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Abstract 

Engineering optimization is often completely automated after initial problem formulation. 

Although purely algorithmic approaches are attractive, keeping the engineer out-of-the-

loop also suffers from key drawbacks. First, problem formulation is a challenging task 

and a poorly formulated problem often causes extra efforts and extended optimization 

time. Second, stakeholders may not trust the results of an optimization algorithm when 

presented without context. This thesis uses information visualization to keep designer in-

the-loop during design optimization formulation, modeling, optimization, and result 

interpretation stages. Parallel coordinates is the central representation used, 

accompanied by two-dimensional projections for navigation and a scatterplot matrix for 

overview. Methods are presented to split the design and performance spaces into 

meaningful regions by clustering and by interaction. A new data-mining technique is also 

presented to find relationships between black-box constraints to remove redundant and 

unimportant constraints. A software prototype is developed and successfully applied to 

an automotive assembly optimization problem.  

Keywords:  Interactive optimization; engineering design; black-box optimization; 
information visualization; constraint redundancy identification; parallel 
coordinates 
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Chapter 1. Introduction 

1.1. Preliminaries 

In the information age, a wealth of data is recorded daily. Consumer transactions 

are logged by loyalty programs, videos are voted for by viewers and the physical world is 

digitized by sensors. Indeed, there is so much data available that the majority is stored in 

data warehouses and left untouched. For a sense of scale, in 2010, Facebook 

processed 30 billion digital items every month, including photos, videos and comments 

[1]. Globally, it is estimated that 9.57 zettabytes of data (ten million million gigabytes) 

were processed by enterprise servers in 2008 [2]. The data overload has called for rapid 

growth in data-driven research which merges information visualization, machine learning 

and data mining. Academics and industry, in many disciplines, are constantly looking to 

turn raw data into valuable information. However, data research has progressed so 

rapidly, due to demand, that it has created a knowledge gap between the state-of-the-art 

and domain specific applications. This thesis aims at partially bridging the gap between 

interactive information visualization and engineering design optimization.  

With the computational capabilities available today, engineers are increasingly 

encouraged to simulate complex models on computers [3]. For instance, structural 

analysis can now be performed by Finite Element Analysis (FEA) as opposed to solving 

lengthy algebraic equations. In software, design performance is modeled and estimated 

before building physical prototypes. As an additional step, software models may be 

rapidly optimized, with optimization algorithms, leading to a shorter design process, 

reduced costs and improved products. Sequentially, the engineer provides the model, 

objectives, constraints, and design variables (i.e. the problem formulation). Next, the 

algorithm tunes the variables to yield the best performance (according to the objectives 

and constraints). This automated design process is data driven; yet, optimization is 

rarely visualized or made interactive.  
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The lack of transparency in optimum design creates three major pitfalls. First, it is 

challenging for engineers to catch mistakes or redundancies in their problem 

formulations. Second, after clicking “start”, designers are unable to steer the optimization 

process using their expertise or preferences; typically, the algorithm controls where to 

search for the optimum. Third, when an optimum solution is found, the result may be 

unconvincing if presented without context. In fact, it may very well be incorrect due to an 

error in the model, an error in the problem formulation, or an error in the algorithm. 

 This thesis focuses on improving transparency in optimization by visualizing and 

mining the data that is iteratively generated. By keeping the user engaged, they are able 

to provide input throughout the optimization process.  Interactive optimization is not a 

new concept and there is plenty of research dedicated to the topic, as explained in the 

literature review section. This work, in particular, introduces an integrated framework for 

interactive optimization with a focus on multivariate visualization. The specific goal is to 

promote transparency and interaction in single objective optimization of black-box 

models.  

1.1.1. Numerical Optimization and Black-box Optimization 

Numerical optimization is a well-developed mathematical topic whose scope 

includes tuning design variables to find the best design(s) according to an objective 

function and constraints. Although gradient based optimization dates back to Isaac 

Newton and the beginning of calculus, modern optimization was established during 

World War II by the British Air Forces’ Operational Research unit. The unit originally 

evaluated how to redesign weapons and equipment, but eventually grew in scope to 

predict battle outcomes and influence policy using their algorithms [4]. Early algorithms, 

such as the simplex method [5], were algebraic and deterministic, but were restricted to 

systems of linear equations. This type of problem is now called linear programming (or 

quadratic programming for quadratic models). 

As models grew in complexity, new techniques became necessary to broaden 

optimization’s scope. Many modern methods are now iterative and stochastic (i.e. they 

do not guarantee the same output each run), but they can be applied to more realistic 
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models without the restriction of linearity or even continuity. Famous approaches include 

genetic algorithms--based on evolution [6], simulated annealing--based on statistical 

mechanics [7], and particle swarms--based on swarm social behaviours [8].  

Figure 1 shows the process followed by a typical iterative stochastic optimization 

algorithm. The goal is formulated as an objective or cost function, which is minimized by 

testing candidate designs until stopping conditions are reached. Once the process is 

terminated, a result is presented (usually as text). 

Describe the 
system as a set of 

objectives and 
constraints.

Test designs with respect to 
the objectives and 

constraints.

Report optimum 
design(s)

Select new designs using 
the optimization method’s 

sampling strategy.

Stopping criteria 
satisfied? Y

N

 

Figure 1 Numerical optimization flowchart 

As mentioned, optimization traditionally involves algebraic cost functions. 

However, with modern methods, improving the response from an engineering simulation 

is also a valid goal. In these cases, the model is treated as a black-box [9]. The 

simulation’s inputs and outputs are known to the optimization algorithm, but the physical 

phenomenon being simulated is not. As an analogy, consider testing the input and 

output voltages of an integrated circuit (IC). The behaviour of the IC can be 

approximated using an oscilloscope without knowing its internal components. Similarly, 

black-box optimization extends optimization theory to simulations which are too complex 

to evaluate algebraically (e.g. Finite Element Analysis, or FEA), by considering only the 

input and output response. This is the central application of the techniques presented in 

this thesis. 

The advantage of numerical optimization and automated design is self-evident. A 

large portion of the design effort is efficiently executed by a computer instead of an 

expert. Efficiency matters as a single test simulation may require hours to complete, 
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even on state-of-the-art workstations [9]. In practice, there may also be millions of 

feasible designs to test. Therefore, a robust mathematical strategy to intelligently find an 

optimum design, with as few simulations as possible, is highly desirable. This is the 

focus of computationally intensive optimization research. There is no exact numerical 

definition of “computationally intensive”. However, a simulation that requires more than 

one minute can be costly for optimization purposes (especially if there are many 

variables to optimize). 

As exciting as automated design may appear, removing engineers from the 

design process (after problem formulation), is inherently problematic. First, it is likely that 

the problem formulation will initially contain errors. Problem formulation requires 

engineers to abstract physical systems into computer models while maintaining as much 

fidelity as possible. Consequently, making invalid assumptions and mistakes in modeling 

is natural. In addition to errors in modeling, design optimization requires precise 

descriptions of objectives, constraints, variables, and search bounds. All of these 

parameters are also difficult to define a priori.  

Furthermore, there is no consensus on what types of formulation errors are most 

common. For instance, Messac argues that important constraints are often missing for 

large scale problems [10] while Karwan et al. explains that constraints are often 

redundantly defined in linear programming [11]. Additionally, Balling found that even if a 

formulation is sensible, stakeholders may not be able to define the objective they truly 

want until they see some results [12]. The bottom line is that correctly formulating an 

optimization problem is challenging. Therefore, methods to assist in problem formulation 

are required.  

Aside from improper formulation, another challenge in automated design is to 

convince the design engineer (and co-workers) that an optimization result is in fact 

optimal or sensible [13]. Even if the problem is formulated as intended; the result may 

conflict with the designer’s intuition. The optimum may have far better performance than 

expected, or include unanticipated variable values (outliers). By keeping designers 

engaged during optimization, and allowing for exploration of the data afterwards, the 

results are less surprising. However, to remain in the loop, designers need a mental 
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model of how the changing design variable values affect the output. This can be 

achieved by visualization.  

1.1.2. Visualization 

Visualization is presenting data to an audience to form mental models. The aim is 

to help people understand data, and the real-world phenomena it represents, by 

leveraging our well-developed cognitive systems. In other words, data is encoded in a 

manner that can be quickly perceived, accurately interpreted and clearly understood (by 

the intended audience). Information visualization often focuses on presenting abstract 

data to illustrate a particular point. Tufte’s book, The Visual Display of Quantitative 

Information [14], presents many examples of successful visualizations that trigger 

understanding and assist in decision making, as well as unsuccessful visualizations that 

are incomprehensible or misleading. Visualization is also a powerful tool for explorative 

analysis where hypotheses are generated by interacting with the data. Such is the case 

in exploratory data analysis, popularized by Tukey in the 1970s [15].  

 As an example, consider Anscombe's quartet data [16] tabularized in Table 1. 

Each set of x-y pairs, from I to IV, has the same x and y means and the same variance. 

If analyzed with descriptive statistics, the data appears to have come from the same 

population. However, when visualized as scatterplots in Figure 2, the datasets are 

distinct: set I is linear, set II is quadratic, set III is linear with an outlier and set IV is 

constant in x values with an outlier. This exemplifies that the manner that data is 

represented (e.g. table or scatterplot) strongly affects its interpretation.  

Although information has been visualized for centuries, the field’s popularity has 

jumped dramatically in the past few decades; triggered by exponential increases in 

computing power and storage [17]. In this time, visualization has grown from static 

graphs, focusing on a few attributes, to fully featured multivariate visualization platforms 

such as GGobi [18] and the R programming language [19]. Indeed, modern visualization 

is highly coupled with statistics, machine learning, mathematics, data mining, user 

interaction, animation, and navigation. 
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Table 1 Anscombe's quartet as a table  

 I II III IV 
Observation x y x y x y x y 
1 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 
2 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 
3 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 
4 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 
5 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 
6 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 
7 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 
8 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 
9 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 
10 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 
11 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 
Mean 9 7.51 9 7.51 9 7.51 9 7.51 
Standard Deviation 3.32 2.03 3.32 2.03 3.32 2.03 3.32 2.03 

 

 
Figure 2 Anscombe's quartet as scatterplots  
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Due to the advancements made in data visualization and related fields, analysts 

are more empowered now than ever. For instance, in 2011, researchers identified 

subgroups in breast cancer patients that were previously unknown by simply applying 

new visual analysis techniques to existing genomic data [20]. In computer aided design 

(CAD), scientific visualization shows physical phenomena such as stress in structures, 

current flow in circuits and fluid flows in turbines. Outside of CAD environments, 

information visualization is an area of interest to keep designers engaged during design 

optimization [21,22]. This thesis presents a framework for visualizing optimization data 

as it is iteratively sampled. 

1.2. Scope 

The scope of the work presented is limited to visualization and mining of data in 

an engineering design optimization context. The focus is on visualizing the design space 

and performance spaces for optimization problems by using parallel coordinates, 

enhanced with basic data mining techniques. A method to mine for relationships among 

constraints, during problem formulation, is also presented. In terms of interaction, 

queries and clustering are used to split the design space into regions which have similar 

performance or variable values. Parallel coordinates is the central representation used to 

illustrate this task. Furthermore, scatterplots are used for navigation and overview. 

Regions may also be locally modeled with polynomial regression or high dimensional 

model representation (HDMR). 

As this is visualization in an optimization context, the visualization is connected 

directly to a computationally efficient optimization algorithm (TR-MPS), allowing for on-

the-fly visual design steering. The convergence of the algorithm is also shown iteratively, 

as the optimization progresses. Multi-objective and multidisciplinary optimization 

visualization is beyond the scope of this thesis. The focus is on visualizing the effect of 

many variables on a single objective with constraints, and on visualizing optimization 

progress iteratively. This contrasts the majority of work done in visualization for 

optimization which focuses on visualizing the effect of preferences/weights in multi-

objective problems [23,24]. 
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1.3. Research Goals 

This research aims to develop methods and tools to help design engineers  

1) To visually steer design optimization in multivariate spaces via region selection 

and visual feedback. 

2) To visualize the progress of optimization for multivariate problems, and 

3) To identify relationships among constraints in the problem formulation. 

1.4. Thesis Structure 

This thesis is split into eight chapters. The introductory chapter provided 

motivation for the work and specific goals. The following literature survey chapter 

(Chapter 2) introduces information visualization, its past uses in interactive optimization 

and the state-of-the-art. Next, the methodology chapter (Chapter 3) provides necessary 

theory for numerical optimization, regions, clustering, principal component analysis, 

interaction, and navigation. Once regions are defined, metamodels can be built with 

polynomial regression or HDMR as explained in Chapter 4, which covers local 

metamodeling. Chapter 5 introduces a framework which aggregates concepts from 

information visualization into prototype software for interactive optimization. In Chapter 

6, a new method is introduced to identify relationships among constraints, incorporating 

association analysis. Chapter 7 shows how the developed framework may be used in 

locator optimization for automotive assembly fixtures. Finally, Chapter 8 provides 

summary of the work and presents potential future work. 
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Chapter 2. Literature Survey 

This chapter provides an introduction to information visualization and its past use 

for optimization. A discussion is provided that covers some of the key concepts, with a 

focus on multivariate visualization techniques. In addition, visualization used specifically 

for design optimization is discussed.  

2.1. Information Visualization 

Visualization in engineering generally comes in two forms, information 

visualization (InfoVis) and scientific visualization (SciVis) [17]. Scientific visualization is 

likely what comes to mind when considering visualizing in an engineering context. In 

SciVis, the data is projected onto a simulated physical model (e.g. a CAD model) to 

show stress, temperature or other physical properties of a system. Information 

visualization (InfoVis), on the other hand, is not tied to a spatial model (e.g. a scatter 

plot). The growth in scope of InfoVis (including data mining, statistics etc.) has also 

spawned the term visual analytics to reflect the broadness of the field [25]. 

Although the need for taxonomy has been debated [26], it is important to clarify 

that the work in this thesis treats data in an abstract (InfoVis) sense. This ensures that 

the methods can be applied to various black-box problems without being tied to CAD. 

For instance, consider the scientific visualization of an FEA model for a bridge in Figure 

3, colored by deformation (in [mm]), under a distributed load. The colors in this example 

show the location and magnitude of the deformation. This visualization is clear and 

intuitive, but ANSYS was used to create it. Had the data come from another CAD 

package (e.g. SolidWorks), a model from that software would be necessary (along with 

the ability to map deformation to color and position).  



 

10 

 
Figure 3 FEA Bridge analysis: scientific visualization 

Now, consider Figure 4. The data is the same. Yet, in this representation, the 

positions of points are dependent only on the value of the data and the chosen 

representation (a line plot). There is no intrinsic physical notion of space or model tied to 

the plot. This is information visualization. 

 
Figure 4 FEA Bridge analysis: information visualization 

As a brief breakdown of InfoVis, Figure 5 shows the role of each step. Topics 

which are controlled by the visualization designer include representation, presentation 

and interaction. The remaining steps are performed by the viewer. 
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Data

Representation

Data is mapped to position, color, line, text, 
shape etc.

Presentation

The represented data is displayed to the 
user. Some data may also be highlighted, 

distorted or suppressed.

Perception

The eye sees the presentation.

Interpretation

A low order cognitive process infers meaning 
(e.g. the data looks linear).

High-Order Cognitive Process

The interpretation causes a change to the 
viewers current mental model, helps them 
make a decision or consider new options.

Interaction

Changes are made 
by the viewer to the 
data, representation 

or presentation.

InfoVis Designer

Viewer/Analyst

 

Figure 5 Flowchart of the visualization process (adapted from [17]) 

2.1.1. Representation Considerations for Quantitative Data 

The representation of quantitative data has a history dating to ancient times, 

usually as information overlaid on geographic maps. In the 18th century, quantitative data 

representation was modernized with scatterplots, bar charts and line graphs, popularized 

by Playfair [14,27]. A representation is a mapping of data to a display for a particular 

purpose. For instance, in Table 1, the table encodes Anscombe's quartet numerically as 

organized text, making it easy to find exact values for an x-y pair. In contrast, the 

scatterplots show trends, but are more difficult to read numerically. When choosing a 

representation, it is important to consider properties of the data (number of points, 

dimensionality, and type), as well as the kinds of insight the audience is seeking 
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(relationships, distributions, values, or outliers). Common goals include browsing and 

generating hypotheses (exploration), testing hypotheses (analytics) or forming 

summaries that can be described to others (communication).  

Extensive research has been conducted in order to determine which encoding 

methods are possible, and which are most accurately perceived. A pioneer in InfoVis, 

Jacques Bertin, defines the eight primary visual variables of 2D graphics: x-position, y-

position, size, value (opacity), texture, color, orientation, and shape [28]. These are 

shown in Figure 6. However, not all of these variables are equal in terms of cognition. In 

1984, experiments by Cleveland and McGill [29] found that position, length (size), and 

slope (orientation) are most accurately perceived; not surprisingly, area is poorly 

perceived. In 1986, Mackinlay, extended this work to non-quantitative data types 

(Ordinal or Categorical) [30] . These encodings have been used to make many well-

known representations, including scatter plots (position), bubble charts (area and 

position) and bar charts (length and position). A list and discussion of different types of 

2D plots is beyond the scope of this work, however many examples can be found in 

Spence’s book [17].  

 
Figure 6 Bertin's visual variables (adapted from [28]) 
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2.2. Multivariate Representations 

Visualizing data with more than three attributes is inherently difficult [31]. The 

challenge is particularly relevant today, as datasets grow, not only in the number of 

observations, but also in the number of recorded attributes. In engineering design, 

higher fidelity implies higher dimensionality. The structural design of a beam, for 

example, includes many factors which may simultaneously affect its stress limits, such 

as shape, thickness, material, length, and loading conditions.  

