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Abstract

In the last two decades, there are numerous applications in which sparse solutions are

concerned. Mathematically, all these applications can be formulated into the l0 minimization

problems. In this thesis, we first propose a novel augmented Lagrangian (AL) method for

solving the l1-norm relaxation problems of the original l0 minimization problems and apply it

to our proposed formulation of sparse principal component analysis (PCA). We next propose

penalty decomposition (PD) methods for solving the original l0 minimization problems in

which a sequence of penalty subproblems are solved by a block coordinate descent (BCD)

method.

For the AL method, we show that under some regularity assumptions, it converges to a

stationary point. Additionally, we propose two nonmonotone gradient methods for solving

the AL subproblems, and establish their global and local convergence. Moreover, we apply

the AL method to our proposed formulation of sparse PCA and compare our approach with

several existing methods on synthetic, Pitprops, and gene expression data, respectively. The

computational results demonstrate that the sparse principal components (PCs) produced by

our approach substantially outperform those by other methods in terms of total explained

variance, correlation of PCs, and orthogonality of loading vectors.

For the PD methods, under some suitable assumptions, we establish some convergence

results for both inner (the BCD method) and outer (the PD method) iterations, respectively.

We test the performance of our PD methods by applying them to sparse logistic regression,

sparse inverse covariance selection, and compressed sensing problems. The computational

results demonstrate that when solutions of same cardinality are sought, our approach applied

to the l0-based models generally has better solution quality and/or speed than the existing

approaches that are applied to the corresponding l1-based models.

Finally, we adapt the PD method to solve our proposed wavelet frame based image
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restoration problem. Some convergence analysis of the adapted PD method for this problem

are provided. Numerical results show that the proposed model solved by the PD method can

generate images with better quality than those obtained by either analysis based approach

or balanced approach in terms of restoring sharp features as well as maintaining smoothness

of the recovered images.

Keywords: Augmented Lagrangian method, Penalty decomposition method, Sparse PCA,

Compressed sensing, Sparse logistic regression, Sparse inverse covariance selection
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Chapter 1

Introduction

In the last two decades, numerous applications such as compressed sensing, sparse inverse

covariance selection and sparse logistic regression have been identified to be optimization

problems where sparse solutions are desired. There are many advantages working with

sparse vectors. For example, calculations involving multiplying a vector by a matrix take

less time to compute if the vector is sparse. Also sparse vectors require less space when being

stored, as only the position and value of the entries need to be recorded. Nevertheless, the

task of finding sparse approximations can be very difficult. For instance, in [92] it was shown

that finding the sparsest solution to an underdetermined linear system is known to be NP

hard in general.

This thesis proposes methods finding sparse approximations to optimization problems.

The proposed methods are applied on solving some practical applications of sparse approx-

imations.

1.1 Background

In this section, we introduce basic concepts and review some important applications of

sparse approximation. Before proceeding, let us first consider the term sparse. The term

sparse refers to a measurable property of a vector. It means that the vector is in a sense

small, but not in the length of the vector. Instead sparsity concerns the number of non-zero

entries in the vector. For example, when an under-determined linear system is considered, a

solution with a smaller number of non-zero entries is more desirable in sparse approximation.

To measure sparsity, we use the following definition.

1



CHAPTER 1. INTRODUCTION 2

Definition 1 For a given vector x ∈ <n, we denote l0-“norm” of x as

‖x‖0 = the number of nonzero entries (cardinality) of the vector x.

When considering a sparse approximation problem, we seek a solution that is as sparse as

possible. We may do this by regularizing a l0-“norm” penalty or imposing a l0-“norm”

constraint to optimization problems.

We now describe some key settings where sparse solutions are desired.

1.1.1 Compressed sensing

Compressed sensing is a signal processing technique for efficiently acquiring and recon-

structing a signal, by finding solutions to underdetermined linear systems (see, for example,

[39, 123, 83, 114, 35, 94, 126]). This takes advantage of the signal’s sparseness or com-

pressibility in some domain, allowing the entire signal to be determined from relatively few

measurements.

For example, we consider a problem of signal reconstruction. We first observe that many

types of signals can be well-approximated by a sparse expansion in terms of a suitable basis,

that is, by only a small number of non-zero coefficients. This is the key to the efficiency

of many lossy compression techniques such as JPEG, MP3 etc. The signal is compressed

by simply storing only the largest basis coefficients. When reconstructing the signal, the

non-stored coefficients are set to zero. This is certainly a reasonable strategy when full

information of the signal is available. However, the full information of the signal has to

be acquired by a somewhat costly, lengthy or otherwise difficult measurement (sensing)

procedure, which seems to be a waste of resources: first, large efforts are spent in order

to obtain full information on the signal, and afterwards most of the information is thrown

away at the compression stage. One natural question is whether there is a clever way

of obtaining the compressed version of the signal more efficiently, by taking only a small

number of measurements of the signal. It is not obvious at all whether this is possible since

directly measuring the large coefficients requires to know a priori their locations. Quite

surprisingly, compressed sensing provides nevertheless a way of reconstructing a compressed

version of the original signal by taking only a small number of linear measurements. The

given underdetermined linear system approximating the coefficients has infinitely many

solutions. A naive approach to a reconstruction algorithm consists in searching for the

sparsest vector that is consistent with the linear measurements.
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Based on the discussion above, we can reconstruct the sparsest vector by solving the

following optimization problem

min
x∈<p
{‖x‖0 : Ax = b}, (1.1)

where A ∈ <n×p is a known matrix and b ∈ <n is an observation vector. Obviously, (1.1) is

a combinatorial l0-problem, which unfortunately is NP-hard in general [92].

Nevertheless, the formulation (1.1) only models the CS problem well when the measure-

ments and the signal are noise free. In the noisy case, it is more reasonable to formulate

the CS problem as

min
x∈<p

{
1

2
‖Ax− b‖22 : ‖x‖0 ≤ r

}
, (1.2)

or

min
x∈<p

{
1

2
‖Ax− b‖22 + ν‖x‖0

}
(1.3)

for some integer r ≥ 0 or real number ν ≥ 0 controlling the sparsity (or cardinality) of the

solution.

1.1.2 Sparse inverse covariance selection

The sparse inverse covariance selection problem has numerous real-world applications

such as speech recognition and gene network analysis (see, for example, [8, 49]). Solving

this problem discovers the conditional independence in graphical models. The basic model

for continuous data assumes that the observations have a multivariate Gaussian distribution

with mean µ and covariance matrix Σ. If the ijth component of Σ−1 is zero, then variables

i and j are conditionally independent, given the other variables. Thus Σ−1 would be sparse

if there are a large number of pairs of conditionally independent variables.

One popular formulation for sparse inverse covariance selection is to find an approximate

sparse inverse covariance matrix while maximizing the log-likelihood (see, for example, [62]).

Given a sample covariance matrix Σt ∈ Sp++ and a set Ω consisting of pairs of known

conditionally independent nodes, the sparse inverse covariance selection problem can be

formulated as
max
X�0

log detX −Σt • X

s.t.
∑

(i,j)∈Ω̄

‖Xij‖0 ≤ r,

Xij = 0 ∀(i, j) ∈ Ω,

(1.4)
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where Ω̄ = {(i, j) : (i, j) /∈ Ω, i 6= j}, and r ∈ [1, |Ω̄|] is an integer that controls the sparsity

(or cardinality) of the solution.

1.1.3 Sparse logistic regression

Sparse logistic regression problem has many applications in machine learning, computer

vision, data mining, bioinformatics, and neural signal processing (see, for example, [10, 129,

84, 103, 65, 104]). It has been proposed as a promising method for feature selection in

classification problems in which a sparse solution is sought to minimize the average logistic

loss (see, for example, [99]).

Given n samples {z1, . . . , zn} with p features, and n binary outcomes b1, . . . , bn, let

ai = biz
i for i = 1, . . . , n. The average logistic loss function is defined as

lavg(v, w) :=
n∑
i=1

θ(wTai + vbi)/n

for some model variables v ∈ < and w ∈ <p, where θ is the logistic loss function

θ(t) := log(1 + exp(−t)).

Then the sparse logistic regression problem can be formulated as

min
v,w
{lavg(v, w) : ‖w‖0 ≤ r} , (1.5)

where r ∈ [1, p] is some integer for controlling the sparsity (or cardinality) of the solution.

1.1.4 More applications and summary

In addition, the similar ideas of compressed sensing have also been widely used in linear

regression [124], for instance in the lasso method. It can effectively reduce the number of

variables upon which the given solution is dependent.

During the last ten years, sparse principal component analysis (PCA) becomes an ef-

ficient tool in dimension reduction where a few sparse linear combinations of the random

variables, so called principal components (PCs) are pursued so that their total explained

variance is maximized (see, for example, [137, 117]). There are various sparse models for

sparse PCA that have been proposed in literature [137, 42, 117, 77] (see Section 3.1 for more

details).
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Mathematically, all these applications can be formulated into the following l0 minimiza-

tion problems:

min
x∈X
{f(x) : g(x) ≤ 0, h(x) = 0, ‖xJ‖0 ≤ r}, (1.6)

min
x∈X
{f(x) + ν‖xJ‖0 : g(x) ≤ 0, h(x) = 0} (1.7)

for some integer r ≥ 0 or real number ν ≥ 0 controlling the sparsity (or cardinality) of

the solution. Here X is a closed convex set in the n-dimensional Euclidean space <n,

f : <n → <, g : <n → <m and h : <n → <p are continuously differentiable functions,

and xJ is a subvector formed by the entries of x indexed by J . Given that ‖ · ‖0 is an

integer-valued, discontinuous and nonconvex function, it is generally hard to solve problems

(1.6) and (1.7).

1.2 Existing approaches

In the literature, one popular approach for dealing with (1.6) and (1.7) is to replace ‖·‖0
by the l1-norm ‖ · ‖1 and solve the resulting relaxation problems

min
x∈X
{f(x) : g(x) ≤ 0, h(x) = 0, ‖xJ‖1 ≤ τ}, (1.8)

min
x∈X
{f(x) + λ‖xJ‖1 : g(x) ≤ 0, h(x) = 0} (1.9)

for some positive real numbers τ and λ controlling the sparsity (or cardinality) of the solution

(see, for example, [41, 99, 35, 124]).

For some applications such as compressed sensing, it has been shown in [23, 20] that

under suitable conditions one can find the global optimal solutions of (1.6) and (1.7) by

solving (1.8) and (1.9), respectively. For example, it has been shown in [23, 20] that the

solution x̂ to

min
x∈<p
{‖x‖1 : Ax = b}, (1.10)

recovers the solution x∗ to problem (1.1) exactly provided that 1) x∗ is sufficiently sparse

and 2) the matrix A obeys a condition known as the restricted isometry property.

To state their results, we first recall the concept of restricted isometry constants.

Definition 2 For each integer s = 1, 2, . . . , define the isometry constant δs of a matrix A

as the smallest number such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22
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holds for all s-sparse vectors, where ‖ · ‖2 denotes the Euclidean norm. A vector is said to

be s-sparse if it has at most s nonzero entries.

By using this definition, they showed that

1. If δ2s < 1, problem (1.1) has a unique s-sparse solution;

2. If δ2s <
√

2−1, the solution to problem (1.10) is that of problem (1.1). In other words,

the convex relaxation is exact.

Besides l1-norm relaxation, another relaxation approach has been recently proposed to

solve problems (1.6) and (1.7) in which ‖ · ‖0 is replaced by lp-“norm” ‖ · ‖p for some

p ∈ (0, 1) (see, for example, [34, 36, 37]). In general, the solution quality of these relaxation

approaches may not be high. Indeed, for the example given below, the lp relaxation approach

for p ∈ (0, 1] fails to recover the sparse solution.

Example. Let p ∈ (0, 1] be arbitrarily chosen. Given any b1, b2 ∈ <n, let b = b1 + b2,

α = ‖(b1; b2)‖p and A = [b1, b2, αIn, αIn], where In denotes the n× n identity matrix and

‖x‖p = (
∑n

i=1 |xi|p)1/p for all x ∈ <n. Consider the linear system Ax = b. It is easy to

observe that this system has the sparse solution xs = (1, 1, 0, . . . , 0)T . However, xs cannot

be recovered by solving the lp-“norm” regularization problem:

f∗ = min
x

{
f(x) :=

1

2
‖Ax− b‖2 + ν‖x‖p

}
for any ν > 0. Indeed, let x̄ = (0, 0, b1/α, b2/α)T . Then, we have f(xs) = 21/pν and

f(x̄) = ν, which implies that f(xs) > f(x̄) ≥ f∗. Thus, xs cannot be an optimal solution

of the above problem for any ν > 0. Moreover, the relative error between f(xs) and f∗ is

fairly large since

(f(xs)− f∗)/f∗ ≥ (f(xs)− f(x̄))/f(x̄) = 21/p − 1 ≥ 1.

Therefore, the true sparse solution xs may not even be a “good” approximate solution to

the lp-“norm” regularization problem.

Because of the possible failure of the lp relaxation approach for some p ∈ (0, 1], some

algorithms are proposed in the literature for solving special cases of (1.6) and (1.7) directly.

For example, the iterative hard thresholding algorithms [72, 11, 12] and matching pursuit

algorithms [92, 125] are developed for solving the l0-regularized least squares problems aris-

ing in compressed sensing, but they cannot be applied to solve the general l0 minimization

problems (1.6) and (1.7).
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1.3 Proposed methods and contributions

In this thesis, we propose two kinds of methods which are a novel augmented Lagrangian

method and penalty decomposition methods, for solving the general sparse approximation

problems. The augmented Lagrangian method can be applied to solve the general l1 relax-

ation sparse approximation problems (i.e., (1.8) and (1.9)), while the penalty decomposition

methods solve the original sparse approximation problems (i.e., (1.6) and (1.7)) directly. In

addition, we study the convergence of the proposed methods.

1.3.1 The augmented Lagrangian method

We first propose a novel augmented Lagrangian method for solving a class of nonsmooth

constrained optimization problems. These problems can be written as

min f(x) + P (x)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ X ,

(1.11)

where the function P : <n → < is convex but not necessarily smooth. We can easily

observe that both (1.8) and (1.9) are in the form of (1.11). Thus the proposed augmented

Lagrangian method can be suitably applied to solve (1.8) and (1.9).

The proposed augmented Lagrangian method in this thesis differs from the classical

augmented Lagrangian method in that: i) the values of the augmented Lagrangian functions

at their approximate minimizers given by the method are bounded from above; and ii) the

magnitude of penalty parameters outgrows that of Lagrangian multipliers (see Subsection

2.2 for details). In addition, we show that this method converges to a feasible point, and

moreover it converges to a first-order stationary point under some regularity assumptions.

We should mention that the aforementioned two novel properties of the proposed augmented

Lagrangian method are crucial in ensuring convergence both theoretically and practically.

In fact, we observed in our experiments that when either one of these properties are dropped,

the resulting method almost always fails to converge to even a feasible point when applied

to our formulation of sparse PCA, which is in the form of (1.11).

In addition, we also propose two nonmonotone gradient methods for minimizing a class

of nonsmooth functions over a closed convex set, which can be suitably applied to the
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subproblems arising in our augmented Lagrangian method. We further establish global

convergence and, under a local Lipschitzian error bounds assumption [128], local linear rate

of convergence for these gradient methods.

We next apply the proposed augmented Lagrangian method to solve our new formulation

for sparse PCA. Sparse PCA has been an active research topic for more than a decade. The

existing methods [76, 14, 78, 137, 42, 117, 95, 40, 77] can produce sparse PCs but the

nice properties of the standard PCs are generally lost (see Subsection 3.1 for details). The

proposed new formulation (see Subsection 3.2 for details) takes into account three nice

properties of the standard PCA, that is, maximal total explained variance, uncorrelation

of PCs, and orthogonality of loading vectors. Moreover, we also explore the connection

of this formulation with the standard PCA and show that it can be viewed as a certain

perturbation of the standard PCA. We then compare the sparse PCA approach proposed in

this thesis with several existing methods [137, 42, 117, 77] on synthetic [137], Pitprops [74],

and gene expression data [38], respectively. The computational results demonstrate that the

sparse PCs obtained by our approach substantially outperform those by the other methods

in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors.

In addition, the experiments on random data show that our method is capable of solving

large-scale problems within very reasonable amount of time and it is also fairly stable.

1.3.2 The penalty decomposition methods

Because of the drawbacks for l1 relaxation approaches mentioned in Section 1.2, in this

thesis we also propose penalty decomposition (PD) methods for directly solving problems

(1.6) and (1.7) in which a sequence of penalty subproblems are solved by a block coordinate

descent (BCD) method. Under some suitable assumptions, we establish that any accumu-

lation point of the sequence generated by the PD method satisfies the first-order optimality

conditions of (1.6) and (1.7). Furthermore, when h’s are affine, and f and g’s are convex,

we show that such an accumulation point is a local minimizer of the problems. In addition,

we show that any accumulation point of the sequence generated by the BCD method is a

block coordinate minimizer of the penalty subproblem. Moreover, when h’s are affine, and f

and g’s are convex, we establish that such an accumulation point is a local minimizer of the

penalty subproblem. Finally, we test the performance of our PD methods by applying them

to sparse logistic regression, sparse inverse covariance selection, and compressed sensing

problems. The computational results demonstrate that when solutions of same cardinality
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are sought, our approach applied to the l0-based models generally has better solution quality

and/or speed than the existing approaches that are applied to the corresponding l1-based

models.

Finally, we adapt the PD method to solve our proposed wavelet frame based image

restoration problem. The basic idea for wavelet frame based approaches is that images can

be sparsely approximated by properly designed wavelet frames, and hence, the wavelet frame

based image restoration problem can be formulated as a variant of (1.6), see Subsection

5.1 for details. Some convergence analysis of the adapted PD method for this problem

are provided. Numerical results show that the proposed model solved by the PD method

can generate images with better quality than those obtained by the existing l1 relaxation

approaches in terms of restoring sharp features as well as maintaining smoothness of the

recovered images.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we propose the augmented

Lagrangian method for solving a class of nonsmooth constrained optimization problems.

We also propose two nonmonotone gradient methods for minimizing a class of nonsmooth

functions over a closed convex set, which can be suitably applied to the subproblems arising

in our augmented Lagrangian method. In Chapter 3, we first propose the new formulation for

sparse PCA and then apply the proposed augmented Lagrangian method to solve this new

formulation. In addition, we compare the sparse PCA approach proposed in this thesis with

several existing methods on synthetic, Pitprops, and gene expression data, respectively. In

Chapter 4, we first establish the first-order optimality conditions for general l0 minimization

problems and study a class of special l0 minimization problems. We then develop the PD

methods for general l0 minimization problems. Finally, we conduct numerical experiments

to test the performance of our PD methods for solving sparse logistic regression, sparse

inverse covariance selection, and compressed sensing problems. We adapt the PD method

to solve our proposed wavelet frame based image restoration problem in Chapter 5.
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1.5 Notations

In this thesis, all vector spaces are assumed to be finite dimensional. The symbols <n

and <n+ (resp., <n−) denote the n-dimensional Euclidean space and the nonnegative (resp.,

nonpositive) orthant of <n, respectively, and <++ denotes the set of positive real numbers.

Given a vector v ∈ <n, the nonnegative part of v is denoted by v+ = max(v, 0), where

the maximization operates entry-wise. Given an index set L ⊆ {1, . . . , n}, |L| denotes the

size of L, and the elements of L are denoted by L(1), . . . , L(|L|), which are always arranged

in ascending order. We define xL the subvector formed by the entries of x indexed by L.

Likewise, XL denotes the submatrix formed by the columns of X indexed by L. In addition,

for any two sets A and B, the set difference of A and B is given by A\B = {x ∈ A : x /∈ B}.
Given a closed set C ⊆ <n, let NC(x) and TC(x) denote the normal and tangent cones of C

at any x ∈ C, respectively. The space of all m× n matrices with real entries is denoted by

<m×n, and the space of symmetric n × n matrices is be denoted by Sn. Additionally, Dn

denotes the space of n × n diagonal matrices. For a real matrix X, we denote by |X| the

absolute value of X, that is, |X|ij = |Xij | for all ij, and by sign(X) the sign of X whose ijth

entry equals the sign of Xij for all ij. Also, the nonnegative part of X is denoted by [X]+

whose ijth entry is given by max{0, Xij} for all ij. The rank of X is denoted by rank(X).

Further, the identity matrix and the all-ones matrix are denoted by I and E, respectively,

whose dimension should be clear from the context. If X ∈ Sn is positive semidefinite (resp.,

definite), we write X � 0 (resp., X � 0). The cone of positive semidefinite (resp., definite)

matrices is denoted by Sn+ (resp., Sn++). For any X, Y ∈ Sn, we write X � Y to mean

X − Y � 0. Given matrices X and Y in <m×n, the standard inner product is defined by

X • Y := Tr(XY T ), where Tr(·) denotes the trace of a matrix, and the component-wise

product is denoted by X � Y , whose ijth entry is XijYij for all ij. The Euclidean norm is

defined by ‖·‖ as is its associated operator norm unless it is explicitly stated otherwise. The

minimal (resp., maximal) eigenvalue of an n×n symmetric matrix X are denoted by λmin(X)

(resp., λmax(X)), respectively, and λi(X) denotes its ith largest eigenvalue for i = 1, . . . , n.

The operator is defined by D which maps a vector to a diagonal matrix whose diagonal

consists of the vector. Given an n × n matrix X, D̃(X) denotes a diagonal matrix whose

ith diagonal element is Xii for i = 1, . . . , n. Let f : <n → < be a proper convex function

and x be a point in the domain of f , the subdifferential of f at x is denoted by ∂f(x). Let

U be a real vector space. Given a closed convex set C ⊆ U , let dist(·, C) : U → <+ denote
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the distance function to C measured in terms of ‖ · ‖, that is,

dist(u,C) := inf
ũ∈C
‖u− ũ‖ ∀u ∈ U . (1.12)



Chapter 2

An augmented Lagrangian

approach

In this chapter we propose a novel augmented Lagrangian method for a class of non-

smooth constrained nonlinear programming problems. In particular, we study first-order

optimality conditions and then we develop an augmented Lagrangian method and establish

its global convergence. In addition, we propose two nonmonotone gradient methods for

minimizing a class of nonsmooth functions over a closed convex set, which can be suitably

applied to the subproblems arising in our augmented Lagrangian method. We also establish

global and local convergence for these gradient methods.

This chapter is based on the paper [90] co-authored with Zhaosong Lu.

2.1 First-order optimality conditions

In this subsection we introduce a class of nonsmooth constrained nonlinear programming

problems and study first-order optimality conditions for them.

Consider the nonlinear programming problem

min f(x) + P (x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

x ∈ X.

(2.1)

We assume that the functions f : <n → <, gi : <n → <, i = 1, . . . ,m, and hi : <n → <,

12
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i = 1, . . . , p, are continuously differentiable, and that the function P : <n → < is convex

but not necessarily smooth, and that the set X ⊆ <n is closed and convex. For convenience

of the subsequent presentation, we denote by Ω the feasible region of problem (2.1).

For the case where P is a smooth function, the first-order optimality conditions for

problem (2.1) have been well studied in literature (see, for example, Theorem 3.25 of [113],

but there is little study when P is a nonsmooth convex function. We next aim to establish

first-order optimality conditions for problem (2.1). Before proceeding, we describe a general

constraint qualification condition for (2.1), that is, Robinson’s condition that was proposed

in [107].

Let x ∈ <n be a feasible point of problem (2.1). We denote the set of active inequality

constraints at x as

A(x) = {1 ≤ i ≤ m : gi(x) = 0}.

In addition, x is said to satisfy Robinson’s condition if{[
g′(x)d− v
h′(x)d

]
: d ∈ TX(x), v ∈ <m, vi ≤ 0, i ∈ A(x)

}
= <m ×<p, (2.2)

where g′(x) and h′(x) denote the Jacobian of the functions g = (g1, . . . , gm) and h =

(h1, . . . , hp) at x, respectively. Other equivalent expressions of Robinson’s condition can be

found, for example, in [107, 108, 113].

The following proposition demonstrates that Robinson’s condition is indeed a constraint

qualification condition for problem (2.1). For the sake of completeness, we include a brief

proof for it.

Proposition 2.1.1 Given a feasible point x ∈ <n of problem (2.1), let TΩ(x) be the tangent

cone to Ω at x, and (TΩ(x))◦ be its polar cone. If Robinson’s condition (2.2) holds at x,

then

TΩ(x) =

{
d ∈ TX(x) :

dT∇gi(x) ≤ 0, i ∈ A(x),

dT∇hi(x) = 0, i = 1, . . . , p

}
,

(TΩ(x))◦ =

 ∑
i∈A(x)

λi∇gi(x) +

p∑
i=1

µi∇hi(x) +NX(x) : λ ∈ <m+ , µ ∈ <p
 , (2.3)

where TX(x) and NX(x) are the tangent and normal cones to X at x, respectively.
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Proof. By Theorem A.10 of [113], we see that Robinson’s condition (2.2) implies that

the assumption of Theorem 3.15 of [113] is satisfied with

x0 = x, X0 = X, Y0 = <m− ×<p, g(·) = (g1(·); . . . ; gm(·);h1(·); . . . ;hp(·)).

The first statement then follows from Theorem 3.15 of [113] with the above x0, X0, Y0

and g(·). Further, let A(x) denote the matrix whose rows are the gradients of all active

constraints at x in the same order as they appear in (2.1). Then, Robinson’s condition (2.2)

implies that the assumptions of Theorem 2.36 of [113] are satisfied with

A = A(x), K1 = TX(x), K2 = <|A(x)|
− ×<p.

Let K = {d ∈ K1 : Ad ∈ K2}. Then, it follows from Theorem 2.36 of [113] that

(TΩ(x))◦ = K◦ = K◦1 + {AT ξ : ξ ∈ K◦2},

which together with the identity (TX(x))◦ = NX(x) and the definitions of A, K1 and K2,

implies that the second statement holds.

We are now ready to establish first-order optimality conditions for problem (2.1).

Theorem 2.1.2 Let x∗ ∈ <n be a local minimizer of problem (2.1). Assume that Robinson’s

condition (2.2) is satisfied at x∗. Then there exist Lagrange multipliers λ ∈ <m+ and µ ∈ <p

such that

0 ∈ ∇f(x∗) + ∂P (x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +NX(x∗), (2.4)

and

λigi(x
∗) = 0, i = 1, . . . ,m. (2.5)

Moreover, the set of Lagrange multipliers (λ, µ) ∈ <m+ ×<p satisfying the above conditions,

denoted by Λ(x∗), is convex and compact.

Proof. We first show that

dT∇f(x∗) + P ′(x∗; d) ≥ 0 ∀d ∈ TΩ(x∗). (2.6)

Let d ∈ TΩ(x∗) be arbitrarily chosen. Then, there exist sequences {xk}∞k=1 ⊆ Ω and

{tk}∞k=1 ⊆ <++ such that tk ↓ 0 and

d = lim
k→∞

xk − x∗

tk
.
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Thus, we have xk = x∗+tkd+o(tk). Using this relation along with the fact that the function

f is differentiable and P is convex in <n, we can have

f(x∗ + tkd)− f(xk) = o(tk), P (x∗ + tkd)− P (xk) = o(tk), (2.7)

where the first equality follows from the Mean Value Theorem while the second one comes

from Theorem 10.4 of [109]. Clearly, xk → x∗. This together with the assumption that x∗

is a local minimizer of (2.1), implies that

f(xk) + P (xk) ≥ f(x∗) + P (x∗) (2.8)

when k is sufficiently large. In view of (2.7) and (2.8), we obtain that

dT∇f(x∗) + P ′(x∗; d) = lim
k→∞

f(x∗ + tkd)− f(x∗)

tk
+ lim
k→∞

P (x∗ + tkd)− P (x∗)

tk
,

= lim
k→∞

[
f(xk) + P (xk)− f(x∗)− P (x∗)

tk
+
o(tk)

tk

]
,

= lim
k→∞

f(xk) + P (xk)− f(x∗)− P (x∗)

tk
≥ 0,

and hence (2.6) holds.

For simplicity of notations, let T ◦Ω = (TΩ(x∗))◦ and S = −∇f(x∗) − ∂P (x∗). We next

show that S ∩ T ◦Ω 6= ∅. Suppose for contradiction that S ∩ T ◦Ω = ∅. This together with the

fact that S and T ◦Ω are nonempty closed convex sets and S is bounded, implies that there

exists some d ∈ <n such that dT y ≤ 0 for any y ∈ T ◦Ω, and dT y ≥ 1 for any y ∈ S. Clearly,

we see that d ∈ (T ◦Ω)◦ = TΩ(x∗), and

1 ≤ infy∈S d
T y = infz∈∂P (x∗) d

T (−∇f(x∗)− z) = −dT∇f(x∗)− supz∈∂P (x∗) d
T z

= −dT∇f(x∗)− P ′(x∗; d),

which contradicts (2.6). Hence, we have S∩T ◦Ω 6= ∅. Using this relation, (2.3), the definitions

of S and A(x∗), and letting λi = 0 for i /∈ A(x∗), we easily see that (2.4) and (2.5) hold.

In view of the fact that ∂P (x∗) and NX(x∗) are closed and convex, and moreover ∂P (x∗)

is bounded, we know that ∂P (x∗) + NX(x∗) is closed and convex. Using this result, it

is straightforward to see that Λ(x∗) is closed and convex. We next show that Λ(x∗) is

bounded. Suppose for contradiction that Λ(x∗) is unbounded. Then, there exists a sequence

{(λk, µk)}∞k=1 ⊆ Λ(x∗) such that ‖(λk, µk)‖ → ∞, and

0 = ∇f(x∗) + zk +
m∑
i=1

λki∇gi(x∗) +

p∑
i=1

µki∇hi(x∗) + vk (2.9)
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for some {zk}∞k=1 ⊆ ∂P (x∗) and {vk}∞k=1 ⊆ NX(x∗). Let (λ̄k, µ̄k) = (λk, µk)/‖(λk, µk)‖.
By passing to a subsequence if necessary, we can assume that (λ̄k, µ̄k) → (λ̄, µ̄). We

clearly see that ‖(λ̄, µ̄)‖ = 1, λ̄ ∈ <m+ , and λ̄i = 0 for i /∈ A(x∗). Note that ∂P (x∗) is

bounded and NX(x∗) is a closed cone. In view of this fact, and upon dividing both sides of

(2.9) by ‖(λk, µk)‖ and taking limits on a subsequence if necessary, we obtain that

0 =
m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗) + v̄ (2.10)

for some v̄ ∈ NX(x∗). Since Robinson’s condition (2.2) is satisfied at x∗, there exist d ∈
TX(x∗) and v ∈ <m such that vi ≤ 0 for i ∈ A(x∗), and

dT∇gi(x∗)− vi = −λ̄i ∀i ∈ A(x∗),

dT∇hi(x∗) = −µ̄i, i = 1, . . . , p.

Using these relations, (2.10) and the fact that d ∈ TX(x∗), v̄ ∈ NX(x∗), λ̄ ∈ <m+ , and λ̄i = 0

for i /∈ A(x∗), we have

m∑
i=1

λ̄2
i +

p∑
i=1

µ̄2
i ≤ −

m∑
i=1

λ̄id
T∇gi(x∗)−

p∑
i=1

µ̄id
T∇hi(x∗),

= −dT
(

m∑
i=1

λ̄i∇gi(x∗) +
p∑
i=1

µ̄i∇hi(x∗)
)

= dT v̄ ≤ 0.

It yields (λ̄, µ̄) = (0, 0), which contradicts the identity ‖(λ̄, µ̄)‖ = 1. Thus, Λ(x∗) is bounded.

