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Abstract

The purpose of this project is to propose a statistical model for health insurance total

claim amounts classified by age group, region of residence and time horizon of the insured

population under Bayesian framework. This model can be used to predict future total claim

amounts and thus to facilitate premium determination. The prediction is based on the past

observed information and prior beliefs about the insured population, number of claims and

amount of claims. The insured population growth is modelled by a generalized exponential

growth model (GEGM), which takes into account the random effects in age, region and

time classifications. The number of claims for each classified group is assumed Poisson

distributed and independent of the size of the individual claims. A simulation study is con-

ducted to test the effectiveness of modelling and estimation, and Markov chain Monte Carlo

(MCMC) is used for parameter estimation. Based on the predicted values, the premiums

are estimated using four premium principles and two risk measures.

Keywords: Collective risk model; Health Insurance; Hierarchical Bayesian model; Markov

chain Monte Carlo (MCMC); Premium Principle; Risk Measures
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''Essentially, all models are wrong, but some are useful''

--- George E.P. Box, EMPIRICAL MODEL-BUILDING AND RESPONSE SURFACES,

1987
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Chapter 1

Introduction

1.1 Background and Motivation

Among the prevailing topics for health insurance providers, determining a right level of

premium to charge has been discussed widely in the industry. The expenditure in health-

care has been increasing dramatically over the past decade. According to a report entitled

"National Health Expenditure Trends, 1975 to 2014" 1 published by Canadian Institute for

Health Information (CIHI) in October 2014, the total health-care costs in Canada doubled

in the past decade, from $98.6 billion in 2000 increased to $205.4 billion in 2012. One

of the causes of such phenomenon is the current fee schedule basis 2 (or fee-for-service

model) such that the payments to doctors depend on the quantity of treatments. It gives

the incentive for doctors to over-care the patients by increasing the number and length of

the visits, creating pressure on future health care costs. Furthermore, there is evidence

showing that the population in some countries like U.S.3 and Canada4 is increasing in

certain areas over the past years. Consequently, the health insurance providers are facing

challenges of increasing number of claims (frequency) and the amount of claims (severity)

1This report can be downloaded free from the website of Canadian Institute for Health Information.
2Further discussion about the major cost drivers can be found in the report "Health Care Cost Drivers: The

Facts".
3Source: United States Census Bureau. Access through: http://www.census.gov/geography.html.

Alternative Source: The World Bank. Access through: http://data.worldbank.org/indicator/SP.POP.TOTL
4Source: Statistics Canada, censuses of population, 1851 to 2011.

Access through: http://www12.statcan.ca/census-recensement/2011/as-sa/98-310-x/2011001/fig/fig2-eng.cfm
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year after year. It is a paramount issue for them to be able to forecast future claim trends

and hence to facilitate decision making in premium scheme.

The claim frequency and severity predictions involve the consideration of many un-

certain factors, such as health-care regulation, demographic and geographic factors and

so on. After years of experience, most likely the health insurance experts possess pro-

found knowledge in some, if not all, of these areas. The expert opinions should be taken

into consideration when forecasting the claims and premiums. The Bayesian framework

is very good at dealing with such situations. Before conducting the analysis, a Bayesian

framework requires prior information on the parameters, that is, the expert opinions and

industrial information. The observed data over the past years of practice is a valuable input

for the prediction process. Furthermore, with the assistance of the software OpenBUGS (or

WinBUGS) the implementation of Bayesian calculations becomes handy with ease in in-

terpretation. All the above reasons stimulate the incentive of considering health insurance

problem under a Bayesian framework.

1.2 Literature Review

This project is inspired by the work of many authors. Here we briefly review some of

the published work related to this project.

Migon and Moura (2005) propose a generalized collective risk model under Bayesian

framework to determine the premium for health insurance. They recommend a full Bayesian

model to take all uncertainty into account. The premium is determined based on the past

information about the number and size of the claims and the population at risk, which is

classified by time and age of the insured population. The proposed model assumes that

the total claim amount is age dependent and priors are hierarchically distributed for each

age class.

Migon et al. (2006) apply a similar methodology to two real data sets collected in Brazil.

They discuss the implementation of the collective risk model under a Bayesian setting with

stochastic simulation techniques. The premium is expressed by maximization of the in-

surer's expected utility under the Bayesian model. The insured population is assumed

to follow a non-linear growth model. According to dynamic Bayesian forecasting tech-

niques, generalized exponential growth models (GEGM) have been studied by Migon and
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Gamerman (1993). This class of models is for processing data with non-negative and

non-decreasing mean functions. They present and discuss the properties of the general

modified exponential family that can be applied to model the population growth.

Souza et al. (2009) propose a method to predict the population for small areas given

the census data. Since the population growth pattern for a municipal may be related to the

development level of its surrounding neighbors, a spatial hierarchical model is proposed,

which takes into account the extra uncertainty associated with the hyperparameters. A

Markov chain Monte Carlo (MCMC) algorithm is applied to generate samples for numerical

analysis.

Gschlöbl and Czado (2007) discuss the statistical models for the number of claims and

average claim size in non-life insurance under Bayesian context. The premium is calcu-

lated based on the simulated total claim sizes. They analyze the claim frequency and claim

size separately, which is initially discussed by Dimakos and Frigessi (2002), by assuming a

spatial Poisson regression model for claim frequency and a Gamma model for the average

claim size per policyholder. As summarized by Gschlöbl and Czado (2007), by considering

the regression model for spatial data, it includes the correlated spatial random effects to

describe the underlying spatial dependency pattern. Furthermore, the spatial dependen-

cies are modeled by Gaussian conditional autoregressive (CAR) prior introduced by Pettitt

et.al. (2002). The CAR models are based on the assumption that adjacent regions share

similar features and hence have strong spatial dependencies.

Premium principles have been extensively discussed in the literature, e.g., Young (2004)

and Goovaerts et al. (2010), among others. Young (2004) describes three methods that

actuaries use to design premium principles. The author also lists common premium prin-

ciples along with a discussion of the desirable properties of those premium principles.

Hardy (2006) and Sarykalin et al. (2008) consider Value-at-Risk (VaR) and Tail Value-at-

Risk (TVaR) as legitimate approaches to determine premium and give detailed discussion

about their properties and application.

1.3 Outline

The purpose of this project is to make prediction of the future total claim amounts under

the Bayesian framework to determine the premium rate. In light of this aim, the following

3



report consists of four chapters. The first half of Chapter 2 lists the preliminary topics

that play major roles in our Bayesian modeling to be discussed. We briefly discuss the

collective risk model and its mean and variance expression. Some important Bayesian

concepts are also provided, such as the fundamental Bayes' Theorem and Gibbs sampling

technique. The study of the generalized exponential growth model (GEGM) paves the way

to the coming discussion about the population modeling. A hierarchical Bayesian model,

along with the assumptions, are presented in the second half of Chapter 2. We model

the insured population growth based on three covariates, namely the age class, location

of residence and time of measurement. The insured population contributes to the claim

numbers, which eventually contribute to the prediction of total claim amounts.

The aim of Chapter 3 is to test how effective the proposed model is in identifying the

underlying parameters. We perform a simulation study with predetermined values (or dis-

tributions) of the parameters; then we fit the simulated data back to the model to see if

it can capture the true values of the parameters. Once the predicted total claim amounts

are obtained, the procedures of forecast premiums are discussed in Chapter 4. The first

half of Chapter 4 presents a number of premium principles while the numerical premium

analysis is conducted in the second half of that chapter. Chapter 5 wraps up this project

by suggesting further possible developments for this topic.

4



Chapter 2

Models and Assumptions

This chapter is arranged as follows: firstly, classical compound collective risk models

and generalized exponential growth models are briefly described, as these models serve as

the building blocks for the key model studied in this project. Then the hierarchical Bayesian

model and relevant derivations are presented.

2.1 The Compound Collective Risk Model

The collective risk model is well known and discussed intensively in the actuarial realm.

Consider a portfolio of policies of a single type. Let N denote the total number of claims

arising from a risk in a certain time period, and Zj denote the amount of jth claim. The

aggregate total amount of claims is given by

X =
N∑
j=1

Zj , (2.1)

with X = 0 when N = 0. The main assumptions embedded in this model are:

• the individual claim amountsZj 's are positive independently and identically distributed

random variables;

• the total number of claims N is a random variable and independent of the claim

amounts Zj 's.

The advantage of the collective risk model is obvious. That is, the claim frequency and

claim severity can be separately modeled. For example, a general raise in cost of drugs
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may affect the claim severity but with little influence on the claim frequency, whereas intro-

ducing another line of business would increase claim frequency without much alteration in

claim severity. Furthermore, the measure of expected value (and variance) of the aggre-

gate claim amount can be decomposed by the measure of mean and variance of the claim

frequency and severity, namely,

E(X) = E(E[X|N ]) = E(N)E(Z),

V ar(X) = E(V [X|N ]) + V (E[X|N ]) = E(N)V (Z) + [E(Z)]2V (N). (2.2)

When N has a Poisson distribution with parameter λ, we say thatX in (2.1) has a com-

pound Poisson distribution with parameters λ and F , where F (x) = Pr(Z1 ≤ z) denotes

the distribution function of individual claim amounts. It follows from (2.2) that in this case,

E(X) = λE(Z),

V ar(X) = λV (Z) + [E(Z)]2λ = λE(Z2).

It is worth mentioning that there are situations where the total number of claims is not

independent of the claim amount. For example, patients with certain types of diseases need

special treatments that require to have frequent doctor visits, and each visit may take more

time than an ordinary visit. As a result, the number of claims for such patients increases

as well as the claim amount of each visit. The original assumptions of the collective risk

model may not be suitable under this circumstance.

2.2 The Compound Poisson Process

The model studied in this project has features in common with the compound Poisson

process. We briefly discuss the compound Poisson process here for the completeness of

the project.

The Poisson process is a special counting process describing the occurrence of events,

which is the occurrence of claims in this project. LetN(t) be the number of claims up to time

t, t > 0. A Poisson process with parameter λ indicates that the sequence of inter-arrival

times, that is the time between two consecutive claims, are independently exponentially

distributed with mean 1/λ. Hence the distribution of N(t), for a fixed t > 0, is Poisson

with parameter λt. In other words, if we have discrete time t = 1, 2, ... with unit length,

6



the number of claims between t − 1 and t follows an independent and identical Poisson

distribution with parameter λ, that is,

N(t)−N(t− 1) ∼ Poisson(λ), t = 1, 2, 3, ...

Let Zi, i ≥ 1, be a sequence of independently and identically distributed random variables

with finite variance and independent of N(t) for all t > 0. The compound Poisson process

with Poisson parameter λ is denoted as

X(t) =

N(t)∑
i=1

Zi

with X(t) = 0 when N(t) = 0.

X(t) is a homogeneous Markov process that has stationary and independent incre-

ments. That is to say, for 0 < s < t, the increment of the processX(t)−X(s) depends only

on t − s, not on the value of s and t. Furthermore, the increments over non-overlapping

time intervals are independent, that is if 0 < s < t ≤ u < v, X(t)−X(s) is independent of

X(v)−X(u). Refer to Dickson (2005) for detailed discussion related to this topic.

2.3 Bayesian Inference

In recent years, Bayesian methodology has aroused the attention of researchers in

mathematics, statistics and actuarial sciences. One of the major merits of the Bayesian

framework is that it allows the introduction of prior beliefs, which eventually leads to poste-

rior beliefs. Therefore, the posterior beliefs of the random variable not only incorporate the

prior beliefs but also the information contained the data.

In this section the fundamental Bayesian paradigm is presented. More advanced appli-

cations are discussed in the next section. See Klugman (1992) for further discussions on

Bayesian statistics in actuarial science.

The prior beliefs about the values for d parameters of interest θ = (θ1, θ2, ..., θd), d > 0,

can be expressed by the probability density function π(θ), representing our opinion on the

possible values of θ and the relative chances of being true parameter. Suppose it is possible

to obtain n observations, namelyX = (x1, x2, ..., xn), whose joint density function is defined

as f(X). Denote l(X|θ) as the likelihood function, π(θ,X) as the joint density function

of θ and X and π(θ|X) as the posterior distribution, which is the conditional probability

7



distribution of the parameters given the observed data. According to Bayes' Theorem the

posterior distribution can be expressed as

π(θ|X) =
π(θ,X)

f(X)
=
π(θ)l(X|θ)

f(X)
∝ π(θ)l(X|θ).

Hence the posterior distribution π(θ|X) is proportional to the prior density function times

the likelihood function, that summarizes the modified beliefs of the parameter according to

the observations.