Visualizations that can concurrently show the relationships between more than 

three attributes are multivariate (a.k.a. hypervariate) to indicate there are more 

dimensions than the medium used for display [17,32]. Although it is possible to simply 

combine some of Bertin’s variables in a scatterplot, to do so would be complex, 

cognitively inefficient, and limited to eight dimensional data. Instead, alternative 

representations have been developed. An extensive list of multivariate visualizations and 

their histories can be found in survey papers by Wong [33] and Grinstein [31]. 

Furthermore Jones, presents many multivariate methods in the context of optimization 

and operations research in [34]. Below is a brief introduction to two popular multivariate 

visualizations and statistical techniques which are used in this thesis. The terms 

dimensions, attributes, and variables are interchangeable here.  

2.2.1. Multivariate Representation Examples 

This section shows two possible representations for a famous multivariate 

dataset, Fisher’s Iris data [35]. The dataset is popular for introducing multivariate 

visualization and statistical techniques in literature. The data summarizes four attributes 

(Petal Width, Petal Length, Sepal Width, and Sepal Length) of three Iris flower species 

(I.Setosa, I.Versicolo, I. Virginica) corresponding to red, green, and blue respectively. 

The scatterplot matrix 

The scatterplot matrix, shown in Figure 7, is a group of scatterplots organized 

such that each row and column corresponds to one attribute. Scatterplot matrices are 

intuitive for identifying correlations, clusters, and groups in two-dimensional subspaces. 
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Although they are simple to understand, there are a couple of clear disadvantages to 

scatterplot matrices. First, the number of scatterplots is proportional to the square of the 

number of attributes. Although, the number of subplots can be halved by only showing 

the plots below or above the diagonal, the number of plots remains prohibitively large 

and limits plotting space. Second, only two-dimensional relationships are shown in each 

square, meaning the audience has to piece together higher order relationships. 

Nonetheless, scatterplot matrices are effective overviews of data [36,37]. It is common to 

use these plots as a starting point to find interesting pairs of variables to explore further. 

 
Figure 7 Scatterplot matrix of Fisher’s iris data 

The parallel coordinates plot 

The parallel coordinates plot (PCP), established by Inselberg in 1985 [38], draws 

each observation as a polyline, which crosses a set of parallel axes. The value for each 

attribute is indicated by where the observation intersects its axis as shown in Figure 8. 

For example, the I.Setosa species, shown in red, has a small sepal length, a generally 

larger sepal width, and small petals. There also appears to be an outlier in the I.Setosa 
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sepal width. Many parallel axes can be placed adjacent to each other without a 

significant increase in computational cost or space. It is also possible to quickly identify 

multivariate relationships and groups directly from a PCP.  

 
Figure 8 Parallel coordinates plot of Fisher's iris data 

The major downsides to parallel coordinates are also clear from Figure 8. First, 

the amount of ink used to show the data is exceptionally large. Tufte argues that graphs 

should look to minimize the amount of ink used, and increase data-density instead [14]. 

The line representation of points also causes them to be frequently drawn over one 

another (overdraw). The crossing lines make it difficult to distinguish between (or to 

follow) particular points. Also, it is difficult to identify exact numeric values by reading the 

graph. These limitations have been the subject of extensive research on PCPs in the 

past three decades [39–43], since Inselberg’s paper.  

An effective example of summarizing data is the Hierarchal Parallel Coordinates 

method [39]. To reduce the amount of overdraw; Fua et al. cluster observations into 

subgroups, using hierarchical clustering, which are represented by polygons with varying 

opacity, instead of lines. By adjusting the clustering parameters, the data can be shown 

in varying levels of detail. For instance, if the criteria for points to form clusters is strict, 

many individual points will be shown (as each will form its own cluster); if the criteria is 

loosened, points will form loose clusters and be summarized as fewer polygons.  
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In Fua’s method, the opacity and size of a polygon is proportional to the variance 

of the points in the cluster, while the mean is drawn as a solid line. For illustration, the 

Iris data is shown using polygons below (clustered by species). Typically the metric for 

clustering is a distance between points, not a class label like species. However, Figure 9 

illustrates how clusters can be represented in PCP, using polygons instead of (or in 

addition to) lines. A simplified implementation of this idea is used in Chapter 3 to show 

regions as polygons bounding the data. This allows users to see individual points, but 

also suggests possible sub-regions. 

 
Figure 9 Parallel coordinates plot of Fisher's iris data as polygons 

2.2.2. Progress in Multivariate Visualization 

Significant progress has been made in multivariate visualization during three 

intense phases of research beginning in the 1970s. Wong presents an excellent review 

of the work until the 1990s [33]. In fact, Wong suggests that as of 1992, research has 

passed the discovery phase and is in the elaboration and assessment phase. In other 

words, new representation techniques are rarely discovered, nor are they necessary. 

Still, visualization research remains very active. There is considerable inventiveness 

required to summarize, present, and interact with data efficiently, especially within 

domain-specific contexts, like design optimization [17]. Interaction is particularly 

important for visualization of data sets with thousands of observations and/or attributes 
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[44]. Research is also needed to rigorously and systematically analyze the effectiveness 

of current methods for performing various tasks. 

2.2.3. Dimensionality Reduction 

Aside from advances in representation, dimensionality reduction techniques are 

also practical to map high dimensional spaces to two or three dimensions. 

Dimensionality reduction is concerned with mapping high dimensional data to preserve 

statistical properties, as opposed to mapping data for display (i.e. visualization). This is 

especially valuable in datasets with many dimensions (>10), or sparse data where most 

attributes have zero values. In these situations, it is redundant (or impossible) to 

visualize all of the variables. An alternative is to define a new space that uses fewer 

variables, but is statistically representative of the high dimensional data. 

 Principal Component Analysis (PCA) [45], a variation of singular value 

decomposition, is a popular reduction method that preserves linear variability, in a 

reduced coordinate system. The first axis of the transformed coordinate system, the 1st 

principal component, is chosen as the direction which captures the maximum amount of 

variance. The remaining components are chosen to maximize the remaining variance, 

with the limitation that they are orthogonal to one another. Although it is a general 

statistics technique, PCA has strong applications in multivariate visualization. It is 

especially useful for identifying groups, or isolating points as the data becomes 

separated along the directions of maximum variance. Figure 10 (left) shows the first two 

PCA components of the Iris dataset. It is clear that the I.Setosa, shown in red, is 

dissimilar to the other Iris species, by its isolation in the 1st PCA direction. The steps of 

PCA are explained in section 3.3.2 and Appendix. 

Factor analysis (FA) is related to PCA, but uses hidden variables (a.k.a. latent 

factors) to describe the observations, as opposed to using linear combinations of the 

observed variables. This means it is applicable even if there is low covariance between 

the observable variables. For example, with the Iris dataset, a variable corresponding to 

“Petal Area” may have been recorded instead of petal width and length. Petal width and 

length may be independent; but, this new area variable summarizes both. Factor 
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analysis aims to find a small set of hidden variables with strong correlations to the 

observable variables. The hidden variables are then linearly combined as a lower 

dimensional representation of the original data. The technical details of FA are beyond 

the scope of this work; an introduction can be found in [46]. Figure 10 (right), shows the 

Iris data plotted for a single latent factor. Again, the I.Setosa (red) species is isolated. 

 
Figure 10 Fisher's iris data [35] with PCA (left) and FA (right) 

Dimensionality reduction is not limited to linear factors. Advanced reduction 

techniques include Kernel PCA [47], locally linear embedding (LLE) [48], 

multidimensional scaling (MDS) [49] and ISOMAP [50]. Maaten et al. provides a 

comparative review of twelve of the most popular methods, including the ones listed 

above in [51].  

Although dimensionality reduction is powerful for preserving high dimensional 

features in low dimensional space, the techniques by themselves suffer from some 

drawbacks. First, most projection methods, such as PCA and FA, rely on Eigen 

decomposition, which may be computationally costly and result in non-unique solutions. 

Second, without knowing what kinds of patterns the data contains (e.g. linear or 

nonlinear), it is difficult to know which method to use. This is especially true if data is 

provided for visualization without additional background information, as in black-box 

optimization.  
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Perhaps, the most fundamental drawback of dimensionality reduction is that the 

data is mapped to a new space, and the context information is lost. For instance, in 

PCA, the components have statistical significance, but are difficult to interpret. Inferring 

the position of a point in a PCA plot, in terms of the original attributes, is extremely 

difficult as the point is now rotated and distorted. It is clear that I.Setosa is separate from 

the other flowers in Figure 10, but it is unclear what specific properties make it distinct. 

This conflicts with the goal of visualization: forming a clear mental model of data that the 

audience can understand and remember.  

Overall, when using reduced spaces it is key to provide interaction that can relate 

a given point back to the original space. For example, with brushing (as explained in 

3.3.1), the reduced space may be used for navigation or region selection, while another 

plot shows the highlighted points in detail. Dimensionality reduction is also powerful to 

improve computational efficiency in modeling, clustering, or optimization which also 

suffer when dimensionality increases (i.e. the curse of dimensionality [52]).  

2.3. Visualization in Support of Engineering Design 

2.3.1. Early Approaches and Applications 

Visualization in support of optimum design is relatively young, with domain 

specific applications published in the 1980s, and the first textbook published in 1996 

[34]. Early application specific approaches fell into the category of Interactive 

Evolutionary Computation (IEC) [53]. In IEC, a human operator acts as the fitness 

(objective) function and evaluates each design manually.  Additional designs are then 

generated based on the operator’s feedback. The process is outlined in Figure 11. IEC is 

a popular approach for situations where the objective of optimization is difficult to 

quantify or model. In fact, Takagi found 251 IEC papers published in various fields 

between the 1990s and 2001 [53]. The disciplines where IEC is used span from graphics 

and music to data mining and robotics. Fundamentally, this is a human-guided 

optimization process; however, it is taxing and time consuming to ask an expert to 

evaluate each potential design.  
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Optimization Method

Generates designs

Human operator

Interprets the 
designs

Human operator

Assigns a 
performance value 

to each design

 
Figure 11 Flowchart of the interactive evolutionary computation (IEC) 

In Sims’ 1991 work [54], a human operator acts as the fitness function for a 3D 

plant and flora graphic generator, by assigning an aesthetic value to designs generated 

in previous iterations. The graphics are rendered and presented to an artist who rates 

them. A genetic algorithm then automatically generates more graphics in the following 

iteration, building on the learned operator’s preferences. This IEC approach contrasts 

traditional optimization, where the objective function is defined a priori and evaluated by 

computer. However, Sims’ approach is very logical, as aesthetic success is subjective 

and difficult to compute.  

In 2000, Mitsubishi Electric Research Laboratory used a semi-automated 

Human-Guided Search (HuGS) to find an optimal delivery truck routing schedule, 

minimizing the number of trucks required to make all deliveries within fixed time windows 

[55,56]. HuGS is an early example of Interactive Optimization, as shown in Figure 12. 

Further examples of interactive optimization, including HuGS, were also discussed in 

[57]. A chapter is also dedicated to interactive optimization in Arora’s textbook [58]. 

Interactive optimization uses mathematical objective functions, but allows the designer to 

adjust the optimization parameters (such as search bounds, constraints or even 

objectives) without starting an entirely new optimization process.  

Optimization Method

Finds an optimal design 
using computed 

performance values

Human operator

Interprets or 
modifies the results

Human operator

Re-executes the 
optimization with an 
adjusted problem 

formulation

 
Figure 12 Flowchart of interactive optimization (adapted from [57]) 
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2.3.2. Visual Design Steering and Graph Morphing 

Although early interactive optimization examples were built for specific 

applications, progress has also been made towards generalization. Winer and Bleobaum 

defined Visual Design Steering (VDS), in 2001, as an umbrella for work which steers 

computationally intensive optimization towards a solution by visualization [59,60]. In 

VDS, the algorithm samples in user-selected areas. The pioneering VDS works dates 

back to Afimiwala and Mayne, in 1979 [61]. Afimiwala used contours of constraints to 

directly identify the feasible region of two variable problems. Users were able to click on 

feasible areas (represented as a scatterplot) to generate samples at the clicked location.   

To accomplish VDS with additional variables, Winer and Bleobaum employ 

Graph Morphing, which plots 2D or 3D contours of a few chosen variables, and leaves 

the remaining variables as interactive sliders. As the sliders are adjusted, the graph is 

“morphed". Essentially, the variables that are not directly plotted influence the shape of 

the graph as hidden variables. VDS was also used in conjunction with variable 

importance ranking to find a suitable initial starting point for optimization (using the 

Automated Design Synthesis method) [22]. It was found that this procedure reduced the 

number of function evaluations required by approximately 50% on average, in 

comparison to starting with a random point. 

2.3.3. Automatic Trade Space Visualization 

In contrast to VDS, Balling’s Design by Shopping Paradigm presents a set of 

designs, from a large sample, allowing users to subsequently formulate their preferences 

by comparing trade-offs [12]. Balling’s approach is especially pertinent to multi-objective 

problems where objectives conflict with one another. Sequentially, this is the inverse 

order of operations to traditional optimization or VDS, which both begin with preferences 

or objectives and generate samples accordingly. Instead, by comparing the trade-offs 

from an initial sample set, users may decide which objectives are truly important or 

necessary, as shown in Figure 13. Penn State’s Applied Research Laboratory Trade 

Space Visualizer (ATSV), developed by Stump et al., adds interaction techniques for 

design by shopping with many variables or objectives [21].  
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Initial Sampling

Generates many (Pareto 
efficient) designs 

Human operator

Interprets the tradeoffs 
in outputs and forms 

preferences

Human operator

Chooses objectives (or 
weights) based on their 

preferences

 
Figure 13 Design by shopping approach to problem formulation 

Originally, ATSV relied on heavy initial sampling for exploration. Users would 

search through thousands of simulated tests in a scatterplot matrix to find a subspace 

with desired performance for further sampling. However, this is inefficient for 

computationally intensive problems, as evaluating a large set of initial designs may be 

prohibitively slow and wasteful. More recently, a link to the simulation or black-box model 

was added to generate candidate designs on-the-fly using various sampling strategies, 

starting from a small initial population [62,63]. For examples, an “attractor” could be 

added in the performance space, which biases sampling towards the objectives near the 

attractor. This effectively combines ATSV’s multivariate visualization capabilities, design 

by shopping, and VDS.  

Data mining techniques were also prototyped by the same group recently, in 

2012, to help support analysis of larger engineering design data sets [64]. The LIVE tool 

integrates statistical clustering and classification, allowing users to select interesting 

areas in the engineering data. Users can then choose to create additional samples in the 

selected regions. This is conceptually similar to the work presented in this thesis; 

however the region selection, data mining, and visualization methods differ.  

2.3.4. Physical Programming and Physical Programming Based 
Visualization 

Messac’s Physical Programming approach to multidisciplinary design 

optimization (MDO) works towards flexible problem formulation [10,65]. In MDO, there 

are often many competing objectives to be simultaneously minimized. A common 

solution is to aggregate objectives into a single function using weights, or to prioritize 

and optimize the system sequentially. In physical programming, instead of assigning 

weights or priorities, a designer specifies range thresholds for each objective: 
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unacceptable, undesirable, tolerable, desirable or highly desirable. The method then 

constructs a class function, based on the problem type, which maps the actual objective 

function value to these qualitative ranges. This changes the dynamic of convergence for 

multi-objective optimization. For example, moving from unacceptable to tolerable in one 

objective is more significant than moving from desirable to highly desirable in another. 

Similarly, moving within the highly desirable range is of little significance. Thus, the 

preferences are adjusted towards convergence in the desirable ranges for all objectives 

and away from the unacceptable for any objective.  

Physical programming was extended in 2000 to help visualize optimization 

progression. The method is named Physical Programing Based Visualization (PPV) [66]. 

In PPV, values of design metrics are plotted iteratively as lines, bar graphs and radial 

charts. A PPV line chart is shown in Figure 14. PPV differs from ATSV or LIVE in that 

the visualization is focused on the movement of the optimum solution towards the highly 

desirable range, as opposed to trying to visualize the design space. 

 
Figure 14 Physical programming history visualization (adapted from [66]) 

2.3.5. Pareto Frontier Visualization Methods 

Many visualization techniques have been published to present Pareto optimal 

multi-objective results. Pareto optimal designs are those for which no other design is 

better for all objectives. In other words, to improve any objective value of a Pareto 

optimal design, a compromise must be made in the remaining objectives. Points in the 
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Pareto set are shown in black in Figure 15. Representing the Pareto set (a.k.a. the 

Pareto Frontier) requires as many dimensions as there are objectives. Therefore, for 

problems with many objectives, multivariate visualization is required to show the 

objective (performance) space. 

 
Figure 15 Pareto set of a 2D performance space (shown in black) 

Cloud visualization, by Eddy and Lewis [67] in 2002, splits optimization data into 

two linked (3D) scatterplots: the design space (where variables are used as the axes) 

and the performance space (where objectives are used as the axes). Users can highlight 

points in either graph and see the result in the other. Additionally, users can choose a 

location in the performance space, and the corresponding design point(s) will be 

highlighted or generated using a genetic algorithm (if the point is nonexistent but 

possible), as shown in Figure 16. A similar approach to cloud visualization for 

engineering design was also introduced, by Spence, for analog circuit design with linked 

histograms [68,69]. 
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Figure 16 Cloud visualization (with 2D clouds) – adapted from [67] 

2.3.6. Parallel Coordinates in Support of Interactive Optimization 

Parallel coordinates was isolated as a helpful method for interactive optimization 

in Froschauer’s 2009 thesis work [57]. It was also mentioned in Jones’ textbook [34]. 

