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Abstract 

The innate immune response is a critical branch of immunity, providing a first line of 

defense against pathogens and shaping subsequent adaptive immune responses.  The 

complexity of this system necessitates the application of systems-level approaches.  

InnateDB is an integrated web-accessible database and systems biology platform being 

developed to facilitate the systems level analysis of innate immunity pathways and 

networks.  One of the aims of this thesis was to enhance InnateDB with bovine data, 

thereby providing a resource for investigation of this agriculturally important model 

organism.  Using an orthology based approach, over 70% of InnateDB’s human protein-

protein interactions (PPIs), and a similar fraction of human pathways were reconstructed 

in cow and integrated into InnateDB. 

Pathway analysis, the statistical association of observations at the molecular level with 

processes at a more systems level, plays a crucial role in the interpretation of high-

throughput experimental datasets.  A widely neglected challenge in pathway analysis 

relates to the handling of multifunctional genes.  I therefore developed SIGORA, a novel 

pathway analysis method that identifies genes and gene-pairs that are unique signatures 

of a pathway and examines their over-representation in a given list of genes of interest 

(e.g. the list of differentially expressed genes in an infectious condition).  With several 

biological datasets, SIGORA outperformed traditional methods, delivering biologically 

more plausible and relevant results.  This was also reflected in significantly lower false 

positive rates for simulated datasets. 

An additional challenge in high-throughput dataset interpretation concerns the lack of 

functional annotation for many genes.  The guilt by association (GBA) principle was 

applied in a conservative manner to a large tissue expression dataset (105 Tissues, 

13000 genes) to infer gene functions from co-expression data.  Overall, 180 previously 

un-annotated bovine genes were assigned a putative function by this approach.  In 20% 

of the cases, the inferred function was additionally supported by literature in other 

species. 



 

v 

microRNAs are emerging as important innate immune response regulators and as 

biomarkers of disease.  Determining microRNA functions requires the identification of 

their targets, yet computational prediction of such targets is challenging.  As part of a 

group investigating microRNA roles in bovine mastitis, I used a combination of prediction 

tools to compile a list of likely targets.  Here, the overall emerging picture (including 

pathway enrichment) is consistent with our current understanding of this condition.  

Collectively this work provides new tools and insights that may more broadly be used to 

improve systems-based analysis of bovine and other mammalian responses.  

Keywords:  Computational Biology; Bioinformatics; innate immunity; bovine infectious 
diseases; pathway analysis; miRNAs. 
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Glossary 

Term Definition  

Adhesion Molecule 

Any of a large number of cell-surface molecules of several different 
classes that affect the binding of one cell to another or to the 
extracellular matrix. 

Antibody 
A protein produced by the immune system in response to an antigen, 
often a virus or bacterium. 

Autoimmune Disease 
Disorder in which the immune system mistakenly attacks and destroys 
body tissue that it believes to be foreign. 

B Cell 
A cell produced by the bone marrow that becomes either a memory 
cell or a plasma cell that forms antibodies against a foreign substance. 

Chemokine 

Molecule that causes white blood cells such as neutrophils and 
monocytes to move throughout the body (e.g., toward an infected 
site) via the process of chemotaxis. 

Chemotaxis Movement of a cell toward or away from a chemical substance. 

Complement System 

Cleavage cascades involving a set of molecules (primarily produced by 
liver) in the blood; activated by the presence of bacteria, injury or 
other immune triggers, causing a range of responses associated with 
starting and maintaining inflammation. 

Cytokine 
Secreted proteins and signaling molecule that control cell-cell 
interactions in course of inflammation.  

Endogenous Arising within the body or derived from the body. 

Endocytosis 
Engulfment of molecules by a cell, leading to their absorption. An 
important subtype is phagocytosis. 

Endotoxin 
Poison in bacterial outer membranes that is harmful to the body, see 
lipopolysaccharide. 

Eosinophil 
Amoeba-like scavenger leukocyte (white blood cell) that disposes of 
cellular debris; often involved in allergic responses. 

Epithelial Cell 

One of the closely packed cells in a thin layer that covers the internal 
and external surfaces of the body, including body cavities, ducts and 
vessels. 

Exogenous Originating outside the body. 

Genome All the genetic material in the chromosomes of a particular organism. 

Immune system 
The body's system for protection against infection and disease; 
involves immune cells, antibodies, and other molecules. 
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Infection  
Invasion of the body by harmful microorganisms such as viruses, 
bacteria, fungi, or parasites. 

Infectious disease Disease transmitted by microorganisms. 

Inflammation The immediate, stereotyped defensive reaction to any injury. 

Inflammatory 
Mediator Molecule inside or outside the body that plays a role in inflammation. 

Interferon 
Molecule (protein) produced by virally infected cells that helps the 
body fight off viral infections. 

Interleukin One of a class of cytokines that act as inflammatory mediators. 

Leukocyte 
White blood cell; acts as a part of the immune system by destroying 
invading cells and removing cellular debris.  

Lipopolysaccharide 
Poison in outer membranes of (gram negative) bacteria that is harmful 
to the body; see endotoxin. 

Lymphocyte 

Type of leukocyte (white blood cell) that mainly resides in lymphatic 
tissue (e.g., the lymph nodes) and is active in immune responses, 
including the production of antibodies; two types include B cells and T 
cells. 

Macrophage 

Type of large leukocyte (white blood cell) that uses a process called 
phagocytosis to eat bacteria and digest cellular debris; during 
inflammation, develops the ability to produce inflammatory molecules. 

Mast cell 
Type of leukocyte (white blood cell) found in connective tissues that 
produces histamine and other inflammatory molecules. 

Monocyte 

Type of leukocyte  with large, kidney shaped nucleus; engulfs and 
breaks down debris and invading cells; can mature into macrophages 
or dendritic cells. 

Neutrophil 

The most abundant type of leukocytes in the blood.  Neutophils are 
short lived first responders that travel through the blood to an infected 
or injured site via a process called chemotaxis. 

Nitric Oxide 
A highly reactive gas that is involved in a wide array of biological 
functions and functions as a part of the body's immune system. 

Orthologs 

Homologous genes that originated by vertical descent from a common 
ancestral gene in the last common ancestor when the species 
diverged. 

Pathogen Microorganism that causes disease. 

Phagocytosis 
A type of endocytosis in which solid molecules (such as bacteria or cell 
debris) are engulfed by phagocytic cells (e.g. macrophages). 

Prostaglandin 
Any of a class of hormone-like molecules that participate in diverse 
body functions including inflammation. 



 

xx 

Protein 

A large molecule encoded by a gene; they are required for the 
structure, function, and regulation of the body's cells, tissues, and 
organs; examples include hormones, enzymes, and antibodies. 

Proteome 
All the proteins made by a cell, organ, or organism at a particular time 
and under specific conditions. 

Sepsis 

Amplified systemic inflammation subsequent to infection or injury; 
typical symptoms include fever, mental confusion, and organ (lung and 
kidney) failure. 

Systemic Inflammation Inflammation throughout the body. 

T Cell 
A type of cell produced by the thymus that plays a major role in 
immune reactions. 

Toll-Like Receptor 
[TLR] 

Molecule on cell surfaces that helps the body sense the presence of 
endotoxin and other microbial products, and sends an alert to the 
immune system. 

Tumor Necrosis Factor 
[TNF] 

A member of a family of cytokines that induce cell death (apoptosis). 
Produced primarily by monocytes and macrophages. 
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Chapter 1.  
 
Introduction 

1.1. Burden of infectious disease 

Infectious diseases are directly responsible for approximately a quarter of all 

annual human deaths (15 out of 57 million), with the majority of fatal cases occurring in 

the developing world (Morens, Folkers, and Fauci 2004).  Even in non-lethal cases, the 

burden posed by infectious agents on productivity and quality of life for affected 

individuals is substantial and results in considerable economic loss.  In addition to these 

direct and immediate threats, it is now increasingly clear that the dysregulation of the 

mechanisms responsible for detecting and combating infections is a contributing factor in 

the pathogenesis of non-infectious diseases like auto-immune disease, diabetes, and 

cancer (Lehuen et al. 2010; de Martel and Franceschi 2009; Marshak-Rothstein 2006).  

Last but not least, infectious diseases of domesticated plants and animals also pose 

additional serious global threats on several levels, including food security (e.g. limitation 

of available protein resources), food safety (e.g. antibiotics residues in milk and meat of 

treated animals), food borne pathogens (e.g. E. coli, Salmonella) and economics (e.g. 

milk yield loss due to bovine mastitis).  In the US alone, there are an estimated 48 million 

cases of food borne illnesses per year, including 128,000 hospitalizations (Scallan et al. 

2011).  Worldwide, 1.3 billion cases of gastroenteritis and 3 million deaths due to 

Salmonella are reported each year (Gonose et al. 2012).  Long term health 

consequences (sequelae) of infection by food borne pathogens may include kidney 

damage (E. coli O157:H7), neurological disorders (Listeria monocytogenes) and reactive 

arthritis (Salmonella Blockley) (Batz, Henke, and Kowalcyk 2013; McKenna 2012; I. G. 

