
Development of an interactive engineering
design optimization framework

by
Adam Cutbill

B.A.Sc., Simon Fraser University, 2012

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the

School of Mechatronic Systems Engineering

Faculty of Applied Sciences

 Adam Cutbill 2014

SIMON FRASER UNIVERSITY
Fall 2014

ii

Approval

Name: Adam Cutbill
Degree: Master of Applied Science
Title: Development of an interactive engineering design

optimization framework.
Examining Committee: Chair: Behraad Bahreyni

Associate Professor

G. Gary Wang
Senior Supervisor
Professor

Krishna Vijayaraghavan
Supervisor
Assistant Professor

Edward Park
Internal Examiner
Professor
School of Mechatronic Systems
Engineering

Date Defended/Approved: October 29th , 2014

iii

Partial Copyright License

iv

Abstract

Engineering optimization is often completely automated after initial problem formulation.

Although purely algorithmic approaches are attractive, keeping the engineer out-of-the-

loop also suffers from key drawbacks. First, problem formulation is a challenging task

and a poorly formulated problem often causes extra efforts and extended optimization

time. Second, stakeholders may not trust the results of an optimization algorithm when

presented without context. This thesis uses information visualization to keep designer in-

the-loop during design optimization formulation, modeling, optimization, and result

interpretation stages. Parallel coordinates is the central representation used,

accompanied by two-dimensional projections for navigation and a scatterplot matrix for

overview. Methods are presented to split the design and performance spaces into

meaningful regions by clustering and by interaction. A new data-mining technique is also

presented to find relationships between black-box constraints to remove redundant and

unimportant constraints. A software prototype is developed and successfully applied to

an automotive assembly optimization problem.

Keywords: Interactive optimization; engineering design; black-box optimization;
information visualization; constraint redundancy identification; parallel
coordinates

v

Acknowledgements

First, I owe my deepest gratitude to my senior supervisor, Dr. G Gary Wang. Dr. Wang

has provided me with countless opportunities, support, and has served as a mentor from

the beginning of my journey at SFU. Learning from him, has been a privilege.

Throughout the preparation of this thesis and associated work, his support,

professionalism, constructive criticism and encouragement have been outstanding. He

truly cares about his work and students. It was an honor to work at PDOL.

Additionally, I would like to thank my supervisor, Dr. Krishna Vijayaraghavan, for taking

the time to serve on my supervisory committee. Dr. Behraad Bahreyni, my committee

chair, has also helped me throughout my time at SFU. He was an incredibly

knowledgeable and kind supervisor during my undergraduate capstone project, and I

would like to sincerely thank him for serving as chair for this work as well. Dr. Edward

Park is an extraordinary instructor. I would like to personally thank him for serving as

examiner, and for teaching some my favorite courses at SFU.

Of course, I’d like to express gratitude to my parents for their understanding, patience

and encouragement as I completed this work. Last, but not least, I thank my lab mates,

classmates and friends for being supportive, friendly and simply great people to work

with.

vi

Table of Contents

Approval .. ii
Partial Copyright License ... iii
Abstract .. iv
Acknowledgements ... v
Table of Contents ... vi
List of Tables .. ix
List of Figures.. x
List of Acronyms .. xiii

Chapter 1. Introduction ... 1
1.1. Preliminaries ... 1

1.1.1. Numerical Optimization and Black-box Optimization 2
1.1.2. Visualization .. 5

1.2. Scope ... 7
1.3. Research Goals .. 8
1.4. Thesis Structure ... 8

Chapter 2. Literature Survey ... 9
2.1. Information Visualization ... 9

2.1.1. Representation Considerations for Quantitative Data 11
2.2. Multivariate Representations .. 13

2.2.1. Multivariate Representation Examples ... 13
The scatterplot matrix... 13
The parallel coordinates plot .. 14

2.2.2. Progress in Multivariate Visualization .. 16
2.2.3. Dimensionality Reduction .. 17

2.3. Visualization in Support of Engineering Design .. 19
2.3.1. Early Approaches and Applications ... 19
2.3.2. Visual Design Steering and Graph Morphing ... 21
2.3.3. Automatic Trade Space Visualization .. 21
2.3.4. Physical Programming and Physical Programming Based

Visualization .. 22
2.3.5. Pareto Frontier Visualization Methods ... 23
2.3.6. Parallel Coordinates in Support of Interactive Optimization 25

2.4. Summary .. 26

Chapter 3. Methodology .. 27
3.1. Numerical Optimization ... 27

3.1.1. Optimization Space Terminology and Notation .. 28
3.2. Regions and Clustering .. 30

3.2.1. Percentile Regions .. 31
3.2.2. Performance Regions .. 32
3.2.3. Design Regions ... 33

vii

3.2.4. Clustering .. 35
K-Means clustering .. 35
Agglomerative (single-link) clustering .. 37
SC Clustering Example .. 39

3.3. Interaction and Navigation .. 41
3.3.1. Navigation, Brushing and Overviews ... 42

Navigation .. 42
Brushing ... 43
Overview .. 45

3.3.2. 2D Projection by Principal Components Analysis 46
Procedure of PCA on optimization design data ... 48

3.3.3. Data Table and Selection .. 49
3.4. Summary .. 50

Chapter 4. Regional Metamodeling .. 51
4.1. Metamodeling in optimization algorithms .. 52
4.2. Metamodeling of a selected region ... 53

4.2.1. Model validation using cross-validation .. 54
4.2.2. Model validation visualization .. 56
4.2.3. Predicting local extremes ... 58
4.2.4. Predicting local sensitivity .. 58
4.2.5. High Dimensional Model Representation (HDMR) 59

PCA-HDMR .. 60
Use of PCA-HDMR as an alternative to polynomial regression 60

Example Problem 1: Five variable polynomial (NC=50) 61
Example Problem 2: Ten variable sum (NC=200) ... 61
Example Problem 3: Twenty variable sum (NC=800) 62

Discussion .. 62
4.3. Summary .. 62

Chapter 5. Optimization Visualization Framework .. 63
5.1. Framework Layout .. 63

5.1.1. Problem Formulation (D1) ... 64
5.1.2. Feasibility Data (D2) .. 64
5.1.3. Simulation Data, Convergence and Regions (D3) 66

Convergence .. 68
Reviewing past iterations ... 69

Regions .. 70
5.2. Summary .. 72

Chapter 6. Constraint Mining .. 73
6.1. Constraint mining overview ... 73
6.2. Constraints in black-box engineering design ... 74
6.3. Related redundancy identification methods .. 74
6.4. Constraint redundancy rule definitions .. 75

6.4.1. Redundant due to co-occurrence ... 76
6.4.2. Redundant due to implication .. 76
6.4.3. Redundant due to covering .. 77

viii

6.5. The constraint mining method ... 77
6.5.1. Identifying frequent itemsets and co-occurring items 78

Step 1 – Filter items by support and find frequent itemsets 79
Step 2 - Use the Jaccard measure to identify co-occurring sets 80
Step 3- Remove co-occurring frequent itemsets ... 81

6.5.2. Generating association rules (Step 4) .. 82
6.5.3. A brief discussion regarding the number of rules and the benefit of

co-occurring sets ... 84
6.5.4. Further rule reductions when considering item removal 84

Restricting association rules to single item antecedents 84
Restricting association rules to single item consequents 85

6.5.5. Finding covered constraints (Step 5) ... 86
6.5.6. Additional information from constraint mining .. 87

Infrequent constraints... 87
Infeasible problems .. 87

6.6. Collecting data and parameters .. 88
6.6.1. Collecting constraint data .. 88

6.7. Examples and Results .. 89
6.7.1. Two-Variable Mathematical Examples ... 89

Problem Definition .. 89
Constraint mining results ... 90

6.7.2. Pressure Vessel Design Example .. 91
6.8. Summary .. 92

Chapter 7. Robotic Automotive Assembly Station Optimization – Case
Study .. 94

7.1. Robotic automotive assembly optimization problem description 94
7.2. Optimization problem formulation ... 96
7.3. Results and discussion ... 98
7.4. Summary .. 103

Chapter 8. Summary and Future Work ... 104
8.1. Summary .. 104
8.2. Future Work .. 105

References .. 106
Appendix Additional Mathematical Details ... 115

Mathematical procedure of PCA on optimization design data 115

ix

List of Tables

Table 1 Anscombe's quartet as a table .. 6

Table 2 Metamodel error metrics for top performing PV design region 57

Table 3 Predicted and simulated performance extremes of PV top design region 58

Table 4 Comparison of PR and HDMR: Five variable polynomial 61

Table 5 Comparison of PR and HDMR: Ten variable sum ... 61

Table 6 Comparison of PR and HDMR: Twenty Variable sum 62

Table 7 Implication example .. 76

Table 8 Example binary representation of constraint violations (1: Violation) 78

Table 9 Example of increasing confidence with additional items in the antecedent 85

Table 10 Example of covered constraints .. 86

Table 11 Example of covered constraints (reduced observation set) 87

Table 12 Constraint mining Example 1 .. 89

Table 13 Constraint mining Example 2 .. 89

Table 14 Example 1 Rules .. 91

Table 15 Example 2 Rules .. 91

x

List of Figures

Figure 1 Numerical optimization flowchart ... 3

Figure 2 Anscombe's quartet as scatterplots ... 6

Figure 3 FEA Bridge analysis: scientific visualization .. 10

Figure 4 FEA Bridge analysis: information visualization .. 10

Figure 5 Flowchart of the visualization process (adapted from [17]) 11

Figure 6 Bertin's visual variables (adapted from [28]) .. 12

Figure 7 Scatterplot matrix of Fisher’s iris data .. 14

Figure 8 Parallel coordinates plot of Fisher's iris data .. 15

Figure 9 Parallel coordinates plot of Fisher's iris data as polygons 16

Figure 10 Fisher's iris data [35] with PCA (left) and FA (right) 18

Figure 11 Flowchart of the interactive evolutionary computation (IEC) 20

Figure 12 Flowchart of interactive optimization (adapted from [57]) 20

Figure 13 Design by shopping approach to problem formulation 22

Figure 14 Physical programming history visualization (adapted from [66]) 23

Figure 15 Pareto set of a 2D performance space (shown in black) 24

Figure 16 Cloud visualization (with 2D clouds) – adapted from [67] 25

Figure 17 Design Space, Search Space and Performance Space 29

Figure 18 Contour plot of Six-Hump camel problem .. 30

Figure 19 Percentile Region - Top 15% of the SC Problem (Scatterplot) 31

Figure 20 Percentile Region - Top 15% of the SC Problem (PCP) 32

Figure 21 Performance Region - Objective between -1.02 and -0.5 of SC
Problem ... 33

Figure 22 Design Region - x1: [-1, 1] and x2: [-1, 1] (Scatterplot) 34

Figure 23 Design Region - x1: [-1, 1] and x2: [-1, 1] (PCP) .. 34

Figure 24 A possible clustering within the top 15% of points of the SC problem 35

Figure 25 Flowchart of k-means clustering steps ... 36

Figure 26 Visual example of k-means clustering steps .. 37

Figure 27 Single-link proximity versus centroid proximity (adapted from [70])................ 38

Figure 28 Single-link clustering example ... 38

Figure 29 SC Top performing region (top 15%) via k-means clustering (k=4) 40

Figure 30 SC Top performing region split via single-link clustering (𝝐 =0.07) 40

xi

Figure 31 Norman's action cycle of interaction (modified from [17]) 41

Figure 32 Diagram of the PV optimization problem variables .. 42

Figure 33 2D projection of PV problem (top 50 designs shown) 43

Figure 34 Parallel coordinates plot of PV problem (top 50 designs shown) 44

Figure 35 2D projection of PV problem (thin designs selected) 44

Figure 36 Parallel coordinates plot of PV problem (thin designs selected) 45

Figure 37 2D Projection overview of top 50 PV Designs .. 46

Figure 38 Two principal components of PV Problem (top 50 designs shown) 47

Figure 39 Designs selected in bottom-left of PCA plot (top 50 designs shown) 47

Figure 40 Designs selected in top-right of PCA plot (top 50 designs shown) 48

Figure 41 Graphical steps of Principal Component Analysis (Math in Appendix) 49

Figure 42 Data table representation of PV Problem... 50

Figure 43 Single Variable Metamodel (2nd order PR approximating a 3rd order) 51

Figure 44 MPS Procedure (Figure provided by Cheng and Wang) 53

Figure 45 Partitioning of data for cross-validation .. 55

Figure 46 Cross validation process ... 56

Figure 47 Metamodel for design region which bounds the top 50 PV designs. 57

Figure 48 Coefficients of terms in 2nd order polynomial of PV top design region 59

Figure 49 Optimization visualization framework layout .. 63

Figure 50 Problem formulation menu .. 64

Figure 51 Feasible Region of the PV Problem ... 65

Figure 52 Overall feasibility as 2D projection ... 65

Figure 53 Overall feasibility as a bar chart ... 66

Figure 54 Feasible region as a 2D projection overview (scatterplot matrix) 66

Figure 55 PV Problem top 10 % lowest cost region shown iteratively (with TR-
MPS) .. 67

Figure 56 Iterative convergence plot of lowest cost design .. 68

Figure 57 Iterations of selected points (thick pressure vessel designs) 68

Figure 58 Designs introduced by iteration for PV problem optimization 69

Figure 59 Sample list of regions .. 70

Figure 60 Region adjustment sliders ... 70

Figure 61 Top performing region of SC problem split into 4 design regions 71

Figure 62 Toolbar for optimization framework.. 72

Figure 63 Overview of the constraint mining method ... 78

xii

Figure 64 Generation of a frequent itemset of size k in the a priori method 80

Figure 65 Identification of bundles and itemset reduction .. 82

Figure 66 Data generation flowchart .. 88

Figure 67 Example 1 (left) with 1200 samples and Example 2 (right) with 1600
samples (dark is feasible). .. 90

Figure 68 Constraints: g1 (left) and g2 (right) of the PV problem (dark is feasible). 92

Figure 69 Possible locator configurations for two plates .. 95

Figure 70 Possible measures to quantify variance .. 96

Figure 71 Base of automotive side panel with potential locator positions 97

Figure 72 Baseline configuration of locators .. 98

Figure 73 Locator offsets resulting in a lower variance than the baseline 99

Figure 74 Outlier configuration (Part C is free to rotate) .. 100

Figure 75 Locator offsets which generate the lowest assembly variance 101

Figure 76 Application specific visualization locator offsets at minimum 101

Figure 77 Metamodel of region bounding the points which are lower than
baseline ... 102

Figure 78 Three part assembly optimization convergence chart 102

xiii

List of Acronyms

Acronyms

FEA Finite element analysis

CAD Computer aided design

InfoVis Information visualization

SciVis Scientific visualization

PCP Parallel coordinates plot

PCA Principal components analysis

FA Factor analysis

IEC Interactive evolutionary computation

HuGS Human guided search

VDS Visual design steering

ATSV ARL Trade space visualizer

MDO Multidisciplinary design optimization

PPV Physical programming based visualization

SC Six-hump camel back optimization problem

PV Pressure-vessel optimization problem

PR Polynomial regression

HDMR High-dimensional model representations

MBDO Metamodel based design optimization

SSE Sum of squared errors

RMSE Root mean squared error

NRMSE Normalized root-mean squared error

CV Cross validation

RMSECV Root mean squared error of cross validation

NRMSECV Normalized root-mean square error of cross validation

MPS Mode pursuing sampling

TR-MPS Trust region mode pursuing sampling

SFU Simon Fraser University

KPC Key product characteristic

xiv

Notation

𝑿 Matrix of sample points

𝒙 Individual sample point

𝒙* Optimum sample point

𝒙𝒔 Standardized sample point

𝒙𝒔′ Standardized and centered sample point

𝑚 Number of sampled points

𝒇 Vector of performance values

𝒇(𝒙) Objective function(s) mapping sample designs to performance

𝒈(𝒙) Vector of inequality constraint functions

𝒉(𝒙) Vector of equality constraint functions

𝒘 Weights of individual objectives in aggregated objective

𝒟 Design space

𝑫𝒍 Design space lower bounds vector

𝑫𝑼 Design space upper bounds vector

𝒮 Search space

𝑺𝒍 Search space lower bounds vector

𝑺𝑼 Search space upper bounds vector

ℱ Performance space

𝑲 Percentile region

𝑷 Performance region

𝑫 Design region

𝐿22 Squared Euclidean distance

𝒙𝑐 Cluster centroid

𝑑(a, b) Distance between points a and b

𝑛 Number of design variables to be optimized

𝑝(a, b) Proximity between clusters a and b

𝑘 Number of clusters in k-mean clustering or number of models in k-fold CV

𝜖 Distance cut-off in agglomerative clustering

𝑅 Tank radius in the pressure-vessel problem

𝑇𝑠 Tank shell thickness in the pressure-vessel problem

𝐿 Tank length in the pressure-vessel problem

𝑇ℎ Tank head thickness in the pressure-vessel problem

xv

𝑺 Covariance matrix (used for PCA)

𝜷 Coefficient vector for terms in polynomial regression

𝑯 Set of possible metamodels of a given form (hypotheses)

ℎ� Metamodel with lowest sum of squared errors

𝜷� Coefficients of ℎ�.

𝑿𝑻 Training dataset

𝑿𝑨 Additional testing dataset

𝑿𝒗 Validation dataset

𝜇 Mean

𝒆(𝒂,𝒃) Vector of errors between sets 𝒂,𝒃, as defined by the error function

𝑒(𝒂,𝒃) Error function between sets 𝒂,𝒃 (RSME, RMSECV, NRSME or
NRMSECV)

𝒆 Binary vector of constraint violations (Chapter 6)

𝒚 Binary vector signaling constraint redundancy (0) or necessity (1)

𝑪 A set of items (constraints, for this thesis).

𝑪𝑩 A set of constraints that are co-occur (are violated as a bundle).

𝝈(𝑰) The count of observations where ALL items occur in set 𝐼.

𝜸(𝑰) The count of observations where ANY items occur in set 𝐼.

𝑁 Number of observations (Chapter 6).

𝑠(𝑪) The support of set 𝑰.
𝑗(𝑪) The Jaccard similarity of set 𝑰.

𝑐(𝑪𝑨 → 𝑪𝑩) The confidence of the association rule 𝑨 → 𝑩.

𝑛𝑇 Limit on number of samples for constraint checking (Chapter 6)

𝑛𝑛 Number of sample points generated for each iteration of constraint
checking (Chapter 6)

𝑛𝐼𝑆 Maximum number of iterations without change in constraint rules
(Chapter 6)

𝑉2 Quantity proportional to variance in KPC point distance from nominal

1

Chapter 1. Introduction

1.1. Preliminaries

In the information age, a wealth of data is recorded daily. Consumer transactions

are logged by loyalty programs, videos are voted for by viewers and the physical world is

digitized by sensors. Indeed, there is so much data available that the majority is stored in

data warehouses and left untouched. For a sense of scale, in 2010, Facebook

processed 30 billion digital items every month, including photos, videos and comments

[1]. Globally, it is estimated that 9.57 zettabytes of data (ten million million gigabytes)

were processed by enterprise servers in 2008 [2]. The data overload has called for rapid

growth in data-driven research which merges information visualization, machine learning

and data mining. Academics and industry, in many disciplines, are constantly looking to

turn raw data into valuable information. However, data research has progressed so

rapidly, due to demand, that it has created a knowledge gap between the state-of-the-art

and domain specific applications. This thesis aims at partially bridging the gap between

interactive information visualization and engineering design optimization.

With the computational capabilities available today, engineers are increasingly

encouraged to simulate complex models on computers [3]. For instance, structural

analysis can now be performed by Finite Element Analysis (FEA) as opposed to solving

lengthy algebraic equations. In software, design performance is modeled and estimated

before building physical prototypes. As an additional step, software models may be

rapidly optimized, with optimization algorithms, leading to a shorter design process,

reduced costs and improved products. Sequentially, the engineer provides the model,

objectives, constraints, and design variables (i.e. the problem formulation). Next, the

algorithm tunes the variables to yield the best performance (according to the objectives

and constraints). This automated design process is data driven; yet, optimization is

rarely visualized or made interactive.

2

The lack of transparency in optimum design creates three major pitfalls. First, it is

challenging for engineers to catch mistakes or redundancies in their problem

formulations. Second, after clicking “start”, designers are unable to steer the optimization

process using their expertise or preferences; typically, the algorithm controls where to

search for the optimum. Third, when an optimum solution is found, the result may be

unconvincing if presented without context. In fact, it may very well be incorrect due to an

error in the model, an error in the problem formulation, or an error in the algorithm.

 This thesis focuses on improving transparency in optimization by visualizing and

mining the data that is iteratively generated. By keeping the user engaged, they are able

to provide input throughout the optimization process. Interactive optimization is not a

new concept and there is plenty of research dedicated to the topic, as explained in the

literature review section. This work, in particular, introduces an integrated framework for

interactive optimization with a focus on multivariate visualization. The specific goal is to

promote transparency and interaction in single objective optimization of black-box

models.

1.1.1. Numerical Optimization and Black-box Optimization

Numerical optimization is a well-developed mathematical topic whose scope

includes tuning design variables to find the best design(s) according to an objective

function and constraints. Although gradient based optimization dates back to Isaac

Newton and the beginning of calculus, modern optimization was established during

World War II by the British Air Forces’ Operational Research unit. The unit originally

evaluated how to redesign weapons and equipment, but eventually grew in scope to

predict battle outcomes and influence policy using their algorithms [4]. Early algorithms,

such as the simplex method [5], were algebraic and deterministic, but were restricted to

systems of linear equations. This type of problem is now called linear programming (or

quadratic programming for quadratic models).

As models grew in complexity, new techniques became necessary to broaden

optimization’s scope. Many modern methods are now iterative and stochastic (i.e. they

do not guarantee the same output each run), but they can be applied to more realistic

3

models without the restriction of linearity or even continuity. Famous approaches include

genetic algorithms--based on evolution [6], simulated annealing--based on statistical

mechanics [7], and particle swarms--based on swarm social behaviours [8].

Figure 1 shows the process followed by a typical iterative stochastic optimization

algorithm. The goal is formulated as an objective or cost function, which is minimized by

testing candidate designs until stopping conditions are reached. Once the process is

terminated, a result is presented (usually as text).