Froschauer added optimization techniques to an existing data analysis software (Bulk 

Analyzer), with a focus on using parallel coordinates to assist with optimization. 

Froschauer provides an excellent overview of visualization (especially parallel 

coordinates), interaction, optimization, and their integration. A heavy focus is visualizing 

multi-objective tradeoffs. For example, a method is presented to construct Pareto sets 

with different levels of dominance, and highlight them in the Bulk Analyzer. Another 

method is presented to highlight points based on adjustable “assessment ranges” which 

classify points as desirable, satisfactory, or undesirable (as in Messac’s Physical 

Programming method). Finally, as in this thesis, there is a method to estimate data that 

is not present in the set of samples.  

Although Froschauer’s work is conceptually very similar to the work done here, 

there are some key differences. Most notably, Froschauer’s optimization process is on a 

given dataset, which was evaluated and simulated a priori. In other words, data is not 

generated on-the-fly from a cost function or simulation. Instead, the optimum is found 

according to a defined multi-objective problem, using past data that has been loaded into 

the bulk-analyzer. In contrast, in this thesis, visualization is used to find areas for further 
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sampling by an integrated optimization method. Furthermore, this thesis presents 

methods to track optimization progress as new samples are added; navigation using 2D 

projections; integrated clustering and dimensionality reduction to isolate designs with 

similar performance; and a method to identify relationships among constraints using data 

mining. 

2.4. Summary 

This chapter introduced InfoVis, which is the representation of abstract data that 

is not tied to a spatial model. Two techniques to display multivariate data were 

introduced: the scatterplot matrix and parallel coordinates. Aside from visualization, 

dimensionality reduction is discussed to reduce the number of independent variables 

while preserving statistical properties. Next, a review of related work is given. Topics 

covered include interactive evolutionary computing, visual design steering, design by 

shopping, physical programming based visualization, and cloud visualization. In the 

following methodology chapter, theoretical details of optimization and visualization are 

elaborated and defined mathematically. 
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Chapter 3. Methodology 

This chapter presents methodologies related to interactive optimization in 

mathematical detail. First, an introduction is given to numerical optimization, followed by 

an introduction to spaces and regions. Next, clustering methods are introduced to split 

large regions into smaller ones. Clustering is followed by interactive techniques and two-

dimensional selection (including PCA). The goal of this chapter is to provide theoretical 

background for the optimization visualization framework, which follows in Chapter 5. 

3.1. Numerical Optimization 

Numerical optimization is an algorithmic process that searches through potential 

designs in order to find the one(s) which provides the lowest cost or highest 

performance. Generally, there are three components to an optimum design problem. 

First, there are design variables. These are the variables which can be tuned to improve 

performance. Second, there are objectives. Objectives are functions which return a 

measure of performance (e.g. strength-to-weight ratio, system cost etc.). Third, there are 

constraints. Constraints are limitations placed on the system. These may represent 

physical, space, or cost limitations which render the system infeasible. Formally, 

optimization problems are posed in standard form as follows in Eq. (1): 

 min𝒇 (𝒙)
𝑠. 𝑡 {𝒈(𝒙) ≤ 0,𝒉(𝒙) = 0} 

(1) 

 In the equation above 𝒙 ∈ 𝑿 ⊆ ℝ𝑛 is a set of values for each of 𝑛 number of 

design variables; 𝒇(𝒙) is a set of objective functions which models system costs; 𝒈(𝒙) is 

a set of inequality constraints; and 𝒉(𝒙) is a set of equality constraints, which model 

limitations. Note, if the goal is maximization (e.g. maximize performance), 𝒇(𝒙) can be 

easily negated to make the problem a minimization problem (min−𝒇 (𝒙)). 
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Equality constraints are cumbersome to deal with. They require the constraint 

function to have an exact value, which is probabilistically impossible by random sampling 

for continuous functions. Strategies to deal with equalities include converting equalities 

to inequalities by adding slack variables; penalizing the performance of a design based 

on its non-zero constraint value; or simply not supporting equality constraints. In this 

thesis, equality constraints are not supported. 

In single objective optimization, the focus of this work, each design 𝒙  returns a 

scalar value 𝑓. However, this doesn’t necessarily imply that only one output of a 

simulation must be considered. It is common to aggregate multiple objectives into an 

overall performance measure by summing each output with a given set of weights. In 

Eq. (2), 𝑙 is the number of objectives to be aggregated, and 𝑤𝑗 ∈ 𝒘 is a weight that 

scales the effect of 𝑓𝑗(𝒙) (an individual objective) on the aggregated objective. 

Furthermore, although each design corresponds to a single value of performance, there 

may be multiple designs that yield the same performance.  

 
𝑓(𝒙) = �𝑤𝑗 ∗ 𝑓𝑗

𝑙

𝑗=1

(𝒙) 
(2) 

It’s clear from the equations above that formulating a problem for optimization 

requires assumptions and domain knowledge. For example, an equation or model is 

required to map each design point 𝒙 to 𝑓. Additional equations are also required for the 

constraints 𝒈(𝒙). Finally, 𝒙 is bounded to give the algorithm a finite search domain. Due 

to these requirements, the problem formulation stage (defining the equations in (1) or 

choosing weights in (2)), is error-prone. In fact, Arora estimates that problem formulation 

accounts for 50% of the effort required to optimize a problem [58]. 

3.1.1. Optimization Space Terminology and Notation 

To clarify some of the terms for discussing optimization, three spaces may be 

defined, as in Figure 17. These terms are common in optimization literature [67].  
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The design space 𝒟 is the domain of all possible designs that may be generated 

throughout the entire optimization process. The tested designs are contained in the 

sample matrix 𝑿, with 𝑚 number of rows corresponding to individual designs (a.k.a. 

samples or points), and 𝑛 number of columns corresponding to design variables (a.k.a. 

attributes or dimensions). Individual designs are denoted by 𝒙 in general, or 𝒙𝑖 when 

discussing a specific design. The design space is bounded by a vector of lower bounds 

(𝑫𝐿) and a vector of upper bounds (𝑫𝑈): 𝒙 ∈ [𝑫𝐿,𝑫𝑈]. These bounds are given by the 

user in the problem definition as a wide scoping region that may be worth exploring.  

The search space 𝒮 ⊆ 𝒟 covers the boxed area that the optimization algorithm 

is currently searching. Variables are bounded by a vector of lower bounds (𝑺𝐿) and a 

vector of upper bounds (𝑺𝑈). In the search space, new points are sampled by an 

optimization method or by random sampling. The search space is intended to be flexible 

throughout the optimization process, as users chose to explore new regions. 

The performance space ℱ covers the range of function values which are 

generated from 𝑓(𝒙). The bounds of the performance space are generally unknown 

(especially prior to optimization). Indeed, it is the goal of optimization to find the lower 

bound of ℱ (and corresponding design), representing minimum cost. A vector 𝒇 ⊆ ℝ, 

contains all of the scalar function values 𝑓𝑖, tested for each design  𝒙𝑖.  

 
Figure 17 Design Space, Search Space and Performance Space 
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3.2. Regions and Clustering 

In order to select areas for further investigation, regions may be defined in either 

the performance or design spaces. Selecting a region enables users to visually highlight 

points with similar properties. Regions may also grow or shrink as the optimization 

progresses, which gives a visual indication of convergence.  

To illustrate the three types of regions in this work, a two-variable benchmark 

optimization problem, the six-hump camel back problem (SC) is introduced. It’s named 

the six-hump camel problem because there are six local minima in total, including two 

global minima. This problem will be used as an example throughout this chapter and is 

defined in Eq. (3), with bounds 𝑫𝐿 = [−2,−2] and 𝑫𝑈 = [2 ,2]. A contour plot of the SC 

problem is given in Figure 18. 

 min𝑓 (𝒙) = 4 ∗ (𝑥1)2 −
21
10

∗ (𝑥1)4 +
1
3
∗ (𝑥1)6 + (𝑥1) ∗ (𝑥2) − 4 ∗ (𝑥2)2 + 4 ∗ (𝑥2)4 (3) 

 
Figure 18 Contour plot of Six-Hump camel problem 
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3.2.1. Percentile Regions 

The first type of region that may be defined is a percentile region (𝑲). Percentile 

regions group points by relative performance. For example, a percentile region may 

correspond to the query: “Show me the top 15% of designs”. Points with function values 

between percentiles 𝑘𝑙 and 𝑘𝑢 are selected. Formally, this can be written as Eq. (4): 

 𝑲 = {𝒙 ∈ 𝐗 | 𝑘𝑙 ≤ 𝑘(𝑓(𝒙)) ≤ 𝑘𝑢} (4) 

Where 𝑘(𝑓(𝒙)) is the relative ranking of each function value (as expressed by a 

percentile). For illustration, the top 15% of 500 random points, tested for the SC 

problem, are shown in black in Figure 20. The same region is also shown in parallel 

coordinates in Figure 21. The cyan area shows the boxed space encompassing these 

points. In Figure 20, the bounding function values are also shown (0.215 to -1.02). 

 
Figure 19 Percentile Region - Top 15% of the SC Problem (Scatterplot) 

Percentile regions are important for two reasons. First, the limits of performance 

are generally unknown prior to optimization. Second, the concept of a “good 

performance” may also change as new samples are tested. Therefore, by using relative 

performance, a meaningful region can be defined without specifying numeric values. 
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This allows user to track top performing points throughout the optimization process, and 

observe as the algorithm converges.  

 
Figure 20 Percentile Region - Top 15% of the SC Problem (PCP) 

3.2.2. Performance Regions 

If a designer knows which range of performance they wish to explore (e.g. 

designs that outperform a threshold), they may limit the performance space to exact 

numeric values. A range which restricts designs by absolute performance is simply 

called a performance region (𝑷). A performance region is formalized by Eq. (5):  

 𝑷 = {𝒙 ∈ 𝐗  | 𝑓𝑙 ≤ 𝑓(𝒙) ≤ 𝑓𝑢} (5) 

Where 𝑓𝑙 and 𝑓𝑢 are limits given to the performance space. For instance, the 

performance region defined by −1.02 ≤ 𝑓(𝒙) ≤ −0.5, is shown in Figure 21. Again, black 

points are in the region, while the remaining points are not. The limits of design variables 

corresponding to the points are shown in orange. 
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Figure 21 Performance Region - Objective between -1.02 and -0.5 of SC Problem  

3.2.3. Design Regions 

Design regions (𝑫) are defined in the design space, regardless of performance. 

For example, a design region may be as follows: “Show me all of the designs where 

−1 ≤  𝑋1 ≤ 1 and −1 ≤  𝑋2 ≤ 1”. Design regions are formalized in Eq. (6):  

 𝑫 = {𝒙 ∈ 𝐗 |𝒙𝑙 ≤  𝒙 ≤ 𝒙𝑢} (6) 

In Eq. (6), 𝒙𝑙 is a vector of lower limits for each variable, and 𝒙𝑢 is a vector of 

upper limits for each variable. The space defined by −1 ≤  𝑋1 ≤ 1 and −1 ≤  𝑋2 ≤ 1 is 

shown in Figure 22 and Figure 23. Notice that all of the points in the purple area are 

highlighted in the X2 vs X1 graph, as the limitation is placed on 𝒙 instead of 𝑓. 
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Figure 22 Design Region - x1: [-1, 1] and x2: [-1, 1] (Scatterplot) 

 
Figure 23 Design Region - x1: [-1, 1] and x2: [-1, 1] (PCP) 

Design regions are simply bounds on the variable space. Therefore, they may be 

used as the search space bounds for further optimization. Additionally, localized models 

may be fitted and tested within these bounds.  



 

35 

3.2.4. Clustering 

Interactive methods to define and adjust regions are discussed in Chapter 5. As 

an alternative, clustering automatically splits data to find distinct groups of similar points. 

In engineering design, clusters within a percentile or performance region means there 

are distinct design alternatives that yield similar performance. 

 Consider the percentile region shown in Figure 19. There are four areas which 

make up the top 15 percentile of points as shown in Figure 24. Each group represents a 

distinct set of designs that are in the top 15 percentile.  

 
Figure 24 A possible clustering within the top 15% of points of the SC problem 

Of course, clustering is subjective. For example, one could easily argue that the 

middle region in Figure 24 is a single cluster. Therefore, clustering should be made 

flexible using visual feedback. As a very brief introduction to cluster analysis, 

background is given for two popular methods: k-means and single-link clustering. 

K-Means clustering 

K-means clustering is a center-based clustering method that splits points into k 

number of groups, where k is typically provided by a user. The term center-based 

clustering means that each point is related to the cluster’s center (a centroid). The 
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process is summarized in Figure 25 and illustrated in Figure 26, where the colors 

indicate the clusters, and triangles indicate centroids. The initial centroids were chosen 

at random for this example. In practice, centroids may be chosen to be furthest from one 

another. 

After initialization, each point is assigned to the nearest centroid. Nearness, or 

similarity, can be defined in many ways. In fact, there are dozens of definitions of 

similarity available (e.g. L-norms, Jaccard, Cosine, etc.) [70]. In this work, the squared 

Euclidean distance is employed. Data is also standardized in each dimension (between 

[0,1]) to ensure each design variable has equal weight in the distance computation. 

Squared Euclidean distance (a.k.a. 𝐿22) is one of the most intuitive notions of distance for 

purely quantitative data. The 𝐿22  distance is given by Eq. (7): 

 
𝑑�𝒙𝑖 ,𝒙𝑐� = �(𝒙𝑗𝑖 − 𝒙𝑗𝑐

𝑛

𝑗=1

)2  
(7) 

In words, Eq. (7) sums the squared differences between the point 𝒙𝑖 and 

centroid 𝒙𝑐, in each of n dimensions. Once all points are assigned to their nearest 

centroid, the centroids are redefined as the means of their assigned points. Next, the 

points are re-assigned to the nearest of the new centroids. This iterative process 

continues until all centroids no longer change. Note that the choice of initial centroids will 

affect the result of the k-means clustering. Often, k-means is repeated with different 

centroids choices, and the result which minimizes the overall distance from points to 

their center is selected. 

Step 1
Initialize centroids

Choose k number of 
centroids within the 

design space.

Step 2
Assign points 

Using a similarity 
measure, assign 

each design point to  
it’s nearest centroid.

Step 3
Adjust Centroids

Replace each 
centroid with the 

mean of it’s 
assigned points.

Step 4
Report Clusters 

Report the points 
assigned to each 

centroid (clusters).

Did any 
centroid 
change?

b

Y  
Figure 25 Flowchart of k-means clustering steps 
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Figure 26 Visual example of k-means clustering steps 

Agglomerative (single-link) clustering 

Agglomerative clustering is a hierarchical approach that combines points from 

the ground up to build clusters. This approach is fundamentally different from center-

based methods. The idea is to build small clusters, and progressively combine the 

nearest ones, until the distance between clusters is beyond a cut-off or all clusters have 

been merged. Therefore, the parameters to agglomerative clustering are a cut-off 

distance (𝜖) and a method to determine nearness between clusters (e.g. single-link).  

There are many ways to define nearness between two clusters. One way, 

following the thinking of k-means, is to consider the distance between the means of each 

cluster. This is called the centroid proximity method. The single-link variation defines 

proximity as the distance between the two closest points from each cluster, as shown in 

Figure 27. The mathematical definition of single-link proximity 𝑝 is given in Eq. (8).  

  𝑝(𝒄𝒂, 𝒄𝒃) = min [ 𝑑 �𝒄𝑎
𝑖𝑎 , 𝒄𝑏

𝑖𝑏�  ] 

1 ≤ 𝑖𝑎 ≤ ma  1 ≤ 𝑖𝑏 ≤ mb 

(8) 

Where 𝒄𝒂 and 𝒄𝒃 are two non-empty clusters, containing ma and mb number of 

points (respectively), and d is a distance function (e.g. 𝐿22). Individual points in the 

clusters are denoted by 𝒄𝑎
𝑖𝑎 and 𝒄𝑏

𝑖𝑏 respectively.  
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Figure 27 Single-link proximity versus centroid proximity (adapted from [70]) 

As an example, consider the data which was clustered using k-means above. 

This data is clustered via single-link clustering in Figure 28. Initially, clusters consist of 

single points. Therefore, their proximity is simply the distance between one another. In 

the first step, the two nearest points are merged to form a two-point cluster. Step 2 

merges the next closest clusters. This continues until all clusters are merged, or the 

minimum cluster proximity exceeds a cut-off distance. 

 
Figure 28 Single-link clustering example 

Notice that the minimum proximity between clusters in each step (as shown by a 

line) increases monotonically for single-link clustering. Thus, the cut-off distance 𝜖 
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specifies a sufficient distance between groups for them to be considered truly distinct. In 

practice, however, it is difficult to specify a meaningful cut-off distance .  

Although, cluster quality can be evaluated using quantitative metrics (e.g. 

average distance of points to cluster center) there is no theoretical best value for cut-off. 

Choosing 𝜖 depends on the user’s preferences (e.g. what is an acceptable distance for 

the clusters to be considered unique), the application, and the data. Therefore, users 

may adjust 𝜖 using a slider in the visualization framework, to automatically re-cluster in a 

flexible manner. Clustering via k-means or single-link was found to be sufficiently quick 

(~0.2 seconds) for datasets of 10,000 points on a typical PC using MATLAB. However, 

redrawing the graphs increases the overall response time to between 2-3 seconds for 

the same datasets. This delay is non-ideal for smooth interaction (<1 second response 

time) [71]. Nonetheless, clustering can be recomputed relatively quickly, and with 

visualization, k or 𝜖 can be selected on-the-fly. 