Wilson and Whitehead 2006).  
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1.2. The importance of infectious disease in cattle 

Of course, infectious disease is not only important for potential impacts on 

human health, but also has important consequences directly for animal health. In the late 

19th century, trade introduced Rinderpest (‘the plague of the cow’) to Ethiopia.  For 

centuries, Rinderpest had been endemic to Eurasia, where it killed about 30% of the 

cattle in affected herds.  In its new environment, Rinderpest proved even more deadly:  

between 1892 and 1900, Rinderpest killed more than 90% of sub-Saharan cattle and 

decimated 40 other animal populations, including buffaloes, elands, wild swine, sheep, 

goats, antelopes, gazelles and giraffes.  The ensuing, long lasting famine cost countless 

human lives (Morens et al. 2011).  Rinderpest is a viral disease, which is caused by the 

Rinderpest virus (RPV), and there is strong evidence that the human Measles virus (a 

pathogen responsible for the death of over 100,000 children a year as of 2009) diverged 

from the Rinderpest virus in large Middle Eastern cities in the Middle Ages (Furuse, 

Suzuki, and Oshitani 2010), with a common ancestor possibly infecting both humans 

and cows.  After a long, coordinated global vaccination campaign, Rinderpest was 

eradicated in 2010, making it only the second infectious diseases (after smallpox) in any 

species to ever have been formally and globally eradicated (de Swart, Duprex, and 

Osterhaus 2012).  

The history of Rinderpest illustrates several important aspects of animal 

infectious diseases: their multi-host-character and potential to spread to other species, 

the threat they pose to human food security, the unforeseeable extent they take in new 

environments, and how manmade factors  can exasperate these threats. 

1.2.1. Zoonotic diseases and emerging diseases 

An interesting question regarding emerging human diseases is ‘where do these 

diseases emerge from?’ Overall, only few human infectious diseases –old or new- are 

entirely human-specific: Most human pathogens also circulate in animals or else 

originated in nonhuman hosts (Lloyd-Smith et al. 2009; Greger 2008).  Approximately 

60% of all known human pathogens, and over 70% of emerging diseases of the past 

decades have been reported to be of zoonotic origin (Woolhouse and Gowtage-Sequeria 

2005; Jones et al. 2008). 
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Testing complex hypotheses on disease emergence and chains of transmission 

is difficult, in part due to the multihost ecology of zoonotic infections and in part, because 

much less is known about infectious agents of wildlife, livestock and companion animals 

than of humans (Daszak et al. 2013; Parrish et al. 2008). Conceptually, it seems clear 

that emerging viral diseases are almost by definition of zoonotic origin, because viruses 

are obligate parasites (Wain-Hobson and Meyerhans 1999). Viral host-switching can 

involve several steps, including contact between the virus and the host, infection of an 

initial individual leading to amplification and an outbreak, and the generation (within the 

original or new host) of viral variants with the ability to spread efficiently between 

individuals in populations of the new host (Parrish et al. 2008).  For livestock viruses, the 

ability of a virus to complete replication in the cytoplasm has been reported to be a 

strong predictor of cross-species transmission (Pulliam and Dushoff 2009). 

 A historic example of a human disease ‘born on farm’ is  smallpox, which -after 

being introduced by landing Europeans- contributed to the loss of 90% of indigenous 

human populations in the Americas.  Smallpox –at that time, an ‘emerging disease’ for 

native Americans- is believed to have arisen from camel domestication, with camelpox 

virus having a cowpox-like ancestor.  The susceptibility of native Americans to this and 

other old-world diseases is attributed to the fact that unlike the landing Europeans, these 

populations had never been exposed to the virus before, because there were no 

domesticated cows or camels in Americas, i.e. no close contact between the old and the 

new host (Wain-Hobson and Meyerhans 1999; Greger 2008).  Although smallpox has 

been eradicated, poxviruses have a broad host range and new cases of human infection 

by other poxviruses originating in cattle (including “Brazilian  Cantagalo and Araçatuba 

Vaccinia viruses” , “Buffalopox virus” and “Cowpoxvirus”) continue to (re-) emerge  

(Essbauer, Pfeffer, and Meyer 2010).   

An example for a bacterial pathogen affecting both human and cattle is 

Mycobacterium bovis. The animals are infected by inhaling or ingesting the bacterium, 

which is then shed in their respiratory secretions, feces, and milk.  Before the 

introduction of pasteurization, M. bovis contaminated milk was responsible for large 

outbreaks of ‘consumption’, an often lethal wasting disease which started with symptoms 

in the lungs.  Clinically indistinguishable from M. tuberculosis,  M. bovis is still estimated 

to be the causative agent of 3.1% of all human TB cases worldwide, with higher 
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prevalence in Asia and Africa (Ayele et al. 2004).  As for its effects on the cattle industry, 

it  has been estimated that bovine TB  results in losses of approximately US$3 billion to 

global agriculture annually (Garnier et al. 2003). Recent outbreaks of bovine tuberculosis 

in the UK led to the culling of thousands of cows. 

Other examples of infectious diseases affecting both human and cow include 

Anthrax, Brucellosis (causing spontaneous abortion and infertility in cow and long lasting 

undulant fever and chronic fatigue in human), Trypanosomiasis (vector-borne sleeping 

sickness), Cryptosporidiosis, Dermatophilosis, Listeriosis, Salmonellosis, Ringworm , Q 

Fever, Leptospirosis and Giardiasis. 

E. coli O157:H7- first described as an emerging food-borne zoonotic pathogen in 

1982- seems to be commensal in cattle, but highly pathogenic to humans.  This and 

other emerging Shiga toxin-producing Escherichia coli (STEC) cause human illnesses 

ranging from bloody diarrhea and hemorrhagic colitis to the life-threatening hemolytic 

uremic syndrome.  Rates of human infection have been repeatedly positively correlated 

with regional cattle density (Valcour et al. 2002; Kistemann et al. 2004; Hussein 2007), 

with contamination of water resources by animal manure and consumption of under-

cooked meat being leading causes of human infections.    

1.2.2. Animal infectious diseases in a changing world 

Accelerating environmental and anthropogenic changes are altering the rates 

and nature of contact between human and animal populations, the modes of cross-

species infection, as well as the occurrence-patterns and the geographic range of 

infectious diseases (Lloyd-Smith et al. 2009; Sutherst 2004).  One example is the spread 

of Blue tongue disease (BTV) into Northern Europe (A. J. Wilson and Mellor 2009). 

Methods of farm production are tremendously varied and bring with them their 

own particular risks in terms of the introduction and transmission of infectious diseases 

(Tomley and Shirley 2009): traditional, small animal holdings - still present in parts of 

developing world- put different livestock species in close contact with each other and 

with humans which can facilitate the exchange of diseases in both directions.   

http://en.wikipedia.org/wiki/Trypanosomiasis
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Large, industrial animal farming operations on the other hand, subject the 

animals to high levels of stress, which makes ‘carrier’ animals (infected but 

asymptomatic) more likely to shed the pathogens and non-infected animals more 

susceptible to infection.  Examples include, long crowded livestock transports (‘shipping 

fever’) and densely packed feed-lots (IBR, BDV).  The intensification of food industries 

also intensifies and perpetuates cycles of infection and cross-species infection, e.g. by 

usage of animal carcasses as animal food (BSE).  Another problem associated with 

modern animal farming practices is the emergence and dissemination of multi-drug 

resistant pathogens, which is partly attributed to the use of antibiotics as growth 

promoters.   

As the growing human population is projected to lead to a 50% increase in 

demand food and particularly livestock between 2000 and 2030, new strategies for 

sustainable industrial-scale farming practices become indispensible.  As part of such 

strategies, host oriented approaches could help prevent (through vaccination, selection 

for breeding), detect (biomarkers for identification of subclinical, ‘carrier animals’) and 

possibly treat bovine infectious diseases. 

1.3. The immune system 

All multi-cellular organisms have evolved mechanisms to detect and combat 

infection.  These mechanisms are collectively termed the immune system.  Immunology, 

i.e. the study of the immune system at the cellular and molecular levels, has the potential 

to identify molecular diagnostic markers and novel therapeutic strategies and in the case 

of domesticated animals, can also lead to better breeding selection strategies.  

Traditionally, immunology has primarily focused on the adaptive branch of 

immune system, which is specific to jawed vertebrates and is centered on the antigen 

specific mechanisms of pathogen recognition and clearance by T-cells and B-cells 

(Thymus derived cells).  The adaptive (or acquired) immune system displays the 

hallmarks of an immunological memory, which underlies the great success of 

vaccination campaigns in decreasing the burden of infectious disease by priming the 
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host through exposure to dead or attenuated pathogens and antigen specific 

compounds. 

