
Asymmetric Coherent Configurable Caches for
PolyBlaze Multicore Processor

by

Ziaeddin Jalali
B.Sc., Sharif University of Technology, 2010

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Applied Science

In the
School of

Engineering Science

© Ziaeddin Jalali 2015
SIMON FRASER UNIVERSITY

Fall 2014

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for
Fair Dealing. Therefore, limited reproduction of this work for the purposes of

private study, research, criticism, review, and news reporting is likely to be
in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Ziaeddin Jalali

Degree: Master of Applied Science

Title of Thesis: Asymmetric Coherent Configurable Caches for Poly-
Blaze Multicore Processor

Examining Committee: Dr. Ivan Bajic
Associate Professor, School of Engineering Science
Chair

Dr. Lesley Shannon, P.Eng.
Associate Professor, School of Engineering
Science
Senior Supervisor

Dr. Alexandra Fedorova
Associate Professor, School of Computing
Science
Supervisor

Dr. Fabio Campi
Lecturer, School of Engineering Science
Internal Examiner

Date Defended: 28 November 2014

ii

Partial Copyright Licence

iii

Abstract
Modern computing systems gain performance by several means such as increased par-

allelism through using Chip-level Multiprocessor (CMP) systems. Symmetric Multi-

processor (SMP) systems use uniform processing cores to form a CMP in which all

cores are identical in every aspect. Conversely, Asymmetric Multiprocessor (AMP)

systems consist of processing cores with variable configurations such as different cache

configurations, co-processors, and cache sizes. AMP systems coupled with such smart

scheduling algorithms can improve resource utilization while maintaining overall sys-

tem performance because real-time profiling in a computing system using light-weight

hardware profilers can help smart scheduling algorithms make meaningful decisions.

In other words, the vision into an application’s behavior helps in the decision mak-

ing process on how to allocate available resources for different applications without

penalizing the performance by putting too much overhead on the system. Currently,

there is no AMP research framework available that allows us to look into asymmetry

in processing systems.

In this thesis, we present an extension on PolyBlaze framework for asymmetric co-

herent Level-1 (L1) caches. Our implementation in this work includes other arbiter

and prefetching units as well. We measure data cache read miss rates and appli-

cation run-times for select benchmarks from SPEC CPU2006 executed in a Linux

environment on top of a variety of cache configurations. In the scope of this work, we

manually assign applications to cores to take advantage of AMP configurations. Our

results show that in a AMP system, different applications can benefit from various

configurations to complete their work faster using less resources.

iv

To Yasaman.

v

Acknowledgments
First, I would like to thank my supervisor, Dr. Lesley Shannon who patiently provided

me guidance, support, and encouragement, particularly when the project was not

going well. My main takings from this degree are the many lessons I learned from

her.

Additionally, I would like to thank Dr. Alexandra Fedorova, Dr. Fabio Campi, and

Dr. Ivan Bajic for serving on my defense committee.

Also, I want to thank my friends and colleagues in the RCL lab, especially Eric

Matthews and Nicholas Doyle who helped, supported and answered my many ques-

tions. I had the most wonderful time there.

Finally, to my lovely wife, Yasaman, and my parents whose support throughout this

journey was priceless. I will never be able to thank you enough.

vi

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

Glossary xv

1 Introduction 1
1.1 Motivation. 2
1.2 Objective . 3
1.3 Contributions . 3
1.4 Thesis Organization. 4

vii

2 Background and Related Work 5
2.1 Multicore Computer Architecture . 6

2.1.1 Memory and Cache Coherence . 8
2.2 Soft Processors and Processor Emulators 10
2.3 PolyBlaze . 13

2.3.1 Overall Architecture . 13
2.3.2 MicroBlaze . 14
2.3.3 L2 Arbiter . 23
2.3.4 Semaphore Synchronization . 25

2.4 Cache and Scratchpad Implementation on FPGAs 26
2.4.1 Configurability . 27

2.5 Asymmetric Caches in Multiprocessors. 28

3 An Asymmetric Cache Coherent Architecture for Poly-
Blaze System 29
3.1 Level-1 Data Cache . 30

3.1.1 Design Process . 37
3.2 Level-1 Instruction Cache . 38
3.3 A comparison of L1 Data and Instruction Caches 42

4 Memory Architecture in PolyBlaze System 44
4.1 Level 1 Arbiter . 45
4.2 Level 2 Cache/Memory Interface . 48
4.3 PolyBlaze Memory Link. 48
4.4 Prefetching Unit. 49

5 Evaluation and Experimental Results 50
5.1 Resource Usage . 50
5.2 Timing Analysis . 62
5.3 Latency . 63

viii

5.4 Application Performance Study. 69
5.4.1 Phase 1: Single-Process Application Performance 70
5.4.2 Phase 2: Multi-Process Application Performance 72

6 Conclusion and Future Work 78
6.1 Conclusions . 78
6.2 Future Work. 79

Bibliography 80

ix

List of Tables
2.1 MicroBlaze core’s three-stage pipeline optimized for minimum area/hardware

cost [1] . 15
2.2 MicroBlaze core’s five-stage pipeline optimized for maximum performance [1] 15

5.1 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a single core MicroBlaze system 51

5.2 Post place and route resource usage for different instruction cache configura-
tions with 4kB direct-mapped data cache in a single core MicroBlaze system
51

5.3 Post place and route resource usage for different modules in a single core
MicroBlaze system with 4kB direct-mapped (4 words per line) instruction
and data caches. 52

5.4 Post place and route resource usage for different modules in a single core
MicroBlaze system with several cache configurations (4kB direct-mapped, 4
words per line). 53

5.5 Post place and route resource usage for MicroBlaze caches with 4kB direct-
mapped 4 words per lines compared to the no cache baseline 54

5.6 Post place and route resource usage for different modules in a single core
MicroBlaze system with 4 kB or 16 kB direct-mapped (4 words per line) data
caches. 55

5.7 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a dual core PolyBlaze system. . 56

5.8 Post place and route resource usage for different instruction cache configu-
rations with 4kB direct-mapped data cache in a dual core PolyBlaze system.
57

5.9 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a quad core PolyBlaze system. . 58

x

5.10 Post place and route resource usage for different instruction cache configu-
rations with 4kB direct-mapped data cache in a quad core PolyBlaze system.
59

5.11 Post place and route resource usage for different modules in a dual core
PolyBlaze system. 60

5.12 Increased resource usage (after place and route) for PolyBlaze compared to
MicroBlaze . 61

5.13 Maximum operating frequencies from different systems. 63
5.14 Maximum operating frequencies of different modules in a dual core PolyBlaze

system. 63
5.15 Data cache read miss rate for bzip . 70
5.16 Data cache read miss rate for libquantum 70
5.17 Data cache read miss rate for specrand . 70
5.18 Data cache read miss rate for h264ref. 71
5.19 Number of Load/Store instructions and their ratio in each benchmark appli-

cation during its execution time . 72
5.20 Data cache read miss rate of the four benchmark applications for the two

selected cache configurations. Optimal assignments are shown in bold. 74
5.21 Data cache read miss rate of the two-process experiments with optimal

assignments. 75
5.22 Data cache read miss rate of the two-process experiments with suboptimal

assignments. 75
5.23 Run time difference in seconds between optimal and suboptimal assignments

in presence of different interfering applications 76
5.24 Percentage of increased run time for different assignments in presence of

various interfering applications. 77

xi

List of Figures
2.1 PolyBlaze: the multiple MicroBlaze platform 14
2.2 MicroBlaze Core Block Diagram [1] . 16
2.3 A block diagram of a Linux capable MicroBlaze system. 17
2.4 Instruction Cache Organization in the MicroBlaze [1] 19
2.5 Data Cache Organization in the MicroBlaze [1] 21

3.1 PolyBlaze’s Data cache overview . 30
3.2 PolyBlaze’s PBML connections . 36
3.3 Instruction cache’s overview in PolyBlaze . 39

4.1 Memory Architecture in a PolyBlaze System 45

5.1 Memory Read Operation Latencies . 64
5.2 Waveform of a memory read miss operation for MicroBlaze 65
5.3 Waveform of a memory read hit operation for MicroBlaze 66
5.4 Waveform of a memory read hit operation for PolyBlaze. 67
5.5 Waveform of a memory read miss operation for PolyBlaze (80 MHz) 68
5.6 Waveform of a memory miss operation for L1 Arbiter in a PolyBlaze system

(80 MHz) . 68
5.7 Waveform of a memory read operation for L2 Arbiter in a PolyBlaze system

(80 MHz) . 68
5.8 Waveform of a memory read operation for NPI in a PolyBlaze system (160

MHz) . 68
5.9 Data cache read miss rate for bzip . 71
5.10 Data cache read miss rate for libquantum 72
5.11 Data cache read miss rate for specrand . 73

xii

5.12 Data cache read miss rate for h264ref. 74

xiii

Glossary
ABACUS hArdware Based Accelerator for Characterization of User Software. 13,

29, 34, 40, 63, 64, 69, 78
AMP Asymmetric Multiprocessor. iv, 1–3, 6, 27, 28

BRAM Block RAM. 10, 31, 37, 38, 50–61

CLB Configurable Logic Block. 10
CMP Chip-level Multiprocessor. iv, 1
COMA Cache-Only Memory Architecture. 7

DMA Direct Memory Access. 25, 26
DSP Digital Signal Processing. 10

FF Flip-Flop. 10
FIFO First-In-First-Out. 23, 35, 41, 47, 48, 66, 67
FPGA Field Programmable Gate Array. viii, 2, 3, 10–14, 26, 28, 37, 51, 62,

63, 67
FPGAs Field Programmable Gate Arrays. 5
FPU Floating Point Unit. 11, 14, 27
FSL Fast Simplex Link. 23, 48

GTS Global Task Scheduling. 28

I/O Input/Output. 6, 10
IC Integrated Circuit. 10
IP Intellectual Property. 10
ISA Instruction Set Architecture. 1, 3, 6, 28

L1 Level-1. iv, viii, xii, 3, 4, 7, 9, 27, 30, 35–38, 41, 42, 44–50, 57, 60, 61,
63, 66–68, 78

L2 Level-2. viii, xii, 7, 23–25, 32, 33, 37, 44–48, 58, 60, 62, 63, 66–68, 78,
79

LCC Library Cache Coherence. 9, 10
LMB Local Memory Bus. 18, 20, 23, 52, 53, 55, 60
LRU Least Recently Used. 32, 39, 56–60, 63, 64, 69, 70, 72–74
LUT Look-up Table. 10, 31, 38, 51–61

xiv

LWX Load Word Exclusive. 17, 18, 25, 32

MMU Memory Management Unit. 13, 14, 17, 20, 22, 42
MPMC Multi-Port Memory Controller. 23, 35, 41, 44, 48, 54, 57, 63, 65–67
MSR Machine Status Register. 18

NPI Native Port Interface. xii, 44, 48, 57, 58, 60, 63, 67, 68
NUMA Non-uniform Memory Access. 7

OS Operating System. 2, 3, 6, 7, 12, 13, 28, 29, 38, 43, 64, 78, 79

PBML PolyBlaze Memory Link. xii, 4, 33–37, 40, 41, 44–46, 48, 57, 60, 61,
63, 66, 67

PLB Processor Local Bus. 23, 52, 53, 55
PVR Processor Version Register. 13

RAMP Research Accelerator for Multiple Processors. 11
RISC Reduced Instruction Set Computing. 13, 14

SMP Symmetric Multiprocessor. iv, 1, 6, 13, 28
SOCs Systems-on-Chip. 5
SWX Store Word Exclusive. 17, 18, 25, 26, 32, 36, 47

TLB Translation Look-aside Buffer. 17

UMA Uniform Memory Access. 7

WDC Write to Data Cache. 22, 31, 34, 35, 40
WIC Write to Instruction Cache. 20, 40, 41

XCL Xilinx CacheLink. 16, 18, 20, 23, 35, 41, 48, 54, 57, 61

xv

1 Introduction
Over the past decades, performance in modern computing systems has increased

by several means including increasing operating frequencies. However, as processor

frequencies reach their limits, a popular solution to increase performance has been

adding more processors to increase parallelism. Today, a Chip-level Multiprocessor

(CMP) provides two or more processing cores on a single chip that permit even greater

performance due to reduced memory latency.

CMPs fall into two main categories: Symmetric Multiprocessor (SMP) and Asym-

metric Multiprocessor (AMP). A SMP architecture comprises identical cores with

equivalent frequencies, Instruction Set Architecture (ISA), cache sizes, functions, etc.

Processing cores in a AMP architecture still have a common ISA, but they can uti-

lize different configurations in their caches (different cache sizes, replacement policies,

cache-line sizes, etc.), different operating frequencies, and reduced instruction support

(e.g. no floating point operations).

Research on AMP systems is difficult as they are not widely available. Most com-

mercial processors are often SMP with different cores possibly clocking at different

rates. Moreover, detailed information about the internal architecture in AMP sys-

tems is sometimes proprietary. Also, these systems are not necessarily configurable.

Therefore, system research has to rely on high-level information gathered from lim-

ited resources available about real-world behaviour of these processors. To solve this

problem, we need a framework that provides configurable processor and cache archi-

tecture.

1

Chapter 1. Introduction

1.1 Motivation

An Operating System (OS) uses different methods to balance its workload based on

the demands of running applications and available resources (processors, their local

cache memories, and the amount of physical memory). For instance, when assigning

tasks to available processors, it is important to balance the workload as assigning too

many tasks to a processor will impose an overload from context-switches; conversely,

assigning not enough tasks would waste processor cycles while the processor is idle.

Maintaining this balance is even more complicated in an AMP environment since

some tasks can utilize certain resources better than others, e.g. some applications can

utilize processor cache better than others. In such cases, analyzing system behavior

in presence of multiple tasks requires insight as to the nature of the current tasks and

the availability of resources in the system.

Modelling an AMP system on a FPGA can provide a rich framework for more re-

search in this area. Having access to such a system with fully configurable caches

allows the user to gather lots of data on complex interactions while having negligible

impact on the software. Achieving this goal is not necessarily feasible on commer-

cial processors or system simulators. Commercial multicore processors often include

hardware registers that can be used to measure different events in the life time of

an application. For instance, by measuring the number of cache hits and memory

requests, we can obtain the hit ratio of an application. However, the number of hard-

ware registers in commercial processors is limited and the measurements have to be

taken from multiple independent executions of the application. Conversely, system

simulators would execute the application in an emulated environment and capture

the required information while running the application. Therefore, they can give us

as much visibility as we need in the runtime of an application, but they impose a lot

of overhead.

2

Chapter 1. Introduction

Developing an AMP framework comprising cores with identical ISA and asymmetric

configurable caches that supports an OS, provides real-time visibility into how the

system is actually working. Therefore, it allows us to investigate cache asymmetry

and its impact on a multiprocessor system.

1.2 Objective

PolyBlaze is a configurable research framework for systems research [2]. In this the-

sis, our objective is to develop an asymmetric Level-1 (L1) cache extension for the

PolyBlaze research framework. In order to achieve this goal, we need modules such

as configurable caches with a built-in coherency mechanism. Arbitration modules are

also needed to provide the interconnection between processors and main memory and

support the coherency mechanism. Additionally, implementing optional prefetching

units can provide better insight into this AMP system. Since PolyBlaze is a FPGA

system, we can create the whole hardware system with the desired configuration and

run the OS on this platform. Then we can execute benchmark applications such

as SPEC CPU2006 [3] to measure the impact of different configurations (symmetric

and/or asymmetric) on the overall system performance.