Describe the
system as a set of

objectives and
constraints.

Test designs with respect to
the objectives and

constraints.

Report optimum
design(s)

Select new designs using
the optimization method’s

sampling strategy.

Stopping criteria
satisfied? Y

N

Figure 1 Numerical optimization flowchart

As mentioned, optimization traditionally involves algebraic cost functions.

However, with modern methods, improving the response from an engineering simulation

is also a valid goal. In these cases, the model is treated as a black-box [9]. The

simulation’s inputs and outputs are known to the optimization algorithm, but the physical

phenomenon being simulated is not. As an analogy, consider testing the input and

output voltages of an integrated circuit (IC). The behaviour of the IC can be

approximated using an oscilloscope without knowing its internal components. Similarly,

black-box optimization extends optimization theory to simulations which are too complex

to evaluate algebraically (e.g. Finite Element Analysis, or FEA), by considering only the

input and output response. This is the central application of the techniques presented in

this thesis.

The advantage of numerical optimization and automated design is self-evident. A

large portion of the design effort is efficiently executed by a computer instead of an

expert. Efficiency matters as a single test simulation may require hours to complete,

4

even on state-of-the-art workstations [9]. In practice, there may also be millions of

feasible designs to test. Therefore, a robust mathematical strategy to intelligently find an

optimum design, with as few simulations as possible, is highly desirable. This is the

focus of computationally intensive optimization research. There is no exact numerical

definition of “computationally intensive”. However, a simulation that requires more than

one minute can be costly for optimization purposes (especially if there are many

variables to optimize).

As exciting as automated design may appear, removing engineers from the

design process (after problem formulation), is inherently problematic. First, it is likely that

the problem formulation will initially contain errors. Problem formulation requires

engineers to abstract physical systems into computer models while maintaining as much

fidelity as possible. Consequently, making invalid assumptions and mistakes in modeling

is natural. In addition to errors in modeling, design optimization requires precise

descriptions of objectives, constraints, variables, and search bounds. All of these

parameters are also difficult to define a priori.

Furthermore, there is no consensus on what types of formulation errors are most

common. For instance, Messac argues that important constraints are often missing for

large scale problems [10] while Karwan et al. explains that constraints are often

redundantly defined in linear programming [11]. Additionally, Balling found that even if a

formulation is sensible, stakeholders may not be able to define the objective they truly

want until they see some results [12]. The bottom line is that correctly formulating an

optimization problem is challenging. Therefore, methods to assist in problem formulation

are required.

Aside from improper formulation, another challenge in automated design is to

convince the design engineer (and co-workers) that an optimization result is in fact

optimal or sensible [13]. Even if the problem is formulated as intended; the result may

conflict with the designer’s intuition. The optimum may have far better performance than

expected, or include unanticipated variable values (outliers). By keeping designers

engaged during optimization, and allowing for exploration of the data afterwards, the

results are less surprising. However, to remain in the loop, designers need a mental

5

model of how the changing design variable values affect the output. This can be

achieved by visualization.

1.1.2. Visualization

Visualization is presenting data to an audience to form mental models. The aim is

to help people understand data, and the real-world phenomena it represents, by

leveraging our well-developed cognitive systems. In other words, data is encoded in a

manner that can be quickly perceived, accurately interpreted and clearly understood (by

the intended audience). Information visualization often focuses on presenting abstract

data to illustrate a particular point. Tufte’s book, The Visual Display of Quantitative

Information [14], presents many examples of successful visualizations that trigger

understanding and assist in decision making, as well as unsuccessful visualizations that

are incomprehensible or misleading. Visualization is also a powerful tool for explorative

analysis where hypotheses are generated by interacting with the data. Such is the case

in exploratory data analysis, popularized by Tukey in the 1970s [15].

 As an example, consider Anscombe's quartet data [16] tabularized in Table 1.

Each set of x-y pairs, from I to IV, has the same x and y means and the same variance.

If analyzed with descriptive statistics, the data appears to have come from the same

population. However, when visualized as scatterplots in Figure 2, the datasets are

distinct: set I is linear, set II is quadratic, set III is linear with an outlier and set IV is

constant in x values with an outlier. This exemplifies that the manner that data is

represented (e.g. table or scatterplot) strongly affects its interpretation.

Although information has been visualized for centuries, the field’s popularity has

jumped dramatically in the past few decades; triggered by exponential increases in

computing power and storage [17]. In this time, visualization has grown from static

graphs, focusing on a few attributes, to fully featured multivariate visualization platforms

such as GGobi [18] and the R programming language [19]. Indeed, modern visualization

is highly coupled with statistics, machine learning, mathematics, data mining, user

interaction, animation, and navigation.

6

Table 1 Anscombe's quartet as a table

 I II III IV
Observation x y x y x y x y
1 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
2 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
3 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
4 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
5 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
6 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
7 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
8 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
9 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
10 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
11 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
Mean 9 7.51 9 7.51 9 7.51 9 7.51
Standard Deviation 3.32 2.03 3.32 2.03 3.32 2.03 3.32 2.03

Figure 2 Anscombe's quartet as scatterplots

7

Due to the advancements made in data visualization and related fields, analysts

are more empowered now than ever. For instance, in 2011, researchers identified

subgroups in breast cancer patients that were previously unknown by simply applying

new visual analysis techniques to existing genomic data [20]. In computer aided design

(CAD), scientific visualization shows physical phenomena such as stress in structures,

current flow in circuits and fluid flows in turbines. Outside of CAD environments,

information visualization is an area of interest to keep designers engaged during design

optimization [21,22]. This thesis presents a framework for visualizing optimization data

as it is iteratively sampled.

1.2. Scope

The scope of the work presented is limited to visualization and mining of data in

an engineering design optimization context. The focus is on visualizing the design space

and performance spaces for optimization problems by using parallel coordinates,

enhanced with basic data mining techniques. A method to mine for relationships among

constraints, during problem formulation, is also presented. In terms of interaction,

queries and clustering are used to split the design space into regions which have similar

performance or variable values. Parallel coordinates is the central representation used to

illustrate this task. Furthermore, scatterplots are used for navigation and overview.

Regions may also be locally modeled with polynomial regression or high dimensional

model representation (HDMR).

As this is visualization in an optimization context, the visualization is connected

directly to a computationally efficient optimization algorithm (TR-MPS), allowing for on-

the-fly visual design steering. The convergence of the algorithm is also shown iteratively,

as the optimization progresses. Multi-objective and multidisciplinary optimization

visualization is beyond the scope of this thesis. The focus is on visualizing the effect of

many variables on a single objective with constraints, and on visualizing optimization

progress iteratively. This contrasts the majority of work done in visualization for

optimization which focuses on visualizing the effect of preferences/weights in multi-

objective problems [23,24].

8

1.3. Research Goals

This research aims to develop methods and tools to help design engineers

1) To visually steer design optimization in multivariate spaces via region selection

and visual feedback.

2) To visualize the progress of optimization for multivariate problems, and

3) To identify relationships among constraints in the problem formulation.

1.4. Thesis Structure

This thesis is split into eight chapters. The introductory chapter provided

motivation for the work and specific goals. The following literature survey chapter

(Chapter 2) introduces information visualization, its past uses in interactive optimization

and the state-of-the-art. Next, the methodology chapter (Chapter 3) provides necessary

theory for numerical optimization, regions, clustering, principal component analysis,

interaction, and navigation. Once regions are defined, metamodels can be built with

polynomial regression or HDMR as explained in Chapter 4, which covers local

metamodeling. Chapter 5 introduces a framework which aggregates concepts from

information visualization into prototype software for interactive optimization. In Chapter

6, a new method is introduced to identify relationships among constraints, incorporating

association analysis. Chapter 7 shows how the developed framework may be used in

locator optimization for automotive assembly fixtures. Finally, Chapter 8 provides

summary of the work and presents potential future work.

9

Chapter 2. Literature Survey

This chapter provides an introduction to information visualization and its past use

for optimization. A discussion is provided that covers some of the key concepts, with a

focus on multivariate visualization techniques. In addition, visualization used specifically

for design optimization is discussed.

2.1. Information Visualization

Visualization in engineering generally comes in two forms, information

visualization (InfoVis) and scientific visualization (SciVis) [17]. Scientific visualization is

likely what comes to mind when considering visualizing in an engineering context. In

SciVis, the data is projected onto a simulated physical model (e.g. a CAD model) to

show stress, temperature or other physical properties of a system. Information

visualization (InfoVis), on the other hand, is not tied to a spatial model (e.g. a scatter

plot). The growth in scope of InfoVis (including data mining, statistics etc.) has also

spawned the term visual analytics to reflect the broadness of the field [25].

Although the need for taxonomy has been debated [26], it is important to clarify

that the work in this thesis treats data in an abstract (InfoVis) sense. This ensures that

the methods can be applied to various black-box problems without being tied to CAD.

For instance, consider the scientific visualization of an FEA model for a bridge in Figure

3, colored by deformation (in [mm]), under a distributed load. The colors in this example

show the location and magnitude of the deformation. This visualization is clear and

intuitive, but ANSYS was used to create it. Had the data come from another CAD

package (e.g. SolidWorks), a model from that software would be necessary (along with

the ability to map deformation to color and position).

10

Figure 3 FEA Bridge analysis: scientific visualization

Now, consider Figure 4. The data is the same. Yet, in this representation, the

positions of points are dependent only on the value of the data and the chosen

representation (a line plot). There is no intrinsic physical notion of space or model tied to

the plot. This is information visualization.

Figure 4 FEA Bridge analysis: information visualization

As a brief breakdown of InfoVis, Figure 5 shows the role of each step. Topics

which are controlled by the visualization designer include representation, presentation

and interaction. The remaining steps are performed by the viewer.

11

Data

Representation

Data is mapped to position, color, line, text,
shape etc.

Presentation

The represented data is displayed to the
user. Some data may also be highlighted,

distorted or suppressed.

Perception

The eye sees the presentation.

Interpretation

A low order cognitive process infers meaning
(e.g. the data looks linear).

High-Order Cognitive Process

The interpretation causes a change to the
viewers current mental model, helps them
make a decision or consider new options.

Interaction

Changes are made
by the viewer to the
data, representation

or presentation.

InfoVis Designer

Viewer/Analyst

Figure 5 Flowchart of the visualization process (adapted from [17])

2.1.1. Representation Considerations for Quantitative Data

The representation of quantitative data has a history dating to ancient times,

usually as information overlaid on geographic maps. In the 18th century, quantitative data

representation was modernized with scatterplots, bar charts and line graphs, popularized

by Playfair [14,27]. A representation is a mapping of data to a display for a particular

purpose. For instance, in Table 1, the table encodes Anscombe's quartet numerically as

organized text, making it easy to find exact values for an x-y pair. In contrast, the

scatterplots show trends, but are more difficult to read numerically. When choosing a

representation, it is important to consider properties of the data (number of points,

dimensionality, and type), as well as the kinds of insight the audience is seeking

12

(relationships, distributions, values, or outliers). Common goals include browsing and

generating hypotheses (exploration), testing hypotheses (analytics) or forming

summaries that can be described to others (communication).

Extensive research has been conducted in order to determine which encoding

methods are possible, and which are most accurately perceived. A pioneer in InfoVis,

Jacques Bertin, defines the eight primary visual variables of 2D graphics: x-position, y-

position, size, value (opacity), texture, color, orientation, and shape [28]. These are

shown in Figure 6. However, not all of these variables are equal in terms of cognition. In

1984, experiments by Cleveland and McGill [29] found that position, length (size), and

slope (orientation) are most accurately perceived; not surprisingly, area is poorly

perceived. In 1986, Mackinlay, extended this work to non-quantitative data types

(Ordinal or Categorical) [30] . These encodings have been used to make many well-

known representations, including scatter plots (position), bubble charts (area and

position) and bar charts (length and position). A list and discussion of different types of

2D plots is beyond the scope of this work, however many examples can be found in

Spence’s book [17].

Figure 6 Bertin's visual variables (adapted from [28])

13

2.2. Multivariate Representations

Visualizing data with more than three attributes is inherently difficult [31]. The

challenge is particularly relevant today, as datasets grow, not only in the number of

observations, but also in the number of recorded attributes. In engineering design,

higher fidelity implies higher dimensionality. The structural design of a beam, for

example, includes many factors which may simultaneously affect its stress limits, such

as shape, thickness, material, length, and loading conditions.

Visualizations that can concurrently show the relationships between more than

three attributes are multivariate (a.k.a. hypervariate) to indicate there are more

dimensions than the medium used for display [17,32]. Although it is possible to simply

combine some of Bertin’s variables in a scatterplot, to do so would be complex,

cognitively inefficient, and limited to eight dimensional data. Instead, alternative

representations have been developed. An extensive list of multivariate visualizations and

their histories can be found in survey papers by Wong [33] and Grinstein [31].

Furthermore Jones, presents many multivariate methods in the context of optimization

and operations research in [34]. Below is a brief introduction to two popular multivariate

visualizations and statistical techniques which are used in this thesis. The terms

dimensions, attributes, and variables are interchangeable here.

2.2.1. Multivariate Representation Examples

This section shows two possible representations for a famous multivariate

dataset, Fisher’s Iris data [35]. The dataset is popular for introducing multivariate

visualization and statistical techniques in literature. The data summarizes four attributes

(Petal Width, Petal Length, Sepal Width, and Sepal Length) of three Iris flower species

(I.Setosa, I.Versicolo, I. Virginica) corresponding to red, green, and blue respectively.

The scatterplot matrix

The scatterplot matrix, shown in Figure 7, is a group of scatterplots organized

such that each row and column corresponds to one attribute. Scatterplot matrices are

intuitive for identifying correlations, clusters, and groups in two-dimensional subspaces.

14

Although they are simple to understand, there are a couple of clear disadvantages to

scatterplot matrices. First, the number of scatterplots is proportional to the square of the

number of attributes. Although, the number of subplots can be halved by only showing

the plots below or above the diagonal, the number of plots remains prohibitively large

and limits plotting space. Second, only two-dimensional relationships are shown in each

square, meaning the audience has to piece together higher order relationships.

Nonetheless, scatterplot matrices are effective overviews of data [36,37]. It is common to

use these plots as a starting point to find interesting pairs of variables to explore further.

Figure 7 Scatterplot matrix of Fisher’s iris data

The parallel coordinates plot

The parallel coordinates plot (PCP), established by Inselberg in 1985 [38], draws

each observation as a polyline, which crosses a set of parallel axes. The value for each

attribute is indicated by where the observation intersects its axis as shown in Figure 8.

For example, the I.Setosa species, shown in red, has a small sepal length, a generally

larger sepal width, and small petals. There also appears to be an outlier in the I.Setosa

15

sepal width. Many parallel axes can be placed adjacent to each other without a

significant increase in computational cost or space. It is also possible to quickly identify

multivariate relationships and groups directly from a PCP.

Figure 8 Parallel coordinates plot of Fisher's iris data

The major downsides to parallel coordinates are also clear from Figure 8. First,

the amount of ink used to show the data is exceptionally large. Tufte argues that graphs

should look to minimize the amount of ink used, and increase data-density instead [14].

The line representation of points also causes them to be frequently drawn over one

another (overdraw). The crossing lines make it difficult to distinguish between (or to

follow) particular points. Also, it is difficult to identify exact numeric values by reading the

graph. These limitations have been the subject of extensive research on PCPs in the

past three decades [39–43], since Inselberg’s paper.

An effective example of summarizing data is the Hierarchal Parallel Coordinates

method [39]. To reduce the amount of overdraw; Fua et al. cluster observations into

subgroups, using hierarchical clustering, which are represented by polygons with varying

opacity, instead of lines. By adjusting the clustering parameters, the data can be shown

in varying levels of detail. For instance, if the criteria for points to form clusters is strict,

many individual points will be shown (as each will form its own cluster); if the criteria is

loosened, points will form loose clusters and be summarized as fewer polygons.

16

In Fua’s method, the opacity and size of a polygon is proportional to the variance

of the points in the cluster, while the mean is drawn as a solid line. For illustration, the

Iris data is shown using polygons below (clustered by species). Typically the metric for

clustering is a distance between points, not a class label like species. However, Figure 9

illustrates how clusters can be represented in PCP, using polygons instead of (or in

addition to) lines. A simplified implementation of this idea is used in Chapter 3 to show

regions as polygons bounding the data. This allows users to see individual points, but

also suggests possible sub-regions.

Figure 9 Parallel coordinates plot of Fisher's iris data as polygons

2.2.2. Progress in Multivariate Visualization

Significant progress has been made in multivariate visualization during three

intense phases of research beginning in the 1970s. Wong presents an excellent review

of the work until the 1990s [33]. In fact, Wong suggests that as of 1992, research has

passed the discovery phase and is in the elaboration and assessment phase. In other

words, new representation techniques are rarely discovered, nor are they necessary.

Still, visualization research remains very active. There is considerable inventiveness

required to summarize, present, and interact with data efficiently, especially within

domain-specific contexts, like design optimization [17]. Interaction is particularly

important for visualization of data sets with thousands of observations and/or attributes

17

[44]. Research is also needed to rigorously and systematically analyze the effectiveness

of current methods for performing various tasks.

2.2.3. Dimensionality Reduction

Aside from advances in representation, dimensionality reduction techniques are

also practical to map high dimensional spaces to two or three dimensions.

Dimensionality reduction is concerned with mapping high dimensional data to preserve

statistical properties, as opposed to mapping data for display (i.e. visualization). This is

especially valuable in datasets with many dimensions (>10), or sparse data where most

attributes have zero values. In these situations, it is redundant (or impossible) to

visualize all of the variables. An alternative is to define a new space that uses fewer

variables, but is statistically representative of the high dimensional data.

 Principal Component Analysis (PCA) [45], a variation of singular value

decomposition, is a popular reduction method that preserves linear variability, in a

reduced coordinate system. The first axis of the transformed coordinate system, the 1st

principal component, is chosen as the direction which captures the maximum amount of

variance. The remaining components are chosen to maximize the remaining variance,

with the limitation that they are orthogonal to one another. Although it is a general

statistics technique, PCA has strong applications in multivariate visualization. It is

especially useful for identifying groups, or isolating points as the data becomes

separated along the directions of maximum variance. Figure 10 (left) shows the first two

PCA components of the Iris dataset. It is clear that the I.Setosa, shown in red, is

dissimilar to the other Iris species, by its isolation in the 1st PCA direction. The steps of

PCA are explained in section 3.3.2 and Appendix.

Factor analysis (FA) is related to PCA, but uses hidden variables (a.k.a. latent

factors) to describe the observations, as opposed to using linear combinations of the

observed variables. This means it is applicable even if there is low covariance between

the observable variables. For example, with the Iris dataset, a variable corresponding to

“Petal Area” may have been recorded instead of petal width and length. Petal width and

length may be independent; but, this new area variable summarizes both. Factor

18

analysis aims to find a small set of hidden variables with strong correlations to the

observable variables. The hidden variables are then linearly combined as a lower

dimensional representation of the original data. The technical details of FA are beyond

the scope of this work; an introduction can be found in [46]. Figure 10 (right), shows the

Iris data plotted for a single latent factor. Again, the I.Setosa (red) species is isolated.

Figure 10 Fisher's iris data [35] with PCA (left) and FA (right)

Dimensionality reduction is not limited to linear factors. Advanced reduction

techniques include Kernel PCA [47], locally linear embedding (LLE) [48],

multidimensional scaling (MDS) [49] and ISOMAP [50]. Maaten et al. provides a

comparative review of twelve of the most popular methods, including the ones listed

above in [51].

Although dimensionality reduction is powerful for preserving high dimensional

features in low dimensional space, the techniques by themselves suffer from some

drawbacks. First, most projection methods, such as PCA and FA, rely on Eigen

decomposition, which may be computationally costly and result in non-unique solutions.

Second, without knowing what kinds of patterns the data contains (e.g. linear or

nonlinear), it is difficult to know which method to use. This is especially true if data is

provided for visualization without additional background information, as in black-box

optimization.

19

Perhaps, the most fundamental drawback of dimensionality reduction is that the

data is mapped to a new space, and the context information is lost. For instance, in

PCA, the components have statistical significance, but are difficult to interpret. Inferring

the position of a point in a PCA plot, in terms of the original attributes, is extremely

difficult as the point is now rotated and distorted. It is clear that I.Setosa is separate from

the other flowers in Figure 10, but it is unclear what specific properties make it distinct.

This conflicts with the goal of visualization: forming a clear mental model of data that the

audience can understand and remember.

Overall, when using reduced spaces it is key to provide interaction that can relate

a given point back to the original space. For example, with brushing (as explained in

3.3.1), the reduced space may be used for navigation or region selection, while another

plot shows the highlighted points in detail. Dimensionality reduction is also powerful to

improve computational efficiency in modeling, clustering, or optimization which also

suffer when dimensionality increases (i.e. the curse of dimensionality [52]).

2.3. Visualization in Support of Engineering Design

2.3.1. Early Approaches and Applications

Visualization in support of optimum design is relatively young, with domain

specific applications published in the 1980s, and the first textbook published in 1996

[34]. Early application specific approaches fell into the category of Interactive

Evolutionary Computation (IEC) [53]. In IEC, a human operator acts as the fitness

(objective) function and evaluates each design manually. Additional designs are then

generated based on the operator’s feedback. The process is outlined in Figure 11. IEC is

a popular approach for situations where the objective of optimization is difficult to

quantify or model. In fact, Takagi found 251 IEC papers published in various fields

between the 1990s and 2001 [53]. The disciplines where IEC is used span from graphics

and music to data mining and robotics. Fundamentally, this is a human-guided

optimization process; however, it is taxing and time consuming to ask an expert to

evaluate each potential design.

20

Optimization Method

Generates designs

Human operator

Interprets the
designs

Human operator

Assigns a
performance value

to each design

Figure 11 Flowchart of the interactive evolutionary computation (IEC)

In Sims’ 1991 work [54], a human operator acts as the fitness function for a 3D

plant and flora graphic generator, by assigning an aesthetic value to designs generated

in previous iterations. The graphics are rendered and presented to an artist who rates

them. A genetic algorithm then automatically generates more graphics in the following

iteration, building on the learned operator’s preferences. This IEC approach contrasts

traditional optimization, where the objective function is defined a priori and evaluated by

computer. However, Sims’ approach is very logical, as aesthetic success is subjective

and difficult to compute.

