
X u X u C X u P X P X C

u u       

[ ] [ ]
v vX P X C

u u  
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 . (5.41) 

Substituting in equations 5.36 and 5.39 causes to remain free to vary, as 

terms remain for the unknowns , 

, and . Therefore it is not the case that when < 0 then 

< 0. We conclude that SC1 is false. 

SC2: To repeat, SC2 states that if i)  and  ii)

, then <0. 

Firstly, note it has been shown above that, in the case in which condition i is true, then 

remains free to vary, as quantities

, and  are unknown. By inspection of equation 5.41, in conjunction 

with equations 5.36 and 5.39, it evident that , as well, remains free to vary 

in this case. Therefore, , is free to vary under condition 

i. Secondly, in considering condition ii, note that, by equations 5.36 and 5.39, 
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 . (5.42) 

Inspection of the above equation reveals that when this quantity is non-zero, 

remains free to vary due to the presence of unknowns 

, and  . Jointly, then, under 

conditions i and ii, remains free to vary as quantities

, and  are unknown. Therefore, it 

is not the case that if i)  and                                                                         

ii) , then <0. 

We conclude that SC2 is false. 

5.3 Knight and Silverstein 

5.3.1 Completion of Proto-framework 

As will be recalled (section 3.3.3.5) the elements of K&SP-f extracted in Chapter 

3 are as follows: 

a) each test tlj scales individuals, in a manner that is largely unknown to 

the researcher, in respect to ability sj as well as other abilities s1…sk; 

b) test tlj is associated with parameters, γclj|s1 … γclj|sk, that characterize the 

sensitivity of associated composite clj to changes in s1…sk, (these 

known as discriminating power parameters); 

c) The parameters γclj|s1 … γclj|sk  determine, in part, the observed score 

distributions clj|P and clj|C. 

[ ] [ ] [ ]( [1] [1]) [ ]( [3] [3]))
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X X X X [2] [2]) [3] [3])P C P C      
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We, now, complete this proto-framework.  Let: a) once again, i stand for individual; b) 

r={C,P}; and c) X be the (pj+pv)-element random vector , the first pj elements of 

which are the items contributing to a unit-weighted test composite clj, the second pv items 

of which are items contributing to a unit-weighted test composite cuv. 

From references to the classical test theory concept “reliability”, etc., it is clear 

that (4.10) is invoked, that is to say, 

 ~ , , diagonal, i r, r={C,P}. (5.43)  

From the references to multiple abilities, and the multi-population context in 

which concern for the psychometric confound is situated, we deduce that (4.21) is 

invoked as a representation, or model, of the (pj+pv) vector , i.e., 

 , (5.44)  

with the following particularizations, restrictions, and clarifications being made: 

a) s=2, i.e., r ={C,P}; m=k+2, in which  

 

j

v

 
 
 

X

X

,i rX ( , )ir ir  ir 

ir

, , 1...ir r r ir ir ri r s        



 

103 

  = ; (5.45)  

b) , (pj+pv) by (k + 2), and structured as follows: 

 ,  (5.46) 

in which the vector contains the loadings of the pj elements of  on ability sj, , 

the loadings of the  pv  elements of  on ability sv, etc.;  

c) over i Δr, and for r ={C,P}, 

 = ,  (5.47)  

 = ,   (5.48) 

in which is an (pj+pv) by (pj+pv), diagonal,  positive definite matrix, structured as  

 , and 

 = 0, (5.49) 
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a (k+2) by (pj+pv) null matrix. 

The reader should note that, under this mathematization: a) over populations C 

and P, weak or pattern invariance holds; b) for composite clj there exists discriminating 

power parameters in respect sj and s1…sk that are sums of the factor loadings, i.e. 

elements of . The concept discriminating power of say, test composite clj in respect to 

ability sj, is, in this case quantitatively paraphrased as “the number of units change in the 

test composite clj associated with a one standard deviation increase in sj (the first element 

of )”. 

All told, we have, thus, the following, fully articulated, mathematical framework:  

 ~ , i r, r={C,P}, (5.50)  

with consequence that 

 ~ , r = {C,P}, (5.51) 

in which , diagonal,  r={C,P}, with . 

5.3.2 Mathematization of Claims 

KSC1: As will be recalled, Knight and Silverstein claimed that the difference parameter (

) - (  is a function of abilities s1…sk, and hence is confounded as 



r

,i rX ( , )r r ir ir ir     
r

rX ( , )r r r
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r Er r     E( )Er ir 

ljc |Pμ 
ljc |Cμ

uvc |Pμ  )
uvc |Cμ
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a basis for making inferences about D-deficits by differences in the unknown 

discriminating powers of the tests employed.  

Analogous to BTC2, the claim is translated as follows: The bias in estimating 

 by , i.e. 

  is a function 

of differences between ...  (in which  is a pj-element vector of 1s) and  

... (in which  is a pv-element vector of 1s). 

KSC2: As will be recalled, this claim states that if = 0 then ( ) = (

) = … = ( ) and γclj|s1 = γcuv|s1, γclj|s2 = γcuv|s2 … γclj|sk = γcuv|sk. Now, note that 

= 0 is equivalent to ( ) ( . Under the current proto-

framework, the claim is therefore mathematized as follows: If 

, then  

, and 

. 

KSC3: The claim states that if = 0,  and , then 

and .This claim is translated as follows: If 
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j j v vX P X C X P X C

             

[1] [1]) [2] [2])) ( ) ))
j j v v

P C P C X P X C X P X C
                     

1js
 

kjs
  1

1vs
 

kvs
  1

2

AB
1s |Pμ 

1s |Cμ
2s |Pμ 

2s |Cμ
ks |Pμ 

ks |Cμ

2

AB
ljc |Pμ 

ljc |Cμ 
uvc |Pμ  ) 0

uvc |Cμ 

) ) 0
j j v vX P X C X P X C

              

[3] [3]) [4] [4]) ... [ 2] [ 2])P C P C P Ck k               

, ,...,
1 1 2 2 k kjs vs js vs js vs

                 

2

AB
lj uvc C c C

 
lj uvc P c P

 
j vs C s C
 

j vs P s P
 



 

106 

, , and then 

, . 

KSC4: The claim states that if = 0,  and , then 

and . This claim is translated as follows: If 

, , and then 

, . 

KSC5: The claim states that if = 0,  and , then 

and . It is translated as follows: If , 

, and then , . 

KSC6: The claim states that if  then . It is translated as 

follows: If then . 

KSC7: The claim states that if  and then and 

j vs P s P
   . It is translated as follows: If 

j vX C X C
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KSC8: The claim states that if  and then and 

. It is translated as follows: If and  then 

 and . 

KSC9: The claim states that if, for all item pairs Idlj  and IdMuv, d=1..puv, 

 and ρclj,dlj= ρcuv,dMuv, it is not the case that conclusions about D-

Deficits may be drawn through use of C&C Strategy2 (in contradiction to an implication 

of CC4). It is translated as: If,  , and , in 

which is the pj-vector of difficulties associated with , , the correlation of 

with , it remains the case that: 

a) ...  and  ... are free to vary, 

b)   is a 

function of these quantities. 

KSC10: The claim states that it is not the case that if, for two tests clj  and cuv, if <

then the C&C Strategy2 may be employed to draw conclusions in regard D-Deficits. This 

is translated as follows: If , in which 

, then 
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remains a 

function of differences between ...  and  ... . 

5.3.3 Adjudication of Claims 

KSC1: To repeat, KSC1 states that 

  is a function 

of differences between ...  and  ... . 

Under the proto-framework completed above, 

 . (5.52) 

It follows that 

 = , (5.53) 

in which  is a pj-element vector of 1s, and 

 

 . (5.54) 
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 = , (5.55) 

in which  is a pv-element vector of 1s, and 

 

 .(5.56) 

Now, by expressions 5.53 and 5.55, 

 

  

 . (5.57) 

By inspection of this equation as well as equations 5.54 and 5.56 it is evident that the 

quantity is, in 

fact, in part a function of differences between  

 ...  and  ... . We conclude that KSC1 is correct. 