1.3 Contributions

The main contribution of this thesis is the development of the necessary hardware

infrastructure for the PolyBlaze framework to support L1 caches that may be asym-

metrically configured. The proposed infrastructure addresses the necessary require-

ments for integrating caches into the PolyBlaze framework. Our cache infrastructure

is also designed to be as configurable and scalable as possible. The following modules

are presented in this thesis:

3

Chapter 1. Introduction

• Configurable asymmetric level-1 data and instruction caches,

• L1 arbiter,

• PolyBlaze Memory Link (PBML), and

• Prefetching units.

1.4 Thesis Organization

The remainder of the thesis is structured as follows. Chapter 2 describes the back-

ground on multicore system architectures, memory and cache coherence mechanisms,

and PolyBlaze system. The new cache coherent architecture for the PolyBlaze pro-

cessor is presented in Chapter 3. Chapter 4 outlines the memory architecture of the

PolyBlaze processor and the roles of the added modules in the processor’s memory

path. Chapter 5 discusses the experimental framework and the experiments run to

validate and evaluate our system. Finally, Chapter 6 concludes the thesis and outlines

future work.

4

2 Background and Related Work
In 1965, Gordon E. Moore presented his observation, later known as Moore’s law, that

the number of transistors on integrated circuits doubles approximately every two years

[4]. Later on, Intel executive David House predicted that chip performance, being a

combination of the increase in the number of transistors and their operating frequency,

would double every 18 months. On the other hand, in 1974, Robert H. Dennard et

al. [5] stated that as transistors get smaller their power use stays constant (power

use stays in proportion to area). This statement, later know as Dennard Scaling, was

true until about 2005-2007. As such, while it is possible to shrink transistor sizes and

put more and more transistors on the die, it is not possible to drop the voltage and

the current these transistors need to operate reliably at the same rate. Therefore, it

is necessary to come up with other solutions to enable continued performance growth.

The remainder of this chapter presents the relevant background material and previous

work for this thesis. First, in Section 2.1, we discuss multicore computer architectures,

their memory infrastructure, memory coherency and synchronization in these systems.

Then, we provide an overview of Systems-on-Chip (SOCs), Field Programmable Gate

Arrays (FPGAs), soft processors and processor emulators in Section 2.2. Next, in

Section 2.3, we describe the PolyBlaze framework and its development from the Mi-

croBlaze soft processor and its internal architecture. Afterwards, we provide a brief

overview of cache and scratchpad memories in different processors and the use of

asymmetric caches in current processors.

5

Chapter 2. Background and Related Work

2.1 Multicore Computer Architecture

One of the solutions to the Dennard Scaling problem is to use parallel processing.

Increased use of parallel computing in the form of multicore processors is one of the

approaches that has been pursued to improve overall processing performance. Parallel

processing in its simplest form is the use of two or more processing cores to execute

simultaneous instructions in a single computer system [6] and share some or all of

available memory and Input/Output (I/O) facilities in the system [7].

Multiprocessing systems are often designed in two different methods: 1) shared mem-

ory architecture vs. 2) distributed memory architecture. In shared memory models,

there is one common shared memory for all cores and processors. This memory is

usually very large since it will be the main memory in the system. In distributed

memory models, on the other hand, each processor has its own, local memory. In this

case, the content of each memory is not necessarily replicated anywhere else.

Shared memory architecture designs usually follow two different processor architec-

tures. The first method is SMP in which all of the processing units are identical, i.e.

they all have the same ISA, frequency, caches, memory, etc. In SMP systems, the OS

can treat all the cores equally and if there are multiple processes running in parallel,

the OS can run them on different processor cores.

The second method, AMP, is slightly different from SMP. The cores in these pro-

cessors, still share the same ISA and operating frequency, but some configurations

such as cache sizes or cache line sizes can be different. In these systems, the OS can

still ignore the difference between processing cores and assign tasks to them. How-

ever, it is possible to take advantage of these different configurations and gain better

performance from the whole system.

6

Chapter 2. Background and Related Work

Distributed memory architecture designs have a different processing architecture

method. Different processing units in these systems, use message passing mecha-

nisms to communicate with each other. Therefore, they can have different processor

architectures and even different formats for the methods as long as the interconnect

network can translate the messages for the corresponding processors.

In this thesis, we focus on shared memory architectures. Globally shared memory

architectures often use one of the following three organizations: 1) Uniform Mem-

ory Access (UMA) in which all the processors share the physical memory uniformly

[8], 2) Non-uniform Memory Access (NUMA), which is similar to UMA except mem-

ory access time depends on the memory location relative to a processor [9, 8], and

3) Cache-Only Memory Architecture (COMA), in which the local memories for the

processors at each node is used as a cache memory [8].

In shared memory architecture systems, the communication between processors is

done by reading and writing memory locations [10]. However, there are two key

problems regarding the scalability of a shared memory architecture system:

1. Performance Degradation: when several processors try to access the same

memory location, we will have contention on the memory interface.

2. Coherency: modifications often cause different cached memories to have dif-

ferent values and loose consistency between different copies.

To address the performance degradation problem, we often try to balance the tasks

assigned to each processor such that they can take advantage of their local private

memories, e.g. L1 caches and sometimes L2 caches, so that the need to access the

shared main memory is reduced. Typically, this problem is handled in the OS using

different software algorithms, making it outside of the scope of this thesis. Instead,

we focus on the second problem, i.e. memory coherency. This is often handled in

7

Chapter 2. Background and Related Work

different layers of software and hardware, depending on the system architecture and

consistency model. Sections 2.3.3 and 3.1 will discuss how we handle this problem in

more detail withing different modules.

2.1.1 Memory and Cache Coherence

When two or more processors or cores share a common area of memory, they have to

consider the coherence of memory regions shared between themselves. This issue does

not exist in a single-core system because when a value is modified by the processor,

all subsequent reads of that memory location will see the updated value, regardless

of the data being cached anywhere or not.

In a multicore system, many processors can access the same location of shared mem-

ory. In this case, so long as none of them tries to modify this location and everyone is

only reading from it, they can share it indefinitely. However, as soon as one of them

updates the shared location, the others will have to be notified in order to use the

updated value. Otherwise, the other processors might go on using their out-of-date

copy of the data that could reside in their local caches.

Overall, in a multicore system, the time window during which different processors

might have inconsistent views of the shared memory could vary. This time could be

as low as a few cycles, even zero in some cases, to an indeterminate length of time.

The size of this window usually depends on the coherency protocol implemented in

the system. Systems that have strict memory consistency between processors and

will not allow any sort of caching, will always have a coherent memory. Systems that

allow simple caches with write-through policy, i.e. every write to the cache will be

sent to memory right away, usually need a few cycles for the memory synchronization

to complete [11]. In these systems, because of the write-through policy, all the store

operations will be passed to the main memory right away. The SPARC T1 [12],

8

Chapter 2. Background and Related Work

with its L1 caches, is an example of this style of architecture. An alternate system

architecture uses write-back caches and has more sophisticated caching techniques,

which requires more complex coherency mechanisms as well. In these systems with

write-back caches, memory will not be updated with the most up-to-date data until

that data is evicted from cache and written back into memory. Intel and AMD

processors have L1 caches that use a Write-back policy. In addition, these systems

require extra software support to force coherency when atomic instructions are issued

[13, 14].

Coherence Mechanisms

There are four different coherency mechanisms: 1) Snooping (or write-invalidate) [15],

2) Snarfing (or write-update) [15], 3) Directory-based [16, 15], and 4) Library Cache

Coherence (LCC) [17]. In systems that use snooping, individual cache controllers

will continuously monitor the memory accesses from every other processor. When

a memory location is modified, the cache controller will invalidate its own copy of

that location if it has a copy. This protocol is sometimes called a write invalidate

protocol [18]. The second mechanism, Snarfing, is similar to Snooping in behaviour.

In this mechanism, the cache controller will look at address and data. When another

processor tries to update a memory location, the cache controller will grab the new

data and update its own copy if it has any. Therefore, it will use the updated copy

next time the processor asks for that cache line.

In systems with directory-based coherency mechanisms, a common directory will be

used to keep track of data shared between caches to maintain coherency. When a

processor needs to access shared data, it will ask the directory for permission and

then loads the data entry from main memory into its cache. Upon modification of

shared data in one of the caches, the directory will notify the other caches and either

9

Chapter 2. Background and Related Work

update or invalidate their data.

The LCC mechanism is based on directory-based methods, but with less broadcasted

messages. In this mechanism, libraries are sets of timestamps that are used to auto-

invalidate shared cache lines. These timestamps are also used to prevent writes on

the lines from happening until all shared copies expire. There are a few advantage

to use LCC methods instead of directory-based mechanisms. One of advantages

is elimination of need to broadcast a lot of messages and therefore simplifying the

interconnection network. Additionally, LCC also allows reads on a cache block to

take place while a write to the block is being delayed while memory consistency is

still in tact [17].

2.2 Soft Processors and Processor Emulators

FPGAs are Integrated Circuit (IC) devices that consist of arrays of logic resources

that are designed to be configured by customers after manufacturing. For instance,

a typical FPGA introduced by Xilinx [19], consists of several components including

Configurable Logic Block (CLB) connected by an interconnection network of wiring

channels and routing blocks (switch matrices).

FPGAs are heterogeneous arrays of configurable logic blocks (CLB) and other In-

tellectual Property (IP) blocks that can be programmed by customers to implement

their desired circuits after manufacturing. Each CLB in turn is comprised of logic

cells containing Look-up Table (LUT)s and registers or Flip-Flop (FF). The other IP

cores commonly found in modern FPGAs include processors, Digital Signal Process-

ing (DSP) blocks, Block RAMs (BRAMs), and I/O blocks. Developers can combine

these components with user-defined modules to build complicated designs.

Along with the hard processors embedded in some FPGA fabrics, we can also instan-

10

Chapter 2. Background and Related Work

tiate processors in the reconfigurable fabric. Reconfigurable fabric in FPGA enables

us to investigate architectural and simulation research questions. For instance, we

can accelerate the simulation of traditional architectures as done in [20] or open more

research areas into soft processor architectures [21]. Additionally, soft processors al-

low us to create far better emulation platforms for the design of commercial multicore

processors [22, 23].

The complexity of the tasks for soft processors in a system will define the complexity

of the processor itself or the features that it might have. The PicoBlaze [24], for

instance, is a simple 8-bit soft processor developed by Xilinx [19] that is suitable for

designing simple state-machines. Xilinx’s other soft processor, the MicroBlaze [1],

and Altera Inc.’s NIOS II [25] are two other examples of commercial soft processors

that are designed specifically to target their company’s FPGA architecture.

Although hard processors on FPGAs support higher operating frequencies than soft

processors, their configurability is limited compared to soft processors. For example,

if for a particular task, we have to do some floating point calculations, we can simply

add a Floating Point Unit (FPU) to the processor.

Additionally, soft processors open areas of research into multicore processor architec-

ture. The Research Accelerator for Multiple Processors (RAMP) project [26] as one

of the works done in multicore processor architecture research areas, focuses on multi-

ple lightweight processors on tens and hundreds of FPGAs [27]. The Beehive Project

enables multiple lightweight processors on a single FPGA[28]. The project Hthreads

provides support for threads in hardware and software along with a hardware based

OS [29]; Xilinx provides a lightweight xilkernel based multicore MicroBlaze system

[30]. Also, on a larger scale, there are some emulation platforms for design of commer-

cial multicore processors, e.g. a FPGA-synthesizable Intel®Atom™processor core, a

11

Chapter 2. Background and Related Work

FPGA-synthesizable Intel®Nehalem™processor core, etc. [22, 23, 31]

One of these research areas looks into load balancing and workload behaviour in mul-

ticore architectures. Approaches taken by some multicore processor emulators based

on FPGA platforms such as OpenSparc and LEON3 [32, 33] take advantage of access

to the hardware implementation of the emulator. In these cases, the hardware imple-

mentation provides cycle-accurate visibility into the microachitecure of the system.

On the software side, the capacity to run a full OS provides full access to the features

that might be of interest in the operating system.

The OpenSPARC based systems support a simple version of the Linux distribution

(based on Ubuntu Linux distribution) for a single-core or dual-core setup. These sys-

tems, however, have limited scalability. The memory hierarchy in dual-core systems

requires a single MicroBlaze to process all memory requests. Moreover, if we want a

multicore system, we have to use separate FPGA boards, which in turn can impose

other restrictions on the system. Another SPARC-based platform is the LEON3. It

supports up to a dual-core setup. However, the memory controller support for differ-

ent boards is incomplete. Furthermore, due to the hardware resource usage, LEON3

has a large processor design such that we can only fit two processors on a Virtex 5

110t FPGA from Xilinx.

There are other soft processors that have Linux support. NIOS II from Altera Inc.

is one of these soft processors [25]. Xilinx’s MicroBlaze is another soft processor that

supports Linux [1]. PetaLogix [34], an embedded Linux solutions provider that was

acquired by Xilinx, has been providing Linux support for MicroBlaze soft processor

and PowerPC processors since the 2.6.30 version of the Linux kernel. The latest

version of this distribution was released in February 2014. A multicore version of

MicroBlaze is PolyBlaze [2]. We can fit up to an eight core PolyBlaze (four cores

12

Chapter 2. Background and Related Work

with medium-sized caches) in a Virtex 5 110t FPGA from Xilinx.

2.3 PolyBlaze

PolyBlaze is a 32-bit Reduced Instruction Set Computing (RISC) embedded multicore

soft processor based on the MicroBlaze core. It consists of several instances of slightly

modified MicroBlaze cores and a few new modules. These new modules exist to

provide the required hardware support for sharing resources in a multicore processor.

Without this hardware infrastructure, it is still possible to run applications on this

processor, but we cannot support booting an SMP OS and run general applications

[2, 35]. The modifications on the processor are ranged from minor additions, such

as processor identification through existing Processor Version Register (PVR), to

more extensive modifications on interrupts, timers, atomic operations and Memory

Management Unit (MMU) [2].

2.3.1 Overall Architecture

Figure 2.1 provides an example PolyBlaze system that consists of multiple processor

cores with symmetric or asymmetric configurations, multiple levels of cache mem-

ory, and potential custom hardware accelerator cores. Symmetric processor cores by

themselves allow a simple SMP system, while asymmetric processor cores and custom

hardware accelerator cores enable a more complex heterogeneous system. Multiple

levels of cache memory are common in systems, especially when some of them are

shared while the rest are private. On top of these, the hArdware Based Accelerator

for Characterization of User Software (ABACUS) hardware profiler can hook into

many of these modules and gather useful information about their operation.

13

Chapter 2. Background and Related Work

Figure 2.1 PolyBlaze: the multiple MicroBlaze platform

2.3.2 MicroBlaze

MicroBlaze is a 32-bit RISC embedded processor soft-core. It is optimized for imple-

mentation in Xilinx FPGAs [1] and is highly configurable. Features such as MMU,

FPU, instruction and data caches, dedicated hardware multiplier and divider, hard-

ware barrel shifter and several bus connections are just some examples of the options

that we can use for an instance of MicroBlaze soft processor [1].

MicroBlaze instruction execution is pipelined. There are two configurations for the

processor pipeline:

14

Chapter 2. Background and Related Work

• Three-stage pipeline: if we optimize the processor implementation to reduce the

hardware cost, we will have three stages in the pipeline: 1) Fetch, 2) Decode,

and 3) Execute [1]. Figure 2.1 illustrates a three stage pipeline example with

two stall slots.