2.2 Augmented Lagrangian method for (2.1)

For a convex program, it is known that under some mild assumptions, any accumu-

lation point of the sequence generated by the classical augmented Lagrangian method is

an optimal solution (e.g., see Section 6.4.3 of [113]). Nevertheless, when problem (2.1) is a

nonconvex program, especially when the function hi is not affine or gi is nonconvex, the clas-

sical augmented Lagrangian method may not even converge to a feasible point, that is, any

accumulation point of the sequence generated by the method may violate some constraints

of (2.1). We actually observed in our experiments that this ill phenomenon almost always

happens when the classical augmented Lagrangian method is applied to our proposed formu-

lation of sparse PCA. To alleviate this drawback, we propose a novel augmented Lagrangian

method for problem (2.1) and establish its global convergence in this subsection.
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Throughout this subsection, we make the following assumption for problem (2.1).

Assumption 1 Problem (2.1) is feasible, and moreover at least a feasible solution, denoted

by xfeas, is known.

It is well-known that for problem (2.1) the associated augmented Lagrangian function

L%(x, λ, µ) : <n ×<m ×<p → < is given by

L%(x, λ, µ) := w(x) + P (x), (2.11)

where

w(x) := f(x) +
1

2%
(‖[λ+ %g(x)]+‖2 − ‖λ‖2) + µTh(x) +

%

2
‖h(x)‖2, (2.12)

and % > 0 is a penalty parameter (e.g., see [7, 113]). Roughly speaking, an augmented

Lagrangian method, when applied to problem (2.1), solves a sequence of subproblems in the

form of

min
x∈X

L%(x, λ, µ)

while updating the Lagrangian multipliers (λ, µ) and the penalty parameter %.

Let xfeas be a known feasible point of (2.1) (see Assumption 1). We now describe the

algorithm framework of a novel augmented Lagrangian method as follows.

Algorithm framework of augmented Lagrangian method:

Let {εk} be a positive decreasing sequence. Let λ0 ∈ <m+ , µ0 ∈ <p, %0 > 0, τ > 0, σ > 1

be given. Choose an arbitrary initial point x0
init ∈ X and constant Υ ≥ max{f(xfeas),

L%0(x0
init, λ

0, µ0)}. Set k = 0.

1) Find an approximate solution xk ∈ X for the subproblem

min
x∈X

L%k(x, λk, µk) (2.13)

such that

dist
(
−∇w(xk), ∂P (xk) +NX(xk)

)
≤ εk, L%k(xk, λk, µk) ≤ Υ. (2.14)

2) Update Lagrange multipliers according to

λk+1 := [λk + %kg(xk)]+, µk+1 := µk + %kh(xk). (2.15)
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3) Set %k+1 := max
{
σ%k, ‖λk+1‖1+τ , ‖µk+1‖1+τ

}
.

4) Set k ← k + 1 and go to step 1).

end

The above augmented Lagrangian method differs from the classical augmented La-

grangian method in that: i) the values of the augmented Lagrangian functions at their

approximate minimizers given by the method are uniformly bounded from above (see Step

1)); and ii) the magnitude of penalty parameters outgrows that of Lagrangian multipliers

(see Step 3)). These two novel properties are crucial in ensuring the convergence of our

augmented Lagrangian method both theoretically and practically. In fact, we observed in

our experiments that when one or both of these steps are replaced by the counterparts of

the classical augmented Lagrangian method, the resulting method almost always fails to

converge to even a feasible point as applied to our proposed formulation of sparse PCA.

To make the above augmented Lagrangian method complete, we need to address how to

find an approximate solution xk ∈ X for subproblem (2.13) satisfying (2.14) as required in

Step 1). We will leave this discussion to the end of this subsection. For the time being, we

establish the main convergence result regarding this method for solving problem (2.1).

Theorem 2.2.1 Assume that εk → 0. Let {xk} be the sequence generated by the above aug-

mented Lagrangian method satisfying (2.14). Suppose that a subsequence {xk}k∈K converges

to x∗. Then, the following statements hold:

(a) x∗ is a feasible point of problem (2.1);

(b) Further, if Robinson’s condition (2.2) is satisfied at x∗, then the subsequence {(λk+1,

µk+1)}k∈K is bounded, and each accumulation point (λ∗, µ∗) of {(λk+1, µk+1)}k∈K is

the vector of Lagrange multipliers satisfying the first-order optimality conditions (2.4)-

(2.5) at x∗.

Proof. In view of (2.11), (2.12) and the second relation in (2.14), we have

f(xk) + P (xk) +
1

2%k
(‖[λk + %kg(xk)]+‖2 − ‖λk‖2) + (µk)Th(xk) +

%k
2
‖h(xk)‖2 ≤ Υ ∀k.

It follows that

‖[λk/%k + g(xk)]+‖2 + ‖h(xk)‖2 ≤ 2[Υ− f(xk)− g(xk)− (µk)Th(xk)]/%k + (‖λk‖/%k)2.
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Noticing that %0 > 0 τ > 0, and %k+1 = max
{
σ%k, ‖λk+1‖1+τ , ‖µk+1‖1+τ

}
for k ≥ 0, we

can observe that %k → ∞ and ‖(λk, µk)‖/%k → 0. We also know that {xk}k∈K → x∗,

{g(xk)}k∈K → g(x∗) and {h(xk)}k∈K → h(x∗). Using these results, and upon taking limits

as k ∈ K →∞ on both sides of the above inequality, we obtain that

‖[g(x∗)]+‖2 + ‖h(x∗)‖2 ≤ 0,

which implies that g(x∗) ≤ 0 and h(x∗) = 0. We also know that x∗ ∈ X. It thus follows

that statement (a) holds.

We next show that statement (b) also holds. Using (2.13), (2.11), (2.12), (2.15), and the

first relation in (2.14), we have

‖∇f(xk) +
m∑
i=1

λk+1
i ∇gi(xk) +

p∑
i=1

µk+1
i ∇hi(xk) + zk + vk‖ ≤ εk (2.16)

for some zk ∈ ∂P (xk) and vk ∈ NX(xk). Suppose for contradiction that the subsequence

{(λk+1, µk+1)}k∈K is unbounded. By passing to a subsequence if necessary, we can assume

that {(λk+1, µk+1)}k∈K → ∞. Let (λ̄k+1, µ̄k+1) = (λk+1, µk+1)/‖(λk+1, µk+1)‖ and v̄k =

vk/‖(λk+1, µk+1)‖. Recall that {xk}k∈K → x∗. It together with Theorem 6.2.7 of [73]

implies that ∪k∈K∂P (xk) is bounded, and so is {zk}k∈K . In addition, {g(xk)}k∈K → g(x∗)

and {h(xk)}k∈K → h(x∗). Then, we can observe from (2.16) that {v̄k}k∈K is bounded.

Without loss of generality, assume that {(λ̄k+1, µ̄k+1)}k∈K → (λ̄, µ̄) and {v̄k}k∈K → v̄

(otherwise, one can consider their convergent subsequences). Clearly, ‖(λ̄, µ̄)‖ = 1. Dividing

both sides of (2.16) by ‖(λk+1, µk+1)‖ and taking limits as k ∈ k →∞, we obtain that

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗) + v̄ = 0. (2.17)

Further, using the identity λk+1 = [λk+%kg(xk)]+ and the fact that %k →∞ and ‖λk‖/%k →
0, we observe that λk+1 ∈ <m+ and λk+1

i = 0 for i /∈ A(x∗) when k ∈ K is sufficiently large,

which imply that λ̄ ∈ <m+ and λ̄i = 0 for i /∈ A(x∗). Moreover, we have v̄ ∈ NX(x∗) since

NX(x∗) is a closed cone. Using these results, (2.17), Robinson’s condition (2.2) at x∗, and a

similar argument as that in the proof of Theorem 2.1.2, we can obtain that (λ̄, µ̄) = (0, 0),

which contradicts the identity ‖(λ̄, µ̄)‖ = 1. Therefore, the subsequence {(λk+1, µk+1)}k∈K
is bounded. Using this result together with (2.16) and the fact {zk}k∈K is bounded, we

immediately see that {vk}k∈K is bounded. Using semicontinuity of ∂P (·) and NX(·) (see
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Theorem 24.4 of [109] and Lemma 2.42 of [113]), and the fact {xk}k∈K → x∗, we conclude

that every accumulation point of {zk}k∈K and {vk}k∈K belongs to ∂P (x∗) and NX(x∗),

respectively. Using these results and (2.16), we further see that for every accumulation

point (λ∗, µ∗) of {(λk+1, µk+1)}k∈K , there exists some z∗ ∈ ∂P (x∗) and v∗ ∈ NX(x∗) such

that

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

µ∗i∇hi(x∗) + z∗ + v∗ = 0.

Moreover, using the identity λk+1 = [λk + %kg(xk)]+ and the fact that %k → ∞ and

‖λk‖/%k → 0, we easily see that λ∗ ∈ <m+ and λ∗i = 0 for i /∈ A(x∗). Thus, (λ∗, µ∗)

satisfies the first-order optimality conditions (2.4)-(2.5) at x∗.

Before ending this subsection, we now briefly discuss how to find an approximate solution

xk ∈ X for subproblem (2.13) satisfying (2.14) as required in Step 1) of the above augmented

Lagrangian method. In particular, we are interested in applying the nonmonotone gradient

methods proposed in Subsection 2.3 to (2.13). As shown in Subsection 2.3 (see Theorems

2.3.6 and 2.3.10), these methods are able to find an approximate solution xk ∈ X satisfying

the first relation of (2.14). Moreover, if an initial point for these methods is properly

chosen, the obtained approximate solution xk also satisfies the second relation of (2.14). For

example, given k ≥ 0, let xkinit ∈ X denote the initial point for solving the kth subproblem

(2.13), and we define xkinit for k ≥ 1 as follows

xkinit =

{
xfeas, if L%k(xk−1, λk, µk) > Υ;

xk−1, otherwise,

where xk−1 is the approximate solution to the (k− 1)th subproblem (2.13) satisfying (2.14)

(with k replaced by k−1). Recall from Assumption 1 that xfeas is a feasible solution of (2.1).

Thus, g(xfeas) ≤ 0, and h(xfeas) = 0, which together with (2.11), (2.12) and the definition

of Υ implies that

L%k(xfeas, λk, µk) ≤ f(xfeas) ≤ Υ.

It follows from this inequality and the above choice of xkinit that L%k(xkinit, λ
k, µk) ≤ Υ. Ad-

ditionally, the nonmonotone gradient methods proposed in Subsection 2.3 possess a natural

property that the objective function values at all subsequent iterates are bounded above by

the one at the initial point. Therefore, we have

L%k(xk, λk, µk) ≤ L%k(xkinit, λ
k, µk) ≤ Υ,
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and so the second relation of (2.14) is satisfied at xk.

2.3 Nonmonotone gradient methods for nonsmooth minimiza-

tion

In this subsection we propose two nonmonotone gradient methods for minimizing a class

of nonsmooth functions over a closed convex set, which can be suitably applied to the

subproblems arising in our augmented Lagrangian method detailed in Subsection 2.2. We

also establish global convergence and local linear rate of convergence for these methods.

Throughout this subsection, we consider the following problem

min
x∈X
{F (x) := f(x) + P (x)}, (2.18)

where f : <n → < is continuously differentiable, P : <n → < is convex but not necessarily

smooth, and X ⊆ <n is closed and convex.

In the literature [128, 134, 97, 6], several gradient methods were proposed for solving

problem (2.18) or its special case. In particular, Tseng and Yun [128] studied a block

coordinate descent method for (2.18). Under the assumption that the gradient of f is

Lipschitz continuous, Wright et al. [134] proposed a globally convergent nonmonotone

gradient method for (2.18). In addition, for the case where f is convex and its gradient is

Lipschitz continuous, Nesterov [97] and Beck and Teboulle [6] developed optimal gradient

methods for (2.18). In this subsection, we propose two nonmonotone gradient methods for

(2.18). These two methods are closely related to the ones proposed in [134] and [128], but

they are not the same (see the remarks below for details). In addition, these methods can

be viewed as an extension of the well-known projected gradient methods studied in [9] for

smooth problems, but the methods proposed in [134] and [128] cannot. Before proceeding,

we introduce some notations and establish some technical lemmas as follows that will be

used subsequently.

We say that x ∈ <n is a stationary point of problem (2.18) if x ∈ X and

0 ∈ ∇f(x) + ∂P (x) +NX(x). (2.19)

Given a point x ∈ <n and H � 0, we denote by dH(x) the solution of the following

problem:

dH(x) := arg min
d

{
∇f(x)Td+

1

2
dTHd+ P (x+ d) : x+ d ∈ X

}
. (2.20)
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The following lemma provides an alternative characterization of stationarity that will

be used in our subsequent analysis.

Lemma 2.3.1 For any H � 0, x ∈ X is a stationary point of problem (2.18) if and only if

dH(x) = 0.

Proof. We first observe that (2.20) is a convex problem, and moreover its objective

function is strictly convex. The conclusion of this lemma immediately follows from this

observation and the first-order optimality condition of (2.20).

The next lemma shows that ‖dH(x)‖ changes not too fast with H. It will be used to

prove Theorems 2.3.7 and 2.3.11.

Lemma 2.3.2 For any x ∈ <n, H � 0, and H̃ � 0, let d = dH(x) and d̃ = dH̃(x). Then

‖d̃‖ ≤
1 + λmax(Q) +

√
1− 2λmin(Q) + λmax(Q)2

2λmin(H̃)
λmax(H)‖d‖, (2.21)

where Q = H−1/2H̃H−1/2.

Proof. The conclusion immediately follows from Lemma 3.2 of [128] with J = {1, . . . , n},
c = 1, and P (x) := P (x) + IX(x), where IX is the indicator function of X.

The following lemma will be used to prove Theorems 2.3.7 and 2.3.11.

Lemma 2.3.3 Given x ∈ <n and H � 0, let g = ∇f(x) and ∆d = gTd+ P (x+ d)− P (x)

for all d ∈ <n. Let σ ∈ (0, 1) be given. The following statements hold:

(a) If d = dH(x), then

−∆d ≥ dTHd ≥ λmin(H)‖d‖2.

(b) For any x̄ ∈ <n, α ∈ (0, 1], d = dH(x), and x′ = x+ αd, then

(g +Hd)T (x′ − x̄) + P (x′)− P (x̄) ≤ (α− 1)(dTHd+ ∆d).

(c) If f satisfies

‖∇f(y)−∇f(z)‖ ≤ L‖y − z‖ ∀y, z ∈ <n (2.22)

for some L > 0, then the descent condition

F (x+ αd) ≤ F (x) + σα∆d

is satisfied for d = dH(x), provided 0 ≤ α ≤ min{1, 2(1− σ)λmin(H)/L}.



CHAPTER 2. AN AUGMENTED LAGRANGIAN APPROACH 23

(d) If f satisfies (2.22), then the descent condition

F (x+ d) ≤ F (x) + σ∆d

is satisfied for d = dH(θ)(x), where H(θ) = θH, provided θ ≥ L/[2(1− σ)λmin(H)].

Proof. The statements (a)-(c) follow from Theorem 4.1 (a) and Lemma 3.4 of [128] with

J = {1, . . . , n}, γ = 0, and λ = λmin(H). We now prove statement (d). Letting α = 1,

d = dH(θ)(x) and using statement (c), we easily see that when 2(1 − σ)λmin(H(θ)) ≥ 1,

F (x + d) ≤ F (x) + σ∆d is satisfied, which together with the definition of H(θ) implies

statement (d) holds.

We now present the first nonmonotone gradient method for (2.18) as follows.

Nonmonotone gradient method I:

Choose parameters η > 1, 0 < σ < 1, 0 < θ < θ̄, 0 < λ ≤ λ̄, and integer M ≥ 0. Set k = 0

and choose x0 ∈ X.

1) Choose θ0
k ∈ [θ, θ̄] and λI � Hk � λ̄I.

2) For j = 0, 1, . . .

2a) Let θk = θ0
kη
j . Solve (2.20) with x = xk and H = θkHk to obtain dk = dH(x).

2b) If dk satisfies

F (xk + dk) ≤ max
[k−M ]+≤i≤k

F (xi) + σ∆k, (2.23)

go to step 3), where

∆k := ∇f(xk)Tdk + P (xk + dk)− P (xk). (2.24)

3) Set xk+1 = xk + dk and k ← k + 1.

end

Remark. The above method is closely related to the one proposed in [134]. They differ

from each other only in that the distinct ∆k’s are used inequality (2.23). In particular, the

method [134] uses ∆k = −θk‖dk‖2/2. For global convergence, the method [134], however,

requires a strong assumption that the gradient of f is Lipschitz continuous, which is not
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needed for our method (see Theorem 2.3.6). In addition, our method can be viewed as

an extension of one projected gradient method (namely, SPG1) studied in [9] for smooth

problems, but their method cannot. Finally, local convergence is established for our method

(see Theorem 2.3.7), but not studied for the methods in [134] and [9].

We next prove global convergence of the nonmonotone gradient method I. Before pro-

ceeding, we establish two technical lemmas below. The first lemma shows that if xk ∈ X
is a nonstationary point, there exists an θk > 0 in step 2a) so that (2.23) is satisfied, and

hence the above method is well defined.

Lemma 2.3.4 Suppose that Hk � 0 and xk ∈ X is a nonstationary point of problem (2.18).

Then, there exists θ̃ > 0 such that dk = dHk(θk)(x
k), where Hk(θk) = θkHk, satisfies (2.23)

whenever θk ≥ θ̃.

Proof. For simplicity of notation, let d(θ) = dHk(θ)(x
k), where Hk(θ) = θHk for any

θ > 0. Then, it follows from (2.20) that for all θ > 0,

θ‖d(θ)‖ ≤ −2[∇f(xk)Td(θ) + P (xk + d(θ))− P (xk)]

λmin(Hk)‖d(θ)‖
≤ −2F ′(xk, d(θ)/‖d(θ)‖)

λmin(Hk)
, (2.25)

where the second inequality follows from the fact that P (xk + d(θ))− P (xk) ≥ P ′(xk, d(θ))

and F ′(xk, d(θ)) = ∇f(xk)Td(θ) + P ′(xk, d(θ)). Thus, we easily see that the set S̃ :=

{θ‖d(θ)‖ : θ > 0} is bounded. It implies that ‖d(θ)‖ → 0 as θ →∞. We claim that

lim inf
θ→∞

θ‖d(θ)‖ > 0. (2.26)

Suppose not. Then there exists a sequence {θ̄l} ↑ ∞ such that θ̄l‖d(θ̄l)‖ → 0 as l → ∞.

Invoking that d(θ̄l) is the optimal solution of (2.20) with x = xk, H = θ̄lHk and θ = θ̄l, we

have

0 ∈ ∇f(xk) + θ̄lHkd(θ̄l) + ∂P (xk + d(θ̄l)) +NX(xk + d(θ̄l)).

Upon taking limits on both sides as l → ∞, and using semicontinuity of ∂P (·) and NX(·)
(see Theorem 24.4 of [109] and Lemma 2.42 of [113]), and the relations ‖d(θ̄l)‖ → 0 and

θ̄l‖d(θ̄l)‖ → 0, we see that (2.19) holds at xk, which contradicts the nonstationarity of xk.

Hence, (2.26) holds. We observe that

θd(θ)THkd(θ) ≥ λmin(Hk)θ‖d(θ)‖2,
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which together with (2.26) and Hk � 0, implies that

‖d(θ)‖ = O
(
θd(θ)THkd(θ)

)
as θ →∞. (2.27)

This relation together with Lemma 2.3.3(a) implies that as θ →∞,

‖d(θ)‖ = O
(
θd(θ)THkd(θ)

)
= O

(
P (xk)−∇f(xk)Td(θ)− P (xk + d(θ))

)
. (2.28)

Using this result and the relation ‖d(θ)‖ → 0 as θ →∞, we further have

F (xk + d(θ))− max
[k−M ]+≤i≤k

F (xi) ≤ F (xk + d(θ))− F (xk)

= f(xk + d(θ))− f(xk) + P (xk + d(θ))− P (xk)

= ∇f(xk)Td(θ) + P (xk + d(θ))− P (xk) + o(‖d(θ)‖)

≤ σ[∇f(xk)Td(θ) + P (xk + d(θ))− P (xk)], (2.29)

provided θ is sufficiently large. It implies that the conclusion holds.

The following lemma shows that the search directions {dk} approach zero, and the

sequence of objective function values {F (xk)} also converges.

Lemma 2.3.5 Suppose that F is bounded below in X and uniformly continuous in the

the level set L = {x ∈ X : F (x) ≤ F (x0)}. Then, the sequence {xk} generated by the

nonmonotone gradient method I satisfies limk→∞ d
k = 0. Moreover, the sequence {F (xk)}

converges.

Proof. We first observe that {xk} ⊆ L. Let l(k) be an integer such that [k −M ]+ ≤
l(k) ≤ k and

F (xl(k)) = max{F (xi) : [k −M ]+ ≤ i ≤ k}

for all k ≥ 0. We clearly observe that F (xk+1) ≤ F (xl(k)) for all k ≥ 0, which together with

the definition of l(k) implies that the sequence {F (xl(k))} is monotonically nonincreasing.

Further, since F is bounded below in X, we have

lim
k→∞

F (xl(k)) = F ∗ (2.30)

for some F ∗ ∈ <. We next prove by induction that the following limits hold for all j ≥ 1:

lim
k→∞

dl(k)−j = 0, lim
k→∞

F (xl(k)−j) = F ∗. (2.31)
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Using (2.23) and (2.24) with k replaced by l(k)− 1, we obtain that

F (xl(k)) ≤ F (xl(l(k)−1)) + σ∆l(k)−1. (2.32)

Replacing k and θ by l(k)−1 and θl(k)−1 in (2.28), respectively, and using Hl(k)−1 � λI and

the definition of ∆l(k)−1 (see (2.24)), we have

∆l(k)−1 ≤ −λθl(k)−1‖dl(k)−1‖2.

The above two inequalities yield that

F (xl(k)) ≤ F (xl(l(k)−1))− σλθl(k)−1‖dl(k)−1‖2, (2.33)

which together with (2.30) implies that limk→∞ θl(k)−1‖dl(k)−1‖2 = 0. Further, noticing that

θk ≥ θ for all k, we obtain that limk→∞ d
l(k)−1 = 0. Using this result and (2.30), we have

lim
k→∞

F (xl(k)−1) = lim
k→∞

F (xl(k) − dl(k)−1) = lim
k→∞

F (xl(k)) = F ∗, (2.34)

where the second equality follows from uniform continuity of F in L. Therefore, (2.31) holds

for j = 1. We now need to show that if (2.31) holds for j, then it also holds for j+ 1. Using

a similar argument as that leading to (2.33), we have

F (xl(k)−j) ≤ F (xl(l(k)−j−1))− σλθl(k)−j−1‖dl(k)−j−1‖2,

which together with (2.30), the induction assumption limk→∞ F (xl(k)−j) = F ∗, and the fact

that θl(k)−j−1 ≥ θ for all k, yields limk→∞ d
l(k)−j−1 = 0. Using this result, the induction

assumption limk→∞ F (xl(k)−j) = F ∗, and a similar argument as that leading to (2.34), we

can show that limk→∞ F (xl(k)−j−1) = F ∗. Hence, (2.31) holds for j + 1.

Finally, we will prove that limk→∞ d
k = 0 and limk→∞ F (xk) = F ∗. By the definition of

l(k), we see that for k ≥M+1, k−M−1 = l(k)−j for some 1 ≤ j ≤M+1, which together

with the first limit in (2.31), implies that limk→∞ d
k = limk→∞ d

k−M−1 = 0. Additionally,

we observe that

xl(k) = xk−M−1 +

l̄k∑
j=1

dl(k)−j ∀k ≥M + 1,

where l̄k = l(k) − (k −M − 1) ≤ M + 1. Using the above identity, (2.31), and uniform

continuity of F in L, we see that limk→∞ F (xk) = limk→∞ F (xk−M−1) = F ∗. Thus, the

conclusion of this lemma holds.

We are now ready to show that the nonmonotone gradient method I is globally conver-

gent.
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Theorem 2.3.6 Suppose that F is bounded below in X and uniformly continuous in the

level set L = {x ∈ X : F (x) ≤ F (x0)}. Then, any accumulation point of the sequence {xk}
generated by the nonmonotone gradient method I is a stationary point of (2.18).

Proof. Suppose for contradiction that x∗ is an accumulation point of {xk} that is a

nonstationary point of (2.18). Let K be the subsequence such that {xk}k∈K → x∗. We first

claim that {θk}k∈K is bounded. Suppose not. Then there exists a subsequence of {θk}k∈K
that goes to ∞. Without loss of generality, we assume that {θk}k∈K → ∞. For simplicity

of notations, let θ̄k = θk/η, dk(θ) = dHk(θ)(x
k) for k ∈ K and θ > 0, where Hk(θ) = θHk.

Since {θk}k∈K → ∞ and θ0
k ≤ θ̄, there exists some index k̄ ≥ 0 such that θk > θ0

k for all

k ∈ K with k ≥ k̄. By the particular choice of θk specified in steps (2a) and (2b), we have

F (xk + dk(θ̄k)) > max
[k−M ]+≤i≤k

F (xi) + σ[∇f(xk)Tdk(θ̄k) + P (xk + dk(θ̄k))− P (xk)], (2.35)

Using a similar argument as that leading to (2.25), we have

θ̄k‖dk(θ̄k)‖ ≤ −
2F ′(xk, dk(θ̄k)/‖dk(θ̄k)‖)

λmin(Hk)
∀k ∈ K,

which along with the relations Hk � λI and {xk}k∈K → x∗, implies that {θ̄k‖dk(θ̄k)‖}k∈K
is bounded. Since {θ̄k}k∈K →∞, we further have {‖dk(θ̄k)‖}k∈K → 0 . We now claim that

lim inf
k∈K,k→∞

θ̄k‖dk(θ̄k)‖ > 0. (2.36)

Suppose not. By passing to a subsequence if necessary, we can assume that {θ̄k‖dk(θ̄k)‖}k∈K
→ 0. Invoking that dk(θ̄k) is the optimal solution of (2.20) with x = xk and H = θ̄kHk, we

have

0 ∈ ∇f(xk) + θ̄kHkd
k(θ̄k) + ∂P (xk + dk(θ̄k)) +NX(xk + dk(θ̄k)) ∀k ∈ K.

Upon taking limits on both sides as k ∈ K → ∞, and using semicontinuity of ∂P (·) and

NX(·) (see Theorem 24.4 of [109] and Lemma 2.42 of [113]), the relations λI � Hk � λ̄I,

{‖dk(θ̄k)‖}k∈K → 0, {θ̄k‖dk(θ̄k)‖}k∈K → 0 and {xk}k∈K → x∗, we see that (2.19) holds

at x∗, which contradicts nonstationarity of x∗. Thus, (2.36) holds. Now, using (2.36), the

relation Hk � λI, and a similar argument as for deriving (2.27), we obtain that ‖dk(θ̄k)‖ =

O
(
θ̄kd

k(θ̄k)
THkd

k(θ̄k)
)

as k ∈ K →∞. Using this result and a similar argument as the one

leading to (2.29), we have

F (xk + dk(θ̄k)) ≤ max
[k−M ]+≤i≤k

F (xi) + σ[∇f(xk)Tdk(θ̄k) + P (xk + dk(θ̄k))− P (xk)],
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provided that k ∈ K is sufficiently large. The above inequality evidently contradicts (2.35).

Thus, {θk}k∈K is bounded.

Finally, invoking that dk = dk(θk) is the optimal solution of (2.20) with x = xk, H =

θkHk, we have

0 ∈ ∇f(xk) + θkHkd
k + ∂P (xk + dk) +NX(xk + dk) ∀k ∈ K. (2.37)

By Lemma 2.3.5, we have {dk}k∈K → 0. Upon taking limits on both sides of (2.37) as

k ∈ K → ∞, and using semicontinuity of ∂P (·) and NX(·) (see Theorem 24.4 of [109] and

Lemma 2.42 of [113]), and the relations λI � Hk � λ̄I, {dk}k∈K → 0 and {xk}k∈K → x∗,

we see that (2.19) holds at x∗, which contradicts the nonstationarity of x∗ that is assumed

at the beginning of this proof. Therefore, the conclusion of this theorem holds.

We next analyze the asymptotic convergence rate of the nonmonotone gradient method

I under the following assumption, which is the same as the one made in [128]. In what

follows, we denote by X̄ the set of stationary points of problem (2.18).

Assumption 2 (a) X̄ 6= ∅ and, for any ζ ≥ minx∈X F (x), there exists $ > 0 and ε > 0

such that

dist(x, X̄) ≤ $‖dI(x)‖ whenever F (x) ≤ ζ, ‖dI(x)‖ ≤ ε.

(b) There exists δ > 0 such that

‖x− y‖ ≥ δ whenever x ∈ X̄, y ∈ X̄, F (x) 6= F (y).

We are ready to establish local linear rate of convergence for the nonmonotone gradient

method I described above. The proof of the following theorem is inspired by the work of

Tseng and Yun [128], who analyzed a similar local convergence for a coordinate gradient

descent method for a class of nonsmooth minimization problems.

Theorem 2.3.7 Suppose that Assumption 2 holds, f satisfies (2.22), and F is bounded

below in X and uniformly continuous in the level set L = {x ∈ X : F (x) ≤ F (x0)}. Then,

the sequence {xk} generated by the nonmonotone gradient method I satisfies

F (xl(k))− F ∗ ≤ c(F (xl(l(k))−1) − F ∗),

provided k is sufficiently large, where F ∗ = limk→∞ F (xk) (see Lemma 2.3.5), and c is some

constant in (0, 1).
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Proof. Invoking θ0
k ≤ θ̄ and the specific choice of θk, we see from Lemma 2.3.3(d) that

θ̂ := supk θk <∞. Let Hk(θ) = θHk. Then, it follows from λI � Hk � λ̄I and θk ≥ θ that

(θ · λ)I � Hk(θk) � θ̂λ̄I. Using this relation, Lemma 2.3.2, Hk � λI, and dk = dHk(θk)(x
k),

we obtain that

‖dI(xk)‖ = O
(
‖dk‖

)
, (2.38)

which together with Lemma 2.3.5 implies {dI(xk)} → 0. Thus, for any ε > 0, there exists

some index k̄ such that dI(x
l(k)−1) ≤ ε for all k ≥ k̄. In addition, we clearly observe that

F (xl(k)−1) ≤ F (x0). Then, by Assumption 2(a) and (2.38), there exists some index k′ such

that

‖xl(k)−1 − x̄l(k)−1‖ ≤ c1‖dl(k)−1‖ ∀k ≥ k′ (2.39)

for some c1 > 0 and x̄l(k)−1 ∈ X̄. Note that

‖xl(k+1)−1 − xl(k)−1‖ ≤
l(k+1)−2∑
i=l(k)−1

‖di‖ ≤
[k−1]+∑

i=[k−M−1]+

‖di‖,

which together with {dk} → 0, implies that ‖xl(k+1)−1 − xl(k)−1‖ → 0. Using this result,

(2.39), and Lemma 2.3.5, we obtain

‖x̄l(k+1)−1 − x̄l(k)−1‖ ≤ ‖xl(k+1)−1 − x̄l(k+1)−1‖+ ‖xl(k)−1 − x̄l(k)−1‖
+‖xl(k+1)−1 − x̄l(k)−1‖

≤ c1‖dl(k+1)−1‖+ c1‖dl(k)−1‖+ ‖xl(k+1)−1 − x̄l(k)−1‖ → 0.