1.3.1. The innate immune system 

By the late 1980s, immunological studies seemed close to “reaching an 

asymptote”.  The main components of the adaptive immune system's recognition, 

response and immunological memory, including the structure and function of the 

antigen-specific receptors, the mechanisms of MHC (major histocompatibility complex) 

restriction, clonal gene rearrangements (that lead to creation of trillions of clones of B 

and T lymphocytes, each expressing a unique antigen receptor), lymphocyte 

development and activation, and the specificity of antibody responses seemed well 

understood and any remaining work was widely considered to be a matter of details. Yet 

it had also been observed that a vaccine’s efficacy largely depends on additional, less 

specific ingredients like lipopolysaccharide (LPS), methylated CpG and Freund’s 

complex.  The question, as to why such adjuvants are necessary for an effective vaccine 

(‘vaccine’s dirty little secret’) – and more broadly, how the adaptive response is initiated, 

lead CA Janeway to predict the existence of a class of innate immune receptors 

recognizing conserved microbial structures or “patterns”.  According to his “pattern 

recognition theory”, the activation of the adaptive immune response is controlled by the 

evolutionary more ancient innate immune system which lacks antigen-specificity, and 

vaccine adjuvants act as stimulators of these innate mechanisms (Janeway 1989).  

Over the past two decades, this “pattern recognition theory” has both 

revolutionized immunology and undergone several revisions along the way.  On the 

more praxis oriented level, several families of germline-encoded pattern-recognition 

receptors (PRRs) have been identified.  These PRRs include Toll-like receptors (TLRs), 

retinoid acid-inducible gene I (RIG-I)-like receptors (RLRs), Nuclear Oligomerization 

Domain (NOD)-like receptors (NLRs), C-type lectin receptors, and DNA receptors 

(cytosolic sensors for DNA).  Originally, PRRs were modeled as disjoint mechanisms for 

the detection of broad, nonspecific antigenic patterns, that are invariant among entire 

classes of pathogens, essential for the survival of the pathogen, and well distinguishable 

from “self”. 
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The presence of invading pathogens is commonly detected by tissue 

macrophages using families of pattern-recognition receptors.  In a simplified view, each 

receptor focuses on a unique class of such pathogen associated elements: e.g. TLRs 

1,2,4,5,6  generally recognize microbial cell wall components while TLRs 3,7,8 and 9 are 

specialized for nucleic acid structures (Dunne and O’Neill 2005).  More specifically, 

TLR4 recognizes lipopolysaccharide (LPS) from cell membrane of Gram-negative 

bacteria, TLR2 recognizes microbial lipoproteins and TLR5 detects flagellin from motile 

bacteria.   TLR3 recognizes double stranded RNA from viruses, while TLR7 and TLR8 

sense viral single-stranded RNA (which contain GU-rich or poly-U sequences) and TLR9 

recognizes CpG DNA from bacteria or viruses (which -in contrast to mammalian CpG 

DNA- is unmethylated) (Mogensen 2009).  The targeting of particular classes of 

pathogens by different sensors is achieved in part by differences in adaptor usage, 

cellular localisation and signaling cascades (Dunne and O’Neill 2005).  Similarly, RIG-I is 

involved in recognition of short dsRNAs and is important for response to (enveloped) 

paramyxoviruses and influenza viruses, whereas a structurally similar receptor, MDA5 

seems to be critical for recognition of long dsRNAs and involved in recognition of (non-

enveloped) picornaviruses and noroviruses (McCartney et al. 2008; Loo and Gale 2011).  

Engagement of receptors by microbial and fungal patterns stimulates the production of 

protein- and lipid-based inflammatory mediators such as IL-1β, TNFα (tumour necrosis 

factor α), IL-8, RANTES (regulated upon activation, normal T-cell expressed and 

secreted) and prostaglandins.  Recognition of viral patterns additionally causes the 

production of IFN (interferon)-α/β, which in turn results in changes in expression profiles 

of hundreds of interferon inducible genes.  Activated macrophages release inflammatory 

mediators that activate their surrounding cells such as epithelial and endothelial cells 

which then in turn also release pro-inflammatory mediators, cytokines and chemokines.  

The resulting inflammatory response increases vascular permeability and leads to the 

rapid recruitment of circulating leucocytes such as neutrophils and monocytes that work 

together with macrophages to clear the infection.  In mammalian systems, dendritic cells 

(DC) process the antigen material and present it on their surface to the T cells of the 

adaptive immune system, thereby acting as messengers between the innate an adaptive 

system. 

http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/T_cells
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Janeway’s original distinction between self and microbial non-self was 

subsequently expanded to include recognition of host-derived danger signals and altered 

self (signs of cellular stress, chronic inflammation, tissue damage signals, ATP and other 

self-molecules at  aberrant locations or in abnormal molecular complexes ),  as well as 

signs of ‘missing self’ (absence of ‘do not destroy’ / NK inhibitor) (Medzhitov 2009).  On 

the other hand, it is now increasingly clear that, depending on cell type and tissue 

location (e.g. skin, intestine), non-self signals from commensal microorganisms need to 

be widely ignored or tolerated.  This point brushes on another, more general recent trend 

in immunology: as many of the non-specific, “first line of defense” effector mechanisms 

of the innate response are extremely powerful (e.g. inflammation) and potentially harmful 

to the host itself, their activation has to be tightly regulated and fine-tuned, in order to 

limit the collateral damage to the host itself.  It is now becoming increasingly clear that 

the study of immunology is as much about understanding the mechanisms of immune-

modulation (i.e. how the system strikes a balance between activation and inhibition to 

avoid detrimental inflammatory responses) as it is about understanding immune 

system’s recognition, communication and effector-mechanisms. 

1.3.2. A glance at the complexity of the innate immune response 

The immune systems of higher organisms are riddled with redundancies such as 

multiple subtypes of immune agents with complementary and mutually enhancing 

antimicrobial roles, alternative response pathways, and multitudes of regulatory layers.  

In many cases, these built-in redundancies can ensure the overall functionality of the 

immune system in spite of minor local defects.  However, this robustness comes at the 

price of higher complexity.  Our understanding of the molecular underpinnings of the 

innate immune system is still in its infancy, and we are only beginning to appreciate its 

staggering intricacies.  

Complexity is inherent to the system, because the innate system has to fulfill 

several, at times conflicting, requirements and provide an effective, rapid and reversible 

response with limited resources.  It has to be ready for combating an extraordinary range 

of pathogens without prior exposure, which necessitates the availability of broad, non-

specific sensory and response mechanisms.  Despite lacking the antigen diversity of the 

adaptive response, the innate immune response must be robust to immune evasion 
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strategies employed by pathogens, while accounting for the fact that different pathogens 

exploit different host mechanisms and attempt different evasion strategies.  In the 

evolutionary arm race between pathogens and host, many pathogens have developed 

strategies to evade, manipulate or subvert PRRs or their crosstalk (Hajishengallis and 

Lambris 2011; Alto and Orth 2012; Diacovich and Gorvel 2010).  An intriguing example 

is Salmonella, which takes the activation of PRRs as a cue that it has arrived in its 

intracellular niche and initiates the appropriate changes in its own virulence gene 

expression (Keestra and Bäumler 2011). 

Once the host is infected, the system has to act rapidly to cope with the 

replication rates of pathogens, which necessitates simultaneous invocation of multiple 

pathways with synergetic effects.  Intriguingly, although the individual sensory 

mechanisms seem nonspecific, the overall response (and the development of the 

symptomatic phenotype) is more distinct.  This is partly due to the fact, that -in contrast 

to the simplified view presented above- PRRs cooperate, crosstalk and shape a 

combinatorial, more specific responses (Kawai and Akira 2011; Hirata et al. 2008; Loo 

and Gale 2011; Ozinsky et al. 2000).  For instance, the attenuated yellow-fever (YF) 

virus used in the YF-vaccine triggers 4 different TLRs; another example is Salmonella 

Typhimurium infection, which triggers TLR2, TLR4, TLR9 and, to a lesser degree, TLR5, 

and TLR7. (Arpaia et al. 2011).  