• Five-stage pipeline: if we optimize the processor implementation to maximize

performance, we will have five stages in the pipeline: 1) Fetch (IF), 2) Decode

(OF), 3) Execute (EX), 4) Access Memory (MEM), and 5) Writeback (WB) [1].

Figure 2.2 illustrates a five stage pipeline example with two stall slots.

Table 2.1 MicroBlaze core’s three-stage pipeline optimized for minimum area/hardware
cost [1]

cycle number 1 2 3 4 5 6 7
instruction 1 Fetch Decode Execute
instruction 2 Fetch Decode Execute Execute Execute
instruction 3 Fetch Decode Stall Stall Execute

Table 2.2 MicroBlaze core’s five-stage pipeline optimized for maximum performance [1]
cycle number 1 2 3 4 5 6 7 8 9
instruction 1 IF OF EX MEM WB
instruction 2 IF OF EX MEM MEM MEM WB
instruction 3 IF OF EX Stall Stall MEM WB

In any case, most of instructions require one clock cycle in each pipeline stage. There

are also a few instructions that require multiple clock cycles (in execution stage) to

complete. In those cases, bubbles are used to stall the pipeline.

Additionally, there are some instructions that require multiple cycles in other stages,

e.g. memory stage. Load instructions fall into this last category. This additional

latency can significantly affect the pipeline efficiency especially while reading instruc-

tions from external memory. In order to mitigate this problem, MicroBlaze imple-

ments an instruction prefetch buffer. This prefetch buffer can significantly reduce the

impact of such multi-cycle instruction memory latencies.

15

Chapter 2. Background and Related Work

Overall Architecture

Figure 2.2 illustrates a functional block diagram of the MicroBlaze core. As we can

see in this figure, MicroBlaze has a Harvard memory architecture. Modules shown

with darker background are optional and can be excluded from the processor if not

necessary. The processor has up to three interfaces for memory accesses:

• Local Memory Bus (LMB)

• Advanced eXtensible Interface (AXI4) or Processor Local Bus (PLB)

• Advanced eXtensible Interface (AXI4) or Xilinx CacheLink (XCL)

Memory Management Unit (MMU)

Data-side
bus interface

Bus
IF

D
ata C

a cheALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Register File
32 x 32b

Special
Purpose

Registers

Instruction-side
bus interface

Bus
IF

Instruct ion C
ac he

Instruct ion
D

ecode

P
rog

ram
C

ounter
B

ranch
 Ta rget

C
ache

Instru
ction

B
uffer

M_AXI_DP

DPLB

DLMB

M_AXI_IP

IPLB

ILMB

Data-side
bus interface

M_AXI_DC
M_ACE_DC

DXCL_M

DXCL_S

M_AXI_DC
M_ACE_DC

DXCL_M

DXCL_S

UTLB DTLBITLB

M0_AXIS..
M15_AXIS

S0_AXIS..
S15_AXIS

MFSL 0..15 or
DWFSL 0..15

SFSL 0..15 or
DRFSL 0..15

Figure 2.2 MicroBlaze Core Block Diagram [1]

16

Chapter 2. Background and Related Work

Figure 2.3 A block diagram of a Linux capable MicroBlaze system.

Moreover, MicroBlaze has a MMU that is based upon the PowerPC 405 [1] MMU.

The MMU in MicroBlaze is software managed, i.e. on Translation Look-aside Buffer

(TLB) misses, software subroutines will add or remove entries in TLB.

Semaphore Synchronization

In a system based on MicroBlaze soft processors, programs can implement semaphore

operations such as spin locks, test and set, compare and swap, exchange memory, and

fetch and add, using Load Word Exclusive (LWX) and Store Word Exclusive (SWX)

instructions.

In order to implement an atomic operation, the program should first use LWX to

load a semaphore from memory and set an internal reservation bit in the processor.

Then the program tries to write the result back to the same memory location using

a SWX instruction. If the internal reservation bit is set, the SWX will go through.

Otherwise, if for any reason this internal reservation bit has been cleared, the SWX

17

Chapter 2. Background and Related Work

will fail to go through, which means the atomic operation has failed. The internal

reservation bit can be cleared on different conditions such as an exception, interrupt

or another condition store to the same location. The success or failure of a SWX

instruction will be stored in the carry bit in Machine Status Register (MSR) [1].

There are some limitations for semaphore synchronization in MicroBlaze, however.

The first limitation is that we can only maintain one reservation at a time. So if we

want to change the address associated with the reservation, we have to use another

LWX instruction. Also, executing a SWX always clears the reservation bit regardless

of what the associated address is, i.e. no address matching check happens.

Instruction Cache

MicroBlaze has an optional instruction cache. This instruction cache can be used

for improved performance when the processors is executing code that resides outside

the Local Memory Bus (LMB) address range1. As mentioned before, MicroBlaze

is designed to be very configurable. To that end, its instruction cache is also very

configurable. Some of the features in the instruction cache are as follows [1]:

• Direct mapped (1-way associative)

• User selectable cacheable memory address range

• Configurable cache, tag, and cache-line (4 or 8 words) sizes

• Caching over AXI4 interface or XCL interface

• Optional stream buffers to improve performance by speculatively prefetching

instructions

• Optional victim cache to improve performance by saving evicted cache lines

upon replacement and reduce the number of conflict misses
1The access time for reading from or writing into LMB is just one cycle.

18

Chapter 2. Background and Related Work

The following Figure 2.4 illustrates the organization of instruction cache in MicroB-

laze. The cacheable instruction address consists of two parts: 1) the cache address,

and 2) the tag address. Since the instruction cache can be configured from 64 bytes

to 64 kB, a cache address will be between 6 to 16 bits. In addition to that, the tag

address together with the cache address should match the full address of cacheable

memory. Since MicroBlaze instructions are single words (four bytes), then instruction

cache will ignore the two least significant bits [1].

Figure 2.4 Instruction Cache Organization in the MicroBlaze [1]

The instruction cache in the MicroBlaze has optional stream buffers. When the

stream buffers are enabled, the cache will fetch subsequent cache lines in advance,

19

Chapter 2. Background and Related Work

until the stream buffer is full (up to two cache lines). If the processor requests for

subsequent instructions from a cache line, they will be immediately available [1].

There is an optional instruction, Write to Instruction Cache (WIC), that applications

can use to invalidate cache lines in the instruction cache from within the software.

WIC will be considered as a privileged instruction when MicroBlaze is configured to

use MMU [1].

Data Cache

MicroBlaze has an optional data cache. This data cache can be used for improved

performance when the processors is accessing data that resides outside the LMB

address range2. As mentioned before, MicroBlaze is designed to be very configurable.

To that end, its data cache is also very configurable. Some of the features in the data

cache are as follows [1]:

• Direct mapped (1-way associative)

• Write-through or Write-back

• User selectable cacheable memory address range

• Configurable cache, tag, and cache-line (4 or 8 words) size

• Caching over AXI4 interface or XCL interface

• Optional victim cache to improve performance by saving evicted cache lines

Figure 2.5 illustrates the organization of data cache in the MicroBlaze. Similar to

the instruction cache, the cacheable data address consists of two parts: 1) the cache

address, and 2) the tag address. The data cache can be configured from 64 bytes to

64 kB, so a cache address will be between 6 to 16 bits. In addition to that, the tag

address together with the cache address should match the full address of cacheable

memory [1].
2As mentioned before, the access time for reading from or writing into LMB is just one cycle.

20

Chapter 2. Background and Related Work

Figure 2.5 Data Cache Organization in the MicroBlaze [1]

When the data cache is configured to use the write-through protocol, a store to an

address within the cacheable range generates an equivalent write request over the data

interface to external memory. In case of a write cache-hit, i.e. the target address word

is in the cache, the write also updates the cached data. A write cache-miss does not

load the associated cache line into the cache [1].

When the data cache is configured to use the write-back protocol, a store to an address

within the cacheable range always updates the cached data. Therefore, if the target

address word is in the cache, i.e. a write cache-hit, the data will be updated in the

21

Chapter 2. Background and Related Work

cache. In this case, no equivalent write will be sent over the data interface to external

memory. On the other hand, if the target address word is not in the cache, i.e. a

write cache-miss, the data will be updated in the cache, the address is first requested

over the data interface from external memory and written into the cache. Then the

cache will update the data as if it is a write cache-hit. In case of a write cache-miss,

if the cache line that is being brought to the cache is already occupied by another

line of data that has already been modified, the cache has to evict the occupying line

and write it to the external memory before overwriting it with the incoming data [1].

In both write-through and write-back protocols, when processor wants to read some

data from cacheable address range, the cache triggers a check to determine if the

requested data is currently cached. If the requested data is caches, then we will have

a read cache-hit and the requested data will be retrieved from the cache. Otherwise,

the address will be requested over the data interface from the external memory on a

read cache-miss. In this case, the processor pipeline has to be stalled until the cache

line is returned from the external memory controller [1].

Similar to instruction cache, there is an optional instruction, Write to Data Cache

(WDC), that applications can use to invalidate cache lines in data cache from within

the software. When MicroBlaze is configured to use MMU, WDC will be treated

as a privileged instruction. Additionally, when the data cache is using a write back

protocol, this instruction can be used to force cache line flushes [1].

Over all, the instruction and data caches in MicroBlaze behave similarly in many

ways. However, there are some key differences between them. The first difference is

that instruction cache is read only whereas data cache can be modified through the

applications3. The second difference is that instruction cache works with both virtual
3It is possible to update instruction cache through the application (self-modifying code), but in

order to actually update the instruction cache, we have to invalidate the desired cache lines and force

22

Chapter 2. Background and Related Work

and physical addresses while data cache only works with physical addresses.

XCL

XCL is a high performance interface for external memory accesses. MicroBlaze’s XCL

interface is designed to connect directly to a memory controller such as Multi-Port

Memory Controller (MPMC) that supports integrated First-In-First-Out (FIFO)s

(Fast Simplex Link (FSL) buffers).

The XCL interface is only available on MicroBlaze when at least one of the caches is

enabled. Memory locations that reside outside the cacheable range will be accessed

over other bus interfaces such as Processor Local Bus (PLB) or LMB. The XCL

controllers can handle 4 or 8-word cache lines. Moreover, they can be configured to

use either critical word first or linear fetch depending on the selected protocol. When

selected protocol is critical word first, when processor is requesting a second word in

a cache line, that word is what will be brought into the cache through XCL first and

the rest of the words follow it. For example. when the processor request the third

word in a cache line, the words fetched for the cache line will arrive in this order: 3,

4, 1, 2. Conversely, in a linear fetch protocol, the words in a cache line will always

get to the cache in order from the first to the last word. Regardless, the separation

of XCL from PLB bus reduces contention for non-cached memory accesses.

2.3.3 L2 Arbiter

L2 Arbiter is an important module in PolyBlaze’s memory hierarchy. This module

has three main purposes: 1) receive all the requests and pass them on to memory

in order, 2) broadcast invalidation requests to maintain memory coherency, and 3)

handle reservations and conditional operations (which is done by Lock Arbiter as

the program to continue executing from there. Then the instruction cache will read the updated
values from memory.

23

Chapter 2. Background and Related Work

described in Section 2.3.4).

As mentioned before, the first purpose of the L2 Arbiter is to receive requests from all

of the connected processors and hardware accelerators and pass them on to memory

in order. In order to achieve this goal, the L2 Arbiter scans its input ports one by one

using a round robin method so that every connected processor gets their fair share

of requests. On any given cycle, if the selected processor does not have any requests,

the L2 Arbiter will consider other ports that come after the selected processor until

it detects a request or until it determines that no one has any requests. This method

allows a fair memory access for every port, so no port will be waiting for its turn

while other ports keep sending memory requests. Also, if one port does not have any

request on its turn, another port can use the cycle to send a request to memory, hence

the cycle will not go to waste.

The second purpose of the L2 Abiter is to broadcast invalidation requests to maintain

memory coherency between connected ports. Since the L2 Arbiter is the central point

through which all memory requests are sent, it can broadcast invalidation requests

correctly. To achieve this goal, the L2 Arbiter will generate an invalidation packet

whenever it is issuing a write request on behalf of a port. These invalidation packets

will be broadcast to every other port. When the broadcasting is complete and the

write request has been written to memory queues, the L2 Arbiter considers the write

operation successful and removes it from processor’s queue.

The third role of the L2 Arbiter is to handle reservations and conditional requests.

Each port in the L2 Arbiter has its own reservation bit and reservation address regis-

ter. Upon receiving a conditional load request from a processor, the L2 Arbiter sets

the corresponding reservation bit and registers the address of load operation into the

corresponding reservation address register. In addition, the load request is passed

24

Chapter 2. Background and Related Work

on to memory. Upon receiving a conditional store request, the L2 Arbiter checks

the reservation bit and looks for a match between reserved address and conditional

store’s address. If the address matches and the reservation bit is set, then conditional

store request is considered successful; otherwise it is considered as a failed request.

Successful requests are passed on to memory and failed requests will be dropped.

Additionally, the L2 Arbiter sends a notification to the corresponding processor and

notifies them of the result of the conditional store. There are other features in later

versions of the L2 Arbiter including burst writes and Direct Memory Access (DMA)

support. However, they are not required in this work.

2.3.4 Semaphore Synchronization

As discussed earlier, the MicroBlaze performs atomic operations with conditional

load/store instructions: LWX and SWX. First LWX is used to load from memory,

e.g. a semaphore’s location, and set the internal reservation bit. Then, a SWX will

be used to write a new value to that location if the reservation bit is still set. If this

bit is cleared for any reason, interrupts, exceptions, or other conditional stores to any

memory location, the conditional store will not happen [1]. This design is perfectly

suitable for a single-core system, but it cannot guarantee that no other processor

will modify the memory location. In other words, this behaviour will not be able to

guarantee the atomicity of operation.

In a multicore system, several memory requests can be in progress at a given time.

Therefore, PolyBlaze has to take a slightly different approach to this problem. In

PolyBlaze, the Lock Arbiter, as shown in Figure 2.1, will take care of reservation

handling for each processor and acts as the central synchronization point between all

the processors. In this system, all the store operations will be passed to the Lock

Arbiter along with extra signals indicating that they are regular or conditional stores.

25

Chapter 2. Background and Related Work

Then the Lock Arbiter will decide whether to put the write request to main memory

or to drop the request because the reservation bit has been cleared before the store

reaches the Lock Arbiter. Then the Lock Arbiter will notify the processor of the result

of its conditional store via some other extra signals. The result of this operation is

then fed back into the processors logic the execution of the SWX instruction will be

complete [2].

Beside moving the reservation bit to the Lock Arbiter, PolyBlaze improves the perfor-

mance of lock arbitration by adding one reservation bit per processor and a matching

address for each reservation bit. The extra logic used here helps with performance and

scalability of the Lock Arbiter. Since each processor has its own reservation bit and

reservation address registers, multiple processors can work with different semaphores

and locks at the same time without interferreing with each other. However, it is worth

noting that in this system, when we have any store operation to memory, if someone

else has tried to set a reservation on that location, we will clear their reservation bit

so they will fail and have to try again [2].