It follows from this relation and Assumption 2(b) that there exists an index k̂ ≥ k′ and

v ∈ < such that

F (x̄l(k)−1) = v ∀k ≥ k̂. (2.40)

Then, by Lemma 5.1 of [128], we see that

F ∗ = lim
k→∞

F (xk) = lim inf
k→∞

F (xl(k)−1) ≥ v. (2.41)

Further, using the definition of F , (2.22), (2.40), Lemma 2.3.3(b), and Hk(θk) � θ̂λ̄I, we
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have for k ≥ k̂,

F (xl(k))− v = f(xl(k)) + P (xl(k))− f(x̄l(k)−1)− P (x̄l(k)−1)

= ∇f(x̃k)T (xl(k) − x̄l(k)−1) + P (xl(k))− P (x̄l(k)−1)

= (∇f(x̃k)−∇f(xl(k)−1)T (xl(k) − x̄l(k)−1) (2.42)

−(Hl(k)−1(θl(k)−1)dl(k)−1)T (xl(k) − x̄l(k)−1)

+[(∇f(xl(k)−1) +Hl(k)−1(θl(k)−1)dl(k)−1)T (xl(k) − x̄l(k)−1) (2.43)

+P (xl(k))− P (x̄l(k)−1)]

≤ L‖x̃k − xl(k)−1‖‖xl(k) − x̄l(k)−1‖+ θ̂λ̄‖dl(k)−1‖‖xl(k) − x̄l(k)−1‖,(2.44)

where x̃k is some point lying on the segment joining xl(k) with x̄l(k)−1. It follows from (2.39)

that, for k ≥ k̂,

‖x̃k − xl(k)−1‖ ≤ ‖xl(k) − xl(k)−1‖+ ‖xl(k)−1 − x̄l(k)−1‖ = (1 + c1)‖dl(k)−1‖.

Similarly, ‖xl(k) − x̄l(k)−1‖ ≤ (1 + c1)‖dl(k)−1‖ for k ≥ k̂. Using these inequalities, Lemma

2.3.3(a), Hk(θk) � (θ · λ)I, and (2.44), we see that for k ≥ k̂,

F (xl(k))− v ≤ −c2∆l(k)−1

for some constant c2 > 0. This inequality together with (2.32) gives

F (xl(k))− v ≤ c3

(
F (xl(l(k)−1))− F (xl(k))

)
∀k ≥ k̂, (2.45)

where c3 = c2/σ. Using limk→∞ F (xl(k)) = F ∗, and upon taking limits on both sides of

(2.45), we see that F ∗ ≤ v, which together with (2.41) implies that v = F ∗. Using this

result and upon rearranging terms of (2.45), we have

F (xl(k))− F ∗ ≤ c(F (xl(l(k))−1) − F ∗) ∀k ≥ k̂,

where c = c3/(1 + c3).

We next present the second nonmonotone gradient method for (2.18) as follows.

Nonmonotone gradient method II:

Choose parameters 0 < η < 1, 0 < σ < 1, 0 < α < ᾱ, 0 < λ ≤ λ̄, and integer M ≥ 0. Set

k = 0 and choose x0 ∈ X.
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1) Choose λI � Hk � λ̄I.

2) Solve (2.20) with x = xk and H = Hk to obtain dk = dH(x), and compute ∆k

according to (2.24).

3) Choose α0
k ∈ [α, ᾱ]. Find the smallest integer j ≥ 0 such that αk = α0

kη
j satisfies

xk + αkd
k ∈ X, F (xk + αkd

k) ≤ max
[k−M ]+≤i≤k

F (xi) + σαk∆k, (2.46)

where ∆k is defined in (2.24).

4) Set xk+1 = xk + αkd
k and k ← k + 1.

end

Remark. The above method is closely related to the one proposed in [128]. In particular,

when the entire coordinate block, that is, J = {1, . . . , n}, is chosen for the method [128],

it becomes a special case of our method with M = 0, which is actually a gradient descent

method. Given that our method is generally a nonmonotone method when M ≥ 1, most

proofs of global and local convergence for the method [128] do not hold for our method.

In addition, our method can be viewed as an extension of one projected gradient method

(namely, SPG2) studied in [9] for smooth problems, but the method [128] generally cannot.

We next prove global convergence of the nonmonotone gradient method II. Before pro-

ceeding, we establish two technical lemmas below. The first lemma shows that if xk ∈ X is

a nonstationary point, there exists an αk > 0 in step 3) so that (2.46) is satisfied, and hence

the above method is well defined.

Lemma 2.3.8 Suppose that Hk � 0 and xk ∈ X is a nonstationary point of problem (2.18).

Then, there exists α̃ > 0 such that dk = dHk(xk) satisfies (2.46) whenever 0 < αk ≤ α̃.

Proof. In view of Lemma 2.1 of [128] with J = {1, . . . , n}, c = 1, x = xk, and H = Hk,

we have
F (xk + αdk) ≤ F (xk) + α∆k + o(α)

≤ max
[k−M ]+≤i≤k

F (xi) + α∆k + o(α) ∀α ∈ (0, 1],
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where ∆k is defined in (2.24). Using the assumption of this lemma, we see from Lemma

2.3.1 that dk 6= 0, which together with Hk � 0 and Lemma 2.3.3(a) implies ∆k < 0. The

conclusion of this lemma immediately follows from this relation and the above inequality.

The following lemma shows that the scaled search directions {αkdk} approach zero, and

the sequence of objective function values {F (xk)} also converges.

Lemma 2.3.9 Suppose that F is bounded below in X and uniformly continuous in the level

set L = {x ∈ X : F (x) ≤ F (x0)}. Then, the sequence {xk} generated by the nonmonotone

gradient method II satisfies limk→∞ αkd
k = 0. Moreover, the sequence {F (xk)} converges.

Proof. Let l(k) be defined in the proof of Lemma 2.3.5. We first observe that {xk} ⊆ L.

Using (2.24), the definition of dk, and Hk � λI, we have

∆k = ∇f(xk)Tdk + P (xk + dk)− P (xk) ≤ −1

2
(dk)THkd

k ≤ −1

2
λ‖dk‖2, (2.47)

which together with the relation αk ≤ α0
k ≤ ᾱ, implies that

α2
k‖dk‖2 ≤ −2ᾱαk∆k/λ. (2.48)

By a similar argument as that leading to (2.30), we see that {xk} satisfies (2.30) for some

F ∗. We next show by induction that the following limits hold for all j ≥ 1:

lim
k→∞

αl(k)−jd
l(k)−j = 0, lim

k→∞
F (xl(k)−j) = F ∗. (2.49)

Indeed, using (2.46) with k replaced by l(k)− 1, we obtain that

F (xl(k)) ≤ F (xl(l(k)−1)) + σαl(k)−1∆l(k)−1.

It together with (2.30) immediately yields limk→∞ αl(k)−1∆l(k)−1 = 0. Using this result

and (2.48), we see that the first identity of (2.49) holds for j = 1. Further, in view of this

identity, (2.30), and uniform continuity of F in L, we can easily see that the second identity

of (2.49) also holds j = 1. We now need to show that if (2.49) holds for j, then it also holds

for j + 1. First, it follows from (2.46) that

F (xl(k)−j) ≤ F (xl(l(k)−j−1)) + σαl(k)−j−1∆l(k)−j−1,

which together with (2.30) and the induction assumption that limk→∞ F (xl(k)−j) = F ∗,

yields limk→∞ αl(k)−j−1∆l(k)−j−1 = 0. Using this result and (2.48), we have

lim
k→∞

αl(k)−j−1d
l(k)−j−1 = 0.
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In view of this identity, uniform continuity of F in L and the induction assumption

lim
k→∞

F (xl(k)−j) = F ∗,

we can easily show that limk→∞ F (xl(k)−j−1) = F ∗. Hence, (2.49) holds for j + 1. The

conclusion of this lemma then follows from (2.49) and a similar argument as that in the

proof of Lemma 2.3.5.

We are now ready to show that the nonmonotone gradient method II is globally conver-

gent.

Theorem 2.3.10 Suppose that F is bounded below in X and uniformly continuous in the

level set L = {x ∈ X : F (x) ≤ F (x0)}. Then, any accumulation point of the sequence {xk}
generated by the nonmonotone gradient method II is a stationary point of (2.18).

Proof. Suppose for contradiction that x∗ is an accumulation point of {xk} that is a

nonstationary point of (2.18). Let K be the subsequence such that {xk}k∈K → x∗. We first

claim that lim infk∈K,k→∞ ‖dk‖ > 0. Suppose not. By passing to a subsequence if necessary,

we can assume that {‖dk‖}k∈K → 0. Invoking that dk is the optimal solution of (2.20) with

x = xk and H = Hk, we have

0 ∈ ∇f(xk) +Hkd
k + ∂P (xk + dk) +NX(xk + dk) ∀k ∈ K.

Upon taking limits on both sides as k ∈ K → ∞, and using semicontinuity of ∂P (·) and

NX(·) (see Theorem 24.4 of [109] and Lemma 2.42 of [113]) the relations λI � Hk � λ̄I,

{‖dk‖}k∈K → 0 and {xk}k∈K → x∗, we see that (2.19) holds at x∗, which contradicts

the nonstationarity of x∗. Thus, lim infk∈K,k→∞ ‖dk‖ > 0 holds. Further, using a similar

argument as that leading to (2.25), we have

‖dk‖ ≤ −2F ′(xk, dk/‖dk‖)
λmin(Hk)

∀k ∈ K,

which together with {xk}k∈K → x∗, Hk � λI and lim infk∈K,k→∞ ‖dk‖ > 0, implies that

{dk}k∈K is bounded. Further, using (2.47), we see that lim supk∈K,k→∞∆k < 0. Now, it

follows from Lemma 2.3.9 and the relation lim infk∈K,k→∞ ‖dk‖ > 0 that {αk}k∈K → 0.

Since α0
k ≥ α > 0, there exists some index k̄ ≥ 0 such that αk < α0

k and αk < η for all
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k ∈ K with k ≥ k̄. Let ᾱk = αk/η. Then, {ᾱk}k∈K → 0 and 0 < ᾱk ≤ 1 for all k ∈ K. By

the stepsize rule used in step (3), we have, for all k ∈ K with k ≥ k̄,

F (xk + ᾱkd
k) > max

[k−M ]+≤i≤k
F (xi) + σᾱk∆k, (2.50)

On the other hand, in view of the definition of F , (2.24), the boundedness of {dk}k∈K , the

relation lim supk∈K,k→∞∆k < 0, and the monotonicity of (P (xk + αdk) − P (xk))/α, we

obtain that, for sufficiently large k ∈ K,

F (xk + ᾱkd
k) = f(xk + ᾱkd

k) + P (xk + ᾱkd
k)

= f(xk + ᾱkd
k)− f(xk) + P (xk + ᾱkd

k)− P (xk) + F (xk)

= ᾱk∇f(xk)Tdk + o(ᾱk‖dk‖) + P (xk + ᾱkd
k)− P (xk) + F (xk)

≤ ᾱk∇f(xk)Tdk + o(ᾱk) + ᾱk[P (xk + dk)− P (xk)] + max
[k−M ]+≤i≤k

F (xi)

= max
[k−M ]+≤i≤k

F (xi) + ᾱk∆k + o(ᾱk)

< max
[k−M ]+≤i≤k

F (xi) + σᾱk∆k,

which clearly contradicts (2.50). Therefore, the conclusion of this theorem holds.

We next establish local linear rate of convergence for the nonmonotone gradient method

II described above. The proof of the following theorem is inspired by the work of Tseng and

Yun [128].

Theorem 2.3.11 Suppose that Assumption 2 holds, ᾱ ≤ 1, f satisfies (2.22), and F is

bounded below in X and uniformly continuous in the level set L = {x ∈ X : F (x) ≤ F (x0)}.
Then, the sequence {xk} generated by the nonmonotone gradient method II satisfies

F (xl(k))− F ∗ ≤ c(F (xl(l(k))−1) − F ∗)

provided k is sufficiently large, where F ∗ = limk→∞ F (xk) (see Lemma 2.3.9), and c is some

constant in (0, 1).

Proof. Since αk is chosen by the stepsize rule used in step (3) with α0
k ≥ α > 0, we see

from Lemma 2.3.3(c) that infk αk > 0. It together with Lemma 2.3.9 implies that {dk} → 0.

Further, using Lemma 2.3.2 and the fact that dk = dHk(xk) and λI � Hk � λ̄I, we obtain
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that ‖dI(xk)‖ = Θ(‖dk‖), and hence {dI(xk)} → 0. Then, by a similar argument as that in

the proof of Theorem 2.3.7, there exist c1 > 0, v ∈ <, and x̄l(k)−1 ∈ X̄ such that

‖xl(k)−1 − x̄l(k)−1‖ ≤ c1‖dl(k)−1‖, F (x̄l(k)−1) = v ∀k ≥ k̂,

where k̂ is some index. Then, by Lemma 5.1 of [128], we see that (2.41) holds for {xk},
and the above F ∗ and v. Further, using the definition of F , (2.22), Lemma 2.3.3(b), and

λI � Hk � λ̄I, we have, for k ≥ k̂,

F (xl(k))− v = f(xl(k)) + P (xl(k))− f(x̄l(k)−1)− P (x̄l(k)−1)

= ∇f(x̃k)T (xl(k) − x̄l(k)−1) + P (xl(k))− P (x̄l(k)−1)

= (∇f(x̃k)−∇f(xl(k)−1)T (xl(k) − x̄l(k)−1)− (Hl(k)−1d
l(k)−1)T (xl(k) − x̄l(k)−1)

+
[
(∇f(xl(k)−1) +Hl(k)−1d

l(k)−1)T (xl(k) − x̄l(k)−1) + P (xl(k))− P (x̄l(k)−1)
]

≤ L‖x̃k − xl(k)−1‖‖xl(k) − x̄l(k)−1‖+ λ̄‖dl(k)−1‖‖xl(k) − x̄l(k)−1‖

+(αl(k)−1 − 1)
[
(dl(k)−1)THl(k)−1d

l(k)−1 + ∆l(k)−1

]
, (2.51)

where x̃k is some point lying on the segment joining xl(k) with x̄l(k)−1. It follows from (2.39)

and αk ≤ 1 that, for k ≥ k̂,

‖x̃k − xl(k)−1‖ ≤ ‖xl(k) − xl(k)−1‖+ ‖xl(k)−1 − x̄l(k)−1‖ ≤ (1 + c1)‖dl(k)−1‖.

Similarly, ‖xl(k) − x̄l(k)−1‖ ≤ (1 + c1)‖dl(k)−1‖ for k ≥ k̂. Using these inequalities, Lemma

2.3.3(a), Hk � λI, αk ≤ 1, and (2.51), we see that, for k ≥ k̂,

F (xl(k))− v ≤ −c2∆l(k)−1

for some constant c2 > 0. The remaining proof follows similarly as that of Theorem 2.3.7.

2.4 Concluding Remark

In this chapter, we developed a novel globally convergent augmented Lagrangian method

for solving a class of nonsmooth constrained optimization problems. Additionally, we pro-

posed two nonmonotone gradient methods for solving the augmented Lagrangian subprob-

lems, and established their global and local convergence.
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In addition, Burer and Monteiro [13] recently applied the classical augmented Lagrangian

method to a nonconvex nonlinear program (NLP) reformulation of semidefinite programs

(SDP) via low-rank factorization, and they obtained some nice computational results espe-

cially for the SDP relaxations of several hard combinatorial optimization problems. However,

the classical augmented Lagrangian method generally cannot guarantee the convergence to

a feasible point when applied to a nonconvex NLP. Due to this and [96], their approach [13]

at least theoretically may not converge to a feasible point of the primal SDP. Given that

the augmented Lagrangian method proposed in this chapter converges globally under some

mild assumptions, it would be interesting to apply it to the NLP reformulation of SDP and

compare the performance with the approach studied in [13].



Chapter 3

The augmented Lagrangian

approach for sparse PCA

In this chapter we propose a new formulation for sparse Principal Component Analy-

sis(PCA) by taking into account the three nice properties of the standard PCA, that is,

maximal total explained variance, uncorrelation of principal components, and orthogonality

of loading vectors. We also explore the connection of this formulation with the standard

PCA and show that it can be viewed as a certain perturbation of the standard PCA. We

apply the augmented Lagrangian method proposed in Chpater 2 to solve this new formula-

tion on synthetic [137], Pitprops [74], and gene expression data [38] and compare the results

with other exsiting methods.

This chapter is based on the paper [90] co-authored with Zhaosong Lu.

3.1 Introduction to Sparse PCA

Principal component analysis (PCA) is a popular tool for data processing and dimension

reduction. It has been widely used in numerous applications in science and engineering such

as biology, chemistry, image processing, machine learning and so on. For example, PCA has

recently been applied to human face recognition, handwritten zip code classification and

gene expression data analysis (see [69, 71, 1, 70]).

In essence, PCA aims at finding a few linear combinations of the original variables,

called principal components (PCs), which point in orthogonal directions capturing as much

37
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of the variance of the variables as possible. It is well known that PCs can be found via the

eigenvalue decomposition of the covariance matrix Σ. However, Σ is typically unknown in

practice. Instead, the PCs can be approximately computed via the singular value decompo-

sition (SVD) of the data matrix or the eigenvalue decomposition of the sample covariance

matrix. In detail, let ξ = (ξ(1), . . . , ξ(p)) be a p-dimensional random vector, and X be an

n×p data matrix, which records the n observations of ξ. Without loss of generality, assume

X is centered, that is, the column means of X are all 0. Then the commonly used sample

covariance matrix is Σ̂ = XTX/(n− 1). Suppose the eigenvalue decomposition of Σ̂ is

Σ̂ = V DV T .

Then η = ξV gives the PCs, and the columns of V are the corresponding loading vectors. It

is worth noting that V can also be obtained by performing the SVD of X (see, for example,

[137]). Clearly, the columns of V are orthonormal vectors, and moreover V T Σ̂V is diagonal.

We thus immediately see that if Σ̂ = Σ, the corresponding PCs are uncorrelated; otherwise,

they can be correlated with each other (see Subsection 3.2 for details). We now describe

several important properties of the PCs obtained by the standard PCA when Σ is well

estimated by Σ̂ (see also [137]):

1. The PCs sequentially capture the maximum variance of the variables approximately,

thus encouraging minimal information loss as much as possible;

2. The PCs are nearly uncorrelated, so the explained variance by different PCs has small

overlap;

3. The PCs point in orthogonal directions, that is, their loading vectors are orthogonal

to each other.

In practice, typically the first few PCs are enough to represent the data, thus a great dimen-

sionality reduction is achieved. In spite of the popularity and success of PCA due to these

nice features, PCA has an obvious drawback, that is, PCs are usually linear combinations of

all p variables and the loadings are typically nonzero. This makes it often difficult to inter-

pret the PCs, especially when p is large. Indeed, in many applications, the original variables

have concrete physical meaning. For example in biology, each variable might represent the

expression level of a gene. In these cases, the interpretation of PCs would be facilitated if

they were composed only from a small number of the original variables, namely, each PC
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involved a small number of nonzero loadings. It is thus imperative to develop sparse PCA

techniques for finding the PCs with sparse loadings while enjoying the above three nice

properties as much as possible.

Sparse PCA has been an active research topic for more than a decade. The first class of

approaches are based on ad-hoc methods by post-processing the PCs obtained from the stan-

dard PCA mentioned above. For example, Jolliffe [76] applied various rotation techniques

to the standard PCs for obtaining sparse loading vectors. Cadima and Jolliffe [14] proposed

a simple thresholding approach by artificially setting to zero the standard PCs’ loadings

with absolute values smaller than a threshold. In recent years, optimization approaches

have been proposed for finding sparse PCs. They usually formulate sparse PCA into an

optimization problem, aiming at achieving the sparsity of loadings while maximizing the ex-

plained variance as much as possible. For instance, Jolliffe et al. [78] proposed an interesting

algorithm, called SCoTLASS, for finding sparse orthogonal loading vectors by sequentially

maximizing the approximate variance explained by each PC under the l1-norm penalty on

loading vectors. Zou et al. [137] formulated sparse PCA as a regression-type optimization

problem and imposed a combination of l1- and l2-norm penalties on the regression coeffi-

cients. d’Aspremont et al. [42] proposed a method, called DSPCA, for finding sparse PCs by

solving a sequence of semidefinite program relaxations of sparse PCA. Shen and Huang [117]

recently developed an approach for computing sparse PCs by solving a sequence of rank-one

matrix approximation problems under several sparsity-inducing penalties. Very recently,

Journée et al. [77] formulated sparse PCA as nonconcave maximization problems with l0-

or l1-norm sparsity-inducing penalties. They showed that these problems can be reduced

into maximization of a convex function on a compact set, and they also proposed a simple

but computationally efficient gradient method for finding a stationary point of the latter

problems. Additionally, greedy methods were investigated for sparse PCA by Moghaddam

et al. [95] and d’Aspremont et al. [40].

The PCs obtained by the above methods [76, 14, 78, 137, 42, 117, 95, 40, 77] are usually

sparse. However, the aforementioned nice properties of the standard PCs are lost to some

extent in these sparse PCs. Indeed, the likely correlation among the sparse PCs are not

considered in these methods. Therefore, their sparse PCs can be quite correlated with each

other. Also, the total explained variance that these methods attempt to maximize can be

too optimistic as there may be some overlap among the individual variances of sparse PCs.

Finally, the loading vectors of the sparse PCs given by these methods lack orthogonality
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except SCoTLASS [78].

In this chapter we propose a new formulation for sparse PCA by taking into account

the three nice properties of the standard PCA, that is, maximal total explained variance,

uncorrelation of PCs, and orthogonality of loading vectors. We also explore the connection

of this formulation with the standard PCA and show that it can be viewed as a certain

perturbation of the standard PCA. Then the new formulation of sparse PCA is solved by

the augmented Lagrangian method proposed in Chapter 2. We then compare the proposed

sparse PCA approach with several existing methods on synthetic [137], Pitprops [74], and

gene expression data [38].

3.2 Formulation for sparse PCA

In this subsection we propose a new formulation for sparse PCA by taking into account

sparsity and orthogonality of loading vectors, and uncorrelation of PCs. We also address

the connection of our formulation with the standard PCA.

Let ξ = (ξ(1), . . . , ξ(p)) be a p-dimensional random vector with covariance matrix Σ.

Suppose X is an n × p data matrix, which records the n observations of ξ. Without loss

of generality, assume the column means of X are 0. Then the commonly used sample

covariance matrix of ξ is Σ̂ = XTX/(n − 1). For any r loading vectors represented as

V = [V1, . . . , Vr] ∈ <p×r where 1 ≤ r ≤ p, the corresponding components are given by η =

(η(1), . . . , η(r)) = ξV , which are linear combinations of ξ(1), . . . , ξ(p). Clearly, the covariance

matrix of η is V TΣV , and thus the components η(i) and η(j) are uncorrelated if and only if

the ijth entry of V TΣV is zero. Also, the total explained variance by the components η(i)’s

equals, if they are uncorrelated, the sum of the individual variances of η(i)’s, that is,

r∑
i=1

V T
i ΣVi = Tr(V TΣV ).

Recall that our aim is to find a set of sparse and orthogonal loading vectors V so that the

corresponding components η(1), . . . , η(r) are uncorrelated and explain as much variance of

the original variables ξ(1), . . . , ξ(p) as possible. It appears that our goal can be achieved by
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solving the following problem:

max
V ∈<n×r

Tr(V TΣV )− ρ • |V |

s.t. V TΣV is diagonal,

V TV = I,

(3.1)

where ρ ∈ <p×r+ is a tunning parameter for controlling the sparsity of V . However, the

covariance matrix Σ is typically unknown and can only be approximated by the sample

covariance matrix Σ̂. It looks plausible to modify (3.1) by simply replacing Σ with Σ̂ at

a glance. Nevertheless, such a modification would eliminate all optimal solutions V ∗ of

(3.1) from consideration since (V ∗)T Σ̂V ∗ is generally non-diagonal. For this reason, given

a sample covariance Σ̂, we consider the following formulation for sparse PCA, which can be

viewed as a modification of problem (3.1),

max
V ∈<n×r

Tr(V T Σ̂V )− ρ • |V |

s.t. |V T
i Σ̂Vj | ≤ ∆ij ∀i 6= j,

V TV = I,

(3.2)

where ∆ij ≥ 0 (i 6= j) are the parameters for controlling the correlation of the components

corresponding to V . Clearly, ∆ij = ∆ji for all i 6= j.

We next explore the connection of formulation (3.2) with the standard PCA. Before

proceeding, we state a technical lemma as follows that will be used subsequently. Its proof

can be found in [101].

Lemma 3.2.1 Given any Σ̂ ∈ Sn and integer 1 ≤ r ≤ n, define

ir = max{1 ≤ i ≤ n : λi(Σ̂) > λr(Σ̂)}, īr = max{1 ≤ i ≤ n : λi(Σ̂) = λr(Σ̂)}, (3.3)

and let f∗ be the optimal value of

max{Tr(Σ̂Y ) : 0 � Y � I, Tr(Y ) = r}. (3.4)

Then, f∗ =
∑r

i=1 λi(Σ̂), and Y ∗ is an optimal solution of (3.4) if and only if Y ∗ = U∗1U
∗T
1 +

U∗2P
∗U∗T2 , where P ∗ ∈ S īr−ir satisfies 0 � P ∗ � I and Tr(P ∗) = r− ir, and U∗1 ∈ <n×ir and

U∗2 ∈ <n×(̄ir−ir) are the matrices whose columns consist of the orthonormal eigenvectors of Σ̂

corresponding to the eigenvalues (λ1(Σ̂), . . . , λir(Σ̂)) and (λir+1(Σ̂), . . . , λīr(Σ̂)), respectively.
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We next address the relation between the eigenvectors of Σ̂ and the solutions of problem

(3.2) when ρ = 0 and ∆ij = 0 for all i 6= j.

Theorem 3.2.2 Suppose for problem (3.2) that ρ = 0 and ∆ij = 0 for all i 6= j. Let

f∗ be the optimal value of (3.2). Then, f∗ =
∑r

i=1 λi(Σ̂), and V ∗ ∈ <n×r is an optimal

solution of (3.2) if and only if the columns of V ∗ consist of the orthonormal eigenvectors of

Σ̂ corresponding to r largest eigenvalues of Σ̂.

Proof. We first show that f∗ =
∑r

i=1 λi(Σ̂). Indeed, let U be an n × r matrix whose

columns consist of the orthonormal eigenvectors of Σ̂ corresponding to r largest eigenvalues

of Σ̂. We then see that U is a feasible solution of (3.2) and Tr(UT Σ̂U) =
∑r

i=1 λi(Σ̂). It

follows that f∗ ≥
∑r

i=1 λi(Σ̂). On the other hand, we observe that f∗ is bounded above by

the optimal value of

max{Tr(V T Σ̂V ) : V TV = I, V ∈ <n×r}.

We know from [58] that its optimal value equals
∑r

i=1 λi(Σ̂). Therefore, f∗ =
∑r

i=1 λi(Σ̂)

holds and U is an optimal solution of (3.2). It also implies that the “if” part of this

proposition holds. We next show that the “only if” part also holds. Let V ∗ ∈ <n×r be an

optimal solution of (3.2), and define Y ∗ = V ∗V ∗T . Then, we have V ∗TV ∗ = I, which yields

0 � Y ∗ � I and Tr(Y ∗) = r. Hence, Y ∗ is a feasible solution of (3.4). Using the fact that

f∗ =
∑r

i=1 λi(Σ̂), we then have

Tr(Σ̂Y ∗) = Tr(V ∗T Σ̂V ∗) =

r∑
i=1

λi(Σ̂),

which together with Lemma 3.2.1 implies that Y ∗ is an optimal solution of (3.4). Let ir and īr

be defined in (3.3). Then, it follows from Lemma 3.2.1 that Y ∗ = U∗1U
∗T
1 +U∗2P

∗U∗T2 , where

P ∗ ∈ S īr−ir satisfies 0 � P ∗ � I and Tr(P ∗) = r − ir, and U∗1 ∈ <n×ir and U∗2 ∈ <n×(̄ir−ir)

are the matrices whose columns consist of the orthonormal eigenvectors of Σ̂ corresponding

to the eigenvalues (λ1(Σ̂), . . . , λir(Σ̂)) and (λir+1(Σ̂), . . . , λīr(Σ̂)), respectively. Thus, we

have

Σ̂U∗1 = U∗1 Λ, Σ̂U∗2 = λr(Σ̂)U∗2 , (3.5)

where Λ = D(λ1(Σ̂), . . . , λir(Σ̂)). In addition, it is easy to show that rank(Y ∗) = ir +

rank(P ∗). Since Y ∗ = V ∗V ∗T and V ∗TV ∗ = I, we can observe that rank(Y ∗) = r. Hence,

rank(P ∗) = r − ir, which implies that P ∗ has only r − ir nonzero eigenvalues. Using this
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fact and the relations 0 � P ∗ � I and Tr(P ∗) = r − ir, we can further conclude that r − ir
eigenvalues of P ∗ are 1 and the rest are 0. Therefore, there exists W ∈ <(̄ir−ir)×(r−ir) such

that

W TW = I, P ∗ = WW T . (3.6)

It together with Y ∗ = U∗1U
∗T
1 +U∗2P

∗U∗T2 implies that Y ∗ = U∗U∗T , where U∗ = [U∗1 U∗2W ].

In view of (3.6) and the identities U∗T1 U∗1 = I, U∗T2 U∗2 = I and U∗T1 U∗2 = 0, we see that

U∗TU∗ = I. Using this result, and the relations V ∗TV ∗ = I and Y ∗ = U∗U∗T = V ∗V ∗T ,

it is not hard to see that the columns of U∗ and V ∗ form an orthonormal basis for the

range space of Y ∗, respectively. Thus, V ∗ = U∗Q for some Q ∈ <r×r satisfying QTQ = I.

Now, let D = V ∗T Σ̂V ∗. By the definition of V ∗, we know that D is an r × r diagonal

matrix. Moreover, in view of (3.5), (3.6), the definition of U∗, and the relations V ∗ = U∗Q,

U∗T1 U∗1 = I, U∗T2 U∗2 = I and U∗T1 U∗2 = 0, we have

D = V ∗T Σ̂V ∗ = QTU∗T Σ̂U∗Q = QT

[
U∗T1

W TU∗T2

]
Σ̂ [U∗1 U∗2W ]Q

= QT

[
Λ 0

0 λr(Σ̂)I

]
Q, (3.7)

which together with QTQ = I implies that D is similar to the diagonal matrix appearing

on the right-hand side of (3.7). Hence, the diagonal elements of D consist of r largest

eigenvalues of Σ̂. In addition, let Q1 ∈ <ir×r and Q2 ∈ <(r−ir)×r be the submatrices

corresponding to the first ir and the last r− ir rows of Q, respectively. Then, in view of the

definition of U∗ and V ∗ = U∗Q, we have

[U∗1 U∗2W ] = U∗ = V ∗QT = [V ∗QT1 V ∗QT2 ].

Thus, we obtain that U∗1 = V ∗QT1 and U∗2W = V ∗QT2 . Using these identities, (3.5), (3.7),

and the relation V ∗ = U∗Q, we have

Σ̂V ∗ = Σ̂U∗Q = Σ̂ [U∗1 U∗2W ]Q = [U∗1 Λ λr(Σ̂)U∗2W ]Q

= [V ∗QT1 Λ λr(Σ̂)V ∗QT2 ]Q = V ∗QT

[
Λ 0

0 λr(Σ̂)I

]
Q = V ∗D.

It follows that the columns of V ∗ consist of the orthonormal eigenvectors of Σ̂ corresponding

to r largest eigenvalues of Σ̂, and thus the “only if” part of this proposition holds.
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From the above theorem, we see that when ρ = 0 and ∆ij = 0 for all i 6= j, each solution

of (3.2) consists of the orthonormal eigenvectors of Σ̂ corresponding to r largest eigenvalues

of Σ̂, which can be computed from the eigenvalue decomposition of Σ̂. Therefore, the loading

vectors obtained from (3.2) are the same as those given by the standard PCA when applied

to Σ̂. On the other hand, when ρ and ∆ij for all i 6= j are small, the loading vectors found

by (3.2) can be viewed as an approximation to the ones provided by the standard PCA.