If the posterior distribution follows a well-known distribution (say the Gamma distribu-

tion), it can be modeled or simulated with little difficulties. However, in reality it is quite

common to come across parameters with unrecognizable posterior distributions, especially

in models with high dimension. One of the prevalent methods is to utilize MCMC as an ap-

proximation algorithm. Generally speaking, an MCMC algorithm allows users to simulate

samples from the posterior distribution when direct generation is complicated or impossi-

ble. The most commonly used MCMC algorithms are Metropolis-Hastings and the Gibbs

sampler. The Gibbs sampling algorithm, which is a special case of Metropolis-Hastings, is

a scheme based on successive generations from the full conditional distributions, denoted

as π(θi|θ−i,X), i = 1, 2, ..., d, where θ−i represents all parameters in θ but θi. The following

is the procedure to generate draws for the parameter of interest. Further discussion can

be found in Gamerman (1997), Gilks et al. (1995), Banerjee et al. (2003) and Lee (2012).

The Gibbs Sampling Algorithm:

1. Set initial values θ(0) =
{
θ
(0)
1 , θ

(0)
2 , ..., θ

(0)
d

}
,

2. With X = (x1, x2, ..., xn) being the observations, for j = 1, ..., J , generate θ(j) by

repeating the following:

• Generate θ(j)1 from π
(
θ1 | θ(j−1)

2 , θ
(j−1)
3 , ..., θ

(j−1)
d ,X

)
;

• Generate θ(j)2 from π
(
θ2 | θ(j)1 , θ

(j−1)
3 , ..., θ

(j−1)
d ,X

)
;

...

• Generate θ(j)d from π
(
θd | θ

(j)
1 , θ

(j)
2 , ..., θ

(j)
d−1,X

)
.
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2.4 Generalized Exponential Growth Models

The insured population can bemodeled using the generalized exponential growthmodel

(GEGM) presented in Migon and Gamerman (1993). The importance of the growth trend

has been well recognized and widely used in areas such as demography, biology and ac-

tuarial science. As it is stated by Migon and Gamerman (1993): "A major advantage of

this approach is to keep the measurements in the original scale, making the interpretation

easier". Assume that the size of the population at time t, πt, characterized by the param-

eterization (a, b, γ, λ), is modeled by a probability distribution in the exponential family with

mean

µt = [a+ b exp(γt)]
1
λ , t ≥ 0.

The following are well-known cases shown in the literature, which ensure a non-negative

non-decreasing function of the mean µt.

(1) Logistic: when λ = −1, µ−1
t = a+ b exp(γt)

(2) Gompertz: when λ = 0, µt is defined such that ln(µt) = a+ b exp(γt)

(3) Modified exponential: when λ = 1, µt = a+ b exp(γt)

The constraints of the parameterization (a, b, γ, λ) depend on the characteristics of the

population. Further discussions on this model are conducted in the following sections.

2.5 Model Specification

The aim of this section is to introduce the general model used in this project. Within

the Bayesian structure, spatial random effects are incorporated in modeling the insured

population. This is followed by an explanation of the computations in the corresponding

MCMC algorithm.

2.5.1 The General Bayesian Model

One of the major issues facing the health insurance industry is to evaluate and deter-

mine the optimal premium. The premium is normally evaluated based on the past infor-

mation in terms of claim severity, claim frequency and the information of the policyholders.
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Migon and Moura (2005) propose a generalization of the collective risk model taking into

account the evolution of the population at risk described by a hierarchical growth model.

Their work was based on both age and time related parameters, arguing that population

evolution is affected by both the age group and the time of measurement.

This project further elaborates their framework by introducing spatial related parame-

ters into the model. Demographic characteristics can not be neglected when considering

the population growth. For example, in some developing countries the rapid pace of urban-

ization stimulates the incentive for people to relocate from rural to urban regions. First-tier

cities get most of the attention because of the high quality education, medical services as

well as abundant career opportunities. Meanwhile, the regions surrounding first-tier cities

would soon be urbanized and populated as the first-tier cities reaching the limit of their

capacity. At the same time the population growth in the rural regions tend to be stable

and diminishing. The demographic features significantly influence the health insurance in-

dustry and hence the trend in the insured population with respect to demography shall be

considered when modeling the claim severity and frequency.

The basic collective risk model can be extended to incorporate age, time and region

factors. Age is one of the important factors influencing the mortality and health condition of

the policyholders. However, setting premiums for each age is redundant as people similar

in age (for instance, ages from 26 to 29) show similar mortality and health conditions, given

all else equal. It is convenient for the health insurance provider to classify the policyholders

by age classes, denoted as a = 1, 2, 3, ..., A. The insurer has the full freedom in terms of

the age classification, such as the number of different ages in each age class. Further-

more, there is no restriction on the time unit, which could be yearly, quarterly, monthly or

customized units. Generally, the frequency of the collection of input data can be a fair

reflection of the time unit. It is suggested to be consistent with the unit once it has been

decided.

Migon and Moura (2005) studied the compound collective risk model for a portfolio

of policies classified by age class a = 1, ..., A and by time t = 1, ..., T . In this project,

we consider the region of residence of the policyholder as another classification category

denoted as i = 1, 2, ..., I. LetNt,i,a represent the total number of claims andXt,i,a represent

the aggregate total claim amount occurred in the time interval (t − 1, t) for age class a in

region i. Let Zt,i,a,j denote the amount of the jth claim occurring within this time interval for

10



age class a in region i. The compound collective risk model is given by

Xt,i,a =

Nt,i,a∑
j=1

Zt,i,a,j , i = 1, 2, ..., I, t = 1, ..., T, a = 1, ..., A. (2.3)

The assumptions for the collective risk model all hold, as stated in the previous section.

For simplicity, from this point on we use the phrase "at time t" instead of "in the time interval

(t− 1, t)" to describe claims occurred between t− 1 to t, t = 1, 2, ..., T .

Assume that the individual claim amount follows a Gamma distribution with parameter

κa and θa for a = 1, 2, ..., A, and the number of claimsNt,i,a is Poisson distributed with mean

Mt,i,a · λa, that is,

Zt,i,a|κa, θa ∼ Gamma(κa, θa), κa > 0, θa > 0, (2.4)

Nt,i,a|λa,Mt,i,a ∼ Poisson(Mt,i,aλa), λa > 0, (2.5)

where Mt,i,a is the insured population at time t for age class a at region i, and λa is the

average number of claim for each individual per unit of time. The notation Mt,i,a implies

a constant population over the time interval (t − 1, t) as we do not model the population

growth within this interval. For fixed t, i and a, knowing Nt,i,a = nt,i,a, the claim sizes

Zt,i,a,j , j = 1, 2, ..., nt,i,a are independent and identically distributed. The sum of these

Gamma distributions forms another Gamma distribution, namely,

Xt,i,a|θa, nt,i,a, κa ∼ Gamma(nt,i,aκa, θa), θa > 0, κa > 0.

Refer to (2.4), the amount of individual claim Z is the only variable dependent on age in

this model, and hence the notation in (2.3) and (2.4) can be simplified to Za,j and Za,

respectively. One can further investigate the feasibility of having κ and θ being time or

region related. In (2.5), Mt,i,aλa represents the average number of claims made by the

insured population in age group a at time t in region i. Since for given age class a and

region i, the insured population Mt,i,a varies over time, the collection of the total claim

amounts {Xt,i,a, t = 1, ..., T, i = 1, ..., I, a = 1, ..., A} are not identically distributed.

Note that in reality the health insurance companies normally keep the information of the

policyholders, such as the number, amount and time of claims made as well as the age and

region of residence of the claimants. Therefore, the total claim amountX, the total number

of claimsN and the insured populationM are assumed observed, and hence being treated

as inputs of the model.

11



2.5.2 Insured Population with Spatial Effect

According to the work by Migon and Gamerman (1993), the insured population can be

modeled by a GEGM. For illustrative purposes it is assumed that the insured population

follows a Normal distribution

Mt,i,a ∼ N(µt,i,a, τ
−1), τ > 0,

with precision τ and mean

µt,i,a = βa0 + Li + β1e
tβa2 , (2.6)

in which Li denotes the spatial factor for region i and βa0 and βa2 are age related param-

eters. It should be mentioned that information about the age of the insured population

is independent of the information about region. Knowledge about demographic and age

features can be taken into account when selecting the prior distributions. Firstly the age

related parameters are specified as follows:

βa0 = β0 + ε0a, ε0a ∼ N(0, τ−1
ε0 ), τε0 > 0,

βa2 = β2 + ε2a, ε2a ∼ N(0, τ−1
ε2 ), τε2 > 0,

where τε0 and τε2 follow Gamma distributions with known parameters. The age related fac-

tors {βa0} (same case for βa2) vary by ages but share the same mean. The hyperparame-

ters are assumed to follow normal distributions with different parameters: β0 ∼ N(µ0, τ
−1
0 ),

β1 ∼ N(µ1, τ
−1
1 ), β2 ∼ N(µ2, τ

−1
2 ) where µ0, µ1, µ2, τ0, τ1, τ2 are known values.

Secondly, the spatial factor, based on the work by Gschlöbl and Czado (2007), is as-

sumed to follow a multivariate normal distribution, that is,

L ∼MVN(0, σ−1Q−1), (2.7)

where the (g, h)th element of the spatial precision matrix Q is specified as

Qgh =


1 + |η| ·mg, g = h,

−η, g ̸= h, g ∼ h, g, h = 1, 2, ...I,

0, otherwise.

(2.8)

This precision matrix describes three types of relative positions for a pair of regions g

and h, namely the two regions coincide to be one (denoted as g = h); the two regions are
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neighbors sharing a common border (denoted as g ∼ h); or the two regions do not share

any common area. The quantity mg denotes the number of neighbors of region g.

The spatial effects are described by proper CAR priors based on the work by Pettitt et

al, (2002). The η is called the degree of spatial dependence, with η = 0 indicating indepen-

dent spatial effects. Large value of η means strong spatial dependency. A proper hyper

prior is assumed for η. Since a non-negative correlation between two regions is expected,

we have η ≥ 0. The two-parameter Pareto distribution with parameters (1,1) and proba-

bility density function 1/(1 + η)2 is selected such that it takes high values for small η. See

Gschlöbl and Czado (2007) for further discussion on this topic.

To give an example, consider the following figure as a "map" of an area. Regions 1

shares a same border with region 2 (1∼2), but does not overlap with region 3, 4 nor 5.

Hence region 1 has one neighbor (m1 = 1). Likewise, region 3 shares borders with regions

2, 4 and 5 (3∼2, 3∼4, and 3∼5) but does not have common area with region 1. Hence

region 3 has three neighbors (m3 = 3).

Figure 2.1: Region Map Example

Assuming the degree of spatial dependence is 0.9, the spatial precision matrix Q can

be written as

Q =



1 + 0.9 ∗ 1 −0.9 0 0 0

−0.9 1 + 0.9 ∗ 3 −0.9 0 −0.9

0 −0.9 1 + 0.9 ∗ 3 −0.9 −0.9

0 0 −0.9 1 + 0.9 ∗ 1 0

0 −0.9 −0.9 0 1 + 0.9 ∗ 2


,
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and its inverse can be calculated as

Q−1 =



0.6157 0.1887 0.0752 0.0356 0.0848

0.1887 0.3983 0.1587 0.0752 0.1791

0.0752 0.1587 0.3983 0.1887 0.1791

0.0356 0.0752 0.1887 0.6157 0.0848

0.0848 0.1791 0.1791 0.0848 0.4723


. (2.9)

The quantity σ is chosen to be a non-informative prior following a Gamma distribution with

known parameters. As expressed in (2.7), the variance-covariance matrix for the region

factor L is the product of σ−1 and Q−1. The diagonal elements of matrix (2.9) contribute

to the variances of L for all regions. The correlations between adjacent regions are larger

than that between non-adjacent regions. For instance, region 2 is a neighbor of region 1

(by sharing a common boundary) but regions 3, 4 and 5 are not. The covariance between

regions 1 and 2 (expressed as σ−1×0.1887) is higher than the covariance between region 1

and any other regions. Further discussion about modeling the spatial effects can be found

in Gschlöbl and Czado (2007).

2.5.3 Hierarchical Collective Risk Model Summary

Priors are required in order to perform Bayesian inference. In general the use of im-

proper priors can cause computational problems such as inability to obtain posterior distri-

butions. In this project the priors are chosen such that they are proper but relatively less in-

formative priors (referred to as reference priors). Some of the variables have been assigned

with prior distributions in previous sections based on the practical knowledge or experience.

The remaining variables are assigned with reference priors, due to the insufficiency of in-

formation. In this project, λa, θa, κa follow independent Gamma distributions, respectively,

G(αλ, βλ), G(αθ, βθ), G(ακ, βκ). As αλ, βλ, αθ, βθ, ακ, βκ, τ, σ are all non-negative quantities,

Gamma distribution is assumed, generally denoted as ψ ∼ Gamma(αψ, βψ).