Downstream from recognition receptors, powerful inflammatory signals ultimately 

result in the activation of gene expression and synthesis of a broad range of molecules, 

including NF-κB, AP1, CREB, c/EBP, antimicrobial peptides (AMPs), immunoreceptors, 

defensins, interferons (which, in turn trigger the expression of hundreds of interferon 

inducible genes), nitric oxide, cell adhesion molecules, chemokines and cytokines 

(Kumar, Kawai, and Akira 2011; Newton and Dixit 2012).  Cytokines, in turn, 

synergistically activate various cell types to induce the production of chemokines, which 

enhance the recruitment of leukocyte (such as neutrophils and monocytes), which 

infiltrate the affected site and further amplify the response (Gouwy et al. 2012).  As for 

chemokines, the type and magnitude of their effects is extremely context sensitive and 

regulated by heteromerization.  E.g. induced monocyte recruitment by CCL7 is 

enhanced 100 times by CCL19 and CCL21, but not CCL2 (Blanchet et al. 2012).  
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Excessive production of inflammatory molecules contributes to the pathogenesis 

of inflammatory diseases such as rheumatoid arthritis and in the case of bacterial LPS, 

septic shock.  Hence, the invoked mechanisms should act in coordinated and measured 

manner and be scaled back once the threat is contained to limit the collateral damage to 

the organism itself.  Such immunomodulatory mechanisms include multiple checkpoints 

in form of several levels of regulation of gene expression like transcriptional regulation 

by Transcription Factors (TFs) (Zaslavsky et al. 2010) and posttranscriptional modulation 

by microRNA (miRNA) networks (O’Neill, Sheedy, and McCoy 2011), a range of 

posttranslational modifications (PTMs) of the sensory and communication systems 

(Moelants et al. 2013; Boone et al. 2004), cytokine networks (Blanchet et al. 2012) as 

well as crosstalk and feedback loops (Crozat, Vivier, and Dalod 2009; Mukhopadhyay et 

al. 2008) between these mechanisms within and across cells of different types.  

In many cases, the signal to resolve inflammation has been embedded in the 

signals for its initiation, i.e. the necessary mechanisms for the subsequent dampening of 

the immune response are integrated into the initial response.  One example is TLR-

mediated regulation of both inflammatory and anti-inflammatory cytokine production 

(Hirata et al. 2008).  At times, the same gene can play a role in both enhancing and 

inhibiting the inflammatory response, depending on the context.  Notably, the very 

distinction between pro- and anti-inflammatory cytokines is not always applicable, as 

demonstrated by the dual roles of the cytokine IL-10 (Mocellin et al. 2003).  Another 

example of extreme pleiotropy is T cell intracellular Ag-1 (TIA-1), which has both a 

positive and negative role in the regulation of the powerful, multi-factorial inflammatory 

protein, TNF-α (Mazumder, Li, and Barik 2010).  In the context of trafficking of 

leukocytes to inflamed sites by chemokine networks, there are well documented cases 

of chemorepulsion at high concentrations and chemoattraction at low concentrations 

(Blanchet et al. 2012).  On a cellular level, both the innate and the adaptive immune 

system employ certain cells as modulators.  For example, activated macrophages can 

be classified as the M1 (pro-inflammatory and microbicidal) or M2 (immunomodulators), 

based on characteristic gene expression profiles of e.g. ILs, TGFB, VEGF, MMPs, 

CXCL10 or TNF.  Activation of macrophages by the innate inflammatory mediator 

interferon-γ (IFN-γ) leads to the M1 response, while stimulation by interleukin-4 (IL-4) 

results in the M2 phenotype (Xue et al. 2014).  The activation has, however, been shown 
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to be plastic, rapid, and fully reversible, suggesting that macrophage populations are 

dynamic and may first take part in inflammation and then participate in its resolution 

(Benoit, Desnues, and Mege 2008).  Further complicating matters, it was recently shown 

that the presence of additional stimuli not associated with either M1 or M2 activation 

(e.g. free fatty acids or high-density lipoprotein (HDL) or combinations of stimuli 

associated with chronic inflammation) leads to a spectrum of phenotypes beyond M1 

and M2 (Xue et al. 2014). 

In addition to this inherent complexity, several additional issues further confound 

the study of the innate immune system: first, although the ‘hierarchical’ distinction 

between adaptive and immune system has been very fruitful, there is considerable 

overlap between innate and adaptive immunity and increasing evidence for (some form 

of) regulation of the innate response by the adaptive response (Costantini and 

Cassatella 2011; Clarkson et al. 2012), as exemplified by the cross talk between DC and 

NK cells (Marcenaro et al. 2012; Harizi 2013).  Second, due to their nature and function, 

innate immune mechanisms are both ubiquitous and deeply intertwined into other vital 

functions.  As all tissues are potential targets of microbial invasion, professional innate-

immune cell types (e.g. phagocytic cells, macrophages, NK-cells) reside in all tissues 

and have tissue-specific lineages with very different expression profiles that depend on 

the microenvironments in which they reside (Kowarsch et al. 2010; Hu and Pasare 

2013).  Furthermore, these cells are -as cells- subject to cell fate and cell cycle decisions 

and are regulated by the respective complex mechanisms (like MAPK and NOTCH 

signaling), but due to their special powers (to kill other cells), even more strictly 

regulated.  The cross talk between such pathways and infection (Mitchell and Olive 

2010) leads to a new assessment of traditionally non-immunological pathways, like 

autophagy (Oh and Lee 2013) as key regulators of the immune response.  Going 

beyond such ‘professional cells', virtually all cell types contribute to the innate immune 

recognition and response (via MHC expression and interleukin production).  To a certain 

degree, the very organization of a compartmentalized cell serves immunological tasks 

(as barrier, lysosome).  Finally, genetic factors, polymorphisms and alternative splicing 

(Pothlichet and Quintana-Murci 2013; Colobran et al. 2007), metabolism and nutrient 

excess (Schwartz et al. 2010; O’Neill and Hardie 2013), resident microbiota (Kitano and 
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Oda 2006; Hu and Pasare 2013), aging (Agrawal 2013) all affect susceptibility to 

infectious disease and/or modulate the inflammatory response. 

Given the immense complexity of the dynamic networks of inter- and intra-

cellular processes that determine the course of an infection and the innate immune 

response to it, use of systems level approaches has been proposed to enhance our 

understanding (Zak and Aderem 2009; Gardy et al. 2009; Lynn et al. 2008; Tegnér et al. 

2006; K. D. Smith and Bolouri 2005).  The next sections provide a short overview of 

Systems Biology approaches.  

1.4. Systems level approaches and immunology 

A common characteristic of the examples listed in the previous sections is the 

emergence of new, unexpected, context dependent properties that arise from 

interactions among different components.  Emergent properties cannot be fully 

understood in terms of isolated components. Their existence limits the usefulness of 

models that seek to explain immunology in simple terms: pleiotropy makes it difficult to 

unambiguously classify cytokines as pro-inflammatory or anti-inflammatory, the dynamic 

interactions between regulators of expression add to plasticity of cellular behavior and 

show that there is more to gene expression than mere on/off switches, and crosstalk 

contradicts the traditional view of pathways as a series of linear events. Clearly, detailed 

component lists will not by themselves provide the needed insights. 

One way of tackling some of the emergent properties and related complexities is 

the use of systems-oriented methods. Systems biology primarily considers the interplay 

between different components of a system in order to account for complexities that 

cannot be explained or predicted by examining the components in relative isolation. A 

famous example is ‘boids model’ (Reynolds 1987) of bird flocks: it is impossible to 

explain flocking constellations by looking at the flight patterns of one bird at a time, but 

three simple rules on how each bird aligns itself in relation to other birds in its local 

environment suffice for a full explanation. A more mechanistic analogy is a car engine: 

having a catalogue of parts is important, but not enough for assembling or repairing an 
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engine. There is a lot of additional information in the diagrams that explain how the parts 

fit and work together.  

It is worth noting that there is an active and ongoing discussion about theoretical 

fundaments, scientific methodology and future direction of Systems biology (Kitano 

2002; Gatherer 2010; Friend 2010; Lander 2010).  However, (on a phenotypic level) 

there are some reoccurring themes in a wide range of studies that consider themselves 

systems oriented.  These include: the use of network representations of large scale and 

or complex interaction data sets along with algorithms to explore the structure and 

topology of those networks; the application of mathematical and graph theoretical 

concepts to predictively model the immune response and large-scale experimental 

approaches.  Conceptually, Systems biology is founded on the synergistic interplay 

between biological, technological and computational sciences. Biological questions drive 

technological advances, which require new computational tools.  Similarly, technological 

and computational advances provoke biological insight and new models for biological 

systems (Smith and Bolouri 2005). 

1.4.1. Types of systems studies  

Broadly speaking, one can distinguish between three types of systems 

approaches to immunology: the experimental approach, the integrative approach and 

the modeling approach. In the experimental approach, the phenotypic effects of different 

possible combinations of factors are explored systematically, by devising experiments 

that cover large parts of the feature space without compromising the quality of 

measurements. Modeling and simulation oriented approaches [box 1] try to harvest our 

current knowledge and understanding of immunological principles and mechanisms for 

predicting cell fate, disease trajectory and therapy response.  Finally, in the integrative, 

network based approach [box 2], vast amounts of large-scale, genome-wide and often 

noisy data from different layers of a molecular process are consolidated, analysed and 

mined to uncover novel, pathways and/or regulatory mechanisms as well as the key 

regulators of these responses. Ideally, elements from different approaches are combined 

in a study.  An example would be a study that experimentally and systematically 

explores candidate gene knockdown effects by siRNA assays and then uses the 
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integration of this data with pathway and protein-protein interaction networks to facilitate 

the interpretation of these experiments.  