2.4 Cache and Scratchpad Implementation on FPGAs

Memory hierarchies in modern multicore computing systems are based on one of

the following schemes: 1) multi-level coherent caches, or 2) scratchpad memories

with DMA support. Systems that use caches are often general purpose systems as

the software programmer does not need to know where the data is actually stored

or how the hardware is handling the data movements in the system. Such data

movements are indirect results of cache misses and coherence events. In contrast,

software developers for systems that use scratchpads, need to know how the data is

supposed to be stored in memory [36]. This knowledge, obviously, can lead to much

better performance. Moreover, the user control over the scratchpads eliminates the

26

Chapter 2. Background and Related Work

need for coherency mechanisms between multiple scratchpads and, therefore, such

systems require less additional inter-processor communications. These optimizations

become especially important in large-scale systems since coherency mechanisms, due

to their need for inter-processor communications, can have dramatic effects on the

scalability of a system [37].

Many of the soft processors mentioned in Section 2.2 either do not implement L1

caches at all or implement a single core system, without any coherency mechanisms.

MicroBlaze [1] and NIOS II [25] only provide single core systems. These processors

are highly configurable but their L1 cache implementations use only a direct-mapped

approach. Also, since they only support a single core system, they do not implement

any coherency mechanisms [1, 25].

Conversely, OpenSPARC T1[32] supports coherent L1 caches, but it is not very con-

figurable. However, an OpenSPARC core is large enough to use almost all of available

resources in a Virtex 5 110LXT. Moreover, the memory controller in OpenSPARC

system is emulated using the firmware on a MicroBlaze processor. Therefore, the

setup for a multicore OpenSPARC system requires multiple FPGA boards due to the

size of the processor and limits the system scalability. Another SPARC-based sys-

tem supporting multicore setup uses LEON3 soft processors [33], but board memory

controller support for LEON3 processor is limited.

2.4.1 Configurability

As mentioned earlier, MicroBlaze and NIOS II are two highly configurable soft pro-

cessors [1, 25]. The built-in configurability in these cores permits more options for an

AMP system. For instance, we can turn on a FPU in one of the cores, use hardware

multipliers and dividers in another, and keep the rest simple to reduce the resource

usage in the whole system. However, not all soft processors, regardless of being a

27

Chapter 2. Background and Related Work

single-core or multicore processor, support enough configurability for our purpose.

Nikiforos et al. present a local memory design that can be configured to behave as

a cache and a scratchpad at the same time to support implicit communications via

caches and explicit communications via scrachpads. In their work, it is possible to

lock parts of cache and prevent that part from evicting data, hence treating it as an

scratchpad memory [38].

2.5 Asymmetric Caches in Multiprocessors

Most of the work done on caches either target single core computing systems or SMP

systems. ARM’s little.BIG architecture is one of the commercial movements towards

AMP systems. In this architecture, two types of processors exist. “big” processors

are designed to provide maximum compute performance while “LITTLE” processors

are designed for maximum power efficiency [39]. Since both of these processor types

use the same ISA, the OS running on the system does not necessarily need to be

aware of the difference between processors. However, the Global Task Scheduling

(GTS), which is in fact a patch on the scheduling mechanisms in the OS, is aware of

the difference between processors and tries to get better performance by assigns tasks

to different processors based on the needs of applications. Besides this architecture,

there has not been any work on asymmetric caches on FPGAs to the extent of author’s

knowledge. Moreover, the ARM processor cores available on some FPGAs are hard

cores and are not part of the reconfigurable fabric of the FPGA.

28

3 An Asymmetric Cache Coherent

Architecture for PolyBlaze System
A single-core MicroBlaze system with its instruction and data cache can boot an

OS or run any generic application without any problems. A multicore system based

on MicroBlaze, however, cannot necessarily do that just by replicating MicroBlaze

cores and their caches. Since there is no coherency mechanism implemented for

MicroBlaze’s caches, without proper measures, the memory consistency will become

a problem, the OS will fail to even boot, and generic applications will fail to execute

correctly. Therefore, the designed caches for PolyBlaze include a coherency protocol

handler. Additionally, these caches follow the original MicroBlaze caches and use

as many parameters as possible to have high configurability, which in turn enables

asymmetric architectures. Besides, ABACUS interface allows ABACUS hardware

profiler to easily connect to PolyBlaze caches and gather data about their behaviour.

The remainder of this chapter will present the proposed coherent cache memory archi-

tecture. This includes the necessary modifications on instruction and data caches to

support a simple write invalidation protocol. In addition, we will talk about possible

configurations of different parameters in the system and how they will affect system

behaviour. Finally, we will discuss the involvement of caches in synchronization and

conditional instructions.

29

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

3.1 Level-1 Data Cache

MicroBlaze has an optional data cache (we can remove it from the system without

loosing functionality). However, the data cache is mandatory in PolyBlaze’s current

implementation as it is involved in handling conditional instructions as well as data

access to memory. So in a PolyBlaze system, it is possible to disable the data cache,

but its memory interface has to remain in the system. Figure 3.1 highlights the inter-

nal architecture of PolyBlaze’s data cache. The blue modules exist in MicroBlaze’s

data cache and the green modules are added for PolyBlaze’s data cache. A detailed

explanation of each module’s role in the cache follows.

Figure 3.1 PolyBlaze’s Data cache overview

30

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Data Bank(s)

The data bank in MicroBlaze’s data cache is just used to keep the data. It has

several parameters such as the size of cache line or type of memory used to store the

data (BRAM or LUTs). In PolyBlaze’s data cache, we have the same parameters.

However, depending on the replacement policy, the number of used memory blocks

can be different.

Tag Bank(s)

The tag bank in MicroBlaze’s data cache is used to keep the tag values and the valid

bits. The available parameters for tag bank are similar to data bank’s parameters:

size of cache line and type of memory used to store values (BRAM or LUTs). In

PolyBlaze’s data cache, we have the same parameters for tag bank. However, the

number of used memory blocks can be different depending on the replacement policy.

Additionally, valid bits in PolyBlaze’s data cache are stored in a separate bank.

Valid Bits

As mentioned before, valid bits in MicroBlaze’s data cache are kept along with tag

values and are only updated when there is either a cache miss or the processor has

issued a WDC instruction to invalidate a cache line in data cache. In the PolyBlaze,

we have moved the valid bits into a separate memory bank. The main reason for

breaking this logic into two separate parts is to localize the logic that accesses the

valid bits since it is part of the critical path in the processor. This logic consists

of accesses for cache hits, updates to valid bits upon cache misses, invalidations due

to WDC instructions, and invalidation logic from coherency protocol. Additionally,

the replacement policy module needs access to valid bits as well, depending on the

replacement policy used in the system.

31

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Replacement Policy

MicroBlaze only implements a direct-mapped replacement policy. Therefore, the

logic for this module is embedded with the rest of logic in cache. In PolyBlaze, we

implement a dedicated module and make replacement decisions in that module in

order to be able to define different replacement policies such as direct-mapped, Least

Recently Used (LRU), Clock, or pseudo-random replacement policy1. This module

will also allow for asymmetric caches in a PolyBlaze system since we can choose

different replacement policies for different cores.

Conditional Operations

Conditional load operations in MicroBlaze are unrelated to the data cache, except

that the processor will request data from the data cache, just like any other load

operation. In the PolyBlaze, when a processor tries to execute a LWX instruction,

instead of setting an internal reservation bit, it will notify the data cache. The data

cache in turn will force2 a cache miss and send a memory request to the L2 Arbiter

(a module that includes the Lock Arbiter), which handles reservations. The rest

of what happens for the LWX instruction is the same as regular loads operations

of MicroBlaze’s data cache behaviour: when the data cache receives the data from

memory, it will return the data to the processor just like any other load instruction.

Similar to conditional loads, conditional store operations in MicroBlaze do not effect

the data cache except to execute a store operation if the store operation is supposed

to go through upon a successful conditional operation. Conversely, in PolyBlaze, on a

SWX instruction, a write request will be sent to the L2 Arbiter. Then, the L2 Arbiter
1In this thesis, we only implement direct-mapped and LRU replacement policies.
2We force a cache miss because we have to send a request to the Lock Arbiter to make sure that

another core is not trying to access the same lock. So if the cache line happens to be in the cache,
we will mark it as invalid and send a request to memory to fetch the data from there.

32

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

will decide whether the write is supposed to go through all the way to memory or not.

If the operation is successful, meaning the reservation bit in the L2 Arbiter is set and

the write address matches the reserved address, the L2 Arbiter will pass on the write

request to memory. In the mean time, the L2 Arbiter notifies the processor of the

result of conditional store via sending a single bit through PBML. If the operation is

successful, the value of this bit will be ‘1’, otherwise it will be ‘0’. When the data

cache receives the result of conditional store, it will pass the result to the processor.

In addition to that, upon a successful conditional store, the data cache will update

its content as if there has been a hit on the requested address.

Coherency Protocol Handler

The coherency protocol handler in PolyBlaze’s data cache receives the invalidation

requests from the L2 Arbiter. Since the implemented method is write invalidation

protocol, this module will look at invalidation address in each packet and invalidate

the corresponding cache line if the tag from invalidation address matches the tag

value read from tag bank.

The write invalidation protocol is one of the simplest coherency protocols. More

sophisticated methods that are not part of this work, will keep track of which processor

is accessing what parts of memory and notify other processors if necessary. Some even

mark memory blocks as their own and respond to requests from other processors

instead of main memory. Many of these protocols are designed for write-back caches

though and are not necessarily applicable to write-through caches. Moreover, these

complicated methods would require a more sophisticated interconnect than what we

currently have in the L2 Arbiter.

33

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

ABACUS Interface

We can connect ABACUS [35] to the data cache through the ABACUS interface.

Using ABACUS, we can gather information about behaviour of data cache such as

number of read requests, cache read misses, cache read hits, write requests, cache

write hits, cache write misses, invalidation hits for coherency protocol, total number

of incoming packets for coherency protocol, and so on. The gathered information can

later be used to analyze the performance of an application. Moreover, it is possible

to add more signals to this interface depending on the type of data that we want to

gather.

Debugging Data Cache

During the design process, we have embedded some signals that are useful for de-

bugging purposes. These signals range from key signals in the cache control logic

to the PBML connection signals to hardware counters and check-sum registers. If

necessary, we can hook these signals into the ChipScope logic analyzer [40] to gather

more information about system behaviour. For example, we can use the ChipScope

logic analyzer to gather information such as memory latency. When not being used,

we can remove this logic by setting the C_PB_DCACHE_USE_DEBUG parameter

of the PolyBlaze processor to ‘0’.

Control Logic

Control logic is the heart of data cache. It connects different modules, keeps track of

timing for different signals and multiplexes the addresses for different modules such

as data bank, tag bank, or valid bits. Also, the implemented logic for handling inval-

idation instructions, i.e. WDC, is part of control logic. These instructions are often

handled in a single cycle. The WDC instructions provide an address for invalida-

tions. However, the data cache only looks at the cache line address and ignores the

34

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

tag value. Therefore, a WDC instruction will invalidate the cache line regardless of

a hit or miss on the tag part of the address.

PolyBlaze Memory Link (PBML)

MicroBlaze uses XCL for direct connection to MPMC. XCL can be used to stream

data to processor and is arbitrated on the slave-side. PolyBlaze, on the other hand,

requires a more complicated memory interface. There are several modules in Poly-

Blaze’s memory architecture and they are connected to each other via different links,

generally called PBML. We will further discuss the internals of a PBML link in Sec-

tion 4.3. The PBML for the data cache consists of four different queues as shown in

Figure 3.2. Data cache PBML connections to the L1 Arbiter are colored turquoise/-

green.

1. Request Queue: the first queue is used to send request information to the L1

Arbiter. Each request is sent as a packet that contains 32 bits for the address of

the operation, one bit for the type of the operation (‘0’ for a write operation and

‘1’ for a read operation), 32 bits for outgoing data if the request is for a write

operation, four bits representing the byte-enable bits for a write operation, and

one bit indicating a conditional versus regular operation. There are a few other

bits that will be ignored in the later modules since their functionality is not

required yet, hence they are not implemented 3.

2. Data Queue: the second queue is used to bring in the incoming data from

memory to data cache. The incoming data will be transferred through the L1

Arbiter. The width of this FIFO is 32 bits to bring in one word at a time. The

incoming words will come in order – meaning that if we are reading the line

containing the address 0x50000088 from memory, the first word we receive will
3These bit may be removed if we decide to take a different approach to handle them in the future.

35

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

L1
Arbiter

Data

Invalidation Addresses

Conditional Ops.

Data
Cache

Requests

Data

Instruction
Cache

Requests

L1
Arbiter

Data

Invalidation Addresses

Conditional Ops.

Data
Cache

Requests

Data

Instruction
Cache

Requests

L2
Arbiter

Data

Invalidation Addresses

Conditional Ops.

Requests

Data

Invalidation Addresses

Conditional Ops.

Requests

Figure 3.2 PolyBlaze’s PBML connections

be 0x50000080, then 0x50000084, 0x50000088, and 0x5000008C, respectively.

3. Invalidation Queue: the third queue is used by coherency protocol handler. The

coherency packets are issued by the Level-2 Arbiter and are transferred by L1

Arbiter. The size of teach packet is 32 bits at the moment and can be reduced

to 30 bit later on.

4. Conditional Operation Results: the forth and the last queue carries the result

of conditional operations. This queue is just one bit wide. A ‘1’ value means

a successful conditional operation, i.e. the SWX has gone through to memory,

and a ‘0’ value means that the conditional store operation has failed.

36

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

MicroBlaze Interface

The MicroBlaze interface is the set of internal signals to/from the processor’s logic.

The behaviour of these signals is very similar to MicroBlaze’s original data cache.

The small differences in these signals’ behaviour are due to the difference in handling

conditional operations.

3.1.1 Design Process

The presented memory architecture and caches in this thesis is the third generation

of cache design for PolyBlaze. The first generation was a simple cache design with

custom connections to memory for each cache, similar to MicroBlaze’s behaviour.

The main goal for this generation of PolyBlaze caches was to obtain the correct

behaviour for MicroBlaze interface and the internal connections of caches and other

parts of processor. The second generation of caches introduced PBML queues and

the first versions of the L1 and the L2 Arbiters. Finally, the third generation was

designed based on the extracted characteristics and behaviours of the system from

the previous two generations. This generation uses a much clearer design flow that is

easier to understand, expand and evaluate.

In addition, the optimizations that are added in the third generation allow us to build

a quad-core PolyBlaze system with 4KB instruction and data caches that is able to run

at 100MHz. These optimizations are mostly done by taking the original source code

of MicroBlaze and following the same structures and methods used there to get better

performance. Moreover, we have used modules such as BRAMs and comparators that

are implemented in MicroBlaze targeting different FPGA architectures designed by

Xilinx Inc. These modules will be optimized for different FPGA architectures and

using them will allow us to get better resource usage and performance when working

with MicroBlaze cores on Xilinx FPGAs.

37

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

3.2 Level-1 Instruction Cache

The MicroBlaze has an optional instruction cache, but in contrast with data cache,

the existence of instruction cache is not necessary in PolyBlaze even if we want to

boot an OS4. However, we have implemented a configurable instruction cache for the

PolyBlaze that has a few features used in an asymmetric system. For instance, similar

to data cache, we can choose different replacement policies. Figure 3.3 highlights

the internal architecture of PolyBlaze’s instruction cache. The blue modules exist

in MicroBlaze’s instruction cache. The green modules are added for PolyBlaze’s

instruction cache. A detailed explanation of each module’s role in the cache follows.