KSC2: To repeat, KSC2 states that if 

, then  
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, and 

. 

From equations 5.53 and 5.55,  

 = , and (5.58) 

 = . (5.59) 

By inspection of these equations as well as 5.54 and 5.56, it is evident that, under the case 

in which , the quantities 

and and 

remain free to vary. Accordingly, it is not the case that that if

, then 

, and

. We conclude that KSC2 is false. 

KSC3: To repeat, KSC3 states that if , 

, and then , . 

From equations 5.46 and 5.51, 

[3] [3]) [4] [4]) ... [ 2] [ 2])P C P C P Ck k               

, ,...,
1 1 2 2 k kjs vs js vs js vs

                 

j jX P X C
     ( ( ))P C lj P C

    1 1     

v vX P X C
     ( ( ))P C uv P C

    1 1     

) ) 0
j j v vX P X C X P X C

              

[3] [3]), [4] [4]),..., [ 2] [ 2])P C P C P Ck k             ,...,
1 2 kjs js js

      

,...,
1 2 kvs vs vs

      

) ) 0
j j v vX P X C X P X C

              

[3] [3]) [4] [4]) ... [ 2] [ 2])P C P C P Ck k               

, ,...,
1 1 2 2 k kjs vs js vs js vs

                 

) ) 0
j j v vX P X C X P X C

              

j vX C X C
    

j vX P X P
     [1] [2]C C  [1] [2]P P 
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 = , (5.60) 

 = , (5.61) 

 = , and (5.62) 

 = . (5.63) 

By inspection of these equations, it is apparent that: i) If , then and

remain free to vary due to the presence of unknowns 

and ; ii) If , then 

and remain free to vary due to the presence of unknowns 

and ; iii) If 

, , ,  and  remain free to 

vary due to the presence of all unknowns listed in i and ii; iv) Jointly, if 

, , and , ,

,  and  remain free to vary. Therefore, it is not the case that that if 

, , and then 

, . We conclude that KSC3 is false. 

jX C
 

1
( ( [1]) ( [3]) ... ( [ 2]))

j kjs C js C js Cj C
k     1       

vX C
 

1
( ( [2]) ( [3]) ... ( [ 2]))

v kvs C vs C vs Cv C
k     1       

jX P
 

1
( ( [1]) ( [3]) ... ( [ 2])

j kjs P js P js Pj P
k     1       

vX P
 

1
( ( [2]) ( [3]) ... ( [ 2])

v kvs P vs P vs Pj P
k     1       

j vX C X C
     [1]C

[2]C

1
, , ... , [3]... [ 2],

j kjs js js C Cj C
k       ,

vvsv C
 

1
...

kvs vs 
j vX P X P

    

[1]P [2]P

1
, , ... , [3]... [ 2],

j kjs js js P Pj P
k       ,

vvsv P
 

1
...

kvs vs 

) ) 0
j j v vX P X C X P X C

               [1]C [2]C [1]P [2]P

) ) 0
j j v vX P X C X P X C

              
j vX C X C

    
j vX P X P

     [1]C

[2]C [1]P [2]P

) ) 0
j j v vX P X C X P X C

              
j vX C X C

    
j vX P X P

    

[1] [2]C C  [1] [2]P P 
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KSC4: To repeat, KSC4 states that if ) ) 0
j j v vX P X C X P X C

               , 

j vX C X C
     , and 

j vX P X P
     then [1] [2]C C  , [1] [2]P P  . By the same 

logic employed in our adjudication of KSC3 (including equations 5.60 to 5.63) it is 

apparent that: i) If 
j vX C X C

     , then [1]C and [2]C remain free to vary due to the 

presence of unknowns 
1

, , ... , [3]... [ 2],
j kjs js js C Cj C

k       ,
vvsv C

  and 
1
...

kvs vs  ; ii) If 

j vX P X P
     , then [1]P and [2]P remain free to vary due to the presence of 

unknowns 
1

, , ... , [3]... [ 2],
j kjs js js P Pj P

k       ,
vvsv P

  and 
1
...

kvs vs  ; iii) If 

) ) 0
j j v vX P X C X P X C

               , [1]C , [2]C , [1]P  and [2]P  remain free to 

vary due to the presence of all unknowns listed in i and ii; iv) Jointly, if 

) ) 0
j j v vX P X C X P X C

               , 
j vX C X C

     , and 
j vX P X P

     , [1]C ,

[2]C , [1]P  and [2]P  remain free to vary. It is therefore not the case that if 

) ) 0
j j v vX P X C X P X C

               , 
j vX C X C

     , and 
j vX P X P

     then 

[1] [2]C C  , [1] [2]P P  . We conclude that KSC4 is false. 

KSC5: To repeat, KSC5 states that if , 

, and then , . By the same 

logic employed in our adjudication of KSC3 (including equations 5.60 to 5.63) it is 

apparent that: i) If , then and remain free to vary due to the 

presence of unknowns and ; ii) If 

) ) 0
j j v vX P X C X P X C

              

j vX C X C
    

j vX P X P
     [1] [2]C C  [1] [2]P P 

j vX C X C
     [1]C [2]C

1
, , ... , [3]... [ 2],

j kjs js js C Cj C
k       ,

vvsv C
 

1
...

kvs vs 
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, then and remain free to vary due to the presence of 

unknowns and ; iii) If 

, , ,  and  remain free to 

vary due to the presence of all unknowns listed in i and ii; iv) Jointly, if 

, , and , ,

,  and  remain free to vary. Therefore, it is not the case that if 

, , and then 

, . We conclude that KSC5 is false. 

KSC6: To repeat, KSC6 states that If then . Now, to 

repeat equation 5.58, 

 = , (5.64) 

in which 

 

 . (5.65) 

It is clear then, that when ,  and  remain free to vary due 

to presence of unknowns and . 

j vX P X P
     [1]P [2]P

1
, , ... , [3]... [ 2],

j kjs js js P Pj P
k       ,

vvsv P
 

1
...

kvs vs 

) ) 0
j j v vX P X C X P X C

               [1]C [2]C [1]P [2]P

) ) 0
j j v vX P X C X P X C

              
j vX C X C

    
j vX P X P

     [1]C

[2]C [1]P [2]P

) ) 0
j j v vX P X C X P X C

              
j vX C X C

    
j vX P X P

    

[1] [2]C C  [1] [2]P P 

0
j jX P X C

      [1] [1] 0P C  

j jX P X C
     ( ( ))P C lj P C

    1 1     

( ))j P C
     

1
( [1] [1]) ( [3] [3]) ... ( [ 2] [ 2])

j kjs P C js P C js P Ck k                   

0
j jX P X C

      [1]P [1]C

1
, , , ... , [3]... [ 2],

j kjs js js P Pj P j C
k        [3]... [ 2]C C k  
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Therefore, it is not the case that if then . We 

conclude that KSC6 is false. 

KSC7: To review, KSC7 states that if and then 

 and . By the same logic employed in our adjudication of 

KSC3 (including equations 5.60 to 5.63) it is apparent that: i) If , then 

and remain free to vary due to the presence of unknowns 

and ; ii) If , then 

 
and remain free to vary due to the presence of unknowns 

and ; iii) Jointly, in the case in 

which and , , ,  and  remain free to 

vary due to the presence of the unknowns listed in points i and ii. Therefore, it is not the 

case that if and then  and . 

We conclude that KSC7 is false. 