Experimental systems immunology  

The main idea in systems oriented experiments is systematic, but targeted 

perturbation of biological mechanisms or manipulation of biological agents and 

observation of the phenotypic outcomes.  An example is (Hsueh et al. 2009). This study 

takes a systemic experimental approach to examine crosstalk and non-additivity effects. 

They measure simultaneously the secretion of six cytokines (G-CSF, IL-6, IL-10, MIP-1α, 

RANTES, and TNF-α) by RAW 264.7 cells, a macrophage-like cell line, in response to 

the simultaneous application of multiple stimuli.  One of their conclusions is that although 

synergy or anergy in response to input-pairs is very common, higher order combinations 

of ligands (three or more stimuli at a time) rarely have additional non-additive effects. 

This study is particularly interesting because it rejects a ‘combinatorial explosion’ of 

complexity that one might suspect from analyzing high throughput (in vitro) interaction 

data alone. 

Many single manipulations are likely to lack observable in vivo effects due to built 

in redundancies (Friend 2010).  On the other side, it is often not feasible to 

experimentally explore all possible perturbations or combinations. Hence, experimental 

designs have to be selective about their targets and the order of performed 

manipulations.  Additionally, experimental results need to be interpreted: in a situation, 

where gene knockdown experiments have indicated that several genes belong to a 

certain pathway, it is still important to understand the pathway structure, i.e. the 

upstream/downstream relations (Frohlich et al. 2008; Markowetz and Spang 2007). 

Computational methods, discussed below, can be supportive in predicting and 

interpreting experimental results as well as in selecting appropriate targets.  The support 

comes in the form of modeling and simulation, as well as providing statistical links 

between molecular-level observations (of high throughput experiments) and systems 

(cell, tissue, organism) level processes, thereby identifying possibly relevant pathways in 

case-control studies, and finally by providing knowledge discovery from integrated 

biological networks.   
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Modeling & simulation based systems immunology 

Quantitative models  

Quantitative models try to determine the individual contributions of different 

factors to the development of dynamic processes over time.  Many quantitative models 

describe the system of interest as a set of ordinary differential equations (ODEs).  For 

example, in a known regulatory pathway containing a set of co-expressed genes, one 

could solve ODEs to fit observations from a time series experiment. This would amount 

to quantifying how the expression levels of each gene at a time point t effects the 

expression levels of that gene and other genes at the time point t+1.  For instance, 

(Sorathiya, Bracciali, and Lio 2010) give a deterministic and a stochastic model for the 

interplay of HIV and TB infections in the context of highly active antiretroviral therapy. 

The deterministic model fits well with long term outcomes, while the stochastic model 

captures the short term and noise-related fluctuations.   

Box1: Modeling and simulation  

In a model based approach, existing knowledge is incorporated into a simplified but 
coherent view of the system that is subject to a starting configuration (a set of basic 
parameters describing the initial states of the models’ components), basic transition 
conditions (rules that describe how the states are updated over time) and any necessary 
additional constraints (for example maximum concentration thresholds). The next step is 
computational simulation, which allows changes of the configuration to be tracked over 
time due to the transition conditions, and thereby enables predictions about the real 
outcomes. Models can be binary or continuous, depending on what type of numeric 
values the settings can assume. In a binary model, for example, a gene is expressed or 
not, whereas a continuous model can capture the expression rate. Models can be 
deterministic or stochastic, depending on the type of transition rules. A deterministic 
model always results in the same outcome (cycle or steady state) for a given initial 
configuration and after certain number of time points, whereas stochastic models 
account for the effects of noise. Models can be synchronous or asynchronous, 
depending on whether the state of all nodes is updated simultaneously after applying all 
rules, or if individual states are updated on the fly. Models can be population-based or 
individual-based, depending on whether they are interested in tracking the total numbers 
of each type of cells or species or in tracking each individual cell’s history. Finally, 
models can differ on whether or not they allow different events to take place over 
different time scales (globally fixed vs. individually variable durations).  
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Qualitative and rule based models  

Two main groups of rule based and qualitative models are Boolean Network 

Models and Cellular Automata & Mobile Agents. In a Boolean network model (Albert et 

al. 2008), the system is represented as a directed graph, where nodes represent entities 

(cell types, cytokines, antibodies, antigens, etc), edges represent processes 

(presentation, activation, modulation, etc) and edge directions correspond to information 

flow.  These types of models aim to reflect the topology of regulatory networks; inhibitory 

signals and signal combinations can be incorporated using logical operators.  By 

simulating the model over a range of different initial configurations and comparing the 

outcomes, even a simple deterministic, binary, qualitative Boolean model can be useful 

in identifying the key driving components, e.g. the number of steps it takes to reach a 

steady state.  The case studies presented in  (Albert et al. 2008) use a mixture of 

qualitative models and differential equations.  They include simulations of cytotoxic T 

lymphocytes’ expansion and apoptosis in TLG-leukemia and pathogen-host interactions 

for B. bronchieseptica.  

The main concepts in Cellular Automata (CA) and Mobile Agents (MA) models 

are agents (for example cells) and environments (for example local chemokine profiles).  

In contrast to population based methods like ODEs, simulations of these types of models 

provide a history for each individual agent, making them particularly useful in cell fate 

studies.  The conceptual distinction between agents and environments facilitates the 

simultaneous description of processes on cellular and molecular levels in an intuitive 

way (e.g. immune cells as agents and chemokine profiles as environments).  In contrast 

to other modeling paradigms that require a prior knowledge of high level rules, complex 

rules can emerge in CA/MA models from simpler rules by self organization of the agents. 

CA/MA models are also realistic in the sense that variations to initial constellations (e.g. 

concentration and local distribution of cells and chemicals) can have profound effects on 

trajectory of simulations. 

An extensive introduction and review can be found in (Chavali et al. 2008).  Due 

to their disposition for a multi-scale modeling approach, agent-based based models are 

particularly popular in cancer research.  There, understanding how mutated cells interact 

with other cells in their microenvironment could explain how tumour cells’ intracellular 
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processes become independent from external growth signals (Laubenbacher et al. 

2009).  In an immunological context, this approach is starting to gain momentum. For 

instance, (Rapin et al. 2010) use a combination of an agent-based model and a set of 

molecular binding prediction methods for computational simulation of the immune 

response.  This allows for a neat separation of processes on molecular level and cellular 

levels. 

The previous sections gave an overview of modeling and simulation based 

methods and their applications in immunology. A precondition for building models is 

availability of existing knowledge. The following sections describe the important 

contribution of another branch of computational systems biology, data driven knowledge 

discovery and reverse engineering of immunological systems. 
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 Box2: Networks and Network analysis 

Box2: Networks and network analysis 

A) Descriptive power of network representation 

Networks are a popular way of representing and analyzing complex systems. They are 
versatile frameworks, both intuitive to humans and accessible to computational analysis. 
A network consists of a set of nodes that represent entities and a set of edges that 
represent relations between those entities. Nodes can be all of the same (homogenous) 
or of different (heterogeneous) type. The edges can have optional attributes, most 
important among them: directions, weights and/or capacities. If present, the weights of 
edges convey information about the relative intensity of the relationship, the capacities 
describe possible thresholds and constraints and the directions clarify the relative order 
of processes.  Most deeply studied bimolecular networks fall into 3 categories: a) 
Protein-Protein Interaction (PPI) Networks. PPI are modeled as undirected graphs. An 
edge in a PPI asserts the possibility of physical interactions between the corresponding 
proteins (nodes). PPI’s are usually derived from error-prone high throughput methods. 
Clustering PPI’s (delineating highly interconnected regions of the network) is used as a 
means of protein module identification. B) Metabolic Networks describe a web of 
reactions catalysed by enzymes and can be modeled as weighted directed graphs with 
edge capacities. Using FBA (flux balance analysis, a linear program/optimization 
problem for an objective function such as growth rate, subject to certain irreversibility 
and other constraints) biochemists can describe the relations between metabolite 
concentrations and reaction fluxes. C) Transcriptional regulatory networks, directed 
graphs describing dynamic regulations between genes, proteins and other agents, are 
derived from combinations of high throughput methods and available literature. Their 
study is central to cell fate prediction, for example in cancer research. 