Since both data and instruction cache have been designed with similar goals in mind,

their behaviour is very similar to each other.

Data Bank(s)

Similar to the data cache, the data bank in the MicroBlaze’s instruction cache is

just used to keep the instructions. It has several parameters such as the size of

cache line or type of memory used to store the data (BRAM or LUTs). In the

PolyBlaze’s instruction cache, we have the same parameters. However, depending on

the replacement policy, the number of used memory blocks can be different.

Tag Bank(s)

The tag bank in the MicroBlaze’s instruction cache is used to keep the tag values

and the valid bits. The available parameters for tag bank are similar to data banks:

size of cache line and type of memory used to store values (BRAM or LUTs). In the

PolyBlaze’s instruction cache, we have the same parameters for tag bank. However,

the number of used memory blocks can be different depending on the replacement
4Since the coherency of instruction caches between different cores are handled in software, we

can use the original instruction cache of MicroBlaze if we want.

38

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Figure 3.3 Instruction cache’s overview in PolyBlaze

policy.

Replacement Policy

The MicroBlaze only implements a direct-mapped replacement policy, therefore, the

logic for this module is embedded with the rest of logic in cache. In the PolyBlaze,

we implement a dedicated module and make replacement decisions in that module in

order to be able to define different replacement policies such as direct-mapped, LRU,

Clock, and random replacement policy 5. This module will also allow for asymmetric

caches in a PolyBlaze system, since we can choose different replacement policies for

different cores.
5In this thesis, we only implement direct-mapped and LRU replacement policies.

39

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Valid Bits

As mentioned before, the valid bits in the MicroBlaze’s instruction cache are kept

along with tag values and are only updated when there is either a cache miss or the

processor has issued a WDC instruction to invalidate a cache line in data cache. In

the PolyBlaze, we have moved the valid bits into a separate memory bank. The main

reason for separating this logic is to localize the logic that accesses the valid bits

because it is part of the critical path in the processor. This logic consists of accesses

for cache hits, updates to valid bits upon cache misses, and invalidation due to WIC

instructions. In addition, the replacement policy module needs access to valid bits as

well depending on the replacement policy used in the system.

ABACUS Interface

We can connect ABACUS to the instruction cache through the ABACUS interface.

Using ABACUS, we can gather information about behaviour of instruction cache

such as number of read requests, cache read misses, cache read hits, and so on. The

gathered information can later be used to analyze the performance of an application.

Debugging Instruction Cache

Similar to data cache, in the design process, we have embedded some signals that

are useful for debugging purposes. These signals range from key signals in the

cache control logic to the PBML connection signals to hardware counters and check-

sum registers. ChipScope logic analyzer [40] can connect to these signals and

gather information. When not being used, we can remove this logic by setting the

C_PB_ICACHE_USE_DEBUG parameter of the PolyBlaze processor to ‘0’.

40

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Control Logic

Control logic is the heart of instruction cache. It connects different modules, keeps

track of timing for different signals and multiplexes the addresses for different mod-

ules such as data bank, tag bank, or valid bits. Moreover, the implemented logic for

handling invalidations instructions, i.e. WIC, is part of control logic. These instruc-

tions are often handled in a single cycle. WIC instructions provide an address for

invalidations. However, data instructions only looks at the cache line address and

ignores the tag value. Therefore, a WIC instruction will invalidate the cache line

regardless of a hit or miss on the tag part of the address.

PolyBlaze Memory Link (PBML)

The MicroBlaze uses XCL for direct connection from instruction cache to MPMC.

However, as mentioned before, the PolyBlaze requires a more complicated memory

hierarchy. For consistency with data cache, instruction cache uses the same memory

hierarchy. The PBML for instruction cache consists of two different FIFOs. Instruc-

tion cache’s PBML connections to the L1 Arbiter are colored cyan/blue in Figure

3.2.

1. Request Queue: the first FIFO is used to send request information to the L1

Arbiter. Each request is sent as a packet that contains 32 bits for the ad-

dress of the operation. Since the instruction cache will only issue regular read

operations, we do not need anything else in these packets.

2. Data Queue: the second FIFO is used to bring in the incoming data from

memory to instruction cache. The incoming data will be transferred through

L1 Arbiter. The width of this FIFO is 32 bits to bring in one word at a time.

Similar to the data cache, the incoming words will come in order.

41

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

MicroBlaze Interface

The MicroBlaze interface is the set of internal signals from/to the processor’s logic.

The behaviour of these signals is very similar to MicroBlaze’s original instruction

cache.

3.3 A comparison of L1 Data and Instruction Caches

The general architecture of the data and instruction caches are very similar to each

other; for example, the way they connect to replacement policy module is identical.

However, there are certain features that are implemented quite differently. In the

remainder of this chapter, we will talk about the differences between instruction and

data caches, the reasons of such differences, and the implication of them.

Physical Address vs. Virtual Address

Since the requests to the data cache in the MicroBlaze, and similarly in the PolyBlaze,

are initiated in EX stage of processor’s pipeline, the input address to the cache has

had enough time to be translated by the MMU. Therefore, all the addresses that go

into data cache are physical addresses. However, the addresses that go into instruction

cache could be physical or virtual addresses since they are initiated in IF stage. Due

to this key difference, the data cache can always ignore the fixed part of memory

addresses in tag comparison for a match whereas the instruction cache has to take

them into account. Besides that, in presence of virtual memory, the instruction cache

has to keep track of process identification and the type of cached address (virtual or

not) as well in order to generate correct match signals.

42

Chapter 3. An Asymmetric Cache Coherent Architecture for PolyBlaze
System

Coherency Protocol

The data cache in the PolyBlaze is involved in a write invalidation protocol to maintain

coherency between all data caches in a PolyBlaze system. In contrast, the instruction

cache’s coherency is not handled in the hardware. In a PolyBlaze system, if we need

to maintain the coherency of instruction caches’ contents, we will handle it in the

software, i.e. OS [35].

43

4 Memory Architecture in PolyBlaze

System
PolyBlaze, as a multicore processor system, requires a more complicated memory

hierarchy than a single-core system based on MicroBlaze. There are several require-

ments for the design of this new memory hierarchy such as scalability, the ability

to maintain memory coherency, and to provide a better performance for the entire

system. Figure 4.1 illustrates an overview of memory architecture in a PolyBlaze

system. As is apparent in this figure, each processor is connected to a L1 Arbiter.

The L1 Arbiters, along with any hardware accelerator cores, and other modules that

require access to coherent memory are all connected to the L2 Arbiter. From that

point onward, all requests to main memory are merged into sequential access. After-

wards, we have a simple NPI module that simply translates the requests for MPMC.

It is possible to have a shared/private Level-2 cache instead of the NPI module. Also,

it is possible to have a Level-3 cache as well (and higher levels of cache), but that

is outside of the scope of this thesis. The focus of this thesis is the L1 Arbiter, the

PBMLs and their interface with the L2 Arbiter as well as the NPI interface. The rest

of this chapter will discuss the proposed memory architecture with details explana-

tions about different modules in this architecture, their roles, and their impacts over

the entire system.

44

Chapter 4. Memory Architecture in PolyBlaze System

PLB

Timer &
Interrupt

Controller

Hardware
Profiler

UART Debug Module

Memory Controller
FPGA

L1 I/D Caches

Processor
Core 1

L1 I/D Caches

Asymmetric
Processor
Core (N+1)

Custom
Hardware

Accelerator
Core(s)

L2 Cache / NPI interface

L2 Arbiter (includes Lock Arbiter)

L1 I/D Caches

Processor
Core N

L1 Arbiter L1 Arbiter L1 Arbiter

Figure 4.1 Memory Architecture in a PolyBlaze System

4.1 Level 1 Arbiter

The L1 Arbiter is a simple module due to its simple role in the system. The main

reasons for its existence in the PolyBlaze system are compatibility and scalability.

Specifically, the L1 Arbiter is used to multiplex the requests coming from instruction

and data cache. The requests from each cache are fed into this module through their

respective PBMLs. Then the Level-1 Arbiter makes a request from the L2 Arbiter

and when data comes back, the L1 Arbiter marshals the data into the appropriate

instruction or data cache. The unified requests of the L1 Arbiter are similar to those of

the data cache since instruction cache requests can be a subset of data cache requests

45

Chapter 4. Memory Architecture in PolyBlaze System

(in format), as the instruction cache always reads data and never writes back (i.e. no

self-modifying code). However, the L1 Arbiter has to tag its requests so that it knows

to whom the incoming data belongs. For this purpose, a single bit is defined in the

request packets: ‘1’ for data cache requests and ‘0’ for instruction cache requests.

The unification of outgoing requests from the L1 Arbiter helps with the compatibility

of ports that go into L2 Arbiter. So the L2 Arbiter uses a series of generic ports that

can be connected to L1 Arbiters, hardware accelerators, or any other module that

requires to be part of coherent memory in the system.

In addition, it is possible to connect data or instruction caches directly into L2 Arbiter

given that the ports on the L2 Arbiter are generic. For such cases, we can hardwire

the extra logic. However, doing so would require two ports on the L2 Arbiter per pro-

cessor, which would impact the scalability of the system, especially with the selection

algorithms implemented in the L2 Arbiter, e.g. round-robin selection between ports.

Moreover, the L1 Arbiter adds two extra cycles to memory latency. As such, we must

try to address the trade-off between better scalability and lower latency for misses

in the L1. Additionally, we have implemented prefetching units that are located in

the L1 Arbiter. These prefetching units can help to minimize the increased latency

added by the L1 Arbiter. The prefetching unit will be discussed later on in Section

4.4.

The L1 Arbiter connects to other modules via PBMLs, as was shown in figure Figure

3.2. Four queues connect L1 Arbiter to data cache:

1. Request Queue: the first queue is used to send request information from the

data cache to the L1 Arbiter. Each request is sent as a packet that contains 32

bits for the address of the operation, one bit for the type of the operation (‘0’

for a write operation and ‘1’ for a read operation), 32 bits for outgoing data

46

Chapter 4. Memory Architecture in PolyBlaze System

if the request is for a write operation, four bits representing the byte-enable

bits for a write operation, and one bit indicating a conditional versus regular

operation.

2. Data Queue: the second queue is used to send the incoming data from memory

to the data cache. The incoming data will be transferred through the L1 Arbiter.

The width of this FIFO is 32 bits to bring in one word at a time. The incoming

words will come in order.

3. Invalidation Queue: the third queue is used by the coherency protocol handler.

Coherency packets are issued by the L2 Arbiter and are transferred by the L1

Arbiter. The size of each packet is 32 bits at the moment and can be reduced to

30 and less bits if required in the future. The number of bits used in the cache

to perform invalidation requests from coherency protocol, depends on a few

architectural factors. In our implementation, we ignore the two least significant

bits (bit indecies 1 and 0) since they are used for addressing bytes in each word.

Additionally, we ignore a few more bits (2 or 3 bits) based on the cache line size

since we are invalidating cache lines and not just words.

4. Conditional Operation Results: the forth queue carries the result of conditional

operations. This queue is just one bit wide. A ‘1’ value means a successful

conditional operation, i.e. the SWX has gone through to memory, and a ‘0’

value means that the conditional store operation has failed.

There are two more queues that connect the L1 Arbiter to instruction cache: 1) a

request queue, and 2) data queue. Additionally, five queues connect the L1 Arbiter

to the L2 Arbiter: 1) address request queue, 2) data write queue, 3) data read queue,

4) invalidation address queue, and 5) conditional operation results queue. Notice

that requests from instruction and data caches will be divided into two parts and go

through address request queue and data write queue to the L2 Arbiter.

47

Chapter 4. Memory Architecture in PolyBlaze System

4.2 Level 2 Cache/Memory Interface

This module is located between the L2 Arbiter and main memory. In this work, we

have used a simple module that connects to the MPMC using a NPI interface. This

module simply receives the requests from the L2 Arbiter and processes them. The NPI

interface is a simple FIFO-based port on MPMC that accepts up to four outstanding

read operations. For more details on this interface, please refer to LogiCORE IP

Multi-Port Memory Controller documents at [41].

4.3 PolyBlaze Memory Link

PolyBlaze Memory Links consist of asynchronous or synchronous FIFOs with different

depths and widths. These FIFOs allow different modules to work independently.

Furthermore, asynchronous FIFOs allow different modules to work at different clock

rates. For instance, the processor cores can operate at 100 MHz while the arbiters

and memory interfaces can operate at 200 MHz. Additionally, different modules can

work at different frequencies, which provides more options for an asymmetric system.

For each processor in the PolyBlaze framework, we can have up to 11 PBMLs as

shown in yellow in Figure 3.2. If a core uses caches, four PBMLs will connect data

caches to the L1 Arbiter, two links will be between instruction caches and the L1

Arbiter, and five links will connect the L1 and L2 Arbiters. In addition, there are

four more links that connect L2 Arbiter to L2 Cache or NPI interface.

In MicroBlaze systems, XCL uses integrated FSL/FIFO connections to connect the

processor to the MPMC. In PolyBlaze we have similar FIFOs, but they exist in NPI.

PBML, however, provides its own FIFOs. Since these FIFOs are asynchronous, we

can get modules such as L1 Arbiter, L2 Arbiter, and NPI to work at higher frequencies

and service more processors in less time.

48

Chapter 4. Memory Architecture in PolyBlaze System

4.4 Prefetching Unit

The prefetching unit is a part of L1 Arbiter. In its simplest form, the L1 Arbiter only

handles requests from data and/or instruction cache. When an optional prefetching

unit exists in the memory path of either caches, after every read request from cache

(e.g. address 0x1000), the prefetching unit will submit another request for the sub-

sequent cache line (e.g. address 0x1001) and store it locally in a register. If the next

read request from the cache happens to be for that line, then prefetching unit can

return the data quickly and submit another request for the cache line after that (e.g.

address 0x1002).

If the requested cache line does not exist in prefetching unit or the existing cache line

in prefetching unit is not what the cache requests, a proper request will be submitted

to memory. Additionally, the data in prefetching unit will be dropped and another

request for the subsequent cache line will be submitted.

There are more complicated implementations for prefetching units. The algorithm

used in L1 Arbiter is the simplest version (stride-1) which will assume we always want

to read from subsequent addresses. This implementation is specially beneficial for

instruction cache since program instructions are often in contiguous memory locations.

49

5 Evaluation and Experimental Re-

sults
In this chapter, our focus is to demonstrate the evaluation platform for PolyBlaze’s L1

caches. First, in Section 5.1, we present the resource usage of different modules and

systems. Later in Sections 5.2 and 5.3, we talk about system properties such as mem-

ory latency and operating frequency. Afterwards, we demonstrate the performance

of PolyBlaze’s multiple cores over MicroBlaze’s single core.

5.1 Resource Usage

Table 5.1 presents the total resource usage of a single core MicroBlaze processor

system with 4, 8, and 16 kB data caches all while the instruction caches in these

three systems are 4kB in size. Table 5.2 shows the resource usage of single core

MicroBlaze systems with 4kB data caches, and 4, 8, and 16kB instruction caches

respectively. These two tables can be used as base-line measurements for resource

usage presentation of different PolyBlaze configurations. Please note that the reported

numbers are derived from place and route reports. Please note that the numbers

are reported for the entire system and not just the processors or caches because in

placement and routing phases, the optimizations are run in a global scale.