3.3 Augmented Lagrangian method for sparse PCA

In this subsection we discuss the applicability and implementation details of the aug-

mented Lagrangian method proposed in Chapter 2 for solving sparse PCA (3.2).

3.3.1 Applicability of augmented Lagrangian method for (3.2)

We first observe that problem (3.2) can be reformulated as

min
V ∈<n×r

−Tr(V T Σ̂V ) + ρ • |V |

s.t. V T
i Σ̂Vj ≤ ∆ij ∀i 6= j,

−V T
i Σ̂Vj ≤ ∆ij ∀i 6= j,

V TV = I.

(3.8)

Clearly, problem (3.8) has the same form as (2.1). From Subsection 2.2, we know that

the sufficient conditions for convergence of our augmented Lagrangian method include: i) a

feasible point is explicitly given; and ii) Robinson’s condition (2.2) holds at an accumulation

point. It is easy to observe that any V ∈ <n×r consisting of r orthonormal eigenvectors of

Σ̂ is a feasible point of (3.8), and thus the first condition is trivially satisfied. Given that

the accumulation points are not known beforehand, it is hard to check the second condition

directly. Instead, we may check Robinson’s condition at all feasible points of (3.8). However,

due to complication of the constraints, we are only able to verify Robinson’s condition at

a set of feasible points below. Before proceeding, we establish a technical lemma as follows

that will be used subsequently.
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Lemma 3.3.1 Let V ∈ <n×r be a feasible solution of (3.8). Given any W1, W2 ∈ Sr, the

system of

δV T Σ̂V + V T Σ̂ δV + δD = W1, (3.9)

δV TV + V T δV = W2 (3.10)

has at least one solution (δV , δD) ∈ <n×r ×Dr if one of the following conditions holds:

a) V T Σ̂V is diagonal and V T
i Σ̂Vi 6= V T

j Σ̂Vj for all i 6= j;

b) V T Σ̂(I − V V T )Σ̂V is nonsingular.

Proof. Note that the columns of V consist of r orthonormal eigenvectors. Therefore,

there exist V̄ ∈ <n×(n−r) such that [V V̄ ] ∈ <n×n is an orthogonal matrix. It follows that

for any δV ∈ <n×r, there exists δP ∈ <r×r and δP̄ ∈ <(n−r)×r such that δV = V δP + V̄ δP̄ .

Performing such a change of variable for δV , and using the fact that the matrix [V V̄ ] is

orthogonal, we can show that the system of (3.9) and (3.10) is equivalent to

δP TG+GδP + δP̄
T
Ḡ+ ḠT δP̄ + δD = W1, (3.11)

δP T + δP = W2, (3.12)

where G = V T Σ̂V and Ḡ = V̄ T Σ̂V . The remaining proof of this lemma reduces to show that

the system of (3.11) and (3.12) has at least a solution (δP , δP̄ , δD) ∈ <r×r ×<(n−r)×r ×Dr

if one of conditions (a) or (b) holds.

First, we assume that condition (a) holds. Then, G is a diagonal matrix and Gii 6= Gjj

for all i 6= j. It follows that there exists a unique δP ∗ ∈ <n×r satisfying δP ii = (W2)ii/2 for

all i and
δP ijGjj + GiiδP ij = (W1)ij ∀i 6= j,

δP ij + δP ji = (W2)ij ∀i 6= j.

Now, let δP̄
∗

= 0 and δD∗ = D̃(W1 − GW2). It is easy to verify that (δP ∗, δP̄
∗
, δD∗) is a

solution of the system of (3.11) and (3.12).

We next assume that condition (b) holds. Given any δP̄ ∈ <(n−r)×r, there exist δY ∈
<(n−r)×r and δZ ∈ <r×r such that ḠT δY = 0 and δP̄ = δY + ḠδZ. Peforming such a

change of variable for δP̄ , we see that (3.11) can be rewritten as

δP TG+GδP + δZT ḠT Ḡ+ ḠT ḠδZ + δD = W1. (3.13)
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Thus, it suffices to show that the system of (3.12) and (3.13) has at least a solution

(δP , δZ, δD) ∈ <r×r × <r×r × Dr. Using the definition of Ḡ and the fact that the ma-

trix [V V̄ ] is orthogonal, we see that

ḠT Ḡ = V T Σ̂V̄ V̄ T Σ̂V = V T Σ̂(I − V V T )Σ̂V,

which together with condition (b) implies that ḠT Ḡ is nonsingular. Now, let

δP ∗ = W2/2, δZ∗ = (ḠT Ḡ)−1(2W1 −W2G−GW2)/4, δD∗ = 0.

It is easy to verify that (δP ∗, δZ∗, δD∗) is a solution of the system of (3.13) and (3.12).

Therefore, the conclusion holds.

We are now ready to show that Robinson’s condition (2.2) holds at a set of feasible

points of (3.8).

Proposition 3.3.2 Let V ∈ <n×r be a feasible solution of (3.8). The Robinson’s condition

(2.2) holds at V if one of the following conditions hold:

a) ∆ij = 0 and V T
i Σ̂Vi 6= V T

j Σ̂Vj for all i 6= j;

b) There is at least one active and one inactive inequality constraint of (3.8) at V , and

V T Σ̂(I − V V T )Σ̂V is nonsingular;

c) All inequality constraints of (3.8) are inactive at V .

Proof. We first suppose that condition (a) holds. Then, it immediately implies that

V T Σ̂V is diagonal, and hence the condition (a) of Lemma 3.3.1 holds. In addition, we

observe that all constraints of (3.8) become equality ones. Using these facts and Lemma

3.3.1, we see that Robinson’s condition (2.2) holds at V . Next, we assume that condition

(b) holds. It implies that condition (b) of Lemma 3.3.1 holds. The conclusion then follows

directly from Lemma 3.3.1. Finally, suppose condition (c) holds. Then, Robinson’s condition

(2.2) holds at V if and only if (3.10) has at least a solution δV ∈ <n×r for any W2 ∈ Sr.
Noting that V TV = I, we easily see that δV = VW2/2 is a solution of (3.10), and thus

Robinson’s condition (2.2) holds at V .
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From Proposition 3.3.2, we see that Robinson’s condition (2.2) indeed holds at a set of

feasible points of (3.8). Though we are not able to show that it holds at all feasible points

of (3.8), we observe in our implementation that the accumulation points of our augmented

Lagrangian method generally satisfy one of the conditions described in Proposition 3.3.2,

and so Robinson’s condition usually holds at the accumulation points. Moreover, we have

never seen that our augmented Lagrangian method failed to converge for an instance in our

implementation so far.

3.3.2 Implementation details of augmented Lagrangian method for (3.8)

In this subsection, we show how our augmented Lagrangian method proposed in Sub-

section 2.2 can be applied to solve problem (3.8) (or, equivalently, (3.2)). In particular, we

will discuss the implementation details of outer and inner iterations of this method.

We first discuss how to efficiently evaluate the function and gradient involved in our aug-

mented Lagrangian method for problem (3.8). Suppose that % > 0 is a penalty parameter,

and {λ+
ij}i 6=j and {λ−ij}i 6=j are the Lagrangian multipliers for the inequality constraints of

(3.8), respectively, and µ ∈ Sr is the Lagrangian multipliers for the equality constraints of

(3.8). For convenience of presentation, let ∆ ∈ Sr be the matrix whose ijth entry equals the

parameter ∆ij of (3.8) for all i 6= j and diagonal entries are 0. Similarly, let λ+ (resp., λ−)

be an r × r symmetric matrix whose ijth entry is λ+
ij (resp., λ−ij) for all i 6= j and diagonal

entries are 0. We now define λ ∈ <2r×r by stacking λ+ over λ−. Using these notations, we

observe that the associated Lagrangian function for problem (3.8) can be rewritten as

L%(V, λ, µ) = w(V ) + ρ • |V |, (3.14)

where

w(V ) = −Tr(V T Σ̂V ) + 1
2%

∥∥∥∥∥∥
[(

λ+

λ−

)
+ %

(
S −∆

−S −∆

)]+
∥∥∥∥∥∥

2

F

−

∥∥∥∥∥
(
λ+

λ−

)∥∥∥∥∥
2

F


+µ • R+ %

2‖R‖
2
F ,

and

S = V T Σ̂V − D̃(V T Σ̂V ), R = V TV − I. (3.15)

It is not hard to verify that the gradient of w(V ) can be computed according to

∇w(V ) = 2
(
−Σ̂V

(
I − [λ+ + %S − %∆]+ + [λ− − %S − %∆]+

)
+ V (µ+ %R)

)
.
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Clearly, the main effort for the above function and gradient evaluations lies in computing

V T Σ̂V and Σ̂V . When Σ̂ ∈ Sp is explicitly given, the computational complexity for evalu-

ating these two quantities is O(p2r). In practice, we are, however, typically given the data

matrix X ∈ <n×p. Assuming the column means of X are 0, the sample covariance matrix

Σ̂ can be obtained from Σ̂ = XTX/(n− 1). Nevertheless, when p� n, we observe that it is

not efficient to compute and store Σ̂. Also, it is much cheaper to compute V T Σ̂V and Σ̂V

by using Σ̂ implicitly rather than explicitly. Indeed, we can first evaluate XV , and then

compute V T Σ̂V and Σ̂V according to

V T Σ̂V = (XV )T (XV )/(n− 1), Σ̂V = XT (XV )/(n− 1).

Then, the resulting overall computational complexity is O(npr), which is clearly much su-

perior to the one by using Σ̂ explicitly, that is, O(p2r).

We now address initialization and termination criterion for our augmented Lagrangian

method. In particular, we choose initial point V 0
init and feasible point V feas to be the loading

vectors of the r standard PCs, that is, the orthonormal eigenvectors corresponding to r

largest eigenvalues of Σ̂. In addition, we set initial penalty parameter and Lagrangian

multipliers to be 1, and set the parameters τ = 0.2 and σ = 10. We terminate our method

once the constraint violation and the relative difference between the augmented Lagrangian

function and the regular objective function are sufficiently small, that is,

max
i 6=j

[|V T
i Σ̂Vj | −∆ij ]

+ ≤ εI , max
i,j
|Rij | ≤ εE ,

|L%(V, λ, µ)− f(V )|
max (|f(V )|, 1)

≤ εO, (3.16)

where f(V ) = −Tr(V T Σ̂V ) + ρ • |V |, R is defined in (3.15), and εI , εE , εO are some

prescribed accuracy parameters corresponding to inequality constraints, equality constraints

and objective function, respectively.

We next discuss how to apply the nonmonotone gradient methods proposed in Subsection

2.3 for the augmented Lagrangian subproblems, which are in the form of

min
V

L%(V, λ, µ), (3.17)

where the function L%(·, λ, µ) is defined in (3.14). Given that the implementation details

of those nonmonotone gradient methods are similar, we only focus on the first one, that

is, the nonmonotone gradient method I. First, the initial point for this method can be

chosen according to the scheme described at the end of Subsection 2.2. In addition, given
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the kth iterate V k, we choose Hk = β−1
k I according to the scheme proposed by Barzilai

and Borwein [5], which was also used by Birgin et al. [9] for studying a class of projected

gradient methods. Indeed, let 0 < βmin < βmax be given. Initially, choose an arbitrary

β0 ∈ [βmin, βmax]. Then, βk is updated as follows:

βk+1 =

{
βmax, if bk ≤ 0;

max{βmin,min{βmax, ak/bk}}, otherwise,

where ak = ‖V k − V k−1‖2F and bk = (V k − V k−1) • (∇w(V k) − ∇w(V k−1)). The search

direction dk is then computed by solving subproblem (2.20) with H = θkHk for some θk > 0,

which in the context of (2.13) and (3.14) becomes

dk := arg min
d

{
∇w(V k) • d+

1

2θkβk
‖d‖2F + ρ • |V k + d|

}
. (3.18)

It is not hard to verify that the optimal solution of problem (3.18) has a closed-form ex-

pression, which is given by

dk = sign(C)� [|C| − θkβkρ]+ − V k,

where C = V k − θkβk∇w(V k). In addition, we see from Lemma 2.3.1 that the following

termination criterion is suitable for this method when applied to (3.17):

maxij |dI(V k)|ij
max(|L%(V k, λ, µ)|, 1)

≤ ε,

where dI(V
k) is the solution of (3.18) with θkβk = 1, and ε is a prescribed accuracy pa-

rameter. In our numerical implementation, we set β0 = 1/maxij |dI(V 0)|ij , βmax = 1015,

βmin = 10−15 and ε = 10−4.

Finally, it shall be mentioned that for the sake of practical performance, the numerical

implementation of our augmented Lagrangian method is slightly different from the one

described in Subsection 2.2. In particular, we follow a similar scheme as discussed on

pp. 405 of [7] to adjust penalty parameter and Lagrangian multipliers. Indeed, they are

updated separately rather than simultaneously. Roughly speaking, given γ ∈ (0, 1), we

adjust penalty parameter only when the constraint violation is not decreased by a factor γ

over the previous minimization. Similarly, we update Lagrangian multipliers only when the

constraint violation is decreased by a factor γ over the previous minimization. We choose

γ = 0.25 in our implementation as recommended in [7].
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3.4 Numerical results

In this subsection, we conduct numerical experiments for the augmented Lagrangian

method detailed in Subsections 2.2 and 3.3.2 for formulation (3.8) (or, equivalently, (3.2))

of sparse PCA on synthetic, random, and real data. In particular, we compare the results of

our approach with several existing sparse PCA methods in terms of total explained variance,

correlation of PCs, and orthogonality of loading vectors, which include the generalized power

methods (Journée et al. [77]), the DSPCA algorithm (d’Aspremont et al. [42]), the SPCA

algorithm (Zou et al. [137]), and the sPCA-rSVD algorithm (Shen and Huang [117]). We

now list all the methods used in this subsection in Table 3.1. Specifically, the methods with

the prefix ‘GPower’ are the generalized power methods studied in [77], and the method

ALSPCA is the augmented Lagrangian method proposed in this Chapter.

Table 3.1: Sparse PCA methods used for our comparison
GPowerl1 Single-unit sparse PCA via l1-penalty
GPowerl0 Single-unit sparse PCA via l0-penalty
GPowerl1,m Block sparse PCA via l1-penalty

GPowerl0,m Block sparse PCA via l0-penalty

DSPCA DSPCA algorithm
SPCA SPCA algorithm
rSVD sPCA-rSVD algorithm with soft thresholding
ALSPCA Augmented Lagrangian algorithm

As discussed in Subsection 3.2, the PCs obtained from the standard PCA based on sam-

ple covariance matrix Σ̂ ∈ <n×p are nearly uncorrelated when the sample size is sufficiently

large, and the total explained variance by the first r PCs approximately equals the sum

of the individual variances of PCs, that is, Tr(V T Σ̂V ), where V ∈ <p×r consists of the

loading vectors of these PCs. However, the PCs found by sparse PCA methods may be

correlated with each other, and thus the quantity Tr(V T Σ̂V ) can overestimate much the

total explained variance by these PCs due to the overlap among their individual variances.

In response to such an overlap, two adjusted total explained variances were proposed in

[137, 117]. It is not hard to observe that they can be viewed as the total explained vari-

ance of a set of transformed variables from the estimated sparse PCs. Given that these

transformed variables can distinct dramatically from those sparse PCs, their total explained

variances may also differ much from each other. To alleviate this drawback while taking into

account the possible correlations among PCs, we naturally introduce the following adjusted
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total explained variance for sparse PCs:

AdjVarV = Tr(V T Σ̂V )−
√∑

i 6=j
(V T
i Σ̂Vj)2.

It is not hard to show that AdjVar ≥ 0 for any V ∈ <p×r provided Σ̂ � 0. Clearly, when

the PCs are uncorrelated, it becomes the usual total explained variance, that is, Tr(V T Σ̂V ).

We can also define the cumulative percentage of adjusted variance (CPAV) for the first r

sparse PCs as the quotient of the adjusted total explained variance of these PCs and the

total explained variance by all standard PCs, that is, AdjVarV/Tr(Σ̂).

Finally, we shall stress that the main purpose of this subsection is to compare the perfor-

mance of those methods listed in Table 3.1 for finding the sparse PCs that nearly enjoy the

three important properties possessed by the standard PCA (see Subsection 3.1). Therefore,

we will not compare the speed of these methods. Nevertheless, it shall be mentioned that

our method, that is, ALSPCA, is a first-order method and capable of solving large-scale

problems within a reasonable amount of time as demonstrated in our experiments presented

in Subsection 3.4.4.

3.4.1 Synthetic data

In this subsection we use the synthetic data introduced by Zou et al. [137] to test the

effectiveness of our approach ALSPCA for finding sparse PCs.

The synthetic example [137] considers three hidden factors:

V1 ∼ N(0, 290), V2 ∼ N(0, 300), V3 = −0.3V1 + 0.925V2 + ε, ε ∼ N(0, 1),

where V1, V2 and ε are independent. Then the 10 observable variables are generated as

follows:

Xi = V1 + ε1i , ε1i ∼ N(0, 1), i = 1, 2, 3, 4,

Xi = V2 + ε2i , ε2i ∼ N(0, 1), i = 5, 6, 7, 8,

Xi = V3 + ε3i , ε3i ∼ N(0, 1), i = 9, 10,

where εji are independent for j = 1, 2, 3 and i = 1, . . . , 10. We will use the actual covariance

matrix of (X1, . . . , X10) to find the standard and sparse PCs, respectively.

We first observe that V1 and V2 are independent, but V3 is a linear combination of V1

and V2. Moreover, the variances of these three underlying factors V1, V2 and V3 are 290,
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Table 3.2: Loadings of the first two PCs by standard PCA and ALSPCA
Variable PCA ALSPCA

PC1 PC2 PC1 PC2
X1 0.1158 0.4785 0 0.5000
X2 0.1158 0.4785 0 0.5000
X3 0.1158 0.4785 0 0.5000
X4 0.1158 0.4785 0 0.5000
X5 -0.3955 0.1449 -0.5000 0
X6 -0.3955 0.1449 -0.5000 0
X7 -0.3955 0.1449 -0.5000 0
X8 -0.3955 0.1449 -0.5000 0
X9 -0.4005 -0.0095 0 0
X10 -0.4005 -0.0095 0 0

CPAV (%) 99.72 80.46

Synthetic data

300, and 283.8, respectively. Thus V2 is slightly more important than V1, and they both are

more important than V3. In addition, the first two standard PCs together explain 99.72%

of the total variance (see Table 3.2). These observations suggest that: i) the first two sparse

PCs may be sufficient to explain most of the variance; and ii) the first sparse PC recovers

the most important factor V2 using (X5, X6, X7, X8), and the second sparse PC recovers

the second important factor V1 using (X1, X2, X3, X4). Given that (X5, X6, X7, X8) and

(X1, X2, X3, X4) are independent, these sparse PCs would be uncorrelated and orthogonal

each other.

In our test, we set r = 2, ∆ij = 0 for all i 6= j, and ρ = 4 for formulation (3.8) of

sparse PCA. In addition, we choose (3.16) as the termination criterion for ALSPCA with

εI = εO = 0.1 and εE = 10−3. The results of standard PCA and ALSPCA for this example

are presented in Table 3.2. The loadings of standard and sparse PCs are given in columns

two and three, respectively, and their CPAVs are given in the last row. We clearly see

that our sparse PCs are consistent with the ones predicted above. Interestingly, they are

identical with the ones obtained by SPCA and DSPCA reported in [137, 42]. For general

data, however, these methods may perform quite differently (see Subsection 3.4.2).

3.4.2 Pitprops data

In this subsection we test the performance of our approach ALSPCA for finding sparse

PCs on the Pitprops data introduced by Jeffers [74]. We also compare the results with

several existing methods [137, 42, 117, 77].

The Pitprops data [74] has 180 observations and 13 measured variables. It is a classic

example that illustrates the difficulty of interpreting PCs. Recently, several sparse PCA
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Table 3.3: Loadings of the first six PCs by standard PCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0.4038 0.2178 0.2073 0.0912 0.0826 0.1198
length 0.4055 0.1861 0.2350 0.1027 0.1128 0.1629
moist 0.1244 0.5406 -0.1415 -0.0784 -0.3498 -0.2759
testsg 0.1732 0.4556 -0.3524 -0.0548 -0.3558 -0.0540
ovensg 0.0572 -0.1701 -0.4812 -0.0491 -0.1761 0.6256
ringtop 0.2844 -0.0142 -0.4753 0.0635 0.3158 0.0523
ringbut 0.3998 -0.1897 -0.2531 0.0650 0.2151 0.0026
bowmax 0.2936 -0.1892 0.2431 -0.2856 -0.1853 -0.0551
bowdist 0.3566 0.0171 0.2076 -0.0967 0.1061 0.0342
whorls 0.3789 -0.2485 0.1188 0.2050 -0.1564 -0.1731
clear -0.0111 0.2053 0.0704 -0.8036 0.3430 0.1753
knots -0.1151 0.3432 -0.0920 0.3008 0.6003 -0.1698
diaknot -0.1125 0.3085 0.3261 0.3034 -0.0799 0.6263

Pitprops data

methods [78, 137, 117, 42] have been applied to this data set for finding six sparse PCs

by using the actual covariance matrix. For ease of comparison, we present the standard

PCs, and the sparse PCs by some of those methods in Tables 3.3-3.6, respectively. We shall

mention that two groups of sparse PCs were found in [42] by DSPCA with the parameter

k1 = 5 or 6, and they have similar sparsity and total explained variance (see [42] for details).

Thus we only present the latter one (i.e., the one with k1 = 6) in Table 3.6. Also, we applied

the GPower methods [77] to this data set for finding the PCs with the sparsity given by

the largest one of those found in [137, 117, 42], and observed that the best result was

given by GPowerl0 . Thus we only report the sparse PCs obtained by GPowerl0 in Table

3.7. In addition, we present sparsity, CPAV, non-orthogonality and correlation of the PCs

obtained by the standard PCA and sparse PCA methods [137, 117, 42, 77] in columns two

to five of Table 3.11, respectively. In particular, the second and fifth columns of this table

respectively give sparsity (measured by the number of zero loadings) and CPAV. The third

column reports non-orthogonality, which is measured by the maximum absolute difference

between 90◦ and the angles formed by all pairs of loading vectors. Clearly, the smaller value

in this column implies the better orthogonality. The fourth column presents the maximum

correlation of PCs. Though the PCs given by these sparse PCA methods all have nice

sparsity, we observe from Tables 3.11 that they are highly correlated and moreover, almost

all of them are far from orthogonal except the ones given by SPCA [137]. To improve

the quality of sparse PCs, we next apply our approach ALSPCA, and compare the results

with these methods. For all tests below, we choose (3.16) as the termination criterion for

ALSPCA with εO = 0.1 and εI = εE = 10−3.



CHAPTER 3. THE AUGMENTED LAGRANGIAN APPROACH FOR SPARSE PCA54

Table 3.4: Loadings of the first six PCs by SPCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.477 0 0 0 0 0
length -0.476 0 0 0 0 0
moist 0 0.785 0 0 0 0
testsg 0 0.620 0 0 0 0
ovensg 0.177 0 0.640 0 0 0
ringtop 0 0 0.589 0 0 0
ringbut -0.250 0 0.492 0 0 0
bowmax -0.344 -0.021 0 0 0 0
bowdist -0.416 0 0 0 0 0
whorls -0.400 0 0 0 0 0
clear 0 0 0 -1 0 0
knots 0 0.013 0 0 -1 0
diaknot 0 0 -0.015 0 0 1

Pitprops data

Table 3.5: Loadings of the first six PCs by rSVD
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.449 0 0 -0.114 0 0
length -0.460 0 0 -0.102 0 0
moist 0 -0.707 0 0 0 0
testsg 0 -0.707 0 0 0 0
ovensg 0 0 0.550 0 0 -0.744
ringtop -0.199 0 0.546 -0.176 0 0
ringbut -0.399 0 0.366 0 0 0
bowmax -0.279 0 0 0.422 0 0
bowdist -0.380 0 0 0.283 0 0
whorls -0.407 0 0 0 0.231 0
clear 0 0 0 -0.785 -0.973 0
knots 0 0 0 -0.265 0 0.161
diaknot 0 0 -0.515 0 0 -0.648

Pitprops data

In the first experiment, we aim to find six nearly uncorrelated and orthogonal sparse

PCs by ALSPCA while explaining most of variance. In particular, we set r = 6, ∆ij = 0.07

for all i 6= j and ρ = 0.8 for formulation (3.8) of sparse PCA. The resulting sparse PCs

are presented in Table 3.8, and their sparsity, CPAV, non-orthogonality and correlation are

reported in row seven of Table 3.11. We easily observe that our method ALSPCA overall

outperforms the other sparse PCA methods substantially in all aspects except sparsity.

Naturally, we can improve the sparsity by increasing the values of ρ, yet the total explained

variance may be sacrificed as demonstrated in our next experiment.

We now attempt to find six PCs with similar correlation and orthogonality but higher

sparsity than those given in the above experiment. For this purpose, we set ∆ij = 0.07 for

all i 6= j and choose ρ = 2.1 for problem (3.8) in this experiment. The resulting sparse PCs

are presented in Table 3.9, and their CPAV, non-orthogonality and correlation of these PCs
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Table 3.6: Loadings of the first six PCs by DSPCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.4907 0 0 0 0 0
length -0.5067 0 0 0 0 0
moist 0 0.7071 0 0 0 0
testsg 0 0.7071 0 0 0 0
ovensg 0 0 0 0 -1.0000 0
ringtop -0.0670 0 -0.8731 0 0 0
ringbut -0.3566 0 -0.4841 0 0 0
bowmax -0.2335 0 0 0 0 0
bowdist -0.3861 0 0 0 0 0
whorls -0.4089 0 0 0 0 0
clear 0 0 0 0 0 1.0000
knots 0 0 0 1.0000 0 0
diaknot 0 0 0.0569 0 0 0

Pitprops data

Table 3.7: Loadings of the first six PCs by GPowerl0
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.4182 0 0 0 0 0
length -0.4205 0 0 0 0 0
moist 0 -0.7472 0 0 0 0
testsg -0.1713 -0.6646 0 0 0 0
ovensg 0 0 0 0 -0.7877 0
ringtop -0.2843 0 0 0 -0.6160 0
ringbut -0.4039 0 0 0 0 0
bowmax -0.3002 0 0 0 0 0
bowdist -0.3677 0 0 0 0 0
whorls -0.3868 0 0 0 0 0
clear 0 0 0 0 0 1.0000
knots 0 0 0 1.0000 0 0
diaknot 0 0 1.0000 0 0 0

Pitprops data

are given in row eight of Table 3.11. Compared to the PCs found in the above experiment,

the ones obtained in this experiment are much more sparse while retaining almost same

correlation and orthogonality. However, their CPAV goes down dramatically. Combining

the results of these two experiments, we deduce that for the Pitprops data, it seems not

possible to extract six highly sparse (e.g., around 60 zero loadings), nearly orthogonal and

uncorrelated PCs while explaining most of variance as they may not exist. The following

experiment further sustains such a deduction.

Finally we are interested in exploring how the correlation controlling parameters ∆ij(i 6=
j) affect the performance of the sparse PCs. In particular, we set ∆ij = 0.5 for all i 6= j

and choose ρ = 0.7 for problem (3.8). The resulting sparse PCs are presented in Table

3.10, and their CPAV, non-orthogonality and correlation of these PCs are given in the last

row of Table 3.11. We see that these PCs are highly sparse, orthogonal, and explain good
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Table 3.8: Loadings of the first six PCs by ALSPCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0.4394 0 0 0 0 0
length 0.4617 0 0 0 0 0
moist 0.0419 0.4611 -0.1644 0.0688 -0.3127 0
testsg 0.1058 0.7902 0 0 0 0
ovensg 0.0058 0 0 0 0 0
ringtop 0.1302 0 0.2094 0 0 0.9999
ringbut 0.3477 0 0.0515 0 0.3240 0
bowmax 0.2256 -0.3566 0 0 0 0
bowdist 0.4063 0 0 0 0 0
whorls 0.4606 0 0 0 0 -0.0125
clear 0 0.0369 0 -0.9973 0 0
knots -0.1115 0.1614 -0.0762 0.0239 0.8929 0
diaknot -0.0487 0.0918 0.9595 0.0137 0 0

Pitprops data: Test I

Table 3.9: Loadings of the first six PCs by ALSPCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 1.0000 0 0 0 0 0
length 0 -0.2916 -0.1421 0 0 -0.0599
moist 0 0.9565 -0.0433 0 0 -0.0183
testsg 0 0 0 0.0786 -0.1330 0
ovensg 0 0 -0.9683 0 0 0
ringtop 0 0 0 0 0 0
ringbut 0 0 0.1949 0 0.2369 0
bowmax 0 0 0 0 0 0
bowdist 0 0 0 0 0 0
whorls 0 0 0 0 0 0
clear 0 0 0 -0.9969 0 0
knots 0 0 -0.0480 0.0109 0.9624 0
diaknot 0 0 -0.0093 0 0 0.9980

Pitprops data: Test II

amount of variance. However, they are quite correlated each other, which is actually not

surprising since ∆ij(i 6= j) are not small. Despite such a drawback, these sparse PCs still

overall outperform those obtained by SPCA, rSVD, DSPCA and GPowerl1 .

From the above experiments, we may conclude that for the Pitprops data, there do not

exist six highly sparse, nearly orthogonal and uncorrelated PCs while explaining most of

variance. Therefore, the most acceptable sparse PCs seem to be the ones given in Table 3.8.

3.4.3 Gene expression data

In this subsection we test the performance of our approach ALSPCA for finding sparse

PCs on the gene expression data. We also compare the results with the GPower methods

[77], which are superior to the other existing methods [137, 42, 117] as demonstrated in [77].

The data set used in this subsection is the publicly available gene expression data from
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Table 3.10: Loadings of the first six PCs by ALSPCA
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0.4051 0 0 0 0 0
length 0.4248 0 0 0 0 0
moist 0 0.7262 0 0 0 0
testsg 0.0018 0.6875 0 0 0 0
ovensg 0 0 -1.0000 0 0 0
ringtop 0.1856 0 0 0 0 0
ringbut 0.4123 0 0 0 0 0
bowmax 0.3278 0 0 0 0 0
bowdist 0.3830 0 0 0 0 0
whorls 0.4437 -0.0028 0 0 0 0
clear 0 0 0 -1.0000 0 0
knots 0 0 0 0 1.0000 0
diaknot 0 0 0 0 0 1.0000

Pitprops data: Test III

Table 3.11: Comparison of SPCA, rSVD, DSPCA, GPowerl0 and ALSPCA
Method Sparsity Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 87.00
SPCA 60 0.86 0.395 66.21
rSVD 53 14.76 0.459 67.04
DSPCA 63 13.63 0.573 60.97
GPowerl0 63 10.09 0.353 64.15
ALSPCA-1 46 0.03 0.082 69.55
ALSPCA-2 60 0.03 0.084 39.42
ALSPCA-3 63 0.00 0.222 65.97

Pitprops data

http://icbp.lbl.gov/breastcancer/, and described in Chin et al. [38], consisting of 19672

gene expression measurements on 89 samples (that is, p = 19672, n = 89). We aim to

extract r number of PCs with around 80% zeros by ALSPCA and GPower methods [77]

for r = 5, 10, 15, 20, 25, respectively. For all tests below, we set ∆ij = 3 for all i 6= j for

problem (3.8) and choose (3.16) as the termination criterion for ALSPCA with εE = 0.5

and εO = 0.1.