B) Network analysis 

Although network representations are powerful descriptive tools, their popularity is 
largely due to the availability of formalisms to analyze and mine them.  A node in a 
biological network is said to be essential if the organism cannot survive without it.  Use 
of centrality measures, structural properties of nodes in a network, as a predictor of 
essentiality has several potential applications e.g. in drug target identification. Node 
degree, the number of connections of a node, is the simplest measure for centrality and 
influence of a node and widely used in analyzing non biological (e.g. social) networks. 
However, in contrast to social network, most biological networks are disassortative: 
Highly connected nodes (hubs) avoid connecting directly to each other. Node degree 
gives some indication of a protein’s likelihood to be essential, but the relationship is not 
simple.  A more global view of centrality of a node is the notion of “bottlenecks” and 
“articulation points”, nodes whose removal disrupts or significantly prolongs the 
information flow among a high portion of other nodes. Mutations in such nodes have 
been shown to be more likely to be lethal for an organism than mutations in nodes with 
high degree alone.  A central concept to network based analysis is similarity or its dual, 
distance. It is widely used to classify nodes or cluster networks by identifying regions of 
similar nodes. Guilt by association approaches infer unknown features of certain nodes 
based on known features of other nodes in the same cluster. A number of different 
similarity measures have been proposed and used in network analysis, including: Graph 
distance (negated shortest path), Common neighbors (CN), normalized CN (Jaccard), 
Preferential attachment score, Katzβ and SimRank. (Getoor and Diehl 2005; Mason and 
Verwoerd 2007; Barabási 2007; Sharan, Ulitsky, and Shamir 2007). 
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1.4.2. Integrative systems biology 

The development of a range of high-throughput (HT) technologies has resulted in 

the collection of many large scale data sets that deal with different aspects of biological 

processes and encode different levels of biological information.  The mere size and high 

dimensionality of these data sets prohibits their manual interpretation.  Networks (see 

box 2) have become a convenient tool for representing and analyzing these data sets, 

because they are versatile frameworks that are both intuitive to humans and accessible 

for computational analysis.  Many current efforts focus on reverse engineering biological 

mechanisms from these networks.  

One example are large scale protein-protein interaction datasets driven from 

yeast two-hybrid (Y2H) experiments.  These datasets can be translated into an 

interaction network, where edges indicate an observed in vitro interaction. Determining 

densely interconnected regions in such networks (clustering) can help to identify 

functional complexes and to predict the unknown function of a protein from the known 

functions of its interaction partners (Sharan, Ulitsky, and Shamir 2007).  Time-series 

transcriptional snapshots by microarrays that contain mRNA expression status of 

thousands of genes, represent another common example.  Using correlation analysis, 

this data can be translated into a coexpression network, where edges indicate 

coordinated changes in expression behavior, possibly subject to common regulatory 

mechanisms.  

 There are, however, major quality issues and caveats regarding the reliability 

and comprehensiveness of high-throughput data sets.  Such large scale measurements 

are known to include a high fraction of misleading information (false positives, FP) while 

failing to provide some important information (false negatives, FN). Major contributors to 

the FP and FN rates are the noisy nature of high-throughput technologies and 

discrepancies between in vitro and in vivo situations. Furthermore, each data set 

regarded in isolation is weakly informative: it can only describe one single aspect of a 

dynamic molecular process, neglecting others. As an explanatory example, real protein-

protein interactions (PPIs) have contexts, timing, duration, location and rates, which are 

not usually captured by current technologies in a high-throughput manner. 
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Therefore, reverse engineering efforts often have to combine information from 

several layers of omic data (genomic sequence information, transcriptomic abundance 

measurement, proteomic interaction data) and additional pathway membership and 

annotation information. 

  In the first example above, many in vitro observed interactions can be discarded 

by additionally taking the subcellular location of respective proteins into account, which 

can result in more significantly enriched modules. Concerning the second example, 

(Ramsey, Gold, & Aderem, 2010) describe how expression data and interaction data can 

be combined to identify a common transcription factor that is itself not differentially 

expressed. They also refer to a study by Gilchrist et al in 2006 that used a combination 

of transcriptional profiling and promoter sequence data to identify ATF3 as a negative 

regulator of macrophage responses to LPS and also of TLR4-induced expression of IL6. 

Using a similar approach, the authors of (Ramsey et al., 2008)  identified TGIF1 (TGFB-

induced factor homeobox 1) as a master regulator of a cluster of TLR-responsive genes 

including cytokines Csf2 and Gm1960.  

Regarding the third issue (limitations on the range of aspects that can be 

simultaneously captured by HT experiments), overlaying PPI data with sub-cellular 

localization data of respective proteins can help clarify the spatial and by extension 

temporal order of a chain of events (as in a signaling pathway) (Barsky et al. 2007). In 

related examples, combining PPI, transcriptional regulatory and pathway data has been 

useful for expanding existing pathways, uncovering novel pathways or regulatory 

mechanisms and identifying the key modulators of such pathways and mechanisms. 

Such (integrated) data can build a framework for a better interpretation of measurements 

from targeted experiments. For example, pathway overrepresentation analysis of 

differentially expressed (DE) genes in a particular condition often gives a clearer picture 

of active processes in that condition than fold change data alone. Moving beyond 

pathways, connectivity analysis of the interaction networks of DE genes can further 

clarify the underlying mechanisms. Similarly, by investigating networks that include 

interactions between DE genes and their non-differentially expressed interacting 

partners, one has the potential to identify key regulators of gene expression, even 

though these regulators themselves may not be differentially expressed but regulated at 

the posttranscriptional level. 
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One of the first platforms for systems level analysis of human and mouse innate 

immune response is InnateDB (Lynn et al. 2008), which allows users to investigate their 

data (e.g. gene expression) in interaction network or pathway context. InnateDB is a 

collaboration between the Brinkman Bioinformatics Group at Simon Fraser University, 

the Hancock Laboratory at the University of British Columbia and the Lynn Systems 

Biology Group at the Teagasc Animal Bioscience Department, Ireland. One of its primary 

goals is to provide a manually-curated knowledgebase of the genes, proteins, and 

particularly, the interactions and signaling responses involved in mammalian innate 

immunity (Lynn et al. 2010).  Enhancing InnateDB to incorporate and analyze orthology-

inferred bovine pathways and PPIs was a major goal of this thesis (chapter 2). 

1.5. Pathways, pathway databases and pathway analysis 

It is clear that from a systems biology perspective, cellular processes governing 

health and disease are viewed as phenotypic outcomes of changes to highly intertwined, 

dynamic networks of interactions between heterogeneous, context sensitive agents. This 

is a quite different view than the standard text book presentation of pathways as 

relatively simple linear cascades.  Nevertheless, pathways are useful abstractions 

allowing for a compact representation of main elements and key interactions in common, 

recurring, biological processes with particular phenotypic outcomes.  A pathway’s 

outcome can be e.g. the assembly of new molecules, the propagation of information 

within or across cells or changes in the status of cell. As such, pathways can be thought 

of as (often conserved) modules in cellular interaction networks working towards a 

common goal.  A typical signaling pathway, for example, can represent receptor-binding 

events, phosphorylation reactions, protein complexes, translocations and transcriptional 

regulation, with only a minimal set of symbols, lines and arrows. 

Pathway repositories, such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Reactome and the Pathway Interaction Database (PID) (Minoru Kanehisa et al. 

2011a; Matthews et al. 2009; C. F. Schaefer et al. 2009), try to condense the available 

biological knowledge, providing some level of mechanistic detail, while making the 

source data available in a computationally accessible format.  

http://www.pathogenomics.sfu.ca/brinkman/
http://www.sfu.ca/
http://www.cmdr.ubc.ca/bobh/
http://www.ubc.ca/
http://www.teagasc.ie/animalbioscience/staff/davidlynn.asp
http://www.teagasc.ie/animalbioscience/staff/davidlynn.asp
http://www.teagasc.ie/animalbioscience
http://pid.nci.nih.gov/
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Pathway analysis is a crucial first step in interpreting results of high-throughput 

omics experiments. As a methodological approach, pathway analysis is now a little over 

a decade old and the field has seen an array of proposed methods and tools.  The 

current predominant pathway analysis methods can be categorised into two major 

branches:  Over-representation Analysis (ORA) methods (reviewed in (Khatri and 

Drăghici 2005)) and methods related to Gene Set Enrichment Analysis (GSEA) (Mootha 

et al. 2003; Subramanian et al. 2005).  Pathway ORA methods investigate whether the 

observed fraction of genes belonging to a specific pathway in a user specified list is 

more than one would expect by chance. The genes in the input list are usually 

determined based on an arbitrary threshold for significance, for example, genes that are 

significantly differentially expressed or genes that are significantly associated in a 

genome-wide association study (GWAS). GSEA methods, on the other hand, do not 

apply such a threshold and instead consider the collective rank of all genes in a given 

set (e.g. a pathway).  GSEA purports to avoid some type II (false negatives) errors of 

ORA approaches by accounting for subtle but coordinated differences in a given 

pathway between conditions of interest. 

GSEA based methods are limited to experimental designs consisting of two 

groups of samples (e.g. infected vs. control).  In many cases, the upstream data 

processing and comprehensive gene selection statistics cannot be simply avoided or 

replaced by GSEA, the effects of additional factors (e.g. gender, age) besides the 

assignment to one of the two groups cannot be taken into consideration, and the results 

of such pre-processing often don't conform to GSEA-required input data structures (D. 