In 2000, Mitsubishi Electric Research Laboratory used a semi-automated

Human-Guided Search (HuGS) to find an optimal delivery truck routing schedule,

minimizing the number of trucks required to make all deliveries within fixed time windows

[55,56]. HuGS is an early example of Interactive Optimization, as shown in Figure 12.

Further examples of interactive optimization, including HuGS, were also discussed in

[57]. A chapter is also dedicated to interactive optimization in Arora’s textbook [58].

Interactive optimization uses mathematical objective functions, but allows the designer to

adjust the optimization parameters (such as search bounds, constraints or even

objectives) without starting an entirely new optimization process.

Optimization Method

Finds an optimal design
using computed

performance values

Human operator

Interprets or
modifies the results

Human operator

Re-executes the
optimization with an
adjusted problem

formulation

Figure 12 Flowchart of interactive optimization (adapted from [57])

21

2.3.2. Visual Design Steering and Graph Morphing

Although early interactive optimization examples were built for specific

applications, progress has also been made towards generalization. Winer and Bleobaum

defined Visual Design Steering (VDS), in 2001, as an umbrella for work which steers

computationally intensive optimization towards a solution by visualization [59,60]. In

VDS, the algorithm samples in user-selected areas. The pioneering VDS works dates

back to Afimiwala and Mayne, in 1979 [61]. Afimiwala used contours of constraints to

directly identify the feasible region of two variable problems. Users were able to click on

feasible areas (represented as a scatterplot) to generate samples at the clicked location.

To accomplish VDS with additional variables, Winer and Bleobaum employ

Graph Morphing, which plots 2D or 3D contours of a few chosen variables, and leaves

the remaining variables as interactive sliders. As the sliders are adjusted, the graph is

“morphed". Essentially, the variables that are not directly plotted influence the shape of

the graph as hidden variables. VDS was also used in conjunction with variable

importance ranking to find a suitable initial starting point for optimization (using the

Automated Design Synthesis method) [22]. It was found that this procedure reduced the

number of function evaluations required by approximately 50% on average, in

comparison to starting with a random point.

2.3.3. Automatic Trade Space Visualization

In contrast to VDS, Balling’s Design by Shopping Paradigm presents a set of

designs, from a large sample, allowing users to subsequently formulate their preferences

by comparing trade-offs [12]. Balling’s approach is especially pertinent to multi-objective

problems where objectives conflict with one another. Sequentially, this is the inverse

order of operations to traditional optimization or VDS, which both begin with preferences

or objectives and generate samples accordingly. Instead, by comparing the trade-offs

from an initial sample set, users may decide which objectives are truly important or

necessary, as shown in Figure 13. Penn State’s Applied Research Laboratory Trade

Space Visualizer (ATSV), developed by Stump et al., adds interaction techniques for

design by shopping with many variables or objectives [21].

22

Initial Sampling

Generates many (Pareto
efficient) designs

Human operator

Interprets the tradeoffs
in outputs and forms

preferences

Human operator

Chooses objectives (or
weights) based on their

preferences

Figure 13 Design by shopping approach to problem formulation

Originally, ATSV relied on heavy initial sampling for exploration. Users would

search through thousands of simulated tests in a scatterplot matrix to find a subspace

with desired performance for further sampling. However, this is inefficient for

computationally intensive problems, as evaluating a large set of initial designs may be

prohibitively slow and wasteful. More recently, a link to the simulation or black-box model

was added to generate candidate designs on-the-fly using various sampling strategies,

starting from a small initial population [62,63]. For examples, an “attractor” could be

added in the performance space, which biases sampling towards the objectives near the

attractor. This effectively combines ATSV’s multivariate visualization capabilities, design

by shopping, and VDS.

Data mining techniques were also prototyped by the same group recently, in

2012, to help support analysis of larger engineering design data sets [64]. The LIVE tool

integrates statistical clustering and classification, allowing users to select interesting

areas in the engineering data. Users can then choose to create additional samples in the

selected regions. This is conceptually similar to the work presented in this thesis;

however the region selection, data mining, and visualization methods differ.

2.3.4. Physical Programming and Physical Programming Based
Visualization

Messac’s Physical Programming approach to multidisciplinary design

optimization (MDO) works towards flexible problem formulation [10,65]. In MDO, there

are often many competing objectives to be simultaneously minimized. A common

solution is to aggregate objectives into a single function using weights, or to prioritize

and optimize the system sequentially. In physical programming, instead of assigning

weights or priorities, a designer specifies range thresholds for each objective:

23

unacceptable, undesirable, tolerable, desirable or highly desirable. The method then

constructs a class function, based on the problem type, which maps the actual objective

function value to these qualitative ranges. This changes the dynamic of convergence for

multi-objective optimization. For example, moving from unacceptable to tolerable in one

objective is more significant than moving from desirable to highly desirable in another.

Similarly, moving within the highly desirable range is of little significance. Thus, the

preferences are adjusted towards convergence in the desirable ranges for all objectives

and away from the unacceptable for any objective.

Physical programming was extended in 2000 to help visualize optimization

progression. The method is named Physical Programing Based Visualization (PPV) [66].

In PPV, values of design metrics are plotted iteratively as lines, bar graphs and radial

charts. A PPV line chart is shown in Figure 14. PPV differs from ATSV or LIVE in that

the visualization is focused on the movement of the optimum solution towards the highly

desirable range, as opposed to trying to visualize the design space.

Figure 14 Physical programming history visualization (adapted from [66])

2.3.5. Pareto Frontier Visualization Methods

Many visualization techniques have been published to present Pareto optimal

multi-objective results. Pareto optimal designs are those for which no other design is

better for all objectives. In other words, to improve any objective value of a Pareto

optimal design, a compromise must be made in the remaining objectives. Points in the

24

Pareto set are shown in black in Figure 15. Representing the Pareto set (a.k.a. the

Pareto Frontier) requires as many dimensions as there are objectives. Therefore, for

problems with many objectives, multivariate visualization is required to show the

objective (performance) space.

Figure 15 Pareto set of a 2D performance space (shown in black)

Cloud visualization, by Eddy and Lewis [67] in 2002, splits optimization data into

two linked (3D) scatterplots: the design space (where variables are used as the axes)

and the performance space (where objectives are used as the axes). Users can highlight

points in either graph and see the result in the other. Additionally, users can choose a

location in the performance space, and the corresponding design point(s) will be

highlighted or generated using a genetic algorithm (if the point is nonexistent but

possible), as shown in Figure 16. A similar approach to cloud visualization for

engineering design was also introduced, by Spence, for analog circuit design with linked

histograms [68,69].

25

Figure 16 Cloud visualization (with 2D clouds) – adapted from [67]

2.3.6. Parallel Coordinates in Support of Interactive Optimization

Parallel coordinates was isolated as a helpful method for interactive optimization

in Froschauer’s 2009 thesis work [57]. It was also mentioned in Jones’ textbook [34].

Froschauer added optimization techniques to an existing data analysis software (Bulk

Analyzer), with a focus on using parallel coordinates to assist with optimization.

Froschauer provides an excellent overview of visualization (especially parallel

coordinates), interaction, optimization, and their integration. A heavy focus is visualizing

multi-objective tradeoffs. For example, a method is presented to construct Pareto sets

with different levels of dominance, and highlight them in the Bulk Analyzer. Another

method is presented to highlight points based on adjustable “assessment ranges” which

classify points as desirable, satisfactory, or undesirable (as in Messac’s Physical

Programming method). Finally, as in this thesis, there is a method to estimate data that

is not present in the set of samples.

Although Froschauer’s work is conceptually very similar to the work done here,

there are some key differences. Most notably, Froschauer’s optimization process is on a

given dataset, which was evaluated and simulated a priori. In other words, data is not

generated on-the-fly from a cost function or simulation. Instead, the optimum is found

according to a defined multi-objective problem, using past data that has been loaded into

the bulk-analyzer. In contrast, in this thesis, visualization is used to find areas for further

26

sampling by an integrated optimization method. Furthermore, this thesis presents

methods to track optimization progress as new samples are added; navigation using 2D

projections; integrated clustering and dimensionality reduction to isolate designs with

similar performance; and a method to identify relationships among constraints using data

mining.

2.4. Summary

This chapter introduced InfoVis, which is the representation of abstract data that

is not tied to a spatial model. Two techniques to display multivariate data were

introduced: the scatterplot matrix and parallel coordinates. Aside from visualization,

dimensionality reduction is discussed to reduce the number of independent variables

while preserving statistical properties. Next, a review of related work is given. Topics

covered include interactive evolutionary computing, visual design steering, design by

shopping, physical programming based visualization, and cloud visualization. In the

following methodology chapter, theoretical details of optimization and visualization are

elaborated and defined mathematically.

27

Chapter 3. Methodology

This chapter presents methodologies related to interactive optimization in

mathematical detail. First, an introduction is given to numerical optimization, followed by

an introduction to spaces and regions. Next, clustering methods are introduced to split

large regions into smaller ones. Clustering is followed by interactive techniques and two-

dimensional selection (including PCA). The goal of this chapter is to provide theoretical

background for the optimization visualization framework, which follows in Chapter 5.

3.1. Numerical Optimization

Numerical optimization is an algorithmic process that searches through potential

designs in order to find the one(s) which provides the lowest cost or highest

performance. Generally, there are three components to an optimum design problem.

First, there are design variables. These are the variables which can be tuned to improve

performance. Second, there are objectives. Objectives are functions which return a

measure of performance (e.g. strength-to-weight ratio, system cost etc.). Third, there are

constraints. Constraints are limitations placed on the system. These may represent

physical, space, or cost limitations which render the system infeasible. Formally,

optimization problems are posed in standard form as follows in Eq. (1):

 min𝒇 (𝒙)
𝑠. 𝑡 {𝒈(𝒙) ≤ 0,𝒉(𝒙) = 0}

(1)

 In the equation above 𝒙 ∈ 𝑿 ⊆ ℝ𝑛 is a set of values for each of 𝑛 number of

design variables; 𝒇(𝒙) is a set of objective functions which models system costs; 𝒈(𝒙) is

a set of inequality constraints; and 𝒉(𝒙) is a set of equality constraints, which model

limitations. Note, if the goal is maximization (e.g. maximize performance), 𝒇(𝒙) can be

easily negated to make the problem a minimization problem (min−𝒇 (𝒙)).

28

Equality constraints are cumbersome to deal with. They require the constraint

function to have an exact value, which is probabilistically impossible by random sampling

for continuous functions. Strategies to deal with equalities include converting equalities

to inequalities by adding slack variables; penalizing the performance of a design based

on its non-zero constraint value; or simply not supporting equality constraints. In this

thesis, equality constraints are not supported.

In single objective optimization, the focus of this work, each design 𝒙 returns a

scalar value 𝑓. However, this doesn’t necessarily imply that only one output of a

simulation must be considered. It is common to aggregate multiple objectives into an

overall performance measure by summing each output with a given set of weights. In

Eq. (2), 𝑙 is the number of objectives to be aggregated, and 𝑤𝑗 ∈ 𝒘 is a weight that

scales the effect of 𝑓𝑗(𝒙) (an individual objective) on the aggregated objective.

Furthermore, although each design corresponds to a single value of performance, there

may be multiple designs that yield the same performance.

𝑓(𝒙) = �𝑤𝑗 ∗ 𝑓𝑗

𝑙

𝑗=1

(𝒙)
(2)

It’s clear from the equations above that formulating a problem for optimization

requires assumptions and domain knowledge. For example, an equation or model is

required to map each design point 𝒙 to 𝑓. Additional equations are also required for the

constraints 𝒈(𝒙). Finally, 𝒙 is bounded to give the algorithm a finite search domain. Due

to these requirements, the problem formulation stage (defining the equations in (1) or

choosing weights in (2)), is error-prone. In fact, Arora estimates that problem formulation

accounts for 50% of the effort required to optimize a problem [58].

3.1.1. Optimization Space Terminology and Notation

To clarify some of the terms for discussing optimization, three spaces may be

defined, as in Figure 17. These terms are common in optimization literature [67].

29

The design space 𝒟 is the domain of all possible designs that may be generated

throughout the entire optimization process. The tested designs are contained in the

sample matrix 𝑿, with 𝑚 number of rows corresponding to individual designs (a.k.a.

samples or points), and 𝑛 number of columns corresponding to design variables (a.k.a.

attributes or dimensions). Individual designs are denoted by 𝒙 in general, or 𝒙𝑖 when

discussing a specific design. The design space is bounded by a vector of lower bounds

(𝑫𝐿) and a vector of upper bounds (𝑫𝑈): 𝒙 ∈ [𝑫𝐿,𝑫𝑈]. These bounds are given by the

user in the problem definition as a wide scoping region that may be worth exploring.

The search space 𝒮 ⊆ 𝒟 covers the boxed area that the optimization algorithm

is currently searching. Variables are bounded by a vector of lower bounds (𝑺𝐿) and a

vector of upper bounds (𝑺𝑈). In the search space, new points are sampled by an

optimization method or by random sampling. The search space is intended to be flexible

throughout the optimization process, as users chose to explore new regions.

The performance space ℱ covers the range of function values which are

generated from 𝑓(𝒙). The bounds of the performance space are generally unknown

(especially prior to optimization). Indeed, it is the goal of optimization to find the lower

bound of ℱ (and corresponding design), representing minimum cost. A vector 𝒇 ⊆ ℝ,

contains all of the scalar function values 𝑓𝑖, tested for each design 𝒙𝑖.

Figure 17 Design Space, Search Space and Performance Space

30

3.2. Regions and Clustering

In order to select areas for further investigation, regions may be defined in either

the performance or design spaces. Selecting a region enables users to visually highlight

points with similar properties. Regions may also grow or shrink as the optimization

progresses, which gives a visual indication of convergence.

To illustrate the three types of regions in this work, a two-variable benchmark

optimization problem, the six-hump camel back problem (SC) is introduced. It’s named

the six-hump camel problem because there are six local minima in total, including two

global minima. This problem will be used as an example throughout this chapter and is

defined in Eq. (3), with bounds 𝑫𝐿 = [−2,−2] and 𝑫𝑈 = [2 ,2]. A contour plot of the SC

problem is given in Figure 18.

 min𝑓 (𝒙) = 4 ∗ (𝑥1)2 −
21
10

∗ (𝑥1)4 +
1
3
∗ (𝑥1)6 + (𝑥1) ∗ (𝑥2) − 4 ∗ (𝑥2)2 + 4 ∗ (𝑥2)4 (3)

Figure 18 Contour plot of Six-Hump camel problem

31

3.2.1. Percentile Regions

The first type of region that may be defined is a percentile region (𝑲). Percentile

regions group points by relative performance. For example, a percentile region may

correspond to the query: “Show me the top 15% of designs”. Points with function values

between percentiles 𝑘𝑙 and 𝑘𝑢 are selected. Formally, this can be written as Eq. (4):

 𝑲 = {𝒙 ∈ 𝐗 | 𝑘𝑙 ≤ 𝑘(𝑓(𝒙)) ≤ 𝑘𝑢} (4)

Where 𝑘(𝑓(𝒙)) is the relative ranking of each function value (as expressed by a

percentile). For illustration, the top 15% of 500 random points, tested for the SC

problem, are shown in black in Figure 20. The same region is also shown in parallel

coordinates in Figure 21. The cyan area shows the boxed space encompassing these

points. In Figure 20, the bounding function values are also shown (0.215 to -1.02).

Figure 19 Percentile Region - Top 15% of the SC Problem (Scatterplot)

Percentile regions are important for two reasons. First, the limits of performance

are generally unknown prior to optimization. Second, the concept of a “good

performance” may also change as new samples are tested. Therefore, by using relative

performance, a meaningful region can be defined without specifying numeric values.

32

This allows user to track top performing points throughout the optimization process, and

observe as the algorithm converges.

Figure 20 Percentile Region - Top 15% of the SC Problem (PCP)

3.2.2. Performance Regions

If a designer knows which range of performance they wish to explore (e.g.

designs that outperform a threshold), they may limit the performance space to exact

numeric values. A range which restricts designs by absolute performance is simply

called a performance region (𝑷). A performance region is formalized by Eq. (5):

 𝑷 = {𝒙 ∈ 𝐗 | 𝑓𝑙 ≤ 𝑓(𝒙) ≤ 𝑓𝑢} (5)

Where 𝑓𝑙 and 𝑓𝑢 are limits given to the performance space. For instance, the

performance region defined by −1.02 ≤ 𝑓(𝒙) ≤ −0.5, is shown in Figure 21. Again, black

points are in the region, while the remaining points are not. The limits of design variables

corresponding to the points are shown in orange.

33

Figure 21 Performance Region - Objective between -1.02 and -0.5 of SC Problem

3.2.3. Design Regions

Design regions (𝑫) are defined in the design space, regardless of performance.

For example, a design region may be as follows: “Show me all of the designs where

−1 ≤ 𝑋1 ≤ 1 and −1 ≤ 𝑋2 ≤ 1”. Design regions are formalized in Eq. (6):

 𝑫 = {𝒙 ∈ 𝐗 |𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢} (6)

In Eq. (6), 𝒙𝑙 is a vector of lower limits for each variable, and 𝒙𝑢 is a vector of

upper limits for each variable. The space defined by −1 ≤ 𝑋1 ≤ 1 and −1 ≤ 𝑋2 ≤ 1 is

shown in Figure 22 and Figure 23. Notice that all of the points in the purple area are

highlighted in the X2 vs X1 graph, as the limitation is placed on 𝒙 instead of 𝑓.

34

Figure 22 Design Region - x1: [-1, 1] and x2: [-1, 1] (Scatterplot)

Figure 23 Design Region - x1: [-1, 1] and x2: [-1, 1] (PCP)

Design regions are simply bounds on the variable space. Therefore, they may be

used as the search space bounds for further optimization. Additionally, localized models

may be fitted and tested within these bounds.

35

3.2.4. Clustering

Interactive methods to define and adjust regions are discussed in Chapter 5. As

an alternative, clustering automatically splits data to find distinct groups of similar points.

In engineering design, clusters within a percentile or performance region means there

are distinct design alternatives that yield similar performance.

 Consider the percentile region shown in Figure 19. There are four areas which

make up the top 15 percentile of points as shown in Figure 24. Each group represents a

distinct set of designs that are in the top 15 percentile.

Figure 24 A possible clustering within the top 15% of points of the SC problem

Of course, clustering is subjective. For example, one could easily argue that the

middle region in Figure 24 is a single cluster. Therefore, clustering should be made

flexible using visual feedback. As a very brief introduction to cluster analysis,

background is given for two popular methods: k-means and single-link clustering.

K-Means clustering

K-means clustering is a center-based clustering method that splits points into k

number of groups, where k is typically provided by a user. The term center-based

clustering means that each point is related to the cluster’s center (a centroid). The

36

process is summarized in Figure 25 and illustrated in Figure 26, where the colors

indicate the clusters, and triangles indicate centroids. The initial centroids were chosen

at random for this example. In practice, centroids may be chosen to be furthest from one

another.

After initialization, each point is assigned to the nearest centroid. Nearness, or

similarity, can be defined in many ways. In fact, there are dozens of definitions of

similarity available (e.g. L-norms, Jaccard, Cosine, etc.) [70]. In this work, the squared

Euclidean distance is employed. Data is also standardized in each dimension (between

[0,1]) to ensure each design variable has equal weight in the distance computation.

Squared Euclidean distance (a.k.a. 𝐿22) is one of the most intuitive notions of distance for

purely quantitative data. The 𝐿22 distance is given by Eq. (7):

𝑑�𝒙𝑖 ,𝒙𝑐� = �(𝒙𝑗𝑖 − 𝒙𝑗𝑐

𝑛

𝑗=1

)2
(7)

In words, Eq. (7) sums the squared differences between the point 𝒙𝑖 and

centroid 𝒙𝑐, in each of n dimensions. Once all points are assigned to their nearest

centroid, the centroids are redefined as the means of their assigned points. Next, the

points are re-assigned to the nearest of the new centroids. This iterative process

continues until all centroids no longer change. Note that the choice of initial centroids will

affect the result of the k-means clustering. Often, k-means is repeated with different

centroids choices, and the result which minimizes the overall distance from points to

their center is selected.

Step 1
Initialize centroids

Choose k number of
centroids within the

design space.

Step 2
Assign points

Using a similarity
measure, assign

each design point to
it’s nearest centroid.

Step 3
Adjust Centroids

Replace each
centroid with the

mean of it’s
assigned points.

Step 4
Report Clusters

Report the points
assigned to each

centroid (clusters).

Did any
centroid
change?

b

Y
Figure 25 Flowchart of k-means clustering steps

37

Figure 26 Visual example of k-means clustering steps

Agglomerative (single-link) clustering

Agglomerative clustering is a hierarchical approach that combines points from

the ground up to build clusters. This approach is fundamentally different from center-

based methods. The idea is to build small clusters, and progressively combine the

nearest ones, until the distance between clusters is beyond a cut-off or all clusters have

been merged. Therefore, the parameters to agglomerative clustering are a cut-off

distance (𝜖) and a method to determine nearness between clusters (e.g. single-link).

There are many ways to define nearness between two clusters. One way,

following the thinking of k-means, is to consider the distance between the means of each

cluster. This is called the centroid proximity method. The single-link variation defines

proximity as the distance between the two closest points from each cluster, as shown in

Figure 27. The mathematical definition of single-link proximity 𝑝 is given in Eq. (8).

 𝑝(𝒄𝒂, 𝒄𝒃) = min [𝑑 �𝒄𝑎
𝑖𝑎 , 𝒄𝑏

𝑖𝑏�]

1 ≤ 𝑖𝑎 ≤ ma 1 ≤ 𝑖𝑏 ≤ mb

(8)

Where 𝒄𝒂 and 𝒄𝒃 are two non-empty clusters, containing ma and mb number of

points (respectively), and d is a distance function (e.g. 𝐿22). Individual points in the

clusters are denoted by 𝒄𝑎
𝑖𝑎 and 𝒄𝑏

𝑖𝑏 respectively.

38

Figure 27 Single-link proximity versus centroid proximity (adapted from [70])

As an example, consider the data which was clustered using k-means above.