KSC8: To repeat, KSC8 states that if and  then 

 and . By the same logic employed in our adjudication of 

KSC3 (including equations 5.60 to 5.63) it is apparent that: i) If , then 

and remain free to vary due to the presence of unknowns 

and ; ii) If , then 

0
j jX P X C

      [1] [1] 0P C  

j vX C X C
    

j vX P X P
    

[1] [2]C C  [1] [2]P P 

j vX C X C
    

[1]C [2]C

1
, , ... , [3]... [ 2],

j kjs js js C Cj C
k       ,

vvsv C
 

1
...

kvs vs 
j vX P X P

    

[1]P [2]P

1
, , ... , [3]... [ 2],

j kjs js js P Pj P
k       ,

vvsv P
 

1
...

kvs vs 

j vX C X C
    

j vX P X P
     [1]C [2]C [1]P [2]P

j vX C X C
    

j vX P X P
     [1] [2]C C  [1] [2]P P 

j vX C X C
    

j vX P X P
    

[1] [2]C C  [1] [2]P P 

j vX C X C
    

[1]C [2]C

1
, , ... , [3]... [ 2],

j kjs js js C Cj C
k       ,

vvsv C
 

1
...

kvs vs 
j vX P X P

    
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and remain free to vary due to the presence of unknowns 

and ; iii) Jointly, in the case in 

which and , , ,  and  remain free to 

vary due to the presence of the unknowns listed in points i and ii. Therefore, it is not the 

case that if and  then  and . 

We conclude that KSC8 is false. 

KSC9: To repeat, KSC9 states that if,  , and 

, it remains the case that:  

a) there exist differences between ...  and  ... , 

 b)   is a 

function of these differences. 

Now, firstly, note that, when , 

. From equations 4.9 and 5.51, 

 , (5.66) 

and 

 . (5.67) 

[1]P [2]P

1
, , ... , [3]... [ 2],

j kjs js js P Pj P
k       ,

vvsv P
 

1
...

kvs vs 

j vX C X C
    

j vX P X P
     [1]C [2]C [1]P [2]P

j vX C X C
    

j vX P X P
     [1] [2]C C  [1] [2]P P 

,l 0.5 ] 0.5 ]j vl l     

[ ], [ ],j j v vl l  
X 1 X X 1 X

1js
 

kjs
 

1vs
 

kvs
 

[1] [1]) [2] [2])) ( ) ))
j j v v

P C P C X P X C X P X C
                     

0.5 ] 0.5 ]j vl l     

[ ](1 [ ]) [ ](1 [ ])j j v vl l l l     

1

2 2 2[ ](1 [ ]) [ , ]) ( ]) ( ]) ( ]) [ , ]
j j k jj j js js js Cl l l l l l l l l      X          

1

2 2 2[ ](1 [ ]) [ , ]) ( ]) ( ]) ( ]) [ , ]
v v k vv v vs vs vs Cl l l l l l l l l      

X
          
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By inspection of these equations, it is apparent that if ,l  

0.5 ] 0.5 ]j vl l      , then the quantities 
1js

  ... 
kjs

   and  
1vs

  ...
kvs

  remain 

free to vary. Secondly, it can be shown that  

 ,  (5.68)  

in which36, from expression 5.51, 

 , (5.69) 

 , (5.70) 

and , for which equation 5.56 applies.  

Similarly, it can be shown that  

 , (5.71) 

in which, from expression 5.51, 

 
36

 Note, here, the two meanings of : as a summation sign and as a matrix. 

1

[ ],

[ ]

[ , ]
j

j

j j

j j

p

y

l

l

y l


 









 X

X 1 X

1 X X



1 1

1 1

[ , ] [ ] [ ] [ ] [ ] ... [ ] [ ] [ , ])
j j

j j j k k j

p p

js js js js js js C

y y

y l y l y l y l y l
 

             X

2 ( )
j j jX j j C 

   1 X 1 1 1 1   

2

[ ] [ , ])
j jl l l  X X

1

[ ],

[ ]

[ , ]
j

v

v v

v v

p

y

l

l

y l


 









 X

X 1 X

1 X X




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 ,  

 , (5.72) 

and , for which equation 5.57 applies.  

From these equations, it is apparent that , the quantities ...  and  

...  remain free to vary when , and therefore the 

quantities ...  and  ... remain free to vary in this case. Jointly, if, 

 , and , it remains the case that quantities 

...  and  ... remain free to vary. Furthermore, from our evaluation 

of KSC1, we know that 

  is, in part, a 

function of differences between ...  and  ... . Therefore, we 

conclude that KSC9 is true. 

KSC10: To repeat, KSC10 states that if , in which 

 , and then 

remains a 

function of differences between ...  and  ... .  

1 1

1 1

[ , ] [ ] [ ] [ ] [ ] ... [ ] [ ] [ , ])
j v

v v v k k v

p p

vs vs vs vs vs vs C

y y
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Now, it is apparent that under the condition of 

) ( )j j v vj r v r
     1 1 1      , j j

  and 
v v

  remain free to vary, and, 

therefore, the elements of 
1js ... 

kjs  and  
1vs ...

kvs , and hence, sums of elements 
1js

 

... 
kjs

   and  
1vs

  ...
kvs

  are free to vary. As we know through our evaluation of KSC1 

that [1] [1]) [2] [2])) ( ) ))
j j v v

P C P C X P X C X P X C
                      is, in part, 

a function of differences between 
1js

  ... 
kjs

   and  
1vs

  ...
kvs

  , this therefore 

remains the case if ) ( )j j v vj r v r
     1 1 1      . Accordingly, we conclude that 

KSC10 is true. 

5.4 Kang and MacDonald 

5.4.1 Completion of Proto-Framework 

As will be recalled, the elements of K&MP-f  extracted in Chapter 3 are as 

follows: 

a) each test tlj scales individuals, in a manner that is largely unknown to 

the researcher, in respect to ability sj as well as other abilities s1…sk 

and “general ability” g; 

b) composite clj is associated with parameters, γclj|s1 … γclj|sk, that 

characterize its sensitivities to changes in s1…sk, and a parameter, γclj|g, 

that characterizes its sensitivity to change in g (these known as 

discriminating power parameters); 

c) The parameters γclj|s1 … γclj|sk  and γclj|g determine, in part, the observed 

score distributions clj|P and clj|C. 
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We, now, complete this proto-framework.  Let: a) once again, i stand for individual; b) 

r={C,P}; and c) X be the (pj+pv)-element random vector , the first pj elements of 

which are the test composites of the tests in Tj (these, it will be recalled, invented to scale 

individuals with respect ability sj), and the final  pv, the test composites of the tests of  Tv 

(which scale in respect, sv).    

From their frequent references to classical test theory, it is clear that Kang and 

MacDonald invoke (4.10).  That is to say, 

 ~ , , diagonal, i r, r={C,P}. (5.73)  

From the references to cognitive abilities, and the multi-population context in 

which concern for the psychometric confound is situated, we deduce that (4.21) is 

invoked as a representation, or model, of the (pj+pv) vector , i.e., 

 , (5.74)  

with the following particularizations, restrictions, and clarifications being made:  

a) s=2, i.e., r ={C,P}; m=k+3, in which  

j

v

 
 
 

X

X

,i rX ( , )ir ir  ir 

ir

, , 1...ir r r ir ir ri r s       
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  = ; (5.75)  

b) , (pj+pv) by k+3, and structured as follows: 

 , (5.76)  

in which the vector contains the loadings of the pj elements of  on ability g, , 

the loadings of the  pj  elements of  on ability sj, etc.37;  

c) over i Δr, and for r ={C,P}, 

 = ,  (5.77)  

 = ,   (5.78) 

in which is an (pj+pv) by (pj+pv), diagonal,  positive definite matrix, structured as 

  and 

 
37

 The 0 vectors express the fact that the elements of Xj  do not load on  sv, and those of Xv  do not load on sj. 
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 = 0, (5.79) 

a 3 by (pj+pv) null matrix. 

The reader should note that, under this mathematization: a) over populations C 

and P, weak or pattern invariance holds; b) discriminating power parameters γclj|sj and 

γclj|g are taken to be factor loadings, i.e., elements of .  This implies, in particular, that 

γclj|sj is the l
th

 element of (this element notated ) and γtlj|g, the l
th

 element of 

(notated ). By mathematizing the concept of discriminating power of, say, test 

composite clj in respect to ability sj, as a factor loading, we quantitatively paraphrase it as 

“the number of units change in the lth element of  associated with a one standard 

deviation increase in sj (the second element of )”. 