W. Huang, Sherman, and Lempicki 2009).  

Both ORA and GSEA based methods view pathways as collections of individual 

genes, and treat all genes annotated in a pathway as equally informative indicators for 

activation/perturbation of that pathway.  As will be described in chapter 3, an important 

question for the work presented in this thesis was the potential unintended 

consequences of such egalitarian perspective for the results of pathway analysis.  This 

question lead to the design and implementation of an alternative pathway analysis 

method (signature over-representation analysis, SIGORA) that seeks to avoid some of 

the issues by focusing on statistical over-representation of weighted pathway specific 

combinations of gene pair signatures (termed “Pathway-GPS”).  In tests on simulated 
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and published datasets, SIGORA outperformed several popular pathway analysis 

methods by delivering more plausible and relevant results. SIGORA inherits the 

versatility of the ORA statistical framework and is applicable to lists of genes of interest 

obtained in any type of high throughput experimental set-up, including lists of predicted 

targets of a set of differentially expressed miRNAs (exemplified in chapter 5). 

1.6. miRNAs as novel regulators of innate immunity  

MicroRNAs (miRNAs) are an abundant class of highly conserved, small (19–24 

nt long), non-protein coding RNA molecules.  They act as important post-transcriptional 

regulators and they function, via imperfect base-pairing with complementary sequences 

within mRNA molecules, as repressors (or less frequently, enhancers) of specific target 

genes at the post-transcriptional level. Repression of gene expression by microRNAs is 

achieved by translational repression or degradation of the target mRNA (Baek et al. 

2008). 

1.6.1. Biogenesis 

Approximately half of all known human miRNA-coding genes reside in intergenic 

regions outside known genes while others are contained in the intronic sequences of 

protein-coding genes or in the exons of untranslated genes.  Some miRNA primary 

transcripts encode only a single mature miRNA (e.g.: mir-203).  Polycistronic miRNAs, 

on the other hand, are clusters of several miRNA that are transcribed together from one 

transcription unit (e.g. mir-17-92 cluster).  Most miRNAs are first transcribed as long, 

mRNA-like polyadenylated primary transcripts (pri-miRNA), by RNA polymerase II 

enzyme. The pri-miRNA, which can be surprisingly long (up to several kilo bases) is then 

cleaved in the cell nucleus by the ribonuclease enzyme, Drosha, to a shorter (∼70 

nucleotide) hairpin structure known as the precursor (pre-) miRNA.  The hairpin is then 

exported to the cytoplasm, where it is further cleaved by an RNase III enzyme (Dicer) to 

a short (19-24 nt) double stranded miRNA duplex.  One strand of the duplex (the “guide” 

strand) is then incorporated into the RNA-induced silencing complex (RISC), while the 

other (the “*” or “passenger” strand) is degraded.  The guide strand is selected by the 

argonaute proteins, the catalytic components in the RISC complex. The choice of the 

http://en.wikipedia.org/wiki/Argonaute
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guide strand is believed to be related to the lower stability base pairing of the 2–4 nt at 

the 5_ and 3_ end of the duplex (Schwarz et al. 2003), but the guide strand is more 

generally operationally defined as the more abundant strand.  

There are several important exceptions to the above simplified description.  

Some intronic miRNAs, known as mirtrons, bypass the Drosha processing and are 

spliced from the intron (Westholm and Lai 2011).  Additionally, Argonaute-2 (Ago2)-

mediated pre-miRNA cleavage can induce Dicer-independent miRNA processing.  

Furthermore, some passenger strands (like miR-19*) have also emerged as functionally 

active microRNAs (J.-S. Yang et al. 2011).  Some miRNA loci yield multiple functional 

products, from both hairpin arms or from both DNA strands, i.e. a single genomic miRNA 

locus may produce up to four miRNAs, each with distinct targets (Stark et al. 2007). 

Finally, very recently it has been shown that the guide-to-passenger strand expression 

and activity ratio is not constant and can be shifted in favor of the passenger strand by 

Argonaute-3 (Ago3) (Winter and Diederichs 2013). 

1.6.2. Function and relevance to innate immunity 

Aside from their well documented role in developmental timing, cellular 

differentiation, signalling pathways and apoptosis, microRNAs are now also emerging as 

key components of the immune system. In (studies of) the innate immune system, they 

assume multiple roles: as regulators and modulators of the inflammatory response within 

cells (Quinn and O’Neill 2011; Rossato et al. 2012), as drivers of innate immune cell 

differentiation, proliferation and activation (Bi, Liu, and Yang 2009; Cichocki et al. 2011), 

as crucial routes of pathogen-host interaction (Marcinowski et al. 2012; Pfeffer et al. 

2004), as predictive markers of auto-immune diseases (Zhu, Pan, and Qian 2013), and - 

encapsulated in secreted exosomes - as intercellular messengers that facilitate innate-

to-innate and adaptive-to-innate intercellular communication and coordination  

(Mittelbrunn et al. 2011; Valadi et al. 2007).  

The list of miRNAs with experimentally verified roles in innate immunity includes: 

miR-146a/b, miR-132, miR-155, miR-21, miR-147, miR-125b (negative regulation of the 

TNF pathway), miR424, miR-511, miR-223, miR-187 (negative regulation of the TNF 

pathway), miR-181b, mir-29a as well as members of the let-7 family (let-7a, Let-7e, let-
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7i) (Staedel and Darfeuille 2013; Bi, Liu, and Yang 2009).  Innate as well as adaptive 

immune cells possess specific miRNA expression patterns regulating both cell fate and 

function. Granulocyte-monocyte progenitors (derived from common myeloid progenitors) 

produce neutrophils (regulated by miR-223) and monocytes (regulated by members of 

miR-17-92 cluster as well as miR-155 and miR-106a).  Monocytes further differentiate 

into myeloid-derived dendritic cells (DCs) or macrophages. Activated macrophages 

respond by up-regulation of e.g. miR-155 and/or miR-146 (Bi, Liu, and Yang 2009).  

MiRNAs are also emerging as one of the molecular mechanisms involved in 

resolving inflammation. During bacterial infection, peptidoglycan (PGN)-mediated TLR2 

signaling induces miR-132/-212 to down-regulate IRAK4, an early component in the 

MyD88-dependent pathway (Nahid et al. 2013), whereas LPS/TLR4-induced miR-146a 

down-regulates downstream components of the same MyD88-dependent pathway 

(Williams et al. 2008).  

A liver-specific miRNA, miR-122, interacts with sequences in the 5′ noncoding 

region of the hepatitis C virus (HCV) RNA, and this interaction is required for viral 

replication and maintains high viral RNA abundance in liver cells.  The tissue specificity 

of miR-122 expression also helps HCV to establish its tissue selectivity (Jopling 2012).  

MicroRNA Biology remains full of unsolved questions, exceptions and paradoxes. 

For instance, miR-511, which is highly expressed in monocyte-derived DCs and 

macrophages, up-regulates its putative direct target TLR4 in DCs through a yet unknown 

mechanism. In other cases, the direction of miRNA function (i.e. repression or up-

regulation) is context sensitive.  For instance, miR-155 has been shown to both 

positively and negatively regulate inflammatory pathways (Quinn and O’Neill 2011).  As 

a positive regulator, it suppresses the suppressor of cytokine signalling 1 (SOCS1) and 

SHIP1, while the negative mechanism is again, unknown.  Notably, some miRNAs, like 

let-7 can induce translation up-regulation of target mRNAs on cell cycle arrest, while 

repressing translation in proliferating cells (Vasudevan, Tong, and Steitz 2007). 

Additional layers of context sensitivity have been documented for combinations of 

miRNAs: For instance, until very recently, it was believed that mir-146 and mir-155 are 

always co-activated, but now they have been shown to display very different dose-
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dependent expression profiles in responses to environmental stimuli (Schulte, 

Westermann, and Vogel 2013).   

Examining which genes are affected by a given microRNA is the best way for 

understanding the miRNA’s role. In some cases, the control of single key target genes 

appears to largely explain the functions of individual miRNAs.  For instance, it was 

observed that mir-29 targets interferon gamma mRNA and thereby changes intercellular 

communications during the course of infection (F. Ma et al. 2011).  However, in general, 

miRNAs do not switch off the expression of their target genes but only reduce the 

amount of mRNA and protein (Baek et al. 2008).  Estimates on the average number of 

targets per miRNA in vertebrates range from 100 to roughly 200 transcripts each (Krek 

et al. 2005; Brennecke et al. 2005). 

 The influence of a single miRNA on the expression level of a single target mRNA 

can remain undetectable by using current measurement methods.  On the other hand, 

because miRNAs often target several mRNAs from the same pathway, as well as the 

fact that a single mRNA can be targeted by multiple miRNAs, the influence of miRNAs 

becomes indispensable (O’Neill et al., 2011).  Larger groups of microRNA’s seem to 

have overlapping functions, because of the conservation of the seed within a given 

miRNA family, and, therefore, similar target profiles.  Outside such families, unrelated 

miRNAs (that do not show sequence similarity) may be activated by the same 

transcription factor and thus overlap in their activity in targeting (different parts of) a 

given cellular pathway. 