A summary of the model is presented in the following. Note that Gamma(α, β) de-

notes a Gamma distribution with probability density function βαxα−1e−βx/Γ(α) and mean

α/β; Poisson(λ) denotes a Poisson distribution with mean λ; N(µ, σ2) denotes a Normal

distribution with mean µ and variance σ2.

14



Distributions describing the value of claims, number of claims and insured popula-

tion:

Xt,i,a|θa, nt,i,a, κa ∼ Gamma(nt,i,aκa, θa), θa > 0, κa > 0,

Nt,i,a|λa,Mt,i,a ∼ Poisson(Mt,i,aλa), λa > 0,

Mt,i,a ∼ N(µt,i,a, τ
−1),

where

µt,i,a = βa0 + Li + β1e
tβa2 .

Distributions describing age and region class hierarchy:

θa|αθ, βθ ∼ Gamma(αθ, βθ),

λa|αλ, βλ ∼ Gamma(αλ, βλ),

κa|ακ, βκ ∼ Gamma(ακ, βκ),

βa0 = β0 + ε0a, ε0a ∼ N(0, τ−1
ε0 ),

βa2 = β2 + ε2a, ε2a ∼ N(0, τ−1
ε2 ),

L ∼MVN(0, σ−1Q−1),

where

Qgh =


1 + |η| ·mg, g = h,

−η, g ̸= h, g ∼ h ∀ g, h = 1, 2, ..., I,

0, otherwise.

Distributions of the hyperparameter priors:

f(η) =
1

(1 + η)2
, η > 0,

β0 ∼ N(µ0, τ
−1
0 ),

β1 ∼ N(µ1, τ
−1
1 ),

β2 ∼ N(µ2, τ
−1
2 ),

and ψ ∈ {τ, σ, τε0 , τε2 , αθ, βθ, αλ, βλ, ακ, βκ} follows Gamma distributions with known non-

negative parameters, that is, ψ ∼ Gamma(αψ, βψ), where µ0, µ1, µ2, τ0, τ1, τ2, αψ, βψ are

known values.
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2.6 Computation Using MCMC Algorithm

In the following discussion and the numerical illustration, a simplified version of the

model is adopted by assuming κa = 1, which means that the individual claim amount Zt,i,a,j

in (2.3) is independent of time and region, written as Za,j . Two adjacent regions are to be

studied (i.e., I = 2). The simplified model is sufficient to demonstrate the key features of

the model via effective illustrations. The purpose of using the simplified model is to present

the model implementation which, of course, could be expanded as needed.

Let Θ represent all parameters of the model, and DT = {(xt,nt,M t), t = 1, ..., T}

represent all the data available. Assuming independence in time, age class and region,

the likelihood function is given by

l(Θ|DT ) ∝
T,I,A∏
t,i,a=1

f(xt,i,a|θa, nt,i,a)f(nt,i,a|λa,Mt,i,a)f(Mt,i,a)

∝
T,I,A∏
t,i,a=1

(λaθa)
nt,i,a

√
τ · e−(θaxt,i,a+λaMt,i,a+

τ
2
(Mt,i,a−µt,i,a)2),

where the product is over time t = 1, 2, ..., T , region i = 1, 2, ..., I and age group a =

1, 2, ..., A.

The full conditional posteriors of the model forΘ are required in order to implement the

Gibbs sampler algorithm introduced in Section 2.3. The full conditional posterior distribu-

tions of λa and θa can be obtained in closed form as follows (the derivations are given in

Appendix A):

λa|Θ−λa ,DT ∼ Gamma

αλ + T,I∑
t,i=1

nt,i,a, βλ +

T,I∑
t,i=1

Mt,i,a

 , a = 1, 2, ..., A,

θa|Θ−θa ,DT ∼ Gamma

αθ + T,I∑
t,i=1

nt,i,a, βθ +

T,I∑
t,i=1

xt,i,a

 , a = 1, 2, ..., A.

The full conditional distributions of β0, β1 and ε0a are also available in closed form, respec-

tively, given by

β0|Θ−β0 ,DT ∼ N(Meanβ0 , (Precisionβ0)
−1), (2.10)
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where

Meanβ0 =
τ0µ0 + τ

∑T,I,A
t,i,a=1 bt,i,a

Precisionβ0
,

P recisionβ0 = τ0 + τTIA,

bt,i,a =Mt,i,a − ε0a − Li − β1e
t(β2+ε2a),

β1|Θ−β1 ,DT ∼ N(Meanβ1 , (Precisionβ1)
−1),

where

Meanβ1 =
τ1µ1 + τ

∑T,I,A
t,i,a=1 dt,i,a · et(β2+ε

2
a)

Precisionβ1
,

P recisionβ1 = τ1 + τ

T,I,A∑
t,i,a=1

e2t(β2+ε
2
a),

dt,i,a =Mt,i,a − β0 − ε0a − Li,

ε0a|Θ−ε0a ,DT ∼ N(Meanε0a , (Precisionε0a)
−1), a = 1, 2, ..., A,

where

Meanε0a =
τ
∑T,I

t,i=1 ct,i,a

Precisionε0a
,

P recisionε0a = τε0 + τTI,

ct,i,a =Mt,i,a − β0 − Li − β1e
t(β2+ε2a).

However the full conditional posterior distributions of β2 and ε2a can not be obtained in

closed form due to the nonlinear functions of the parameters; their relevant proportional

expressions are given by

f(β2|Θ−β2 ,DT ) ∝ exp

−τ2
2
(β22 − 2β2µ2)−

τ

2

T,I,A∑
t,i,a=1

(β1e
t(β2+ε2a) − dt,i,a)

2

 ,

f(ε2a|Θ−ε2a ,DT ) ∝ exp

−τε2
2
(ε0a)

2 − τ

2

T,I∑
t,i=1

(β1e
t(β2+ε2a) − dt,i,a)

2

 , a = 1, 2, ..., A.

The full conditional posterior distributions of τ , τε0 , τε2 can be obtained in closed form and

they follow Gamma distributions with parameters similar in structure; they are

τ |Θ−τ ,DT ∼ Gamma

ατ + 1

2
TIA, βτ +

1

2

T,I,A∑
t,i,a=1

(Mt,i,a − µt,i,a)
2

 ,
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τε0 |Θ−τε0 ,DT ∼ Gamma

(
ατε0 +

A

2
, βτε0 +

1

2

A∑
a=1

(ε0a)
2

)
,

τε2 |Θ−τε2 ,DT ∼ Gamma

(
ατε2 +

A

2
, βτε2 +

1

2

A∑
a=1

(ε2a)
2

)
.

The hyperparameters αθ and αλ have the non-closed form conditional posteriors with sim-

ilar structure whereas βθ and βλ have closed form conditional posteriors, given by

f(αθ|Θ−αθ
,DT ) ∝ α

ααθ
−1

θ e−βαθ
αθ · βA·αθ

θ [Γ(αθ)]
−A

A∏
a=1

θαθ−1
a ,

f(αλ|Θ−αλ
,DT ) ∝ α

ααλ
−1

λ e−βαλ
αλ · βA·αλ

λ [Γ(αλ)]
−A

A∏
a=1

λαλ−1
a ,

βθ|Θ−βθ ,DT ∼ Gamma

(
αβθ + αθA, ββθ +

A∑
a=1

θa

)
,

βλ|Θ−βλ ,DT ∼ Gamma

(
αβλ + αλA, ββλ +

A∑
a=1

λa

)
.

Wewrite the variance-covariancematrix of themultivariate normal distribution for spatial

variables as

σ−1

1 + |η| ·mg −η

−η 1 + |η| ·mg

−1

=

P S

S P

 ,

where

P =
σ−1(1 + |η|mg)

(1 + |η|mg)2 − η2
,

S =
σ−1η

(1 + |η|mg)2 − η2
.

Note that in our example, we assumed η to be positive. Since we only study two regions,

the number of neighbors of each region is always 1, hence mg = 1. Therefore, in the

expression above, P and S can be simplified as

P =
σ−1(1 + η)

1 + 2η
,

S =
σ−1η

1 + 2η
.

The correlation coefficient of this variance-covariance matrix can be expressed as ρ, such

that

ρ =
S

P
.

18



Therefore, the conditional posterior distribution for the region related parameters can be

obtained in non-closed form,

f(Li|Θ−Li ,DT ) ∝ exp

(
−L

2
1 + L2

2 − 2ρL1L2

2(1− ρ2)P 2

) T,A∏
t,a=1

exp
(
−τ
2
(Mt,i,a − µt,i,a)

2
)
, i = 1, 2,

where µt,i,a is expressed as (2.6), and

f(η|Θ−η,DT ) ∝
1

(1 + η)2P
√

1− ρ2
· exp

(
−L

2
1 + L2

2 − 2ρL1L2

2P (1− ρ2)

)
,

f(σ|Θ−σ,DT ) ∝
σασ−1e−σβσ

P 2
· exp

(
−L

2
1 + L2

2 − 2ρL1L2

2P (1− ρ2)

)
.

At this point all the theoretical information of MCMC implementation is available. This

model is capable of analyzing the implied parameters of the data set given the history of

claim severity, amount and insured population. The model borrows strength from region

and the age class enhancing the estimation of parameters. The parameters then can be

applied to make predictions about future claims and insured population. WinBUGS (Lunn

et al., 2000, Cowles 2004 and Ntzoufras 2011) or OpenBUGS (Spiegelhalter et al., 2007)

can be used to implement the model with ease in practice. In the following chapters, a

numerical example is presented with detailed illustration.
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Chapter 3

Simulation Studies and Model Fitting

As presented in the previous chapter, the hierarchical Bayesian model requires data

input of the historical number of claims, total claim amount and the corresponding insured

population, which is commonly available for health insurance companies, to estimate pa-

rameters and hence make predictions for future claims. At this stage it would be of more

interest to test the effectiveness of this model to ensure its capability of generating the cor-

rect parameters implied by the data. To serve this purpose, this chapter is organized in two

main parts: simulating claim data with predetermined parameters, and fitting the model to

see if it can capture the predetermined parameters.

3.1 Simulation Studies

The aim of this section is to present the process of simulating claim history data, that is

the claim severity, claim frequency and the insured population. As long as the parameters

are predetermined, the simulation can be carried out in R with "actuar" (Dutang et al.,

2008) and other supplementary packages. The following discusses how the parameters

are determined in order to carry out the simulation. The parameters are chosen mainly for

the purpose of testing the effectiveness of this model. The priority for this section is to select

some values for parameters that can pursue this purpose with simple values for execution,

without losing too much generality. Meanwhile, hopefully, the selected value could contain

as much practical meaning so that it helps to comprehend the elements of the model.

When considering claim frequency simulation, one can apply practical knowledge or

experience in the assumptions for parameters. For example, the number of doctor's visits
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for a type of medical treatment could be on average about 0.1 per time unit for age class 20-

30 (say, age class 1), increasing to about 0.4 for age class 40-50 (say, age class 3). Hence

the insurance company could anticipate on average 10% of the policyholders aged 20-30 as

well as 40% of those aged 40-50 to report a claim. If we recall (2.5) in the previous chapter,

the λa in that expression represents the claim made per person per unit time contributing

to the average claim frequency. Consequently, one reasonable choice is to set the mean of

λ1 and λ3 to be 0.1 and 0.4, respectively. For the sake of simplicity (but may be less likely in

reality), it is assumed that the claim frequency is at the same level for all age groups in the

simulation, namely λa ∼ G(40, 200) for any a = 1, 2, ..., A. It means that 20% of the insured

population would report a claim for each age class, with standard deviation of 3.16%. The

variance is intentionally selected to be small under the assumption that the variation of the

claim frequency is not excessively large. One has more freedom in this matter and can

make other assumptions if a large variation in claim frequency is believed.

The selection of the claim severity parameter can be obtained in a similar fashion. Again

consider the two age classes 20-30 (age class 1) and 40-50 (age class 3). Policyholders

in older age groups tend to make claims with large amounts. Hence the average claim

amount for the members in age class 1 can be assumed to be small, say $15 per claim,

while that of age class 3 may be higher, say $30 per claim. Again in order to present a

simple but effective model testing, in the simulation it is assumed that the average claim

amount is about $25, same among all age classes. According to (2.4), given that κa = 1

for a = 1, 2, ..., A and θa assumed known, the remaining question is the determination of

θa. Again the variation of the claim severity is assumed small. Therefore in the simulation

study, θa ∼ G(400, 10000) for any a = 1, 2, ...A. There is no unique way to select the

parameters. These values are chosen so that the model is easy to understand and the

process is technically simple to implement.

The simulation of insured population relies on three predominant parameters estima-

tion. In expression (2.6), the population mean is mainly determined by the value of βj ,

where j = 0, 1, 2. In the simulation a quantitative criterion is assumed such that the mean

of the insured population for a given age group and region is to be doubled in 20 time units.