All told, we have, thus, the following, fully articulated, mathematical 

framework:  

 ~ , i r, r={C,P}, (5.80) 

with consequence that 

 ~ , r = {C,P}, (5.81) 

in which , diagonal,  r={C,P}, with . 

( , )ir ir
i

C  



jjs [ ]
jjs l

jg

[ ]jg l

jX

r

,i rX ( , )r r ir ir ir     
r

rX ( , )r r r
    

r Er r     E( )Er ir 
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5.4.2 Mathematization of Claims 

KMC1: As will be recalled, KMC1 states that inferences about the parameter (

) ( are confounded, as bases for making decisions about D-Deficits 

(notably, inferences about the parameter ( ) ( ), by differences in 

between the groups of parameters (γclj|s1 … γclj|sk  , γclj|g) and (γcuv|s1 … γcuv|sk, γcuv|g). The 

claim is translated as follows: The bias in estimating by 

, i.e., 

 , is a 

function of differences between ...  and  ... . 

KMC2: As will be recalled, KMC2 states that it is not the case that provides an 

estimate of γclj|g , and therefore it is not the case that if < then γclj|g  < γcuv|g  (in 

contrast to CC6). The claim is translated as follows: It is not the case that if 

 then , in which is, consistent with expression 4.13, 

the true score covariance matrix in respect . 

5.4.3 Adjudication of Claims 

KMC1: To repeat, KMC1 states that the bias in estimating 

by , i.e., 
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 , is a 

function of differences between ...  and  ... . 

From expression 5.81, 

=  

 , (5.82) 

=  

 , (5.83) 

=  

 , and (5.84) 

=  

 . (5.85) 

From these expressions,  
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 . (5.86) 

By inspection of expression 5.86, it is apparent that 

  is, in 

part, a function of differences between ...  and  ... . 

Accordingly, KMC1 is true.  

KMC2: To repeat, KMC2 states that it is not the case that if  then 

.  

From expression 5.81, 

 = ,  (5.87) 

and  

 =  , (5.88) 
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from which it is apparent that if [ , ] [ , ]
j v

l l u u   , then [ ]jg l and [ ]vg u remain free to 

vary. Therefore, it is not the case that if [ , ] [ , ]
j v

l l u u    then [ ] [ ]jg vgl u  . 

Accordingly, we conclude that KMC2 is true.  

5.5 Summary 

In this chapter we have: 1) Mathematized the claims of the alternative account of 

the Psychometric Confound reviewed in Chapter 3; 2) Adjudicated these claims, given 

the proto-frameworks implied by the authors of the various claims. A review of our 

conclusions follows (this information is summarized in Table 1). 

Under the proto-framework B&TPf,  we concluded that: a) BTC1 is true, i.e. that 

there exists a confound in the use of inferred differences in the distributions clj|P and clj|C 

as bases for making decisions about S-deficits, b) BTC2 is true, i.e., that inferences about 

the parameter ( ) - (  are confounded as bases for making 

decisions about S-Deficits; c) BTC3, which forms the basis for the Baron and Treiman 

method, is false. 

Under the proto-framework employed by Salthouse and Coon, we concluded that: 

a) SC1, which is the basis for a method to rule on the existence of an S-Deficit, is false; 

b) SC2, which is the basis for a method to rule on the existence of a D-Deficit, is false. 

Under the proto-framework K&SP-f we concluded that: a) KSC1 is true, i.e. that 

there exists a confound in the use of the difference parameter ( ) - (

ljc |Pμ 
ljc |Cμ

uvc |Pμ  )
uvc |Cμ

ljc |Pμ 
ljc |Cμ

uvc |Pμ 
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as a basis for making inferences about D-deficits; b) KSC2-KSC8, which form the 

bases for a variety of methods that side-stepped the problem of identifying S- and/or D-

Deficits by focusing on other mean differences, are false; c) KSC9 and KSC10, which 

provided direct objections to the account of Chapman and Chapman by contradicting 

implications of CC4-CC6, are true.  

Under the proto-framework K&MP-f we concluded that: a) KMC1, states that the 

difference parameter ( ) - (  is confounded as a basis for making 

inferences about D-deficits, is true; b) KMC2, which provided a direct objection to the 

Chapmans’ claim CC6, is true. 

Overall, then, our evaluation reveals that the alternative accounts correctly 

identified confounds in proposed methods, but have, in response, suggested methods that 

are faulty, under the proto-frameworks implied. By all extant articulations of the 

Psychometric Confound, then, the problem remains unresolved. In the next chapter, we 

take up the task of evaluating whether solutions to the problems falling under the heading 

“Psychometric Confound” are possible.  

)
uvc |Cμ

ljc |Pμ 
ljc |Cμ

uvc |Pμ  )
uvc |Cμ
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Chapter 6.  

 

Solutions 

In Chapter 2 we elucidated, at a non-technical level, the claims and proposed 

solutions of Chapman and Chapman apropos the issue of the psychometric confound. The 

same was done, in Chapter 3, for various of the prominent accounts, alternative to, and 

following in the wake of, Chapman and Chapman. In Chapter 4, the test theory nascent 

within the work of Chapman and Chapman and their commentators was given full 

expression within the context of the multi-population linear factor model.  Therein, it was 

established that, although there does exist a "Psychometric Confound", roughly speaking, 

as described by Chapman and Chapman, each and every one of the solutions proposed by 

Chapman and Chapman are faulty. Chapter 5 contained demonstrations that the solutions 

proposed under the various alternative accounts are, likewise, faulty. 

It should be noted, however, that even if it had been the case that one or more of 

the solutions proposed by Chapman and Chapman and their commentators, had turned 

out to be, technically, not incorrect, these solutions would, nevertheless, remain sub-

optimal.  For, without exception, they were in their construction ad hoc and heuristic, and 

the basic logic on which they rested was, to some extent, non-transparent. Consequently, 

the inferential performance that they were capable of delivering would have been 

virtually impossible to ascertain.  If the scientist is to take seriously the latent variable 
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thinking that, as has been shown, permeates the work of both Chapman and Chapman, 

and their commentators, solutions must be engineered within the inferentially transparent, 

well-understood, context of structural equation modelling, this being the most general 

quantitative-representational framework for (linear) classical and modern test theory.  

That is to say, this is the context within which: a) the quantities of relevance to 

researchers in psychopathology, at least within the settings in which the Psychometric 

Confound is seen as being problematic, can be expressed, unambiguously, as parameters; 

b) hypothesis testing, and estimation, tasks, as bearing on these parameters, can be clearly 

worked out; and c) a wide variety of estimation and hypothesis testing strategies, the 

inferential performances of which are well understood, are available (within programs 

such as LISREL, Joreskog & Sorbom, 1993). 

In this chapter, we do precisely this.  Fundamentally, the parameter of value 

which is of interest to the psychopathology researcher, faced with the confounding effects 

of the psychometric confound, is, depending upon the proto-framework at play, either  

 or . For each proto-framework, estimating the value of one or 

the other of these parameters provides the basis for drawing an inferential conclusion as 

to whether an S-Deficit, in respect to ability sj and populations P and C, in fact, exists. 

While, as reviewed above, the Chapmans and the authors of alternative accounts have 

proposed methods for the drawing of conclusions regarding other parameters, we take as 

patent, within the entire field, e.g., in Chapman’s and Chapman’s (2001) references to 

“specific cognitive differential deficits”, Baron’s and Treiman’s (1980) statement that the 

question to be addressed is whether “groups differ on the ability of interest” (p. 313), 

[1] [1]P C  [2] [2]P C 
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Salthouse’s and Coon’s (1994) stated aim as being to draw a “strong conclusion of 

selective impairment” (p. 1172)38, Knight’s and Silverstein’s (2001) expressed desire to 

“isolate specific cognitive deficiencies” (p. 15),  and Kang’s and MacDonald’s (2010) 

declared interest in demonstrating “specific cognitive deficit” (p. 300), that the primary 

goal of research in the area is to  draw conclusions regarding S-Deficits. In this chapter of 

the thesis, then, we determine, within the context of structural equation modelling, 

whether a direct approach to inference, apropos the central parameter (either 

 or  ), is possible. Specifically, under each of the quantitative 

frameworks elucidated in Chapters 4 and 5 we: i) specify a well-defined model, of 

structural equation sort, under which the parameter of interest is defined; and ii) 

determine whether this parameter, under the model in question, is identified, and, hence, 

estimable. 