SC Clustering Example 

 K-means and single-link were applied to the top 15% region of the SC problem 

as an example. The results are shown in Figure 29 for k=4 with k-means, and for 

𝜖 = 0.07 with single-link. Notice, the clustering from k-means does not match the 

expected “natural” clustering (in Figure 24). This is due to the random selection of the 

initial centroids. In this case, single-link’s result is more in line with the proposed natural 

clustering, but required careful tuning to 𝜖 = 0.07.Once split into clusters, the top 

performing region may further split to design regions for further exploration as distinct 

areas as explained in Chapter 5. 



 

40 

 
Figure 29 SC Top performing region (top 15%) via k-means clustering (k=4) 

 
Figure 30 SC Top performing region split via single-link clustering (𝝐 =0.07) 
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3.3. Interaction and Navigation 

A critical component of visual data analysis is interaction. Interaction allows users 

to browse through sets of data, seek for specific values, or simply see what data is 

available. 

Each time the user performs an interaction, they follow a cycle of actions as 

modeled in Figure 31. This model, Norman’s action cycle, is common in human-

computer interaction literature [17,72]. The process begins with a specific goal, such as 

determining if there are distinct design groups with high performance for an optimization 

problem. Next, the user decides on a specific intent. For the previous goal, this may 

include separating regions by cluster analysis in the top 15% of points. The user then 

plans actions. For example, to perform cluster analysis, a percentile region may be 

defined and then further split by single-link clustering. The visualization is refreshed once 

these actions are carried out. At this point, the user perceives, interprets, and evaluates 

the resulting visualization. The result often leads to a new goal (e.g. adding samples to 

the distinct regions) which closes the interaction loop.  

Goal

Plan actions.

Execute actions.

A change is made in the data or visualization.

Evaluate result.Specify intent.

Perceive result.

Interpret result.

E
valutationE

xe
cu

tio
n

 
Figure 31 Norman's action cycle of interaction (modified from [17]) 

The value of interaction is more apparent on datasets with more than three 

attributes. Therefore, a four variable pressure vessel design (PV) optimization problem is 

used as an example. This problem is from Globally Optimal Design by Wilde [73], and 

has been used as a benchmark problem in engineering optimization literature [74,75]. 

The problem has four variables: tank radius (𝑅), tank length (𝐿), shell thickness (𝑇𝑠) and 
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head thickness (𝑇ℎ). The objective is to minimize the aggregated system cost ($), 

including materials and manufacturing. There are three constraints in the original 

problem, based on ASME pressure vessel standards, and one objective cost function. 

Although the problem is often posed with discrete thickness values, it is defined here for 

continuous values as in reference [74] with Eqs. (9) to (12).  

 min𝑓 (𝒙) = 0.06224Ts𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠𝐿 + 19.84𝑇𝑠2𝑅 (9) 

 𝑔1 = 0.0193𝑅 − 𝑇𝑠 ≤ 0 (10) 

   𝑔2 = 0.00954𝑅 − 𝑇ℎ ≤ 0 (11) 

 𝑔3 = 1296000− 𝜋𝑅2𝐿 − �
4
3
�𝜋𝑅3 ≤ 0 (12) 

The variable bounds are as follows (each variable is in inches): 

𝑅 ∈ [25,150],𝑇𝑠 ∈ [1,1.375],𝐿 ∈ [25,240],𝑇ℎ ∈ [0.625,1] 

A diagram of the vessel design parameters is shown in Figure 32. 

 

Figure 32 Diagram of the PV optimization problem variables 

3.3.1. Navigation, Brushing and Overviews 

Navigation 

Navigation is the term for moving from one information space to another. This 

includes choosing which data is shown or hidden, and in which level of detail. In 

traditional design optimization the specific goal is to navigate through the design space 
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to find the optimum. In this case, navigation is automatically executed by an optimization 

algorithm which biases the generation of new designs towards minimization of the 

objective function. This kind of target specific navigation is called pursuit [17], and can 

be partially or fully automated. A contrasting type of navigation is exploration, where the 

user manually navigates through the design space to improve their understanding of the 

dataset. 

Brushing 

Brushing, related to navigation, is the selection of data in one view, which 

becomes nearly instantly highlighted in other views. For example, consider Figure 33 

and Figure 34 which show the top 50 designs out of 500 for the PV problem (all other 

designs are suppressed). In Figure 33 the shell thickness (𝑇𝑠)  is plotted against the 

head thickness (𝑇ℎ). Although the 2D projection does not show all of the attributes of the 

data, it can be used to brush points in 𝑇𝑠 vs. 𝑇ℎ (thickness variables).  

 
Figure 33  2D projection of PV problem (top 50 designs shown) 
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Figure 34  Parallel coordinates plot of PV problem (top 50 designs shown) 

As an example, a selection is made in Figure 35 for thin low-cost vessels. The 

corresponding points are immediately shown in an adjacent plot (Figure 36). By brushing 

other 2D projections, the designer may select other attributes as well. Furthermore, 

picking points directly in 2D projections is less error-prone than in parallel coordinates 

where there is overdraw. Brushing is a very popular interaction technique, and was also 

employed by related optimization visualization work [21,57]. 

 
Figure 35 2D projection of PV problem (thin designs selected) 
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Figure 36 Parallel coordinates plot of PV problem (thin designs selected) 

Overview 

In order to know which 2D projections may be interesting, an overview of all of 

the 2D projections may be plotted. The value of an overview is not to identify specific 

numeric values as with the parallel coordinates, or to make selections, but to identify 

which projections are worth navigating to. Spence refers to this as a “see-and-go” 

approach as opposed to “go-and-see” [17]. Scatterplot matrices as overview was also 

discussed in detail by Elmqvist in [36] and employed in Stump et al.’s ATSV  [21]. 

For example, in Figure 37, it is clear that the feasible region of R is restricted to a 

small range, due to defined constraints. There is also a negative correlation between R 

and L for the top performing designs, as shown in the L vs R subplot.  
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Figure 37 2D Projection overview of top 50 PV Designs 

3.3.2. 2D Projection by Principal Components Analysis  

A special 2D projection that arranges designs based on their overall variance is 

achieved using PCA. As mentioned in 2.2.3, PCA finds the orthogonal directions which 

maximize overall variance in the data. Therefore, by performing PCA on a selected 

region, the data will be separated to maximize the overall difference in designs. In other 

words, the corners of a PCA graph represent polarizing designs.  

In Figure 39, the designs in the bottom-left corner are selected. These designs 

are long and slender with low shell thickness. In the other corner of the plot (Figure 40), 

the vessel is shorter and wider. This shows opposing possible pressure vessel designs 

(within the low cost percentile region). 
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Figure 38 Two principal components of PV Problem (top 50 designs shown) 

 

 

 

Figure 39 Designs selected in bottom-left of PCA plot (top 50 designs shown) 
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Figure 40 Designs selected in top-right of PCA plot (top 50 designs shown) 

Procedure of PCA on optimization design data  

The mathematical details of PCA can be found in Appendix. The first step is to 

standardize the data to remove the effect of varying units and ranges for different 

variables. The data is then centered to simplify computation of the covariance matrix. 

Next, the covariance matrix S is computed for the preprocessed data, which represents 

how each variable varies with respect to one another. The third step is to compute the 

orthogonal directions which maximize variance, by finding the eigenvectors 𝑼 
corresponding to the largest eigenvalues of S. The final step is to simply project the data 

onto the two largest eigenvectors of S. The steps are shown graphically in Figure 41 for 

a simple two-dimensional example. 
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Figure 41 Graphical steps of Principal Component Analysis (Math in Appendix) 

3.3.3. Data Table and Selection 

An alternative to visual brushing is to simply use a sortable data table. If data is 

selected in the table, it may be brushed in the exact same manner as in the 2D 

projection (i.e. the points are highlighted in the 2D plots and plotted as a red region in 

the PCP graph as in Figure 36). It is also possible to highlight rows in the data table, as 

data is brushed in a graph. A sample data table is provided below for the PV problem, 

sorted by cost.  
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Figure 42 Data table representation of PV Problem 

3.4. Summary 

This chapter began by describing the mathematical components of an 

optimization problem written in standard form. It was explained that multiple outputs of a 

simulation may be aggregated with weights to form a single objective problem. Next, the 

design, search, and performance spaces were defined as terms to distinguish between 

variable choices and their associated performance. Regions were also defined as three 

types: percentile region, performance region, or design region. These regions may be 

further split using clustering (e.g. k-means or single link) or by visual interaction (e.g. 

projection and brushing). Once a region is defined, it may be modeled locally using a 

metamodel for further investigation without additional sample data. Metamodeling is 

described in the following chapter. 
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Chapter 4. Regional Metamodeling  

Metamodeling (a.k.a. surrogate modeling) is the process of modeling a 

computationally intensive model with an approximation of reduced computational cost. 

Simulations that require hours to compute may be replaced with simple approximations 

(metamodels) to be evaluated in milliseconds in exchange for fidelity. Metamodels range 

from simple Polynomial Regressions (PR) and Radial Basis Functions (RBF) to more 

complex High-Dimensional Model Representations (HDMR) [76]. Different families of 

models have been compared for their use in engineering design [77,78]. Consider Figure 

43, which shows a 2𝑛𝑛 order polynomial regression model of Eq. (13) over a fixed 

interval. This chapter explains how local metamodeling is used in optimization and how it 

can approximate a selected design region. 

 𝑓(𝒙) = 𝑥3 + 0.5 ∗ 𝑥;  −0.5 ≤ 𝑥 ≤ 1  (13) 

 
Figure 43 Single Variable Metamodel (2nd order PR approximating a 3rd order) 
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4.1. Metamodeling in optimization algorithms 

As mentioned, in iterative optimization, an equation or simulation is evaluated by 

the optimization algorithm iteratively. This is considered “expensive” as the evaluation 

may take time. 

In metamodel-based design optimization (MBDO), expensive samples train a 

metamodel, which is eventually evaluated in place of the expensive function. A measure 

of fitness, such as the root-mean-squared-error (RMSE), tests the model accuracy. 

Once the model is deemed accurate, often by a defined threshold, it can be optimized in 

place of the simulation. In fact, the model may only require accuracy in a sub-region of 

the design space, where points generate low cost values. Afterwards, a local 

optimization can be performed on the locally accurate metamodel. 

In this thesis, a metamodel based algorithm called the Trust-Region Mode-

Pursuing Sampling (TR-MPS) method, developed by Cheng and Wang [79], is used to 

generate new design points. The details of the method are beyond the scope of this 

work. The general process of MPS [74], from which TR-MPS is based, is shown in 

Figure 44. After initial sampling, a (linear piecewise/RBF) model is fit to the data. At this 

point, a discriminative sampling strategy is applied to generate a distribution of samples 

near the minimum. These points train a local quadratic metamodel. If the model is 

accurate (using the R-Squared metric), local optimization is performed. If not, additional 

samples are added and the model is updated. After the local optimization step, the 

minimum is verified with the expensive simulation, if the predicted minimum and the 

objective function value agree (as specified by a parameter), it is returned as an 

approximate global minimum. If the difference between the predicted minimum and 

simulation minimum differ significantly, additional samples are added and the loop 

continues. 
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Figure 44 MPS Procedure (Figure provided by Cheng and Wang) 

4.2. Metamodeling of a selected region 

Aside from direct use in optimization (e.g. MPS), metamodeling can provide 

details about a user selected sub-region of the design space without additional 

expensive sampling. Eq. (14) is, one of the models available in the framework: a 

polynomial regression (PR), capped at second order for simplicity. This model is 

common in engineering optimization, especially in response surface methodologies 

(RSM). The model contains one constant term, 𝑛 linear terms, 𝑛 quadratic terms, and 

�𝑛2� pairwise interaction terms. The set of models (which vary with 𝜷) is the set of 

hypotheses 𝑯. A particular hypothesis is denoted by ℎ.  

𝑓(𝑥) ≈ ℎ(𝑥) = 𝛽𝑜 + �𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+�βii𝑥𝑖2 + ��βij𝑥𝑖𝑥𝑗
𝑖<𝑗

𝑛

𝑖=1

 
(14) 
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The goal of model fitting is to find ℎ� ∈ 𝑯 which best approximates 𝑓. In particular, 

the goal is to reduce the sum of squared errors (SSE) between ℎ(𝑥) and 𝑓(𝑥). It can be 

shown that the 𝜷 that minimizes SSE (denoted by 𝜷�) is given by Eq. (15).  

𝜷� = (𝑿𝑇𝑿)−1𝑿𝒇 (15) 

Note that 𝑿 and 𝒇 consist of the points in a selected design region not the global 

design space. If metamodeling over a global space, a 2nd order polynomial cannot be 

trusted to approximate 𝑓(𝒙) accurately. Determining when a region is sufficiently small 

for local modeling is the focus of trust-region research and is beyond the scope of this 

work. To compensate, model validation is discussed in the following section, which 

estimates the effectiveness of the local metamodel posteriori. A global method (e.g., 

HDMR) may also be used as an alternative. 

4.2.1. Model validation using cross-validation  

The validation of metamodels, beyond two dimensions is difficult to visualize [80]. 

A method to do so, was introduced by the author in [37]. Meanwhile an alternative to 

visualization is to use statistics to summarize the model’s performance. Specifically 

cross-validation (CV) tests the suitability of a set of models (𝑯) for a set of data. CV uses 

a subset of the (regional) sample data to validate the model, instead of generating new 

random points. Ideally, new test data would be generated to estimate the model’s 

performance, but this requires additional expensive sampling. Therefore, CV can be 

used as a quick indication of the success of metamodeling. 

For clarification, training data 𝑿𝑻 builds the model, validation data 𝑿𝒗  = {𝑿}\ {𝑿𝑻} 

verifies the model and additional test data 𝑿𝑨  evaluates the model’s performance on 

completely new points. Error at the training points is called in-sample error, while out-of-

sample error refers to the error at the test points. The purpose of cross-validation is to 

estimate the out-of-sample error without actually testing additional simulations, by 

reserving some of the given data for validation. Figure 45 shows the partitioning of data 

for cross validation.  
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Figure 45 Partitioning of data for cross-validation 

In the case of k-fold cross-validation, 𝑚/𝑘 number of points are chosen for 

validation while (𝑚 −𝑚/𝑘) points are used for training (𝑚 is the total number of regional 

samples).  For example, if the region consists of 30 points, 3 are placed in 𝑿𝒗 while the 

remaining 27 are placed in 𝑿𝑻. A model (ℎ�1) is built from 𝑿𝑻; the error is recorded, and 

the model is discarded. When computing the error, 𝑿𝒗 is essentially out-of-sample as it 

was not used to build the model. Next, another 3 sample points, which haven’t been in 

𝑿𝒗 previously, are selected to form a new 𝑿𝒗. The remaining 27 points build another 

model (ℎ�2), which is tested with 𝑿𝒗 and discarded. This process loops until all points 

have been used for validation (creating a total of 𝑘 models). Afterwards, all of the points 

are placed into 𝑿𝑻 to train a final model. The mean validation error for all of the models is 

reported. This is an estimate of the out-of-sample error of 𝑯 as in Eq. (16).   

𝐸𝐶𝐶(𝑯) =
1
𝑘
�𝜇[ 𝒆( ℎ�𝑖(𝑿𝒗),𝑓(𝑿𝑣) ) ]
𝑘

𝑖=1

 
(16) 

In Eq. (16) 𝜇 is the mean operator, and 𝒆 is the error of the validation set 𝑿𝒗. In 

this work, error is defined as the root-mean-squared error (RMSE) as in Eq. (17). The 

RMSE of cross-validation (𝑿𝒆 = 𝑿𝒗) is the RMSECV, while the RMSE on additional test 

points (𝑿𝒆 = 𝑿𝑨) is simply RMSE. Additionally, the NRMSE or NRMSECV are the RMSE 

and RMSECV divided by the local function value range as in Eq. (18). If cross-validation 

is successful, RMSECV will be similar to RMSE (which can be confirmed using 

additional samples if desired). 

𝑒( ℎ�𝑖(𝑿𝒆),𝑓(𝑿𝑒) ) = 𝑅𝑅𝑛𝐸 = �𝜇�[𝑓(𝑿𝒆)− ℎ�𝑖(𝑿𝒆)]2� 
(17) 
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𝑁𝑅𝑅𝑛𝐸 =
𝑅𝑅𝑛𝐸

max [𝑓(𝑿)] − min [𝑓(𝑿)]
 (18) 

Split the data into a 
training set (XT) and a 

validation set (Xv).

Build a metamodel h with 
the training set.

Evaluate and record the 
error of the model using 

the validation set 
e(h(xv),f(xv))

Remove the validation set 
from the list of possible 

validation points for future 
models.

N Has all of the data
 been used for validation?

Build a final model using ALL of 
the available data for training.

Y

Report the mean of 
e(h(xv),f(xv)) of all models, as 

an overall effectiveness metric 
for the family of hypotheses H.

 

Figure 46 Cross validation process 

4.2.2. Model validation visualization 

In the framework, the metamodel is shown with a simple visualization, adjacent 

to a table of error measures. The points in the design region which bound the top fifty PV 

designs are shown in Figure 47. The points are sorted and plotted by performance, 

overlaid on the metamodel approximations. The important feature of this plot is the (lack 

of) difference between the simulation data and metamodeling data at the training and 

testing points. 
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It should also be noted that the number of points in the design region which 

bound the top performing designs is relatively large (305 points are contained in the box 

that bounds the top 50 designs).  

 
Figure 47 Metamodel for design region which bounds the top 50 PV designs. 