Again this criterion is not unique and subject to changes. The average populations at time

0 and 20 are measured by E(µ0,i,a) ≈ β0 + β1 and E(µ20,i,a) ≈ β0 + β1e
20β2 , respectively.

The approximate sign indicates that the measures represent estimates rather than the true
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means of µt,i,a. The expression involves exponential terms making the calculation of the

true mean complicated. For the concern in simulation stage, such calculations are not

required for effective simulations and hence are not necessary. One has freedom in deter-

mining the initial population level and only need to ensure the population doubles at time 20.

The assumption adopted in this simulation is that the E(µ0,i,a) ≈ 70 and E(µ20,i,a) ≈ 140. A

small increase in the value of β2 could increase the mean value of population exponentially

and hence a small value for β2 is preferred. Set β0 = 50, β1 = 20 and β2 = 0.075; it can

be easily seen that these selected values satisfy the requirements stated above. One is

not expected to have much knowledge in terms of the values for the region variables L.

In expressions (2.7) and (2.8), the σ is randomly assumed to follow a Gamma distribution

with large mean and variance and η follows a Pareto distribution with parameters 1 and 1,

assigning high probability to small values.

Table 3.1 summarizes the assumptions, based on which the simulation study can be

performed in R with auxiliary packages. The completed simulated data (regions 1 and 2)

is give in Appendix B.

Table 3.1: True Values/Distributions of the Parameters

Claim Frequency Parameters Claim Severity Parameters Population Parameters

λa ∼ Gamma(40, 200) κa = 1 β0 = 50
for any a = 1, 2, ..., 7 θa ∼ Gamma(400, 10000) β1 = 20

for any a = 1, 2, ..., 7 β2 = 0.075
η ∼ Pareto(1, 1)

3.2 Model Fitting

3.2.1 Prior Elicitation

From this point on, the simulated data (Appendix B) is regarded as the observed data

set and applied as input for the hierarchical model introduced in Chapter 2. Thus the in-

formation used in simulation process is not applied in the model fitting, that is, one is not

supposed to know very much about the parameters of the data.

Once the data is available, there is only one step remaining before model application,

that is the prior elicitation. As stated in Chapter 2, the Bayesian framework allows prior
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belief and knowledge to play a role in the calculation. If little knowledge is available, ref-

erence priors carrying default information about the parameters can be used. In this case,

the historical data with rich information can be regarded as a guideline that facilitate prior

elicitation. Empirical Bayes is often selected as a method of using data to obtain priors.

The overall purpose of this chapter is to test if the model can catch the parameters in-

corporated in the data set. Selecting priors concentrated near the true value of parameters

would be meaningless in conducting such effectiveness test. Therefore, it makes more

sense, for the testing purpose, to choose as vague priors as possible. That is the general

rule for the following prior discussion. Note that this rule is not in line with the insurers'

intention, who would like to obtain the underlying parameters from the data with high accu-

racy. To serve the insurer's intention, the historical data can be examined and studied in

great detail such that the prior1 is a good estimate of the true value. For testing purposes,

we do not present it in this project.

Bearing all of the above in mind, let us look at the insured population data. After 1

time unit, the average insured population across all age classes for regions 1 and 2 are

about 68 and 75, respectively. A brave guess of the initial insured population could be

some number in between, say 70. This implies that β0 + β1 ≈ 70. Similarly the average

population after 20 time units are 142 and 141 for regions 1 and 2. The guess could be

about 140 and β0+β1e20β2 ≈ 140. Two equations are not enough to estimate 3 parameters.

As high accuracy is not the priority at this stage, a wild guess can be made such that those

conditions are satisfied, say β0 ≈ 30, β1 ≈ 40 and β2 ≈ 0.05. Furthermore, the variance of

the distribution of β's are assumed large, indicating less confidence of the true value of β's

and thus allowing the model to find the true value with great freedom. The priors are made

as follows:

β0 ∼ N(30, 106),

β1 ∼ N(40, 106),

β2 ∼ N(0.05, 102).

1Practical recommendation in setting priors in the GEGM class can be found in Migon and Gamerman
(1993).
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The priors for all other hyperparameters are reference priors that contain little informa-

tion, and are given as follows:

τ, αλ, βλ, αθ, βθ ∼ Gamma(0.001, 0.001),

τε0 ∼ Gamma(1, 10000),

τε2 ∼ Gamma(1, 100),

σ ∼ Gamma(1, 0.005),

η ∼ Pareto(1, 1).

The priors for τ, αλ, βλ, αθ, βθ are set with large variance; τε0 and τε2 are set with small

means such that the ε0a and ε2a have large variance and wide range of possible values to

take; a two-parameter Pareto distribution allows η to take small values with high probability;

σ with large mean contributes towards the region factor.

It is now time to implement the model using OpenBUGS (or WinBUGS) to obtain the

posteriors of these parameters. The output is presented in the next subsection.

3.2.2 Illustrative Results

The OpenBUGS program can be called from R using the package "R2OpenBUGS"

(Gelman et al., 2011 and Sturtz et al., 2005). We present two types of graphs, namely the

history plot (or called trace plot) and the kernel density plot for the sampling parameters for

each age class. Random initial values are given for the parameters to initiate the program.

Three parallel chains are generated with 100,000 observations, each including burn-in of

65,000 iterations and the remaining 35,000 iterations for graphical presentation.

Burn-in refers to the operation of discarding an initial portion of a Markov chain sample

so as to minimize the effect of initial values on the posterior inference. In theory, after infinite

many runs of the Markov chain the effect of the initial values would vanish. However, it is

practically inefficient and time consuming to reach infinitely many runs. Therefore, it is

assumed that after a number of iterations (such number is the burn-in number), the chain

would reach its target distribution. The early iterations are thrown away and the remaining

samples are used for posterior inference.

The program allows each trace to start with different initial values so as to verify whether

the sequences would eventually mix together. Every chain is superimposed on the same
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plot. The overlapping of the chains represents a sign of convergence whereas an identifi-

able divergence in the trace indicates less confidence in convergence.

The analysis of the density plots allows us to identify potential departures from conver-

gence such as the presence of multiplemodes. The density plot format depends onwhether

the specified variable is discrete or continuous; if the variable is discrete then a histogram

is produced whereas if it is continuous a kernel density estimate is produced instead. In

statistics, kernel density estimation (KDE) is a non-parametric approach to estimate the

probability density function of a random variable. Kernel density estimation provides a data

smoothing solution based on a finite data sample. The extent of smoothness is determined

by a free parameter called bandwidth. It is an index that strongly influences the estimated

result. A large value of the bandwidth indicates strong force of smoothness being imposed,

which could be exposed to the risk of oversmoothed curve obscuring the underlying struc-

ture. On the other hand, the undersmoothed curve with a small value of the bandwidth may

contain too much redundant information and is not helpful towards decision making. The

OpenBUGS program automatically selects the optimal bandwidth when graphing the den-

sity estimate. One can obtain useful information from the bandwidth chosen by the program

under the optimal estimation. Further information about the kernel density estimation and

relative topics can be found in literature such as Rosenblatt (1956) and Park and Marron

(1990).

As stated in the previous section, priors are vaguely chosen with large possibility of

taking a wide range of values. Consequently, the sampling values do not show signs of

convergence until thousands of iterations. The traces of the three chains start close to the

prior means for a long while but eventually intertwine and converge to the true values of

parameters. The advantage is that the model can identify the correct values even with less

informative priors, while the downside is the time consumption, implying the importance of

good prior estimation. Priors with more accurate information would significantly reduce the

calculation time and speed convergence. When the traces are not converging, it is possible

that multiple modes would emerge in the posterior density functions. The convergence can

be informally checked by the trace plot.

Figure 3.1 presents the trace and posterior distribution of βa0 for a = 1, 2, ..., 7. The

square parentheses in the graph titles indicate the age groups. The vertical axis of the trace

plot represents the value of each sample and the horizontal axis represents the number of
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iterations. According to the output, the means of βa0 , which are centered at about 50, do not

differentiate by age groups. That is consistent with the assumption of simulation process.

However, each age class is subject to the variation of the random error and hence the seven

graphs are not exactly the same. Each trace cyclically alternates up and down and the

average lines of the three traces superimpose, which is a strong indication of convergence.

There are samples oscillating away from the average lines, for example, at about 80,000

and 100,000, dropping towards 20. However soon the trace reverts to its mean.

The density plots reveal further differences among age groups. "N=35000" represents

the number of iteration recorded in the plot. The bandwidths for βa0 's are between 0.73

and 0.79, implying that the density plots are not heavily smoothed and yet display intuitive

information. Age group 1 has the smallest mean and group 5 has the largest, but the overall

means locate at around 50. Both age groups 1 and 5 show slightly double modes. The

double modes are not far from each other and the curve is smooth with clear contour. It

is deemed as a strong evidence of convergence. Note that the curve is left skewed, with

a number of samples located at somewhere between 15 to 30. The skewness reflects a

distinctive distance between the prior knowledge and the true underlying values.

Likewise, Figure 3.2 for βa2 , for a = 1, 2, ..., 7, shows a similar situation. On the trace

plot the averages of the iterations locate at about 0.08, which is close enough to the true

value of 0.075. The iterations are oscillating at about the average line except a visible spike

reached 0.12 at around 83,000 iterations. The abnormal values soon vanish and the trace

reverts to its mean. Differences can be further detected from the posterior distributions.

The bandwidths are approximately 0.0012, even smaller than that of βa0 's. It implies that

little smoothing has been done for the plot. Age group 1 displays large mean above 0.08

while the averages of other age groups seem between 0.074 and 0.08. The normal bell

shape curve is more obvious for βa2 than βa0 .

Similar conclusions can be drawn on β1 (Figure 3.3). The average of the three traces

stabilizes at about 20 after 65,000 iterations. However, there are still a small number of

iterations that jump above 40. The bandwidth shown as 0.5726, indicates a weak force

towards smoothing. The density plot is bumpy with several humps around the mean value.

These features are not unexpected. The exponential function can amplify the effects of

even the minute change of parameters (i.e., time and βa2). Nevertheless, the overall shape

of the posterior distribution and the aligned average of the three traces provide convincing
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True Values of βa0 ∀ a
E(βa0) = β0 = 50

Figure 3.1: Trace Plot and the Posterior Distribution of βa0 , a = 1, 2, ..., 7.
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True Values of βa2 ∀ a
E(βa2) = β2 = 0.075

Figure 3.2: Trace Plot and the Posterior Distribution of βa2 , a = 1, 2, ..., 7.
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evidence of a strong convergence. The posterior is right skewed with mass on the right tail,

due to the distance between prior belief and the true underlying value.

True Values of β1
β1 = 20

Figure 3.3: Trace Plot and the Posterior Distribution of β1.

The output for λ's and θ's shows no departure from convergence. The three parallel

simulated chains are well superimposed. The small values of bandwidths imply little smooth

effect of the plot. It is almost certain that the values of λ's and θ's would converge. Age

groups 1 and 7 have larger mean value of λ than the others whereas age groups 2 and 5

have larger mean value of θ. The empirical meaning of the values for λ's and θ's are further

discussed in the next subsection.

It is clear from the output of both region variables that the mean values are centered at

zero. The data is obtained under the assumption that little information of region is imposed.

The output is consistent with such assumptions. Nevertheless the program continues the

attempt to seek for potential values of L's implied by data. As a result there are occasional

spikes in the trace plot and small tails in the density plots.
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True Values of λa ∀ a
E(λa) = 0.2

Figure 3.4: Trace Plot and the Posterior Distribution of λa for a = 1, 2, ..., 7.
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True Values of θa ∀ a
E(θa) = 0.04

Figure 3.5: Trace Plot and the Posterior Distribution of θa for a = 1, 2, ..., 7.
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True Values of Li ∀ i
E(Li) = 0

Figure 3.6: Trace Plot and the Posterior Distribution of Li for i = 1, 2.

3.2.3 Credible Intervals of the Posterior Means

The aim of this subsection is to further discuss the posterior means of the age-related

parameters along with the corresponding credible intervals.

Credible intervals in Bayesian theory are analogous to confidence intervals in frequen-

tist inference. However, they are philosophically different. In frequentist inference the

bounds of confidence intervals are treated as random variables and the parameters as

fixed values. In contrast, in Bayesian theory the bounds are regarded as fixed while the

parameters are random variables. Further discussion in terms of the difference between

the credible intervals and confidence intervals can be found in the literature, such as Lindley

(1965) and Jaynes and Kempthorne (1976), among others.

The blue solid line represents the posterior mean for each age group and the red dotted

line represents the 2.5% and 97.5% credible intervals. The credible interval graphs provide

clearer vision of the difference in parameter values over age groups. In practice this would

be of more interest to the management level. In Figure 3.7 values of βa0 are simulated

under the same mean; therefore it is expected that the posterior means across age groups

do not differ significantly. Similar expectation holds for βa2 in Figure 3.8.