The sparsity, CPAV, non-orthogonality and correlation of the PCs obtained by the stan-

dard PCA, ALSPCA and GPower methods are presented in columns two to five of Tables

3.12-3.16 for r = 5, 10, 15, 20, 25, respectively. In particular, the second and fifth columns

of these tables respectively give sparsity (that is, the percentage of zeros in loadings) and

CPAV. The third column reports non-orthogonality, which is measured by the maximum

absolute difference between 90◦ and the angles formed by all pairs of loading vectors. Evi-

dently, the smaller value in this column implies the better orthogonality. The fourth column

presents the maximum correlation of PCs. It is clear that the standard PCs are completely

dense. We also observe that the sparse PCs given by our method are almost uncorrelated
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and their loading vectors are nearly orthogonal, which are consistently much superior to the

GPower methods. Though the CPAV for GPower methods is better than our method, the

CPAV for GPower methods may not be a close measurement of the actual total explained

variance as their sparse PCs are highly correlated. But for our method, the sparse PCs

are almost uncorrelated and thus the CPAV can measure well their actual total explained

variance.

Table 3.12: Performance on the gene expression data for r = 5
Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 34.77
GPowerl1 80.14 7.56 0.348 22.17
GPowerl0 79.70 5.47 0.223 22.79
GPowerl1,m 79.64 7.39 0.274 22.68
GPowerl0,m 80.36 12.47 0.452 22.23
ALSPCA 80.43 0.07 0.010 20.56

Table 3.13: Performance on the gene expression data for r = 10
Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 46.16
GPowerl1 80.11 4.93 0.387 31.16
GPowerl0 79.84 4.62 0.375 31.45
GPowerl1,m 79.95 6.31 0.332 31.80
GPowerl0,m 80.36 6.45 0.326 31.59
ALSPCA 80.51 0.01 0.017 29.85

Table 3.14: Performance on the gene expression data for r = 15
Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 53.27
GPowerl1 79.56 4.73 0.253 38.29
GPowerl0 79.84 4.02 0.284 38.32
GPowerl1,m 79.39 5.94 0.347 38.31
GPowerl0,m 79.99 5.18 0.307 38.19
ALSPCA 80.16 0.01 0.014 33.92

3.4.4 Random data

In this subsection we conduct experiments on a set of randomly generated data to test

how the size of data matrix X, the sparsity controlling parameter ρ, and the number of

components r affect the computational speed of our ALSPCA method.

First, we randomly generate 100 centered data matrices X with size n×p that is specified

in the tables below. For all tests, we set ∆ij = 0.1 for all i 6= j for problem (3.8) and choose

(3.16) as the termination criterion for ALSPCA with εE = 0.1 and εO = 0.1. In the first
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Table 3.15: Performance on the gene expression data for r = 20
Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 59.60
GPowerl1 79.51 4.37 0.280 43.30
GPowerl0 80.16 4.52 0.245 43.12
GPowerl1,m 79.61 4.48 0.317 42.98
GPowerl0,m 80.40 4.18 0.255 43.25
ALSPCA 80.66 0.11 0.037 39.59

Table 3.16: Performance on the gene expression data for r = 25
Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 64.67
GPowerl1 79.48 3.60 0.237 47.74
GPowerl0 79.94 3.05 0.296 47.76
GPowerl1,m 79.49 5.05 0.275 47.85
GPowerl0,m 80.39 5.00 0.237 47.45
ALSPCA 80.68 0.02 0.021 43.66

test, we aim to extract five sparse PCs by ALSPCA with ρ = 0.001, 0.01, 0.1, 1, respectively.

In the second test, we aim to extract 5 to 25 PCs with a fixed ρ = 0.1 by ALSPCA. In the

third test, we fix the sparsity (that is, percentage of zeros) of the PC loadings to 80% and

find r number of sparse PCs by ALSPCA with r = 5, 10, 15, 20, 25, respectively. The average

CPU times (in seconds) of ALSPCA over the above 100 instances are reported in Tables

3.17-3.19. We observe that ALSPCA is capable of solving all problems within reasonable

amount of time. It seems that the CPU time grows linearly as the problem size, sparsity

controlling parameter ρ, and number of components r increase.

Table 3.17: Average CPU time of ALSPCA on random data for r = 5
n× p ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

50× 500 0.4 0.8 1.2 4.9
100× 1000 1.2 1.5 2.4 9.5
250× 2500 3.7 4.4 13.3 38.8
500× 5000 8.8 13.4 15.6 65.6
750× 7500 13.6 24.0 33.2 96.3

3.5 Concluding remarks

In this chapter we proposed a new formulation of sparse PCA for finding sparse and

nearly uncorrelated principal components (PCs) with orthogonal loading vectors while ex-

plaining as much of the total variance as possible. We also applied the augmented La-

grangian method proposed in Chapter 2 for solving a class of nonsmooth constrained op-

timization problems, which is well suited for our formulation of sparse PCA. Finally, we
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Table 3.18: Average CPU time of ALSPCA on random data for ρ = 0.1
n× p r = 5 r = 10 r = 15 r = 20 r = 25

50× 500 1.2 12.8 24.0 37.6 48.8
100× 1000 2.4 16.9 28.7 40.8 144.0
250× 2500 13.4 64.2 94.8 125.1 373.6
500× 5000 16.5 85.5 141.9 186.6 553.1
750× 7500 38.1 96.6 217.6 328.6 798.2

Table 3.19: Average CPU time of ALSPCA on random data for 80% sparsity
n× p r = 5 r = 10 r = 15 r = 20 r = 25

50× 500 11.5 26.5 33.6 43.0 49.7
100× 1000 15.2 29.3 57.8 83.7 102.7
250× 2500 20.7 39.5 79.7 98.0 120.0
500× 5000 41.5 60.3 91.4 143.1 197.0
750× 7500 55.3 90.4 141.7 208.3 255.1

compared our sparse PCA approach with several existing methods on synthetic and real

data, respectively. The computational results demonstrate that the sparse PCs produced

by our approach substantially outperform those by other methods in terms of total explained

variance, correlation of PCs, and orthogonality of loading vectors.

As observed in our experiments, formulation (3.2) is very effective in finding the de-

sired sparse PCs. However, there remains a natural theoretical question for it. Given a

set of random variables, suppose there exist sparse and uncorrelated PCs with orthogonal

loading vectors while explaining most of variance of the variables. In other words, their

actual covariance matrix Σ has few dominant eigenvalues and the associated orthonormal

eigenvectors are sparse. Since Σ is typically unknown and only approximated by a sample

covariance matrix Σ̂, one natural question is whether or not there exist some suitable pa-

rameters ρ and ∆ij (i 6= j) so that (3.2) is able to recover those sparse PCs almost surely

as the sample size becomes sufficiently large.



Chapter 4

Penalty Decomposition Methods

In this Chapter, we first establish the first-order optimality conditions for general l0

minimization problems and study a class of special l0 minimization problems. Then we de-

velop the PD methods for general l0 minimization problems and establish some convergence

results for them. Finally, we conduct numerical experiments to test the performance of our

PD methods for solving sparse logistic regression, sparse inverse covariance selection, and

compressed sensing and present some concluding remarks.

This chapter is based on the paper [91] co-authored with Zhaosong Lu.

4.1 First-order optimality conditions

In this subsection we study the first-order optimality conditions for problems (1.6) and

(1.7). In particular, we first discuss the first-order necessary conditions for them. Then we

study the first-order sufficient conditions for them when the l0 part is the only nonconvex

part.

We now establish the first-order necessary optimality conditions for problems (1.6) and

(1.7).

Theorem 4.1.1 Assume that x∗ is a local minimizer of problem (1.6). Let J∗ ⊆ J be an

index set with |J∗| = r such that x∗j = 0 for all j ∈ J̄∗, where J̄∗ = J \ J∗. Suppose that the

61
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following Robinson condition

g′(x∗)d− v
h′(x∗)d

(IJ̄∗)
Td

 : d ∈ TX (x∗), v ∈ <m, vi ≤ 0, i ∈ A(x∗)

 = <m ×<p ×<|J |−r (4.1)

holds, where g′(x∗) and h′(x∗) denote the Jacobian of the functions g = (g1, . . . , gm) and

h = (h1, . . . , hp) at x∗, respectively, and

A(x∗) = {1 ≤ i ≤ m : gi(x
∗) = 0}. (4.2)

Then, there exists (λ∗, µ∗, z∗) ∈ <m ×<p ×<n together with x∗ satisfying

−∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ − z∗ ∈ NX (x∗),

λ∗i ≥ 0, λ∗i gi(x
∗) = 0, i = 1, . . . ,m; z∗j = 0, j ∈ J̄ ∪ J∗.

(4.3)

where J̄ is the complement of J in {1, . . . , n}.

Proof. By the assumption that x∗ is a local minimizer of problem (1.6), one can observe

that x∗ is also a local minimizer of the following problem:

min
x∈X
{f(x) : g(x) ≤ 0, h(x) = 0, xJ̄∗ = 0}. (4.4)

Using this observation, (4.1) and Theorem 3.25 of [113], we see that the conclusion holds.

Theorem 4.1.2 Assume that x∗ is a local minimizer of problem (1.7). Let J∗ = {j ∈ J :

x∗j 6= 0} and J̄∗ = J \ J∗. suppose that the following Robinson condition

g′(x∗)d− v
h′(x∗)d

(IJ̄∗)
Td

 : d ∈ TX (x∗), v ∈ <m, vi ≤ 0, i ∈ A(x∗)

 = <m ×<p ×<|J̄∗| (4.5)

holds, where A(x∗) is defined in (4.2). Then, there exists (λ∗, µ∗, z∗) ∈ <m × <p × <n

together with x∗ satisfying (4.3).

Proof. It is not hard to observe that x∗ is a local minimizer of problem (1.7) if and only

if x∗ is a local minimizer of problem (4.4). Using this observation, (4.5) and Theorem 3.25

of [113], we see that the conclusion holds.

We next establish the first-order sufficient optimality conditions for problems (1.6) and

(1.7) when the l0 part is the only nonconvex part.
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Theorem 4.1.3 Assume that h’s are affine functions, and f and g’s are convex functions.

Let x∗ be a feasible point of problem (1.6), and let J ∗ = {J∗ ⊆ J : |J∗| = r, x∗j = 0,∀j ∈
J \ J∗}. Suppose that for any J∗ ∈ J ∗, there exists some (λ∗, µ∗, z∗) ∈ <m ×<p ×<n such

that (4.3) holds. Then, x∗ is a local minimizer of problem (1.6).

Proof. It follows from the above assumptions and Theorem 3.34 of [113] that x∗ is a

minimizer of problem (4.4) for all J̄∗ ∈ {J \ J∗ : J∗ ∈ J ∗}. Hence, there exists ε > 0 such

that f(x) ≥ f(x∗) for all x ∈ ∪J∗∈J ∗OJ∗(x∗; ε), where

OJ∗(x∗; ε) = {x ∈ X : g(x) ≤ 0, h(x) = 0, xJ̄∗ = 0, ‖x− x∗‖2 < ε}

with J̄∗ = J \ J∗. One can observe from (1.6) that for any x ∈ O(x∗; ε), where

O(x∗; ε) = {x ∈ X : g(x) ≤ 0, h(x) = 0, ‖xJ‖0 ≤ r, ‖x− x∗‖2 < ε},

there exists J∗ ∈ J ∗ such that x ∈ OJ∗(x∗; ε) and hence f(x) ≥ f(x∗). It implies that the

conclusion holds.

Theorem 4.1.4 Assume that h’s are affine functions, and f and g’s are convex functions.

Let x∗ be a feasible point of problem (1.7), and let J∗ = {j ∈ J : x∗j 6= 0}. Suppose that for

such J∗, there exists some (λ∗, µ∗, z∗) ∈ <m ×<p ×<n such that (4.3) holds. Then, x∗ is a

local minimizer of problem (1.7).

Proof. By virtue of the above assumptions and Theorem 3.34 of [113], we know that x∗

is a minimizer of problem (4.4) with J̄∗ = J \ J∗. Also, we observe that any point is a local

minimizer of problem (1.7) if and only if it is a local minimizer of problem (4.4). It then

implies that x∗ is a local minimizer of (1.7).

Remark. The second-order necessary or sufficient optimality conditions for problems

(1.6) and (1.7) can be similarly established as above.

4.2 A class of special l0 minimization

In this subsection we show that a class of special l0 minimization problems have closed-

form solutions, which can be used to develop penalty decomposition methods for solving

general l0 minimization problems.
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Proposition 4.2.1 Let Xi ⊆ < and φi : < → < for i = 1, . . . , n be given. Suppose that r is

a positive integer and 0 ∈ Xi for all i. Consider the following l0 minimization problem:

min

{
φ(x) =

n∑
i=1

φi(xi) : ‖x‖0 ≤ r, x ∈ X1 × · · · × Xn

}
. (4.6)

Let x̃∗i ∈ Arg min{φi(xi) : xi ∈ Xi} and I∗ ⊆ {1, . . . , n} be the index set corresponding to r

largest values of {v∗i }ni=1, where v∗i = φi(0)−φi(x̃∗i ) for i = 1, . . . , n. Then, x∗ is an optimal

solution of problem (4.6), where x∗ is defined as follows:

x∗i =

{
x̃∗i if i ∈ I∗;
0 otherwise,

i = 1, . . . , n.

Proof. By the assumption that 0 ∈ Xi for all i, and the definitions of x∗, x̃∗ and I∗,

we see that x∗ ∈ X1 × · · · × Xn and ‖x∗‖0 ≤ r. Hence, x∗ is a feasible solution of (4.6).

It remains to show that φ(x) ≥ φ(x∗) for any feasible point x of (4.6). Indeed, let x be

arbitrarily chosen such that ‖x‖0 ≤ r and x ∈ X1 × · · · × Xn, and let L = {i : xi 6= 0}.
Clearly, |L| ≤ r = |I∗|. Let Ī∗ and L̄ denote the complement of I∗ and L in {1, . . . , n},
respectively. It then follows that

|L̄ ∩ I∗| = |I∗| − |I∗ ∩ L| ≥ |L| − |I∗ ∩ L| = |L ∩ Ī∗|.

In view of the definitions of x∗, x̃∗, I∗, Ī∗, L and L̄, we further have

φ(x)− φ(x∗) =
∑

i∈L∩I∗(φi(xi)− φi(x∗i )) +
∑

i∈L̄∩Ī∗(φi(xi)− φi(x∗i ))

+
∑

i∈L̄∩I∗(φi(xi)− φi(x∗i )) +
∑

i∈L∩Ī∗(φi(xi)− φi(x∗i )),

=
∑

i∈L∩I∗(φi(xi)− φi(x̃∗i )) +
∑

i∈L̄∩Ī∗(φi(0)− φi(0))

+
∑

i∈L̄∩I∗(φi(0)− φi(x̃∗i )) +
∑

i∈L∩Ī∗(φi(xi)− φi(0)),

≥
∑

i∈L̄∩I∗(φi(0)− φi(x̃∗i )) +
∑

i∈L∩Ī∗(φi(x̃
∗
i )− φi(0)),

=
∑

i∈L̄∩I∗(φi(0)− φi(x̃∗i ))−
∑

i∈L∩Ī∗(φi(0)− φi(x̃∗i )) ≥ 0,

where the last inequality follows from the definition of I∗ and the relation |L̄∩I∗| ≥ |L∩ Ī∗|.
Thus, we see that φ(x) ≥ φ(x∗) for any feasible point x of (4.6), which implies that the

conclusion holds.

It is straightforward to establish the following result.
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Proposition 4.2.2 Let Xi ⊆ < and φi : < → < for i = 1, . . . , n be given. Suppose that

ν ≥ 0 and 0 ∈ Xi for all i. Consider the following l0 minimization problem:

min

{
ν‖x‖0 +

n∑
i=1

φi(xi) : x ∈ X1 × · · · × Xn

}
. (4.7)

Let x̃∗i ∈ Arg min{φi(xi) : xi ∈ Xi} and v∗i = φi(0) − ν − φi(x̃∗i ) for i = 1, . . . , n. Then, x∗

is an optimal solution of problem (4.7), where x∗ is defined as follows:

x∗i =

{
x̃∗i if v∗i ≥ 0;

0 otherwise,
i = 1, . . . , n.

4.3 Penalty decomposition methods for general l0 minimiza-

tion

In this subsection we propose penalty decomposition (PD) methods for solving general

l0 minimization problems (1.6) and (1.7) and establish their convergence. Throughout this

subsection, we make the following assumption for problems (1.6) and (1.7).

Assumption 3 Problems (1.6) and (1.7) are feasible, and moreover, at least a feasible

solution, denoted by xfeas, is known.

This assumption will be used to design the PD methods with nice convergence properties.

It can be dropped, but the theoretical convergence of the corresponding PD methods may

become weaker. We shall also mention that, for numerous real applications, xfeas is readily

available or can be observed from the physical background of problems. For example, all

application problems discussed in Subsection 4.4 have a trivial feasible solution. On the

other hand, for some problems which do not have a trivial feasible solution, one can always

approximate them by the problems which have a trivial feasible solution. For instance,

problem (1.6) can be approximately solved as the following problem:

min
x∈X
{f(x) + ρ(‖u+‖22 + ‖v‖22) : g(x)− u ≤ 0, h(x)− v = 0, ‖xJ‖0 ≤ r}

for some large ρ. The latter problem has a trivial feasible solution when X is sufficiently

simple.
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4.3.1 Penalty decomposition method for problem (1.6)

In this subsection we propose a PD method for solving problem (1.6) and establish its

convergence.

We observe that (1.6) can be equivalently reformulated as

min
x∈X ,y∈Y

{f(x) : g(x) ≤ 0, h(x) = 0, xJ − y = 0}, (4.8)

where

Y = {y ∈ <|J | : ‖y‖0 ≤ r}.

The associated quadratic penalty function is defined as follows:

q%(x, y) = f(x) +
%

2
(‖[g(x)]+‖22 + ‖h(x)‖22 + ‖xJ − y‖22) ∀x ∈ X , y ∈ Y (4.9)

for some penalty parameter % > 0.

We are now ready to propose a PD method for solving problem (4.8) (or equivalently,

(1.6)) in which each penalty subproblem is approximately solved by a block coordinate

descent (BCD) method.

Penalty decomposition method for (1.6):

Let {εk} be a positive decreasing sequence. Let %0 > 0, σ > 1 be given. Choose an arbitrary

y0
0 ∈ Y and a constant Υ ≥ max{f(xfeas),minx∈X q%0(x, y0

0)}. Set k = 0.

1) Set l = 0 and apply the BCD method to find an approximate solution (xk, yk) ∈ X ×Y
for the penalty subproblem

min{q%k(x, y) : x ∈ X , y ∈ Y} (4.10)

by performing steps 1a)-1d):

1a) Solve xkl+1 ∈ Arg min
x∈X

q%k(x, ykl ).

1b) Solve ykl+1 ∈ Arg min
y∈Y

q%k(xkl+1, y).

1c) Set (xk, yk) := (xkl+1, y
k
l+1). If (xk, yk) satisfies

‖PX (xk −∇xq%k(xk, yk))− xk‖2 ≤ εk, (4.11)

then go to step 2).
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1d) Set l← l + 1 and go to step 1a).

2) Set %k+1 := σ%k.

3) If min
x∈X

q%k+1
(x, yk) > Υ, set yk+1

0 := xfeas. Otherwise, set yk+1
0 := yk.

4) Set k ← k + 1 and go to step 1).

end

Remark. The condition (4.11) will be used to establish the global convergence of the

above method. It may not be easily verifiable unless X is simple. On the other hand, we

observe that the sequence {q%k(xkl , y
k
l )} is non-increasing for any fixed k. In practice, it

is thus reasonable to terminate the BCD method based on the progress of {q%k(xkl , y
k
l )}.

Another practical termination criterion for the BCD method is based on the relative change

of the sequence {(xkl , ykl )}, that is,

max

{
‖xkl − xkl−1‖∞
max(‖xkl ‖∞, 1)

,
‖ykl − ykl−1‖∞

max(‖ykl ‖∞, 1)

}
≤ εI (4.12)

for some εI > 0. In addition, we can terminate the outer iterations of the PD method once

‖xk − yk‖∞ ≤ εO (4.13)

for some εO > 0. Given that problem (4.10) is nonconvex, the BCD method may converge

to a stationary point. To enhance the performance of the BCD method, one may execute it

multiple times by restarting from a suitable perturbation of the current best approximate

solution. For example, at the kth outer iteration, let (xk, yk) be the current best approximate

solution of (4.10) found by the BCD method, and let rk = ‖yk‖0. Assume that rk > 1.

Before starting the (k+1)th outer iteration, one can re-apply the BCD method starting from

yk0 ∈ Arg min{‖y − yk‖ : ‖y‖0 ≤ rk − 1} and obtain a new approximate solution (x̃k, ỹk) of

(4.10). If q%k(x̃k, ỹk) is “sufficiently” smaller than q%k(xk, yk), one can set (xk, yk) := (x̃k, ỹk)

and repeat the above process. Otherwise, one can terminate the kth outer iteration and

start the next outer iteration. Finally, it follows from Proposition 4.2.1 that the subproblem

in step 1b) has a closed-form solution.

We next establish a convergence result regarding the inner iterations of the above PD

method. In particular, we will show that an approximate solution (xk, yk) of problem (4.10)
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satisfying (4.11) can be found by the BCD method described in steps 1a)-1d). For notational

convenience, we omit the index k from (4.10) and consider the BCD method for solving the

problem

min{q%(x, y) : x ∈ X , y ∈ Y} (4.14)

instead. Accordingly, we rename the iterates of the above BCD method and present it as

follows.

Block coordinate descent method for (4.14):

Choose an arbitrary initial point y0 ∈ Y. Set l = 0.

1) Solve xl+1 ∈ Arg min
x∈X

q%(x, y
l).

2) Solve yl+1 ∈ Arg min
y∈Y

q%(x
l+1, y).

3) Set l← l + 1 and go to step 1).

end

Lemma 4.3.1 Suppose that (x∗, y∗) ∈ <n×<|J | is a block coordinate minimizer of problem

(4.14), that is,

x∗ ∈ Arg min
x∈X

q%(x, y
∗), y∗ ∈ Arg min

y∈Y
q%(x

∗, y). (4.15)

Furthermore, assume that h’s are affine functions, and f and g’s are convex functions.

Then, (x∗, y∗) is a local minimizer of problem (4.14).

Proof. Let K = {i : y∗i 6= 0}, and let hx, hy be any two vectors such that x∗ + hx ∈ X ,

y∗ + hy ∈ Y and |(hy)i| < |y∗i | for all i ∈ K. We claim that

(y∗ − x∗J)Thy = 0. (4.16)

If ‖x∗J‖0 > r, we observe from the second relation of (4.15) and Proposition 4.2.1 that

‖y∗‖0 = r and y∗i = x∗J(i) for all i ∈ K, which, together with y∗ + hy ∈ Y and |(hy)i| < |y∗i |
for all i ∈ K, implies that (hy)i = 0 for all i /∈ K and hence (4.16) holds. On the other

hand, if ‖x∗J‖0 ≤ r, one can observe that y∗ = x∗J and thus (4.16) also holds. In addition,

by the assumption that h’s are affine functions, and f and g’s are convex functions, we

know that q% is convex. It then follows from the first relation of (4.15) and the first-order
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optimality condition that [∇xq%(x∗, y∗)]Thx ≥ 0. Using this inequality along with (4.16)

and the convexity of q%, we have

q%(x
∗ + hx, y

∗ + hy) ≥ q%(x
∗, y∗) + [∇xq%(x∗, y∗)]Thx + [∇yq%(x∗, y∗)]Thy

= q%(x
∗, y∗) + [∇xq%(x∗, y∗)]Thx + %(y∗ − x∗J)Thy ≥ q%(x

∗, y∗),

which together with the above choice of hx and hy implies that (x∗, y∗) is a local minimizer

of (4.14).

Theorem 4.3.2 Let {(xl, yl)} be the sequence generated by the above BCD method, and

let ε > 0 be given. Suppose that (x∗, y∗) is an accumulation point of {(xl, yl)}. Then the

following statements hold:

(a) (x∗, y∗) is a block coordinate minimizer of problem (4.14).

(b) There exists some l > 0 such that

‖PX (xl −∇xq%(xl, yl))− xl‖2 < ε.

(c) Furthermore, if h’s are affine functions, and f and g’s are convex functions, then

(x∗, y∗) is a local minimizer of problem (4.14).

Proof. We first show that statement (a) holds. Indeed, one can observe that

q%(x
l+1, yl) ≤ q%(x, y

l) ∀x ∈ X , (4.17)

q%(x
l, yl) ≤ q%(x

l, y) ∀y ∈ Y. (4.18)

It follows that

q%(x
l+1, yl+1) ≤ q%(x

l+1, yl) ≤ q%(x
l, yl) ∀l ≥ 1. (4.19)

Hence, the sequence {q%(xl, yl)} is non-increasing. Since (x∗, y∗) is an accumulation point

of {(xl, yl)}, there exists a subsequence L such that liml∈L→∞(xl, yl) = (x∗, y∗). We then

observe that {q%(xl, yl)}l∈L is bounded, which together with the monotonicity of {q%(xl, yl)}
implies that {q%(xl, yl)} is bounded below and hence liml→∞ q%(x

l, yl) exists. This observa-

tion, (4.19) and the continuity of q%(·, ·) yield

lim
l→∞

q%(x
l+1, yl) = lim

l→∞
q%(x

l, yl) = lim
l∈L→∞

q%(x
l, yl) = q%(x

∗, y∗).
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Using these relations, the continuity of q%(·, ·), and taking limits on both sides of (4.17) and

(4.18) as l ∈ L→∞, we have

q%(x
∗, y∗) ≤ q%(x, y

∗) ∀x ∈ X , (4.20)

q%(x
∗, y∗) ≤ q%(x

∗, y) ∀y ∈ Y. (4.21)

In addition, from the definition of Y, we know that ‖yl‖0 ≤ r, which immediately implies

‖y∗‖0 ≤ r. Also, x∗ ∈ X due to the closedness of X . This together with (4.20) and (4.21)

implies that (x∗, y∗) is a block coordinate minimizer of (4.14) and hence statement (a) holds.

Using (4.20) and the first-order optimality condition, we have

‖PX (x∗ −∇xq%(x∗, y∗))− x∗‖2 = 0.

By the continuity of PX (·) and ∇xq%(·, ·), and the relation liml∈L→∞(xl, yl) = (x∗, y∗), one

can see that

lim
l∈L→∞

‖PX (xl −∇xq%(xl, yl))− xl‖2 = 0,

and hence, statement (b) immediately follows. In addition, statement (c) holds due to

statement (a) and Lemma 4.3.1.

The following theorem establishes the convergence of the outer iterations of the PD

method for solving problem (1.6). In particular, we show that under some suitable assump-

tion, any accumulation point of the sequence generated by the PD method satisfies the

first-order optimality conditions of (1.6). Moreover, when the l0 part is the only nonconvex

part, we show that under some assumption, the accumulation point is a local minimizer of

(1.6).

Theorem 4.3.3 Assume that εk → 0. Let {(xk, yk)} be the sequence generated by the above

PD method, Ik = {ik1, . . . , ikr} be a set of r distinct indices in {1, . . . , |J |} such that (yk)i = 0

for any i /∈ Ik, and let Jk = {J(i) : i ∈ Ik}. Suppose that the level set XΥ := {x ∈ X :

f(x) ≤ Υ} is compact. Then, the following statements hold:

(a) The sequence {(xk, yk)} is bounded.

(b) Suppose (x∗, y∗) is an accumulation point of {(xk, yk)}. Then, x∗ = y∗ and x∗ is

a feasible point of problem (1.6). Moreover, there exists a subsequence K such that

{(xk, yk)}k∈K → (x∗, y∗), Ik = I∗ and Jk = J∗ := {J(i) : i ∈ I∗} for some index set

I∗ ⊆ {1, . . . , |J |} when k ∈ K is sufficiently large.
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(c) Let x∗, K and J∗ be defined above, and let J̄∗ = J \ J∗. Suppose that the Robinson

condition (4.1) holds at x∗ for such J̄∗. Then, {(λk, µk, $k)}k∈K is bounded, where

λk = %k[g(xk)]+, µk = %kh(xk), $k = %k(x
k
J − yk). (4.22)

Moreover, each accumulation point (λ∗, µ∗, $∗) of {(λk, µk, $k)}k∈K together with x∗

satisfies the first-order optimality conditions (4.3) with z∗j = $∗i for all j = J(i) ∈ J̄∗.
Further, if ‖x∗J‖0 = r, h’s are affine functions, and f and g’s are convex functions,

then x∗ is a local minimizer of problem (1.6).

Proof. In view of (4.9) and our choice of yk0 that is specified in step 3), one can observe

that

f(xk) +
%k
2

(‖[g(xk)]+‖22 + ‖h(xk)‖22 + ‖xkJ − yk‖22) = q%k(xk, yk) ≤ min
x∈X

q%k(x, yk0 ) ≤ Υ ∀k.
(4.23)

It immediately implies that {xk} ⊆ XΥ, and hence, {xk} is bounded. Moreover, we can

obtain from (4.23) that

‖xkJ − yk‖22 ≤ 2[Υ− f(xk)]/%k ≤ 2[Υ− min
x∈XΥ

f(x)]/%0,

which together with the boundedness of {xk} yields that {yk} is bounded. Therefore,

statement (a) follows. We next show that statement (b) also holds. Since (x∗, y∗) is an

accumulation point of {(xk, yk)}, there exists a subsequence {(xk, yk)}k∈K̄ → (x∗, y∗). Re-

call that Ik is an index set. It follows that {(ik1, . . . , ikr )}k∈K̄ is bounded for all k. Thus

there exists a subsequence K ⊆ K̄ such that {(ik1, . . . , ikr )}k∈K → (i∗1, . . . , i
∗
r) for some r

distinct indices i∗1, . . . , i
∗
r . Since ik1, . . . , i

k
r are r distinct integers, one can easily conclude

that (ik1, . . . , i
k
r ) = (i∗1, . . . , i

∗
r) for sufficiently large k ∈ K. Let I∗ = {i∗1, . . . , i∗r}. It

then follows that Ik = I∗ and Jk = J∗ when k ∈ K is sufficiently large, and moreover,

{(xk, yk)}k∈K → (x∗, y∗). Therefore, statement (b) holds. Finally, we show that statement

(c) holds. Indeed, let sk be the vector such that

PX (xk −∇xq%k(xk, yk)) = xk + sk.

It then follows from (4.11) that ‖sk‖2 ≤ εk for all k, which together with limk→∞ εk = 0

implies limk→∞ s
k = 0. By a well-known property of the projection map PX , we have

(x− xk − sk)T [xk −∇xq%k(xk, yk)− xk − sk] ≤ 0, ∀x ∈ X .
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Hence, we obtain that

−∇xq%k(xk, yk)− sk ∈ NX (xk + sk). (4.24)

Using this relation, (4.24), (4.22) and the definition of q%, we have

−∇f(xk)−∇g(xk)λk −∇h(xk)µk − IJ$k − sk ∈ NX (xk + sk). (4.25)

We now claim that {(λk, µk, $k)}k∈K is bounded. Suppose for contradiction that it is un-

bounded. By passing to a subsequence if necessary, we can assume that {‖(λk, µk, $k)‖2}k∈K
→ ∞. Let (λ̄k, µ̄k, $̄k) = (λk, µk, $k)/‖(λk, µk, $k)‖2. Without loss of generality, we as-

sume that {(λ̄k, µ̄k, $̄k)}k∈K → (λ̄, µ̄, $̄) (otherwise, one can consider its convergent subse-

quence). Clearly, ‖(λ̄, µ̄, $̄)‖2 = 1. Dividing both sides of (4.25) by ‖(λk, µk, $k)‖2, taking

limits as k ∈ K → ∞, and using the relation limk∈K→∞ s
k = 0 and the semicontinuity of

NX (·), we obtain that

−∇g(x∗)λ̄−∇h(x∗)µ̄− IJ$̄ ∈ NX (x∗). (4.26)

We can see from (4.2) and (4.22) that λ̄ ∈ <m+ , and λ̄i = 0 for i /∈ A(x∗). Also, from

Proposition 4.2.1 and the definitions of yk, Ik and Jk, one can observe that xkJk = ykIk and

hence $k
Ik

= 0. In addition, we know from statement (b) that Ik = I∗ when k ∈ K is

sufficiently large. Hence, $̄I∗ = 0. Since Robinson’s condition (4.1) is satisfied at x∗, there

exist d ∈ TX (x∗) and v ∈ <m such that vi ≤ 0 for i ∈ A(x∗), and

g′(x∗)d− v = −λ̄, h′(x∗)d = −µ̄, (IJ̄∗)
Td = −$̄Ī∗ ,

where Ī∗ is the complement of I∗ in {1, . . . , |J |}. Recall that λ̄ ∈ <m+ , λ̄i = 0 for i /∈ A(x∗),

and vi ≤ 0 for i ∈ A(x∗). Hence, vT λ̄ ≤ 0. In addition, since $̄I∗ = 0, one has IJ$̄ =

IJ̄∗$̄Ī∗ . Using these relations, (4.26), and the facts that d ∈ TX (x∗) and $̄I∗ = 0, we have

‖λ̄‖22 + ‖µ̄‖22 + ‖$̄‖22 = −[(−λ̄)T λ̄+ (−µ̄)T µ̄+ (−$̄Ī∗)
T $̄Ī∗ ]

= −[(g′(x∗)d− v)T λ̄+ (h′(x∗)d)T µ̄+ ((IJ̄∗)
Td)T $̄Ī∗ ]

= dT (−∇g(x∗)λ̄−∇h(x∗)µ̄− IJ$̄) + vT λ̄ ≤ 0.