As we see in Tables 5.1 and 5.2, the number of BRAMs used in a system will grow

with cache size. From the detailed numbers in resource usage logs from each systems

(also from analyzing the numbers presented in these tables) we see that for each 4

50

Chapter 5. Evaluation and Experimental Results

Table 5.1 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a single core MicroBlaze system

Data Cache Size Line Size Registers LUTs BRAMs

4 kB 4 7617 6518 26
8 7672 6556 26

8 kB 4 7620 6523 27
8 7674 6559 27

16 kB 4 7618 6520 29
8 7673 6557 29

Table 5.2 Post place and route resource usage for different instruction cache configu-
rations with 4kB direct-mapped data cache in a single core MicroBlaze system

Instruction Cache Size Line Size Registers LUTs BRAMs

4 kB 4 7617 6518 26
8 7672 6556 26

8 kB 4 7620 6526 27
8 7685 6561 28

16 kB 4 7618 6521 29
8 7683 6556 29

kB of cache, we are using one instance of available BRAMs in the FPGA. Another

interesting point is that line size (i.e. the number of words in each cache line) does

not increase the number of BRAMs used in the system. With more words in a cache

lines, we reduce the number of lines in each cache, so we can still use the same number

of BRAMs for each instance of data cache. Obviously, cache size does not affect the

rest of system so the number of LUTs and registers are not very different between

different table entries. Moreover, the difference between the same data or instruction

cache configurations in these two tables is negligible (most of the times zero). That

is due to the fact that the data and instruction caches’ structure and behavior are

very similar to each other.

To get a better idea about system resources, we can look at the break down of

resources used by different modules in a single core MicroBlaze system presented in

51

Chapter 5. Evaluation and Experimental Results

Table 5.3 Post place and route resource usage for different modules in a single core
MicroBlaze system with 4kB direct-mapped (4 words per line) instruction and data caches.

Module Registers LUTs BRAMs
MicroBlaze 2639 3080 5

Memory Controller 3679 2387 17
RS232 Uart 368 388 0

SysACE Compact Flash 199 95 0
Clock Generator 4 1 0
Debug Module 125 120 0

Data LMB 1 0 0
Data LMB Controller 2 6 0

Instruction LMB 1 0 0
Instruction LMB Controller 2 2 0

LMBs BRAMs 0 0 4
PLB 58 55 0

Reset Module 33 23 0
System 0 1 0

Interrupt Controller 506 360 0
Total 7617 6518 26

Table 5.3. As we can see, modules like LMBs (data or instruction), LMB controllers,

clock generator, debug module, and others do not consume much resources compared

to interrupt controller, memory controller and of course the MicroBlaze processor

itself.

52

Chapter 5. Evaluation and Experimental Results

Ta
bl

e
5.

4
Po

st
pl

ac
e

an
d

ro
ut

e
re

so
ur

ce
us

ag
e

fo
rd

iff
er

en
tm

od
ul

es
in

a
sin

gle
co

re
M

icr
oB

laz
e

sy
ste

m
wi

th
se

ve
ra

l
ca

ch
e

co
nfi

gu
ra

tio
ns

(4
kB

di
re

ct
-m

ap
pe

d,
4

wo
rd

sp
er

lin
e)

.
Bo

th
C

ac
he

s
D

C
on

ly
IC

O
nl

y
N

o
C

ac
he

M
od

ul
e

Registers

LUTs

BRAMs

Registers

LUTs

BRAMs

Registers

LUTs

BRAMs

Registers

LUTs

BRAMs

M
ic

ro
Bl

az
e

27
07

30
76

5
24

57
28

80
3

25
76

28
29

3
23

25
26

59
1

M
em

or
y

C
on

tr
ol

le
r

36
82

23
93

17
36

14
23

43
17

35
33

23
21

17
32

83
21

36
13

In
te

rr
up

t
C

on
tr

ol
le

r
50

6
36

0
0

50
6

36
0

0
50

6
36

0
0

50
6

36
0

0
R

S2
32

U
ar

t
36

8
38

7
0

36
8

38
6

0
36

8
39

1
0

36
8

38
7

0
Sy

sA
C

E
C

om
pa

ct
Fl

as
h

19
9

95
0

19
9

95
0

19
9

95
0

19
9

95
0

C
lo

ck
G

en
er

at
or

4
1

0
4

1
0

4
1

0
4

1
0

D
eb

ug
M

od
ul

e
12

5
12

0
0

12
5

12
0

0
12

5
12

0
0

12
5

12
0

0
D

at
a

LM
B

1
0

0
1

0
0

1
0

0
1

0
0

D
at

a
LM

B
C

on
tr

ol
le

r
2

6
0

2
7

0
2

6
0

2
6

0
In

st
ru

ct
io

n
LM

B
1

0
0

1
0

0
1

0
0

1
0

0
In

st
ru

ct
io

n
LM

B
C

on
tr

ol
le

r
2

2
0

2
2

0
2

2
0

2
2

0
LM

Bs
BR

A
M

s
0

0
4

0
0

4
0

0
4

0
0

4
PL

B
80

21
0

0
80

21
0

0
80

21
0

0
80

21
0

0
R

es
et

M
od

ul
e

33
23

0
33

23
0

33
23

0
33

23
0

Sy
st

em
0

1
0

0
1

0
0

1
0

0
1

0
To

ta
l

77
10

66
74

26
73

92
64

28
24

74
30

63
59

24
69

29
60

00
18

53

Chapter 5. Evaluation and Experimental Results

Table 5.5 Post place and route resource usage for MicroBlaze caches with 4kB direct-
mapped 4 words per lines compared to the no cache baseline

Configuration Registers LUTs BRAMs
Instr. Cache Only 10.8% (251) 6.4% (170) 200% (2)
Instr. Cache Only 5.8% (132) 4.6% (221) 200% (2)

Both Caches 16.4% (382) 15.7% (417) 400% (4)

Table 5.4 shows the break down of different modules in a single core MicroBlaze

system with four different cache configurations where: 1) we do not have any caches

in the system, 2) we only have instruction cache in the system, 3) we only have data

cache in the system, and 4) we have both data and instruction caches in the system.

In these systems, each cache, if present would be 4 kB direct-mapped with 4 words

per cache line. As we can see in the table, the resource usage of most of the modules

does not change (or the difference is negligible). The modules that change a lot are

the MicroBlaze and the MPMC. The change in resource usage of MPMC is because

of using XCLs for caches.

Table 5.5 shows the resource usage of caches for a single core MicroBlaze system with

4 kB direct-mapped caches (4 words per cache line). These percentage numbers are

the difference between a baseline system with no caches and systems with different

cache configurations. As we can see, when both caches are present in the system, the

number of added resources is almost equal to the sum of components for individual

caches. Numbers in parentheses are the differences of each resource.

Furthermore, Table 5.6 shows the resource usage of all modules in a single core Mi-

croBlaze system with 4 kB direct-mapped instruction cache (4 words per cache line)

and 4 kB or 16 kB direct-mapped data cache (4 words per cache line). As we can

see, only resource usage of MicroBlaze changes. Even there the change to number

of registers or LUTs is negligible and we only see an increase in the number of used

54

Chapter 5. Evaluation and Experimental Results

Table 5.6 Post place and route resource usage for different modules in a single core
MicroBlaze system with 4 kB or 16 kB direct-mapped (4 words per line) data caches.

4 kB 16 kB
Module Registers LUTs BRAMs Registers LUTs BRAMs

MicroBlaze 2707 3076 5 2708 3080 8
Memory Controller 3682 2393 17 3682 2393 17

RS232 Uart 368 387 0 368 388 0
SysACE CompactFlash 199 95 0 199 95 0

Clock Generator 4 1 0 4 1 0
Debug Module 125 120 0 125 120 0

Data LMB 1 0 0 1 0 0
Data LMB Controller 2 6 0 2 6 0

Instr. LMB 1 0 0 1 0 0
Instr. LMB Controller 2 2 0 2 2 0

LMBs BRAMs 0 0 4 0 0 4
PLB 80 210 0 80 210 0

Reset Module 33 23 0 33 23 0
System 0 1 0 0 1 0

Interrupt Controller 506 360 0 506 361 0
Total 7710 6674 26 7711 6680 29

BRAMs.

Tables 5.7 to 5.10 present similar data to Tables 5.1 and 5.2 respectively, but for

dual and quad core PolyBlaze systems. If we compare a dual core PolyBlaze system

with a single core MicroBlaze system, both with 4 kB instruction and data caches,

the resource usage of the dual core PolyBlaze system is almost twice the amount of

resources used in a single core MicroBlaze system. This observation matches what

we expect to see since not every system module is duplicated in a dual core system

(e.g. clock generators, memory controllers, interrupt and timer handlers, etc.) In

contrast to MicroBlaze, bigger cache size in PolyBlaze increases the number of used

LUTs and registers. The difference is due to the modifications in cache structure

and behavior that are necessary for new features in the system, especially for cache

55

Chapter 5. Evaluation and Experimental Results

Table 5.7 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a dual core PolyBlaze system.

D$ Rep. Policy Size Line Size Registers LUTs BRAMs

4 kB 4 12814 16578 45
8 12997 16658 45

Direct-Mapped 8 kB 4 12193 14057 55
(1-way LRU) 8 13579 19231 45

16 kB 4 12213 14097 55
8 12444 14401 63

2-way LRU

4 kB 4 13336 17187 45
8 13848 17173 45

8 kB 4 14501 20269 45
8 14101 19573 45

16 kB 4 14261 16063 65
8 15763 25230 45

4-way LRU

4 kB 4 14539 17692 45
8 15302 18901 45

8 kB 4 15554 20526 45
8 15807 20289 45

16 kB 4 18887 26793 45
8 16815 25083 45

coherency. Please note that for quad core systems, some numbers are missing. In

these configurations, the tools have failed to build the system for our Virtex 5 board

due to the available resources on the board not being enough to support everything.

The anomalies in the Tables 5.7 and 5.8 are often due to the heuristics used in

different algorithms used by tools used to build systems, e.g. synthesis, mapping,

placement and routing tools. Playing with random seeds used in these algorithms,

we can get better results for resource usage of a system. The numbers presented here

in Tables 5.1, 5.2, 5.7 and 5.8 are all generated with a fixed random seed.

Table 5.11 shows the break down of different modules in a dual core PolyBlaze system

with two different data cache configurations: 1) configuration A has 4 kB direct-

56

Chapter 5. Evaluation and Experimental Results

Table 5.8 Post place and route resource usage for different instruction cache configu-
rations with 4kB direct-mapped data cache in a dual core PolyBlaze system.

I$ Rep. Policy Size Line Size Registers LUTs BRAMs

4 kB 4 12814 16578 45
8 12761 15713 53

Direct-Mapped 8 kB 4 13441 18285 45
(1-way LRU) 8 13074 16633 53

16 kB 4 14675 21672 45
8 13692 18319 53

2-way LRU

4 kB 4 13343 17254 53
8 13089 16100 69

8 kB 4 14482 19610 53
8 13603 17379 69

16 kB 4 16747 24110 53
8 14731 19666 69

4-way LRU

4 kB 4 14007 17620 69
8 13498 16201 101

8 kB 4 15537 20095 69
8 14263 17658 101

16 kB 4 18836 25787 69
8 15788 20148 101

mapped data caches with 4 words per cache line, and 2) configuration B has 16 kB

4-way LRU data caches with 4 words per cache line. In both configurations, processors

have 4 kB direct-mapped instruction caches with 4 words per cache line. Again, as

we can see in the table, the resource usage of most of the modules does not change (or

the difference is negligible). The added modules such as L1 Arbiter, different PBML

queues. and NPI interface are independent of cache configurations. In addition, they

are negligible in size compared to the processor itself. The modules that change a

lot are the MicroBlaze and the MPMC. The change in resource usage of MPMC is

because of using XCLs for caches and of course MicroBlaze’s resource usage changes

with different configurations.

In Table 5.12, we compare a MicroBlaze core with a PolyBlaze core. In this table,

57

Chapter 5. Evaluation and Experimental Results

Table 5.9 Post place and route resource usage for different data cache configurations
with 4kB direct-mapped instruction cache in a quad core PolyBlaze system.

D$ Rep. Policy Size Line Size Registers LUTs BRAMs

4 kB 4 21105 29563 81
8 21354 28059 97

Direct-Mapped 8 kB 4 19896 24555 101
(1-way LRU) 8 22522 33110 97

16 kB 4 19933 24567 101
8 20285 23083 133

2-way LRU

4 kB 4 22150 30795 81
8 23057 29227 97

8 kB 4 24482 37080 81
8 23565 33981 97

16 kB 4 23998 28592 121
8 - - -

4-way LRU

4 kB 4 24557 32409 81
8 25968 32617 97

8 kB 4 26585 37457 81
8 26977 35432 97

16 kB 4 - - -
8 - - -

we have excluded modules such as L2 Arbiter and NPI interface even though they

add to the total resource usage of PolyBlaze system. The reason is that since we only

need one instance of these modules, we do not count them in comparing a MicroBlaze

core with a PolyBlaze core. One import reason in the increased number of registers

between PolyBlaze and MicroBlaze is the way we handle valid bits in caches (as

explained in Section 3.1, we use register banks to store valid bits). Furthermore, the

reason we use about 83.5% more LUTs in PolyBlaze is mostly because of coherency

handling and all of multiplexers than need to be in the system for it. Also, it is worth

mentioning that the amount of used resources can grow even higher if we change

replacement policy of PolyBlaze (from direct-mapped).

58

Chapter 5. Evaluation and Experimental Results

Table 5.10 Post place and route resource usage for different instruction cache config-
urations with 4kB direct-mapped data cache in a quad core PolyBlaze system.

D$ Rep. Policy Size Line Size Registers LUTs BRAMs

4 kB 4 21105 29563 81
8 21354 28059 97

Direct-Mapped 8 kB 4 22361 32970 81
(1-way LRU) 8 21985 29776 97

16 kB 4 24829 39691 81
8 23217 33121 97

2-way LRU

4 kB 4 22167 30895 97
8 22013 29076 129

8 kB 4 24441 35675 97
8 23037 31376 129

16 kB 4 28986 44678 97
8 25299 35942 129

4-way LRU

4 kB 4 23528 32661 129
8 - - -

8 kB 4 26553 37391 129
8 - - -

16 kB 4 33227 48189 129
8 - - -

59

Chapter 5. Evaluation and Experimental Results

Table 5.11 Post place and route resource usage for different modules in a dual core
PolyBlaze system.