Not surprisingly the simulation of λa involves more volatility across age groups. Recall

that λ represents the average claim frequency per person per unit of time. In Figure 3.9, age
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Figure 3.7: Credible Interval of βa0 for a = 1, 2, ..., 7.

Figure 3.8: Credible Interval of βa2 for a = 1, 2, ..., 7.
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groups 1 and 7 show higher average claim frequency among all age groups, with values

of 0.22 and 0.25, respectively. Group 3 shows the lowest average claim frequency of 0.14,

meaning that about 14% of the insured population in age group 3 would report a claim.

To verify if it is consistent with the data input, Figures 3.10, 3.11 and 3.12 display com-

parison in the number of reported claims between age groups 7 and 1, 7 and 3, 7 and 6,

respectively, from times 1 to 20. The corresponding input can be found in Appendix B.

According to Figure 3.10, age groups 1 and 7 show a similar pattern in number of claims

in the 20 time units. By comparing the actual claim numbers for each time point, group 1

makes less claims than group 7 most of the time in the 20 time units. It is even clearer from

Figure 3.11 and Figure 3.12 that group 7 makes the most number of claims on average

over the 20 time units, whereas the difference between groups 3 and 6 is not that obvious.

These conclusions are consistent with that drawn from Figure 3.9.

Figure 3.9: Credible Interval of λa for a = 1, 2, ..., 7.

Similar analyses can be conducted for θa, the inverse of which represents the average

claim severity. However, Figure 3.13 does not show too much difference in the claim sever-

ity across age groups. Age group 2 shows the average claim severity of 1/0.03777 ≈ 26.5,
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Figure 3.10: Observed Number of Claims, Times 1 to 20, Age Groups 7 and 1.

Figure 3.11: Observed Number of Claims, Times 1 to 20, Age Groups 7 and 3.

Figure 3.12: Observed Number of Claims, Times 1 to 20, Age Groups 7 and 6.

35



which is higher than group 5 of 1/0.03791 ≈ 26.3, group 1 of 1/0.04263 ≈ 23.5, but the

differences are not significant, as expected.

Figure 3.13: Credible Interval of 1/θa for a = 1, 2, ..., 7.

By plotting the input data, Figure 3.14 and Figure 3.15 show the comparison in the

average of claim severity between age groups 2 and 1, 2 and 5 from time 1 to 20. The

differences are too small to be identified easily, which is again consistent with the conclusion

from Figure 3.13.

The statistics of posteriors are summarized in Table 3.2. It contains the mean, standard

deviation, median and the credible interval bounds for the parameters. Credible interval

figures are generated based on these statistics. The two region parameters centered at

about 0, which is consistent with the fact of insufficient information in terms of the region

effect in this example; β0a 's have means around 50 and standard deviations in between 7

and 8; β1 centers at about 20; β2a 's have means between 0.074 and 0.081 with relatively

small standard deviations; the claim frequency index, λa's, reach the highest values at age

groups 1 and 7, with mean values above 0.2; the claim severity index, θa's, do not differ a

lot across age classes.
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Figure 3.14: Observed Average Claim Severity, Time 1 to 20, Age Groups 2 and 1.

Figure 3.15: Observed Average Claim Severity, Time 1 to 20, Age Groups 2 and 5.
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Table 3.2: Statistic Summary of the Major Parameters

Parameter Mean Standard Deviation 2.5% Percentile Median 97.5% Percentile

L1 0.0074 0.142 -0.2272 0.0028 0.2726
L2 -0.0079 0.1474 -0.2738 -0.0026 0.2298
β10 48.11 7.524 38.17 48.42 60.82
β20 50.31 7.669 35.29 51.62 62.32
β30 50.23 7.666 36.16 50.75 62.73
β40 48.9 7.759 30.95 49.4 61.52
β50 52.39 7.594 41.55 53.99 64.25
β60 49.07 7.885 32.89 50.34 61.73
β70 49.92 7.626 36.79 51.06 61.88
β1 20.03 6.086 11.73 18.93 32.08
β12 0.0803 0.0120 0.0568 0.0803 0.1043
β22 0.0763 0.0116 0.0549 0.0759 0.0997
β32 0.0774 0.0118 0.0555 0.0770 0.1009
β42 0.0783 0.0117 0.0566 0.0778 0.1020
β52 0.0745 0.0116 0.0530 0.0741 0.0981
β62 0.0789 0.0116 0.0576 0.0785 0.1023
β72 0.0753 0.0116 0.0535 0.0749 0.0987
λ1 0.2162 0.0073 0.2018 0.2161 0.2313
λ2 0.1683 0.0065 0.1555 0.1682 0.1816
λ3 0.1384 0.0059 0.1267 0.1383 0.1505
λ4 0.1650 0.0064 0.1523 0.1650 0.1782
λ5 0.1805 0.0067 0.1673 0.1804 0.1942
λ6 0.1613 0.0063 0.1488 0.1612 0.1744
λ7 0.2497 0.0080 0.2340 0.2497 0.2659
θ1 0.0426 0.0014 0.0381 0.0426 0.0472
θ2 0.0378 0.0014 0.0332 0.0378 0.0424
θ3 0.0397 0.0016 0.0350 0.0397 0.0445
θ4 0.0421 0.0016 0.0374 0.0421 0.0468
θ5 0.0379 0.0014 0.0334 0.0379 0.0424
θ6 0.0419 0.0016 0.0371 0.0419 0.0466
θ7 0.0432 0.0013 0.0387 0.0431 0.0476
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Chapter 4

Predictions and Premium Determination

Once the underlying parameter values of the data have been obtained, a natural ques-

tion to ask is whether they can be applied for predicting the insured population, number of

claims and most importantly the total claim amount for the next time unit. One of the ma-

jor concerns to the health insurance providers is if there are sufficient premiums retained

to cover the losses. Once we can predict the total claim amount, the premium can be

determined using different premium principles.

This chapter focuses on the premium setting under different risk measures. Firstly the

theoretical Bayesian theory of the prediction algorithm is presented; it is followed by the

predictive results for the numerical example presented in Chapter 3; finally it also demon-

strates a number of ways to determine the premium based on the predicted claim amounts

under certain premium principles.

4.1 Predictions in Bayesian Framework

Making predictions in Bayesian theory has been discussed intensively in the literature.

Most commonly the prediction can be made under two circumstances, with or without ob-

servations. If the historical observation is not available, the predictive distribution can be

expressed as

f(X) =

∫
f(X|θ) · π(θ)dθ,

which is called the prior predictive density. This prediction is made based on the average

of all possible parameters supported by the prior information.
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It is also possible to predict the future observationX ′ based on the observed dataXobs,

known as the posterior predictive density, given by

f(X
′ |Xobs) =

∫
f(X

′ |θ) · π(θ|Xobs)dθ.

It averages the conditional density of the observations against the posterior knowledge of

the predictions. This prediction algorithm is only applicable when observations are avail-

able.

As the historical data are most likely available for the insurers, the posterior prediction

algorithm would be a better instrument to perform the prediction studies for the purpose of

this project. Details are discussed in the next section. Refer to Gelfand (1996) for further

knowledge about predictive distributions.

4.2 Predictive Results

Thanks to the OpenBUGS program, it makes prediction in Bayesian inferences straight-

forward to implement. The values to be predicted, marked as 'NA', along with the observed

data (which is the simulated data in this project) are treated as input. Only the observed

data determines the values of the parameters, based on which the prediction is made.

Our aim is to obtain the prediction of the total claim amount for the coming period.

It is preferred to have a distribution for such predictions so that the insurers are able to

determine the premium based on their risk tolerance index measured by, say, standard

deviation or the Value at Risk (VaR). In reality, many insurers choose more handy ways

to determine premiums, such as establishing manual rates or blended rates. One of the

advantages of this model implemented under Bayesian framework is the convenience of

obtaining the posterior predictive distributions, which provides valuable information for the

experience rating process in practice.

Based on the data of the past 20 time units, the prediction of the 21st time unit in terms

of the insured population, total number of claims and total claim amount are presented in

Figures 4.1, 4.4 and 4.8, respectively. It is worthmentioning that the program actually allows

to make predictions for more than one time unit. This project only presents the prediction

and discussion for one time unit. The effectiveness of further predictions remains to be

investigated.
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Figure 4.1: Prediction of Insured Population for 21st Time Unit -- Region 1
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Figure 4.1 represents the predicted insured population for the 21st time unit by seven

age groups in region 1. The predicted insured population in region 2 is not much different

from region 1, which is in line with the input data as a result of lacking information, and hence

is not presented here. Same as the previous chapter, the trace plot contains three parallel

chains each with 35,000 iterations. For each age class, the three chains superimposed

one another and the difference is hardly noticeable. As the data for insured population is

discrete, it is expected to see a probability mass function of the predictions. In this example

the domain of the predicted insured population could take any value varying frommore than

100 to less than 200. Slicing the distribution to histogram-like would not be friendly to read.

Therefore, it is presented in a continuous format with a probability density function. The

superimposed traces are good indications of convergence.

Figure 4.2: Insured Population with Prediction for Age Groups 1 and 6 -- Region 1

The statistical summary is presented in Table 4.1. The first column represents the data

type with the subscripts in the order of age, time and region. The other columns list the

mean, standard deviation, 2.5% quantile, the mode and the 97.5% quantile of the predicted

distribution. According to the table, it is predicted that age groups 1 and 6 would have

slightly higher insured population than other groups. Plotting the predicted values along

with the historical insured population might give a better idea of whether the predictions

are legitimate. Figures 4.2 and 4.3 present a comparison of the mean insured population

between age groups 1 and 6, 1 and 5, respectively. The open dots are the historical data of

the mean insured population while the filled dots represents the average predicted value for

the 21st time unit. In both figures the mean predicted values lie in line with the historical data
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Figure 4.3: Insured Population with Prediction for Age Groups 1 and 5 -- Region 1

retaining the existing curvature. The past 20 time units of data reveal a steadily increasing

trend that doubles the initial population. The average predicted values tend to increase

if values in previous time units are relatively small; if the historical values are large, the

average predicted values tend to decrease. In general, the predicted insured population

reflects the features of the population growth and hence can be regarded as a reasonable

estimation.

Figure 4.4 displays the posterior prediction for the number of claims for the 21st time unit

in region 1. For each of the age groups the trace plots show strong evidence of convergence

due to undistinguished superimposed iterations. The density plots are displayed in discrete

manner, as the number of claims are discrete with a small domain. The distribution for each

age class has a symmetrical bell shape but the average number of claims differ a lot. Age

groups 1 and 7 have the average claims exceed 30 whereas age group 3 merely above

20. Detailed statistics are presented in Table 4.1. An interesting feature is that the age

classes with higher predictive averages tend to have higher standard deviation than other

age classes, indicating more volatility in the number of claims for the recorded time units.

The average predicted numbers of claims for the 21st time unit are placed along with the

existing values for the past 20 time units. Figure 4.5 compares age group 7 with group 1,

with the filled dots being the predicted mean. Note that the number of claims for age group 1

increases by a large amount from time unit 18 to 19 and decreases at time 20. Therefore, in

time unit 21 it is expected that the average number of claims continue to fall, with a smaller

predicted value than the previous time unit. Meanwhile group 7 predicts to grow steadily
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Figure 4.4: Prediction of Number of Claims for 21st Time Unit -- Region 1
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Figure 4.5: Claim Number with Prediction -- Age Groups 7 and 1

Figure 4.6: Claim Number with Prediction -- Age Groups 7 and 3

Figure 4.7: Claim Number with Prediction -- Age Groups 7 and 6
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with a slight increase in claim number than that in the last time unit. In Figures 4.6 and 4.7,

both age groups 3 and 6 present the average predicted values consistent with the existing

trend of increase. For all age groups, the claim numbers continue the overall increasing

pattern with minor corrections. Furthermore the average predicted values are consistent

with the analysis of the parameter values of the λ's. Based on Figure 3.9 in the previous

chapter, the λ's representing average claim frequency, have high values for age groups 1

and 7 and hence should in theory produce larger number of claims than those for other

groups. Therefore, the average predicted claim numbers satisfy the gleaned knowledge

about the claim frequency.

The predicted total claim amounts may be of the most interest from the insurers' point

of view. Ultimately the claim amounts, without considering the deductible or coinsurance,

indicate the actual liability to the claimants. It directly affects how the insurers determining

the reserves for the corresponding time period. Figure 4.8 displays the predicted outcome

of the claim amounts for all age groups in region 1 for the 21st time unit. As usual the

traces of three chains overlap until they are almost indistinguishable, providing a good

evidence of reaching the convergence state. Due to the wide range of values for a claim

amount, the program automatically chooses to present continuous density functions with

large bandwidth. It means that the smooth effect imposed on density curves is strong.