This data is clustered via single-link clustering in Figure 28. Initially, clusters consist of

single points. Therefore, their proximity is simply the distance between one another. In

the first step, the two nearest points are merged to form a two-point cluster. Step 2

merges the next closest clusters. This continues until all clusters are merged, or the

minimum cluster proximity exceeds a cut-off distance.

Figure 28 Single-link clustering example

Notice that the minimum proximity between clusters in each step (as shown by a

line) increases monotonically for single-link clustering. Thus, the cut-off distance 𝜖

39

specifies a sufficient distance between groups for them to be considered truly distinct. In

practice, however, it is difficult to specify a meaningful cut-off distance .

Although, cluster quality can be evaluated using quantitative metrics (e.g.

average distance of points to cluster center) there is no theoretical best value for cut-off.

Choosing 𝜖 depends on the user’s preferences (e.g. what is an acceptable distance for

the clusters to be considered unique), the application, and the data. Therefore, users

may adjust 𝜖 using a slider in the visualization framework, to automatically re-cluster in a

flexible manner. Clustering via k-means or single-link was found to be sufficiently quick

(~0.2 seconds) for datasets of 10,000 points on a typical PC using MATLAB. However,

redrawing the graphs increases the overall response time to between 2-3 seconds for

the same datasets. This delay is non-ideal for smooth interaction (<1 second response

time) [71]. Nonetheless, clustering can be recomputed relatively quickly, and with

visualization, k or 𝜖 can be selected on-the-fly.

SC Clustering Example

 K-means and single-link were applied to the top 15% region of the SC problem

as an example. The results are shown in Figure 29 for k=4 with k-means, and for

𝜖 = 0.07 with single-link. Notice, the clustering from k-means does not match the

expected “natural” clustering (in Figure 24). This is due to the random selection of the

initial centroids. In this case, single-link’s result is more in line with the proposed natural

clustering, but required careful tuning to 𝜖 = 0.07.Once split into clusters, the top

performing region may further split to design regions for further exploration as distinct

areas as explained in Chapter 5.

40

Figure 29 SC Top performing region (top 15%) via k-means clustering (k=4)

Figure 30 SC Top performing region split via single-link clustering (𝝐 =0.07)

41

3.3. Interaction and Navigation

A critical component of visual data analysis is interaction. Interaction allows users

to browse through sets of data, seek for specific values, or simply see what data is

available.

Each time the user performs an interaction, they follow a cycle of actions as

modeled in Figure 31. This model, Norman’s action cycle, is common in human-

computer interaction literature [17,72]. The process begins with a specific goal, such as

determining if there are distinct design groups with high performance for an optimization

problem. Next, the user decides on a specific intent. For the previous goal, this may

include separating regions by cluster analysis in the top 15% of points. The user then

plans actions. For example, to perform cluster analysis, a percentile region may be

defined and then further split by single-link clustering. The visualization is refreshed once

these actions are carried out. At this point, the user perceives, interprets, and evaluates

the resulting visualization. The result often leads to a new goal (e.g. adding samples to

the distinct regions) which closes the interaction loop.

Goal

Plan actions.

Execute actions.

A change is made in the data or visualization.

Evaluate result.Specify intent.

Perceive result.

Interpret result.

E
valutationE

xe
cu

tio
n

Figure 31 Norman's action cycle of interaction (modified from [17])

The value of interaction is more apparent on datasets with more than three

attributes. Therefore, a four variable pressure vessel design (PV) optimization problem is

used as an example. This problem is from Globally Optimal Design by Wilde [73], and

has been used as a benchmark problem in engineering optimization literature [74,75].

The problem has four variables: tank radius (𝑅), tank length (𝐿), shell thickness (𝑇𝑠) and

42

head thickness (𝑇ℎ). The objective is to minimize the aggregated system cost ($),

including materials and manufacturing. There are three constraints in the original

problem, based on ASME pressure vessel standards, and one objective cost function.

Although the problem is often posed with discrete thickness values, it is defined here for

continuous values as in reference [74] with Eqs. (9) to (12).

 min𝑓 (𝒙) = 0.06224Ts𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠𝐿 + 19.84𝑇𝑠2𝑅 (9)

 𝑔1 = 0.0193𝑅 − 𝑇𝑠 ≤ 0 (10)

 𝑔2 = 0.00954𝑅 − 𝑇ℎ ≤ 0 (11)

 𝑔3 = 1296000− 𝜋𝑅2𝐿 − �
4
3
�𝜋𝑅3 ≤ 0 (12)

The variable bounds are as follows (each variable is in inches):

𝑅 ∈ [25,150],𝑇𝑠 ∈ [1,1.375],𝐿 ∈ [25,240],𝑇ℎ ∈ [0.625,1]

A diagram of the vessel design parameters is shown in Figure 32.

Figure 32 Diagram of the PV optimization problem variables

3.3.1. Navigation, Brushing and Overviews

Navigation

Navigation is the term for moving from one information space to another. This

includes choosing which data is shown or hidden, and in which level of detail. In

traditional design optimization the specific goal is to navigate through the design space

43

to find the optimum. In this case, navigation is automatically executed by an optimization

algorithm which biases the generation of new designs towards minimization of the

objective function. This kind of target specific navigation is called pursuit [17], and can

be partially or fully automated. A contrasting type of navigation is exploration, where the

user manually navigates through the design space to improve their understanding of the

dataset.

Brushing

Brushing, related to navigation, is the selection of data in one view, which

becomes nearly instantly highlighted in other views. For example, consider Figure 33

and Figure 34 which show the top 50 designs out of 500 for the PV problem (all other

designs are suppressed). In Figure 33 the shell thickness (𝑇𝑠) is plotted against the

head thickness (𝑇ℎ). Although the 2D projection does not show all of the attributes of the

data, it can be used to brush points in 𝑇𝑠 vs. 𝑇ℎ (thickness variables).

Figure 33 2D projection of PV problem (top 50 designs shown)

44

Figure 34 Parallel coordinates plot of PV problem (top 50 designs shown)

As an example, a selection is made in Figure 35 for thin low-cost vessels. The

corresponding points are immediately shown in an adjacent plot (Figure 36). By brushing

other 2D projections, the designer may select other attributes as well. Furthermore,

picking points directly in 2D projections is less error-prone than in parallel coordinates

where there is overdraw. Brushing is a very popular interaction technique, and was also

employed by related optimization visualization work [21,57].

Figure 35 2D projection of PV problem (thin designs selected)

45

Figure 36 Parallel coordinates plot of PV problem (thin designs selected)

Overview

In order to know which 2D projections may be interesting, an overview of all of

the 2D projections may be plotted. The value of an overview is not to identify specific

numeric values as with the parallel coordinates, or to make selections, but to identify

which projections are worth navigating to. Spence refers to this as a “see-and-go”

approach as opposed to “go-and-see” [17]. Scatterplot matrices as overview was also

discussed in detail by Elmqvist in [36] and employed in Stump et al.’s ATSV [21].

For example, in Figure 37, it is clear that the feasible region of R is restricted to a

small range, due to defined constraints. There is also a negative correlation between R

and L for the top performing designs, as shown in the L vs R subplot.

46

Figure 37 2D Projection overview of top 50 PV Designs

3.3.2. 2D Projection by Principal Components Analysis

A special 2D projection that arranges designs based on their overall variance is

achieved using PCA. As mentioned in 2.2.3, PCA finds the orthogonal directions which

maximize overall variance in the data. Therefore, by performing PCA on a selected

region, the data will be separated to maximize the overall difference in designs. In other

words, the corners of a PCA graph represent polarizing designs.

In Figure 39, the designs in the bottom-left corner are selected. These designs

are long and slender with low shell thickness. In the other corner of the plot (Figure 40),

the vessel is shorter and wider. This shows opposing possible pressure vessel designs

(within the low cost percentile region).

47

Figure 38 Two principal components of PV Problem (top 50 designs shown)

Figure 39 Designs selected in bottom-left of PCA plot (top 50 designs shown)

48

Figure 40 Designs selected in top-right of PCA plot (top 50 designs shown)

Procedure of PCA on optimization design data

The mathematical details of PCA can be found in Appendix. The first step is to

standardize the data to remove the effect of varying units and ranges for different

variables. The data is then centered to simplify computation of the covariance matrix.

Next, the covariance matrix S is computed for the preprocessed data, which represents

how each variable varies with respect to one another. The third step is to compute the

orthogonal directions which maximize variance, by finding the eigenvectors 𝑼
corresponding to the largest eigenvalues of S. The final step is to simply project the data

onto the two largest eigenvectors of S. The steps are shown graphically in Figure 41 for

a simple two-dimensional example.

49

Figure 41 Graphical steps of Principal Component Analysis (Math in Appendix)

3.3.3. Data Table and Selection

An alternative to visual brushing is to simply use a sortable data table. If data is

selected in the table, it may be brushed in the exact same manner as in the 2D

projection (i.e. the points are highlighted in the 2D plots and plotted as a red region in

the PCP graph as in Figure 36). It is also possible to highlight rows in the data table, as

data is brushed in a graph. A sample data table is provided below for the PV problem,

sorted by cost.

50

Figure 42 Data table representation of PV Problem

3.4. Summary

This chapter began by describing the mathematical components of an

optimization problem written in standard form. It was explained that multiple outputs of a

simulation may be aggregated with weights to form a single objective problem. Next, the

design, search, and performance spaces were defined as terms to distinguish between

variable choices and their associated performance. Regions were also defined as three

types: percentile region, performance region, or design region. These regions may be

further split using clustering (e.g. k-means or single link) or by visual interaction (e.g.

projection and brushing). Once a region is defined, it may be modeled locally using a

metamodel for further investigation without additional sample data. Metamodeling is

described in the following chapter.

51

Chapter 4. Regional Metamodeling

Metamodeling (a.k.a. surrogate modeling) is the process of modeling a

computationally intensive model with an approximation of reduced computational cost.

Simulations that require hours to compute may be replaced with simple approximations

(metamodels) to be evaluated in milliseconds in exchange for fidelity. Metamodels range

from simple Polynomial Regressions (PR) and Radial Basis Functions (RBF) to more

complex High-Dimensional Model Representations (HDMR) [76]. Different families of

models have been compared for their use in engineering design [77,78]. Consider Figure

43, which shows a 2𝑛𝑛 order polynomial regression model of Eq. (13) over a fixed

interval. This chapter explains how local metamodeling is used in optimization and how it

can approximate a selected design region.

 𝑓(𝒙) = 𝑥3 + 0.5 ∗ 𝑥; −0.5 ≤ 𝑥 ≤ 1 (13)

Figure 43 Single Variable Metamodel (2nd order PR approximating a 3rd order)

52

4.1. Metamodeling in optimization algorithms

As mentioned, in iterative optimization, an equation or simulation is evaluated by

the optimization algorithm iteratively. This is considered “expensive” as the evaluation

may take time.

In metamodel-based design optimization (MBDO), expensive samples train a

metamodel, which is eventually evaluated in place of the expensive function. A measure

of fitness, such as the root-mean-squared-error (RMSE), tests the model accuracy.

Once the model is deemed accurate, often by a defined threshold, it can be optimized in

place of the simulation. In fact, the model may only require accuracy in a sub-region of

the design space, where points generate low cost values. Afterwards, a local

optimization can be performed on the locally accurate metamodel.

In this thesis, a metamodel based algorithm called the Trust-Region Mode-

Pursuing Sampling (TR-MPS) method, developed by Cheng and Wang [79], is used to

generate new design points. The details of the method are beyond the scope of this

work. The general process of MPS [74], from which TR-MPS is based, is shown in

Figure 44. After initial sampling, a (linear piecewise/RBF) model is fit to the data. At this

point, a discriminative sampling strategy is applied to generate a distribution of samples

near the minimum. These points train a local quadratic metamodel. If the model is

accurate (using the R-Squared metric), local optimization is performed. If not, additional

samples are added and the model is updated. After the local optimization step, the

minimum is verified with the expensive simulation, if the predicted minimum and the

objective function value agree (as specified by a parameter), it is returned as an

approximate global minimum. If the difference between the predicted minimum and

simulation minimum differ significantly, additional samples are added and the loop

continues.

53

Figure 44 MPS Procedure (Figure provided by Cheng and Wang)

4.2. Metamodeling of a selected region

Aside from direct use in optimization (e.g. MPS), metamodeling can provide

details about a user selected sub-region of the design space without additional

expensive sampling. Eq. (14) is, one of the models available in the framework: a

polynomial regression (PR), capped at second order for simplicity. This model is

common in engineering optimization, especially in response surface methodologies

(RSM). The model contains one constant term, 𝑛 linear terms, 𝑛 quadratic terms, and

�𝑛2� pairwise interaction terms. The set of models (which vary with 𝜷) is the set of

hypotheses 𝑯. A particular hypothesis is denoted by ℎ.

𝑓(𝑥) ≈ ℎ(𝑥) = 𝛽𝑜 + �𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+�βii𝑥𝑖2 + ��βij𝑥𝑖𝑥𝑗
𝑖<𝑗

𝑛

𝑖=1

(14)

54

The goal of model fitting is to find ℎ� ∈ 𝑯 which best approximates 𝑓. In particular,

the goal is to reduce the sum of squared errors (SSE) between ℎ(𝑥) and 𝑓(𝑥). It can be

shown that the 𝜷 that minimizes SSE (denoted by 𝜷�) is given by Eq. (15).

𝜷� = (𝑿𝑇𝑿)−1𝑿𝒇 (15)

Note that 𝑿 and 𝒇 consist of the points in a selected design region not the global

design space. If metamodeling over a global space, a 2nd order polynomial cannot be

trusted to approximate 𝑓(𝒙) accurately. Determining when a region is sufficiently small

for local modeling is the focus of trust-region research and is beyond the scope of this

work. To compensate, model validation is discussed in the following section, which

estimates the effectiveness of the local metamodel posteriori. A global method (e.g.,

HDMR) may also be used as an alternative.

4.2.1. Model validation using cross-validation

The validation of metamodels, beyond two dimensions is difficult to visualize [80].

A method to do so, was introduced by the author in [37]. Meanwhile an alternative to

visualization is to use statistics to summarize the model’s performance. Specifically

cross-validation (CV) tests the suitability of a set of models (𝑯) for a set of data. CV uses

a subset of the (regional) sample data to validate the model, instead of generating new

random points. Ideally, new test data would be generated to estimate the model’s

performance, but this requires additional expensive sampling. Therefore, CV can be

used as a quick indication of the success of metamodeling.

For clarification, training data 𝑿𝑻 builds the model, validation data 𝑿𝒗 = {𝑿}\ {𝑿𝑻}

verifies the model and additional test data 𝑿𝑨 evaluates the model’s performance on

completely new points. Error at the training points is called in-sample error, while out-of-

sample error refers to the error at the test points. The purpose of cross-validation is to

estimate the out-of-sample error without actually testing additional simulations, by

reserving some of the given data for validation. Figure 45 shows the partitioning of data

for cross validation.

55

Figure 45 Partitioning of data for cross-validation

In the case of k-fold cross-validation, 𝑚/𝑘 number of points are chosen for

validation while (𝑚 −𝑚/𝑘) points are used for training (𝑚 is the total number of regional

samples). For example, if the region consists of 30 points, 3 are placed in 𝑿𝒗 while the

remaining 27 are placed in 𝑿𝑻. A model (ℎ�1) is built from 𝑿𝑻; the error is recorded, and

the model is discarded. When computing the error, 𝑿𝒗 is essentially out-of-sample as it

was not used to build the model. Next, another 3 sample points, which haven’t been in

𝑿𝒗 previously, are selected to form a new 𝑿𝒗. The remaining 27 points build another

model (ℎ�2), which is tested with 𝑿𝒗 and discarded. This process loops until all points

have been used for validation (creating a total of 𝑘 models). Afterwards, all of the points

are placed into 𝑿𝑻 to train a final model. The mean validation error for all of the models is

reported. This is an estimate of the out-of-sample error of 𝑯 as in Eq. (16).

𝐸𝐶𝐶(𝑯) =
1
𝑘
�𝜇[𝒆(ℎ�𝑖(𝑿𝒗),𝑓(𝑿𝑣))]
𝑘

𝑖=1

(16)

In Eq. (16) 𝜇 is the mean operator, and 𝒆 is the error of the validation set 𝑿𝒗. In

this work, error is defined as the root-mean-squared error (RMSE) as in Eq. (17). The

RMSE of cross-validation (𝑿𝒆 = 𝑿𝒗) is the RMSECV, while the RMSE on additional test

points (𝑿𝒆 = 𝑿𝑨) is simply RMSE. Additionally, the NRMSE or NRMSECV are the RMSE

and RMSECV divided by the local function value range as in Eq. (18). If cross-validation

is successful, RMSECV will be similar to RMSE (which can be confirmed using

additional samples if desired).

𝑒(ℎ�𝑖(𝑿𝒆),𝑓(𝑿𝑒)) = 𝑅𝑅𝑛𝐸 = �𝜇�[𝑓(𝑿𝒆)− ℎ�𝑖(𝑿𝒆)]2�
(17)

56

𝑁𝑅𝑅𝑛𝐸 =
𝑅𝑅𝑛𝐸

max [𝑓(𝑿)] − min [𝑓(𝑿)]
 (18)

Split the data into a
training set (XT) and a

validation set (Xv).

Build a metamodel h with
the training set.

Evaluate and record the
error of the model using

the validation set
e(h(xv),f(xv))

Remove the validation set
from the list of possible

validation points for future
models.

N Has all of the data
 been used for validation?

Build a final model using ALL of
the available data for training.

Y

Report the mean of
e(h(xv),f(xv)) of all models, as

an overall effectiveness metric
for the family of hypotheses H.

Figure 46 Cross validation process

4.2.2. Model validation visualization

In the framework, the metamodel is shown with a simple visualization, adjacent

to a table of error measures. The points in the design region which bound the top fifty PV

designs are shown in Figure 47. The points are sorted and plotted by performance,

overlaid on the metamodel approximations. The important feature of this plot is the (lack

of) difference between the simulation data and metamodeling data at the training and

testing points.

57

It should also be noted that the number of points in the design region which

bound the top performing designs is relatively large (305 points are contained in the box

that bounds the top 50 designs).

Figure 47 Metamodel for design region which bounds the top 50 PV designs.

From Figure 47, it is clear that the 2nd order model is accurate for this data. The

red (metamodel) points are overlaid directly on the expensive points. There is no

noticeable difference between the simulation and metamodel at the training points, or at

the test points. This is confirmed by the table of error metrics in Table 2. The RMSE and

NRMSE were computed with an additional 20 random test points (shown in green on

Figure 47). The value of 𝑘 for k-fold CV is 10.

Another statistic presented in Table 2 is R-Squared. R-Squared also measures

goodness of fit using only 𝑿𝑻, as in Eq. (19). It is computed for the final model

where 𝑿𝑻 = 𝑿. The downside to R-Squared is that it increases with the number of

variables (and model complexity), even if they have no effect on the response.

𝑅 − 𝑛𝑆𝑆𝑆𝑆𝑒𝑑 = 1 −
∑(𝑓(𝑿𝑻)− ℎ�(𝑿𝑻))2
∑(𝑓(𝑿𝑻)− 𝜇(𝑓(𝑿𝑻)))2

(19)

Table 2 Metamodel error metrics for top performing PV design region

R-Squared
RMSECV

1.00
15.89

NRMSECV 0.001

58

RMSE 15.79
NRMSE 0.001

4.2.3. Predicting local extremes

If the metamodel has a low NRMSE (<0.1), local optimization can be performed

on the metamodel to predict the best and worst case performance of the region. This is

executed using MATLAB’s constrained optimization solver: fmincon. Additionally, the

expensive simulation may be executed for the predicted min and max to see if they

match. The results are summarized in Table 3 for the PV problem. The predicted cost

extremes are close to the actual costs. Furthermore, the minimum cost design has

significantly lower cost than the best case found from the 500 random samples in 𝑿 (the

best case was $8183.6). The results also show the massive range in cost ($7k to $21k+)

within the box that bounds the top 50 designs. This suggests that a tighter region is

required if the goal is to find ranges for variables that result in low cost designs.

Table 3 Predicted and simulated performance extremes of PV top design region

 COST [$] R [“] Ts [“] L [“] Th [“]
Min (Predicted) 7005.3 52.15 1.007 82.13 0.625
Max (Predicted) 21674 63.06 1.351 222.4 0.9054

Result @
Predicted Min 7018.5

Result @
Predicted Max 21759

4.2.4. Predicting local sensitivity

A second use of the local metamodel is to predict the sensitivity of variables in a

local region by checking the magnitude of coefficients in the metamodel. The coefficients

are shown in a bar chart, color coded by sign (red is negative and blue is positive). From

Figure 48 the terms 𝑇𝑠 and 𝑇ℎ, related to thickness, appear to be most influential in the

top performing region. However, this “sensitivity” information is really measuring the

weight of terms in the metamodel. The model may simply be compensating for missing

higher order relationships, by increasing the weight of a quadratic term for example.

Therefore, the bar chart should not be interpreted as the overall importance of individual

59

variables (even locally), especially if the model fit is poor. Rather, it is simply the

importance of terms in the 2nd order approximation.

Figure 48 Coefficients of terms in 2nd order polynomial of PV top design region

4.2.5. High Dimensional Model Representation (HDMR)

As mentioned above, polynomial regression is often sufficient for modeling local-

regions where the function is relatively quadratic or linear. However, in many cases, a

global model is required. High dimensional model representation (HDMR) is a global

metamodeling technique which splits the objective function into a sum of smaller

component functions. The component functions represent the independent and

cooperative contributions of each design variable or set of design variables. Some

variations include Cut-HDMR [81], RS-HDMR [82,83], RBF-HDMR [84] and PCA-HDMR

[85]. For brevity, this work only brefily touches on the mathametics of HDMR. A more

detailed explaination is found in [86]. The general form of HDMR is shown in Eq. (20).