For any model in which is shown to be identified, the parameter (either, as 

appropriate,  or ), estimates of the parameter may be obtained 

via computer programs such as LISREL (Joreskog & Sorbom, 1993).  Alternatively, this 

machinery can be employed to test the appropriate hypothesis pair, either [H0: 

, H1: ] or [H0: , H1: ].  

 
38

 In the work of Salthouse and Coon, as reviewed in Chapter 3, a method was proposed in which the 

drawing of conclusions regarding S-Deficit was a prerequisite step to the determination as to whether 

there exists a D-Deficit. This method would seem to be nonsensical, if, as claimed herein, the authors’ 

primary interest was in the determination of the existence of an S-Deficit. Much of Salthouse and Coon’s 

language, however, clearly does indicate the latter, in agreement with the other authors listed. We 

therefore take Salthouse and Coon’s primary interest to be the drawing of conclusions regarding S-

Deficits, and assume that their proposal of a conflicting method is a symptom of the lack of conceptual 

clarity around the issue of the psychometric confound, as discussed in sections 2.6 and 3.3.5. 

[1] [1]P C  [2] [2]P C 

[1] [1]P C  [2] [2]P C 

[1] [1] 0P C   [1] [1] 0P C   [2] [2] 0P C   [2] [2] 0P C  
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Though beyond the scope of this thesis, surveys of the inferential strategies (of type, both 

estimation and hypothesis testing) on offer from programs such as LISREL are readily 

available (see, e.g., Bollen,1989).    

It should be noted, of course, that within a particular empirical setting, an estimate 

of  or  (or meaningful test of one the appropriate hypothesis 

pairs listed in the last paragraph) will, in fact, be obtainable, only if the model that is the 

vehicle for generating this inference is shown to fit acceptably.  This may seem a 

disadvantage of the current approach, but, in fact, if it appears thus, is mere illusion.  For 

although, in some cases in which estimates of  or  are not 

obtainable, traditional, ad-hoc, methods do yield inferences, the inferences that they 

yield, are, as established in Chapters 4 and 5, faulty. Moreover, as already noted, even if, 

in broad terms, the yield of these methods was "correct", the inferential performance of 

these methods would stand as unknown (and be, essentially, unknowable). 

6.1 Chapman and Chapman; Salthouse and Coon 

Under the proto-framework of Chapman and Chapman (also, that of Salthouse 

and Coon), the fundamental problem was to make a decision as to whether or not, was 

less than zero, the parameter . As reviewed in Chapters 2 and 3, sundry ad 

hoc strategies were proposed by these authors for the drawing of conclusion regarding 

linked parameter ( ) (  (the link between the parameters is 

articulated in section 2.2). In Chapter 4, we provided a technical, modern-test theoretic, 

[1] [1]P C  [2] [2]P C 

[1] [1]P C  [2] [2]P C 

ljc |Pμ 
ljc |Cμ

ljc |Pμ 
ljc |Cμ 

uvc |Pμ  )
uvc |Cμ
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foundation to the work of Chapman and Chapman (and Salthouse and Coon), under 

which the fundamental problem is reinterpreted as a one of making an inference as to 

whether the parameter is less than 0. In this section, we complete the 

project, by addressing, formally, the issue as to how to make inferential decisions about 

this parameter, using the tools of structural equation modeling, as potentially 

implementable by a program such as LISREL.  In particular, we specify a structural 

equation model through: i) an extension of the quantitative framework in play, i.e., the 

proto-framework of Chapman and Chapman; and, ii) the specification of general and 

identifying constraints on the model. We then show, regarding the covariance structure, 

that the model is identified. A demonstration that the parameter of interest,  

, is identified under the model follows.  

6.1.1 Extension of Quantitative Framework 

Let X now be a (pj+pv+ pz)-element random vector , the first pj elements of 

which scale in respect ability sj, the second pv elements of which scale in respect ability 

sv, and the third pz elements of which scale in respect the additional ability sz. Let the 

particulars of the Multi-Population Linear Factor Model, as described in section 4.2, 

apply, and let the model constraints be as summarized as in section 6.1.2 (note that Figure 

1 illustrates the covariance structure portion of the model).  

[2] [2]P C 

[2] [2]P C 

j

v

z

 
 
 
  

X

X

X
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6.1.2 Constraints: General and Identifying 

1) pj ; pv  ; pz ; 

2)  = ; 

3) , (pj+pv+pz) by 4, nonnegative, and structured as follows: 

 ;   

4) , diagonal,  r={C,P}; 

5)  and , r = 1..s; 

6) is a correlation matrix, implying that the variances of the common factors are set to 

unity; 

7) diagonal; 

3 3 3

ir

ir

ir

ir

ir

j

v

z

g

s

s

s

 
 
 
 
 
 
 

r  

j j

v v v

z z z

p p

p p

p p

 
 
 
  
 

 

 

 

jjg js

vg vs

zg zs

0 0

0 0

0 0

r Er r    

E( )r  0 C( , )r r  0 

r

r
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8) ;39 

9) . 

6.1.3 Proof of Identification of Covariance Structure Model 

Recall, as written in equation 4.22, that the covariance structure of the model is 

defined by 

  (6.1) 

In order to show that the model, in respect this covariance structure, is identified, it must 

be shown that all unconstrained elements of matrices  and are identified (note that 

 is completely constrained, by constraints 6 and 7 above). In total, given the 

elements in X, there are  independent 

covariance equations; and, in terms of independent, unconstrained parameters, 

in  (by constraint 3), and  in  (by constraint 4). 

Under constraint 1, the number of covariance equations is greater than the number of 

independent, unconstrained parameters, meeting a necessary but not sufficient condition 

for identification (Long, 1983). Therefore, we now move to a proof of identification of 

the elements of each matrix in turn. 

 
39

 Though this constraint is not necessary for purposes of identification, it, without loss of generality, 

effects a simplification in the estimation of the quantity of interest, when using computer programs such 

as LISREL. 

[1] [2] [3] [4] 0C C C C      

C P 

r r r r r
     

r r

r

( )j v zp p p  ( )( 1) / 2j v z j v zp p p p p p    

2( )j v zp p p  r ( )j v zp p p  r
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6.1.3.1 6.1.3.1 Proof of Identification of r  

We first solve for and . Consider the l
th

 element of , the u
th

 

element of , and the h
th 

element of , corresponding to loadings and 

. From equation 6.1, and constraints 4-7, then,  

 ;  (6.2) 

 ;  (6.3) 

 .  (6.4) 

It is now possible to solve for each of and : 

 

 ; (6.5) 

 

 ; (6.6) 

 

, ,jg vg  zg jX

vX zX [ ], [ ],jg vgl u 

[ ]zg h

[ ,( )] ( [ ])( [ ])r j jg vgl p u l u   

[( ),( )] ( [ ])( [ ])r j j v vg zgp u p p h u h     

[ ,( )] ( [ ])( [ ])r j v jg zgl p p h l h    

[ ], [ ],jg vgl u  [ ]zg h

2
( [ ])( [ ])

[ ]) ( [ ])( [ ])
( [ ])( [ ])

jg zg

jg jg vg

vg zg

l h
l l u

u h
  

 
  

 

[ , ( )])( [ , ( )])

[( ), ( )]

r j v r j

r j j v

l p p h l p u

p u p p h

   

  

 



2
( [ ])( [ ])

[ ]) ( [ ])( [ ])
( [ ])( [ ])

jg vg

vg vg zg

jg zg

l u
u u h

l h
  

 
  

 

( [ , ( )])( [( ), ( )])

[ , ( )]

r j r j j v

r j v

l p u p u p p h

l p p h

   

 

 



2
( [ ])( [ ])
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zg jg zg

jg vg

u h
h l h

l u
  

 
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 
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  (6.7)   

As the l
th

 element of , the u
th

 element of , and the h
th 

element of  may represent 

any of the elements in , , and , this procedure demonstrates that all loadings in 

and are identified. 