A: 4kB DM B: 16 kB 4-Way LRU

Module R
eg

ist
er

s

LU
Ts

BR
A

M
s

R
eg

ist
er

s

LU
Ts

BR
A

M
s

MicroBlaze 1 3673 5357 5 6708 10432 5
MicroBlaze 2 3673 5298 5 6711 10437 5

Data PBML Conditional Queue 1 23 42 0 23 42 0
Data PBML Conditional Queue 2 23 42 0 23 42 0

Data PBML Data Queue 1 23 158 0 23 158 0
Data PBML Data Queue 2 23 158 0 23 158 0

Data PBML Invalidation Queue 1 23 131 0 23 131 0
Data PBML Invalidation Queue 2 23 131 0 23 131 0

Data PBML Request Queue 1 23 256 0 23 256 0
Data PBML Request Queue 2 23 256 0 23 256 0
Instr. PBML Request Queue 1 23 152 0 23 151 0
Instr. PBML Request Queue 2 23 151 0 23 151 0
Instr. PBML Response Queue 1 23 158 0 23 158 0
Instr. PBML Response Queue 2 23 158 0 23 158 0

L1 Arbiter 1 2 43 0 2 43 0
L1 Arbiter 2 2 43 0 2 43 0

Data LMB Controller 1 2 6 0 2 6 0
Data LMB Controller 2 2 6 0 2 6 0
Instr. LMB Controller 1 2 2 0 2 2 0
Instr. LMB Controller 2 2 2 0 2 2 0

LMB BRAM 1 0 0 4 0 0 4
LMB BRAM 2 0 0 4 0 0 4

Memory Controller 3011 2037 17 3011 2039 17
L2 Arbiter 803 698 10 803 696 10

NPI 49 121 0 49 121 0
Total 12814 16576 45 18887 26793 45

60

Chapter 5. Evaluation and Experimental Results

Table 5.12 Increased resource usage (after place and route) for PolyBlaze compared to
MicroBlaze

Module Registers LUTs BRAMs

MicroBlaze
MicroBlaze 2707 3076 5

XCL 671 356 0
Total 3378 3432 5

PolyBlaze

MicroBlaze 3673 5357 5
PBML 138 897 0

L1 Arbiter 2 43 0
Total 3813 6297 5

Difference Count 435 2865 0
Percentage 12.9% 83.5% 0%

61

Chapter 5. Evaluation and Experimental Results

5.2 Timing Analysis

In this section, we briefly talk about operating frequency of a PolyBlaze system and

compare it with that of a MicroBlaze system. We cannot present detailed information

about critical paths due to copyright issues on MicroBlaze. Table 5.13 shows the

maximum operating frequency of a few different systems. These numbers are coming

from synthesis reports. In practice, we rarely get these numbers. For example, on our

Virtex 5 boards, we can have MicroBlaze cores working at a maximum of 125 MHz1.

In our implementation for PolyBlaze, we see a decrease from 152.207 MHz to 135.099

MHz. Some of this loss comes from coherency mechanism in data cache since it effects

the critical path. Additionally, part of the loss comes from the different approaches

we take in implementing different functionalities (e.g. cache hits, valid bits, etc.).

We see further decrement in the maximum operating frequency as the cache size

grows. The same reasons as described earlier apply here. In our evaluations we have

set our goal to 80 MHz. The lower number allowed design tools to faster reach their

target frequency and reduced the build time.

Table 5.14 presents the maximum operating frequency of different modules in a dual

core PolyBlaze system. As we can see, most of these modules have the potential to

run at much faster speeds. For instance, L2 Arbiter which is a bottleneck in PolyBlaze

systems can operate at 318.674 MHz (practically less than this, but still much more

than 80 MHz).

Finally, it is worth mentioning that there is a lot of room for improvement here.

Optimizing our implementation to use available logic in the FPGA better is one of

many ways to improve the maximum operating frequency. Another approach could

be modifying MicroBlaze’s pipeline and add a sixth stage. Having an extra stage in
1Higher numbers might be still reachable, but 125 MHz is what design tools guarantee.

62

Chapter 5. Evaluation and Experimental Results

Table 5.13 Maximum operating frequencies from different systems.
Processor I-Cache Config D-Cache Config Max Operating Frequency

MicroBlaze 4 kB direct-mapped 4 kB direct-mapped 152.207 MHz
MicroBlaze 4 kB direct-mapped 16 kB direct-mapped 152.207 MHz
PolyBlaze 4 kB direct-mapped 4 kB direct-mapped 135.099 MHz
PolyBlaze 4 kB direct-mapped 4 kB 4-Way LRU 135.099 MHz
PolyBlaze 4 kB direct-mapped 16 kB 4-Way LRU 128.700 MHz
PolyBlaze 16 kB 4-Way LRU 4 kB direct-mapped 128.700 MHz

Table 5.14 Maximum operating frequencies of different modules in a dual core Poly-
Blaze system.

Module Max Operating Frequency
MicroBlaze 152.207 MHz
L1 Arbiter 942.507 MHz
L2 Arbiter 318.674 MHz

NPI 330.943 MHz
PBML 347.222 MHz
MPMC 259.134 MHz

Interrupt Controller 197.394 MHz
Clock Generator 1239.157 MHz
Debug Module 196.155 MHz

RS232 Uart 187.829 MHz
SysACE CompactFlash 408.497 MHz

Reset Module 406.009 MHz

the pipeline will allow us to break the critical path and improve maximum operating

frequency. A third approach is to synthesize for a different FPGA chip. These

approaches are some examples of how we can improve operating frequencies.

5.3 Latency

In this section we present the memory access latency for read operations and how

that scales with the number of cores. In this test, ABACUS is connected to data

cache on Core #0 and monitors the latency of all the incoming read operations. In

63

Chapter 5. Evaluation and Experimental Results

Figure 5.1 Memory Read Operation Latencies

order to capture the number of read latencies from 1 to 512, we have designed a

latency unit in ABACUS with 512 total bins. For this test, we have used a quad core

system with 4kB 4-Way LRU instruction and data caches. In three different stages

of this experiment, we have booted the OS with one, two, or four cores. Then we

have measured the latency of read operations from running specrand and binding it

to the first processing core in the system. In measurements for dual and quad core

systems, we have bound extra instances of specrand to the other active cores in the

system while the main benchmark is being executed by the test core (Core #0).

Figure 5.1 shows the number of memory requests that took between 27 to 57 clock

cycles. Anything higher than 57 cycles has been included in the rightmost column

64

Chapter 5. Evaluation and Experimental Results

(> 57). As you can see, for a single core system, most of memory read operations

(if we do not have a hit in data cache) take about 29 to 32 cycles. As the number

of active cores grows and with it the number of running benchmarks, we see that

memory latency increases too. For instance, the number of memory read operations

that take 29 cycles drops by about 50% in a quad core system compared to a single

core system. At the same time, we see that the number of memory read operations

that take between 30 to 35 cycles in a quad core system is more than twice of the

same number in a single core system.

Another point worth noting is that we still see the bulk of memory read latencies

for the quad core system to be around 29 to 35. If everything in the system was

completely serialized, we expected the latencies to increase dramatically, but that is

not the case here. The reason for this behavior is that the MPMC module can accept

up to four outstanding read requests. Since processors often have one outstanding

read requests we will not be able to see the real effect of increasing the number of

active processing cores in the system. For that to happen, we need more than four

processors.

Additionally, we can see that the ratio between the number of memory read operations

that take more than 57 clock cycles and those that take 29 clock cycles, is very

different. In a single core system, about 3% of memory read operations (excluding

cache hits) take 58 clock cycles and more whereas in a quad core system, about 7%

take that long.

Figure 5.2 Waveform of a memory read miss operation for MicroBlaze

Figure 5.2 shows the waveform of a memory read operation for MicroBlaze processor

65

Chapter 5. Evaluation and Experimental Results

Figure 5.3 Waveform of a memory read hit operation for MicroBlaze

(read miss). If we have a hit, data would be ready in a single cycle as shown in Figure

5.3. As we can, see for a cache miss, we have a 17 cycle latency. Please note that this

number is for a read operation without any interference from other modules at all.

In other words, no one else is attempting to read from memory when this waveform

was captured.

For PolyBlaze processor, the best case scenario for memory read latency on a cache

miss is 27 clock cycles as shown in Figure 5.5. Compared to MicroBlaze, this is

about 60% more clock cycles in a typical memory operation. To give you a better

perspective as why we have about 10 more clock cycles in each memory read, we can

look at the added delay in different modules that now sit between the processor and

MPMC.

Figure 5.6 shows the latency of a memory read operation from the perspective of L1

Arbiter. As we can see in this figure, we have a 23 clock cycle latency. Since L1

Arbiter is working with the same frequency as processor here (80 MHz), we have a

4 clock cycle difference between L1 Arbiter and processor. These 4 clock cycles are

spent in the asynchronous FIFOs between L1 Arbiter and data cache, i.e. PBML.

Furthermore, Figure 5.7 shows the latency of a memory read operation from the

perspective of L2 Arbiter. Here the latency is about 21 clock cycles. Again, since

L2 Arbiter is working with the same frequency as L1 Arbiter (80 MHz), we have a 2

clock cycle difference between them. Similarly, these 2 clock cycles are spent in the

asynchronous FIFOs between L1 and L2 Arbiters, i.e. PBML.

66

Chapter 5. Evaluation and Experimental Results

Figure 5.4 Waveform of a memory read hit operation for PolyBlaze

Finally, Figure 5.8 shows the latency of a memory read operation from the perspective

of NPI port to MPMC. Here the latency is about 28 clock cycles. However, NPI

is working twice as fast as L2 Arbiter (160 MHz). So in our comparisons, from

processor’s perspective, we have a 14 clock cycle latency. The difference between NPI

and L2 Arbiter is about 7 clock cycles, but this time not all of that delay is because

of the delay caused by the asynchronous FIFOs in PBML between L2 Arbiter and

NPI. If we look at Figure 5.7 again, we see that in L2 Arbiter, there is a 2 clock cycle

delay between receiving a request from L1 Arbiter and actually sending it to NPI.

This delay is part of the logic of L2 Arbiter. We are not going into details about how

this module works here. All of this being said, we still have a single cycle response

time in the caches if we have a cache hit as shown in Figure 5.4.

An interesting fact here is that in our FPGA-based system, the average memory

latency is about 20 to 30 clock cycles where as in real world systems, we see numbers

in the range of multiple hundreds of clock cycles (based on the number of cache levels

in a system). Therefore we need a way to model real world systems if want to do more

accurate research. The simplest way to mimic the behavior of real world systems for

us is to add delays in different stages of our system. For instance, assuming that we

do not have a L2 cache present in the system, we can put delays in the NPI and send

processor requests after a random amount of time (in the range of a few hundreds of

clock cycles). If a L2 cache is present in the system, then we can put multiple delays

before and after L2 cache.

67

Chapter 5. Evaluation and Experimental Results

Fi
gu

re
5.

5
W

av
ef

or
m

of
a

m
em

or
y

re
ad

m
iss

op
er

at
ion

fo
rP

oly
Bl

az
e

(8
0

M
Hz

)

Fi
gu

re
5.

6
W

av
ef

or
m

of
a

m
em

or
y

m
iss

op
er

at
ion

fo
rL

1
Ar

bi
te

ri
n

a
Po

lyB
laz

e
sy

ste
m

(8
0

M
Hz

)

Fi
gu

re
5.

7
W

av
ef

or
m

of
a

m
em

or
y

re
ad

op
er

at
ion

fo
rL

2
Ar

bi
te

ri
n

a
Po

lyB
laz

e
sy

ste
m

(8
0

M
Hz

)

Fi
gu

re
5.

8
W

av
ef

or
m

of
a

m
em

or
y

re
ad

op
er

at
ion

fo
rN

PI
in

a
Po

lyB
laz

e
sy

ste
m

(1
60

M
Hz

)

68

Chapter 5. Evaluation and Experimental Results

5.4 Application Performance Study

In this section, we talk about the application performance on different cache con-

figurations. For the purpose of meaningful analyses, we only look at data cache

configurations2. In other words, we do not want to change too many variables at the

same time; otherwise, we cannot make any meaningful statements about the differ-

ence in system behavior. All processing cores in the systems used in this study include

a 16kB, 4-Way LRU instruction cache with 4 words per cache line. The data cache

configurations vary in two different aspects: 1) number of ways in LRU replacement

policy and 2) cache size.

This study is divided into two separate phases. In the first phase, we run each

benchmark application with minimal interference from other processes 3 in order

to get accurate data about that application’s behavior. Moreover, we investigate

each benchmark’s performance on different data cache configurations and analyze its

behavior.

Then, we take the results of the first phase and build a dual-core system with asym-

metric data cache configurations to use in the second phase. We choose the data

cache configurations based on configurations that work best for each pair of bench-

mark applications. Afterwards, we run two benchmark applications simultaneously

on this dual-core system pinning each application to one of the cores. We also run

the same pair of benchmark applications in reverse order meaning we pin each appli-

cation to the core that does not have the preferred cache configuration. We expect

the results from pinned benchmark applications to the core with their preferred cache
2It is possible to freeze data caches and look at different instruction cache configurations (or any

other module in the system for that matter).
3Other major processes include system tasks and ABACUS profiling that are running in the

background. There is no other benchmark process or any other user initiated application running
on the system while the experiment is being run.

69

Chapter 5. Evaluation and Experimental Results

Table 5.15 Data cache read miss rate for bzip
4 kB 8 kB 16 kB 32 kB

1-Way (Direct Mapped) 8.58 6.85 5.45 4.53
2-Way 7.06 5.73 4.67 3.89
4-Way 6.61 5.43 4.48 3.73

Table 5.16 Data cache read miss rate for libquantum
4 kB 8 kB 16 kB 32 kB

1-Way (Direct Mapped) 18.44 17.83 17.57 17.07
2-Way 18.15 17.50 17.32 17.3007
4-Way 17.96 17.38 17.30 17.2951

configuration show an improvement over the other setup (with less desired cache

configuration).

5.4.1 Phase 1: Single-Process Application Performance

In this section we talk about the application performance on different cache config-

urations. As mentioned before, for the purpose of a meaningful analysis, we only

look at data cache configurations. All processing cores in the systems used in this

study include a 16kB, 4-Way LRU instruction cache with 4 words per cache line.

The data cache configurations vary in two different aspects: 1) number of ways in

LRU replacement policy and 2) cache size. Tables 5.15 to 5.18 show the data cache

miss rates of the bzip, libquantum, specrand, and h264ref benchmarks respectively.

Similarly, Figures 5.9 to 5.12 illustrate the data cache miss rates of the benchmarks

for easier comparison.

Table 5.17 Data cache read miss rate for specrand
4 kB 8 kB 16 kB 32 kB

1-Way (Direct Mapped) 14.72 8.30 6.69 2.38
2-Way 12.61 6.57 1.76 0.87
4-Way 10.76 3.71 1.05 0.56

70

Chapter 5. Evaluation and Experimental Results

Table 5.18 Data cache read miss rate for h264ref
4 kB 8 kB 16 kB 32 kB

1-Way (Direct Mapped) 7.79 5.94 3.09 2.18
2-Way 4.30 2.87 2.07 1.75
4-Way 4.14 2.60 1.92 1.52

Figure 5.9 Data cache read miss rate for bzip

These results show that specrand and h264ref are more sensitive to replacement policy

changes than bzip and libquantum. Also, we can see that overall, these benchmarks

are more sensitive to cache size rather than the replacement policies. Additionally,

we see a 14.16% cache miss rate improvement between the best case and worst case

scenario in specrand while the same number for h264ref, bzip, and libquantum is

6.28%, 4.85%, and 1.37%, respectively.

71

Chapter 5. Evaluation and Experimental Results

Figure 5.10 Data cache read miss rate for libquantum

5.4.2 Phase 2: Multi-Process Application Performance

In this section, we talk about the application performance on different cache con-

figurations. For the purpose of meaningful analyses, we only look at data cache

configurations. All processing cores in the systems used in this study include a 16kB,

4-Way LRU instruction cache with 4 words per cache line. The data cache configu-

rations vary in two different aspects: 1) number of ways in LRU replacement policy

Table 5.19 Number of Load/Store instructions and their ratio in each benchmark ap-
plication during its execution time

Benchmark Load
Instr.

Store
Instr.

Memory
Instr.