𝑓(𝒙) = 𝑓0 + �𝑓𝑖(𝑥𝑖)
𝑛

𝑖=1

+ � 𝑓𝑖𝑗�𝑥𝑖 , 𝑥𝑗�
1≤𝑖<𝑗≤𝑛

+ ⋯+ � 𝑓𝑖1,𝑖2…𝑖𝑙
1≤𝑖<𝑗<𝑘≤𝑛

�𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑙�

+ ⋯+ 𝑓12⋯𝑛(𝑥1, 𝑥2,⋯ , 𝑥𝑛)

(20)

Each component function in Eq. (20) contributes to 𝑓(𝒙), the HDMR of the

system. In this expression, 𝑓𝑜 is the zeroth order term, which is irrespective of 𝒙. 𝑓𝑖(𝑥𝑖) are

the first-order terms, representing the effects of each variable acting alone on f, without

60

correlating with other variables. 𝑓𝑖𝑗�𝑥𝑖, 𝑥𝑗�, the second order terms, represent the

correlations between any two variables. 𝑓12⋯𝑛(𝑥1,𝑥2,⋯ , 𝑥𝑛), the dth order terms,

represent the correlations between d variables. Fortunately, due to the nature of

engineering problems, design variables are typically selected to be highly independent

[86]. Therefore, higher correlation terms of order l (l<d) tend to have a negligible effect

on f(𝒙). In this work, 𝑙 is fixed to two, meaning only the second order correlations are

considered. The number of components function bases is also two, as in [85].

PCA-HDMR

In 2012, Hajikolaei and Wang developed a method that uses principal component

analysis (PCA) to determine weights for orthogonal basis (component) functions [85].

This method entitled PCA-HDMR, was shown to be significantly more accurate than

standard random sampling (RS) HDMR. In general, adding more samples towards

building a PCA-HDMR increases its accuracy [85]. Moreover, PCA-HDMR does not

require a uniform distribution of sample points. This means it may be used for

metamodeling with biased optimization data. In contrast, RS-HDMR demands uniformly

distributed points for building the model; if newly added sample points are not uniform,

the quality of the RS-HDMR deteriorates.

Use of PCA-HDMR as an alternative to polynomial regression

In this work, PCA-HDMR is provided as an alternative model to polynomial

regression. If enough samples exist to build a HDMR model, HDMR may be superior to

second order polynomial regression. The number of points required to build a PCA-

HDMR is given by 𝑁𝑁 in Eq. (25), from [85]; where 𝐿 and 𝑠 are the order of correlation

terms and number of basis functions (respectively), and 𝑛 is the number of variables.

Generally, more samples are required to build a PCA-HDMR model, in comparison to 2nd

order PR, but PCA-HDMR may be more accurate for non-quadratic functions.

𝑁𝑁 = ��

𝑛
𝑖
� 𝑠𝑖

𝐿

𝑖=1

(21)

61

The results of three test functions from [85], Eqs. (22) to (24), are presented.

Each model was built with 1000 points,generated randomly in the design space. In each

case, the value for NC is less than 1000. Twenty additional test points were used to

compare the RSME and RMSECV.

Example Problem 1: Five variable polynomial (NC=50)

𝑓(𝒙) = (𝑥1 − 𝑥2)2 + (𝑥3 − 1)2 + (𝑥4 − 1)4 + (𝑥5 − 1)6 𝑠. 𝑡. 𝑥1…5 ∈ [−2,2] (22)

Table 4 Comparison of PR and HDMR: Five variable polynomial

Example Problem 2: Ten variable sum (NC=200)

𝑓(𝒙) = ��𝑖3(𝑥𝑖 − 1)2
10

𝑖=1

�

3

 𝑠. 𝑡. 𝑥1…10 ∈ [−3,3]
(23)

Table 5 Comparison of PR and HDMR: Ten variable sum

2nd Order Regression PCA-HDMR

R-Square 0.86 R-Square 0.98

RMSECV 64.0 RMSECV 28.3

NRMSECV 0.087 NRMSECV 0.038

RMSE 47.6 RMSE 27.4

NRMSE 0.065 NRMSE 0.037

2nd Order Regression PCA-HDMR
R-Square 0.87 R-Square 1
RMSECV 1.95e+12 RMSECV 1.14e+12

NRMSECV 0.050 NRMSECV 0.034
RMSE 1.83e+12 RMSE 1.07e+12

NRMSE 0.047 NRMSE 0.0314

62

Example Problem 3: Twenty variable sum (NC=800)

𝒇(𝒙) = � [𝟏𝟏𝟏(𝒙𝒊 − 𝒙𝒊+𝟏𝟏)𝟐 + (𝒙𝒊 − 𝟏)𝟐]
𝟏𝟏

𝒊=𝟏
 𝑠. 𝑡. 𝑥1…20 ∈ [−3,5]

(24)

Table 6 Comparison of PR and HDMR: Twenty Variable sum

2nd Order Regression PCA-HDMR
R-Square 0.87 R-Square 1
RMSECV 3.59e-11 RMSECV 2.66e-10

NRMSECV 2.37e-15 NRMSECV 9.60-15
RMSE 3.53e-11 RMSE 9.98e-11

NRMSE 2.33e-15 NRMSE 3.59e-15

Discussion

From the results above, PCA-HDMR is comparable to 2nd order PR and often

yields better performance (as in Table 4). However, PCA-HDMR requires more samples

than a simple 2nd order model, which only requires 2𝑛 + �𝑛2� + 1 points. Additionally,

PCA-HDMR may over fit the data if the chosen order 𝐿 exceeds that of the underlying

cost function. Therefore, it is recommended to validate the model using additional test

points, regardless of which model family is used. If additional test data is costly, cross-

validation may be used as an approximation of the RMSE and NRMSE.

4.3. Summary

Metamodels are built to approximate expensive simulations, often in a small

region of the design space. If a metamodel is accurate, it may be used in place of the

expensive simulation for intensive sampling tasks like local optimization. This chapter

presented PR and HDMR as metamodeling techniques for selected design regions. The

model is then cross-validated to estimate out-of-sample performance, with minimal

additional expensive sampling. The results are plotted to show performance and the

importance of terms in the model. The following chapter combines the discussed

techniques from Chapter 3 and Chapter 4 into a prototype application for interactive

optimization.

63

Chapter 5. Optimization Visualization Framework

Chapter 3 presented techniques to define regions in optimization data and

methods for navigation. Chapter 4 presented techniques for local metamodeling and

validation. This chapter shows how these techniques may be combined into a cohesive

framework for visualization of optimization data.

5.1. Framework Layout

A prototype visualization framework was implemented in MATLAB (due to the

availability of algorithm codes). The layout is shown in Figure 49.

Figure 49 Optimization visualization framework layout

64

5.1.1. Problem Formulation (D1)

The first step in optimization is problem definition. Problems are defined in a

problem definition file containing the objective, constraints, variable names and bounds.

Once loaded into the framework, the equations, design and search spaces can be

modified. Constraint equations may be changed or suppressed at any time before,

during, or after optimization. Data that was previously feasible is hidden from the user if

it becomes infeasible due to changes in constraints.

Figure 50 Problem formulation menu

5.1.2. Feasibility Data (D2)

The second step (if the problem is constrained) is to check the necessity of the

various constraints, and to identify the feasible region. A novel algorithm to identify

constraint redundancy for black-box problems is presented in Chapter 6. In addition,

constraint data can be visualized. To check feasibility, it is not necessary to execute the

objective function. Consequently, constraints are sampled and visualized separately

from the simulation data.

A plot of the overall feasible region for the PV problem is shown in Figure 51

(with 1200 constraint checks). Individual constraints may also be plotted to highlight the

effect of the constraint acting alone. The feasible region is shown on the 2D navigation

plot in Figure 52. Meanwhile, an adjacent bar chart plot specifies the percentage of

sampled points that were feasible as a measure of overall restrictiveness. Last, an

optional overview of all of the 2D projections can be shown by clicking the “Show

Overview” button in the Toolbar (Section F) as in Figure 54.

65

Figure 51 Feasible Region of the PV Problem

Figure 52 Overall feasibility as 2D projection

66

Figure 53 Overall feasibility as a bar chart

Figure 54 Feasible region as a 2D projection overview (scatterplot matrix)

5.1.3. Simulation Data, Convergence and Regions (D3)

 The third step is to generate data by calling the expensive simulation on a set of

points. There are two methods to generate data. The first method is to simply generate

and evaluate a specified number of random samples within the search bounds. This is

ideal for exploratory analysis of the search space, to widely cover the space. The main

downside to random sampling is that it wastes time simulating points which are far from

the optimum.

67

Therefore, the second method of data generation is to collect data while running

an optimization method such as TR-MPS. TR-MPS aggressively biases samples

towards the optimum, wasting few samples. In this case, the data is updated and plotted

iteratively as in Figure 55. The downside to generating data from optimization is the lack

of coverage in the overall search space due to the bias towards the optimum.

Figure 55 PV Problem top 10 % lowest cost region shown iteratively (with TR-MPS)

From Figure 55, a few observations can be made about the optimization process.

First, as expected, the cost function is being effectively minimized. Second, the top

designs for the PV problem form only one natural cluster, unlike the SC problem, where

multiple design regions performed well. Third, the region containing the top 10% of

lowest cost designs is converging. This is expected as TR-MPS continues to add

additional samples near the top performing points. By iteration 15, (with 186 total

function evaluations) optimization has roughly converged to the following design region:

𝑅∗: [51.7,51.9] 𝑇𝑠∗: [1,1.01] 𝐿∗: [84.4,86.5] 𝑇ℎ∗: [0.625,0.633] → 𝑁𝐶𝑛𝑇$: [7025,7100]

68

Convergence

Another common way to visualize convergence is to simply plot the function

value vs iteration as in Figure 56 (Area C in the layout). In this plot, the global minimum

found so far is graphed each iteration to show the amount improvement from continuing

the optimization. The colors of points also indicate which iterations introduced points in

the selected region. In the case of Figure 56, it is clear that the lowest cost designs were

introduced in the latter iterations (colored in cyan). Similarly, if a point is brushed in the

2D navigation or data table, the iteration that introduced the brushed point is highlighted

as shown in Figure 57. Figure 57 shows that the thicker pressure vessel designs were

tested in earlier iterations of optimizations and then dismissed.

Figure 56 Iterative convergence plot of lowest cost design

Figure 57 Iterations of selected points (thick pressure vessel designs)

69

Reviewing past iterations

In addition to viewing the convergence of function values, users may also

navigate to past iterations from the Navigation Menu (B2). Here, the effectiveness of the

optimization’s sampling strategy is reviewed by comparing the designs that were

introduced each iteration (highlighted in red). For example, in Figure 58, the new points

introduced in the last iterations are mostly near the optimum, whereas the initial

sampling is randomly distributed. This is indicative of TR-MPS’s aggressive sampling in

later stages.

Figure 58 Designs introduced by iteration for PV problem optimization

70

Regions

As explained in Chapter 3, three types of regions may be defined to select areas

of optimization spaces: (1) percentile regions, (2) performance regions, and (3) design

regions. The regions are selectable and editable from a list as in Figure 59. Regions can

also be combined by clicking on “In all tracked regions” or “In any tracked region”.

Figure 59 Sample list of regions

Regions are defined using the Add Region button, which opens an interface for

region definition. Similarly, Edit Region allows regions to be modified. Regions can also

be interactively adjusted using sliders (placed in the D3 area of the layout), for

continuous interaction. The value of reducing interaction cost to facilitate exploration has

been emphasized by Spence [68] and Lam [72].

Figure 60 Region adjustment sliders

Two additional interactive methods are available to specify design regions. First,

users may choose to automatically create a design region from a percentile or

performance region. Upon clicking Add as Design Regions the corresponding design

bounds (shown in cyan or orange) will be added as a design region. If the region is split

71

to clusters, a design region will be formed for each cluster. This is shown in Figure 61 for

the SC problem after clustering.

Figure 61 Top performing region of SC problem split into 4 design regions

A second method is to select points via brushing on a projection, and then click

the “Add as region” button from the toolbar (F) in Figure 62. Design regions can also be

set as search bounds using a Set as Search Bounds button.

72

Figure 62 Toolbar for optimization framework

5.2. Summary

This chapter presented a software prototype that integrates the techniques

described in previous chapter. It was shown that users may modify problems directly

within the software. Next, the feasible space is plotted in parallel coordinates based on

constraint sample data. Furthermore, methods to display convergence were also

discussed such as tracking regions during optimization, highlighting iterations on

convergence plot, or navigating to past iterations. Finally, ways to define design regions

were explained. In the following chapter, emphasis is placed on determining which

constraints may be suppressed or removed from the problem formulation. To do so, a

novel technique incorporating data mining is introduced.

73

Chapter 6. Constraint Mining

As explained in Chapter 3, constraints are often defined to eliminate solutions

that are not physically feasible or practical. Unfortunately, in some cases, designers may

inadvertently specify constraints which are redundant. Common causes and

consequences of superfluous constraints have been discussed by Karwan et al. [11]. In

particular, they complicate the problem formulation, and may impact the performance of

the optimization method. In this chapter, a new probabilistic method, including a priori

association analysis, is proposed to identify and present constraint redundancies as

rules to assist in problem formulation. The method has been accepted for publication in

Engineering Optimization (pending minor revisions) [87].

6.1. Constraint mining overview

In general, the response of optimization constraints can be treated as Boolean

variables: a one indicates a violation and a zero indicates satisfaction. From this data,

relationships among constraints can be identified and presented to designers. This

chapter first discusses past approaches related to redundant constraint identification

with a focus on set-covering. Next, a new sequential process is presented. The method

first checks if constraints co-occur using Jaccard similarity, before looking for implication

rules in the remaining constraints with a priori association analysis [88,89].

Subsequently, constraints that do not co-occur, and are not implicit, are evaluated to see

if they uniquely restrict the design space. Example problems, including the pressure

vessel (PV) problem from Chapter 3, are tested and discussed.

74

6.2. Constraints in black-box engineering design

As explained in Chapter 3, in engineering design, inequality constraints are

typically written as a vector of functions: 𝒈(𝒙). In practice, 𝒈(𝒙) may consist of nonlinear

functions or even complex engineering simulations such as Finite Element Analysis

(FEA) or Computational Fluid Dynamics (CFD). For such cases, it may be impossible to

identify redundant constraints algebraically as done in [11,90–92]; no assumptions can

be made about the properties of 𝒈 (e.g. linearity, convexity, continuity etc.). Instead, like

the objective function in previous chapters, constraints can also be treated as black-

boxes. In this situation, random designs may be evaluated for each constraint, and the

results may be summarized with 0 indicating a constraint satisfaction and 1 representing

violation. From this basic information, constraints may be analyzed as a Boolean

dataset.

6.3. Related redundancy identification methods

Redundant constraint identification has been the subject of extensive research

since Boot’s pioneering work in 1962 [93]. Although progress has been made, most work

has focused on classifying and reducing constraints for linear programming (problems

where the objectives and constraints are linear algebraic expressions). For example,

Brearley et al.’s method [94] uses the coefficients of the constraints’ terms to see if it is

possible to satisfy them within the chosen design space. Telgen [11] developed a

deterministic approach, similar to the simplex method in linear programming, using a

minimum ratio test and simplex tableaus. Unfortunately, the majority of deterministic

constraint reduction techniques require linear algebraic functions. A survey of

redundancy checking for linear programming can be found in [90], with details in [11].

The set-covering approach, introduced by Boneh [95,96], is the most general

method, and the most suitable for black-box optimization. Set-covering represents the

feasibility of constraints for a given sample design 𝒙𝒊, as a binary vector 𝒆𝒊. If a

constraint 𝑔𝑗 is violated at the point 𝒙𝒊, 𝑒𝑖𝑗 𝜖 𝒆𝒊 is 1. Otherwise, if the constraint is

satisfied, 𝑒𝑖𝑗 is 0. For example, for two constraints 𝑔1 and 𝑔2, 𝒆𝒊 = (0,1), if 𝑔1 is satisfied

75

and 𝑔2 is violated for the design 𝒙𝒊. If any constraint is violated for a design (∑𝒆𝒊 ≥ 1),

then 𝒆𝒊 ∈ 𝑬. The main theorem of the set-covering approach states that if any design

violates one or more constraints, at least one of those constraints is necessary. As

notation, a vector 𝒚, may be defined to summarize which constraints are necessary or

redundant, based on the given data. Specifically, 𝑦𝑗𝜖𝒚 is 1 if 𝑔𝑗 is necessary, and 𝑦𝑗 is 0

if 𝑔𝑗 is redundant. With this notation, Boneh represents the main theorem of the set-

covering approach as Eq. (25). In words, Eq. (25) states that for each observation 𝒆𝒊𝝐𝑬,

at least one of the violated constraints is non-redundant (𝒆𝒊 ∙ 𝒚 ≥ 0).

 𝑬𝒚 ≥ (1,1,1 …)𝑇 (25)

Given a sample of observations 𝑬, Eq. (25) can be solved for 𝒚 to identify

redundant constraints. The solutions of 𝒚 are not necessarily unique. Therefore, Boneh

suggests pursuing the constraint subset which minimizes computational cost, and

presents an algorithm to do so: the Set-Covering algorithm. The method in this chapter

differs from set-covering in that its main concern is not finding irreducible sets of

constraints (solutions of 𝒚). Instead, the proposed method returns information regarding

why constraints are redundant, which may provide insight about the formulated problem.

Specifically, the chapter introduces methods to determine if constraints co-occur, are

implicit with respect to another constraint, or are covered by other constraints. These

relationships are defined and formalized.

6.4. Constraint redundancy rule definitions

According to Karwan et al.’s survey [11], the consensus is that a constraint is

redundant if its removal has no effect on the feasible space. A more detailed taxonomy

of redundancy types is also presented in [11]. In practice, information explaining

relationships between constraints can be helpful for a designer who is trying to find

errors in their problem formulation. Therefore, definitions are proposed in this work to not

only indicate if a constraint is redundant, but also indicate why.

76

6.4.1. Redundant due to co-occurrence

Co-occurring constraints are constraints which are very often violated

simultaneously. Although the constraints may be conceptually different, they have the

same effect on the feasible region. This relationship means that any constraint 𝑁𝑘 from a

set of constraints (𝑪) can be chosen as a representative, while the others are

suppressed or removed from the problem formulation. Co-occurrence is considered to

be the most informative type of redundancy. If constraints always co-occur they are

duplicates. A relaxed definition of co-occurrence is given in 6.5.1 based on Jaccard

similarity.

Definition 1 (Redundant due to co-occurrence): Let 𝐂 be a set of inequality

constraints. If 𝐂 co-occurs, then a constraint 𝑁𝑘 ∈ 𝑪 can be chosen as the representative

of 𝑪 and the remaining constraints 𝐂\{𝑁𝑘} are redundant.

6.4.2. Redundant due to implication

Redundancy due to implication means that a constraint is dominated by another

constraint, within a given probability. Consider the data in Table 7. In the rows that 𝑃 has

a value of one, 𝑄 also has a value of one, but not vice versa. Therefore, we can

write 𝑃 → 𝑄. Another way to think of this is that 𝑃 is dominated by 𝑄; or if there is 𝑃, then

there is 𝑄; or 𝑃 is redundant due to 𝑄 by implication. This rule is considered to be the

second most informative type of rule, as co-occurrence automatically infers implication,

but not vice-versa. Implication rules are generated efficiently using a priori association

analysis, from data mining, as explained in 6.5.2.

Table 7 Implication example

P Q
1 1
0 1
1 1
0 0

Definition 2 (Redundant due to implication): Let 𝑁𝐴 and 𝑁𝐶 be non-co-occurring

inequality constraints. If 𝑁𝐴 → 𝑁𝐶 , then 𝑁𝐴 is redundant due to 𝑁𝐶 by implication.

77

6.4.3. Redundant due to covering

If a constraint can be removed without affecting the feasible region, it is also

redundant. To uniquely affect the feasible region, a case must exist where the constraint

is violated while all others are satisfied. If no such case exists, the constraint is called

redundant due to covering (i.e. 𝑁𝑘 is covered by other constraints). Redundancy due to

covering is equivalent to the general definition of redundancy in set-covering [96] and

Boot’s definition of a triviality [93].

Co-occurrence and implicitness is more informative to describe redundancies, as

these rules include which constraint(s) make the constraint redundant (by co-occurrence

or by association). The constraints which cover 𝑁𝑘, however, are not recorded (for

computational simplicity). Consequently, covering is the least informative rule, and only

examined after checking for co-occurrence and association.

Definition 3 (Redundant due to covering): Let 𝑪𝑻 be the set of all constraints which

are non-co-occurring and non-implicit. If no infeasible observation is made feasible by

the removal of a constraint 𝑁𝑘 ∈ 𝑪𝑻, 𝑁𝑘 is redundant.

6.5. The constraint mining method

An overview of the sequence for mining constraint relationships is described in

Figure 63. Each step is described in detail in the following sections. The first four steps

are general, and can be applied to rule mining for any Boolean dataset. The remaining

steps are specific to the application of constraint analysis for engineering design.

78

1. Find frequent
itemsets

2. Find co-occuring
frequent itemsets and

save a rule for each one

3. Remove co-occuring
itemsets

4. Find association rules
for the remaining
frequent itemsets

5. Find covering rules
for the remaining

itemsets.

Find additional special
case rules.

Unique to the
constraint

mining
application

Figure 63 Overview of the constraint mining method

6.5.1. Identifying frequent itemsets and co-occurring items

In association analysis literature, columns of Boolean matrices are referred to

items. This stems from the original use of association analysis, to analyze consumer

market basket data (e.g. 70% of people will buy butter if they buy bread). Similarly, an

observation refers to a row (e.g. the constraints results for a design 𝒙𝒊). An item occurs if

its value is 1. Meanwhile, a group of items is called an itemset. An example is given in

Table 8 for five observations (designs) and six items (constraints). In design 1, for

instance, the itemset {𝑁1,𝑁2,𝑁3,𝑁5,𝑁6} occurs.

Table 8 Example binary representation of constraint violations (1: Violation)

Observation C1 C2 C3 C4 C5 C6
1 1 1 1 0 1 1
2 1 1 1 0 0 1
3 0 0 1 0 1 1
4 1 0 0 0 0 0
5 0 1 0 1 0 0

79

Step 1 – Filter items by support and find frequent itemsets

As explained by Tan, the number of possible association rules for a dataset

grows exponentially with its number of items (𝑑): 𝑛𝑅𝑆𝑙𝑒𝑠 = 3𝑛 − 2𝑛+1 + 1 [70]. For

example, in Table 8, with 6 items, there 602 possible rules of the form: 𝑪𝑨 → 𝑪𝑪.