Consider, now, three elements of : . We now solve 

for corresponding parameters , and . Note that the covariances 

of these three elements of , by equation 6.1 and constraints 4-7, are expressed as 

follows: 

 ; (6.8) 

 ; (6.9) 

 . (6.10) 

Hence, 

 ; (6.11) 

 ; (6.12) 

 . (6.13) 

( [( ), ( )])( [ , ( )])

[ , ( )]

r j j v r j v

r j

p u p p h l p p h

l p u

    



 



jX vX zX

jX vX zX

, ,jg vg  zg

jX [ ], [ 1], [ 2]j j jl l l X X X

[ ]
jjs l [ 1]

jjs l  [ 2]
jjs l 

jX

[ , 1] ( [ ])( [ 1]) ( [ ])( [ 1])
j jr jg jg js jsl l l l l l        

[ , 2] ( [ ])( [ 2]) ( [ ])( [ 2])
j jr jg jg js jsl l l l l l        

[ 1, 2] ( [ 1])( [ 2]) ( [ 1])( [ 2])
j jr jg jg js jsl l l l l l           

( [ ])( [ 1]) [ , 1] ( [ ])( [ 1])
j jjs js r jg jgl l l l l l        

( [ ])( [ 2]) [ , 2] ( [ ])( [ 2])
j jjs js r jg jgl l l l l l        

( [ 1])( [ 2]) [ 1, 2] ( [ 1])( [ 2])
j jjs js r jg jgl l l l l l           
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Now, is known from equation 6.5. Hence, , and are known 

by expressions 6.11-6.13 and the following equations: 

 ; (6.14) 

 ; (6.15) 

 . (6.16)  

The production of such triads of equations solves for the entirety of . An identical 

procedure may be employed to solve for all elements of and . This shows that  

is identified, as apart from , , , and  (all which we have shown 

are identified), is constrained (by constraint 3). 

6.1.3.2 Proof of Identification of r  

To repeat equation 6.1, 

 , (6.17) 

jg [ ]
jjs l [ 1]

jjs l  [ 2]
jjs l 

2
[ ]) [ 1])

[ ]) [ ]) [ 2])
[ 1]) [ 2])

j j

j j j

j j

js js

js js js

js js

l l
l l l

l l

  
    

   

 
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[ ]) [ 1])
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[ ]) [ 2])

j j
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j j
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js js js

js js

l l
l l l

l l

  
      

  

 
  

 

2
[ ]) [ 2])

[ 2]) [ 1]) [ 2])
[ ]) [ 1])

j j

j j j

j j

js js

js js js

js js

l l
l l l

l l

  
      

  

 
  

 

jjs

vvs
zzs r

jjs
vvs

zzs , ,jg vg  zg

r

r r r r r
     
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in which r is a correlation matrix, and is diagonal (constraints 5 and 6). As shown in 

section 6.1.3.1, 
r is identified. Therefore, 

r is identified. For example, to take 

[ , ]r l l , 

 , (6.18) 

which solves for , as and are identified. This completes the 

identification, in respect the covariance structure, of the model.  

6.1.4 Proof of Identification of [2] [2]P C   

As  is, by section 6.1.3, identified, the parameter of interest, , is 

identified, according to the following demonstration: 

From 4.23 and constraint 8, 

 ; (6.19) 

 . (6.20) 

Through algebraic manipulation, 

 .(6.21) 

2 2[ , ] ( [ ]) ( [ ]) [ , ]
jr jg js rl l l l l l     

[ , ]r l l [ ]jg l [ ]
jjs l

r [2] [2]P C 

[ ] [ ] [ ]( [1] [1]) [ ]( [2] [2])
jj j

jg P C js P CX P X C
l l l l           

[ 1] [ 1] [ 1]( [1] [1]) [ 1]( [2] [2])
jj j

jg P C js P CX P X C
l l l l               

( [ ] / [ 1])( [ 1] [ 1]) ( [ ] [ ])
( [2] [2])

(( [ ])( [ 1]) / [ 1]) ( [ ])

j j j j

j j

jg jg X P X C X P X C

P C

jg js jg js

l l l l l l

l l l l

     
 

  

 
 

   

   
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The parameter is, in fact, over-identified, as any pair of means from and can be 

employed to generate equations analogous, in form, to 6.19 and 6.20. 

6.1.5 Model Fit and Parameter Estimation 

The model defined in sections 6.1.1 and 6.1.2 can be fit by a program such as 

LISREL.  Presuming that the fit of the model is acceptable, then the estimate yielded by 

LISREL of  may be taken seriously.  Alternatively, the researcher may test 

the hypothesis pair [H0: , H1: ].  

6.2 Baron and Treiman 

Under the proto-framework of Baron and Treiman, the fundamental problem was 

to make a decision as to whether or not, was less than zero, the parameter . 

As reviewed in Chapters 3, these authors proposed an ad hoc strategy for the drawing of 

conclusions regarding this parameter. Building on the modern test-theoretic framework of 

Chapter 4, we, in Chapter 5, articulated, in technical terms, the proto-framework of Baron 

and Treiman, under which the fundamental problem is reinterpreted as a one of making 

an inference as to whether the parameter is less than 0. In this section, we 

articulate a structural equation model consistent with the relevant quantitative framework 

described in Chapter 5 (the proto-framework of Baron and Treiman), by a review of the 

model’s general constraints. When then show that this model is not identified, and 

jX P


jX C


[2] [2]P C 

[2] [2] 0P C   [2] [2] 0P C  

ljc |Pμ 
ljc |Cμ

[1] [1]P C 
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therefore conclude that estimation and hypothesis testing strategies for parameter of 

interest, , are not, under this model, available.  

6.2.1 Constraints: General 

1) , (pj+pv) by (k + 1), nonnegative, and structured as follows: 

 ; 

2) , diagonal,  r={C,P}; 

3)  and , r = 1..s; 

4) is a correlation matrix, implying that the variances of the common factors are 

set to unity; 

5) diagonal; 

6.2.2 Evaluation of Identification  

Recall, as written in equation 4.22, that the covariance structure of the model is 

defined by 

 . (6.22) 

[1] [1]P C 

r  
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j k

j k

js js js

p vs vs

 
 
 
 

  

 0

r Er r    

E( )r  0 C( , )r r  0 

r
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r r r r r
     
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In order to show that the model, in respect this covariance structure, is identified, it must 

be shown that all unconstrained elements of matrices
r  and 

r are identified (note that 

r  is completely constrained, by constraints 4 and 5). Now, as noted in section 6.1.3, a 

necessary condition of identification is that the number of covariance equations is greater 

than or equal to the number of independent, unconstrained parameters. In total, given the 

( )j vp p elements in X, there are ( )( 1) / 2j v j vp p p p    independent covariance 

equations; and, in terms of independent, unconstrained parameters, ( 1)( ) ( )j vk p k p   in 

r , and ( )j vp p  in r . For conditions in which ( )j vp p  is large, and k is relatively 

smaller, the necessary condition can be met. For example, if 5j vp p  and 3k  , then 

there are 55 covariance equations and 45 unconstrained parameters. We therefore move 

to a consideration of whether r  can be identified. 

6.2.2.1 6.2.2.1 Evaluation of Identification of r  

There are five general forms of the covariance equations: two for covariances of 

elements of , two for covariances of elements of , and one for covariances of 

elements, one from , one from . 