It yields (λ̄, µ̄, $̄) = (0, 0, 0), which contradicts the identity ‖(λ̄, µ̄, $̄)‖2 = 1. There-

fore, the subsequence {(λk, µk, $k)}k∈K is bounded. Let (λ∗, µ∗, $∗) be an accumulation

point of {(λk, µk, $k)}k∈K . By passing to a subsequence if necessary, we can assume that
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(λk, µk, $k) → (λ∗, µ∗, $∗) as k ∈ K → ∞. Taking limits on both sides of (4.25) as

k ∈ K →∞, and using the relations limk∈K→∞ s
k = 0 and the semicontinuity of NX (·), we

see that the first relation of (4.3) holds with z∗ = IJ$
∗. By a similar argument as above,

one can show that $∗I∗ = 0. This together with the definitions of J∗ and J̄∗ implies that z∗

satisfies

z∗j =

{
0 if j ∈ J̄ ∪ J∗,
$∗i if j = J(i) ∈ J̄∗,

where J̄ is the complement of J in {1, . . . , n}. In addition, we see from (4.22) that λki ≥ 0

and λki gi(x
k) = 0 for all i, which immediately lead to the second relation of (4.3). Hence,

(λ∗, µ∗, $∗) together with x∗ satisfies (4.3). Suppose now that ‖x∗J‖0 = r. Then, J ∗ =

{J̃∗ ⊆ J : |J̃∗| = r, x∗j = 0,∀j /∈ J̃∗} = {J∗}. Therefore, the assumptions of Theorem 4.1.3

hold. It then follows from Theorem 4.1.3 that x∗ is a local minimizer of (1.6).

4.3.2 Penalty decomposition method for problem (1.7)

In this subsection we propose a PD method for solving problem (1.7) and establish some

convergence results for it.

We observe that problem (1.7) can be equivalently reformulated as

min
x∈X ,y∈<|J|

{f(x) + ν‖y‖0 : g(x) ≤ 0, h(x) = 0, xJ − y = 0}. (4.27)

The associated quadratic penalty function for (4.27) is defined as

p%(x, y) := f(x) + ν‖y‖0 +
%

2
(‖[g(x)]+‖22 + ‖h(x)‖22 + ‖xJ − y‖22) ∀x ∈ X , y ∈ <|J | (4.28)

for some penalty parameter % > 0.

We are now ready to present the PD method for solving (4.27) (or, equivalently, (1.7))

in which each penalty subproblem is approximately solved by a BCD method.

Penalty decomposition method for (1.7):

Let {εk} be a positive decreasing sequence. Let %0 > 0, σ > 1 be given, and let q% be defined

in (4.9). Choose an arbitrary y0
0 ∈ <|J | and a constant Υ such that Υ ≥ max{f(xfeas) +

ν‖xfeas‖0,minx∈X p%0(x, y0
0)}. Set k = 0.

1) Set l = 0 and apply the BCD method to find an approximate solution (xk, yk) ∈
X × <|J | for the penalty subproblem

min{p%k(x, y) : x ∈ X , y ∈ <|J |} (4.29)
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by performing steps 1a)-1d):

1a) Solve xkl+1 ∈ Arg min
x∈X

p%k(x, ykl ).

1b) Solve ykl+1 ∈ Arg min
y∈<|J|

p%k(xkl+1, y).

1c) Set (xk, yk) := (xkl+1, y
k
l+1). If (xk, yk) satisfies

‖PX (xk −∇xq%k(xk, yk))− xk‖2 ≤ εk, (4.30)

then go to step 2).

1d) Set l← l + 1 and go to step 1a).

2) Set %k+1 := σ%k.

3) If min
x∈X

p%k+1
(x, yk) > Υ, set yk+1

0 := xfeas. Otherwise, set yk+1
0 := yk.

4) Set k ← k + 1 and go to step 1).

end

Remark. The practical termination criteria proposed in Subsection 4.3.1 can also be

applied to this PD method. In addition, one can apply a similar strategy as mentioned in

Subsection 4.3.1 to enhance the performance of the BCD method for solving (4.29). Finally,

in view of Proposition 4.2.2, the BCD subproblem in step 1b) has a closed-form solution.

We next establish a convergence result regarding the inner iterations of the above PD

method. In particular, we will show that an approximate solution (xk, yk) of problem

(4.29) satisfying (4.30) can be found by the BCD method described in steps 1a)-1d). For

convenience of presentation, we omit the index k from (4.29) and consider the BCD method

for solving the following problem:

min{p%(x, y) : x ∈ X , y ∈ <|J |} (4.31)

instead. Accordingly, we rename the iterates of the above BCD method. We can observe that

the resulting BCD method is the same as the one presented in Subsection 4.3.1 except that

p% and <|J | replace q% and Y, respectively. For the sake of brevity, we omit the presentation

of this BCD method.
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Lemma 4.3.4 Suppose that (x∗, y∗) ∈ <n×<|J | is a block coordinate minimizer of problem

(4.31), that is,

x∗ ∈ Arg min
x∈X

p%(x, y
∗), y∗ ∈ Arg min

y∈<|J|
p%(x

∗, y). (4.32)

Furthermore, assume that h’s are affine functions, and f and g’s are convex functions.

Then, (x∗, y∗) is a local minimizer of problem (4.31).

Proof. Let K = {i : y∗i 6= 0}, and let hx, hy be any two vectors such that x∗ + hx ∈ X ,

|(hy)i| < ν/(ρ|x∗J(i)|+ 1) for any i /∈ K and |(hy)i| < |y∗i | for all i ∈ K. We observe from the

second relation of (4.32) and Proposition 4.2.2 that y∗i = x∗J(i) for all i ∈ K. Also, for the

above choice of hy, one has y∗i + (hy)i 6= 0 for all i ∈ K. Hence, ‖y∗i + (hy)i‖0 = ‖y∗i ‖0 for

every i ∈ K. Using these relations and the definition of hy, we can see that

ρ(y∗ − x∗J)Thy + ν‖y∗ + hy‖0 − ν‖y∗‖0 = −ρ
∑
i/∈K

x∗J(i)(hy)i + ν
∑
i/∈K

‖(hy)i‖0 ≥ 0. (4.33)

Let q% be defined in (4.9). By the first relation of (4.32) and a similar argument as in

Lemma 4.3.1, we have [∇xq%(x∗, y∗)]Thx ≥ 0. Using this inequality along with (4.33) and

the convexity of q%, we have

p%(x
∗ + hx, y

∗ + hy) = q%(x
∗ + hx, y

∗ + hy) + ν‖y∗ + hy‖0

≥ q%(x
∗, y∗) + [∇xq%(x∗, y∗)]Thx + [∇yq%(x∗, y∗)]Thy + ν‖y∗ + hy‖0

≥ p%(x
∗, y∗) + %(y∗ − x∗J)Thy + ν‖y∗ + hy‖0 − ν‖y∗‖0

≥ p%(x
∗, y∗),

which together with our choice of hx and hy implies that (x∗, y∗) is a local minimizer of

(4.31).

Theorem 4.3.5 Let {(xl, yl)} be the sequence generated by the above BCD method, and

let ε > 0 be given. Suppose that (x∗, y∗) is an accumulation point of {(xl, yl)}. Then the

following statements hold:

(a) (x∗, y∗) is a block coordinate minimizer of problem (4.31).

(b) There exists some l > 0 such that

‖PX (xl −∇xq%(xl, yl))− xl‖2 < ε

where the function q% is defined in (4.9).
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(c) Furthermore, if h’s are affine functions, and f and g’s are convex functions, then

(x∗, y∗) is a local minimizer of problem (4.31).

Proof. We first show that statement (a) holds. Indeed, one can observe that

p%(x
l+1, yl) ≤ p%(x, y

l) ∀x ∈ X , (4.34)

p%(x
l, yl) ≤ p%(x

l, y) ∀y ∈ <|J |. (4.35)

Using these relations and a similar argument as in the proof of Theorem 4.3.2, one can show

that liml→∞ p%(x
l, yl) exists, and moreover,

lim
l→∞

p%(x
l, yl) = lim

l→∞
p%(x

l+1, yl). (4.36)

Since (x∗, y∗) is an accumulation point of {(xl, yl)}, there exists a subsequence L such that

liml∈L→∞(xl, yl) = (x∗, y∗) and moreover, x∗ ∈ X due to the closedness of X . For notational

convenience, let

F (x) := f(x) +
%

2
(‖[g(x)]+‖22 + ‖h(x)‖22).

It then follows from (4.28) that

p%(x, y) = F (x) + ν‖y‖0 +
%

2
‖xJ − y‖22, ∀x ∈ X , y ∈ <|J |. (4.37)

Since liml∈L y
l = y∗, one has ‖yl‖0 ≥ ‖y∗‖0 for sufficiently large l ∈ L. Using this relation,

(4.35) and (4.37), we obtain that, when l ∈ L is sufficiently large,

p%(x
l, y) ≥ p%(x

l, yl) = F (xl) + ν‖yl‖0 +
%

2
‖xlJ − yl‖22 ≥ F (xl) + ν‖y∗‖0 +

%

2
‖xlJ − yl‖22.

Upon taking limits on both sides of the above inequality as l ∈ L → ∞ and using the

continuity of F , one has

p%(x
∗, y) ≥ F (x∗) + ν‖y∗‖0 +

%

2
‖x∗J − y∗‖22 = p%(x

∗, y∗), ∀y ∈ <|J |. (4.38)

In addition, it follows from (4.34) and (4.37) that

F (x) + 1
2‖xJ − y

l‖22 = p%(x, y
l)− ν‖yl‖0 ≥ p%(x

l+1, yl)− ν‖yl‖0

= F (xl+1) + 1
2‖x

l+1
J − yl‖22, ∀x ∈ X .

(4.39)
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Since {‖yl‖0}l∈L is bounded, there exists a subsequence L̄ ⊆ L such that liml∈L̄→∞ ‖yl‖0
exists. Then we have

lim
l∈L̄→∞

F (xl+1) + 1
2‖x

l+1
J − yl‖22 = lim

l∈L̄→∞
p%(x

l+1, yl)− ν‖yl‖0

= lim
l∈L̄→∞

p%(x
l+1, yl)− ν lim

l∈L̄→∞
‖yl‖0 = lim

l∈L̄→∞
p%(x

l, yl)− ν lim
l∈L̄→∞

‖yl‖0

= lim
l∈L̄→∞

p%(x
l, yl)− ν‖yl‖0 = lim

l∈L̄→∞
F (xl) + 1

2‖x
l
J − yl‖22 = F (x∗) + 1

2‖x
∗
J − y∗‖22,

where the third equality is due to (4.36). Using this relation and taking limits on both sides

of (4.39) as l ∈ L̄→∞, we further have

F (x) +
1

2
‖xJ − y∗‖22 ≥ F (x∗) +

1

2
‖x∗J − y∗‖22, ∀x ∈ X ,

which together with (4.28) yields

p%(x, y
∗) ≥ p%(x

∗, y∗), ∀x ∈ X .

This relation along with (4.38) implies that (x∗, y∗) is a block coordinate minimizer of (4.31)

and hence statement (a) holds. Statement (b) can be similarly proved as that of Theorem

4.3.2. In addition, statement (c) holds due to statement (a) and Lemma 4.3.4.

We next establish the convergence of the outer iterations of the PD method for solving

problem (1.7). In particular, we show that under some suitable assumption, any accumula-

tion point of the sequence generated by the PD method satisfies the first-order optimality

conditions of (1.7). Moreover, when the l0 part is the only nonconvex part, we show that

the accumulation point is a local minimizer of (1.7).

Theorem 4.3.6 Assume that εk → 0. Let {(xk, yk)} be the sequence generated by the above

PD method. Suppose that the level set XΥ := {x ∈ X : f(x) ≤ Υ} is compact. Then, the

following statements hold:

(a) The sequence {(xk, yk)} is bounded;

(b) Suppose (x∗, y∗) is an accumulation point of {(xk, yk)}. Then, x∗ = y∗ and x∗ is a

feasible point of problem (1.7).

(c) Let (x∗, y∗) be defined above. Suppose that {(xk, yk)}k∈K → (x∗, y∗) for some sub-

sequence K. Let J∗ = {j ∈ J : x∗j 6= 0}, J̄∗ = J \ J∗. Assume that the Robinson

condition (4.5) holds at x∗ for such J̄∗. Then, {(λk, µk, $k)}k∈K is bounded, where

λk = %k[g(xk)]+, µk = %kh(xk), $k = %k(x
k
J − yk).
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Moreover, each accumulation point (λ∗, µ∗, $∗) of {(λk, µk, $k)}k∈K together with x∗

satisfies the first-order optimality condition (4.3) with z∗j = $∗i for all j = J(i) ∈ J̄∗.
Further, if h’s are affine functions, and f and g’s are convex functions, then x∗ is a

local minimizer of problem (1.7).

Proof. Statement (a) and (b) can be similarly proved as those of Theorem 4.3.3. We

now show that statement (c) holds. Let I∗ = {i : J(i) ∈ J∗}. From Proposition 4.2.2 and

the definitions of yk and J∗, we can observe that ykI∗ = xkJ∗ when k ∈ K is sufficiently

large. Hence, $k
I∗ = 0 for sufficiently large k ∈ K. The rest of the proof for the first two

conclusions of this statement is similar to that of statement (c) of Theorem 4.3.3. The last

conclusion of this statement holds due to its second conclusion and Theorem 4.1.4.

4.4 Numerical results

In this subsection, we conduct numerical experiments to test the performance of our

PD methods proposed in Subsection 4.3 by applying them to sparse logistic regression,

sparse inverse covariance selection, and compressed sensing problems. The codes of all the

methods implemented in this subsection are written in Matlab, which are available online

at www.math.sfu.ca/ ∼zhaosong. All experiments are performed in Matlab 7.11.0 (2010b)

on a workstation with an Intel Xeon E5410 CPU (2.33 GHz) and 8GB RAM running Red

Hat Enterprise Linux (kernel 2.6.18).

4.4.1 Sparse logistic regression problem

In this subsection, we apply the PD method studied in Subsection 4.3.1. In the literature,

one common approach for finding an approximate solution to (1.5) is by solving the following

l1 regularization problem:

min
v,w

lavg(v, w) + λ‖w‖1 (4.40)

for some regularization parameter λ ≥ 0 (see, for example, [80, 54, 102, 82, 85, 119]). Our

aim below is to apply the PD method studied in Subsection 4.3.1 to solve (1.5) directly and

compare the results with one of the l1 relaxation solvers, that is, SLEP [85].

Letting x = (v, w), J = {2, . . . , p+ 1} and f(x) = lavg(x1, xJ), we can see that problem

(1.5) is in the form of (1.6). Therefore, the PD method proposed in Subsection 4.3.1 can
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be suitably applied to solve (1.5). Also, we observe that the main computation effort of the

PD method when applied to (1.5) lies in solving the subproblem arising in step 1a), which

is in the form of

min
x

{
lavg(x1, xJ) +

%

2
‖x− c‖22 : x ∈ <p+1

}
(4.41)

for some % > 0 and c ∈ <p+1. To efficiently solve (4.41), we apply the nonmonotone projected

gradient method proposed in [9, Algorithm 2.2]; in particular, we set its parameter M = 2

and terminate the method when ‖∇F (x)‖2/max{|F (x)|, 1} ≤ 10−4, where F (x) denotes the

objective function of (4.41).

We now address the initialization and the termination criteria for our PD method when

applied to (1.5). In particular, we randomly generate z ∈ <p+1 such that ‖zJ‖0 ≤ r and

set the initial point y0
0 = z. We choose the initial penalty parameter %0 to be 0.1, and

set the parameter σ =
√

10. In addition, we use (4.12) and (4.13) as the inner and outer

termination criteria for the PD method and set their accuracy parameters εI and εO to be

5× 10−4 and 10−3, respectively.

We next conduct numerical experiments to test the performance of our PD method for

solving (1.5) on some real and random data. We also compare the quality of the approximate

solutions of (1.5) obtained by our method with that of (4.40) found by a first-order solver

SLEP [85]. For the latter method, we set opts.mFlag=1, opts.lFlag=1 and opts.tFlag=2.

And the rest of its parameters are set by default.

In the first experiment, we compare the solution quality of our PD method with SLEP on

three small- or medium-sized benchmark data sets which are from the UCI machine learning

bench market repository [98] and other sources [66]. The first data set is the colon tumor

gene expression data [66] with more features than samples; the second one is the ionosphere

data [98] with less features than samples; and the third one is the Internet advertisements

data [98] with roughly same magnitude of features as samples. We discard the samples with

missing data and standardize each data set so that the sample mean is zero and the sample

variance is one. For each data set, we first apply SLEP to solve problem (4.40) with four

different values of λ, which are the same ones as used in [80], namely, 0.5λmax, 0.1λmax,

0.05λmax, and 0.01λmax, where λmax is the upper bound on the useful range of λ that is

defined in [80]. For each such λ, let w∗λ be the approximate optimal w obtained by SLEP.

We then apply our PD method to solve problem (1.5) with r = ‖w∗λ‖0 so that the resulting

approximate optimal w is at least as sparse as w∗λ.

To compare the solution quality of the above two methods, we introduce a criterion, that
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Table 4.1: Computational results on three real data sets
Data Features Samples SLEP PD

p n λ/λmax r lavg Error (%) Time lavg Error (%) Time
Colon 2000 62 0.5 7 0.4398 17.74 0.2 0.4126 12.9 9.1

0.1 22 0.1326 1.61 0.5 0.0150 0 6.0
0.05 25 0.0664 0 0.6 0.0108 0 5.0
0.01 28 0.0134 0 1.3 0.0057 0 5.4

Ionosphere 34 351 0.5 3 0.4804 17.38 0.1 0.3466 13.39 0.7
0.1 11 0.3062 11.40 0.1 0.2490 9.12 1.0
0.05 14 0.2505 9.12 0.1 0.2002 8.26 1.1
0.01 24 0.1846 6.55 0.4 0.1710 5.98 1.7

Advertisements 1430 2359 0.5 3 0.2915 12.04 2.3 0.2578 7.21 31.9
0.1 36 0.1399 4.11 14.2 0.1110 4.11 56.0
0.05 67 0.1042 2.92 21.6 0.0681 2.92 74.1
0.01 197 0.0475 1.10 153.0 0.0249 1.10 77.4

is, error rate. Given any model variables (v, w) and a sample vector z ∈ <p, the outcome

predicted by (v, w) for z is given by

φ(z) = sgn(wT z + v),

where

sgn(t) =

{
+1 if t > 0,

−1 otherwise.

Recall that zi and bi are the given samples and outcomes for i = 1, . . . , n. The error rate of

(v, w) for predicting the outcomes b1, . . . , bn is defined as

Error :=

{
n∑
i=1

‖φ(zi)− bi‖0/n

}
× 100%. (4.42)

The computational results are presented in Table 4.1. In detail, the name and dimensions

of each data set are given in the first three columns. The fourth column gives the ratio

between λ and its upper bound λmax. The fifth column lists the value of r, that is, the

cardinality of w∗λ which is defined above. In addition, the average logistic loss, the error

rate and the CPU time (in seconds) for both SLEP and PD are reported in columns six to

eleven. We can observe that, although SLEP is faster than the PD method in most cases,

the PD method substantially outperforms SLEP in terms of the solution quality since it

generally achieves lower average logistic loss and error rate while the cardinality of both

solutions is the same.

The out-of-sample error rate is often used to evaluate the quality of a model vector,

which is a slight modification of (4.42) by taking sum over the testing samples rather than

the training samples. It usually depends on the quality and amount of training samples. For

example, when the ratio between number of training samples and features is small, the out-

of-sample error rate is usually high for most of models. Due to this reason, the above data
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(b) Error rate for training data
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(c) Error rate for testing data

Figure 4.1: Sparse recovery.

sets may not be appropriate for evaluating out-of-sample error rate. Instead, we download

a real data called “German” from the UCI machine learning bench market repository [98].

This data set contains 1, 000 samples and 24 features, which has a reasonably high sample-to-

feature ratio. It is thus a suitable data set to evaluate out-of-sample error rate. We randomly

partition those samples into two parts: one consisting of 900 samples used as training data

and another consisting of 100 samples used as testing data. Similarly as above, we first apply

SLEP to (4.40) with a sequence of suitably chosen λ to obtain solutions with cardinalities

from 1 to 24. For PD, we simply set r to be 1 to 24. In this way, the solutions of PD and

SLEP are of the same cardinality. The results of this experiment are presented in Figure

4.1. We can see that PD generally outperforms SLEP in terms of solution quality since it

achieves smaller average logistic loss and lower error rate for both training and testing data.

In next experiment, we test our PD method on the random data sets of three different

sizes. For each size, we randomly generate the data set consisting of 100 instances. In

particular, the first data set has more features than samples; the second data set has more

samples than features; and the last data set has equal number of features as samples. The

samples {z1, . . . , zn} and the corresponding outcomes b1, . . . , bn are generated in the same

manner as described in [80]. In detail, for each instance we choose equal number of positive

and negative samples, that is, m+ = m− = m/2, where m+ (resp., m−) is the number of

samples with outcome +1 (resp., −1). The features of positive (resp., negative) samples are

independent and identically distributed, drawn from a normal distribution N(µ, 1), where µ

is in turn drawn from a uniform distribution on [0, 1] (resp., [−1, 0]). For each such instance,

similar to the previous experiment, we first apply SLEP to solve problem (4.40) with five

different values of λ, which are 0.9λmax, 0.7λmax, 0.5λmax, 0.3λmax and 0.1λmax. For each

such λ, let w∗λ be the approximate optimal w obtained by SLEP. We then apply our PD

method to solve problem (1.5) with r = ‖w∗λ‖0 so that the resulting approximate optimal
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Table 4.2: Computational results on random data sets
Size SLEP PD
n× p λ/λmax r lavg Error (%) Time lavg Error (%) Time

2000× 5000 0.9 27.7 0.6359 8.01 4.3 0.1802 6.98 89.6
0.7 91.4 0.5046 3.43 11.2 0.0550 2.37 159.6
0.5 161.1 0.3827 1.98 17.7 0.0075 0.07 295.3
0.3 238.9 0.2639 1.23 21.8 0.0022 0 216.1
0.1 330.1 0.1289 0.46 19.6 0.0015 0 130.5

5000× 2000 0.9 17.7 0.6380 8.49 3.5 0.2254 8.09 154.3
0.7 65.7 0.5036 3.16 10.1 0.0372 1.55 296.6
0.5 121.0 0.3764 1.48 16.4 0.0042 0 299.8
0.3 180.8 0.2517 0.57 22.3 0.0018 0 190.0
0.1 255.2 0.1114 0.04 23.7 0.0013 0 124.2

5000× 5000 0.9 30.7 0.6341 7.02 4.8 0.1761 6.55 125.8
0.7 105.7 0.5022 2.95 12.9 0.0355 1.47 255.3
0.5 192.0 0.3793 1.63 20.3 0.0042 0 325.4
0.3 278.3 0.2592 0.88 25.1 0.0020 0 187.4
0.1 397.0 0.1231 0.19 24.4 0.0015 0 113.4

w is at least as sparse as w∗λ. The average results of each data set over 100 instances are

reported in Table 4.2. We also observe that the PD method is slower than SLEP, but it has

better solution quality than SLEP in terms of average logistic loss and error rate.

In summary, the above experiments demonstrate that the quality of the approximate

solution of (1.5) obtained by our PD method is generally better than that of (4.40) found by

SLEP when the same cardinality is considered. This observation is actually not surprising

as (4.40) is a relaxation of (1.5).

4.4.2 Sparse inverse covariance selection problem

In this subsection, we apply the PD method proposed in Subsection 4.3.1. In the liter-

ature, one common approach for finding an approximate solution to (1.4) is by solving the

following l1 regularization problem:

max
X�0

log detX −Σt • X −
∑

(i,j)∈Ω̄

ρij |Xij |

s.t. Xij = 0 ∀(i, j) ∈ Ω,

(4.43)

where {ρij}(i,j)∈Ω̄ is a set of regularization parameters (see, for example, [41, 43, 4, 87, 88,

62, 132, 86]). Our goal below is to apply the PD method studied in Subsection 4.3.1 to

solve (1.4) directly and compare the results with one of the l1 relaxation methods, that is,

the proximal point algorithm (PPA) [132].
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Letting X =
{
X ∈ Sp+ : Xij = 0, (i, j) ∈ Ω

}
and J = Ω̄, we clearly see that problem

(1.4) is in the form of (1.6) and thus it can be suitably solved by the PD method proposed

in Subsection 4.3.1 with

Y =

Y ∈ Sp :
∑

(i,j)∈Ω̄

‖Yij‖0 ≤ r

 .

Notice that the main computation effort of the PD method when applied to (1.4) lies in

solving the subproblem arising in step 1a), which is in the form of

min
X�0

{
− log detX +

%

2
‖X − C‖2F : Xij = 0 ∀(i, j) ∈ Ω

}
(4.44)

for some % > 0 and C ∈ Sp. Given that problem (4.44) generally does not have a closed-form

solution, we now slightly modify the above sets X and Y by replacing them by

X = Sp+, Y =

Y ∈ Sp :
∑

(i,j)∈Ω̄

‖Yij‖0 ≤ r, Yij = 0, (i, j) ∈ Ω

 ,

respectively, and then apply the PD method presented in Subsection 4.3.1 to solve (1.4).

For this PD method, the subproblem arising in step 1a) is now in the form of

min
X

{
− log detX +

%

2
‖X − C‖2F : X � 0

}
(4.45)

for some % > 0 and C ∈ Sp. It can be shown that problem (4.45) has a closed-form solution,

which is given by VD(x∗)V T , where x∗i = (λi +
√
λ2
i + 4/%)/2 for all i and VD(λ)V T

is the eigenvalue decomposition of C for some λ ∈ <p (see, for example, [132]). Also, it

follows from Proposition 4.2.1 that the subproblem arising in step 1b) for the above Y has

a closed-form solution.

We now address the initialization and the termination criteria for the above PD method.

In particular, we set the initial point Y 0
0 = (D̃(Σt))−1, the initial penalty parameter %0 = 1,

and the parameter σ =
√

10. In addition, we use (4.13) and

|q%k(xkl+1, y
k
l+1)− q%k(xkl , y

k
l )|

max{|q%k(xkl , y
k
l )|, 1}

≤ εI

as the outer and inner termination criteria for the PD method, and set the associated

accuracy parameters εO = 10−4 and εI = 10−4, 10−3 for the random and real data below,

respectively.
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We next conduct numerical experiments to test the performance of our PD method for

solving (1.4) on some random and real data. We also compare the quality of the approxi-

mate solutions of (1.4) obtained by our method with that of (4.43) found by the proximal

point algorithm (PPA) [132]. Both methods call the LAPACK routine dsyevd.f [81] for

computing the full eigenvalue decomposition of a symmetric matrix, which is usually faster

than the Matlab’s eig routine when p is larger than 500. For PPA, we set Tol = 10−6 and

use the default values for all other parameters.

In the first experiment, we compare the solution quality of our PD method with PPA

on a set of random instances which are generated in a similar manner as described in

[41, 87, 88, 132, 86]. In particular, we first generate a true covariance matrix Σt ∈ Sp++

such that its inverse (Σt)−1 is with the prescribed density δ, and set

Ω =
{

(i, j) : (Σt)−1
ij = 0, |i− j| ≥ bp/2c

}
.

We then generate a matrix B ∈ Sp by letting

B = Σt + τV,

where V ∈ Sp contains pseudo-random values drawn from a uniform distribution on the

interval [−1, 1], and τ is a small positive number. Finally, we obtain the following sample

covariance matrix:

Σt = B −min{λmin(B)− ϑ, 0}I,

where ϑ is a small positive number. Specifically, we choose τ = 0.15, ϑ = 1.0e−4, δ = 10%,

50% and 100%, respectively. Clearly, δ = 100% means that Ω = ∅, that is, none of zero

entries of the actual sparse inverse covariance matrix is known beforehand. In addition, for

all (i, j) ∈ Ω̄, we set ρij = ρΩ̄ for some ρΩ̄ > 0. For each instance, we first apply PPA to

solve (4.43) for four values of ρΩ̄, which are 0.01, 0.1, 1, and 10. For each ρΩ̄, let X̃∗ be

the solution obtained by PPA. We then apply our PD method to solve problem (1.4) with

r =
∑

(i,j)∈Ω̄ ‖X̃∗ij‖0 so that the resulting solution is at least as sparse as X̃∗.

As mentioned in [86], to evaluate how well the true inverse covariance matrix (Σt)−1

is recovered by a matrix X ∈ Sp++, one can compute the normalized entropy loss which is

defined as follows:

Loss :=
1

p
(Σt • X − log det(ΣtX)− p).

The results of PPA and the PD method on these instances are presented in Tables 4.3-4.5,

respectively. In each table, the order p of Σt is given in column one. The size of Ω is
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Table 4.3: Computational results for δ = 10%
Problem PPA PD
p |Ω| ρΩ̄ r Likelihood Loss Time Likelihood Loss Time

500 56724 0.01 183876 −950.88 2.4594 34.1 −936.45 2.3920 2.5
0.10 45018 −999.89 2.5749 44.8 −978.61 2.4498 5.3
1.00 5540 −1046.44 2.9190 66.2 −1032.79 2.6380 24.8
10.0 2608 −1471.67 4.2442 75.1 −1129.50 2.8845 55.5

1000 226702 0.01 745470 −2247.14 3.1240 150.2 −2220.47 3.0486 13.1
0.10 186602 −2344.03 3.2291 158.7 −2301.12 3.1224 19.8
1.00 29110 −2405.88 3.5034 349.8 −2371.68 3.2743 59.1
10.0 9604 −3094.57 4.6834 395.9 −2515.80 3.4243 129.5

1500 509978 0.01 1686128 −3647.71 3.4894 373.7 −3607.23 3.4083 35.7
0.10 438146 −3799.02 3.5933 303.6 −3731.17 3.5059 44.9
1.00 61222 −3873.93 3.8319 907.4 −3832.88 3.6226 155.3
10.0 17360 −4780.33 4.9264 698.8 −3924.94 3.7146 328.0

2000 905240 0.01 3012206 −5177.80 3.7803 780.0 −5126.09 3.7046 65.5
0.10 822714 −5375.21 3.8797 657.5 −5282.37 3.7901 94.3
1.00 126604 −5457.90 4.0919 907.4 −5424.66 3.9713 200.2
10.0 29954 −6535.54 5.1130 1397.4 −5532.03 4.0019 588.0

given in column two. The values of ρΩ̄ and r are given in columns three and four. The log-

likelihood (i.e., the objective value of (1.4)), the normalized entropy loss and the CPU time

(in seconds) of PPA and the PD method are given in the last six columns, respectively. We

observe that our PD method is substantially faster than PPA for these instances. Moreover,

it outperforms PPA in terms of solution quality since it achieves larger log-likelihood and

smaller normalized entropy loss.