Therefore, in Agrawal’s a priori association analysis method, itemsets which have few

occurrences are eliminated [88,89]. The occurrence an itemset 𝑪 is quantified by

𝑛𝑆𝑝𝑝𝑆𝑆𝑡 s as in Eq. (26):

𝑠(𝑪):

𝜎(𝑪)
𝑁

 (26)

In Eq. (26), 𝜎(𝑪) is the count of observations such that all items 𝑪 occur, and 𝑁 is

the total number of observations. For example, from Table 8, the support of the itemset

{𝑁1,𝑁2} is s({𝑁1,𝑁2}) = 2
5
. An itemset is considered frequent if 𝑠(𝑪) ≥ 𝑚𝑖𝑛𝑠𝑆𝑝, where

𝑚𝑖𝑛𝑠𝑆𝑝 is a threshold chosen by the user (given in Section D2 of the framework). A low

𝑚𝑖𝑛𝑠𝑆𝑝 means rarer items will be considered, but also increases computational effort.

Although frequency-based filtering is important for consumer market databases with

thousands items, in most engineering problems the number of constraints is much lower,

as constraints are defined for physical properties. Therefore, assuming the number of

constraints is roughly ten or less, 𝑚𝑖𝑛𝑠𝑆𝑝 may be set to zero. In other words, all

constraints can be considered frequent, even if they are rarely active, without significant

computational cost. In 6.5.6, it is explained that support for individual constraints is an

informative statistic on its own.

In the a priori algorithm, frequent itemsets are built from the bottom up, by

combining only the frequent itemsets found a priori. For example if the items 𝑁1 and 𝑁2

are frequent, they form: {𝑁1,𝑁2}. The list of frequent itemsets then becomes:

{ {𝑁1}, {𝑁2}, {𝑁1,𝑁2} }. Support is anti-monotonic. Accordingly, only the frequent k sized

sets are needed to generate the k+1 sized sets. Efficient implementation details can be

found in most introductory data mining books. A flowchart is presented in Figure 64. It is

important to note that if 𝑚𝑖𝑛𝑠𝑆𝑝 = 0, all of the possible itemsets are frequent.

80

Remove the itemsets
where s(C)<minsup

Return all of the
frequent itemsets.

Find the support of all
k-itemsets

Build the k+1 itemsets
from the remaining

frequent
itemsets

k=1

Is the k-itemset null
(or is k>d)?

No

Yes

Increment k.

Figure 64 Generation of a frequent itemset of size k in the a priori method

Step 2 - Use the Jaccard measure to identify co-occurring sets

Once frequent itemsets are generated, they can each be checked for co-

occurrence. This stage is a contribution of this work, and not part of Agrawal’s standard

a priori method. Jaccard (𝑗) measures the conditional probability of all items occurring, if

it is known that any occurs. Mathematically, 𝑗({𝑆, 𝑏, 𝑐}) = 𝑃(𝑆⋀ 𝑏⋀ 𝑐 | 𝑆⋁𝑏 ⋁𝑐). Jaccard

for an itemset 𝑪 can be written as in Eq. (27):

𝑗(𝑪) =

𝜎(𝑪)
γ(𝑪)

 (27)

In Eq. (27), 𝛾 is the count of observations where any item in 𝑪 occurs. In the

proposed method, if 𝑗(𝑪) is greater than a co-occurrence threshold 𝑚𝑖𝑛𝑗𝑆𝑐𝑐, the itemset

is called co-occurring or bundled. Although the bundle pattern has been discussed

before [97], it wasn’t defined using Jaccard. The meaning of bundle, in this work, is

conceptually similar to [97] in that it indicates co-occurrence, but differs mathematically.

81

Definition 4 (Co-occurrence/Bundling) An itemset 𝑪 co-occurrs (is bundled) if

j(𝑪) ≥ 𝑚𝑖𝑛𝑗𝑆𝑐𝑐. A bundled set of constraints is denoted by 𝑪𝑩.

It is important to emphasize that 𝑗(𝑪) is fundamentally different from 𝑠(𝑪).

Support (𝑠) measures the likelihood of a group of constraints to be violated. Jaccard

(𝑗) measures the similarity of constraints in a group. For example, in Table 8 𝑠({𝑁3,𝑁6})

is 3
5

= 0.6; while, 𝑗({𝑁3,𝑁6}) is 3
3

= 1. If 𝑗 = 1 for a set, the constraints are duplicates. By

reducing 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 from 1 to a slightly lower value, constraints that are nearly duplicates

are identified.

Step 3- Remove co-occurring frequent itemsets

If a set of items is co-occurring, a rule is saved for those items (e.g. “Constraints

C3 and C6 co-occur.”). Furthermore, it can be shown that the subsets of co-occurring

sets also co-occur, based on the fact that 𝑗 is anti-monotonic with the addition of items.

Theorem 1 Given a co-occurring itemset 𝐂𝐁 and a subset 𝐂𝐁− ⊆ 𝐂𝐁: j(𝐂𝐁−) ≥ 𝑗(𝐂𝐁) .

Therefore, if 𝐂𝐁 is co-occurring, 𝐂𝐁− is co-occurring.

Proof:

𝜎(𝐂𝐁) ≤ 𝜎(𝐂𝐁−) 𝑏𝑦 𝑡ℎ𝑒 𝑆𝑛𝑡𝑖 − 𝑚𝑆𝑛𝑆𝑡𝑆𝑛𝑖𝑐 𝑝𝑆𝑆𝑝𝑒𝑆𝑡𝑦 𝑆𝑓 𝑠𝑆𝑝𝑝𝑆𝑆𝑡.

𝛾(𝐂𝐁−) ≤ 𝛾(𝐂𝐁) 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑆𝑛𝑠 𝛾(𝐂𝐁) = |𝑆𝑛𝑦(𝐂𝐁)| 𝑆𝑛𝑑 𝐂𝐁− ⊆ 𝐂𝐁.

∴ 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 ≤
σ(𝐂𝐁)
𝛾(𝐂𝐁) ≤

𝜎(𝐂𝐁−)
𝛾(𝐂𝐁−) ∎

To remove co-occuring subsets efficiently, the algorithm in Figure 65 can be

used. Starting with the largest frequent itemset (of size 𝑘𝑚𝑎𝑚), 𝑗(𝑪) is computed. If 𝑪 is

co-occurring, a rule is saved, and all of its subsets (including 𝑪 itself) are removed. Once

each set of size k has been evaluated, k is decremented. The process stops if all sets of

size k co-occur, or if 𝑘 = 1. In other words, the method first checks if the largest frequent

group of items co-occurs, then moves to smaller and smaller item groups (until single

item groups remain).

82

K=kmax

Find the Jacard index
of all k-itemsets

Store a rule for each
itemset where
j(C)>minjacc

Remove all subsets of
bundles including C

from the reduced
itemsets

Reduced
itemsets=Frequent

itemsets

Is the k-1 set of itemsets
null (or is k=1)?

Decrement k

Yes

No

Return reduced
itemsets

Figure 65 Identification of bundles and itemset reduction

6.5.2. Generating association rules (Step 4)

Association rules (rules of the form 𝑪𝑨 → 𝑪𝒄) are a well-researched area in data

mining popularized by Agrawal [88,89]. Since their introduction, a significant amount of

research has been published that presents efficient algorithms [98,99], new patterns

[100–102], compact representation of itemsets [103] and new measures of rule

interestingness [104]. Tan provides an excellent review of the field in the bibliographical

notes of [70]. Applications have also expanded beyond market baskets to finding protein

interactions [105] and associations between carbon levels and ocean climates [106].

This work is the first time the method has been applied to optimization constraints.

Association rules are generated and evaluated by confidence in Agrawal’s

algorithm. Confidence 𝑐(𝑪𝑨 → 𝑪𝒄) represents the conditional probability of 𝑪𝑪, given 𝑪𝑨

83

(based on the sample data). It is defined by Eq. (28), where 𝑪𝑨 and 𝑪𝒄 are frequent

itemsets:

𝑐(𝑪𝑨 → 𝑪𝒄):

𝜎(𝑪𝑨 ∪ 𝑪𝒄)
𝜎(𝑪𝑨)

(28)

In Eq. (28), 𝑪𝑨 is the antecedent set or simply the left-hand-side (LHS).

Meanwhile, 𝑪𝒄 is the consequent set or the right-hand-side (RHS). Rules are generated

by testing confidence against a threshold: 𝑚𝑖𝑛𝑐𝑆𝑛𝑓. The appropriate choice for 𝑚𝑖𝑛𝑐𝑆𝑛𝑓,

like 𝑚𝑖𝑛𝑠𝑆𝑝 or 𝑚𝑖𝑛𝑗𝑆𝑐𝑐, also depends on the application. For example, in design

engineering, it is important to avoid suppressing constraints which are not truly

redundant. Therefore, as a rule of thumb, 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 should be nearly or exactly 1.

Furthermore, it is enforced that 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 ≥ 𝑚𝑖𝑛𝑐𝑆𝑛𝑓, by definition. If an itemset did not

meet the threshold to be co-occurring, then it may still generate association rules.

Conversely, if the set co-occurs, then it was accounted for in Step 3 and will not be

further analyzed for associations.

In Agrawal’s method, association rules are generated for each individual itemset.

The process starts by assigning an individual item as the consequent, while the

remaining items in the set form the antecedent. Each item is selected as the consequent

once, forming a set of single item RHS rules. The RHS of rules with high confidence

(≥ 𝑚𝑖𝑛𝑐𝑆𝑛𝑓) are then combined to form two item RHS rules. Consequents which

generate high confidence rules continue to merge and form new rules until all high

confidence rules have been generated for the itemset.

Confidence has useful properties. In particular, it is anti-monotonic as items are

shifted from the LHS to the RHS. For instance, in the set {𝑁1,𝑁2,𝑁3}, the rule {𝑁1,𝑁2} →

𝑁3 will have higher (or equal) confidence when compared to {𝑁1} → {𝑁2,𝑁3} or {𝑁2} →

{𝑁1,𝑁3}. This is explained in detail in [70]. Similarly, if two rules have the same LHS; but,

one RHS is a subset of the other’s, the rule with the smaller RHS will have higher

confidence. For example, 𝑐({𝑁1} → {𝑁2}) ≥ 𝑐({𝑁1} → {𝑁2,𝑁3}). A simple proof is provided

below for completeness.

Theorem 2. Given an antecedent 𝑪𝑨, consequent 𝐂𝑪, and subset 𝐂𝑪− ⊆ 𝐂𝑪:

84

𝑐(𝑪𝑨 → 𝐂𝑪) ≥ 𝑐(𝑪𝑨 → 𝐂𝑪−)

Proof:

𝑐(𝑪𝑨 → 𝐂𝑪) =
𝜎(𝑪𝑨 ∪ 𝑪𝒄)
𝜎(𝑪𝑨) ≤

𝜎(𝑪𝑨 ∪ 𝐂𝑪−)
𝜎(𝑪𝑨) 𝑚𝑆𝑙𝑡𝑖𝑝𝑙𝑦 𝑏𝑆𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝜎(𝑪𝑨),

𝜎(𝑪𝑨 ∪ 𝑪𝒄) ≤ 𝜎(𝑪𝑨 ∪ 𝐂𝑪−) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑆𝑆𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑆𝑛𝑡𝑖 − 𝑚𝑆𝑛𝑆𝑡𝑆𝑛𝑖𝑐 𝑝𝑆𝑆𝑝𝑒𝑆𝑡𝑦 𝑆𝑓 𝜎 ∎

6.5.3. A brief discussion regarding the number of rules and the
benefit of co-occurring sets

The support-confidence framework reduces the number of possible implications

by eliminating rare items or weak rules respectively. Unfortunately, datasets with similar

high support items still creates many rules. This is a fundamental drawback of the

standard a priori algorithm. For example, for items 𝑁1, 𝑁2 and 𝑁3 the corresponding

frequent itemsets may be { {𝑁1}, {𝑁2}, {𝑁3}, {𝑁1𝑁2}, {𝑁1𝑁3}, {𝑁2𝑁3}, {𝑁1𝑁2𝑁3} }. In total, there

are 18 possible implication rules for these three items. Meanwhile, a single rule stating

that "{𝑁1,𝑁2,𝑁3} co-occur” conveys the same information. In fact, this rule is not only

more compact, it is simpler to understand. This is why co-occurring sets are considered

more informative than associations, and are tested first.

6.5.4. Further rule reductions when considering item removal

Restricting association rules to single item antecedents

This section shows that for constraint redundancies, association rules are only

needed for one item antecedents. Consider the example in Table 9. Having {𝑁1,𝑁2} as

the LHS forms a stronger implication of 𝑁3 than 𝑁1 or 𝑁2 individually. The rule is

suggesting, in words, that if there is a violation in both 𝑁1 and 𝑁2, then 𝑁3 is also violated,

which is obvious from the Boolean values in Table 9.

85

Table 9 Example of increasing confidence with additional items in the antecedent

C1 C2 C3 𝑁𝑆𝑛𝑓({𝑁1,𝑁2} → 𝑁3) 𝑁𝑆𝑛𝑓
(𝑁1 → 𝑁3)

𝑁𝑆𝑛𝑓
(𝑁2 → 𝑁3)

1 1 1 𝜎({𝑁1,𝑁2,𝑁3})
𝜎({𝑁1,𝑁2})

= 2
2 = 100%

𝜎({𝑁1,𝑁3})
𝜎(𝑁1)

= 2
3 = 67%

𝜎({𝑁2,𝑁3})
𝜎(𝑁2)

= 2
3 = 67%

1 1 1
0 0 1
1 0 0
0 1 0

In reality, {𝑁1,𝑁2} → 𝑁3 states that the intersecting region of {𝑁1,𝑁2} is redundant

due to 𝑁3. Yet, if the goal is to remove constraints, it is not important if {𝑁1,𝑁2} implies 𝑁3.

Neither 𝑁1 nor 𝑁2 can be removed, as 𝑁1 and 𝑁2 restrict other areas as well. In order to

remove either 𝑁1 or 𝑁2 (due to 𝑁3), individual rules 𝑁1 → 𝑁3 or 𝑁2 → 𝑁3 are required. In

this case, the confidence of these rules is only 67%. Thus, neither 𝑁1 nor 𝑁2 is redundant

due to 𝑁3. This example shows that although antecedents with more than one item may

form strong rules, the rules cannot be acted on, and do not need to be considered.

Restricting association rules to single item consequents

Another way to limit the number of rules is to limit consequents to contain exactly

one item. Assume that an implication rule is of high confidence with a single item LHS

(𝑁𝐴) and multi-item RHS (𝑪𝑪). All single item RHS rules 𝑁𝐴 → 𝑁𝐶, where 𝑁𝑐 ∈ 𝑪𝒄, are also

of high confidence, by Theorem 2. For example, if {𝑁1 → 𝑁2𝑁3} exceeds the confidence

threshold, then {𝑁1 → 𝑁2} and {𝑁1 → 𝑁3} do as well. Furthermore, the sets {𝑁1,𝑁2} and

{𝑁1,𝑁3}, that generate {𝑁1 → 𝑁2} and {𝑁1 → 𝑁3} (respectively), are guaranteed to exist in

the frequent itemset if {𝑁1,𝑁2,𝑁3} exists, due to the anti-monotonic property of support.

Therefore, if {𝑁1 → 𝑁2𝑁3} exists with high confidence, then the rules {𝑁1 → 𝑁2} and

{𝑁1 → 𝑁3} will also exist with high confidence.

 In terms of constraint removal, the intuitive interpretation is that if a constraint is

redundant due to the area where multiple constraints intersect, it is also redundant due

to each intersecting constraint. This fact, combined with the limitation to single item

antecedents, limits association rules to item pairs (which do not co-occur). Only

considering pairs in the association rule generation phase greatly improves efficiency,

and limits the number of rules returned.

86

6.5.5. Finding covered constraints (Step 5)

The next step is to find remaining redundancies for constraints that do not co-

occur and are not implicit. This can be accomplished by looking for individual constraints

which are never violated alone. By Boneh’s main theorem [95], if an observation violates

only one constraint, that constraint is absolutely necessary. Conversely, if a constraint is

never violated alone, it has no unique effect on the feasible space and is redundant.

Consider the case in Table 10. The union of violations in 𝑁1 and 𝑁3 covers the

observations violated 𝑁2. As shown by the observations in grey, if 𝑁2were removed from

set of constraints, the feasible points (with no violations) would remain unchanged for

the given data. This makes 𝑁2 redundant (by covering).

Determining if a constraint is covered is fundamentally different than identifying

co-occurrence or implication. Namely, to check covering, additional scans of the data are

needed. However, note that observations do not need to be counted as when checked

for co-occurrence or implication. Therefore, checking if a constraint is covered only

requires the set of unique observations (as in the set-covering approach [95]). This

reduced set of observations is shown in Table 11, generated from Table 10 by

eliminating the repetitions.

Covering is only checked for constraints which are not already explained by co-

occurrence or implication (𝑪𝑻). A simple scan to find a case where 𝑁𝑘 is violated alone is

executed for each 𝑁𝑘 ∈ 𝑪𝑻 (using the reduced observations). If no such case exists, the

constraint does not uniquely impact the overall feasibility of the problem, and a rule is

saved. In Table 11, there is no case where 𝑁2 violation occurs alone. Thus, 𝑁2 is

covered.

Table 10 Example of covered constraints

C1 C2 C3
0 0 0
1 0 0
1 1 0
1 1 0
0 1 1
0 1 1
0 0 1

87

Table 11 Example of covered constraints (reduced observation set)

C1 C2 C3
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1

6.5.6. Additional information from constraint mining

In addition to finding bundles, association rules, and covered constraints two

more types of information are reported: infrequent constraints and infeasible problems.

Infrequent constraints

It is often useful for the designer to understand and review constraints which are

mostly passive, especially if they are costly to evaluate during optimization. Infrequent

constraints are those which are rarely (or never) violated in the sample of observations

(as quantified by support). By tuning 𝑚𝑖𝑛𝑠𝑆𝑝, the restrictiveness of constraints can be

easily identified.

Definition 5 (Infrequent constraint) An individual constraint 𝑁𝑖 is infrequent if 𝑠(𝑁𝑖) ≤

𝑚𝑖𝑛𝑠𝑆𝑝.

Infeasible problems

An infeasible problem does not contain any feasible area. If a problem is

infeasible, it may require re-formulation (e.g. making a restrictive constraint an objective)

or an optimization algorithm that specializes in highly constrained problems. To search

for overall feasibility, the any operator (𝛾) is used on each observation 𝒐𝒊 in the unique

set of observations. If any 𝛾(𝒐𝒊) is zero (meaning 𝒐𝒊 = 𝟏), a feasible point exists, the

search is stopped, and the problem is considered feasible. If no feasible point exists, the

problem is deemed infeasible.

Definition 6 (Infeasible problem) A problem is infeasible if there is no observation 𝒐𝒊 in

the unique set of observations such that 𝒐𝒊=0.

88

6.6. Collecting data and parameters

6.6.1. Collecting constraint data

To collect data for mining, constraint checks are randomly generated in an

iterative fashion. The maximum number of iterations (𝑛𝐼) and the maximum number of

constraint checks (𝑛𝑇) are given (in Section E2 of the layout). The number of constraint

check samples for each iteration (𝑛𝑛) is as in Eq. (29):

 𝑛𝑛 =
𝑛𝑇
𝑛𝐼

 (29)

The parameter 𝑛𝑇 should be chosen based on the computational intensity,

number of variables and number of constraints. For problems with computationally

inexpensive constraints, thousands of samples can be tested. For computationally

expensive constraints, fewer may be budgeted. Each iteration, 𝑛𝑛 random samples are

evaluated by 𝒈(𝒙), and the result is added to the table of Boolean observations. Rules

are then mined using the method described in this paper. The stopping criteria for the

iterative process are a number of iterations (𝐼𝑠) have occurred without a change in rules,

or that a maximum number of total observations have been sampled. Figure 66 shows

the data generation process, where 𝑛𝐼𝑠 is the maximum number of iterations that may

occur without change before stopping.

Add nS
random
samples

Analyze
constraint

data for rules

Stop and
report
rules

Is>nIs or
 nSamples>nT ?

Figure 66 Data generation flowchart

It is important to note that there is no theoretical guarantee on the number of

observations required to establish correct rules. In fact, even if the conditional probability

of a rule is 100%, based on the limited sample data, it may change if additional data is

89

added. This is an inherent limitation of probabilistic methods. Therefore, if constraints

are suppressed based on the rules found, it is suggested to confirm that the final solution

is feasible by testing it against all constraints (including those which were suppressed).

The data may also be visualized as shown in Chapter 5.

6.7. Examples and Results

6.7.1. Two-Variable Mathematical Examples

Problem Definition

In this section, constraint mining is tested on two-dimensional mathematical

examples which can be easily visualized as in Figure 67. The arrows in Figure 67

indicate the direction of feasibility. The first problem has seven constraints, including one

nonlinear constraint. The second problem is from Telgen’s chapter in [11] (p.57),

including 8 linear constraints. The problems are defined algebraically in Table 12 and

Table 13, respectively. In Example 1, it is clear that 𝑔3 and 𝑔7 are multiples of one

another. Furthermore, 𝑔2 is a tighter restriction than 𝑔5. In Example 2, the patterns are

less obvious from the equations, but can be seen visually in Figure 67. Namely, 𝑔2 has

no influence on the feasible space, due to the combination of 𝑔6 and 𝑔3.

Table 12 Constraint mining Example 1

𝑔1: − 𝑥1 − 𝑥2 ≤ 0
𝑔2: 𝑥1 + 𝑥2 ≤ 5
𝑔3: 𝑥1 ≤ 3
𝑔4: − 𝑥2 ≤ 0
𝑔5: 𝑥1 + 𝑥2 ≤ 6
𝑔6: − 𝑥1 + 𝑥22 ≤ 0
𝑔7: 2(𝑥1) ≤ 6

Table 13 Constraint mining Example 2

𝑔1: 𝑥1 − 𝑥2 ≤ 2
𝑔2: 2(𝑥1) + 𝑥2 ≤ 7
𝑔3: 𝑥1 ≤ 2

90

𝑔4: − 𝑥1 + 2(𝑥2) ≤ 4
𝑔5: 2(𝑥2) ≤ 5
𝑔6: 𝑥1 + 𝑥2 ≤ 4
𝑔7: − 𝑥1 ≤ 0
𝑔8: − 𝑥2 ≤ 0

Figure 67 Example 1 (left) with 1200 samples and Example 2 (right) with 1600
samples (dark is feasible).