Note that in the statistics summary Table 4.1, the predicted total claim amountsX across

all age groups show high standard deviations compared to the predicted insured population

M and the number of claims N , resulting in large coefficients of variation in general. In fact

this outcome is not surprising under the model design. One of the key features of a hierar-

chical Bayesian model is the feasibility to incorporate known information at multiple layers.

At the same time introducing layers may also bring uncertainty to the parameters. The

aggregate total claim amount is derived from the variables representing claim frequency

and insured population. As defined previously, each of those variables bear uncertainty to

some extent. The accumulation of such uncertainty may result in high volatility for the vari-

ables at the top of the hierarchy, in this case, the aggregate claim amount X. Therefore, it

is suggested that in the premium calculation, the variance or standard deviation should be

taken into account as a representation of the accumulated uncertainty; that is discussed in

detail in the next section.
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Figure 4.8: Prediction of Total Claim Amount for 21st Time Unit
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Figure 4.9: Average Amount Per Claim with Prediction in Region 1 -- Age Groups 2 and 1

Figure 4.10: Average Amount Per Claim with Prediction in Region 1 -- Age Groups 2 and 5
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Figures 4.9 and 4.10 present the predicted average claim severities for the 21st time

unit for age groups 2 and 1, 2 and 5, respectively. The average claim severity is calculated

by dividing the total claim amounts by the corresponding number of claims for each time

unit. The figures are for region 1 only, which contain a lot of resemblance to region 2. The

average claim severity for group 2 varies substantially for the first 7 time units and then

stabilizes thereafter. The predicted average claim severity for age group 2 reaches about

$26. Likewise, age groups 1 and 5 present a similar pattern in the average claim severity

with predicted values between $23 to $27. Overall the predictions are consistent with the

assumption of $25 per claim. Over the time units some age groups show a slight increase

(or decrease) of the average claim severity, and the variations are within reasonable ranges.

4.3 Premium Determination under Various Premium Principles

In this section we present several approaches to calculate premiums based on the in-

formation at hand. Some approaches only require the mean and variance of the predicted

variables while others require more details of the predictive distribution such as the per-

centiles. Each method has its own features and advantages. Some approaches are more

conservative, with high premium scheme aiming to cover the extreme claims, while others

are moderate making the products competitive in market. The insurers have the freedom to

choose the one according to their level of risk tolerance. Further discussion can be found

in Goovaerts et al. (2010), Hardy (2006), Laeven and Goovaerts (2008), Young (2004) and

Embrechts et al. (1997), among others.

A premium principle, denoted as P , is a function assigning a real number to a random

variable. In this project the random variable is the predicted total claim amounts (or the

losses) for the coming time unit given the observations over the past 20 time units, denoted

as X|DT . To simplify the notation for premium principle illustrations we use X instead to

represent the loss random variable.

4.3.1 Net Premium Principle

Among all the premium principles, the net premium principle is one of the commonly

applied principles in the literature. It is feasible and simple in application and satisfies many

nice properties. The fundamental theory under this principle is that the risk is eventually
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Table 4.1: Predicted Insured Population, Claim Number and Total Claim Amount for 21st
Time Unit

Dataa,t,i Mean Standard Deviation 2.5% Percentile Median 97.5% Percentile

M1,21,1 151.9 11.2 130 151.9 173.9
M1,21,2 151.8 11.2 130.4 151.7 173.8
M2,21,1 145.8 11.07 124 145.8 167.8
M2,21,2 145.8 11.12 124 145.7 167.5
M3,21,1 148 11.15 126.2 148.1 169.8
M3,21,2 148.1 11.13 126.5 148.1 169.7
M4,21,1 148.5 11.18 126.6 148.5 170.9
M4,21,2 148.6 11.15 126.9 148.5 170.4
M5,21,1 144.6 11.12 122.8 144.6 166.4
M5,21,2 144.6 11.13 122.7 144.6 166.4
M6,21,1 150.1 11.12 128.3 150.1 171.9
M6,21,2 150 11.11 128.4 150 172
M7,21,1 143.6 11.09 121.9 143.6 165.3
M7,21,2 143.6 11.1 121.9 143.6 165.5
N1,21,1 32.83 6.326 21.88 33 46.51
N1,21,2 32.82 6.337 21 33 46
N2,21,1 24.55 5.371 15 24.86 36
N2,21,2 24.55 5.386 15 24.6 36
N3,21,1 20.47 4.87 12 20.83 31
N3,21,2 20.51 4.875 12 20 31
N4,21,1 24.52 5.381 15 24 36
N4,21,2 24.51 5.364 15 24 36
N5,21,1 26.09 5.578 16 26 37.09
N5,21,2 26.1 5.571 16 26 38
N6,21,1 24.2 5.313 14 24 35
N6,21,2 24.22 5.328 14.18 24 35
N7,21,1 35.89 6.707 23.77 36 50
N7,21,2 35.85 6.71 23 36 50
X1,21,1 771.1 202.6 412.6 756.5 1201
X1,21,2 771.8 202.3 413.4 759.6 1209
X2,21,1 651.1 195.1 312.7 634.4 1074
X2,21,2 651.2 196 313.5 635.6 1076
X3,21,1 516.1 168.6 226.2 500.7 881.5
X3,21,2 517.5 168.8 231.9 503.4 884.5
X4,21,1 583.6 175.2 282.4 569 964.2
X4,21,2 583.3 175.1 280 569.8 965.1
X5,21,1 689.2 200.8 340.3 672.9 1124
X5,21,2 690.4 202.3 338.8 673.9 1131
X6,21,1 579.3 175.4 278.7 564.4 963.1
X6,21,2 579.2 174.8 275.5 564.3 958.5
X7,21,1 832.6 210.3 457.9 816.7 1279
X7,21,2 831.3 210.4 459.5 819 1281
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eliminated after selling a great many identical and independently distributed policies. Thus

the premium would just to cover the claims only. It does not encompass any load for ex-

penses or profit. This principle is defined as

P (X) = E(X).

In this project, the net premium for each age group in either region, the premium at time 21

is just the corresponding mean predicted total claim amounts that can be found in Table 4.1.

The advantage of the net premium principle is that it requires the least amount of in-

formation from the predicted posterior distribution with a handy calculation process. It is a

crude method of providing estimation when there is no sophisticated analysis of the pre-

dicted variables. At the same time the disadvantages are too remarkable to be neglected.

In reality it is almost impossible to sell infinitely many independent and identical policies.

Bearing no risk loading makes the premiums exposed to extreme events and fluctuations

such as very large claim amounts. Hence it is not recommended to apply the net premium

principle in practice, but to treat it as an estimated measure.

4.3.2 Expected Value Premium Principle

The expected value premium principle, often regarded as the extension of the net pre-

mium principle, expresses as

P (X) = (1 + ξ)E(X), ξ ≥ 0,

where ξ is the loading factor. If ξ = 0, it is the same as the net premium principle. Clearly

the premium under this principle is larger than the expected loss. The difference between

the expected loss and the premium can be referred as the premium loading which pro-

vides protection against unexpected losses. Furthermore, according to the ruin theory if

the loading is not applied, ruin would eventually occur with certainty. The loading factor

can be determined based on the risk tolerance level of the insurers. A big value of ξ pro-

duces large protection margin while less attraction to the potential buyers. Therefore, it is

suggested to pay attention to the loading factor and do constant testing to ensure that the

factor is set at a right level.
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4.3.3 Variance Premium Principle

The variance premium principle is another further development of the net premium prin-

ciple. The premium depends not only on the expected value but also the variance of the

loss. Unlike the other premium principles, the variance premium principle considers the

the variability of the loss; the more variability the loss, the higher the premium. In contrast

to the previous case that the risk loading is proportional to the expected loss, here it is

proportional to the variance of the loss. The variance premium principle can be expressed

as

P (X) = E(X) + ωV (X), ω ≥ 0.

Note that this is the same as the net premium principle if ω = 0. Like the expected value

premium principle, the insurers have the freedom to determine the risk load based on their

risk tolerance. It is more reasonable to have the premium loading related to the variability

of the loss. However, since the variance and the expectation have different units (the unit

of the variance is the square of that of the expectation), the interpretation of the empirical

indication may contain ambiguity.

4.3.4 Standard Deviation Premium Principle

The standard deviation premium principle has the same structure as the variance pre-

mium principle, with the variance replaced by the standard deviation of the loss. It is ex-

pressed as

P (X) = E(X) + ν
√
V (X), ν ≥ 0.

Similar to the variance premium principle, it takes the variability of the loss into the premium

determination. As the standard deviation and the expectation of the loss share the same

unit, it is more convenient to interpret the underlying reasoning of the principle.

It is not the intention in this project to discuss the effectiveness of each premium princi-

ple, nor to determine the rational decision of the premium loadings. The aim is to illustrate

how to apply the premium principles to the predicted results we have obtained so far. The

net premium principle and the expected premium principle require only the expected loss

to calculate the premium whereas the variance and standard deviation premium principles

require expectation and variance of the loss. Each premium principle has its properties

and features. Some would be better used as crude estimation while others can be seen as
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legitimate decision for the premium. Further discussion among the premium principles can

be found in Bühlmann (1970) and Gerber (1979).

4.3.5 Value-at-Risk

Recently the Value at Risk (VaR) has caught much attention in the insurance and bank-

ing industry, which is also known as the quantile risk measure or quantile premium principle.

VaR calculation requires to specify a confidence level α. Suppose that the loss random vari-

able X has the cumulative function FX(z) = P{X ≤ z}. The VaR with confidence level α

is defined as

VaRα(X) = min{z|FX(z) ≥ α}, α ∈ [0, 1].

According to this definition, VaRα(X) is a lower α-percentile of the random variableX. The

choice of α depends on the risk tolerance level of the insurers, for example α, 0 ≤ α ≤ 1,

can take the value of 90%, 95% or 99%. Generally the VaRα(X) represents the threshold

loss level such that with probability of α the loss does not exceed the threshold.

Unlike the premium principles presented previously which require the expectation and

variance of the losses, the VaR is essentially measuring the percentile of the loss dis-

tribution function, providing a minimum value of the loss based on the confidence level.

Setting premium based on the VaR tends to give the insurer more confidence in terms of

the percentage losses capable to be covered. However, there are critics emphasizing the

inadequacy to provide information for the losses beyond the VaR level. It may happen that

the upper tail contains losses with severely large amount. Despite the fact that such kind

of severe losses occur with small probability, once they do occur, the size of the losses can

be large enough that it exposes the business to illiquidity or even insolvency. This arouses

the necessity of considering the extension of VaR measure presented in the next subsec-

tion. Further discussion about VaR can be found in Peng (2009) and Hardy (2006), among

others.

4.3.6 Tail Value-at-Risk

An alternative riskmeasure is the so-called tail value-at-risk (TVaR), which is also known

as conditional VaR (CVaR), average VaR (AVaR), mean excess loss, mean shortfall, con-

ditional tail expectancy (CTE), expected shortfall (ES), expected tail loss (ETL). TVaR is

53



chosen to address some of the shortages of VaR measure. Similar to the VaR measure,

TVaR is defined based on a confidence level α, 0 ≤ α ≤ 1, whose typically values can

be 90%, 95% or 99%. As suggested by the name, TVaR accounts for the less profitable

outcomes in the tail exceeding VaR. It is sensitive to the shape of the distribution in the tail.

It is the expected loss given that the loss belongs to the (1− α) tail of the loss distribution,

that is the conditional expectation of loss X subject to X ≥ VaRα(X).

Denote α-quantile risk measure as Qα, the TVaR of the loss X with confidence level

α ∈ (0, 1) can be expressed as (see Hardy 2006)

TVaRα = E(X|X > Qα),

or in other words,

TVaRα(X) =
1

1− α

∫ ∞

Qα

zdFX(z).

Note that this formula does not work if there is a probability mass atQα. Especially for a

discrete loss distribution, there can be more than one outcomes equal to Qα. In this project

we use the following expression to calculate the TVaR

̂TV aRα =
1

N(1− α)

N∑
j=N ·α+1

X(j),

where N is the total sample size, X(j) is the jth smallest values (or jth order statistic) ofX

and N(1− α) is assumed to be an integer.

The TVaR has become a very important risk measure in actuarial practice and financial

risk management. It is easy to understand and to apply with simulation output. It is worth

noting that, since the TVaRα(X) is the average loss given that the loss is greater than VaR

at confidence level α, the TVaRα(X) is not less than VaRα(X), providing a conservative

risk measure. Many important properties of VaR and TVaR are beyond the scope of this

project; refer to Rockafellar and Uryasev (2002), Hardy (2006), Sarykalin et al. (2008) and

Peng (2009) for further reading.