From Figure 47, it is clear that the 2nd order model is accurate for this data. The 

red (metamodel) points are overlaid directly on the expensive points. There is no 

noticeable difference between the simulation and metamodel at the training points, or at 

the test points. This is confirmed by the table of error metrics in Table 2. The RMSE and 

NRMSE were computed with an additional 20 random test points (shown in green on 

Figure 47). The value of 𝑘 for k-fold CV is 10. 

Another statistic presented in Table 2 is R-Squared. R-Squared also measures 

goodness of fit using only 𝑿𝑻, as in Eq. (19). It is computed for the final model 

where 𝑿𝑻 = 𝑿. The downside to R-Squared is that it increases with the number of 

variables (and model complexity), even if they have no effect on the response. 

𝑅 − 𝑛𝑆𝑆𝑆𝑆𝑒𝑑 = 1 −
∑( 𝑓(𝑿𝑻)− ℎ�(𝑿𝑻) )2 
∑( 𝑓(𝑿𝑻)− 𝜇(𝑓(𝑿𝑻)) )2

 
(19) 

Table 2 Metamodel error metrics for top performing PV design region 

R-Squared 
RMSECV 

1.00 
15.89 

NRMSECV 0.001 
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RMSE 15.79 
NRMSE 0.001 

4.2.3. Predicting local extremes 

If the metamodel has a low NRMSE (<0.1), local optimization can be performed 

on the metamodel to predict the best and worst case performance of the region. This is 

executed using MATLAB’s constrained optimization solver: fmincon. Additionally, the 

expensive simulation may be executed for the predicted min and max to see if they 

match. The results are summarized in Table 3 for the PV problem. The predicted cost 

extremes are close to the actual costs. Furthermore, the minimum cost design has 

significantly lower cost than the best case found from the 500 random samples in 𝑿 (the 

best case was $8183.6). The results also show the massive range in cost ($7k to $21k+) 

within the box that bounds the top 50 designs. This suggests that a tighter region is 

required if the goal is to find ranges for variables that result in low cost designs. 

Table 3 Predicted and simulated performance extremes of PV top design region 

 COST [$] R [“] Ts [“] L [“] Th [“] 
Min (Predicted) 7005.3 52.15 1.007 82.13 0.625 
Max (Predicted) 21674 63.06 1.351 222.4 0.9054 

Result @ 
Predicted Min 7018.5     

Result @ 
Predicted Max 21759     

4.2.4. Predicting local sensitivity 

A second use of the local metamodel is to predict the sensitivity of variables in a 

local region by checking the magnitude of coefficients in the metamodel. The coefficients 

are shown in a bar chart, color coded by sign (red is negative and blue is positive). From 

Figure 48 the terms 𝑇𝑠 and 𝑇ℎ, related to thickness, appear to be most influential in the 

top performing region. However, this “sensitivity” information is really measuring the 

weight of terms in the metamodel. The model may simply be compensating for missing 

higher order relationships, by increasing the weight of a quadratic term for example. 

Therefore, the bar chart should not be interpreted as the overall importance of individual 
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variables (even locally), especially if the model fit is poor. Rather, it is simply the 

importance of terms in the 2nd order approximation. 

 
Figure 48 Coefficients of terms in 2nd order polynomial of PV top design region 

4.2.5. High Dimensional Model Representation (HDMR) 

As mentioned above, polynomial regression is often sufficient for modeling local-

regions where the function is relatively quadratic or linear. However, in many cases, a 

global model is required. High dimensional model representation (HDMR) is a global 

metamodeling technique which splits the objective function into a sum of smaller 

component functions. The component functions represent the independent and 

cooperative contributions of each design variable or set of design variables. Some 

variations include Cut-HDMR [81], RS-HDMR [82,83], RBF-HDMR [84] and PCA-HDMR 

[85]. For brevity, this work only brefily touches on the mathametics of HDMR. A more 

detailed explaination is found in [86]. The general form of HDMR is shown in Eq. (20). 

𝑓(𝒙) = 𝑓0 + �𝑓𝑖(𝑥𝑖)
𝑛

𝑖=1

+ � 𝑓𝑖𝑗�𝑥𝑖 , 𝑥𝑗�
1≤𝑖<𝑗≤𝑛

+ ⋯+ � 𝑓𝑖1,𝑖2…𝑖𝑙
1≤𝑖<𝑗<𝑘≤𝑛

�𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑙�

+ ⋯+ 𝑓12⋯𝑛(𝑥1, 𝑥2,⋯ , 𝑥𝑛) 

(20) 

Each component function in Eq. (20) contributes to 𝑓(𝒙), the HDMR of the 

system. In this expression, 𝑓𝑜 is the zeroth order term, which is irrespective of 𝒙. 𝑓𝑖(𝑥𝑖) are 

the first-order terms, representing the effects of each variable acting alone on f, without 
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correlating with other variables. 𝑓𝑖𝑗�𝑥𝑖, 𝑥𝑗�, the second order terms, represent the 

correlations between any two variables. 𝑓12⋯𝑛(𝑥1,𝑥2,⋯ , 𝑥𝑛), the dth order terms, 

represent the correlations between d variables. Fortunately, due to the nature of 

engineering problems, design variables are typically selected to be highly independent 

[86]. Therefore, higher correlation terms of order l (l<d) tend to have a negligible effect 

on f(𝒙). In this work, 𝑙 is fixed to two, meaning only the second order correlations are 

considered. The number of components function bases is also two, as in [85]. 

PCA-HDMR 

In 2012, Hajikolaei and Wang developed a method that uses principal component 

analysis (PCA) to determine weights for orthogonal basis (component) functions [85]. 

This method entitled PCA-HDMR, was shown to be significantly more accurate than 

standard random sampling (RS) HDMR. In general, adding more samples towards 

building a PCA-HDMR increases its accuracy [85]. Moreover, PCA-HDMR does not 

require a uniform distribution of sample points. This means it may be used for 

metamodeling with biased optimization data. In contrast, RS-HDMR demands uniformly 

distributed points for building the model; if newly added sample points are not uniform, 

the quality of the RS-HDMR deteriorates.  

Use of PCA-HDMR as an alternative to polynomial regression 

In this work, PCA-HDMR is provided as an alternative model to polynomial 

regression. If enough samples exist to build a HDMR model, HDMR may be superior to 

second order polynomial regression. The number of points required to build a PCA-

HDMR is given by 𝑁𝑁 in Eq. (25), from [85]; where 𝐿 and 𝑠 are the order of correlation 

terms and number of basis functions (respectively), and 𝑛 is the number of variables. 

Generally, more samples are required to build a PCA-HDMR model, in comparison to 2nd 

order PR, but PCA-HDMR may be more accurate for non-quadratic functions. 

 
𝑁𝑁 = ��

𝑛
𝑖
� 𝑠𝑖

𝐿

𝑖=1

 
(21) 
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The results of three test functions from [85], Eqs. (22) to (24), are presented. 

Each model was built with 1000 points,generated randomly in the design space. In each 

case, the value for NC is less than 1000. Twenty additional test points were used to 

compare the RSME and RMSECV.  

Example Problem 1: Five variable polynomial (NC=50) 

𝑓(𝒙) = (𝑥1 − 𝑥2)2 + (𝑥3 − 1)2 + (𝑥4 − 1)4 + (𝑥5 − 1)6    𝑠. 𝑡.     𝑥1…5 ∈ [−2,2] (22) 

Table 4 Comparison of PR and HDMR: Five variable polynomial 

 

 

 

 

Example Problem 2: Ten variable sum (NC=200) 

𝑓(𝒙) = ��𝑖3(𝑥𝑖 − 1)2
10

𝑖=1

�

3

    𝑠. 𝑡.     𝑥1…10 ∈ [−3,3] 
(23) 

 
Table 5 Comparison of PR and HDMR: Ten variable sum 

 

 

 

 

2nd Order Regression PCA-HDMR 

R-Square 0.86 R-Square 0.98 

RMSECV 64.0 RMSECV 28.3 

NRMSECV 0.087 NRMSECV 0.038 

RMSE 47.6 RMSE 27.4 

NRMSE 0.065 NRMSE 0.037 

2nd Order Regression PCA-HDMR 
R-Square 0.87 R-Square 1 
RMSECV 1.95e+12 RMSECV 1.14e+12 

NRMSECV 0.050 NRMSECV 0.034 
RMSE 1.83e+12 RMSE 1.07e+12 

NRMSE 0.047 NRMSE 0.0314 
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Example Problem 3: Twenty variable sum (NC=800) 

𝒇(𝒙) = � [𝟏𝟏𝟏(𝒙𝒊 − 𝒙𝒊+𝟏𝟏)𝟐 + (𝒙𝒊 − 𝟏)𝟐]
𝟏𝟏

𝒊=𝟏
     𝑠. 𝑡.    𝑥1…20 ∈ [−3,5] 

(24) 

  

Table 6 Comparison of PR and HDMR: Twenty Variable sum 
 

2nd Order Regression PCA-HDMR 
R-Square 0.87 R-Square 1 
RMSECV 3.59e-11 RMSECV 2.66e-10 

NRMSECV 2.37e-15 NRMSECV 9.60-15 
RMSE 3.53e-11 RMSE 9.98e-11 

NRMSE 2.33e-15 NRMSE 3.59e-15 

 

Discussion 

From the results above, PCA-HDMR is comparable to 2nd order PR and often 

yields better performance (as in Table 4). However, PCA-HDMR requires more samples 

than a simple 2nd order model, which only requires 2𝑛 + �𝑛2� + 1 points. Additionally, 

PCA-HDMR may over fit the data if the chosen order 𝐿 exceeds that of the underlying 

cost function. Therefore, it is recommended to validate the model using additional test 

points, regardless of which model family is used. If additional test data is costly, cross-

validation may be used as an approximation of the RMSE and NRMSE. 

4.3. Summary 

Metamodels are built to approximate expensive simulations, often in a small 

region of the design space. If a metamodel is accurate, it may be used in place of the 

expensive simulation for intensive sampling tasks like local optimization. This chapter 

presented PR and HDMR as metamodeling techniques for selected design regions. The 

model is then cross-validated to estimate out-of-sample performance, with minimal 

additional expensive sampling. The results are plotted to show performance and the 

importance of terms in the model. The following chapter combines the discussed 

techniques from Chapter 3 and Chapter 4 into a prototype application for interactive 

optimization. 
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Chapter 5. Optimization Visualization Framework  

Chapter 3 presented techniques to define regions in optimization data and 

methods for navigation. Chapter 4 presented techniques for local metamodeling and 

validation. This chapter shows how these techniques may be combined into a cohesive 

framework for visualization of optimization data.  

5.1. Framework Layout 

A prototype visualization framework was implemented in MATLAB (due to the 

availability of algorithm codes). The layout is shown in Figure 49. 

 
Figure 49 Optimization visualization framework layout 
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5.1.1. Problem Formulation (D1) 

The first step in optimization is problem definition. Problems are defined in a 

problem definition file containing the objective, constraints, variable names and bounds. 

Once loaded into the framework, the equations, design and search spaces can be 

modified. Constraint equations may be changed or suppressed at any time before, 

during, or after optimization. Data that was previously feasible is hidden from the user if 

it becomes infeasible due to changes in constraints. 

 
Figure 50 Problem formulation menu 

5.1.2. Feasibility Data (D2) 

The second step (if the problem is constrained) is to check the necessity of the 

various constraints, and to identify the feasible region. A novel algorithm to identify 

constraint redundancy for black-box problems is presented in Chapter 6. In addition, 

constraint data can be visualized. To check feasibility, it is not necessary to execute the 

objective function. Consequently, constraints are sampled and visualized separately 

from the simulation data.  

A plot of the overall feasible region for the PV problem is shown in Figure 51 

(with 1200 constraint checks). Individual constraints may also be plotted to highlight the 

effect of the constraint acting alone. The feasible region is shown on the 2D navigation 

plot in Figure 52. Meanwhile, an adjacent bar chart plot specifies the percentage of 

sampled points that were feasible as a measure of overall restrictiveness. Last, an 

optional overview of all of the 2D projections can be shown by clicking the “Show 

Overview” button in the Toolbar (Section F) as in Figure 54. 
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Figure 51 Feasible Region of the PV Problem 

 
Figure 52 Overall feasibility as 2D projection 
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Figure 53 Overall feasibility as a bar chart 

 

Figure 54 Feasible region as a 2D projection overview (scatterplot matrix) 

5.1.3. Simulation Data, Convergence and Regions (D3) 

 The third step is to generate data by calling the expensive simulation on a set of 

points. There are two methods to generate data. The first method is to simply generate 

and evaluate a specified number of random samples within the search bounds. This is 

ideal for exploratory analysis of the search space, to widely cover the space. The main 

downside to random sampling is that it wastes time simulating points which are far from 

the optimum.  
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Therefore, the second method of data generation is to collect data while running 

an optimization method such as TR-MPS. TR-MPS aggressively biases samples 

towards the optimum, wasting few samples. In this case, the data is updated and plotted 

iteratively as in Figure 55. The downside to generating data from optimization is the lack 

of coverage in the overall search space due to the bias towards the optimum. 

 
Figure 55 PV Problem top 10 % lowest cost region shown iteratively (with TR-MPS) 

From Figure 55, a few observations can be made about the optimization process. 

First, as expected, the cost function is being effectively minimized. Second, the top 

designs for the PV problem form only one natural cluster, unlike the SC problem, where 

multiple design regions performed well. Third, the region containing the top 10% of 

lowest cost designs is converging. This is expected as TR-MPS continues to add 

additional samples near the top performing points. By iteration 15, (with 186 total 

function evaluations) optimization has roughly converged to the following design region: 

𝑅∗: [51.7,51.9]  𝑇𝑠∗: [1,1.01]  𝐿∗: [84.4,86.5]  𝑇ℎ∗: [0.625,0.633] → 𝑁𝐶𝑛𝑇$: [7025,7100] 
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Convergence 

Another common way to visualize convergence is to simply plot the function 

value vs iteration as in Figure 56 (Area C in the layout). In this plot, the global minimum 

found so far is graphed each iteration to show the amount improvement from continuing 

the optimization. The colors of points also indicate which iterations introduced points in 

the selected region. In the case of Figure 56, it is clear that the lowest cost designs were 

introduced in the latter iterations (colored in cyan). Similarly, if a point is brushed in the 

2D navigation or data table, the iteration that introduced the brushed point is highlighted 

as shown in Figure 57. Figure 57 shows that the thicker pressure vessel designs were 

tested in earlier iterations of optimizations and then dismissed.  

 
Figure 56 Iterative convergence plot of lowest cost design 

 
  

Figure 57 Iterations of selected points (thick pressure vessel designs) 
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Reviewing past iterations 

In addition to viewing the convergence of function values, users may also 

navigate to past iterations from the Navigation Menu (B2). Here, the effectiveness of the 

optimization’s sampling strategy is reviewed by comparing the designs that were 

introduced each iteration (highlighted in red). For example, in Figure 58, the new points 

introduced in the last iterations are mostly near the optimum, whereas the initial 

sampling is randomly distributed. This is indicative of TR-MPS’s aggressive sampling in 

later stages. 

 

Figure 58 Designs introduced by iteration for PV problem optimization 
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Regions 

As explained in Chapter 3, three types of regions may be defined to select areas 

of optimization spaces: (1) percentile regions, (2) performance regions, and (3) design 

regions. The regions are selectable and editable from a list as in Figure 59. Regions can 

also be combined by clicking on “In all tracked regions” or “In any tracked region”. 

 

Figure 59 Sample list of regions 

Regions are defined using the Add Region button, which opens an interface for 

region definition. Similarly, Edit Region allows regions to be modified. Regions can also 

be interactively adjusted using sliders (placed in the D3 area of the layout), for 

continuous interaction. The value of reducing interaction cost to facilitate exploration has 

been emphasized by Spence [68] and Lam [72]. 

 
Figure 60 Region adjustment sliders 

Two additional interactive methods are available to specify design regions. First, 

users may choose to automatically create a design region from a percentile or 

performance region. Upon clicking Add as Design Regions the corresponding design 

bounds (shown in cyan or orange) will be added as a design region. If the region is split 
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to clusters, a design region will be formed for each cluster. This is shown in Figure 61 for 

the SC problem after clustering.  

 
Figure 61 Top performing region of SC problem split into 4 design regions 

A second method is to select points via brushing on a projection, and then click 

the “Add as region” button from the toolbar (F) in Figure 62. Design regions can also be 

set as search bounds using a Set as Search Bounds button. 
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Figure 62 Toolbar for optimization framework 

5.2. Summary 

This chapter presented a software prototype that integrates the techniques 

described in previous chapter. It was shown that users may modify problems directly 

within the software. Next, the feasible space is plotted in parallel coordinates based on 

constraint sample data. Furthermore, methods to display convergence were also 

discussed such as tracking regions during optimization, highlighting iterations on 

convergence plot, or navigating to past iterations. Finally, ways to define design regions 

were explained. In the following chapter, emphasis is placed on determining which 

constraints may be suppressed or removed from the problem formulation. To do so, a 

novel technique incorporating data mining is introduced. 
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Chapter 6. Constraint Mining 

As explained in Chapter 3, constraints are often defined to eliminate solutions 

that are not physically feasible or practical. Unfortunately, in some cases, designers may 

inadvertently specify constraints which are redundant. Common causes and 

consequences of superfluous constraints have been discussed by Karwan et al. [11]. In 

particular, they complicate the problem formulation, and may impact the performance of 

the optimization method. In this chapter, a new probabilistic method, including a priori 

association analysis, is proposed to identify and present constraint redundancies as 

rules to assist in problem formulation. The method has been accepted for publication in 

Engineering Optimization (pending minor revisions) [87].  