Constraint mining results

The results from constraint mining are presented in Table 14 and Table 15. The

settings assume that a single contradictory case is sufficient to discredit a rule; therefore,

𝑚𝑖𝑛𝑠𝑆𝑝𝑝 = 0 and 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 = 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 = 1. In Example 1, 1200 samples were tested. In

Example 2, 1600 were tested. The number of iterations without a rule change (𝑛𝐼𝑠) was

set to 5, and 𝑛𝑇 = was set to 2000 with 𝑛𝐼 = 10 (𝑛𝑛𝑖 = 200). The results from Table 14

are correct by inspection of Figure 67.

 The results from Table 15 illustrate the probabilistic nature of the method.

Although the first two rules are correct, the third rule is false. Indeed, there is an area (A
in Figure 67) that is uniquely restricted by 𝑔5, meaning 𝑔5 is not covered. Unfortunately,

no sample was generated in that region during random sampling. Consequently, from

the constraint data, 𝑔5 has no case where it is violated and others (𝑔6 & 𝑔4) are not.

91

Thus, it is covered based on the collected observations. This illustrates the pitfall of

using a probabilistic method.

Table 14 Example 1 Rules

Rule Rule Conditional Probability Rule Type
‘g3 and g7 co-occur’ 100% Co-occurrence
‘g5 is redundant to g2 by implication.’ 100% Implication
‘g1 is covered due to the union of other constraints’ 100% Covering

Table 15 Example 2 Rules

Rule Rule Conditional Probability Rule Type
‘g1 is covered due to the union of other constraints’ 100% Covering
‘g2 is covered due to the union of other constraints’ 100% Covering
‘g5 is covered due to the union of other constraints’ 100% Covering

6.7.2. Pressure Vessel Design Example

The PV problem, from Chapter 3, was also tested using constraint mining. For

this problem, 1200 samples were generated, with 𝑚𝑖𝑛𝑠𝑆𝑝 = 0.1, 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 = 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 =

0.9. The data generation parameters are the same as in the previous examples with the

exception that 𝑛𝑇 was raised to 4000, to account for the larger design space of 4

variables. The resulting list of rules is shown in Table 10.

Table 10: Rules for continuous pressure vessel design optimization

Rule Rule Conditional Probability Rule Type
'Violations in g2 are redundant due to g1 by
implication.’

99.8% Implication

Surprisingly, it was found that violations in g2 imply g1 in ~99% of samples.

Therefore, constraint g2 could be suppressed (with the risk that the optimum falls into

the 0.2% of cases where the rule is false). Optimization was subsequently performed

with and without g2 using TR-MPS. The best design found in both cases is 𝑓∗ = 7006.8,

at 𝑅∗ = 51.8”, 𝑇𝑠∗ = 1", 𝐿∗ = 84.6" and 𝑇ℎ∗ = 0.625". This suggests that g2, really has no

effect at the optimum.

92

To verify association rules beyond 2D, the underlying constraint check data can

be visualized as in Chapter 5. The constraints g1 and g2 are shown below as scatterplot

matrices. It is clear that the restriction of g1, covers the same points as g2 but is stricter

on the variable R.

Figure 68 Constraints: g1 (left) and g2 (right) of the PV problem (dark is feasible).

6.8. Summary

This chapter presented a systematic method to find redundant constraint groups

in black-box optimization problems. Association analysis, from data mining, was applied

for constraint redundancy identification, which is a new application for the method.

Rather than directly applying association analysis, this work developed a sequential

method and theorems for constraint redundancy identification. In specific:

1. A new method is proposed to find constraints that co-occur, using Jaccard

similarity, before performing association analysis on the remaining frequent

itemsets. This prevents the generation of many unnecessary association rules.

2. Additional limitations were added to a priori rule generation. In particular, it was

shown that implication rules with more than two items do not provide additional

information for constraint redundancy identification.

3. Additional redundancies (due to covering) are checked on the remaining itemsets

using a reduced set of observations as in the set-covering approach.

93

4. The result of the proposed method is a set of readable rules that the user may

choose to act on, as opposed to a reduced set of constraints as in other

redundancy identification methods.

The method was first applied to mathematical problems. It was found that the

rules summarize the relationship among constraints. However, it was also pointed out

that, due to the method’s probabilistic nature, the accuracy of the rules depends on the

sample points. An incorrect rule was mined due to a lack of sampling in a particular

region for one test example. The method was then applied to the PV problem.

Surprisingly, it was found that a design constraint for this benchmark problem is likely

redundant. The rules were validated using multivariate visualization. Although the

presented method cannot guarantee correctness, constraint rules provide design

engineers with new information of how their constraints restrict the design space.

Ultimately, this provides a starting point for comparing constraints visually, and may lead

to improved problem formulations. The following chapter focuses on a case-study of

applying the developed interactive optimization framework.

94

Chapter 7. Robotic Automotive Assembly Station
Optimization – Case Study

In this chapter, the black-box optimization visualization framework is applied to

the optimization of automotive assembly station planning. First, the specific optimization

goal is described in standard form. Next, the results from an application specific tool are

compared to the results using the general optimization visualization framework. Although

the application specific visualization is more intuitive; this application illustrates how a

general framework may be applied to a real industrial application in the absence of

additional visualization.

7.1. Robotic automotive assembly optimization problem
description

In robotic automotive assembly, fixtures and clamps hold sheet metal parts in

position while welding as shown in Figure 69. These fixtures contain locating pins which

slide into holes and slots (which restrict the parts from translating or rotating) [107]. The

holes and slots are the other half of the locating system called “locators”. In practice,

parts are also clamped down (at various positions on the part). Clamps are omitted in

the following examples for simplicity, but may also be modeled and optimized using the

same approach. Furthermore, in this analysis parts are assumed to be rigid.

To move the parts on and off the fixtures (by robotic arms), there is a slight

clearance between the pin and the hole or slot. Unfortunately, a clearance also means

that the parts may “jiggle” before being clamped, creating variance in part assemblies.

Furthermore, the location and sizes of holes and slots will vary slightly each time a blank

is manufactured, according to design specifications, typically on the order of 0.1mm for

large automotive parts. Overall, it is desirable to place the locators in a configuration

such that the variance in part assemblies is minimized. This can be achieved by

95

simulating many assemblies in CAD (i.e. DCS Analyst), with differing locating schemes,

and comparing the variance of alternative fixture configurations.

Figure 69 Possible locator configurations for two plates

Two methods to quantify the overall variance of assembly simulations are shown

in Figure 70. In Option 1, the variance is computed on a single corner-to-corner distance

measure. In Option 2, the distance from nominal is measured at multiple key product

characteristics (KPC) points on the parts which are then squared and aggregated (as in

Eq. (2) with equal weights) as an overall measure of assembly variance. Key product

characteristic points are points which must be near their nominal position to ensure the

safety and quality of the vehicle.

96

Figure 70 Possible measures to quantify variance

7.2. Optimization problem formulation

The objective of optimization is to minimize the variance in part assemblies by

changing the placement of locators on fixtures. Figure 71 shows the coordinate system

for parts and locators. For a three part assembly, with two-locators per part (hole and

slot), there are 12 variables in total (X-Z locations for each locator). In reality, there is

also a Y (out of page direction) coordinate to consider. However, the Y coordinate may

be automatically computed based on the X-Z location and can be considered as a

dependent variable.

In this problem, the design space is specified by a discrete list of possible

positions for each locator on the part. The design variables are offsets for each X and Z

coordinate of the locator, starting from an initial location. The objective function is to

minimize the sum-of-squares of 14-KPC Point variances (variance is computed over

2000 assemblies for each configuration, simulated by DCS Analyst). Although there are

constraints in practice (e.g. avoiding overlapping locators), they are omitted for this

simplified example, creating an unconstrained optimization problem. The objective

function is explicitly written as in Eq. (30).

min𝑓(𝒙) = �𝑉𝑖2

14

𝑖=1

(30)

97

In Eq. (30), 𝑉 is proportional to the variance of the Euclidean distance of a KPC

point (i) from its nominal position. Specifically, 𝑉 is 6 times the standard deviation of

2000 assembly simulations in DCS Analyst. The variables 𝑥1 … 𝑥12 are the x-z offsets of

locators. Figure 71 shows a simplified model of the assembly optimized. The assembly

consists of three parts (labeled A, B and C) forming a structural sub-assembly of the

side-panel for a larger vehicle.

Figure 71 Base of automotive side panel with potential locator positions

The initial locator positions (with 0 offsets) are as follows in Figure 72. The

objective value with this configuration is considered to be the “baseline” (i.e. the

minimum performance that is acceptable) with a value of 0.32𝑚𝑚2.

98

Figure 72 Baseline configuration of locators

7.3. Results and discussion

In Figure 73, all of the points with variance lower than the baseline are

highlighted using a performance region after a TR-MPS optimization with 5000 samples

(~3 hours runtime). From the results, the objective can only be slightly reduced by

offsetting holes and slots (from 0.32𝑚𝑚2 to 0.297 𝑚𝑚2). Perhaps more interesting, is

the clear outlier. This outlier (with a value of 964 𝑚𝑚2) was selected using the data

table, then exported and plotted with an application specific visualization (also developed

by the author). The result is shown in Figure 74. Figure 74 illustrates the reason for the

outlier: the locators of Part C are concentric, allowing the part to rotate freely around the

center of the hole/slot. Indeed, a constraint which ensures locators do not overlap is

clearly necessary. With this information a constraint may be added in the optimization

process to eliminate the outliers from the set of feasible data.

99

Figure 73 Locator offsets resulting in a lower variance than the baseline

100

Figure 74 Outlier configuration (Part C is free to rotate)

Figure 75 shows the optimal design, also selected from the sorted data table. For

Part A, the results suggest to completely lower the hole, as indicated by the maximum

negative Z offset. The slot, on the other hand is moved up, as shown by the large

positive offset in Z. For Part B, the hole is moved to the bottom right (large positive X

offset and negative Z offset) and the slot is moved to the top left (large negative X offset

positive Z offset). In Part C, the Hole is moved to the top right and the slot to the bottom

left. Overall, from Figure 75, the suggested offsets can be readily determined. However,

the designer must interpret the meaning of each numeric value, and how it relates to the

initial locator scheme. In other words, the results are not immediately clear, and require

some thought.

Alternatively, the results may be plotted as in Figure 76. Here, it is instantly clear

how the recommended locator configuration is arranged on the parts. The results can be

understood pre-attentively (without cognitive effort). Namely, the locators are spread to

the corner of the parts for this particular assembly. On the other hand, this visualization

required knowledge about the optimization problem. Each offset had to be added to an

initial X-Z location, representing the final position of a particular locator. In practice, a

general visualization framework may be useful to generate data and identify sub-regions

of the data. The region can then be exported into an application specific tool if available.

101

Figure 75 Locator offsets which generate the lowest assembly variance

Figure 76 Application specific visualization locator offsets at minimum

102

The design region bounding the points from 0.297 to baseline (the orange area in

Figure 73) was also added as a design region using the (“Add as design region button”).

The worst sampled performance in the design region is 0.45𝑚𝑚2. In an attempt to

further investigate the extremes of this region, a metamodel was also built. However, a

second-order polynomial regression is clearly not suitable for metamodeling this region

as shown in Figure 77. This is confirmed by an NRMSECV of 0.12 and an R-Square of

0.47. Therefore, the simple metamodel cannot predict a worst or best case performance

for the region. PCA-HDMR is even further off with a NRMSECV of 23.

Figure 77 Metamodel of region bounding the points which are lower than baseline

Aside from design data, additional information about the optimization process

may be gained from the convergence chart shown in Figure 78. For example, there was

no improvement in the last 168 TR-MPS iterations (the optimum was found in iteration

357). This suggests that the algorithm has converged.

Figure 78 Three part assembly optimization convergence chart

103

7.4. Summary

This chapter presented an automotive assembly station optimization project, as

an application for visualization in support of design optimization. It was shown that the

framework introduced in this thesis is able to reveal some helpful information about the

optimization problem. For example, after finding and investigating an outlier it became

clear that a constraint preventing the overlap of locators is necessary. On the other

hand, this chapter also shows that using an application specific visualization is ideal. For

instance, in this case, the locator offsets can be added to the initial positions and directly

plotted on the parts as glyphs. Nonetheless, in the absence of further information about

the problem or geometry, parallel coordinates and general information visualization may

be a starting point for further investigation.

104

Chapter 8. Summary and Future Work

8.1. Summary

This thesis presents a framework to visualize data in optimization problems with

the goal of providing more transparency about the optimization problem and process. By

visualizing data during optimization, the designer may interject and make adjustments to

their problem, such as directing the search between new search bounds or adjusting

constraints. New features that were developed in this integrated design optimization

framework that separate this work from others are listed as follows.

In this work, an emphasis is placed on defining sub-regions of the design or

performance spaces to track optimization progress. Clustering may further split the

region into sub-spaces automatically. Additionally, users may use an adjacent two-

dimensional projection or data table to select data manually. Principal-component-

analysis was applied to generate a two-dimensional projection that captures the most

variance in the selected designs. Once regions are defined, they may be modeled with a

polynomial regression or HDMR, which can replace the expensive simulation if the

model is valid in the region. Model validity is estimated using cross-validation with the

option of adding additional test points. This local model may be used to predict the

performance extremes of the selected region using a local optimization on the

metamodel. Besides showing the convergence of the design space, the current optimum

value is plotted against the iteration; and the iterations which generated the selected

data are highlighted. Furthermore, users may navigate to past iterations to see when

data was introduced, and how the sampling strategy biases later samples.

Aside from visualization, an algorithm, incorporating association analysis, is

presented to automatically identify redundancies in constraints which can be confirmed

visually. This algorithm finds relationships between constraints as rules that may be

105

used to suppress constraints, simplifying the problem formulation and potentially

reducing the number of constraint checks during optimization.

An application was presented for the optimization of robotic automotive assembly

station fixtures. This example showed how visualization may assist in identifying missing

information from the problem formulation. For example, it is clear that constraints must

be added to ensure that locators do not overlap. It was also shown that although a

general visualization tool is beneficial, an application specific visualization may be far

more efficient if available.

8.2. Future Work

Although this work progresses multivariate visualization in support of optimization

by visualizing convergence in design data, many improvements may still be made. For

instance, a key limitation is that the visualization techniques may become

incomprehensible with many variables (e.g. more than 20). For example, if a problem

has 100 variables, it is difficult to follow a single polyline in parallel coordinates. Similarly

the scatter plots in a scatterplot matrix become too dense to read and too costly to

compute. To overcome this, a more in depth analysis of the data, prior to visualization, is

required. For instance, using a global metamodel, such as HDMR, a subset of variables,

that significantly influence the output, may be grouped. Alternatively dimensionality

reduction techniques, such as PCA, may aggregate variables into a limited number of

components for display. This work extends visualization of the optimization process

beyond three dimensions. However, there is undoubtedly progress to be made in

visualizing optimization of many variables.

106

References

[1] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., and Byers,
A. H., 2011, Big data: The next frontier for innovation, competition, and
productivity, Global.

[2] Short, J. E., Bohm, R. E., and Baru, C., 2011, How much information? 2010 report
on enterprise server information, San Diego, CA.

[3] Magana, A. J., Vieira, C., Polo, F. G., Yan, J., and Sun, X., 2013, “An exploratory
survey on the use of computation in undergraduate engineering education,”
Frontiers in Education Conference, 2013 IEEE, Oklahoma City, OK, pp. 7–9.

[4] Origin, T., Development, E., Author, M. W., Source, W., and Stable, S., 2014,
“Thirtieth anniversity of the use of the term operational research,” Oper. Res. Q.,
1967(2), pp. 111–113.

[5] Dantzig, G. B., 2002, “Linear programming,” Oper. Res., 50(1), pp. 42–47.

[6] Henry, J., 1975, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control and artificial intelligence, MIT Press
Cambridge, Massachusetts, USA.

[7] Kirkpatrick, S., Gellatt, C. D., and Vecchi, M. P., 1983, “Optimization by simulated
annealing,” Science, 220(4598), pp. 671–680.

[8] Kennedy, J., and Eberhart, R., 1995, “Particle swarm optimization,” Proceeding of
IEEE International Conference on Neural Networks, 1995, IEEE, Perth, WA, pp.
1942–1948.

[9] Jones, D., Schonlau, M., and Welch, W., 1998, “Efficient global optimization of
expensive black-box functions,” J. Glob. Optim., 13, pp. 455–492.

[10] Messac, A., 1996, “Physical programming : effective optimization for
computational design,” AIAA J., 34(1), pp. 149–158.

[11] Karwan, M. H., Lofti, V., Telgen, J., and Zoints, S., 1983, Redundancy in
mathematical programming: a state-of-the-art survey, Springer-Verlag, New York,
Berlin.

107

[12] Balling, R., 1999, “Design by shopping: A new paradigm?,” Proceedings of the 3rd
WSMO, Third world congress of structural and multidisciplinary optimization,
Buffalo, NY, pp. 295–297.

[13] Geoffrion, A. M., 1976, “The purpose of mathematical programming is insight, not
numbers,” Interfaces (Providence)., 7(1).

[14] Tufte, E. R., 2001, The visual display of quantitative information, Graphics Press,
Chesire, Connecticut.

[15] Tukey, J., 1977, Exploratory data analysis, Addison-Wesley, Reading, MA.

[16] Anscombe, F. J., 1973, “Graphs in statistical analysis,” Am. Stat., 27(1), pp. 17–
21.

[17] Spence, R., 2007, Information visualization: design for interaction, Pearson
Education, Edinburgh Gate, England.

[18] Swayne, D. F., Lang, D. T., Buja, A., and Cook, D., 2003, “GGobi (Software).”

[19] Morandat, F., Hill, B., Osvald, L., and Vitek, J., 2012, “Evaluating the design of the
R language: objects and functions for data analysis,” ECOOP’ 12 Proceedings of
the 26th European conference on Object-Oriented Programming, pp. 104–131.

[20] Nicolau, M., Levine, A. J., and Carlsson, G., 2011, “Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and
excellent survival,” Proc. Natl. Acad. Sci. U. S. A., 108(17), pp. 7265–7270.

[21] Stump, G. M., Yukish, M. A., Martin, J. D., and Simpson, T. W., 2004, “The ARL
trade space visualizer: An engineering decision-making tool,” 10th AIAA/ISSMO
Multidisciplinary Analysis and Optmization Conference, Albany, NY.

[22] Winer, E. H., and Bloebaum, C. L., 2001, “Visual design steering for optimization
solution improvement,” Struct. Multidiscip. Optim., 22(3), pp. 219–229.

[23] Agrawal, G., Lewis, K. E., Chugh, K., Huang, C. H., Parashar, S., and Bloebaum,
C. L., 2004, “Intuitive visualization of pareto frontier for multi-objective optimization
in n-dimensional performance space,” 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Albany, NY.

[24] Mattson, C. A., and Messac, A., 2002, “Concept selection in n-dimension using s-
Pareto frontiers and visualization,” 9th AIAA / ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, GA.

[25] Keim, D. A., Mansmann, F., Thomas, J., and Keim, D., 2010, “Visual analytics :
how much visualization and how much analytics ?,” SIGKDD Explor., 11(2), pp. 5–
8.

108

[26] Rhyne, T.-M., Tory, M., Munzner, T., Ward, M., Johnson, C., and Laidlaw, D. H.,
2003, “Information and scientific visualization : Separate but equal or happy
together at last,” IEEE Visualization, IEEE, ed., Seattle, Washington, pp. 611–614.

[27] Freindly, M., and Denis, D., 2005, “The early origins and development of the
scatterplot,” J. Hist. Behav. Sci., 41(2), pp. 103–130.

[28] Bertin, J., 1981, Graphics and graphic information processing, Walter de Gruyter
& Co, Berlin.

[29] Cleveland, W. S., and McGill, R., 1985, “Graphical perception and graphical
methods for analyzing scientific data,” Science, 229(4716), pp. 828–833.

[30] Mackinlay, J., 1986, “Automating the design of graphical presentations of
relational information,” ACM Trans. Graph., 5(2), pp. 110–141.

[31] Grinstein, G., Trutschl, M., and Cvek, U., 2001, “High-dimensional visualizations,”
VII Data Mining Conference KDD Workshop 2001, ACM Press, New York, pp. 7–
19.

[32] Steinmayr, B., 2009, “Hypervariate data visualization,” Media Informatics
Advanced Seminar on Information Visualization 2008/2009, Munich, Germany.

[33] Wong, P. C., and Bergeron, R. D., 1997, “30 years of multidimensional
multivariate visualization,” Scientific Visualization, Overviews, Methodologies, and
Techniques, IEEE Computer Society, Washing, DC, pp. 3–33.

[34] Jones, C. V., 1996, Visualization and optimization, Kluwer Academic Publishers,
Boston.

[35] Fisher, R. A., 1936, “The use of multiple measurements in taxonomic problems,”
Ann. Eugen., 7(2), pp. 179–188.

[36] Elmqvist, N., Dragicevic, P., and Fekete, J.-D., 2008, “Rolling the dice:
Multidimensional visual exploration using scatterplot matrix navigation,” IEEE
Trans. Vis. Comput. Graph., 14(6), pp. 1141–1148.

[37] Cutbill, A., Hajikolaei, K. H., and Wang, G. G., 2013, “Visual HDMR model
refinement through iterative interaction,” Proceedings of the ASME 2013
International Design Engineering Technical Conferences, Portland, USA, pp. 1–8.

[38] Inselberg, A., 1985, “The plane with parallel coordinates,” Vis. Comput., 1(2), pp.
69–91.

[39] Fua, Y., Ward, M. O., and Rundensteiner, E. A., 1999, “Hierarchical parallel
coordinates for exploration of large datasets,” Visualization ’99 Proceedings,
IEEE, San Franciso, CA, pp. 43–58.