4.3.7 Numerical Premium Analysis

As explained in early sections, the predicted distributions about the total claim amounts

are available and thus it is not difficult to determine the premium under the premium prin-

ciples listed above. Table 4.2 displays the premium for 21st time unit in region 1 using the
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four premium principles, VaR and TVaR risk measures. The total premium under the net

premium principle is just the average predicted total claim amount, same as the second col-

umn of Table 4.1. For the expected value premium principle, variance premium principle

and standard deviation premium principle, risk loadings of ξ = 0.5, ω = 0.01 and ν = 1.96

are assumed, respectively. The risk loadings reflect very subjective opinion towards the

coverage of the total claims. Higher loadings provide stronger protection against the claim

uncertainty. Due to big value of the variance, the premium under variance premium prin-

ciple is very sensitive to the value of ω and hence it should take extra caution in applying

this premium principle.

For the standard deviation premium principle, the risk loading ν = 1.96 can almost

ensure that the company would pay all claims with probability of 97.5%, given that the

predicted total claim distributions have approximately the shape of a normal distribution. In

our numerical results shown in Figure 4.8, the predicted distributions are slightly right (or

positively) skewed with a fat right tail. That means the premium with risk loading ν = 1.96

can cover the total claims with slightly less than 97.5% of chance. This is indeed the case

as under the VaR measure with confidence level of 97.5%, the premium is slightly higher

than that under the standard deviation premium principle for all age classes. Conditioning

on the premium exceeding VaR97.5%, the TVaR97.5% gives even larger premiums.

The aim of Table 4.3 is to show different approaches of calculating premium per policy-

holder for the next time unit in region 1. Having the total premium and total insured pop-

ulation available, premium per policyholder can be obtained by averaging premium over

population with ease. There is no such thing as the best premium design. The purpose

of this section is to provide a perspective on determining the premium per policyholder,

with no intention to justify which is the best fit. The results for region 2 can be found in

Appendix C.

A crude estimation of the premium per policyholder is to use the premium under net

premium principle over the mean predicted population for each age class. The premium

per policyholder is higher for age classes 1 and 7 but generally between $3 and $6. This

is consistent with the assumptions in Chapter 3. It is assumed that for every time unit

20% of the population would report claims, each worth about $25, which indicates that the

average cost per policyholder per time unit is about 20%×$25 = $5. As the simulation study

generates higher claim frequency for age groups 1 and 7 (See Figure 3.9), it is reasonable to
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anticipate the average cost being higher for these two groups. This premium determination

does not involve any loadings and hence can only cover the average cost per policyholder.

Another approach is to average the VaR97.5% over the mean insured population. This

method provides more certainty that the company can fulfill its obligation. Since the insured

population may be volatile, a more conservative measure is to use the 2.5 percentile of the

insured population, to protect against overestimation of the population. This results in a

higher estimation of premium per person. Under such estimation, age groups 1 and 7 have

premiums higher than $9 and $10, respectively. Note that age groups 5 and 7 have low

predicted insured populations that results in even higher premiums per policyholder.

A similar measure is to replace VaR97.5% with TVaR97.5% to perform the above calcu-

lation. Apparently the premium increases to almost double that under the net premium

principle. Using TVaR97.5% over 2.5 percentile of the insured population, the average pre-

miums for policyholders in age groups 1 and 7 exceed $10 and $11, respectively, which

are sufficient to cover most of the extreme claims.
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Chapter 5

Conclusion

5.1 Concluding Summary

The main purpose of this project is the prediction of the total claim amount under a hi-

erarchical Bayesian framework. Future claim prediction is a paramount issue that plays a

significant role in risk measurement for health insurance providers. According to the work of

Migon and Moura (2005), the claim total is related to the number of claims and the insured

population for a given time period. Policyholders in different age bands present different

patterns in the reported claim frequency and severity. It is hence reasonable to catego-

rize the policyholders by age class when predicting the claim situation in each time unit.

Inspired by their work, this project extends the model by introducing one more category to

describe the regions of residence for the policyholders. The spatial factor can represent

the combined random effect of the elements influencing the claim behavior, such as edu-

cation, ability to access medical service, wealth level and even weather condition. Each

of these elements can potentially influence the claim behavior but modeling each element

separately is, if possible, redundant and unnecessary. Hence introducing a spatial factor

independent of the existing age classification is practically achievable and comprehensible.

To achieve our goal, we firstly modify the model by Migon and Moura (2005) by adding

a region factor to the insured population, arguing that the region factor, the age class and

time of measurement together affect the average insured population. An MCMC algorithm

enables us to perform posterior estimation given the prior knowledge of the parameters

and historical information. Since the full conditional distributions of the parameters are

not in closed forms, we utilize the Gibbs sampling algorithm performed by OpenBUGS (or
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WinBUGS). In order to test whether the model can effectively detect the true value of the

parameters, we do a simulation study on the insured population, number of claims and total

claim amounts, for 20 time units, 7 age groups and 2 regions, with some of the parameter

values predetermined while others randomly simulated using R and relevant packages.

The model indeed can extract the correct value of the parameters. Due to the vague prior

we proposed, the posterior distribution suggests that after about 60,000 iterations that the

trace plots show signs of convergence. After generating the true parameter values, the

predictions are made for the 21st time unit, including insured population, number of claims

and claim amounts. Finally based on the predicted claim amounts, the premiums can be

calculated under various premium principles. The premium to charge per policyholder can

also be obtained easily by dividing the total premiums over the predicted insured population.

5.2 Further Remarks

One of the advantages of this model is that it allows the introduction of prior knowledge

in the prediction process. Health insurance providers, after years of experience, most likely

possess the professional acumen in the industry. Their opinion as prior information would

be much more accurate than a vague prior for the parameters carrying no valuable indica-

tions. Better priors consume less time for the process to converge and stabilize. Another

advantage is that the prediction can bemade for more than one time unit, which may enable

the insurers to set reserves for future and adjust some valuation assumptions. OpenBUGS

(or WinBUGS) allows the user to generate many predictions with ease. However the ac-

curacy and convergence of the prediction in the distant future can not be guaranteed. The

less time unit the prediction made for, the more reliable the result may be assumed.

There are some remarks and suggestions for further development in this topic. In this

project the insured population is modeled by a normal distribution with the expected mean

following the modified exponential growth curve. In fact one can adjust the population

distribution in light of the growth feature of a group. The population mean would then

be modeled by other GEGMs with appropriate parameters. For example the Log-normal

distribution could serve as an alternative, in which case the mean would follow a Gompertz

growth curve. A numerical example of such a combination can be found in Migon and

Moura (2005).
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Instead of introducing the error terms (e.g., εa0) being age related parameters, one can

actually further modify the model by using an age related βa0 containing the noise effect

and thus the original noise term can be eliminated. The mean of this βa0 can be age related

so that it can capture the differences in insured population growth among age groups. For

instance, some insurance products are designed targeting a specific age group. As a result,

it is expected that the majority of the insured population is contributed by the targeted age

group, whereas the insured population for other age groups are relatively small. Moreover,

the variable β1 can be modified to be age related as well, indicating that the multiplier of

the exponential growth is also driven by the age discrepancy. This can be applied in the

situation where the insured population of a particular age group grows a lot faster than

others.

Apparently the population growth pattern varies substantially due to factors such as

geography, economics, natural resources or even warfare. There is no unique model that

can describe all the growth patterns simultaneously. One of the important questions to ask

is that what is the feature of the insured population growth for the cities to be modeled. The

population growth model should be in line with the key feature of empirical growth curve.

One may notice that the insured population growth model utilized in this project has the

potential to encounter over-sized population as time goes by. The mean population (2.6)

increases exponentially given positive parameters β0, β1 and β2. Refer to Figure 4.2 and

Figure 4.3 in Chapter 4, the insured population curves slightly concave up and increasing

faster in time. The slope of the curves are not unrealistically steep and the speed of increase

is within acceptable limits. Some regions in countries like U.S. and Canada (See Chapter

1 for reference) which show rapid demographic growth may be suitable for this type of

model rather than countries with stable or even decreasing demographic growth. The latter

situation can be modeled using other set of parameters.

In this project, the simulation study facilitates the test of effectiveness of parameter

estimation. It is important to keep in mind that the intention is to provide a procedure for

statistical modeling of health insurance related data. The users have the freedom to modify

the parameter structure according to the empirical data, which usually is subject to more

scenarios than presented in this project. Then the users might be able to detect features

from the empirical data, such that the prediction can be more reliable and closer to reality.

For example, the age related parameters, such as λa for claim frequency and the inverse
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of θa for claim severity, surely can have different means across age groups. One can cus-

tomize the mean and variance for each age group based on the past performance. Despite

that the age classification is assumed independent of the region factor in this project, one

can alter this assumption by introducing correlations, arguing that some cities are more

aged than the others.

Furthermore, if empirical data is available (say, for 20 time units), another way to assess

the correctness of the model is to make prediction for the 20th time unit given that the data

for previous 19 time units is available; then compare the real data for the 20th time unit with

this prediction.

In this project, we adopt a simple aspect to demonstrate that the region factor can play

a role in insured population prediction. We introduce a random location effect to capture

possible small scale movements between the regions. We choose to give no information in

the region factor L's but to contribute variability to the total claim amounts. It turns out that

this model can indeed reflect the fact of L's bearing no information, as shown in Figure 3.6.

Further research can be conducted, by imposing some information related to the region

factor, to test how effective the model detects the true parameters.

It is also worth pointing out the possibility of considering policy deductible and policy

limits for the primary insurers when calculating the premiums. It is common in practice that

insurers do not cover small losses. Truncated distributions can be considered in that matter.

One can further extend the algorithm to calculate the stop loss premium for reinsurance.

Further information can be found in Pai (1997).
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Appendix A

Derivation of Conditional Posterior
Distributions

The following derivation is for the simplified model used as numerical illustration. How-
ever, the same logic can be applied to the full model. LetΘ represent all parameters of the
model, and DT = {(xt,nt,M t), t = 1, ..., T} represent all the data available.

Assuming independence in time, age class and region, the likelihood function is given
by

l(Θ|DT ) ∝
T,I,A∏
t,i,a=1

f(Nt,i,a|λa,Mt,i,a)f(Xt,i,a|θa, nt,i,a)f(Mt,i,a)

=

T,I,A∏
t,i,a=1

(λaMt,i,a)
nt,i,ae−λaMt,i,a

nt,i,a!
·
θ
nt,i,a
a x

nt,i,a−1
t,i,a e−θaxt,i,a

Γ(nt,i,a)
·
√

τ

2π
e−

τ
2
(xt,i,a−µt,i,a)2

∝
T,I,A∏
t,i,a=1

(λaθa)
nt,i,a

√
τ · e−(θaxt,i,a+λaMt,i,a+

τ
2
(Mt,i,a−µt,i,a)2).

The full conditional posterior distributions are as follows.

• f(λa|Θ−λa ,DT ) ∝ f(λa)

T,I∏
t,i=1

f(Nt,i,a|λa,Mt,i,a)

=
βαλ
λ

Γ(αλ)
λαλ−1
a e−βλλa

T,I∏
t,i=1

(λaMt,i,a)
nt,i,ae−λaMt,i,a

nt,i,a!

∝ λ
αλ+

∑T,I
t,i=1 nt,i,a−1

a e−λa(βλ+
∑T,I

t,i=1Mt,i,a),

and hence,

λa|Θ−λa ,DT ∼ Gamma

αλ + T,I∑
t,i=1

nt,i,a, βλ +

T,I∑
t,i=1

Mt,i,a

 , a = 1, 2, ..., A.
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• f(θa|Θ−θa ,DT ) ∝ f(θa)

T,I∏
t,i=1

f(Xt,i,a|θa, nt,i,a)

=
βαθ
θ

Γ(αθ)
θαθ−1
a e−βθθa

T,I∏
t,i=1

θ
nt,i,a
a x

nt,i,a−1
t,i,a e−θaxt,i,a

Γ(nt,i,a)

∝ θ
αθ+

∑T,I
t,i=1 nt,i,a−1

a e−θa(βθ+
∑T,I

t,i=1 xt,i,a),

and hence,

θa|Θ−θa ,DT ∼ Gamma

αθ + T,I∑
t,i=1

nt,i,a, βθ +

T,I∑
t,i=1

xt,i,a

 , a = 1, 2, ..., A.