6.1. Constraint mining overview 

In general, the response of optimization constraints can be treated as Boolean 

variables: a one indicates a violation and a zero indicates satisfaction. From this data, 

relationships among constraints can be identified and presented to designers. This 

chapter first discusses past approaches related to redundant constraint identification 

with a focus on set-covering. Next, a new sequential process is presented. The method 

first checks if constraints co-occur using Jaccard similarity, before looking for implication 

rules in the remaining constraints with a priori association analysis [88,89]. 

Subsequently, constraints that do not co-occur, and are not implicit, are evaluated to see 

if they uniquely restrict the design space. Example problems, including the pressure 

vessel (PV) problem from Chapter 3, are tested and discussed.  
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6.2. Constraints in black-box engineering design 

As explained in Chapter 3, in engineering design, inequality constraints are 

typically written as a vector of functions: 𝒈(𝒙). In practice, 𝒈(𝒙)  may consist of nonlinear 

functions or even complex engineering simulations such as Finite Element Analysis 

(FEA) or Computational Fluid Dynamics (CFD). For such cases, it may be impossible to 

identify redundant constraints algebraically as done in [11,90–92]; no assumptions can 

be made about the properties of 𝒈 (e.g. linearity, convexity, continuity etc.).  Instead, like 

the objective function in previous chapters, constraints can also be treated as black-

boxes. In this situation, random designs may be evaluated for each constraint, and the 

results may be summarized with 0 indicating a constraint satisfaction and 1 representing 

violation. From this basic information, constraints may be analyzed as a Boolean 

dataset.   

6.3. Related redundancy identification methods 

Redundant constraint identification has been the subject of extensive research 

since Boot’s pioneering work in 1962 [93]. Although progress has been made, most work 

has focused on classifying and reducing constraints for linear programming (problems 

where the objectives and constraints are linear algebraic expressions). For example, 

Brearley et al.’s method [94] uses the coefficients of the constraints’ terms to see if it is 

possible to satisfy them within the chosen design space. Telgen [11] developed a 

deterministic approach, similar to the simplex method in linear programming, using a 

minimum ratio test and simplex tableaus. Unfortunately, the majority of deterministic 

constraint reduction techniques require linear algebraic functions. A survey of 

redundancy checking for linear programming can be found in [90], with details in [11]. 

The set-covering approach, introduced by Boneh [95,96], is the most general 

method, and the most suitable for black-box optimization. Set-covering represents the 

feasibility of constraints for a given sample design 𝒙𝒊, as a binary vector 𝒆𝒊. If a 

constraint 𝑔𝑗 is violated at the point 𝒙𝒊, 𝑒𝑖𝑗 𝜖 𝒆𝒊  is 1. Otherwise, if the constraint is 

satisfied, 𝑒𝑖𝑗 is 0. For example, for two constraints 𝑔1 and 𝑔2, 𝒆𝒊 = (0,1), if 𝑔1 is satisfied 
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and 𝑔2 is violated for the design 𝒙𝒊. If any constraint is violated for a design (∑𝒆𝒊 ≥  1), 

then 𝒆𝒊 ∈ 𝑬. The main theorem of the set-covering approach states that if any design 

violates one or more constraints, at least one of those constraints is necessary. As 

notation, a vector  𝒚, may be defined to summarize which constraints are necessary or 

redundant, based on the given data. Specifically, 𝑦𝑗𝜖𝒚 is 1 if 𝑔𝑗 is necessary, and 𝑦𝑗 is 0 

if 𝑔𝑗 is redundant. With this notation, Boneh represents the main theorem of the set-

covering approach as Eq. (25). In words, Eq. (25) states that for each observation 𝒆𝒊𝝐𝑬, 

at least one of the violated constraints is non-redundant (𝒆𝒊 ∙ 𝒚 ≥ 0). 

 𝑬𝒚 ≥ (1,1,1 … )𝑇 (25) 

Given a sample of observations 𝑬, Eq. (25) can be solved for 𝒚 to identify 

redundant constraints. The solutions of  𝒚 are not necessarily unique. Therefore, Boneh 

suggests pursuing the constraint subset which minimizes computational cost, and 

presents an algorithm to do so: the Set-Covering algorithm. The method in this chapter 

differs from set-covering in that its main concern is not finding irreducible sets of 

constraints (solutions of 𝒚). Instead, the proposed method returns information regarding 

why constraints are redundant, which may provide insight about the formulated problem. 

Specifically, the chapter introduces methods to determine if constraints co-occur, are 

implicit with respect to another constraint, or are covered by other constraints. These 

relationships are defined and formalized. 

6.4. Constraint redundancy rule definitions 

According to Karwan et al.’s survey [11], the consensus is that a constraint is 

redundant if its removal has no effect on the feasible space.  A more detailed taxonomy 

of redundancy types is also presented in [11]. In practice, information explaining 

relationships between constraints can be helpful for a designer who is trying to find 

errors in their problem formulation. Therefore, definitions are proposed in this work to not 

only indicate if a constraint is redundant, but also indicate why.  
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6.4.1. Redundant due to co-occurrence 

Co-occurring constraints are constraints which are very often violated 

simultaneously. Although the constraints may be conceptually different, they have the 

same effect on the feasible region. This relationship means that any constraint 𝑁𝑘 from a 

set of constraints (𝑪) can be chosen as a representative, while the others are 

suppressed or removed from the problem formulation. Co-occurrence is considered to 

be the most informative type of redundancy. If constraints always co-occur they are 

duplicates. A relaxed definition of co-occurrence is given in 6.5.1 based on Jaccard 

similarity. 

Definition 1 (Redundant due to co-occurrence): Let 𝐂 be a set of inequality 

constraints. If 𝐂 co-occurs, then a constraint 𝑁𝑘 ∈ 𝑪 can be chosen as the representative 

of 𝑪 and the remaining constraints 𝐂\{𝑁𝑘} are redundant. 

6.4.2. Redundant due to implication 

Redundancy due to implication means that a constraint is dominated by another 

constraint, within a given probability. Consider the data in Table 7. In the rows that 𝑃 has 

a value of one, 𝑄 also has a value of one, but not vice versa. Therefore, we can 

write 𝑃 → 𝑄.  Another way to think of this is that 𝑃 is dominated by 𝑄; or if there is 𝑃, then 

there is 𝑄; or 𝑃 is redundant due to 𝑄 by implication. This rule is considered to be the 

second most informative type of rule, as co-occurrence automatically infers implication, 

but not vice-versa. Implication rules are generated efficiently using a priori association 

analysis, from data mining, as explained in 6.5.2. 

Table 7 Implication example 

P Q 
1 1 
0 1 
1 1 
0 0 

Definition 2 (Redundant due to implication): Let 𝑁𝐴 and 𝑁𝐶 be non-co-occurring 

inequality constraints. If 𝑁𝐴 → 𝑁𝐶 , then  𝑁𝐴 is redundant due to 𝑁𝐶 by implication. 
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6.4.3. Redundant due to covering 

If a constraint can be removed without affecting the feasible region, it is also 

redundant. To uniquely affect the feasible region, a case must exist where the constraint 

is violated while all others are satisfied. If no such case exists, the constraint is called 

redundant due to covering (i.e. 𝑁𝑘 is covered by other constraints). Redundancy due to 

covering is equivalent to the general definition of redundancy in set-covering [96] and 

Boot’s definition of a triviality [93].  

Co-occurrence and implicitness is more informative to describe redundancies, as 

these rules include which constraint(s) make the constraint redundant (by co-occurrence 

or by association). The constraints which cover 𝑁𝑘, however, are not recorded (for 

computational simplicity). Consequently, covering is the least informative rule, and only 

examined after checking for co-occurrence and association. 

Definition 3 (Redundant due to covering): Let 𝑪𝑻 be the set of all constraints which 

are non-co-occurring and non-implicit. If no infeasible observation is made feasible by 

the removal of a constraint 𝑁𝑘 ∈ 𝑪𝑻, 𝑁𝑘 is redundant.  

6.5. The constraint mining method 

An overview of the sequence for mining constraint relationships is described in 

Figure 63. Each step is described in detail in the following sections. The first four steps 

are general, and can be applied to rule mining for any Boolean dataset. The remaining 

steps are specific to the application of constraint analysis for engineering design.  
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Figure 63 Overview of the constraint mining method 

6.5.1. Identifying frequent itemsets and co-occurring items 

In association analysis literature, columns of Boolean matrices are referred to 

items. This stems from the original use of association analysis, to analyze consumer 

market basket data (e.g. 70% of people will buy butter if they buy bread). Similarly, an 

observation refers to a row (e.g. the constraints results for a design 𝒙𝒊). An item occurs if 

its value is 1. Meanwhile, a group of items is called an itemset. An example is given in 

Table 8 for five observations (designs) and six items (constraints). In design 1, for 

instance, the itemset {𝑁1,𝑁2,𝑁3,𝑁5,𝑁6} occurs. 

Table 8 Example binary representation of constraint violations (1: Violation) 

Observation C1 C2 C3 C4 C5 C6 
1 1 1 1 0 1 1 
2 1 1 1 0 0 1 
3 0 0 1 0 1 1 
4 1 0 0 0 0 0 
5 0 1 0 1 0 0 
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Step 1 – Filter items by support and find frequent itemsets 

As explained by Tan, the number of possible association rules for a dataset 

grows exponentially with its number of items (𝑑): 𝑛𝑅𝑆𝑙𝑒𝑠 = 3𝑛 − 2𝑛+1 + 1 [70]. For 

example, in Table 8, with 6 items, there 602 possible rules of the form: 𝑪𝑨 → 𝑪𝑪. 

Therefore, in Agrawal’s a priori association analysis method, itemsets which have few 

occurrences are eliminated [88,89]. The occurrence an itemset 𝑪 is quantified by 

𝑛𝑆𝑝𝑝𝑆𝑆𝑡 s as in Eq. (26): 

 
𝑠(𝑪): 

𝜎(𝑪)
𝑁

 (26) 

In Eq. (26), 𝜎(𝑪) is the count of observations such that all items 𝑪 occur, and 𝑁 is 

the total number of observations. For example, from Table 8, the support of the itemset 

{𝑁1,𝑁2} is s({𝑁1,𝑁2}) = 2
5
. An itemset is considered frequent if 𝑠(𝑪) ≥ 𝑚𝑖𝑛𝑠𝑆𝑝, where 

𝑚𝑖𝑛𝑠𝑆𝑝 is a threshold chosen by the user (given in Section D2 of the framework). A low 

𝑚𝑖𝑛𝑠𝑆𝑝 means rarer items will be considered, but also increases computational effort. 

Although frequency-based filtering is important for consumer market databases with 

thousands items, in most engineering problems the number of constraints is much lower, 

as constraints are defined for physical properties. Therefore, assuming the number of 

constraints is roughly ten or less, 𝑚𝑖𝑛𝑠𝑆𝑝 may be set to zero. In other words, all 

constraints can be considered frequent, even if they are rarely active, without significant 

computational cost. In 6.5.6, it is explained that support for individual constraints is an 

informative statistic on its own.  

In the a priori algorithm, frequent itemsets are built from the bottom up, by 

combining only the frequent itemsets found a priori. For example if the items 𝑁1 and 𝑁2 

are frequent, they form: {𝑁1,𝑁2}. The list of frequent itemsets then becomes: 

{ {𝑁1}, {𝑁2}, {𝑁1,𝑁2} }. Support is anti-monotonic. Accordingly, only the frequent k sized 

sets are needed to generate the k+1 sized sets. Efficient implementation details can be 

found in most introductory data mining books. A flowchart is presented in Figure 64. It is 

important to note that if 𝑚𝑖𝑛𝑠𝑆𝑝 = 0, all of the possible itemsets are frequent.  



 

80 

Remove the itemsets 
where s(C)<minsup

Return all of the 
frequent itemsets.

Find the support of all 
k-itemsets

Build the k+1 itemsets 
from the remaining 

frequent 
itemsets

k=1

Is the k-itemset null 
(or is k>d)?

No

Yes

Increment k.
 

Figure 64 Generation of a frequent itemset of size k in the a priori method 

Step 2 - Use the Jaccard measure to identify co-occurring sets 

Once frequent itemsets are generated, they can each be checked for co-

occurrence. This stage is a contribution of this work, and not part of Agrawal’s standard 

a priori method. Jaccard (𝑗) measures the conditional probability of all items occurring, if 

it is known that any occurs. Mathematically, 𝑗({𝑆, 𝑏, 𝑐}) = 𝑃(𝑆⋀ 𝑏⋀ 𝑐 | 𝑆⋁𝑏 ⋁𝑐 ). Jaccard 

for an itemset 𝑪 can be written as in Eq. (27): 

 
𝑗(𝑪) =

𝜎(𝑪)
γ(𝑪)

 (27) 

In Eq. (27), 𝛾 is the count of observations where any item in 𝑪 occurs. In the 

proposed method, if 𝑗(𝑪) is greater than a co-occurrence threshold 𝑚𝑖𝑛𝑗𝑆𝑐𝑐, the itemset 

is called co-occurring or bundled. Although the bundle pattern has been discussed 

before [97], it wasn’t defined using Jaccard. The meaning of bundle, in this work, is 

conceptually similar to [97] in that it indicates co-occurrence, but differs mathematically. 
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Definition 4 (Co-occurrence/Bundling) An itemset 𝑪 co-occurrs (is bundled) if 

j(𝑪) ≥ 𝑚𝑖𝑛𝑗𝑆𝑐𝑐. A bundled set of constraints is denoted by 𝑪𝑩. 

It is important to emphasize that 𝑗(𝑪) is fundamentally different from 𝑠(𝑪). 

Support (𝑠) measures the likelihood of a group of constraints to be violated. Jaccard 

(𝑗) measures the similarity of constraints in a group. For example, in Table 8 𝑠({𝑁3,𝑁6}) 

is 3
5

= 0.6; while, 𝑗({𝑁3,𝑁6}) is 3
3

= 1. If 𝑗 = 1 for a set, the constraints are duplicates. By 

reducing 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 from 1 to a slightly lower value, constraints that are nearly duplicates 

are identified. 

Step 3- Remove co-occurring frequent itemsets  

If a set of items is co-occurring, a rule is saved for those items (e.g. “Constraints 

C3 and C6 co-occur.”). Furthermore, it can be shown that the subsets of co-occurring 

sets also co-occur, based on the fact that 𝑗 is anti-monotonic with the addition of items. 

Theorem 1 Given a co-occurring itemset 𝐂𝐁 and a subset 𝐂𝐁− ⊆ 𝐂𝐁: j(𝐂𝐁−) ≥ 𝑗(𝐂𝐁) . 

Therefore, if 𝐂𝐁 is co-occurring, 𝐂𝐁− is co-occurring. 

Proof: 

𝜎(𝐂𝐁) ≤ 𝜎(𝐂𝐁−) 𝑏𝑦 𝑡ℎ𝑒 𝑆𝑛𝑡𝑖 − 𝑚𝑆𝑛𝑆𝑡𝑆𝑛𝑖𝑐 𝑝𝑆𝑆𝑝𝑒𝑆𝑡𝑦 𝑆𝑓 𝑠𝑆𝑝𝑝𝑆𝑆𝑡. 

𝛾(𝐂𝐁−) ≤ 𝛾(𝐂𝐁) 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑆𝑛𝑠 𝛾(𝐂𝐁) = |𝑆𝑛𝑦(𝐂𝐁)| 𝑆𝑛𝑑  𝐂𝐁− ⊆ 𝐂𝐁. 

∴ 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 ≤
σ(𝐂𝐁)
𝛾(𝐂𝐁) ≤

𝜎(𝐂𝐁−)
𝛾(𝐂𝐁−)   ∎ 

To remove co-occuring subsets efficiently, the algorithm in Figure 65 can be 

used. Starting with the largest frequent itemset (of size 𝑘𝑚𝑎𝑚), 𝑗(𝑪) is computed. If 𝑪 is 

co-occurring, a rule is saved, and all of its subsets (including 𝑪 itself) are removed. Once 

each set of size k has been evaluated, k is decremented. The process stops if all sets of 

size k co-occur, or if 𝑘 = 1. In other words, the method first checks if the largest frequent 

group of items co-occurs, then moves to smaller and smaller item groups (until single 

item groups remain). 
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Figure 65 Identification of bundles and itemset reduction 

6.5.2. Generating association rules (Step 4) 

Association rules (rules of the form 𝑪𝑨 → 𝑪𝒄)  are a well-researched area in data 

mining popularized by Agrawal [88,89]. Since their introduction, a significant amount of 

research has been published that presents efficient algorithms [98,99], new patterns 

[100–102], compact representation of itemsets [103] and new measures of rule 

interestingness [104]. Tan provides an excellent review of the field in the bibliographical 

notes of [70]. Applications have also expanded beyond market baskets to finding protein 

interactions [105] and associations between carbon levels and ocean climates [106]. 

This work is the first time the method has been applied to optimization constraints. 

Association rules are generated and evaluated by confidence in Agrawal’s 

algorithm. Confidence 𝑐(𝑪𝑨 → 𝑪𝒄) represents the conditional probability of 𝑪𝑪, given 𝑪𝑨 
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(based on the sample data). It is defined by Eq. (28), where 𝑪𝑨 and 𝑪𝒄 are frequent 

itemsets: 

 
𝑐( 𝑪𝑨 → 𝑪𝒄):

𝜎(𝑪𝑨 ∪ 𝑪𝒄 )
𝜎(𝑪𝑨)  

(28) 

In Eq. (28), 𝑪𝑨 is the antecedent set or simply the left-hand-side (LHS). 