Our second experiment is similar to the one conducted in [41, 88]. We intend to compare

sparse recoverability of our PD method with PPA. To this aim, we specialize p = 30 and

(Σt)−1 ∈ Sp++ to be the matrix with diagonal entries around one and a few randomly chosen,

nonzero off-diagonal entries equal to +1 or −1. And the sample covariance matrix Σt is

then similarly generated as above. In addition, we set Ω = {(i, j) : (Σt)−1
ij = 0, |i−j| ≥ 15}

and ρij = ρΩ̄ for all (i, j) ∈ Ω̄, where ρΩ̄ is the smallest number such that the approximate

solution obtained by PPA shares the same number of nonzero off-diagonal entries as (Σt)−1.

For problem (1.4), we choose r =
∑

(i,j)∈Ω̄ ‖(Σt)−1
ij ‖0 (i.e., the number of nonzero off-

diagonal entries of (Σt)−1). PPA and the PD method are then applied to solve (4.43) and

(1.4) with the aforementioned ρij and r, respectively. In Figure 4.2, we plot the sparsity

patterns of the original inverse covariance matrix (Σt)−1, the noisy inverse sample covariance

matrix Σt−1
, and the approximate solutions to (4.43) and (1.4) obtained by PPA and our

PD method, respectively. We first observe that the sparsity of both solutions is the same as
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Table 4.4: Computational results for δ = 50%
Problem PPA PD
p |Ω| ρΩ̄ r Likelihood Loss Time Likelihood Loss Time

500 37738 0.01 202226 −947.33 3.1774 37.2 −935.11 3.1134 2.2
0.10 50118 −1001.23 3.3040 41.8 −978.03 3.1662 4.7
1.00 11810 −1052.09 3.6779 81.1 −101.80 3.2889 14.5
10.0 5032 −1500.00 5.0486 71.1 −1041.64 3.3966 28.1

1000 152512 0.01 816070 −2225.875 3.8864 149.7 −2201.98 3.8126 12.1
0.10 203686 −2335.81 4.0029 131.0 −2288.11 3.8913 17.2
1.00 46928 −2400.81 4.2945 372.7 −2349.02 4.0085 44.1
10.0 17370 −3128.63 5.5159 265.2 −2390.09 4.1138 84.3

1500 340656 0.01 1851266 −3649.78 4.2553 361.2 −3616.72 4.1787 32.0
0.10 475146 −3815.09 4.3668 303.4 −3743.19 4.2725 42.3
1.00 42902 −3895.09 4.6025 1341.0 −3874.68 4.4823 155.8
10.0 7430 −4759.67 5.6739 881.2 −4253.34 4.6876 468.6

2000 605990 0.01 3301648 −5149.12 4.5763 801.3 −5104.27 4.5006 61.7
0.10 893410 −5371.26 4.6851 620.0 −5269.06 4.5969 82.4
1.00 153984 −5456.54 4.9033 1426.0 −5406.89 4.7614 175.9
10.0 33456 −6560.54 5.9405 1552.3 −5512.48 4.7982 565.5

(Σt)−1. Moreover, the solution of our PD method completely recovers the sparsity patterns

of (Σt)−1, but the solution of PPA misrecovers a few patterns. In addition, we present

the log-likelihood and the normalized entropy loss of these solutions in Table 4.6. One can

see that the solution of our PD method achieves much larger log-likelihood and smaller

normalized entropy loss.

In the third experiment, we aim to compare the performance of our PD method with

the PPA on two gene expression data sets that have been widely used in the literature (see,

for example, [67, 105, 135, 48, 86]). We first pre-process the data by the same procedure

as described in [86] to obtain a sample covariance matrix Σt, and set Ω = ∅ and ρij = ρΩ̄

for some ρΩ̄ > 0. We apply PPA to solve problem (4.43) with ρΩ̄ = 0.01, 0.05, 0.1, 0.5, 0.7

and 0.9, respectively. For each ρΩ̄, we choose r to be the number of nonzero off-diagonal

entries of the solution of PPA, which implies that the solution of the PD method when

applied to (1.4) is at least as sparse as that of PPA. As the true covariance matrix Σt is

unknown for these data sets, we now modify the normalized entropy loss defined above by

replacing Σt by Σt. The results of PPA and our PD method on these two data sets are

presented in Table 4.7. In detail, the name and dimension of each data set are given in the

first three columns. The values of ρΩ̄ and r are listed in the fourth and fifth columns. The

log-likelihood, the normalized entropy loss and the CPU time (in seconds) of PPA and the

PD method are given in the last six columns, respectively. We can observe that our PD
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Table 4.5: Computational results for δ = 100%
Problem PPA PD
p |Ω| ρΩ̄ r Likelihood Loss Time Likelihood Loss Time

500 0 0.01 238232 −930.00 3.5345 36.0 −918.52 3.4838 1.3
0.10 57064 −1000.78 3.6826 43.6 −973.06 3.5313 4.0
1.00 15474 −1053.04 4.0675 76.1 −1006.95 3.6500 10.6
10.0 7448 −1511.88 5.4613 51.4 −1023.82 3.7319 18.1

1000 0 0.01 963400 −2188.06 4.1983 156.3 −2161.58 4.1383 5.3
0.10 231424 −2335.09 4.3387 122.4 −2277.90 4.2045 16.8
1.00 47528 −2401.69 4.6304 329.6 −2349.74 4.3449 42.6
10.0 18156 −3127.94 5.8521 244.1 −2388.22 4.4466 79.0

1500 0 0.01 2181060 −3585.21 4.5878 364.1 −3545.43 4.5260 12.3
0.10 551150 −3806.07 4.7234 288.2 −3717.25 4.6059 41.3
1.00 102512 −3883.94 4.9709 912.8 −3826.26 4.7537 93.5
10.0 31526 −4821.26 6.0886 848.7 −3898.50 4.8824 185.4

2000 0 0.01 3892592 −5075.44 4.8867 734.1 −5021.95 4.8222 23.8
0.10 1027584 −5367.86 5.0183 590.6 −5246.45 4.9138 76.1
1.00 122394 −5456.64 5.2330 1705.8 −5422.48 5.1168 197.8
10.0 25298 −6531.08 6.2571 1803.4 −5636.74 5.3492 417.1

Table 4.6: Numerical results for sparse recovery
nnz Likelihood Loss

PPA 24 −35.45 0.178
PD 24 −29.56 0.008

method is generally faster than PPA. Moreover, our PD method outperforms PPA in terms

of log-likelihood and normalized entropy loss.

As a summary, the above experiments show that the quality of the approximate solution

of (1.4) obtained by our PD method is generally better than that of (4.43) found by PPA

when the same cardinality is considered.

4.4.3 Compressed sensing

In this subsection, we apply the PD methods proposed in Subsection 4.3 to solve the

compressed sensing (CS) problem. One popular approach for finding an approximate solu-

tion to (1.1) is to solve the following l1 regularization problem:

min
x∈<p
{‖x‖1 : Ax = b}, (4.46)

where A is a full row rank matrix (see, for example, [130, 35]). Our aim below is to apply

the PD method studied in Subsection 4.3.2 to solve problem (1.1) directly and compare

with one of the l1 relaxation solvers, that is, SPGL1 [130].
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Figure 4.2: Sparse recovery.

Clearly, problem (1.1) is in the form of (1.7) and thus the PD method proposed in

Subsection 4.3.2 can be suitably applied to solve (1.1). Also, one can observe that the main

computation effort of the PD method when applied to (1.1) lies in solving the subproblem

arising in step 1a), which is in the form of

min
x
{‖x− c‖22 : Ax = b} (4.47)

for some c ∈ <p. It is well known that problem (4.47) has a closed-form solution given by

x∗ = c−AT (AAT )−1(Ac− b).

We now address the initialization and the termination criteria for the PD method. In

particular, we choose y0
0 to be a feasible point of (1.1) obtained by executing the Matlab

command A \ b. Also, we set the initial penalty parameter %0 = 0.1 and the parameter

σ = 10. In addition, we use (4.12) and

‖xk − yk‖∞
max{|p%k(xk, yk)|, 1}

≤ εO

as the inner and outer termination criteria, and set the associated accuracy parameters

εI = 10−5 and εO = 10−6, respectively.
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Table 4.7: Computational results on two real data sets
Data Genes Samples PPA PD

p n ρΩ̄ r Likelihood Loss Time Likelihood Loss Time
Lymph 587 148 0.01 144294 790.12 23.24 101.5 1035.24 22.79 38.0

0.05 67474 174.86 24.35 85.2 716.97 23.27 31.5
0.10 38504 −47.03 24.73 66.7 389.65 23.85 26.1
0.50 4440 −561.38 25.52 33.2 −260.32 24.91 24.8
0.70 940 −642.05 25.63 26.9 −511.70 25.30 22.0
0.90 146 −684.59 25.70 22.0 −598.05 25.51 14.9

Leukemia 1255 72 0.01 249216 3229.75 28.25 705.7 3555.38 28.12 177.1
0.05 169144 1308.38 29.85 491.1 2996.95 28.45 189.2
0.10 107180 505.02 30.53 501.4 2531.62 28.82 202.8
0.50 37914 −931.59 31.65 345.9 797.23 30.16 256.6
0.70 4764 −1367.22 31.84 125.7 −1012.48 31.48 271.6
0.90 24 −1465.70 31.90 110.6 −1301.99 31.68 187.8

We next conduct experiment to test the performance of our PD method for finding a

sparse approximate solution to problem (1.1) on the data sets from Sparco [131]. 1 We also

compare the quality of such sparse approximate solution with that of the one found by a

first-order solver SPGL1 [130] applied to (4.46). For the latter method, we use the default

value for all parameters. To evaluate the quality of these sparse approximate solutions, we

adopt a similar criterion as described in [106, 22]. Indeed, suppose that B be a basis matrix

for a given signal f for which we wish to find a sparse recovery. Given a sparse vector x, the

corresponding sparse approximate signal is fx = Bx. The associated mean squared error is

defined as

MSE := ‖fx − f‖2/p,

We only report the computational results for 10 data sets in Table 4.8 since the performance

difference between PD and SPGL1 on the other data sets is similar to that on these data

sets. In detail, the data name and the size of data are given in the first three columns. The

MSE, the solution cardinality and the CPU time for both methods are reported in columns

four to nine, respectively. It can be observed that SPGL1 is generally faster than PD, but

PD generally provides much more sparse solution while with lower MSE. Thus, the resulting

signal by PD is less noisy. For example, we plot in Figure 4.3 the results for data blknheavi

whose actual sparse representation is pre-known. It can be seen that the signal recovered

by SPGL1 has more noise than the one by PD.

In the remainder of this subsection we consider the CS problem with noisy observation.

One popular approach for finding an approximate solution to (1.2) is to solve the following

1Roughly speaking, a sparse approximate solution x to (1.1) means that x is sparse and Ax ≈ b.
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Table 4.8: Computational results on data from Sparco
Data Size PD SPGL1

p n MSE nnz Time MSE nnz Time

blkheavi 128 128 1.28e− 07 12 0.1 4.53e− 03 128 1.5
jitter 1000 200 4.50e− 08 3 0.1 1.38e− 07 28 0.1
gausspike 1024 256 2.63e− 07 32 1.5 1.09e− 08 143 0.2
sgnspike 2560 600 3.84e− 08 20 0.2 8.08e− 08 101 0.1
blknheavi 1024 1024 3.19e− 09 12 0.4 4.22e− 03 1024 14.3
cosspike 2048 1024 8.97e− 07 121 0.3 8.40e− 08 413 0.2
angiogram 10000 10000 2.74e− 06 575 2.4 5.77e− 07 1094 0.5
blurspike 16384 16384 2.97e− 03 7906 10.1 3.15e− 03 16384 20.6
srcsep1 57344 29166 3.41e− 05 9736 743.6 1.39e− 08 33887 102.5
srcsep2 86016 29166 6.93e− 04 12485 1005.6 2.80e− 04 52539 136.2
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(f) Signal recovered by PD

Figure 4.3: Sparse recovery.

l1 regularization problem:

min
x∈<p

1

2
‖Ax− b‖22 + λ‖x‖1, (4.48)

where λ ≥ 0 is a regularization parameter (see, for example, [61, 68, 79]). Our goal below is

to apply the PD method studied in Subsection 4.3.1 to solve (1.2) directly and compare the

results with one of the l1 relaxation solvers GPSR [61] and the iterative hard-thresholding

algorithm (IHT) [11, 12] which also solves (1.2) directly.

Clearly, problem (1.2) is in the form of (1.6) and thus the PD method proposed in

Subsection 4.3 can be suitably applied to solve (1.2). The main computation effort of the

PD method when applied to (1.2) lies in solving the subproblem arising in step 1a), which

is an unconstrained quadratic programming problem that can be solved by the conjugate
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gradient method. We now address the initialization and the termination criteria for the PD

method. In particular, we randomly choose an initial point y0
0 ∈ <p such that ‖y0

0‖0 ≤ r.

Also, we set the initial penalty parameter %0 = 1 and the parameter σ =
√

10. In addition,

we use
|q%k(xkl+1, y

k
l+1)− q%k(xkl , y

k
l )|

max{|q%k(xkl , y
k
l )|, 1}

≤ εI

and
‖xk − yk‖∞

max{|q%k(xk, yk)|, 1}
≤ εO

as the inner and outer termination criteria for the PD method, and set their associated

accuracy parameters εI = 10−2 and εO = 10−3.

We next conduct numerical experiments to test the performance of our PD method for

solving problem (1.2) on random data. We also compare the quality of the approximate

solutions of (1.2) obtained by our PD method and the iterative hard-thresholding algorithm

(IHT) [11, 12] with that of (4.48) found by a first-order solver GPSR [61]. For IHT, we set

stopTol = 10−6 and use the default values for all other parameters. And for GPSR, all the

parameters are set as their default values.

We first randomly generate a data matrix A ∈ <n×p and an observation vector b ∈ <n

according to a standard Gaussian distribution. Then we apply GPSR to problem (4.48)

with a set of p distinct λ’s so that the cardinality of the resulting approximate solution

gradually increases from 1 to p. Accordingly, we apply our PD method and IHT to problem

(1.2) with r = 1, . . . , p. It shall be mentioned that a warm-start strategy is applied to all

three methods. That is, an approximate solution of problem (1.2) (resp., (4.46)) for current

r (resp., λ) is used as the initial point for the PD method and IHT (resp., GPSR) when

applied to the problem for next r (resp., λ). The average computational results of both

methods over 100 random instances with (n, p) = (1024, 4096) are plotted in Figure 4.4.

In detail, we plot the average residual ‖Ax − b‖2 against the cardinality in the left graph

and the average accumulated CPU time 2 (in seconds) against the cardinality in the right

graph. We observe that the residuals of the approximate solutions of (4.48) obtained by our

PD method and IHT are almost equal and substantially smaller than that of (1.2) found

by GPSR when the same cardinality is considered. In addition, we can see that GPSR is

faster than the other two methods.

2For a cardinality r, the corresponding accumulated CPU time is the total CPU time used to compute
approximate solutions of problem (1.2) or (4.46) with cardinality from 1 to r.
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We also conduct a similar experiment as above except that A is randomly generated with

orthonormal rows. The results are plotted in Figure 4.5. We observe that the PD method

and IHT are generally slower than GPSR, but they have better solution quality than GPSR

in terms of residuals.
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Figure 4.4: Trade-off curves.
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4.5 Concluding remarks

In this chapter we propose penalty decomposition methods for general l0 minimization

problems in which each subproblem is solved by a block coordinate descend method. Un-

der some suitable assumptions, we establish that any accumulation point of the sequence

generated by the PD methods satisfies the first-order optimality conditions of the problems.

Furthermore, for the problems in which the l0 part is the only nonconvex part, we show

that such an accumulation point is a local minimizer of the problems. The computational

results on compressed sensing, sparse logistic regression and sparse inverse covariance selec-

tion problems demonstrate that when solutions of same cardinality are sought, our approach

applied to the l0-based models generally has better solution quality and/or speed than the

existing approaches that are applied to the corresponding l1-based models.

We shall remark that the augmented Lagrangian decomposition methods can be devel-

oped for solving l0 minimization problems (1.6) and (1.7) simply by replacing the quadratic

penalty functions in the PD methods by augmented Lagrangian functions. Nevertheless,

as observed in our experiments, their practical performance is generally worse than the PD

methods.



Chapter 5

Wavelet Frame Based Image

Restoration

The theory of (tight) wavelet frames has been extensively studied in the past twenty

years and they are currently widely used for image restoration and other image processing

and analysis problems. The success of wavelet frame based models, including balanced ap-

proach [28, 15] and analysis based approach [19, 55, 121], is due to their capability of sparsely

approximating piecewise smooth functions like images. Motivated by the balanced approach

and analysis based approach, we shall propose a wavelet frame based l0 minimization model,

where the l0-“norm” of the frame coefficients is penalized. We adapt the penalty decompo-

sition (PD) method of [89] to solve the proposed optimization problem. Some convergence

analysis of the adapted PD method will also be provided. Numerical results showed that

the proposed model solved by the PD method can generate images with better quality than

those obtained by either analysis based approach or balanced approach in terms of restoring

sharp features as well as maintaining smoothness of the recovered images.

This chapter is based on the paper [136] co-authored with Bin Dong and Zhaosong Lu.

5.1 Introduction to wavelet frame based image restoration

Mathematics has been playing an important role in the modern developments of image

processing and analysis. Image restoration, including image denoising, deblurring, inpaint-

ing, tomography, etc., is one of the most important areas in image processing and analysis.

94
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Its major purpose is to enhance the quality of a given image that is corrupted in various

ways during the process of imaging, acquisition and communication; and enable us to see

crucial but subtle objects residing in the image. Therefore, image restoration is an impor-

tant step to take towards accurate interpretations of the physical world and making optimal

decisions.

5.1.1 Image restoration

Image restoration is often formulated as a linear inverse problem. For the simplicity of

the notations, we denote the images as vectors in Rn with n equals to the total number of

pixels. A typical image restoration problem is formulated as

f = Au+ η, (5.1)

where f ∈ Rd is the observed image (or measurements), η denotes white Gaussian noise with

variance σ2, and A ∈ Rd×n is some linear operator. The objective is to find the unknown

true image u ∈ Rn from the observed image f . Typically, the linear operator in (5.1) is

a convolution operator for image deconvolution problems, a projection operator for image

inpainting and partial Radon transform for computed tomography.

To solve u from (5.1), one of the most natural choices is the following least square

problem

min
u∈Rn

‖Au− f‖22,

where ‖ ·‖2 denotes the l2-norm. This is, however, not a good idea in general. Taking image

deconvolution problem as an example, since the matrix A is ill-conditioned, the noise η

possessed by f will be amplified after solving the above least squares problem. Therefore, in

order to suppress the effect of noise and also preserve key features of the image, e.g., edges,

various regularization based optimization models were proposed in the literature. Among all

regularization based models for image restoration, variational methods and wavelet frames

based approaches are widely adopted and have been proven successful.

The trend of variational methods and partial differential equation (PDE) based image

processing started with the refined Rudin-Osher-Fatemi (ROF) model [112] which penalizes

the total variation (TV) of u. Many of the current PDE based methods for image denoising

and decomposition utilize TV regularization for its beneficial edge preserving property (see

e.g., [93, 115, 100]). The ROF model is especially effective on restoring images that are



CHAPTER 5. WAVELET FRAME BASED IMAGE RESTORATION 96

piecewise constant, e.g., binary images. Other types of variational models were also proposed

after the ROF model. We refer the interested readers to [63, 27, 93, 100, 32, 3, 33, 133] and

the references therein for more details.

Wavelet frame based approaches are relatively new and came from a different path. The

basic idea for wavelet frame based approaches is that images can be sparsely approximated

by properly designed wavelet frames, and hence, the regularization used for wavelet frame

based models is the l1-norm of frame coefficients. Although wavelet frame based approaches

take similar forms as variational methods, they were generally considered as different ap-

proaches than variational methods because, among many other reasons, wavelet frame based

approaches is defined for discrete data, while variational methods assume all variables are

functions. This impression was changed by the recent paper [122, 17], where the authors es-

tablished a rigorous connection between one of the wavelet frame based approaches, namely

the analysis based approach, and variational models. It was shown in [17] that the analy-

sis based approach can be regarded as a finite difference approximation of a certain type of

general variational model, and such approximation will be exact when image resolution goes

to infinity. Furthermore, the solutions of the analysis based approach also approximate, in

some proper sense, the solutions of corresponding variational model. Such connections not

only grant geometric interpretation to wavelet frame based approaches, but also lead to

even wider applications of them, e.g., image segmentation [50] and 3D surface reconstruc-

tion from unorganized point sets [52]. On the other hand, the discretization provided by

wavelet frames was shown, in e.g., [28, 30, 18, 19, 17, 51], to be superior than the standard

discretizations for some of the variational models, due to the multiresolution structure and

redundancy of wavelet frames which enable wavelet frame based models to adaptively choose

a proper differential operators in different regions of a given image according to the order of

the singularity of the underlying solutions. For these reasons, as well as the fact that digital

images are always discrete, we use wavelet frames as the tool for image restoration in this

chapter.

5.1.2 Wavelet frame based approaches

We now briefly introduce the concept of tight frames and tight wavelet frame, and then

recall some of the frame based image restoration models. Interesting readers should consult

[111, 44, 45] for theories of frames and wavelet frames, [116] for a short survey on theory

and applications of frames, and [51] for a more detailed survey.
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A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X
〈f, h〉h ∀f ∈ L2(R),

where 〈·, ·〉 is the inner product of L2(R). The tight frame X is called a tight wavelet frame

if the elements of X are generated by dilations and translations of finitely many functions

called framelets. The construction of framelets can be obtained by the unitary extension

principle (UEP) of [111]. In our implementations, we will mainly use the piecewise linear

B-spline framelets constructed by [111]. Given a 1-dimensional framelet system for L2(R),

the s-dimensional tight wavelet frame system for L2(Rs) can be easily constructed by using

tensor products of 1-dimensional framelets (see e.g., [44, 51]).

In the discrete setting, we will use W ∈ Rm×n with m ≥ n to denote fast tensor product

framelet decomposition and use W T to denote the fast reconstruction. Then by the unitary

extension principle [111], we have W TW = I, i.e., u = W TWu for any image u. We will

further denote an L-level framelet decomposition of u as

Wu = (. . . ,Wl,ju, . . .)
T for 0 ≤ l ≤ L− 1, j ∈ I,

where I denotes the index set of all framelet bands and Wl,ju ∈ Rn. Under such notation,

we have m = L × |I| × n. We will also use α ∈ Rm to denote the frame coefficients, i.e.,

α = Wu, where

α = (. . . , αl,j , . . .)
T , with αl,j = Wl,ju.

More details on discrete algorithms of framelet transforms can be found in [51].

Since tight wavelet frame systems are redundant systems (i.e., m > n), the representation

of u in the frame domain is not unique. Therefore, there are mainly three formulations

utilizing the sparseness of the frame coefficients, namely, analysis based approach, synthesis

based approach, and balanced approach. Detailed and integrated descriptions of these three

methods can be found in [51].

The wavelet frame based image processing started from [28, 29] for high-resolution image

reconstructions, where the proposed algorithm was later analyzed in [15]. These work lead

to the following balanced approach [16]

min
α∈Rm

1

2
‖AW Tα− f‖2D +

κ

2
‖(I −WW T )α‖22 +

∥∥∥∥∥∥∥
L−1∑
l=0

∑
j∈I

λl,j |αl,j |p
1/p

∥∥∥∥∥∥∥
1

, (5.2)
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where p = 1 or 2, 0 ≤ κ ≤ ∞, λl,j ≥ 0 is a scalar parameter, and ‖ · ‖D denotes the weighted

l2-norm with D positive definite. This formulation is referred to as the balanced approach

because it balances the sparsity of the frame coefficient and the smoothness of the image.

The balanced approach (5.2) was applied to various applications in [26, 31, 118, 75].

When κ = 0, only the sparsity of the frame coefficient is penalized. This is called the

synthesis based approach, as the image is synthesized by the sparsest coefficient vector (see

e.g., [46, 56, 57, 59, 60]). When κ = +∞, only the sparsity of canonical wavelet frame

coefficients, which corresponds to the smoothness of the underlying image, is penalized. For

this case, problem (5.2) can be rewritten as

min
u∈Rn

1

2
‖Au− f‖2D +

∥∥∥∥∥∥∥
L−1∑
l=0

∑
j∈I

λl,j |Wl,ju|p
1/p

∥∥∥∥∥∥∥
1

. (5.3)

This is called the analysis based approach, as the coefficient is in range of the analysis

operator (see, for example, [19, 55, 121]).

Note that if we take p = 1 for the last term of (5.2) and (5.3), it is known as the

anisotropic l1-norm of the frame coefficients, which is the case used for earlier frame based

image restoration models. The case p = 2, called isotropic l1-norm of the frame coefficients,

was proposed in [17] and was shown to be superior than anisotropic l1-norm. Therefore, we

will choose p = 2 for our simulations.

5.1.3 Motivations

For most of the variational models and wavelet frame based approaches, the choice of

norm for the regularization term is the l1-norm. Taking wavelet frame based approaches for

example, the attempt of minimizing the l1-norm of the frame coefficients is to increase their

sparsity, which is the right thing to do since piecewise smooth functions like images can

be sparsely approximated by tight wavelet frames. Although the l1-norm of a vector does

not directly correspond to its cardinality in contrast to l0-“norm”, it can be regarded as a

convex approximation to l0-“norm”. Such approximation is also an excellent approximation

for many cases. It was shown by [21], which generalizes the exciting results of compressed

sensing [23, 25, 24, 53], that for a given wavelet frame, if the operator A satisfies certain

conditions, and if the unknown true image can be sparsely approximated by the given

wavelet frame, one can robustly recover the unknown image by penalizing the l1-norm of

the frame coefficients.



CHAPTER 5. WAVELET FRAME BASED IMAGE RESTORATION 99

For image restoration, however, the conditions on A as required by [21] are not generally

satisfied, which means penalizing l0-“norm” and l1-norm may produce different solutions.

Although both the balanced approach (5.2) and analysis based approach (5.3) can generate

restored images with very high quality, one natural question is whether using l0-“norm”

instead of l1-norm can further improve the results.

On the other hand, it was observed, in e.g., [51] (also see Figure 5.3 and Figure 5.4),

that balanced approach (5.2) generally generates images with sharper features like edges

than the analysis based approach (5.3), because balanced approach emphasizes more on the

sparsity of the frame coefficients. However, the recovered images from balanced approach

usually contains more artifact (e.g., oscillations) than analysis based approach, because the

regularization term of the analysis based approach has a direct link to the regularity of u (as

proven by [17]) comparing to balanced approach. Although such trade-off can be controlled

by the parameter κ in the balanced approach (5.2), it is not very easy to do in practice.

Furthermore, when a large κ is chosen, some of the numerical algorithms solving (5.2) will

converge slower than choosing a smaller κ (see e.g., [118, 51]).

Since penalizing l1-norm of Wu ensures smoothness while not as much sparsity as bal-

anced approach, we propose to penalize l0-“norm” of Wu instead. Intuitively, this should

provide us a balance between sharpness of the features and smoothness for the recovered

images. The difficulty here is that l0 minimization problems are generally hard to solve.

Recently, penalty decomposition (PD) methods were proposed by [89] for a general l0 min-

imization problem that can be used to solve our proposed model due to its generality.

Computational results of [89] demonstrated that their methods generally outperform the

existing methods for compressed sensing problems, sparse logistic regression and sparse in-

verse covariance selection problems in terms of quality of solutions and/or computational

efficiency. This motivates us to adapt one of their PD methods to solve our proposed l0 min-

imization problem. Same as proposed in [89], the block coordinate descent (BCD) method

is used to solve each penalty subproblem of the PD method. However, the convergence

analysis of the BCD method was missing from [89] when l0-“norm” appears in the objective

function. Indeed, the convergence of the BCD method generally requires the continuity of

the objective function as discussed in [127]. In addition, the BCD method for the optimiza-

tion problem with the nonconvex objective function has only been proved to converge to a

stationary point which is not a local minimizer in general (see [127] for details).

We now leave the details of the model and algorithm to Subsection 5.2 and details of



CHAPTER 5. WAVELET FRAME BASED IMAGE RESTORATION 100

simulations to Subsection 5.3.

5.2 Model and algorithm

We start by introducing some simple notations. The space of symmetric n× n matrices

will be denoted by Sn. If X ∈ Sn is positive definite, we write X � 0. We denote by I

the identity matrix, whose dimension should be clear from the context. Given an index set

J ⊆ {1, . . . , n}, xJ denotes the sub-vector formed by the entries of x indexed by J . For

any real vector, ‖ · ‖0 and ‖ · ‖2 denote the cardinality (i.e., the number of nonzero entries)

and the Euclidean norm of the vector, respectively. In addition, ‖x‖D denotes the weighted

l2-norm defined by ‖x‖D =
√
xTDx with D � 0.

5.2.1 Model

We now propose the following optimization model for image restoration problems,

min
u∈Y

1

2
‖Au− f‖2D +

∑
i

λi‖(Wu)i‖0, (5.4)

where Y is some convex subset of Rn. Here we are using the multi-index i and denote (Wu)i

(similarly for λi) the value of Wu at a given pixel location within a certain level and band

of wavelet frame transform. Comparing to the analysis based model, we are now penalizing

the number of nonzero elements of Wu. As mentioned earlier that if we emphasize too

much on the sparsity of the frame coefficients as in the balanced approach or synthesis

based approach, the recovered image will contain artifacts, although features like edges will

be sharp; if we emphasize too much on the regularity of u like in analysis based approach,

features in the recovered images will be slightly blurred, although artifacts and noise will be

nicely suppressed. Therefore, by penalizing the l0-“norm” of Wu as in (5.4), we can indeed

achieve a better balance between sharpness of features and smoothness of the recovered

images.

Given that the l0-“norm” is an integer-valued, discontinuous and nonconvex function,

problem (5.6) is generally hard to solve. Some algorithms proposed in the literature, e.g.,

iterative hard thresholding algorithms [11, 12, 72], cannot be directly applied to the proposed

model (5.4) unless W = I. Recently, Lu and Zhang [89] proposed a penalty decomposition

(PD) method which has also been introduced in Chapter 4 to solve the following general l0
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minimization problem:

min
x∈X

f(x) + ν‖xJ‖0 (5.5)

for some ν > 0 controlling the sparsity of the solution, where X is a closed convex set in

Rn, f : Rn → R is a continuously differentiable function, and ‖xJ‖0 denotes the cardinality

of the subvector formed by the entries of x indexed by J . In view of [89], we reformulate

(5.4) as

min
u∈Y,α=Wu

1

2
‖Au− f‖2D +

∑
i

λi‖αi‖0 (5.6)

and then we can adapt the PD method of [89] to tackle problem (5.4) directly. Same as

proposed in [89], the BCD method is used to solve each penalty subproblem of the PD

method. In addition, we apply the non-monotone gradient projection method proposed in

[9] to solve one of the subproblem in the BCD method.