109

[40] Heinrich, J., and Weiskopf, D., 2009, “Continuous parallel coordinates,” IEEE
Trans. Vis. Comput. Graph., 15(6), pp. 1531–8.

[41] Walker, R., Legg, P. a., Pop, S., Geng, Z., Laramee, R. S., and Roberts, J. C.,
2013, “Force-directed parallel coordinates,” 2013 17th International Conference
on Information Visualisation, Ieee, London, UK, pp. 36–44.

[42] Yuan, X., Guo, P., Xiao, H., Zhou, H., and Qu, H., 2009, “Scattering points in
parallel coordinates.,” IEEE Trans. Vis. Comput. Graph., 15(6), pp. 1001–1008.

[43] Lu, L. F., Huang, M. L., and Huang, T.-H., 2012, “A new axes re-ordering method
in parallel coordinates visualization,” 2012 11th International Conference on
Machine Learning and Applications, IEEE Computer Society, Boca Raton, FL, pp.
252–257.

[44] Keim, D. a., and Kriegel, H.-P., 1994, “VisDB: Database exploration using
multidimensional visualization,” IEEE Comput. Graph. Appl., 14(5), pp. 40–49.

[45] Jolliffe, I. T., 2002, Principal component analysis, Springer, New York.

[46] Kim, J.-O., and Mueller, C. W., 1978, “Introduction to factor analysis: What it is
and how to do it,” Sage Univ. Pap. Ser. Quant. Appl. Soc. Sci., 07(013).

[47] Scholkopf, B., Smola, A., and Müller, K. R., 2005, “Kernel principal component
analysis,” Lect. Notes Comput. Sci., 1327(1997), pp. 583–588.

[48] Roweis, S. T., and Saul, L. K., 2000, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, 290(5500), pp. 2323–2326.

[49] Kruskal, J. B., 1978, Multidimensional scaling, SAGE Publications, Thousand
Oaks, CA.

[50] Tenenbaum, J. B., de Silva, V., and Langford, J. C., 2000, “A global geometric
framework for nonlinear dimensionality reduction,” Science, 290(5500), pp. 2319–
2322.

[51] Maaten, L. J. P. Van Der, Postma, E. O., and Herik, H. J. Van Den, 2009,
Dimensionality reduction : A comparative review, Tilburg, Netherlands.

[52] Shan, S., and Wang, G. G., 2009, “Survey of modeling and optimization strategies
to solve high-dimensional design problems with computationally-expensive black-
box functions,” Struct. Multidiscip. Optim., 41(2), pp. 219–241.

[53] Takagi, H., 2001, “Interactive evolutionary computation: fusion of the capabilities
of EC optimization and human evaluation,” Proc. IEEE, 89(9), pp. 1275–1296.

110

[54] Sims, K., 1991, “Artificial evolution for computer graphics,” Comput. Graph.
(ACM)., 25(4), pp. 319–328.

[55] Anderson, D., Anderson, E., Lesh, N., Marks, J., Mirtich, B., Ratajczak, D., and
Ryall, K., 2000, “Human-guided simple search,” Proceedings of AAAI (American
Association for Artificial Intelligence), Austin, Texas, pp. 209–216.

[56] Klau, G. W., Lesh, N., Marks, J., and Mitzenmacher, M., 2002, Human-guided
tabu search, Cambridge, Massachusetts.

[57] Froschauer, M., 2009, “Interactive Optimization , Distance Computation and Data
Estimation in Parallel Coordinates (Thesis),” Vienna University of Technology.

[58] Arora, J. S., 2004, Introduction to optimum design, Elsevier, San Diego, CA.

[59] Winer, E. H., and Bloebaum, C. L., 2002, “Development of visual design steering
as an aid in large-scale multidisciplinary design optimization. Part I: method
development,” Struct. Multidiscip. Optim., 23, pp. 412–424.

[60] Winer, E. H., and Bloebaum, C. L., 2002, “Development of visual design steering
as an aid in large-scale multidisciplinary design optimization. Part II : method
validation,” Struct. Multidiscip. Optim., 23, pp. 425–435.

[61] Afimiwala, K. A., and Mayne, R. W., 1979, “A contour plotting scheme for design
optimization,” J. Mech. Des., 101, pp. 349–354.

[62] Lego, S. E., Stump, G. M., and Yukish, M. A., 2010, “Trade space exploration:
New visual steering features,” 2010 IEEE Aerospace Conference, Big Sky,
Montana.

[63] Stump, G. M., Lego, S. E., Yukish, M. A., Simpson, T. W., and Donndelinger, J.
A., 2009, “Visual steering commands for trade space exploration: User-guided
sampling with example,” J. Comput. Inf. Sci. Eng., 9(4).

[64] Yan, X., Qiao, M., Li, J., Simpson, T. W., Stump, G. M., and Zhang, X. (Luke),
2012, “A work-centered visual analytics model to support engineering design with
interactive visualization and data-mining,” 2012 45th Hawaii Int. Conf. Syst. Sci.,
pp. 1845–1854.

[65] Messac, A., and Wilson, B. H., 1998, “Physical programming for computational
control,” AIAA J., 36(2), pp. 219–226.

[66] Messac, A., and Chen, X., 2000, “Visualizing the optimization process in real-time
using physical programming,” Eng. Optim., 32(6), pp. 721–747.

111

[67] Eddy, J., and Lewis, K. E., 2002, “Visualization of multidimensional design and
optimization using cloud visualization,” Proceedings of DETC’02, Montreal,
Canada, Canada, pp. 899–908.

[68] Spence, B., Tweedie, L., and Dawkes, H., 1995, “Visualisation for functional
design,” Proc. Vis. 1995 Conf., pp. 4–10,.

[69] Spence, R., 1999, “The facilitation of insight for analog design,” IEEE Trans.
circuits Syst. II, 46(5), pp. 540–548.

[70] Tan, P.-N., Steinbach, M., and Kumar, V., 2006, Introduction to data mining,
Pearson Education, Boston.

[71] Goodman, T., and Spence, R., 1978, “The effect of system response time on
interactive computer aided problem solving,” SIGGRAPH ’78 Proceedings of the
5th annual conference on computer graphics and interactive techniques, ACM,
ed., Atlanta, Georgia, pp. 100–104.

[72] Lam, H., 2008, “A framework of interaction costs in information visualization,”
IEEE Trans. Vis. Comput. Graph., 14(6), pp. 1149–1156.

[73] Wilde, D., 1978, Globally optimal design, John Wiley and Sons Inc, New York,
NY.

[74] Wang, L., Shan, S., and Wang, G. G., 2004, “Mode-pursuing sampling method for
global optimization on expensive black-box functions,” Eng. Optim., 36(4), pp.
419–438.

[75] Lewis, K., and Mistree, F., 1996, “Foraging-directed adaptive linear programming:
an algorithm for solving nonlinear mixed discrete/continuous design problems,”
Proceedings of the 1996 ASME Design Engineering Technical Conferences and
Computers in Engineering Conference, Irvine, California, p. 1601.

[76] Sobol, I. M., 1993, “Sensitivity Estimates for Nonlinear Mathematical Models,”
Math. Model. Comput. Exp., 1(4), pp. 407–411.

[77] Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K., 2001, “Metamodels
for Computer-based Engineering Design : Survey and recommendations,” Eng.
Comput., 17(2), pp. 129–150.

[78] Wang, G. G., and Shan, S., 2007, “Review of metamodeling techniques in support
of engineering design optimization,” J. Mech. Des., 129(4), p. 370.

[79] Cheng, G. H., Younis, A., Hajikolaei, K. H., and Wang, G. G., 2014, “Trust region
based MPS method for global optimization of high dimensional design problems,”
J. Mech. Des., (Accepted).

112

[80] Ziehn, T., and Tomlin, A. S., 2009, “GUI–HDMR – A Software Tool for Global
Sensitivity Analysis of Complex Models,” Environ. Model. Softw., 24(7), pp. 775–
785.

[81] Rabitz, H., Alıs, Ö. F., Shorter, J., and Shim, K., 1999, “Efficient Input-Output
Model Representations,” Comput. Phys. Commun., 117, pp. 11–20.

[82] Alıs, Ö. F., and Rabitz, H., 2001, “Efficient Implementation of High Dimensional
Model Representations,” J. Math. Chem., 29(2), pp. 127–141.

[83] Li, G., Wang, S.-W., and Rabitz, H., 2002, “Practical Approaches To Construct
RS-HDMR Component Functions,” J. Phys. Chem. A, 106(37), pp. 8721–8733.

[84] Shan, S., and Wang, G. G., 2011, “Turning Black-Box Functions Into White
Functions,” J. Mech. Des., 133(3), p. 031003.

[85] Hajikolaei, K. H., and Wang, G. G., 2013, “High Dimensional Model
Representation with Principal Component Analysis : PCA-HDMR,” J. Mech. Des.,
Submitted.

[86] Rabitz, H., and Alıs, Ö. F., 1999, “General Foundations of High-Dimensional
Model Representations,” J. Math. Chem., 25, pp. 197–233.

[87] Cutbill, A., and Wang, G. G., “Mining constraint relationships and redundancies
with association analysis for optimization problem formulation,” Eng. Optim.,
(Accepted with minor revisions).

[88] Agrawal, R., Imielinksi, T., and Swami, A., 1993, “Database mining: a
performance perspective,” IEEE Trans. Knowl. Data Eng., 5(6), pp. 914–925.

[89] Agrawal, R., Imielinski, T., and Swami, A., 1993, “Mining association rules
between sets of items in large databases,” Proceedings of the 1993 ACM
SIGMOD international conference on management of data, ACM Press, New
York, NY, pp. 207–216.

[90] Paulraj, S., and Sumathi, P., 2010, “A comparative study of redundant constraints
identification methods in linear programming problems,” Math. Probl. Eng.,
2010(723402), pp. 1–16.

[91] Caron, R. J., McDonald, J. F., and Ponic, C. M., 1989, “A degenerate extreme
point strategy for the classification of linear constraints as redundant or
necessary,” J. Optim. Theory Appl., 62(2), pp. 225–237.

[92] Thompson, G. L., Tonge, F. M., and Zionts, S., 1966, “Techniques for removing
nonbinding constraints and extraneous variables from linear programming
problems,” Manage. Sci., 12(7), pp. 588–608.

113

[93] Boot, T. C. G., 1962, “On trivial and binding constraints in programming
problems,” Manage. Sci., 8(4), pp. 419–441.

[94] Brearley, A. L., Mitra, G., and Williams, H. P., 1975, “Analysis of mathematical
programming problems prior to applying the simplex algorithm,” Math. Program.,
8(1), pp. 54–83.

[95] Boneh, A., 1984, “Identification of redundancy by a set-covering equivalence,”
Operational Research’ 84. Proceedings of the Tenth International Conference on
Operational Research, J.P. Brans, ed., Elsevier, Amsterdam, North Holland, pp.
407–422.

[96] Feng, J., 1999, “Redundancy in nonlinear systems: a set covering approach
(Thesis),” University of Windsor.

[97] Huang, W., Krneta, M., Lin, L., Wu, J., and Generation5 Math Technologies, 2006,
“Association bundle - a new pattern for association analysis,” Sixth IEEE
International Conference on Data Mining- Workshops (ICDMW’06), IEEE, Hong
Kong, pp. 601–605.

[98] Han, J., Pei, J., Yin, Y., and Mao, R., 2004, “Mining frequent patterns without
candidate generation : A frequent-pattern tree,” Data Min. Knowl. Discov., 8(1),
pp. 53–87.

[99] Zhou, L., and Yau, S., 2007, “Efficient association rule mining among both
frequent and infrequent items,” Comput. Math. with Appl., 54(6), pp. 737–749.

[100] Xiong, H., Tan, P.-N., and Kumar, V., 2006, “Hyperclique pattern discovery,” Data
Min. Knowl. Discov., 13(2), pp. 219–242.

[101] Cheng, H., Yu, P., and Han, J., 2006, “AC-Close: Efficiently mining approximate
closed itemsets by core pattern recovery,” Proceedings of the Sixth International
Conference on Data Mining (ICDM’06), IEEE, Hong Kong, pp. 839–844.

[102] Özden, B., Ramaswamy, S., and Sillberschatz, A., 1998, “Cyclic Association
Rules,” 14th International Conference on Data Engineering, 1998 Proceedings,
IEEE, Orlando, FL, pp. 412–421.

[103] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L., 1999, “Discovering frequent
closed itemsets for association rules,” ICDT ’99 Proceedings of the 7th
International Conference on Database Theoy, C. Beeri, and P. Buneman, eds.,
Springer-Verlag, Jerusalem, Israel, pp. 398–416.

[104] Tan, P.-N., Kumar, V., and Srivastava, J., 2002, “Selecting the right
interestingness measure for association patterns,” KDD’ 02 Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM Press, Edmonton, AB, pp. 32–41.

114

[105] Atluri, G., Gupta, R., Fang, G., Pandey, G., Steinbach, M., and Kumar, V., 2009,
“Association analysis techniques for bioinformatics problems,” Lect. Notes
Comput. Sci., 5462(1), pp. 1–13.

[106] Potter, C., Klooster, S., Steinbach, M., Tan, P., Kumar, V., Shekhar, S., Nemani,
R., and Myneni, R., 2003, “Global teleconnections of ocean climate to terrestrial
carbon flux,” J. Geophys. Res., 108(4556).

[107] Ceglarek, D., and Shi, J., 1996, “Fixture failure diagnosis for autobody assembly
using pattern recognition,” J. Eng. Ind., 118(1), p. 55.

115

Appendix

Additional Mathematical Details

Mathematical procedure of PCA on optimization design data

The mathematics of PCA is well established and presented here. It can be summarized
as a four step process.

Step 1a- Preprocessing: Data standardization

The first step in performing PCA, for optimization, is to standardize the design space
between [0,1]. This ensures that each variable has the same impact, regardless of range
or units. For example, in the PV problem, if the data were not standardized, 𝐿 would
account for most of the variance, as its range is between 25 and 240. On the other hand,
if the tested designs are standardized, each variable is treated with equal weight.

Standardization can be achieved through the following equations: (31) or (32). Eq. (32),
(a.k.a. normalization in statistics), is most common for PCA in general. However, Eq.
(32) assumes a normal distribution for each attribute when computing 𝝈(𝑿) (the variable
value standard deviations). This assumption is not valid for optimization, where data is
biased towards the optimum, or user selected regions. Therefore Eq. (31) is used for
standardization. In Eq. (31) and (32), 𝑫𝑳 and 𝑫𝑈 are the lower and upper bounds of the
design space (respectively).

𝒙𝑠𝒊 =

𝒙𝒊 − 𝑫𝐿

𝑫𝑈 − 𝑫𝐿

(31)

𝒙𝒔𝒊 =

𝒙𝒊 − 𝝁(𝑿)
𝛔(𝐗)

(32)

Step 1b- Preprocessing: Data centering

The second step is to center the data such that the mean the data for each attribute is
zero. This step is called data centering and is accomplished by simply subtracting the
mean of each attribute (column of 𝑿𝒔) from each design.

𝒙𝒊′ = 𝒙𝒊 − 𝝁(𝑿𝒔) (33)

Step 2- Computing the covariance matrix

Once the data is preprocessed, the next step is compute the sample covariance matrix
of 𝑨. The preprocessed version of 𝑿 will be denoted as 𝑨 = 𝑿′ to avoid confusion.
Covariance is a measure of how a pair of two variables changes together. For example,

116

if the increase in one variable indicates the increase of another variable, they have
positive covariance; if the increase of one variable indicates the decrease of another
they have negative covariance. The notation 𝒂∗𝒋 means all of the (preprocessed) sample
values for the 𝑗𝑡ℎ variable, while 𝝁𝑗 is the mean of that column. Sample covariance (the
estimated covariance based on the sample of data) can between two attributes (𝑗 and 𝑘)
can written as in Eq. (34):

𝑠𝑗𝑘 = 𝑐𝑆𝑐�𝒂∗𝒋,𝒂∗𝒌� = 𝐸[(𝒂∗𝒋 − 𝝁𝑗)(𝒂∗𝒌 − 𝝁𝑘)] =

(𝒂∗𝒋)𝑻(𝒂∗𝒌)
𝑚 − 1

(34)

Note that since the data is centered such that the mean is zero, 𝝁 is eliminated in (34).
The overall sample covariance 𝑺 matrix (of size 𝑛𝑥𝑛) can be written as in Eq. (35).

𝑺 =

𝑨𝑇𝑨
𝑚 − 1

(35)

Step 3 Eigenvectors and Eigenvalues of S

The covariance matrix summarizes which attributes vary together with sign and
magnitude. If 𝑺 is thought of a scaling matrix for a vector 𝒖 ∈ 𝑼, then the multiplication
𝑺𝒖 is proportional to the data variance in the direction 𝒖. To find the matrix 𝑼 and the
values 𝒖 ∈ 𝑼, which maximize 𝑺𝒖, Eigen-decomposition can be performed on 𝑺. The
matrix 𝑼 is simply the set of eigenvectors of 𝑺. Furthermore, the eigenvectors
corresponding to the largest eigenvalues represent the most variance as shown Eq. (36)
(𝑺𝒖 increases with 𝜆). Therefore, 𝑼 can be sorted column wise, by the values of 𝜆, such
that the first columns represent the orthogonal directions of maximum variance.

𝑺𝒖 = 𝜆𝒖 (36)

Step 4 Projection of standardized points onto Eigenvectors

The last step is to simply plot all of the (standardized and centered) designs from 𝑨 in
the two directions that maximum variance of the selected points 𝒖𝟏 and 𝒖𝟐 (the 1st and
2nd principal components) as in Eq. (37).

𝑨𝒑𝒑𝒐𝒋𝒆𝒄𝒑𝒆𝒑 = [𝑨𝑆1 𝑨𝑢2] (37)

This completes the overall process of PCA.

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Preliminaries
	1.1.1. Numerical Optimization and Black-box Optimization
	1.1.2. Visualization

	1.2. Scope
	1.3. Research Goals
	1.4. Thesis Structure

	Chapter 2. Literature Survey
	2.1. Information Visualization
	2.1.1. Representation Considerations for Quantitative Data

	2.2. Multivariate Representations
	2.2.1. Multivariate Representation Examples
	The scatterplot matrix
	The parallel coordinates plot

	2.2.2. Progress in Multivariate Visualization
	2.2.3. Dimensionality Reduction

	2.3. Visualization in Support of Engineering Design
	2.3.1. Early Approaches and Applications
	2.3.2. Visual Design Steering and Graph Morphing
	2.3.3. Automatic Trade Space Visualization
	2.3.4. Physical Programming and Physical Programming Based Visualization
	2.3.5. Pareto Frontier Visualization Methods
	2.3.6. Parallel Coordinates in Support of Interactive Optimization

	2.4. Summary

	Chapter 3. Methodology
	3.1. Numerical Optimization
	3.1.1. Optimization Space Terminology and Notation

	3.2. Regions and Clustering
	3.2.1. Percentile Regions
	3.2.2. Performance Regions
	3.2.3. Design Regions
	3.2.4. Clustering
	K-Means clustering
	Agglomerative (single-link) clustering
	SC Clustering Example

	3.3. Interaction and Navigation
	3.3.1. Navigation, Brushing and Overviews
	Navigation
	Brushing
	Overview

	3.3.2. 2D Projection by Principal Components Analysis
	Procedure of PCA on optimization design data

	3.3.3. Data Table and Selection

	3.4. Summary

	Chapter 4. Regional Metamodeling
	4.1. Metamodeling in optimization algorithms
	4.2. Metamodeling of a selected region
	4.2.1. Model validation using cross-validation
	4.2.2. Model validation visualization
	4.2.3. Predicting local extremes
	4.2.4. Predicting local sensitivity
	4.2.5. High Dimensional Model Representation (HDMR)
	PCA-HDMR
	Use of PCA-HDMR as an alternative to polynomial regression
	Example Problem 1: Five variable polynomial (NC=50)
	Example Problem 2: Ten variable sum (NC=200)
	Example Problem 3: Twenty variable sum (NC=800)

	Discussion

	4.3. Summary

	Chapter 5. Optimization Visualization Framework
	5.1. Framework Layout
	5.1.1. Problem Formulation (D1)
	5.1.2. Feasibility Data (D2)
	5.1.3. Simulation Data, Convergence and Regions (D3)
	Convergence
	Reviewing past iterations

	Regions

	5.2. Summary

	Chapter 6. Constraint Mining
	6.1. Constraint mining overview
	6.2. Constraints in black-box engineering design
	6.3. Related redundancy identification methods
	6.4. Constraint redundancy rule definitions
	6.4.1. Redundant due to co-occurrence
	6.4.2. Redundant due to implication
	6.4.3. Redundant due to covering

	6.5. The constraint mining method
	6.5.1. Identifying frequent itemsets and co-occurring items
	Step 1 – Filter items by support and find frequent itemsets
	Step 2 - Use the Jaccard measure to identify co-occurring sets
	Step 3- Remove co-occurring frequent itemsets

	6.5.2. Generating association rules (Step 4)
	6.5.3. A brief discussion regarding the number of rules and the benefit of co-occurring sets
	6.5.4. Further rule reductions when considering item removal
	Restricting association rules to single item antecedents
	Restricting association rules to single item consequents

	6.5.5. Finding covered constraints (Step 5)
	6.5.6. Additional information from constraint mining
	Infrequent constraints
	Infeasible problems

	6.6. Collecting data and parameters
	6.6.1. Collecting constraint data

	6.7. Examples and Results
	6.7.1. Two-Variable Mathematical Examples
	Problem Definition
	Constraint mining results

	6.7.2. Pressure Vessel Design Example

	6.8. Summary

	Chapter 7. Robotic Automotive Assembly Station Optimization – Case Study
	7.1. Robotic automotive assembly optimization problem description
	7.2. Optimization problem formulation
	7.3. Results and discussion
	7.4. Summary

	Chapter 8. Summary and Future Work
	8.1. Summary
	8.2. Future Work

	References
	Appendix Additional Mathematical Details
	Mathematical procedure of PCA on optimization design data
	Step 1a- Preprocessing: Data standardization
	Step 1b- Preprocessing: Data centering
	Step 2- Computing the covariance matrix
	Step 3 Eigenvectors and Eigenvalues of S
	Step 4 Projection of standardized points onto Eigenvectors