Meanwhile, 𝑪𝒄 is the consequent set or the right-hand-side (RHS). Rules are generated 

by testing confidence against a threshold: 𝑚𝑖𝑛𝑐𝑆𝑛𝑓. The appropriate choice for 𝑚𝑖𝑛𝑐𝑆𝑛𝑓, 

like 𝑚𝑖𝑛𝑠𝑆𝑝 or 𝑚𝑖𝑛𝑗𝑆𝑐𝑐, also depends on the application. For example, in design 

engineering, it is important to avoid suppressing constraints which are not truly 

redundant. Therefore, as a rule of thumb, 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 should be nearly or exactly 1. 

Furthermore, it is enforced that 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 ≥ 𝑚𝑖𝑛𝑐𝑆𝑛𝑓, by definition. If an itemset did not 

meet the threshold to be co-occurring, then it may still generate association rules. 

Conversely, if the set co-occurs, then it was accounted for in Step 3 and will not be 

further analyzed for associations. 

In Agrawal’s method, association rules are generated for each individual itemset. 

The process starts by assigning an individual item as the consequent, while the 

remaining items in the set form the antecedent. Each item is selected as the consequent 

once, forming a set of single item RHS rules. The RHS of rules with high confidence 

(≥ 𝑚𝑖𝑛𝑐𝑆𝑛𝑓) are then combined to form two item RHS rules. Consequents which 

generate high confidence rules continue to merge and form new rules until all high 

confidence rules have been generated for the itemset. 

Confidence has useful properties. In particular, it is anti-monotonic as items are 

shifted from the LHS to the RHS. For instance, in the set {𝑁1,𝑁2,𝑁3}, the rule {𝑁1,𝑁2} →

𝑁3 will have higher (or equal) confidence when compared to {𝑁1} → {𝑁2,𝑁3} or {𝑁2} →

{𝑁1,𝑁3}. This is explained in detail in [70]. Similarly, if two rules have the same LHS; but, 

one RHS is a subset of the other’s, the rule with the smaller RHS will have higher 

confidence. For example, 𝑐({𝑁1} → {𝑁2}) ≥ 𝑐({𝑁1} → {𝑁2,𝑁3} ). A simple proof is provided 

below for completeness. 

Theorem 2. Given an antecedent 𝑪𝑨, consequent 𝐂𝑪, and subset 𝐂𝑪− ⊆ 𝐂𝑪: 
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𝑐(𝑪𝑨 → 𝐂𝑪) ≥ 𝑐(𝑪𝑨 → 𝐂𝑪−) 

Proof: 

𝑐(𝑪𝑨 → 𝐂𝑪) =
𝜎(𝑪𝑨 ∪ 𝑪𝒄 )
𝜎(𝑪𝑨) ≤

𝜎(𝑪𝑨 ∪ 𝐂𝑪− )
𝜎(𝑪𝑨)   𝑚𝑆𝑙𝑡𝑖𝑝𝑙𝑦 𝑏𝑆𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝜎(𝑪𝑨), 

𝜎(𝑪𝑨 ∪ 𝑪𝒄 ) ≤ 𝜎(𝑪𝑨 ∪ 𝐂𝑪− ) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑆𝑆𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑆𝑛𝑡𝑖 − 𝑚𝑆𝑛𝑆𝑡𝑆𝑛𝑖𝑐 𝑝𝑆𝑆𝑝𝑒𝑆𝑡𝑦 𝑆𝑓 𝜎  ∎ 

6.5.3. A brief discussion regarding the number of rules and the 
benefit of co-occurring sets 

The support-confidence framework reduces the number of possible implications 

by eliminating rare items or weak rules respectively. Unfortunately, datasets with similar 

high support items still creates many rules. This is a fundamental drawback of the 

standard a priori algorithm. For example, for items 𝑁1,  𝑁2 and 𝑁3 the corresponding 

frequent itemsets may be { {𝑁1}, {𝑁2}, {𝑁3}, {𝑁1𝑁2}, {𝑁1𝑁3}, {𝑁2𝑁3}, {𝑁1𝑁2𝑁3} }. In total, there 

are 18 possible implication rules for these three items. Meanwhile, a single rule stating 

that "{𝑁1,𝑁2,𝑁3} co-occur” conveys the same information. In fact, this rule is not only 

more compact, it is simpler to understand. This is why co-occurring sets are considered 

more informative than associations, and are tested first. 

6.5.4. Further rule reductions when considering item removal 

Restricting association rules to single item antecedents 

This section shows that for constraint redundancies, association rules are only 

needed for one item antecedents. Consider the example in Table 9. Having {𝑁1,𝑁2}  as 

the LHS forms a stronger implication of 𝑁3 than 𝑁1 or 𝑁2 individually. The rule is 

suggesting, in words, that if there is a violation in both 𝑁1 and 𝑁2, then 𝑁3 is also violated, 

which is obvious from the Boolean values in Table 9. 
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Table 9 Example of increasing confidence with additional items in the antecedent 

C1 C2 C3 𝑁𝑆𝑛𝑓({𝑁1,𝑁2} → 𝑁3) 𝑁𝑆𝑛𝑓 
(𝑁1 → 𝑁3) 

𝑁𝑆𝑛𝑓 
(𝑁2 → 𝑁3) 

 

1 1 1 𝜎({𝑁1,𝑁2,𝑁3})
𝜎({𝑁1,𝑁2})

= 2
2 = 100%

 
𝜎({𝑁1,𝑁3})
𝜎(𝑁1)

= 2
3 = 67%

 
𝜎({𝑁2,𝑁3})
𝜎(𝑁2)

= 2
3 = 67%

 
1 1 1 
0 0 1 
1 0 0 
0 1 0 

In reality, {𝑁1,𝑁2} → 𝑁3 states that the intersecting region of {𝑁1,𝑁2} is redundant 

due to 𝑁3. Yet, if the goal is to remove constraints, it is not important if {𝑁1,𝑁2} implies 𝑁3. 

Neither 𝑁1 nor 𝑁2 can be removed, as 𝑁1 and 𝑁2 restrict other areas as well. In order to 

remove either 𝑁1 or 𝑁2 (due to 𝑁3), individual rules 𝑁1 → 𝑁3 or 𝑁2 → 𝑁3 are required. In 

this case, the confidence of these rules is only 67%. Thus, neither 𝑁1 nor 𝑁2 is redundant 

due to 𝑁3. This example shows that although antecedents with more than one item may 

form strong rules, the rules cannot be acted on, and do not need to be considered.  

Restricting association rules to single item consequents 

Another way to limit the number of rules is to limit consequents to contain exactly 

one item. Assume that an implication rule is of high confidence with a single item LHS 

(𝑁𝐴) and multi-item RHS (𝑪𝑪). All single item RHS rules 𝑁𝐴 → 𝑁𝐶, where 𝑁𝑐 ∈ 𝑪𝒄, are also 

of high confidence, by Theorem 2. For example, if {𝑁1 → 𝑁2𝑁3}  exceeds the confidence 

threshold, then {𝑁1 → 𝑁2} and {𝑁1 → 𝑁3} do as well. Furthermore, the sets {𝑁1,𝑁2} and 

{𝑁1,𝑁3}, that generate {𝑁1 → 𝑁2} and {𝑁1 → 𝑁3} (respectively), are guaranteed to exist in 

the frequent itemset if {𝑁1,𝑁2,𝑁3} exists,  due to the anti-monotonic property of support.  

Therefore, if {𝑁1 → 𝑁2𝑁3}  exists with high confidence, then the rules {𝑁1 → 𝑁2} and 

{𝑁1 → 𝑁3} will also exist with high confidence. 

 In terms of constraint removal, the intuitive interpretation is that if a constraint is 

redundant due to the area where multiple constraints intersect, it is also redundant due 

to each intersecting constraint. This fact, combined with the limitation to single item 

antecedents, limits association rules to item pairs (which do not co-occur). Only 

considering pairs in the association rule generation phase greatly improves efficiency, 

and limits the number of rules returned. 
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6.5.5. Finding covered constraints (Step 5) 

The next step is to find remaining redundancies for constraints that do not co-

occur and are not implicit. This can be accomplished by looking for individual constraints 

which are never violated alone. By Boneh’s main theorem [95], if an observation violates 

only one constraint, that constraint is absolutely necessary. Conversely, if a constraint is 

never violated alone, it has no unique effect on the feasible space and is redundant. 

Consider the case in Table 10. The union of violations in 𝑁1 and 𝑁3 covers the 

observations violated 𝑁2. As shown by the observations in grey, if 𝑁2were removed from 

set of constraints, the feasible points (with no violations) would remain unchanged for 

the given data. This makes 𝑁2 redundant (by covering).  

Determining if a constraint is covered is fundamentally different than identifying 

co-occurrence or implication. Namely, to check covering, additional scans of the data are 

needed. However, note that observations do not need to be counted as when checked 

for co-occurrence or implication. Therefore, checking if a constraint is covered only 

requires the set of unique observations (as in the set-covering approach [95]). This 

reduced set of observations is shown in Table 11, generated from Table 10 by 

eliminating the repetitions. 

Covering is only checked for constraints which are not already explained by co-

occurrence or implication (𝑪𝑻). A simple scan to find a case where 𝑁𝑘 is violated alone is 

executed for each 𝑁𝑘 ∈ 𝑪𝑻 (using the reduced observations). If no such case exists, the 

constraint does not uniquely impact the overall feasibility of the problem, and a rule is 

saved. In Table 11, there is no case where 𝑁2 violation occurs alone. Thus, 𝑁2 is 

covered. 

Table 10 Example of covered constraints 

C1 C2 C3 
0 0 0 
1 0 0 
1 1 0 
1 1 0 
0 1 1 
0 1 1 
0 0 1 
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Table 11 Example of covered constraints (reduced observation set) 

C1 C2 C3 
0 0 0 
1 0 0 
1 1 0 
0 1 1 
0 0 1 

6.5.6. Additional information from constraint mining 

In addition to finding bundles, association rules, and covered constraints two 

more types of information are reported: infrequent constraints and infeasible problems. 

Infrequent constraints  

It is often useful for the designer to understand and review constraints which are 

mostly passive, especially if they are costly to evaluate during optimization. Infrequent 

constraints are those which are rarely (or never) violated in the sample of observations 

(as quantified by support). By tuning 𝑚𝑖𝑛𝑠𝑆𝑝, the restrictiveness of constraints can be 

easily identified.  

Definition 5 (Infrequent constraint) An individual constraint 𝑁𝑖 is infrequent if 𝑠(𝑁𝑖 ) ≤

𝑚𝑖𝑛𝑠𝑆𝑝. 

Infeasible problems 

An infeasible problem does not contain any feasible area. If a problem is 

infeasible, it may require re-formulation (e.g. making a restrictive constraint an objective) 

or an optimization algorithm that specializes in highly constrained problems. To search 

for overall feasibility, the any operator (𝛾)  is used on each observation 𝒐𝒊 in the unique 

set of observations. If any 𝛾( 𝒐𝒊) is zero (meaning  𝒐𝒊 = 𝟏), a feasible point exists, the 

search is stopped, and the problem is considered feasible. If no feasible point exists, the 

problem is deemed infeasible. 

Definition 6 (Infeasible problem) A problem is infeasible if there is no observation  𝒐𝒊 in 

the unique set of observations such that  𝒐𝒊=0. 
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6.6. Collecting data and parameters 

6.6.1. Collecting constraint data 

To collect data for mining, constraint checks are randomly generated in an 

iterative fashion. The maximum number of iterations (𝑛𝐼) and the maximum number of 

constraint checks (𝑛𝑇) are given (in Section E2 of the layout). The number of constraint 

check samples for each iteration (𝑛𝑛) is as in Eq. (29): 

 𝑛𝑛 =
𝑛𝑇
𝑛𝐼

 (29) 

The parameter 𝑛𝑇 should be chosen based on the computational intensity, 

number of variables and number of constraints. For problems with computationally 

inexpensive constraints, thousands of samples can be tested. For computationally 

expensive constraints, fewer may be budgeted. Each iteration, 𝑛𝑛 random samples are 

evaluated by 𝒈(𝒙), and the result is added to the table of Boolean observations. Rules 

are then mined using the method described in this paper. The stopping criteria for the 

iterative process are a number of iterations (𝐼𝑠) have occurred without a change in rules, 

or that a maximum number of total observations have been sampled. Figure 66 shows 

the data generation process, where 𝑛𝐼𝑠 is the maximum number of iterations that may 

occur without change before stopping. 

Add nS 
random 
samples

Analyze 
constraint 

data for rules

Stop and 
report 
rules

Is>nIs or
 nSamples>nT ?

 

Figure 66 Data generation flowchart 

It is important to note that there is no theoretical guarantee on the number of 

observations required to establish correct rules. In fact, even if the conditional probability 

of a rule is 100%, based on the limited sample data, it may change if additional data is 
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added. This is an inherent limitation of probabilistic methods. Therefore, if constraints 

are suppressed based on the rules found, it is suggested to confirm that the final solution 

is feasible by testing it against all constraints (including those which were suppressed). 

The data may also be visualized as shown in Chapter 5.  

6.7. Examples and Results 

6.7.1. Two-Variable Mathematical Examples 

Problem Definition 

In this section, constraint mining is tested on two-dimensional mathematical 

examples which can be easily visualized as in Figure 67. The arrows in Figure 67 

indicate the direction of feasibility. The first problem has seven constraints, including one 

nonlinear constraint. The second problem is from Telgen’s chapter in [11] (p.57), 

including 8 linear constraints. The problems are defined algebraically in Table 12 and 

Table 13, respectively.  In Example 1, it is clear that 𝑔3 and 𝑔7 are multiples of one 

another. Furthermore, 𝑔2 is a tighter restriction than 𝑔5. In Example 2, the patterns are 

less obvious from the equations, but can be seen visually in Figure 67. Namely, 𝑔2 has 

no influence on the feasible space, due to the combination of 𝑔6 and 𝑔3.  

Table 12 Constraint mining Example 1 

𝑔1:  − 𝑥1 − 𝑥2 ≤ 0 
𝑔2:       𝑥1 + 𝑥2 ≤ 5 
𝑔3:                 𝑥1 ≤ 3 
𝑔4:              − 𝑥2 ≤ 0 
𝑔5:         𝑥1 + 𝑥2 ≤ 6 
𝑔6: − 𝑥1 + 𝑥22 ≤ 0 
𝑔7:            2(𝑥1) ≤ 6 

Table 13 Constraint mining Example 2 

𝑔1:            𝑥1 − 𝑥2 ≤  2 
𝑔2:      2(𝑥1) + 𝑥2 ≤  7 
𝑔3:                      𝑥1 ≤  2 
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𝑔4:  − 𝑥1 + 2(𝑥2) ≤ 4 
𝑔5:               2(𝑥2) ≤  5 
𝑔6:           𝑥1 + 𝑥2 ≤  4 
𝑔7:                  − 𝑥1 ≤  0 
𝑔8:                  − 𝑥2 ≤  0 

 

  

Figure 67 Example 1 (left) with 1200 samples and Example 2 (right) with 1600 
samples (dark is feasible). 

Constraint mining results 

The results from constraint mining are presented in Table 14 and Table 15. The 

settings assume that a single contradictory case is sufficient to discredit a rule; therefore, 

𝑚𝑖𝑛𝑠𝑆𝑝𝑝 = 0 and 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 = 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 = 1. In Example 1, 1200 samples were tested. In 

Example 2, 1600 were tested. The number of iterations without a rule change (𝑛𝐼𝑠) was 

set to 5, and 𝑛𝑇 = was set to 2000 with 𝑛𝐼 = 10 (𝑛𝑛𝑖 = 200). The results from Table 14 

are correct by inspection of Figure 67. 

 The results from Table 15 illustrate the probabilistic nature of the method. 

Although the first two rules are correct, the third rule is false. Indeed, there is an area (A 
in Figure 67) that is uniquely restricted by 𝑔5, meaning 𝑔5 is not covered. Unfortunately, 

no sample was generated in that region during random sampling. Consequently, from 

the constraint data, 𝑔5 has no case where it is violated and others (𝑔6 & 𝑔4) are not. 
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Thus, it is covered based on the collected observations. This illustrates the pitfall of 

using a probabilistic method.  

Table 14 Example 1 Rules 

Rule Rule Conditional Probability Rule Type 
‘g3 and g7 co-occur’ 100% Co-occurrence 
‘g5 is redundant to g2 by implication.’ 100% Implication 
‘g1 is covered due to the union of other constraints’ 100% Covering 

Table 15 Example 2 Rules 

Rule Rule Conditional Probability Rule Type 
‘g1 is covered due to the union of other constraints’ 100% Covering 
‘g2 is covered due to the union of other constraints’ 100% Covering 
‘g5 is covered due to the union of other constraints’ 100% Covering 

6.7.2. Pressure Vessel Design Example 

The PV problem, from Chapter 3, was also tested using constraint mining. For 

this problem, 1200 samples were generated, with 𝑚𝑖𝑛𝑠𝑆𝑝 = 0.1, 𝑚𝑖𝑛𝑗𝑆𝑐𝑐 = 𝑚𝑖𝑛𝑐𝑆𝑛𝑓 =

0.9. The data generation parameters are the same as in the previous examples with the 

exception that 𝑛𝑇 was raised to 4000, to account for the larger design space of 4 

variables. The resulting list of rules is shown in Table 10.  

Table 10: Rules for continuous pressure vessel design optimization 

Rule Rule Conditional Probability Rule Type 
'Violations in g2 are redundant due to g1 by 
implication.’ 

99.8% Implication 

Surprisingly, it was found that violations in g2 imply g1 in ~99% of samples. 