5.2.2 Algorithm for Problem (5.6)

In this subsection, we discuss how the PD method proposed in [89] solving (5.5) can be

adapted to solve problem (5.6). Letting x = (u1, . . . , un, α1, . . . , αm), J = {n+1, . . . , n+m},
J̄ = {1, . . . , n}, f(x) = 1

2‖AxJ̄−f‖
2
D and X = {x ∈ Rn+m : xJ = WxJ̄ and xJ̄ ∈ Y}, we can

clearly see that the problem (5.6) takes the same form as (5.5). In addition, there obviously

exists a feasible point (ufeas, αfeas) for problem (5.6) when Y 6= ∅, i.e. there exist (ufeas, αfeas)

such that Wufeas = αfeas and ufeas ∈ Y. In particular, one can choose ufeas and αfeas both

to be zero vectors when applying the PD method studied in [89] to solve the problem (5.6).

We now discuss the implementation details of the PD method when solving the proposed

wavelet frame based model (5.6).

Given a penalty parameter % > 0, the associated quadratic penalty function for (5.6) is

defined as

p%(u, α) :=
1

2
‖Au− f‖2D +

∑
i

λi‖αi‖0 +
%

2
‖Wu− α‖22. (5.7)

Then we have the following PD method for problem (5.6) where each penalty subproblem

is approximately solved by a BCD method (see [89] for details).

Penalty Decomposition (PD) Method for (5.6):

Let %0 > 0, δ > 1 be given. Choose an arbitrary α0,0 ∈ Rm and a constant Υ such that

Υ ≥ max{1
2‖Au

feas − f‖2D +
∑

i λi‖αfeas
i ‖0,minu∈Y p%0(u, α0,0)}. Set k = 0.
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1) Set q = 0 and apply the BCD method to find an approximate solution (uk, αk) ∈
Y × Rm for the penalty subproblem

min{p%k(u, α) : u ∈ Y, α ∈ Rm} (5.8)

by performing steps 1a)-1d):

1a) Solve uk,q+1 ∈ Arg min
u∈Y

p%k(u, αk,q).

1b) Solve αk,q+1 ∈ Arg min
α∈Rn

p%k(uk,q+1, α).

1c) If (uk,q+1, αk,q+1) satisfies the stopping criteria of the BCD method, set

(uk, αk) := (uk,q+1, αk,q+1)

and go to step 2).

1d) Otherwise, set q ← q + 1 and go to step 1a).

2) If (uk, αk) satisfies the stopping criteria of the PD method, stop and output uk. Oth-

erwise, set%k+1 := δ%k.

3) If min
u∈Y

p%k+1
(u, αk) > Υ, set αk+1,0 := αfeas. Otherwise, set αk+1,0 := αk.

4) Set k ← k + 1 and go to step 1).

end

Remark. In the practical implementation, we terminate the inner iterations of the BCD

method based on the relative progress of p%k(uk,q, αk,q) which can be described as follows:

|p%k(uk,q, αk,q)− p%k(uk,q+1, αk,q+1)|
max(|p%k(uk,q+1, αk,q+1)|, 1)

≤ εI .

Moreover, we terminate the outer iterations of the PD method once

‖Wuk − αk‖2
max(|p%k(uk, αk)|, 1)

≤ εO.

Next we discuss how to solve two subproblems arising in step 1a) and 1b) of the BCD

method.
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The BCD subproblem in step 1a)

The BCD subproblem in step 1a) is in the form of

min
u∈Y

1

2
〈u,Qu〉 − 〈c, u〉 (5.9)

for some Q � 0 and c ∈ Rn. Obviously, when Y = Rn, problem (5.9) is an unconstrained

quadratic programming problem that can be solved by the conjugate gradient method.

Nevertheless, the pixel values of an image are usually bounded. For example, the pixel

values of a CT image should be always greater than or equal to zero and the pixel values

of a grayscale image is between [0, 255]. Then the corresponding Y of these two examples

are Y = {x ∈ Rn : xi ≥ lb ∀i = 1, . . . , n} with lb = 0 and Y = {x ∈ Rn : lb ≤ xi ≤ ub ∀i =

1, . . . , n} with lb = 0 and ub = 255. To solve these types of the constrained quadratic

programming problems, we apply the nonmonotone projected gradient method proposed in

[9] and terminate it using the duality gap and dual feasibility conditions (if necessary).

For Y = {x ∈ Rn : xi ≥ lb ∀i = 1, . . . , n}, given a Lagrangian multiplier β ∈ Rn, the

associated Lagrangian dual function of (5.9) can be written as:

L(u, β) = w(u) + βT (lb− u),

where w(u) = 1
2〈u,Qu〉 − 〈c, u〉. Based on the Karush-Kuhn-Tucker (KKT) conditions, for

an optimal solution u∗ of (5.9), there exists a Lagrangian multiplier β∗ such that

Qu∗ − c− β∗ = 0,

β∗i ≥ 0 ∀i = 1, . . . , n,

(lb− u∗i )β∗i = 0 ∀i = 1, . . . , n.

Then at the sth iteration of the projected gradient method, we let βs = Qus − c. As {us}
approaches the solution u∗ of (5.9), {βs} approaches the Lagrangian multiplier β∗ and the

corresponding duality gap at each iteration is given by
∑n

i=1 β
s
i (lb − usi ). Therefore, we

terminate the projected gradient method when

|
∑n

i=1 β
s
i (lb− usi )|

max(|w(us)|, 1)
≤ εD and

−min(βs, 0)

max(‖βs‖2, 1)
≤ εF

for some tolerances εD, εF > 0.

For Y = {x ∈ Rn : lb ≤ xi ≤ ub ∀i = 1, . . . , n}, given Lagrangian multipliers β, γ ∈ Rn,

the associated Lagrangian function of (5.9) can be written as:

L(u, β, γ) = w(u) + βT (lb− u) + γT (u− ub),
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where w(u) is defined as above. Based on the KKT conditions, for an optimal solution u∗

of (5.9), there exist Lagrangian multipliers β∗ and γ∗ such that

Qu∗ − c− β∗ + γ∗ = 0,

β∗i ≥ 0 ∀i = 1, . . . , n,

γ∗i ≥ 0 ∀i = 1, . . . , n,

(lb− u∗i )β∗i = 0 ∀i = 1, . . . , n,

(u∗i − ub)γ∗i = 0 ∀i = 1, . . . , n.

Then at the sth iteration of the projected gradient method, we let βs = max(Qus − c, 0)

and γs = −min(Qus − c, 0). As {us} approaches the solution u∗ of (5.9), {βs} and {γs}
approach Lagrangian multipliers β∗ and γ∗. In addition, the corresponding duality gap

at each iteration is given by
∑n

i=1(βsi (lb − usi ) + γsi (u
s
i − ub)) and the duality feasibility is

automatically satisfied. Therefore, we terminate the projected gradient method when

|
∑n

i=1(βsi (lb− usi ) + γsi (u
s
i − ub))|

max(|w(us)|, 1)
≤ εD

for some tolerance εD > 0.

The BCD subproblem in step 1b)

For λi ≥ 0, % > 0 and c ∈ Rm, the BCD subproblem in step 1b) is in the form of

min
α∈Rm

∑
i

λi‖αi‖0 +
%

2

∑
i

(αi − ci)2.

By [89, Proposition 2.2] (see also [2, 11] for example), the solution of the above subproblem

is in the following set:

α∗ ∈ Hλ̃ (c) with λ̃i :=

√
2λi
%

for all i, (5.10)

where Hγ(·) denotes a component-wise hard thresholding operator with threshold γ:

[Hγ(x)]i =


0 if |xi| < γi,

{0, xi} if |xi| = γi,

xi if |xi| > γi.

(5.11)

Note that Hγ is defined as a set-valued mapping [110, Chapter 5] which is different (only

when |xi| = γi) from the conventional definition of hard thresholding operator.
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5.2.3 Convergence of the BCD method

In this subsection, we establish some convergence results regarding the inner iterations,

i.e., Step 1), of the PD method. In particular, we will show that the fixed point of the BCD

method is a local minimizer of (5.8). Moreover, under certain conditions, we prove that

the sequence {(uk,q, αk,q)} generated by the BCD method converges and the limit is a local

minimizer of (5.8).

For convenience of presentation, we omit the index k from (5.8) and consider the BCD

method for solving the following problem:

min{p%(u, α) : u ∈ Y, α ∈ Rm}. (5.12)

Without loss of generality, we assume that D = I. We now relabel and simplify the BCD

method described in step 1a)-1c) in the PD method as follows.uq+1 = arg minu∈Y
1
2‖Au− f‖

2
2 + %

2‖Wu− αq‖22,

αq+1 ∈ Arg minα
∑

i λi‖αi‖0 + %
2‖α−Wuq+1‖22.

(5.13)

We first show that the fixed point of the above BCD method is a local minimizer of (5.8).

Theorem 5.2.1 Given a fixed point of the BCD method (5.13), denoted as (u∗, α∗), then

(u∗, α∗) is a local minimizer of p%(u, α).

Proof. We first note that the first subproblem of (5.13) gives us

δ〈AT (Au∗ − f) + %W T (Wu∗ − α∗), v − u∗〉 ≥ 0 for all v ∈ Y. (5.14)

By applying (5.10), the second subproblem of (5.13) leads to:

α∗ ∈ Hλ̃ (Wu∗) . (5.15)

Define index sets

Γ0 := {i : α∗i = 0} and Γ1 := {i : α∗i 6= 0}.

It then follows from (5.15) and (5.11) that|(Wu∗)i| ≤ λ̃i for i ∈ Γ0

(Wu∗)i = α∗i for i ∈ Γ1,
(5.16)
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where (Wu∗)i denotes ith entry of Wu∗.

Consider a small deformation vector (δh, δg) such that u∗ + δh ∈ Y. Using (5.14), we

have

p%(u
∗ + δh, α∗ + δg) =

1

2
‖Au∗ +Aδh− f‖22 +

∑
i

λi‖(α∗ + δg)i‖0

+
%

2
‖α∗ + δg −W (u∗ + δh)‖22

=
1

2
‖Au∗ − f‖22 + 〈Aδh,Au∗ − f〉+

1

2
‖Aδh‖22 +

∑
i

λi‖(α∗ + δg)i‖0

+
%

2
‖α∗ −Wu∗‖22 + %〈α∗ −Wu∗, δg −Wδh〉+

%

2
‖δg −Wδh‖22

=
1

2
‖Au∗ − f‖22 +

∑
i

λi‖(α∗ + δg)i‖0 +
%

2
‖α∗ −Wu∗‖22 +

1

2
‖Aδh‖22

+〈δh,AT (Au∗ − f) + %W T (Wu∗ − α∗)〉+ %〈δg, α∗ −Wu∗〉

+
%

2
‖δg −Wδh‖22

≥ 1

2
‖Au∗ − f‖22 +

∑
i

λi‖(α∗ + δg)i‖0 +
%

2
‖α∗ −Wu∗‖22

+〈δh,AT (Au∗ − f) + %W T (Wu∗ − α∗)〉+ %〈δg, α∗ −Wu∗〉

(By (5.14)) ≥ 1

2
‖Au∗ − f‖22 +

∑
i

λi‖(α∗ + δg)i‖0 +
%

2
‖α∗ −Wu∗‖22

+%〈δg, α∗ −Wu∗〉

=
1

2
‖Au∗ − f‖22 +

%

2
‖α∗ −Wu∗‖22

+
∑
i

(
λi‖α∗i + δgi‖0 + %δgi(α

∗
i − (Wu∗)i)

)
.

Splitting the summation in the last equation with respect to index sets Γ0 and Γ1 and using

(5.16), we have

p%(u
∗ + δh, α∗ + δg) ≥ 1

2
‖Au∗ − f‖22 +

%

2
‖α∗ −Wu∗‖22 +

∑
i∈Γ0

(
λi‖δgi‖0 − %δgi(Wu∗)i

)
+
∑
i∈Γ1

λi‖α∗i + δgi‖0.

Notice that when |δgi| is small enough, we then have

‖α∗i + δgi‖0 = ‖α∗i‖0 for i ∈ Γ1.
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Therefore, we have

p%(u
∗ + δh, α∗ + δg) ≥ 1

2
‖Au∗ − f‖22 +

%

2
‖α∗ −Wu∗‖22

+
∑
i∈Γ0

(
λi‖δgi‖0 − %δgi(Wu∗)i

)
+
∑
i∈Γ1

λi‖α∗i‖0

= p%(u
∗, α∗) +

∑
i∈Γ0

(
λi‖δgi‖0 − %δgi(Wu∗)i

)
.

We now show that, for i ∈ Γ0 and ‖δg‖ small enough,

λi‖δgi‖0 − %δgi(Wu∗)i ≥ 0. (5.17)

For the indices i such that λi = 0, first inequality of (5.16) implies that (Wu∗)i = 0 and

hence (5.17) holds. Therefore, we only need to consider indices i ∈ Γ0 such that λi 6= 0.

Then obviously as long as |δgi| ≤ λi
%|(Wu∗)i| , we will have (5.17) hold. We now conclude that

there exists ε > 0 such that for all (δh, δg) satisfying max(‖δh‖∞, ‖δg‖∞) < ε, we have

p%(u
∗ + δh, α∗ + δg) ≥ p%(u∗, α∗).

We next show that under some suitable assumptions, the sequence {(uq, αq)} generated

by (5.13) converges to a fixed point of the BCD method.

Theorem 5.2.2 Assume that Y = Rn and ATA � 0. Let {(uq, αq)} be the sequence gen-

erated by the BCD method described in (5.13). Then, the sequence {(uq, αq)} is bounded.

Furthermore, any limit point of the sequence {(uq, αq)} is a fixed point of (5.13).

Proof. In view of Y = Rn and the optimality condition of the first subproblem of (5.13),

one can see that

uq+1 = (ATA+ %I)−1AT f + %(ATA+ %I)−1W Tαq. (5.18)

Let x := (ATA+ %I)−1AT f , P := %(ATA+ %I)−1, equation (5.18) can be rewritten as

uq+1 = x+ PW Tαq. (5.19)

Moreover, by the assumption ATA � 0, we have 0 ≺ P ≺ I.

Using (5.19) and (5.11), we observe from the second subproblem of (5.13) that

αq+1 ∈ Hλ̃(Wuq+1) = Hλ̃

(
Wx+WPW Tαq

)
. (5.20)
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Let Q := I −WPW T , then (5.20) can be rewritten as

αq+1 ∈ Hλ̃ (αq +Wx−Qαq) . (5.21)

In addition, from W TW = I we can easily show that 0 ≺ Q � I.

Let F (α, β) := 1
2〈α,Qα〉−〈Wx,α〉+

∑
i λ̄i‖αi‖0− 1

2〈α−β,Q(α−β)〉+ 1
2‖α−β‖

2
2 where

λ̄ = λ
ρ . Then we have

ArgminαF (α, αq) = Argminα
1

2
‖α− (αq +Wx−Qαq)‖22 +

∑
i

λ̄i‖αi‖0. (5.22)

In view of equation (5.21) and (5.22) and the definition of the hard thresholding operator,

we can easily observe that αq+1 ∈ ArgminαF (α, αq). By following similar arguments as in

[11, Lemma 1, Lemma D.1], we have

F (αq+1, αq+1) ≤ F (αq+1, αq+1) +
1

2
‖αq+1 − αq‖22 −

1

2
〈αq+1 − αq, Q(αq+1 − αq)〉

= F (αq+1, αq)

≤ F (αq, αq),

which leads to

‖αq+1 − αq‖22 − 〈αq+1 − αq, Q(αq+1 − αq)〉 ≤ 2F (αq, αq)− 2F (αq+1, αq+1).

Since P � 0, we have

‖W T (αq+1 − αq)‖22 ≤ 1

C1
〈W T (αq+1 − αq), PW T (αq+1 − αq)〉

=
1

C1
〈αq+1 − αq, (I −Q)(αq+1 − αq)〉

=
1

C1

(
‖αq+1 − αq‖22 − 〈αq+1 − αq, Q(αq+1 − αq)〉

)
≤ 2

C1
F (αq, αq)− 2

C1
F (αq+1, αq+1)

for some C1 > 0. Telescoping on the above inequality and using the fact that
∑

i λi‖αi‖0 ≥
0, we have

N∑
q=0

‖W T (αq+1 − αq)‖22 ≤ 2

C1
F (α0, α0)− 2

C1
F (αN+1, αN+1)

≤ 2

C1

(
F (α0, α0)− (

1

2
〈αN+1, QαN+1〉 − 〈Wx,αN+1〉)

)
≤ 2

C1

(
F (α0, α0)−K

)
,
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where K is the optimal value of min
y
{1

2〈y,Qy〉 − 〈Wx, y〉}. Since Q � 0, we have K > −∞.

Then the last inequality implies that limq→∞ ‖W T (αq+1 − αq)‖2 → 0.

By using (5.19) and P ≺ I, we see that

‖uq+1 −W Tαq+1‖2 = ‖x+ PW Tαq −W Tαq+1 +W Tαq −W Tαq‖2

= ‖x+ (P − I)W Tαq −W T (αq+1 − αq)‖2

≥ ‖x+ (P − I)W Tαq‖2 − ‖W T (αq+1 − αq)‖2

= ‖(I − P )W Tαq − x‖2 − ‖W T (αq+1 − αq)‖2

≥ ‖(I − P )W Tαq‖2 − ‖x‖2 − ‖W T (αq+1 − αq)‖2

≥ C2‖W Tαq‖2 − ‖x‖2 − ‖W T (αq+1 − αq)‖2

for some C2 > 0. Then by rearranging the above inequality and using the fact W TW = I,

we have

‖W Tαq‖2 ≤ 1

C2
(‖uq+1 −W Tαq+1‖2 + ‖x‖2 + ‖W T (αq+1 − αq)‖2)

=
1

C2
(‖W T (Wuq+1 − αq+1)‖2 + ‖x‖2 + ‖W T (αq+1 − αq)‖2)

≤ 1

C2
(‖Wuq+1 − αq+1‖2 + ‖x‖2 + ‖W T (αq+1 − αq)‖2).

By the definition of the hard thresholding operator and (5.20), we can easily see that

‖Wuq+1−αq+1‖2 is bounded. In addition, notice that ‖x‖2 is a constant and lim
q→∞

‖W T (αq+1−

αq)‖2 → 0. Thus ‖W Tαq‖2 is also bounded. By using (5.19) and the definition of the hard

thresholding operator again, we can immediately see that both {uq+1} and {αq+1} are

bounded as well.

Suppose that (u∗, α∗) is a limit point of the sequence {(uq, αq)}. Therefore, there exists

a subsequence {(uq′ , αq′)}q′∈K converging to (u∗, α∗) where the index set K contains all the

indices of the sequence {(uq, αq)}. Using (5.20) and the definition of the hard thresholding

operator, we can observe that

α∗ = lim
q′∈K→∞

αq
′+1 ∈ Hλ̃( lim

q′∈K→∞
Wuq

′+1) = Hλ̃(Wu∗).

In addition, it follows from (5.18) that

u∗ = (ATA+ %I)−1AT f + %(ATA+ %I)−1W Tα∗.
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In view of the above two relations, one can immediately conclude that {(u∗, α∗)} is a fixed

point of (5.13).

In the view of Theorems 5.2.1, 5.2.2 and under some suitable assumptions, we can easily

observe the following convergence of the BCD method.

Theorem 5.2.3 Assume that Y = Rn and ATA � 0. Then, the sequence {(uq, αq)} defined

by the BCD method in (5.13) is bounded. Furthermore, any limit point of the sequence

{(uq, αq)} is a local minimizer of (5.12).

For the PD method itself, similar arguments as in the proof of [89, Theorem 3.2] will

lead to that every accumulation point of the sequence {(uk, αk)} is a feasible point of (5.6).

Although it is not clear whether the accumulation point is a local minimizer of (5.6), our

numerical results show that the solutions obtained by the PD method are superior than

those obtained by the balanced approach and the analysis based approach.

5.3 Numerical results

In this subsection, we conduct numerical experiments to test the performance of the

PD method for problem (5.6) presented in Section 5.2 and compare the results with the

balanced approach (5.2) and the analysis based approach (5.3). We use the accelerated

proximal gradient (APG) algorithm [118] (see also [6]) to solve the balanced approach; and

we use the split Bregman algorithm [64, 19] to solve the analysis based approach.

For APG algorithm that solves balanced approach (5.2), we shall adopt the following

stopping criteria:

min

{
‖αk − αk−1‖2
max{1, ‖αk‖2}

,
‖AW Tαk − f‖D

‖f‖2

}
≤ εP .

For split Bregman algorithm that solves the analysis based approach (5.3), we shall use the

following stopping criteria:
‖Wuk+1 − αk+1‖2

‖f‖2
≤ εS .

Throughout this subsection, the codes of all the algorithms are written in MATLAB

and all computations below are performed on a workstation with Intel Xeon E5410 CPU

(2.33GHz) and 8GB RAM running Red Hat Enterprise Linux (kernel 2.6.18). If not specified,

the piecewise linear B-spline framelets constructed by [111] are used in all the numerical
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experiments. We also take D = I for all three methods for simplicity. For the PD method,

we choose εI = 10−4 and εO = 10−3 and set α0,0, αfeas and ufeas to be zero vectors. In

addition, we choose[9, Algorithm 2.2] and set M = 20, εD = 5 × 10−5 and εF = 10−4 (if

necessary) for the projected gradient method applied to the subproblem arising in step 1a)

of the BCD method.

5.3.1 Experiments on CT image reconstruction

In this subsection, we apply the PD method stated in Subsection 5.2 to solve problem

(5.6) on CT images and compare the results with the balanced approach (5.2) and the

analysis based approach (5.3). The matrix A in (5.1) is taken to be a projection matrix based

on fan-beam scanning geometry using Siddon’s algorithm [120], and η is generated from a

zero mean Gaussian distribution with variance σ = 0.01‖f‖∞. In addition, we pick level of

framelet decomposition to be 4 for the best quality of the reconstructed images. For balanced

approach, we set κ = 2 and take εP = 1.5 × 10−2 for the stopping criteria of the APG

algorithm. We set εS = 10−5 for the stopping criteria of the split Bregman algorithm when

solving the analysis based approach. Moreover, we take Y = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}
for model (5.6), and take δ = 10 and %0 = 10 for the PD method. To measure quality of

the restored image, we use the PSNR value defined by

PSNR := −20 log10

‖u− ũ‖2
n

,

where u and ũ are the original and restored images respectively, and n is total number of

pixels in u.

Table 5.1 summarizes the results of all three models when applying to the CT image

restoration problem and the corresponding images and their zoom-in views are shown in

Figure 5.1 and Figure 5.2. In Table 5.1, the CPU time (in seconds) and PSNR values of

all three methods are given in the first and second row, respectively. In order to fairly

compare the results, we have tuned the parameter λ to achieve the best quality of the

restoration images for each individual method. We observe that based on the PSNR values

listed in Table 5.1 the analysis based approach and the PD method obviously achieve better

restoration results than the balanced approach. Nevertheless, the APG algorithm for the

balanced approach is the fastest algorithm in this experiment. In addition, the PD method

is faster and achieves larger PSNR than the split Bergman algorithm for the analysis based
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Table 5.1: Comparisons: CT image reconstruction
Balanced approach Analysis based approach PD method

Time 56.0 204.8 147.6
PSNR 56.06 59.90 60.22

approach. Moreover, we can observe from Figure 5.2 that the edges are recovered better by

the PD method and the balanced approach.

Figure 5.1: CT image reconstruction. Images from left to right are: original CT image,
reconstructed image by balanced approach, reconstructed image by analysis based approach
and reconstructed image by PD method.

Figure 5.2: Zoom-in views of the CT image reconstruction. Images from left to right
are: original CT image, reconstructed image by balanced approach, reconstructed image by
analysis based approach and reconstructed image by PD method.

5.3.2 Experiments on image deconvolution

In this subsection, we apply the PD method stated in Subsection 5.2 to solve problem

(5.6) on image deblurring problems and compare the results with the balanced approach

(5.2) and the analysis based approach (5.3). The matrix A in (5.6) is taken to be a con-

volution matrix with corresponding kernel a Gaussian function (generated in MATLAB by
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“fspecial(‘gaussian’,9,1.5);”) and η is generated from a zero mean Gaussian distribution with

variance σ = 3 if not specified. In addition, we pick level of framelet decomposition to be 4

for the best quality of the reconstructed images. We set κ = 1 for balanced approach and

choose both εP and εS to be 10−4 for the stopping criteria of both APG algorithm and the

split Bregman algorithm. Moreover, we set Y = {x ∈ Rn : 0 ≤ xi ≤ 255 ∀i = 1, . . . , n} for

model (5.6), and take δ = 10 and %0 = 10−3 for the PD method. To measure quality of

restored image, we use the PSNR value defined by

PSNR := −20 log10

‖u− ũ‖2
255n

.

We first test all three methods on twelve different images by using piecewise linear

wavelet and summarize the results in Table 5.2. The names and sizes of images are listed in

the first two columns. The CPU time (in seconds) and PSNR values of all three methods are

given in the rest six columns. In addition, the zoom-in views of original images, observed

images and recovered images are shown in Figure 5.3-5.4. In order to fairly compare the

results, we have tuned the parameter λ to achieve the best quality of the restoration images

for each individual method and each given image.

We first observe that in Table 5.2, the PSNR values obtained by the PD method are

generally better than those obtained by other two approaches. Although for some of the

images (i.e. “Downhill”, “Bridge”, “Duck” and “Barbara”), the PSNR values obtained by

the PD methods are comparable to those of balanced and analysis based approaches, the

quality of the restored images can not only be judged by their PSNR values. Indeed, the

zoom-in views of the recovered images in Figure 5.3 and Figure 5.4 show that for all tested

images, the PD method produces visually superior results than the other two approaches

in terms of both sharpness of edges and smoothness of regions away from edges. Takeing

the image “Barbara” as an example, the PSNR value of the PD method is only slightly

greater than that obtained by the other two approaches. However, the zoom-in views of

“Barbara” in Figure 5.4 show that the face of Barbara and the textures on her scarf are better

recovered by the PD method than the other two approaches. This confirms the observation

that penalizing l0-“norm” of Wu should provide good balance between sharpness of features

and smoothness of the reconstructed images. We finally note that the PD method is slower

than other two approaches in these experiments but the processing time of the PD method

is still acceptable.

We next compare all three methods on “portrait I” image by using three different tight
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wavelet frame systems, i.e., Haar framelets, piecewise linear framelets and piecewise cubic

framelets constructed by [111]. We summarize the results in Table 5.3. The names of

three wavelets are listed in the first column. The CPU time (in seconds) and PSNR values

of all three methods are given in the rest six columns. In Table 5.3, we can see that the

quality of the restored images by using the piecewise linear framelets and the piecewise cubic

framelets is better than that by using the Haar framelets. In addition, all three methods are

generally faster when using Haar framelets and slower when using piecewise cubic framelets.

Overall, all three approaches when using the piecewise linear have balanced performance in

terms of time and quality (i.e., the PSNR value). Finally, we observe that the PD method

consistently achieves the best quality of restored images among all the approaches for all

three different tight wavelet frame systems.

Finally, we test how the different noise levels effect the restored images obtained from all

three methods. We choose three different noise levels (i.e., σ = 3, 5, 7) for “portrait I” image

and test all the methods by using piecewise linear framelets. We summarize the results in

Table 5.4. The variances of noises are listed in the first column. The CPU time (in seconds)

and PSNR values of all three methods are given in the rest six columns. In Table 5.4, we

can see that the quality of the restored images by all three methods is decreased when the

noise level is increased. Nevertheless, the quality of the recovered by the PD method is still

significantly better than other two methods for all three noise levels. We also observe that

the PD method is slower than other two approaches in these experiments but the processing

time of the PD method is still acceptable.

5.4 Conclusion

In this chapter, we proposed a wavelet frame based l0 minimization model, which is

motivated by the analysis based approach and balanced approach. The penalty decomposi-

tion (PD) method of [89] was used to solve the proposed optimization problem. Numerical

results showed that the proposed model solved by the PD method can generate images with

better quality than those obtained by either analysis based approach or balanced approach

in terms of restoring sharp features like edges as well as maintaining smoothness of the

recovered images. Convergence analysis of the sub-iterations in the PD method was also

provided.
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Table 5.2: Comparisons: image deconvolution
Balanced approach Analysis based approach PD method

Name Size Time PSNR Time PSNR Time PSNR

Downhill 256 12.5 27.24 6.1 27.36 29.5 27.35
Cameraman 256 18.2 26.65 7.0 26.73 31.1 27.21
Bridge 256 14.5 25.40 5.1 25.46 33.0 25.44
Pepper 256 21.6 26.82 7.5 26.63 32.1 27.29
Clock 256 17.3 29.42 19.9 29.48 22.3 29.86
Portrait I 256 32.7 33.93 19.3 33.98 27.1 35.44
Duck 464 30.6 31.00 16.1 31.11 72.5 31.09
Barbara 512 38.8 24.62 12.3 24.62 77.4 24.69
Aircraft 512 55.9 30.75 35.1 30.81 67.5 31.29
Couple 512 91.4 28.40 41.5 28.14 139.1 29.32
Portrait II 512 45.2 30.23 22.1 30.20 48.9 30.90
Lena 516 89.3 12.91 31.0 12.51 67.0 13.45

Table 5.3: Comparisons among different wavelet representations
Balanced approach Analysis based approach PD method

Wavelets Time PSNR Time PSNR Time PSNR

Haar 17.9 33.63 20.2 33.80 24.3 34.68
Piecewise linear 32.7 33.93 22.3 33.98 27.1 35.44
Piecewise cubic 61.0 33.95 37.3 34.00 37.8 35.20

Table 5.4: Comparisons among different noise levels
Balanced approach Analysis based approach PD method

Variances of noises Time PSNR Time PSNR Time PSNR

σ = 3 32.7 33.93 22.3 33.98 27.1 35.44
σ = 5 23.7 32.84 19.4 32.89 27.2 34.48
σ = 7 19.6 32.11 25.0 32.14 29.7 33.69



CHAPTER 5. WAVELET FRAME BASED IMAGE RESTORATION 116

Figure 5.3: Zoom-in to the texture part of “downhill”, “cameraman”, “bridge”, “pepper”,
“clock”, and “portrait I”. Image from left to right are: original image, observed image,
results of the balanced approach, results of the analysis based approach and results of the
PD method.
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Figure 5.4: Zoom-in to the texture part of “duck”, “barbara”, “aircraft”, “couple”, “portrait
II” and “lena”. Image from left to right are: original image, observed image, results of the
balanced approach, results of the analysis based approach and results of the PD method.
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[113] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006. 13, 14,
16, 17, 20, 24, 27, 28, 33, 62, 63

[114] F. Santosa and W. Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986. 2

[115] G. Sapiro. Geometric partial differential equations and image analysis. Cambridge
University Press, 2001. 95

[116] Z. Shen. Wavelet frames and image restorations. Proceedings of the International
Congress of Mathematicians, Hyderabad, India, 2010. 96

[117] H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low
rank matrix approximation. Journal of Multivariate Analysis, 99(6):1015–1034, 2008.
4, 8, 39, 50, 52, 53, 56

[118] Z. Shen, K. C. Toh, and S. Yun. An accelerated proximal gradient algorithm for
frame based image restorations via the balanced approach. SIAM Journal on Imaging
Sciences, 4(2):573–596, 2011. 98, 99, 110

[119] J. Shi, W. Yin, S. Osher and P. Sajda. A fast hybrid algorithm for large-scale l1-
regularized logistic regression. The Journal of Machine Learning Research, 11:713–741,
2010. 78

[120] R. L. Siddon. Fast calculation of the exact radiological path for a three-dimensional
CT array. Medical Physics, 12(2):252–255, 1985. 111

[121] J. L. Starck, M. Elad, and D. L. Donoho. Image decomposition via the combination
of sparse representations and a variational approach. IEEE Transactions on Image
Processing, 14(10):1570–1582, 2005. 94, 98

[122] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft
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