Load/Store
Ratio

I-Cache Read
Miss Rate

h264ref 17.22% 6.39% 23.61% 2.70 1.33%
bzip 14.55% 6.82% 21.37% 2.13 0.46%

libquantum 6.50% 3.40% 9.89% 1.91 0.51%
specrand 6.18% 3.89% 10.07% 1.59 5.50%

72

Chapter 5. Evaluation and Experimental Results

Figure 5.11 Data cache read miss rate for specrand

and 2) cache size.

As mentioned before, based on the results of the phase 1, we pick two cache con-

figurations such that each works for a pair of our benchmark applications better

than the other and vice versa. Then we build a dual-core system using each cache

configurations for one of the data caches present in the system. According to our

data from the first phase, we have picked an 8kB Direct-Mapped data cache for core

A and an 4kB 4-way LRU data cache for core B. As you can see from Figures 5.9

to 5.12, libquantum and specrand prefer configuration A over B whereas h264ref and

bzip prefer configuration B over A. For easier comparison, the numbers for these two

configuration are also present in Table 5.20.

The pair of benchmarks used in phase 2 are h264ref and bzip for configuration A (i.e.

4kB 4-way LRU cache) and libquantum and specrand for configuration B (i.e. 8kB

73

Chapter 5. Evaluation and Experimental Results

Figure 5.12 Data cache read miss rate for h264ref

Table 5.20 Data cache read miss rate of the four benchmark applications for the two
selected cache configurations. Optimal assignments are shown in bold.

4kB 4-way LRU (A) 8kB Direct-Mapped (B)
h264ref 4.14 5.94

bzip 6.61 6.85
libquantum 17.96 17.83

specrand 10.76 8.30

Direct-Mapped cache). In phase 2, we run two-process experiments, pinning one of

the benchmark selected from mentioned pairs to one of the available two cores in the

system. During the experiments, while profiling each process, the shorter processes

were kept operating in an infinite loop until the longer process that was being profiled

was finished. This would ensure that the measurements for the longer process are

valid throughout its entire life time.

In different experiments, we pin the benchmark applications to both cores. A core

74

Chapter 5. Evaluation and Experimental Results

Table 5.21 Data cache read miss rate of the two-process experiments with optimal
assignments

h264ref bzip libquantum specrand
h264ref - - 4.19 (4.14) 4.77 (4.14)

bzip - - 6.69 (6.61) 7.37 (6.61)
libquantum 17.80 (17.83) 17.94 (17.83) - -

specrand 9.76 (8.30) 8.08 (8.30) - -

Table 5.22 Data cache read miss rate of the two-process experiments with suboptimal
assignments

h264ref bzip libquantum specrand
h264ref - - 4.25 (5.94) 6.30 (5.94)

bzip - - 6.84 (6.85) 7.39 (6.85)
libquantum 17.86 (17.96) 17.67 (17.96) - -

specrand 10.39 (10.76) 10.45 (10.76) - -

assignment in an experiment is an optimal assignment if the benchmark applications

are pinned to the core with their preferred cache configurations. If the benchmark ap-

plications are pinned to the other core, which has a data cache with the less preferable

configuration, we call that a suboptimal assignment.

What we expect to see in optimal situations is that data cache read miss rates in

optimal assignments is lower than suboptimal assignments. Also, we expect to see

that data cache read miss rates in two-process experiments are higher than single-

process experiments.

Table 5.21 shows the data cache read miss rate of the two-process experiments in

the optimal assignments with each benchmark application pinned to the core with its

preferred cache configuration. The numbers in parentheses are data cache read miss

rates for the single-process experiments from stage 1 on each cache configuration.

Table 5.22 is similar to Table 5.21, but it show the data cache read miss rate of the two-

process experiments in the suboptimal assignments with each benchmark application

75

Chapter 5. Evaluation and Experimental Results

Table 5.23 Run time difference in seconds between optimal and suboptimal assignments
in presence of different interfering applications

h264ref bzip libquantum specrand
h264ref - - 255 2588

bzip - - 13 7
libquantum 1 25 - -

specrand 554 561 - -

pinned to the core with the less desirable cache configuration. Again, the numbers

in parentheses are data cache read miss rates for the single-process experiments from

stage 1 on each cache configuration.

Besides a decrease in data cache miss rate between optimal and suboptimal assign-

ments, we expect to see that application run times decrease too. Application data

cache miss rate only takes the conflicts between applications into account. However,

application run time takes the increased memory operation latency into account as

well. Table 5.23 shows the difference between run times of our selected benchmarks in

presence of different interfering applications. For instance, h264ref runs 255 seconds

faster in an optimal assignment when libquantum is interfering on the other core.

Furthermore, Table 5.24, presents the percentage of increased run time for different

assignments in presence of various interfering applications. The base line for these

numbers are run times from the same assignments without interference. As we can see,

any interference will increase the run time. However, even in presence of interfering

applications, the run time of the benchmark application in optimal assignments are

lower than suboptimal assignments. The only anomaly in the table is the negative

numbers for specrand which probably comes from a measurement error in the baseline

numbers. Despite this error, the overall behavior is still correct.

All that being said, our expectation was that we get better performance in opti-

76

Chapter 5. Evaluation and Experimental Results

Table 5.24 Percentage of increased run time for different assignments in presence of
various interfering applications

Benchmark Optimal Assignment Suboptimal Assignment
h264ref 1.74% 6.42%

bzip 0.75% 2.23%
libquantum 0.78% 1.82%

specrand -1.41% -0.75%

mal assignments over suboptimal assignments and anything in between (if possible).

Looking at two different measures, data cache miss rate and application run time,

we see that optimal assignments yield better results. Therefore, if we gather these

measurements on-line, we can exploit asymmetry in a system and benefit from it.

77

6 Conclusion and Future Work
Asymmetric architectures in the modern computing systems provide many oppor-

tunities. Efficient system utilization and better over-all performance are just two

examples of such opportunities. However, there are many challenges in the way to

reach these goals. For instance, system research requires better insight into the be-

havior of a multi-core system in order to be able to take advantage of asymmetric

configuration of that system.

6.1 Conclusions

In this thesis, we have presented a asymmetric cache design based on MicroBlaze

processor. As part of the extensions on PolyBlaze platform, we have outlined and

implemented coherent L1 data and instruction caches along with L1 Arbiters. The

arbitration modules help with system scalability by providing separate layers of mul-

tiplexers between instruction and data caches in a single processing unit and others.

Additionally, the L1 Arbiter modules provide uniform interfaces to the L2 Arbiter in

the system which help with better design and scalability of L2 Arbiter. Furthermore,

the coherency protocol in the caches is required for the multi-core system to behave

correctly in the presence of an OS and generic user applications.

The configurability of PolyBlaze framework allows us to have asymmetric systems.

The asymmetry in the system, when exploited properly, shortens the run-time of

applications by cutting on the number of read and write misses in L1 caches. Mea-

suring different system metrics by hooking up the ABACUS hardware profiler to

78

Chapter 6. Conclusion and Future Work

different caches and Arbiters, gives better insight into application behavior and how

OSs can allocate system resources for each application in order to have better over-all

performance.

6.2 Future Work

As part of extending the PolyBlaze framework, there is a lot of opportunities for

different asymmetric features in the system. Providing different prefetchers with dif-

ferent algorithms is an example of these features. Furthermore, separate work is being

done on L2 cache design for PolyBlaze. Additionally, custom hardware accelerators

can be connected to PolyBlaze processors and also be part of the consistent mem-

ory. Finally, multi-pumping techniques can improve the processor performance of the

PolyBlaze processors.

79

Bibliography
[1] Xilinx Inc., MicroBlaze Processor Reference Guide. [Online].

Available: {http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_7/mb_ref_guide.pdf}

[2] E. Matthews, L. Shannon, and A. Fedorova, “Polyblaze: From one to many
bringing the microblaze into the multicore era with linux smp support,” in Field
Programmable Logic and Applications (FPL), 2012 22nd International Confer-
ence on, 2012, pp. 224–230.

[3] “Standard Performance Evaluation Corporation, CPU2006 Benchmark Suite.”
[Online]. Available: {http://www.spec.org/cpu2006}

[4] G. E. Moore, “Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.” Solid-State
Circuits Society Newsletter, IEEE, vol. 11, no. 5, pp. 33–35, Sept 2006.

[5] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design
of ion-implanted mosfet’s with very small physical dimensions,” Solid-State Cir-
cuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, Oct 1974.

[6] M. E. J. K. W. O. B. Ogden, Introduction to the New Mainframe: z/OS Basics.
IBM Redbooks, 2012.

[7] I. Englander, The Architecture of Computer Hardware and System Software: An
Information Technology Approach. Wiley, 2009.

[8] P. Stenström, T. Joe, and A. Gupta, “Comparative performance evaluation
of cache-coherent numa and coma architectures,” in Proceedings of the
19th Annual International Symposium on Computer Architecture, ser. ISCA
’92. New York, NY, USA: ACM, 1992, pp. 80–91. [Online]. Available:
http://doi.acm.org/10.1145/139669.139705

[9] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case for
numa-aware contention management on multicore systems,” in Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference, ser.
USENIXATC’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 1–1.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2002181.2002182

80

[10] H. E.-R. M. Abd-El-Barr, Fundamentals of Computer Organization and Archi-
tecture. Wiley-Interscience, 2005.

[11] J. Handy, The cache memory book. San Diego: Academic Press, 1998.

[12] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded
sparc processor,” Micro, IEEE, vol. 25, no. 2, pp. 21 – 29, march-april 2005.

[13] Intel 64 and IA-32 Architectures Software Developer’s Manual: Volume 3B:
System Programming Guide, Part 2. . [Online]. Available: {www.intel.com/
Assets/PDF/manual/253669.pdf}

[14] BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h Processors.
[Online]. Available: {support.amd.com/us/Processor_TechDocs/31116.pdf}

[15] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,” Com-
puter, vol. 23, no. 6, pp. 12–24, June 1990.

[16] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of
directory schemes for cache coherence,” in Proceedings of the 15th Annual
International Symposium on Computer Architecture, ser. ISCA ’88. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 280–298. [Online].
Available: http://dl.acm.org.proxy.lib.sfu.ca/citation.cfm?id=52400.52432

[17] M. L. O. K. Keun Sup Shim, Myong Hyon Cho and S. Devadas, “Library cache
coherence,” Massachusett Institute of Technology, Tech. Rep., May 2011.

[18] J. H. David Pattersoon, The Computer Organization and Design. Morgan
Kaufmann, 2012.

[19] (2014) The xilinx website. [Online]. Available: http://www.xilinx.com/

[20] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,
and H. Angepat, “Fpga-accelerated simulation technologies (fast): Fast, full-
system, cycle-accurate simulators,” in Proc. of the 40th Annual IEEE/ACM Int’l
Symp. on Microarchitecture, 2007, pp. 249–261.

[21] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of fpga-based
soft processors,” in 2005 Int’l Conf. on Compilers, architectures and synthesis
for embedded systems, 2005, pp. 202–212.

[22] P. H. Wang, J. D. Collins, C. T. Weaver, B. Kuttanna, S. Salamian, G. N.
Chinya, E. Schuchman, O. Schilling, T. Doil, S. Steibl, and H. Wang, “Intel®
atom processor core made fpga-synthesizable,” in The ACM/SIGDA Int’l Symp.
on FPGAs, 2009, pp. 209–218.

81

[23] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya, R. Plate,
T. Mattner, F. Olbrich, P. Hammarlund, R. Singhal, J. Brayton, S. Steibl,
and H. Wang, “Intel nehalem processor core made fpga synthesizable,” in The
ACM/SIGDA Int’l Symp. on FPGAs, 2010, pp. 3–12.

[24] Xilinx Inc., PicoBlaze Processor Reference Guide. [Online]. Available:
{www.xilinx.com/support/documentation/ip_documentation/ug129.pdf}

[25] Altera Inc., (2011, May) The NIOS Soft CPU Family. [Online]. Available:
{http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf}

[26] “RAMP - Research Accelerator for Multiple Processors.” [Online]. Available:
{ramp.eecs.berkeley.edu/}

[27] Daniel Burke, John Wawrzynek, Krste Asanović, Alex Krasnov, Andrew Schultz,
Greg Gibeling, Pierre-Yves Droz, “Ramp blue: Implementation of a multicore
1000 processor fpga system,” in Reconfigurable Systems Summer Institute, Ur-
bana, IL, 2008.

[28] Chuck Thacker, MSR Silicon Valley, “Beehive: A manycore computer for
FPGAs (v6).” [Online]. Available: {http://research.microsoft.com/en-us/um/
people/birrell/beehive/BeehiveV6.pdf}

[29] J. Agron and D. Andrews, “Building heterogeneous reconfigurable systems with
a hardware microkernel,” in Proceedings of the 7th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis, ser.
CODES+ISSS ’09. New York, NY, USA: ACM, 2009, pp. 393–402. [Online].
Available: http://doi.acm.org.proxy.lib.sfu.ca/10.1145/1629435.1629489

[30] P. Huerta, J. Castillo, C. Sanchez, and J. Martinez, “Operating system for sym-
metric multiprocessors on fpga,” in Reconfigurable Computing and FPGAs, 2008.
ReConFig ’08. International Conference on, Dec 2008, pp. 157–162.

[31] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T. Roewer,
P. Saha, T. Takken, and J. Tierno, “A cycle-accurate, cycle-reproducible multi-
fpga system for accelerating multi-core processor simulation,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 153–162. [Online].
Available: http://doi.acm.org.proxy.lib.sfu.ca/10.1145/2145694.2145720

[32] “OpenSPARC FPGA | Field-Programmable Gate Array | OpenSPARC.”
[Online]. Available: {www.opensparc.net/fpga/index.html}

82

[33] GRLIB IP Core User’s Manual. [Online]. Available: {www.gaisler.com/
products/grlib/grip.pdf}

[34] “About — PetaLogix.” [Online]. Available: {http://www.petalogix.com/about}

[35] E. Matthews, “A hardware platform for profiling system level interactions in
multiprocessor systems,” Master’s thesis, School of Engineering Science, Simon
Fraser University, 2012.

[36] M. V. P. Marwedel, Advanced Memory Optomization Techniques for Low-Power
Embedded Processors. Springer, 2007.

[37] F. Raam, R. Agarwal, K. Malik, H. Landman, H. Tago, T. Teruyama,
T. Sakamoto, T. Yoshida, S. Yoshioka, Y. Fujimoto, T. Kobayashi, T. Hiroi,
M. Oka, A. Ohba, M. Suzuoki, T. Yutaka, and Y. Yamamoto, “A high bandwidth
superscalar microprocessor for multimedia applications,” in Solid-State Circuits
Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International,
Feb 1999, pp. 258–259.

[38] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Kateve-
nis, D. Pnevmatikatos, and X. Yang, “Fpga implementation of a configurable
cache/scratchpad memory with virtualized user-level rdma capability,” in Sys-
tems, Architectures, Modeling, and Simulation, 2009. SAMOS ’09. International
Symposium on, July 2009, pp. 149–156.

[39] ARM LTD, big.LITTLE Technology: The Future of Mobile. [On-
line]. Available: {http://www.arm.com/files/pdf/big_LITTLE_Technology\
_the_Futue_of_Mobile.pdf}

[40] Xilinx Inc., ChipScope Reference Guide. [Online]. Available: {http://www.
xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug750.pdf}

[41] ——, LogiCORE IP Multi-Port Memory Controller (v6.06.a). [Online]. Avail-
able: {http://www.xilinx.com/support/documentation/ip_documentation/
mpmc/v6_06_a/mpmc.pdf}

83