Therefore, constraint g2 could be suppressed (with the risk that the optimum falls into 

the 0.2% of cases where the rule is false). Optimization was subsequently performed 

with and without g2 using TR-MPS. The best design found in both cases is 𝑓∗ = 7006.8, 

at 𝑅∗ = 51.8”, 𝑇𝑠∗ = 1", 𝐿∗ = 84.6" and 𝑇ℎ∗ = 0.625". This suggests that g2, really has no 

effect at the optimum.  
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To verify association rules beyond 2D, the underlying constraint check data can 

be visualized as in Chapter 5. The constraints g1 and g2 are shown below as scatterplot 

matrices. It is clear that the restriction of g1, covers the same points as g2 but is stricter 

on the variable R.  

 
Figure 68 Constraints: g1 (left) and g2 (right) of the PV problem (dark is feasible). 

6.8. Summary 

This chapter presented a systematic method to find redundant constraint groups 

in black-box optimization problems. Association analysis, from data mining, was applied 

for constraint redundancy identification, which is a new application for the method.  

Rather than directly applying association analysis, this work developed a sequential 

method and theorems for constraint redundancy identification. In specific: 

1. A new method is proposed to find constraints that co-occur, using Jaccard 

similarity, before performing association analysis on the remaining frequent 

itemsets. This prevents the generation of many unnecessary association rules.   

2. Additional limitations were added to a priori rule generation. In particular, it was 

shown that implication rules with more than two items do not provide additional 

information for constraint redundancy identification.  

3. Additional redundancies (due to covering) are checked on the remaining itemsets 

using a reduced set of observations as in the set-covering approach.  
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4. The result of the proposed method is a set of readable rules that the user may 

choose to act on, as opposed to a reduced set of constraints as in other 

redundancy identification methods. 

The method was first applied to mathematical problems. It was found that the 

rules summarize the relationship among constraints. However, it was also pointed out 

that, due to the method’s probabilistic nature, the accuracy of the rules depends on the 

sample points.  An incorrect rule was mined due to a lack of sampling in a particular 

region for one test example. The method was then applied to the PV problem. 

Surprisingly, it was found that a design constraint for this benchmark problem is likely 

redundant. The rules were validated using multivariate visualization. Although the 

presented method cannot guarantee correctness, constraint rules provide design 

engineers with new information of how their constraints restrict the design space. 

Ultimately, this provides a starting point for comparing constraints visually, and may lead 

to improved problem formulations. The following chapter focuses on a case-study of 

applying the developed interactive optimization framework. 
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Chapter 7. Robotic Automotive Assembly Station 
Optimization – Case Study 

In this chapter, the black-box optimization visualization framework is applied to 

the optimization of automotive assembly station planning. First, the specific optimization 

goal is described in standard form. Next, the results from an application specific tool are 

compared to the results using the general optimization visualization framework. Although 

the application specific visualization is more intuitive; this application illustrates how a 

general framework may be applied to a real industrial application in the absence of 

additional visualization. 

7.1. Robotic automotive assembly optimization problem 
description 

In robotic automotive assembly, fixtures and clamps hold sheet metal parts in 

position while welding as shown in Figure 69. These fixtures contain locating pins which 

slide into holes and slots (which restrict the parts from translating or rotating) [107]. The 

holes and slots are the other half of the locating system called “locators”. In practice, 

parts are also clamped down (at various positions on the part). Clamps are omitted in 

the following examples for simplicity, but may also be modeled and optimized using the 

same approach. Furthermore, in this analysis parts are assumed to be rigid.  

To move the parts on and off the fixtures (by robotic arms), there is a slight 

clearance between the pin and the hole or slot. Unfortunately, a clearance also means 

that the parts may “jiggle” before being clamped, creating variance in part assemblies. 

Furthermore, the location and sizes of holes and slots will vary slightly each time a blank 

is manufactured, according to design specifications, typically on the order of 0.1mm for 

large automotive parts. Overall, it is desirable to place the locators in a configuration 

such that the variance in part assemblies is minimized. This can be achieved by 
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simulating many assemblies in CAD (i.e. DCS Analyst), with differing locating schemes, 

and comparing the variance of alternative fixture configurations. 

 
Figure 69 Possible locator configurations for two plates 

Two methods to quantify the overall variance of assembly simulations are shown 

in Figure 70. In Option 1, the variance is computed on a single corner-to-corner distance 

measure. In Option 2, the distance from nominal is measured at multiple key product 

characteristics (KPC) points on the parts which are then squared and aggregated (as in 

Eq. (2) with equal weights) as an overall measure of assembly variance. Key product 

characteristic points are points which must be near their nominal position to ensure the 

safety and quality of the vehicle. 
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Figure 70 Possible measures to quantify variance 

7.2. Optimization problem formulation 

The objective of optimization is to minimize the variance in part assemblies by 

changing the placement of locators on fixtures. Figure 71 shows the coordinate system 

for parts and locators. For a three part assembly, with two-locators per part (hole and 

slot), there are 12 variables in total (X-Z locations for each locator). In reality, there is 

also a Y (out of page direction) coordinate to consider. However, the Y coordinate may 

be automatically computed based on the X-Z location and can be considered as a 

dependent variable.  

In this problem, the design space is specified by a discrete list of possible 

positions for each locator on the part. The design variables are offsets for each X and Z 

coordinate of the locator, starting from an initial location. The objective function is to 

minimize the sum-of-squares of 14-KPC Point variances (variance is computed over 

2000 assemblies for each configuration, simulated by DCS Analyst). Although there are 

constraints in practice (e.g. avoiding overlapping locators), they are omitted for this 

simplified example, creating an unconstrained optimization problem. The objective 

function is explicitly written as in Eq. (30).  

 
min𝑓(𝒙) = �𝑉𝑖2

14

𝑖=1

 
(30) 
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In Eq. (30), 𝑉 is proportional to the variance of the Euclidean distance of a KPC 

point (i) from its nominal position. Specifically, 𝑉 is 6 times the standard deviation of 

2000 assembly simulations in DCS Analyst. The variables 𝑥1 … 𝑥12 are the x-z offsets of 

locators. Figure 71 shows a simplified model of the assembly optimized. The assembly 

consists of three parts (labeled A, B and C) forming a structural sub-assembly of the 

side-panel for a larger vehicle.  

 
Figure 71 Base of automotive side panel with potential locator positions 

The initial locator positions (with 0 offsets) are as follows in Figure 72. The 

objective value with this configuration is considered to be the “baseline” (i.e. the 

minimum performance that is acceptable) with a value of 0.32𝑚𝑚2.  
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Figure 72 Baseline configuration of locators 

7.3. Results and discussion 

In Figure 73, all of the points with variance lower than the baseline are 

highlighted using a performance region after a TR-MPS optimization with 5000 samples 

(~3 hours runtime). From the results, the objective can only be slightly reduced by 

offsetting holes and slots (from 0.32𝑚𝑚2 to 0.297 𝑚𝑚2). Perhaps more interesting, is 

the clear outlier. This outlier (with a value of 964 𝑚𝑚2) was selected using the data 

table, then exported and plotted with an application specific visualization (also developed 

by the author). The result is shown in Figure 74. Figure 74 illustrates the reason for the 

outlier: the locators of Part C are concentric, allowing the part to rotate freely around the 

center of the hole/slot. Indeed, a constraint which ensures locators do not overlap is 

clearly necessary. With this information a constraint may be added in the optimization 

process to eliminate the outliers from the set of feasible data. 
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Figure 73 Locator offsets resulting in a lower variance than the baseline 



 

100 

 

Figure 74 Outlier configuration (Part C is free to rotate) 

Figure 75 shows the optimal design, also selected from the sorted data table. For 

Part A, the results suggest to completely lower the hole, as indicated by the maximum 

negative Z offset. The slot, on the other hand is moved up, as shown by the large 

positive offset in Z. For Part B, the hole is moved to the bottom right (large positive X 

offset and negative Z offset) and the slot is moved to the top left (large negative X offset 

positive Z offset). In Part C, the Hole is moved to the top right and the slot to the bottom 

left. Overall, from Figure 75, the suggested offsets can be readily determined. However, 

the designer must interpret the meaning of each numeric value, and how it relates to the 

initial locator scheme. In other words, the results are not immediately clear, and require 

some thought.  

Alternatively, the results may be plotted as in Figure 76. Here, it is instantly clear 

how the recommended locator configuration is arranged on the parts. The results can be 

understood pre-attentively (without cognitive effort). Namely, the locators are spread to 

the corner of the parts for this particular assembly. On the other hand, this visualization 

required knowledge about the optimization problem. Each offset had to be added to an 

initial X-Z location, representing the final position of a particular locator. In practice, a 

general visualization framework may be useful to generate data and identify sub-regions 

of the data. The region can then be exported into an application specific tool if available. 
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Figure 75 Locator offsets which generate the lowest assembly variance 

 
Figure 76 Application specific visualization locator offsets at minimum 
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The design region bounding the points from 0.297 to baseline (the orange area in 

Figure 73) was also added as a design region using the (“Add as design region button”). 

The worst sampled performance in the design region is 0.45𝑚𝑚2. In an attempt to 

further investigate the extremes of this region, a metamodel was also built.  However, a 

second-order polynomial regression is clearly not suitable for metamodeling this region 

as shown in Figure 77. This is confirmed by an NRMSECV of 0.12 and an R-Square of 

0.47. Therefore, the simple metamodel cannot predict a worst or best case performance 

for the region. PCA-HDMR is even further off with a NRMSECV of 23. 

 
Figure 77 Metamodel of region bounding the points which are lower than baseline 

Aside from design data, additional information about the optimization process 

may be gained from the convergence chart shown in Figure 78. For example, there was 

no improvement in the last 168 TR-MPS iterations (the optimum was found in iteration 

357). This suggests that the algorithm has converged. 

 
Figure 78 Three part assembly optimization convergence chart 
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7.4. Summary 

This chapter presented an automotive assembly station optimization project, as 

an application for visualization in support of design optimization. It was shown that the 

framework introduced in this thesis is able to reveal some helpful information about the 

optimization problem. For example, after finding and investigating an outlier it became 

clear that a constraint preventing the overlap of locators is necessary. On the other 

hand, this chapter also shows that using an application specific visualization is ideal. For 

instance, in this case, the locator offsets can be added to the initial positions and directly 

plotted on the parts as glyphs. Nonetheless, in the absence of further information about 

the problem or geometry, parallel coordinates and general information visualization may 

be a starting point for further investigation. 
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Chapter 8. Summary and Future Work 

8.1. Summary 

This thesis presents a framework to visualize data in optimization problems with 

the goal of providing more transparency about the optimization problem and process. By 

visualizing data during optimization, the designer may interject and make adjustments to 

their problem, such as directing the search between new search bounds or adjusting 

constraints. New features that were developed in this integrated design optimization 

framework that separate this work from others are listed as follows.  

In this work, an emphasis is placed on defining sub-regions of the design or 

performance spaces to track optimization progress. Clustering may further split the 

region into sub-spaces automatically. Additionally, users may use an adjacent two-

dimensional projection or data table to select data manually. Principal-component-

analysis was applied to generate a two-dimensional projection that captures the most 

variance in the selected designs. Once regions are defined, they may be modeled with a 

polynomial regression or HDMR, which can replace the expensive simulation if the 

model is valid in the region. Model validity is estimated using cross-validation with the 

option of adding additional test points. This local model may be used to predict the 

performance extremes of the selected region using a local optimization on the 

metamodel. Besides showing the convergence of the design space, the current optimum 

value is plotted against the iteration; and the iterations which generated the selected 

data are highlighted. Furthermore, users may navigate to past iterations to see when 

data was introduced, and how the sampling strategy biases later samples. 

Aside from visualization, an algorithm, incorporating association analysis, is 

presented to automatically identify redundancies in constraints which can be confirmed 

visually. This algorithm finds relationships between constraints as rules that may be 
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used to suppress constraints, simplifying the problem formulation and potentially 

reducing the number of constraint checks during optimization. 

An application was presented for the optimization of robotic automotive assembly 

station fixtures. This example showed how visualization may assist in identifying missing 

information from the problem formulation. For example, it is clear that constraints must 

be added to ensure that locators do not overlap. It was also shown that although a 

general visualization tool is beneficial, an application specific visualization may be far 

more efficient if available. 

8.2. Future Work 

Although this work progresses multivariate visualization in support of optimization 

by visualizing convergence in design data, many improvements may still be made. For 

instance, a key limitation is that the visualization techniques may become 

incomprehensible with many variables (e.g. more than 20). For example, if a problem 

has 100 variables, it is difficult to follow a single polyline in parallel coordinates. Similarly 

the scatter plots in a scatterplot matrix become too dense to read and too costly to 

compute. To overcome this, a more in depth analysis of the data, prior to visualization, is 

required. For instance, using a global metamodel, such as HDMR, a subset of variables, 

that significantly influence the output, may be grouped. Alternatively dimensionality 

reduction techniques, such as PCA, may aggregate variables into a limited number of 

components for display. This work extends visualization of the optimization process 

beyond three dimensions. However, there is undoubtedly progress to be made in 

visualizing optimization of many variables. 
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Appendix  
 
Additional Mathematical Details 

Mathematical procedure of PCA on optimization design data 

The mathematics of PCA is well established and presented here. It can be summarized 
as a four step process. 

Step 1a- Preprocessing: Data standardization 

The first step in performing PCA, for optimization, is to standardize the design space 
between [0,1]. This ensures that each variable has the same impact, regardless of range 
or units. For example, in the PV problem, if the data were not standardized, 𝐿 would 
account for most of the variance, as its range is between 25 and 240. On the other hand, 
if the tested designs are standardized, each variable is treated with equal weight.  

Standardization can be achieved through the following equations: (31) or (32). Eq. (32), 
(a.k.a. normalization in statistics), is most common for PCA in general. However, Eq. 
(32) assumes a normal distribution for each attribute when computing 𝝈(𝑿) (the variable 
value standard deviations). This assumption is not valid for optimization, where data is 
biased towards the optimum, or user selected regions. Therefore Eq. (31) is used for 
standardization. In Eq. (31) and (32), 𝑫𝑳 and 𝑫𝑈 are the lower and upper bounds of the 
design space (respectively).  

 
𝒙𝑠𝒊 =

𝒙𝒊 − 𝑫𝐿

𝑫𝑈 − 𝑫𝐿
 

(31) 

 
𝒙𝒔𝒊 =

𝒙𝒊 − 𝝁(𝑿)
𝛔(𝐗)

 
(32) 

Step 1b- Preprocessing: Data centering 

The second step is to center the data such that the mean the data for each attribute is 
zero. This step is called data centering and is accomplished by simply subtracting the 
mean of each attribute (column of 𝑿𝒔) from each design.  

𝒙𝒊′ = 𝒙𝒊 − 𝝁(𝑿𝒔) (33) 

Step 2- Computing the covariance matrix 

Once the data is preprocessed, the next step is compute the sample covariance matrix 
of 𝑨. The preprocessed version of 𝑿 will be denoted as 𝑨 = 𝑿′ to avoid confusion. 
Covariance is a measure of how a pair of two variables changes together. For example, 
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if the increase in one variable indicates the increase of another variable, they have 
positive covariance; if the increase of one variable indicates the decrease of another 
they have negative covariance. The notation 𝒂∗𝒋 means all of the (preprocessed) sample 
values for the 𝑗𝑡ℎ variable, while 𝝁𝑗 is the mean of that column. Sample covariance (the 
estimated covariance based on the sample of data) can between two attributes (𝑗 and 𝑘) 
can written as in Eq. (34): 

 
𝑠𝑗𝑘 = 𝑐𝑆𝑐�𝒂∗𝒋,𝒂∗𝒌� = 𝐸[(𝒂∗𝒋 − 𝝁𝑗)(𝒂∗𝒌 − 𝝁𝑘)] =

(𝒂∗𝒋)𝑻(𝒂∗𝒌)
𝑚 − 1

 
(34) 

Note that since the data is centered such that the mean is zero, 𝝁 is eliminated in (34). 
The overall sample covariance 𝑺  matrix (of size 𝑛𝑥𝑛) can be written as in Eq. (35). 

 
𝑺 =

𝑨𝑇𝑨
𝑚 − 1

 
(35) 

Step 3 Eigenvectors and Eigenvalues of S 

The covariance matrix summarizes which attributes vary together with sign and 
magnitude. If 𝑺 is thought of a scaling matrix for a vector 𝒖 ∈ 𝑼, then the multiplication 
𝑺𝒖 is proportional to the data variance in the direction 𝒖. To find the matrix 𝑼 and the 
values 𝒖 ∈ 𝑼, which maximize 𝑺𝒖, Eigen-decomposition can be performed on 𝑺. The 
matrix 𝑼 is simply the set of eigenvectors of 𝑺. Furthermore, the eigenvectors 
corresponding to the largest eigenvalues represent the most variance as shown Eq. (36) 
(𝑺𝒖 increases with 𝜆). Therefore, 𝑼 can be sorted column wise, by the values of 𝜆, such 
that the first columns represent the orthogonal directions of maximum variance. 

𝑺𝒖 = 𝜆𝒖 (36) 

Step 4 Projection of standardized points onto Eigenvectors 

The last step is to simply plot all of the (standardized and centered) designs from 𝑨 in 
the two directions that maximum variance of the selected points 𝒖𝟏  and 𝒖𝟐  (the 1st and 
2nd principal components) as in Eq. (37).  

𝑨𝒑𝒑𝒐𝒋𝒆𝒄𝒑𝒆𝒑 = [𝑨𝑆1 𝑨𝑢2] (37) 

This completes the overall process of PCA.  
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