For items l and l+1 of , it follows from equation 4.22 and the constraints 

above that: 

 ; (6.23) 

jX vX

jX vX

jX

1 2

2 2 2 2[ , ] ( [ ]) ( [ ]) ( [ ]) ... ( [ ]) [ , ]
j kr js js js js Cl l l l l l l l          
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 . (6.24) 

For items u and u+1 of , it follows from equation 4.22 and the constraints above that: 

 ; (6.25) 

 . (6.26) 

For items l of  and u of , 

 . (6.27) 

Now, consider the two sets of loadings  and . Equation 

6.24 is the only equation in which these two sets of loadings co-occur. However, note that 

even if  and  were known, there remain k+1 unknowns in 

this equation, i.e.,  and . This equation would not, therefore, solve 

for . This is true for any two elements of . Furthermore, because of the 

structure of equations 6.23-6.27, there is no manner in which such equations for elements 

of may be combined to isolate elements of , regardless of the values of k and 

pj (the reader is encouraged to verify this). It follows that are not identified. By 

equation 6.26 and the same logic, are not identified. Therefore, neither  nor 

the model as a whole are identified. 

1 1
[ , 1] ( [ ])( [ 1]) ( [ ])( [ 1]) ... ( [ ])( [ 1])
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1 1
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6.2.3 Model Fit and Parameter Estimation 

A prerequisite for valid determination of model fit and estimation of parameters is 

model identification. However, the model is not identified, as shown in section 6.2.2. 

Furthermore, there are no additional, reasonable constraints that can be placed on the 

model that would cause the model to be identified. Therefore, under the structural 

equation model implied by Baron and Treiman, procedures for estimating, or performing 

hypothesis testing in relation to,  are not available. 

6.3 Knight and Silverstein 

Under the proto-framework of Knight and Silverstein, the fundamental problem 

was to make a decision as to whether or not, was less than zero, the parameter         

. As reviewed in Chapters 3, these authors proposed several ad hoc methods 

that side-stepped the problem, focusing on other mean differences. Building on the 

modern test-theoretic framework of Chapter 4, we, in Chapter 5, articulated, in technical 

terms, the proto-framework of Knight and Silverstein, under which the fundamental 

problem is reinterpreted as a one of making an inference as to whether the parameter 

is less than 0. In this section, we articulate a structural equation model 

consistent with the relevant quantitative framework described in Chapter 5 (the proto-

framework of Knight and Silverstein), by a review of the model’s general constraints. 

When then show that this model is not identified, and therefore conclude estimation and 

[1] [1]P C 

ljc |Pμ 
ljc |Cμ

[1] [1]P C 
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hypothesis testing strategies for parameter of interest, , are not, under this 

model, available. 

6.3.1 Constraints: General 

1) , (pj+pv) by (k + 2), nonnegative, and structured as follows: 

 ; 

2) , diagonal,  r={C,P}; 

3)  and , r = 1..s; 

4) is a correlation matrix, implying that the variances of the common factors are 

set to unity; 

5) diagonal; 

6.3.2 Evaluation of Identification 

Recall, as written in equation 4.22, that the covariance structure of the model is 

defined by 

 . (6.28) 
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In order to show that the model, in respect this covariance structure, is identified, it must 

be shown that all unconstrained elements of matrices
r  and 

r are identified (note that 

r  is completely constrained, by constraints 4 and 5). Now, as noted in section 6.1.3, a 

necessary condition of identification is that the number of covariance equations is greater 

than or equal to the number of independent, unconstrained parameters. In total, given the 

( )j vp p elements in X, there are ( )( 1) / 2j v j vp p p p    independent covariance 

equations; and, in terms of independent, unconstrained parameters, ( 1)( )j vk p p  in r , 

and ( )j vp p  in r . In total, then, there are ( 2)( )j vk p p  unconstrained parameters.  

For conditions in which ( )j vp p is large, and k is relatively smaller, the necessary 

condition can be met. For example, if 5j vp p  and 3k  , then there are 55 covariance 

equations and 50 unconstrained parameters. We therefore move to a consideration as to 

whether r  can be identified. 

6.3.2.1 Evaluation of Identification of r  

There are five general forms of the covariance equations: two for covariances of 

elements of , two for covariances of elements of , and one for covariances of 

elements, one from , one from . 

For items l and l+1 of , it follows from equation 4.22 and the constraints 

above that: 

jX vX

jX vX

jX
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 ; (6.29) 

 . (6.30) 

For items u and u+1 of , it follows from equation 4.22 and the constraints above that: 

 ;(6.31) 

 

 . (6.32) 

For items l of  and u of , 

 . (6.33) 

Now, consider the two sets of loadings  and . Equation 

6.30 is the only equation in which these two sets of loadings co-occur. However, note that 

even if  and  were known, there remain k+1 unknowns in 

this equation, i.e.,  and . This equation would not, therefore, solve 

for . This is true for any two elements of . Furthermore, because of the 

structure of equations 6.29-6.33, there is no manner in which such equations for elements 

of may be combined to isolate elements of , regardless of the values of k and 
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pj (the reader is encouraged to verify this). It follows that are not identified. By 

equation 6.32 and the same logic, are not identified. Therefore, neither  nor 

the model as a whole are identified. 

6.3.3 Model Fit and Parameter Estimation 

A prerequisite for valid determination of model fit and estimation of parameters is 

model identification. However, the model is not identified, as shown in 6.3.2. 

Furthermore, there are no additional, reasonable constraints that could be placed on the 

model that would cause the model to be identified. Therefore, under the structural 

equation model implied by Knight and Silverstein, procedures for estimating, or 

performing hypothesis testing in relation to  are not available. 

6.4 Kang and MacDonald 

Under the proto-framework of Kang and MacDonald, the fundamental problem 

was to make a decision as to whether or not, was less than zero, the parameter         

. Building on the modern test-theoretic framework of Chapter 4, we, in 

Chapter 5, articulated, in technical terms, the proto-framework of Kang and MacDonald, 

under which the fundamental problem is reinterpreted as a one of making an inference as 

to whether the parameter is less than 0. In this section, we articulate a 

structural equation model consistent with the relevant quantitative framework described 

in Chapter 5 (the proto-framework of Kang and MacDonald), by a review of the model’s 

1
...

kjs js 

1
...

kvs vs  r

[1] [1]P C 

ljc |Pμ 
ljc |Cμ

[2] [2]P C 
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general constraints. When then show that this model is not identified, and therefore 

conclude estimation and hypothesis testing strategies for parameter of interest, 

, are not, under this model, available. 

6.4.1 Constraints: General 

1) , (pj+pv) by (k + 3), nonnegative, and structured as follows: 

 ; 

2) , diagonal,  r={C,P}; 

3)  and , r = 1..s; 

4) is a correlation matrix, implying that the variances of the common factors are 

set to unity; 

5) diagonal. 

6.4.2 Evaluation of Identification  

Recall, as written in equation 4.22, that the covariance structure of the model is 

defined by 

 . (6.34)  
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In order to show that the model, in respect this covariance structure, is identified, it must 

be shown that all unconstrained elements of matrices
r  and 

r are identified (note that 

r  is completely constrained, by constraints 4 and 5). Now, as noted in section 6.1.3, a 

necessary condition of identification is that the number of covariance equations is greater 

than or equal to the number of independent, unconstrained parameters. In total, given the 

( )j vp p elements in X, there are ( )( 1) / 2j v j vp p p p    independent covariance 

equations; and, in terms of independent, unconstrained parameters, ( 2)( )j vk p p  in r

, and ( )j vp p  in r . In total, then, there are ( 3)( )j vk p p  unconstrained parameters.  

For conditions in which is large, and k is relatively small, the necessary 

condition can be met. For example, if and , then there are 78 covariance 

equations and 60 unconstrained parameters. We therefore move to a consideration as to 

whether  can be identified. 

6.4.2.1 Evaluation of Identification of r  

There are five general forms of the covariance equations: two for covariances of 

elements of , two for covariances of elements of , and one for covariances of 

elements, one from , one from . 