• f(β0|Θ−β0 ,DT ) ∝ f(β0)

T,I,A∏
t,i,a=1

f(Mt,i,a)

=

√
τ0
2π
exp

(
−τ0(β0 − µ0)

2

2

)
·
T,I,A∏
t,i,a=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ exp

−τ0
2
(β0 − µ0)

2 − τ

2

T,I,A∑
t,i,a=1

(Mt,i,a − µt,i,a)
2)


∝ exp

−1

2
(τ0 + τTIA)β20 + (τ0µ0 + τ

T,I,A∑
t,i,a=1

bt,i,a)β0

 ,

and hence,
β0|Θ−β0 ,DT ∼ N(Meanβ0 , (Precisionβ0)

−1),

where

Meanβ0 =
τ0µ0 + τ

∑T,I,A
t,i,a=1 bt,i,a

Precisionβ0
,

P recisionβ0 = τ0 + τTIA,

bt,i,a =Mt,i,a − ε0a − Li − β1e
t(β2+ε2a).

• f(ε0a|Θ−ε0a ,DT ) ∝ f(ε0a)

T,I∏
t,i=1

f(Mt,i,a)

=

√
τε0
2π
exp

(
−τε0(ε0a)2

2

)
·
T,I∏
t,i=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ exp

−τε0(ε
0
a)

2

2
− τ

2

T,I∑
t,i=1

(Mt,i,a − µt,i,a)
2)


∝ exp

−1

2
(τε0 + τTI)(ε0a)

2 + τ

T,I∑
t,i=1

ct,i,aε
0
a

 ,
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and hence,

ε0a|Θ−ε0a ,DT ∼ N(Meanε0a , (Precisionε0a)
−1), a = 1, 2, ..., A,

where

Meanε0a =
τ
∑T,I

t,i=1 ct,i,a

Precisionε0a
,

P recisionε0a = τε0 + τTI,

ct,i,a =Mt,i,a − β0 − Li − β1e
t(β2+ε2a).

• f(β1|Θ−β1 ,DT ) ∝ f(β1)

T,I,A∏
t,i,a=1

f(Mt,i,a)

=

√
τ1
2π
exp

(
−τ1(β1 − µ1)

2

2

)
·
T,I,A∏
t,i,a=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ exp

−τ1
2
(β1 − µ1)

2 − τ

2

T,I,A∑
t,i,a=1

(Mt,i,a − µt,i,a)
2)


∝ exp

−1

2

τ1 + τ

T,I,A∑
t,i,a=1

e2t(β2+ε
2
a)

β21 +

τ1µ1 + τ

T,I,A∑
t,i,a=1

dt,i,a · et(β2+ε
2
a)

β1

 ,

and hence,

β1|Θ−β1 ,DT ∼ N(Meanβ1 , (Precisionβ1)
−1),

where

Meanβ1 =
τ1µ1 + τ

∑T,I,A
t,i,a=1 dt,i,a · et(β2+ε

2
a)

Precisionβ1
,

P recisionβ1 = τ1 + τ

T,I,A∑
t,i,a=1

e2t(β2+ε
2
a),

dt,i,a =Mt,i,a − β0 − ε0a − Li.

• f(β2|Θ−β2 ,DT ) ∝ f(β2)

T,I,A∏
t,i,a=1

f(Mt,i,a)

=

√
τ2
2π
exp

(
−τ2(β2 − µ2)

2

2

)
·
T,I,A∏
t,i,a=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ exp

−τ2
2
(β22 − 2β2µ2)−

τ

2

T,I,A∑
t,i,a=1

(β1e
t(β2+ε2a) − dt,i,a)

2

 .
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• f(ε2a|Θ−ε2a ,DT ) ∝ f(ε2a)

T,I∏
t,i=1

f(Mt,i,a)

=

√
τε2
2π
exp

(
−τε2(ε2a)2

2

)
·
T,I∏
t,i=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ exp

−τε2
2
(ε0a)

2 − τ

2

T,I∑
t,i=1

(β1e
t(β2+ε2a) − dt,i,a)

2

 , a = 1, 2, ..., A.

• f(τ |Θ−τ ,DT ) ∝ f(τ)

T,I,A∏
t,i,a=1

f(Mt,i,a)

∝ τατ−1e−βτ τ ·
T,I,A∏
t,i,a=1

√
τ

2π
exp

(
−τ(Mt,i,a − µt,i,a)

2

2

)

∝ τατ+
1
2
TIA−1 · exp

−τ(βτ +
1

2

T,I,A∑
t,i,a=1

(Mt,i,a − µt,i,a)
2)

 ,

and hence,

τ |Θ−τ ,DT ∼ Gamma

ατ + 1

2
TIA, βτ +

1

2

T,I,A∑
t,i,a=1

(Mt,i,a − µt,i,a)
2

 .

• f(αθ|Θ−αθ
,DT ) ∝ f(αθ)

A∏
a=1

f(θa)

∝ α
ααθ

−1

θ e−βαθ
αθ

A∏
a=1

βαθ
θ

Γ(αθ)
θαθ−1
a e−βθθa

∝ α
ααθ

−1

θ e−βαθ
αθ · βA·αθ

θ [Γ(αθ)]
−A

A∏
a=1

θαθ−1
a .

Similarly,

f(αλ|Θ−αλ
,DT ) ∝ f(αλ)

A∏
a=1

f(λa)

∝ α
ααλ

−1

λ e−βαλ
αλ · βA·αλ

λ [Γ(αλ)]
−A

A∏
a=1

λαλ−1
a .

• f(βθ|Θ−βθ ,DT ) ∝ f(βθ)

A∏
a=1

f(θa)

∝ β
αβθ

−1

θ e−ββθβθ
A∏
a=1

βαθ
θ

Γ(αθ)
θαθ−1
a e−βθθa

∝ β
αβθ

+αθA−1

θ · e−βθ(ββθ+
∑A

a=1 θa),
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and hence,

βθ|Θ−βθ ,DT ∼ Gamma

(
αβθ + αθA, ββθ +

A∑
a=1

θa

)
.

Similarly,

βλ|Θ−βλ ,DT ∼ Gamma

(
αβλ + αλA, ββλ +

A∑
a=1

λa

)
.

•

(
L1

L2

)
∼MVN

(0
0

)
, σ−1

(
1 + |η| ·mg −η

−η 1 + |η| ·mg

)−1
 ,

which can be denoted as

MVN

[(
0

0

)
,

(
P S

S P

)]
,

with the correlation coefficient

ρ =
S

P
.

• f(Li|Θ−Li ,DT ) ∝ exp

(
−L

2
1 + L2

2 − 2ρL1L2

2(1− ρ2)P 2

) T,A∏
t,a=1

exp
(
−τ
2
(Mt,i,a − µt,i,a)

2
)
, i = 1, 2.

• f(η|Θ−η,DT ) ∝
1

(1 + η)2P
√

1− ρ2
· exp

(
−L

2
1 + L2

2 − 2ρL1L2

2P (1− ρ2)

)
.

• f(σ|Θ−σ,DT ) ∝
σασ−1e−σβσ

P 2
· exp

(
−L

2
1 + L2

2 − 2ρL1L2

2P (1− ρ2)

)
.

• f(τε0 |Θ−τε0 ,DT ) ∝ τ
ατε0

−1
ε0 e−βτε0 τε0 ·

A∏
a=1

√
τε0
2π
e−

τε0 (ε0a)2

2

∝ τ
ατε0

+A
2
−1

ε0 · e−τε0 (βτε0+
1
2

∑A
a=1(ε

0
a)

2),

and hence,

τε0 |Θ−τε0 ,DT ∼ Gamma

(
ατε0 +

A

2
, βτε0 +

1

2

A∑
a=1

(ε0a)
2

)
.

Similarly,

τε2 |Θ−τε2 ,DT ∼ Gamma

(
ατε2 +

A

2
, βτε2 +

1

2

A∑
a=1

(ε2a)
2

)
.
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Appendix B

Simulated Data
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Table B.1: Simulated Insured PopulationMt,i,a

Insured Population Age Class
Time 1 2 3 4 5 6 7

Region 1

1 54 63 73 83 72 59 70
2 72 77 75 63 74 91 70
3 75 98 66 77 78 89 75
4 74 89 78 97 79 68 86
5 69 82 83 92 65 75 72
6 75 80 83 74 82 79 66
7 86 95 92 70 90 84 91
8 72 75 71 85 88 81 89
9 96 93 81 79 85 106 100
10 81 79 93 84 97 103 92
11 85 110 130 89 109 88 84
12 106 98 98 123 99 107 84
13 101 124 109 94 112 104 86
14 105 96 110 92 109 118 105
15 114 119 119 137 112 116 126
16 113 102 104 111 101 122 106
17 117 125 133 121 120 125 117
18 121 140 129 125 137 138 120
19 155 115 133 137 148 125 133
20 149 146 147 138 139 134 137

Region 2

1 80 75 85 65 79 53 84
2 87 70 61 80 86 57 70
3 81 44 77 74 93 44 68
4 70 78 61 75 73 76 76
5 71 77 91 72 81 94 88
6 81 72 89 62 70 80 83
7 76 77 81 87 86 69 85
8 92 87 96 97 81 105 89
9 94 96 74 66 100 94 90
10 105 102 99 91 88 96 87
11 96 89 88 89 92 103 88
12 98 107 100 109 93 101 109
13 117 93 104 94 111 100 107
14 104 103 101 105 105 103 104
15 109 110 94 130 120 113 94
16 118 109 118 125 100 109 125
17 127 125 128 118 107 118 123
18 117 126 110 136 139 129 114
19 147 146 128 119 126 131 144
20 136 128 152 145 132 148 141
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Table B.2: Simulated Total Claim Frequency Nt,i,a

Total Claim Number Age Class
Time 1 2 3 4 5 6 7

Region 1

1 11 10 10 16 16 10 14
2 16 17 10 11 14 19 16
3 22 13 8 14 16 14 18
4 17 19 12 22 7 9 22
5 13 12 8 18 11 14 26
6 13 20 13 6 11 8 17
7 18 12 12 18 14 13 29
8 11 5 10 14 16 6 29
9 29 11 8 8 14 14 29
10 17 18 13 14 18 15 29
11 12 16 19 18 21 22 16
12 27 8 12 17 21 14 20
13 15 23 19 18 20 16 21
14 18 21 20 15 24 22 27
15 25 20 17 29 22 17 33
16 26 21 10 11 26 24 22
17 19 17 21 9 24 20 31
18 26 30 16 22 23 15 35
19 44 23 25 17 27 21 37
20 40 26 23 15 27 23 34

Region 2

1 21 18 13 9 19 10 19
2 15 13 12 17 15 10 13
3 18 7 5 12 21 6 21
4 17 15 7 12 12 14 14
5 12 10 12 8 18 15 23
6 20 12 10 13 10 11 22
7 20 14 17 11 22 13 22
8 17 17 13 12 16 21 25
9 14 12 7 10 15 13 24
10 22 9 15 18 14 18 22
11 21 16 13 17 11 17 19
12 19 14 8 18 21 25 26
13 23 16 11 23 20 13 21
14 20 15 12 21 13 17 26
15 27 11 11 23 26 12 16
16 21 27 18 18 10 15 30
17 23 18 19 25 15 15 35
18 26 19 12 26 20 25 25
19 39 25 23 24 16 25 31
20 39 28 16 14 28 21 38
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Table B.3: Simulated Aggregate Loss Xt,i,a

Total Claim Amount Age Class
Time 1 2 3 4 5 6 7

Region 1

1 209 165 363 641 456 244 477
2 475 394 483 300 368 361 483
3 869 404 199 245 443 436 429
4 360 665 334 472 174 228 555
5 331 497 294 378 237 202 623
6 222 500 361 124 364 323 336
7 263 176 177 493 249 315 518
8 253 104 179 182 254 175 635
9 701 294 85 172 399 325 642
10 502 368 292 297 463 575 524
11 187 365 621 335 563 424 453
12 680 114 225 488 512 329 667
13 272 477 385 408 336 348 571
14 466 562 488 343 584 569 493
15 733 427 372 707 576 282 730
16 758 657 246 219 873 474 581
17 513 489 392 185 646 481 503
18 469 643 549 534 575 183 984
19 1003 637 572 258 700 709 951
20 943 657 459 290 554 556 694

Region 2

1 344 437 334 297 502 265 425
2 221 305 255 397 549 253 317
3 354 201 132 313 704 227 636
4 507 534 114 299 346 300 282
5 350 437 589 287 578 369 713
6 445 212 461 359 173 185 405
7 359 459 532 206 709 426 593
8 244 705 225 279 529 385 381
9 280 402 249 298 443 206 653
10 453 199 285 580 620 592 671
11 619 347 245 484 218 313 656
12 487 303 141 412 730 531 508
13 344 448 259 412 588 363 451
14 589 240 277 767 220 308 430
15 409 427 347 522 576 348 322
16 521 765 411 294 152 367 542
17 592 556 451 539 371 394 707
18 610 408 283 615 407 381 589
19 996 736 512 532 436 755 716
20 995 863 478 263 809 547 693
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Appendix C

Premiums for 21st Time Unit in Region 2
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