For items l and l+1 of , it follows from equation 4.22 and the constraints above that: 

 ; (6.35) 

( )j vp p

6j vp p  3k 
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 . (6.36) 

For items u and u+1 of , it follows from equation 4.22 and the constraints above that: 

 

 ; (6.37) 

  

 . (6.38) 

For items l of  and u of , 

 . (6.39) 

Now, consider the two sets of loadings  and . Equation 

6.36 is the only equation in which these two sets of loadings co-occur. However, note that 

even if  and  were known, there remain k+2 unknowns in 

this equation, i.e., ,  and . This equation would not, therefore, 

solve for . This is true for any two elements of . Furthermore, because 

of the structure of equations 6.35-6.39, there is no manner in which such equations for 

elements of may be combined to isolate elements of , regardless of the 
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values of k and pj (the reader is encouraged to verify this). It follows that are not 

identified. By equation 6.38 and the same logic, are not identified. Therefore, 

neither  nor the model as a whole are identified. 

6.4.3 Model Fit and Parameter Estimation 

A prerequisite for valid determination of model fit and estimation of parameters is 

model identification. However, the model is not identified, as shown in 6.3.2. 

Furthermore, there are no additional, reasonable constraints that could be placed on the 

model that would cause the model to be identified. Therefore, under the structural 

equation model implied by Kang and MacDonald, procedures for estimating, or 

performing hypothesis testing in relation to, , are not available. 

6.5 Summary 

In this chapter we specified four models, each a sub-model of the Multi-

Population Linear Factor Model, one for each distinct proto-framework extracted in 

Chapters 4 and 5. Each model was an extension of the corresponding proto-framework 

and/or was defined by additional constraints. We showed: i) a structural equation model 

consistent with the proto-framework of Chapman and Chapman is identified, and allows 

for estimation of the parameter of interest, , constituting a solution to the 

inferential problems housed under the term “Psychometric Confound”, as articulated by 

Chapman and Chapman (as well as Salthouse and Coon) ; ii) under structural equation 

1
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models consistent with the other proto-frameworks articulated in Chapter 5 (of Baron and 

Treiman, Knight and Silverstein, Kang and MacDonald), the model is not identified, and, 

hence, an estimate of the parameter of interest is not available.  
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Chapter 7.  

 

Summary and Conclusions 

We now summarize the key points of the current work and clarify what, exactly, 

has been accomplished. We began by describing a general inferential problem (section 

2.2): an investigator is interested in identifying whether a Specific Ability Deficit, or S-

Deficit, exists in population P, however, the ability-score distributions sj|P and sj|C are 

not available, but only inferential information about the distributions clj|P and clj|C . 

Strategies must therefore be invented that take, as input clj|P and clj|C , and yield, as 

output, decisions about S-Deficits (there also exists the related inferential problem of 

identifying Differential Ability Deficits, or D-Deficits, without access to ability-score 

distributions sj|P, sj|C, sv|P, and sv|C). 

We went on to describe claims made by Chapman and Chapman and the authors 

of alternative accounts to the effect that strategies traditionally employed to overcome the 

general inferential problem are confounded (see sections 2.3 and 3.3). In essence, it was 

claimed that the strategies and conclusions of numerous researchers, in particular those 

who had drawn inferences regarding S- or D-deficits, were faulty / false, as past 

investigators had failed to consider either: i) that their test composites scale not only in 

respect to the specific ability of interest, but also in respect to a general ability, which we 

have named g; and/or ii) that their test composites scale not only in respect to the specific 
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ability of interest but also in respect to addition abilities s1…sk; and/or iii) that their test 

composites have differential sensitivity to g and/or s1…sk. 

We described the inferential solutions proposed by Chapman and Chapman and 

the authors of the alternative accounts meant to overcome the confounds described (see 

sections 2.4 and 3.3). However, we noted that the claims of existence of the confounds, as 

well as the inferential solutions, were proposed by the Chapmans and other authors 

without initial establishment of an adequate technical framework (see sections 2.6, 3.3.5). 

Only incomplete proto-frameworks were extractable from the work of these authors. 

Therefore, despite the influence of the work of Chapman and Chapman and their 

commentators apropos the issue of the Psychometric Confound (as described in sections 

3.1 and 3.2), we had illustrated, by the conclusion of Chapter 3, a pressing need for a 

proper technical articulation of the issues surrounding the term “Psychometric 

Confound”. 

We then established a basis for ruling on the truth of the claims of the Chapman 

and Chapman and the authors of the alternative accounts by asserting that these 

investigators implicitly employed classical and modern test theory. By articulating this 

test theory (sections 4.1, 4.2), and translating the proto-frameworks extracted and claims 

made into the theory’s technical and mathematical language (sections 4.3, 4.4, chapter 5), 

we were able to adjudicate the claims made. We found that, under the technical 

frameworks established, the claims of the existence of confounds in past strategies for 

overcoming the general inferential problem were true, however, all inferential methods 
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proposed by Chapman and Chapman and the authors of the alternative accounts were 

faulty. 

Employing the tools of structural equation modeling, we then (Chapter 6) 

determined whether valid methodological solutions for the drawing of conclusions 

regarding S-Deficits are possible. We found that the structural equation model consistent 

with the work of Chapman and Chapman (and also, Salthouse and Coon), when 

constrained in reasonable ways, is capable of producing estimates of the parameter of 

interest. However, structural equation models consistent with the proto-frameworks of 

other authors, as extracted in Chapter 5, were not capable of producing estimates of the 

parameter of interest. 

Overall, then, the current work shows that if a technical framework, based on 

classical and modern test theory, and consistent with the proto-framework implied by the 

work of Chapman and Chapman, is held to be the case, then Psychometric Confound, as 

composed of a general inferential problem and sub-confounds, exists, but can be 

overcome through the use of modern test theory methods. In contrast, each of the 

alternative accounts of the Psychometric Confound implies a technical framework under 

which are unsolvable, the essential inferential problems housed under the term 

“Psychometric Confound”. 

It should be noted, of course, that our treatment of the problem stands or falls as a 

contribution to the underpinnings of psychopathology research, as stands or falls classical 

and modern test theory, itself. But if this be a defect (and it may well be), then it is a 
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defect inherited from the discipline, itself, wherein the perhaps insidious involvement of 

classical and modern test theory, in forms both tacitly and explicitly articulated, is 

everywhere to be found.  It is simply the case that psychopathology research, at least 

within the sub-areas considered in the current work, is tied, both historically and 

spiritually, to concepts drawn from classical and modern test theory. These latter 

constitute the lenses through which problems are viewed.  This is not to say that other 

quantitative approaches are not possible, but simply that, as it stands, this theory lies at 

the conceptual core of the research area. Accordingly, core concepts such as “ability”, 

“difficulty”, and “discriminating power” depend, for their coherence, upon the 

reasonableness of classical and modern test theory. In offering our analysis of past work 

and articulating a solution, then, we have employed classical and modern test theory as a 

foundational framework. However, we have not dealt with the question of the usefulness 

or accuracy of classical and modern test theory as a description of particular scientific 

contexts. Therefore, the researcher is not relieved of the responsibility to justify, for 

particular phenomena under study, the relevance of our analysis and solution, tied 

inextricably, as they are, to these very particular quantitative presuppositions. 
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Table 1. Summary of Conclusions Regarding Claims 

Authors Claims True/False 

Chapman and Chapman CC1 T 

 CC2 T 

 CC3 F 

 CC4 F 

 CC5 F 

 CC6 F 

Baron and Treiman BTC1 T 

 BTC2 T 

 BTC3 F 

Salthouse and Coon SC1 F 

 SC2 F 

Knight and Silverstein KSC1 T 

 KSC2 F 

 KSC3 F 

 KSC4 F 

 KSC5 F 

 KSC6 F 

 KSC7 F 

 KSC8 F 

 KSC9 T 

 KSC10 T 

Kang and MacDonald KMC1 T 

 KMC2 T 
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Figure 1. Covariance Structure for Chapman and Chapman Model  
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