Understanding the functions of miRNAs requires means of identifying their target 

genes.  Although databases of experimentally verified miRNA:mRNA interactions exist 

and are rapidly growing (Vergoulis et al. 2012), the real number of such interactions are 

believed to be  much higher.  Numerous computational methods for predicting targets 

are currently available.  The next section describes a few of the guiding principles of 

computational target predictions, prominent methods and their limitations. 
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1.6.3. Computational prediction of miRNA targets  

 The most common mechanism of action for microRNAs is to target mRNAs for 

degradation or suppress their translation by binding to the 3’-UTR, other, less 

widespread mechanisms include targeting in an ORF (Lewis, Burge, and Bartel 2005; 

Stark et al. 2007).  Unlike in plants, in vertebrates there are very few cases with absolute 

complementarity between an entire microRNA and (part of) its target (Miller and 

Waterhouse 2005).  Accordingly, most target prediction programs search primarily for 

complementarities between the six to eight nucleotides at the 5’end of the mature 

miRNA sequence (the ‘seed region’ of a microRNA) and the 3’UTR of putative targets. 

The match in the seed region does not have to be perfect, as G.U base pairing in the 

seed region is tolerated.  It has been shown that imperfect base pairing of the target with 

the seed segment can be compensated by additional matches in the 3’out-seed 

segment of the miRNA–mRNA duplex.  The focus on the 3’ UTR leads to some false 

negatives, as miRNA can target mRNA outside of the 3’ UTR, but this mechanism is 

neglected by most prediction methods.  A more serious problem is the very high false 

positive rates of computational prediction methods (Rajewsky 2006).  As the seed region 

is extremely short, the likelihood of chance-matches within the genome is relatively high; 

hence, the 6- to 8-base-pair perfect seed pairing is not a generally reliable predictor for 

targeting (Didiano and Hobert 2006).  To address the false positive problem, most 

methods rank and filter the predicted targets by some additional criteria, described 

below. 

Phylogenetic conservation: 

The premise here is that evolutionarily conserved target sites are more likely to 

be true targets.  An example for conservation based criteria is the probability of 

conserved targeting (PCT), employed by TargetScanS versions 5 and above.  PCT is a 

comparative genomics based measure which reflects the Bayesian estimate of the 

probability that a site is conserved due to selective maintenance of miRNA targeting.  

The PCT incorporates knowledge of the conservation level of a particular site, the seed-

match type, the number of selectively maintained seed matches for the particular 

miRNA, the background conservation level for the k-mer across 23 vertabrates, and the 

UTR conservation context (taking into account that a site falling within a UTR with high 
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overall conservation is likely to be conserved due to reasons other than miRNA 

targeting). 

This type of ‘phylogenetic conservation’ based filtering can increase the false 

negatives while it decreases false positives.  Furthermore, the alignment is sensitive to 

the number and order of the aligned species, and cannot address novel (non-conserved) 

miRNAs.  It has been shown that about 30% of mammalian targets are not conserved in 

alignment.   

Genomic context: 

An example of conservation-independent criteria is context+ scores (Garcia et al. 

2011), that are provided in TargetScanS versions 6 and above.  Context+ scores are an 

enhancement of Context scores.  Context scores (Lewis, Burge, and Bartel 2005) 

account for  features in the surrounding mRNA, including local A-U content, location of 

the miRNA-mRNA match (sites near either end of the 3′ UTR are preferred), site 

number, and 3′-supplementary pairing (Lewis, Burge, and Bartel 2005).  Context+ scores 

additionally take the target site abundance and seed pairing stability (both of which 

influence the sRNA proficiency // robustness of targeting) into account. 

Importantly, although both PCT and context+ scores are provided in current 

versions of TargetScanS, the two ranking criteria  are based on completely orthogonal 

types of considerations and provide independent and complementary information on 

biological relevance and efficacy of each site (Friedman et al. 2008). Hence, taking the 

intersection of top results based on these two criteria would be rather counterproductive, 

as it significantly increases the false negative rates. 

Thermodynamic stability: 

The use of “thermodynamic stability calculations” in miRNA-target prediction is 

based on the premise that formation of miRNA:target hybrids is more likely if the system 

gains more energy by forming the duplex than it expends on the creation of that duplex.  

Hence, miRNA-mRNA duplexes with very small minimum free energy of hybridization 

(MFE) are considered favorable.  One algorithm that uses thermodynamic stability to 

filter the results of a weighted nucleotide complementariness analysis is miRanda 
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(Enright et al. 2003). Thermodynamic stability was also used in early versions of 

TargetScan (Lewis et al. 2003), but removed in TargetScanS. 

In praxis, MFE calculations depend on arbitrary estimates for several parameters 

including temperature, the relative concentration of miRNA and mRNA molecules, and 

the presence of proteins that facilitate or impede the reaction (Hammell 2010).  

Furthermore, experimental observations suggest that a strong secondary structure 

formed by 3' UTR itself will prevent the binding of miRNA.   

Independent prediction by several methods:    

Some tools, including mirSystem, mirGator and TargetCombo (Sethupathy, 

Megraw, and Hatzigeorgiou 2006; Lu et al. 2012; Cho et al. 2013) try to combine 

predictions of existing algorithms, based on the idea that targets that are predicted by 

several independent methods are more likely to be true positives.  Maintaining such 

methods can be difficult and predictions by such method are not robust to changes in the 

source methods or changes in cut-off thresholds.  For instance, (X. Xu 2007) tried to 

reproduce the target predictions of a previously published method (Sethupathy, Megraw, 

and Hatzigeorgiou 2006) by combining the same three computational methods (but 

possibly different releases of the prediction programs). The two sets of predicted targets 

for miR-155 contain 16 and 10 putative targets, respectively and have only one target in 

common (X. Xu 2007).  As mentioned above, naively using the intersection of several 

methods can be counter-productive, particularly if the underlying methods are based on 

complementary information.  Conversely, the union of predictions by several methods 

can improve the true positive rate while greatly increasing the false positive rates.  

These observations lead Alexiou et al to conclude that “In most cases an accurate 

algorithm is better than a combination of predictions” (Alexiou et al. 2009).  

Profiling based target identification 

Where simultaneous miRNA mRNA time series expression profiles are available, 

context-specific, miRNA induced suppression of targets can be inferred by examining 

anti-correlations between miRNA and mRNA profiles (J. C. Huang, Morris, and Frey 

2007).  
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Similarity to known examples / Machine-learning based methods: 

Establishing generalizable rules of miRNA-target interactions is extremely 

difficult, and such rules are being progressively challenged by genetic and biochemical 

studies.  Changes to such rules have at times dramatic effects on the prediction results.  

For instance, widely cited estimates for the fraction of protein coding human genes that 

are subject to regulation by miRNA range from 30% (Lewis, Burge, and Bartel 2005) to 

60% (Friedman et al. 2008).  Note that both of these estimates originate from the same 

group (the developers of the TargetScan family of methods).  While the discrepancy is 

partly due to the increased number of identified miRNAs, changes to the putative 

targeting rules play a major role. 

A few algorithms (Yousef et al. 2007; Sturm et al. 2010) try to forgo the 

establishment of general/hard targeting rules altogether and base their predictions on 

the “learning from examples principle”.  Such machine-learning (ML) based methods 

extract dozens to hundreds of features from experimentally validated miRNA-mRNA 

pairs and then search for new pairs that exhibit similar features.  A notable method is 

TargetSpy (Sturm et al. 2010), which according to its authors can predict dozens of 

functional target sites without a seed match per microRNA that are missed by all other 

currently available algorithms. However, machine learning based methods depend on 

the quality and amount of data set.  In particular, while experimentally verified miRNA-

target interactions can be obtained from databases like TarBase (Vergoulis et al. 2012), 

ML algorithms for miRNA target prediction suffer from the lack of experimentally 

verifiable negative examples (i.e. cases of non-targeting), as systematic identification of 

non-target mRNAs is challenging (e.g. current experimental methods cannot detect 

subtle changes). 

1.7. Goal of Present Research 

The work presented in this thesis was generously supported by a 4 year Walsh 

Fellowship from Teagasc, the Irish Food and Agriculture Authority.  As such, a primary 

goal of this work was the creation of Systems Biology tools for investigation of bovine 

infectious diseases.  The completion of a draft of the bovine genome along with falling 

costs of HT technologies is starting to make ‘omics’ datasets available for use in animal 
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health studies. However, the appropriate bioinformatics tools and frameworks for 

integrating and interrogating these datasets, which would accelerate our understanding 

of bovine infectious diseases, are still largely missing.  A prerequisite for application of 

integrative SB/Network-Biology based methods to bovine datasets is the availability of 

bovine protein-protein interaction (PPI) and pathway annotations. Due to the lack of such 

data, the first section of my research was dedicated to the computational (orthology 

based) reconstruction of bovine PPI networks and pathways. After completion of this 

task, I integrated the inferred data into InnateDB, a Systems Biology platform and 

knowledge base that is being jointly developed at SFU, UBC and Teagasc (Breuer et al. 

2013; Lynn et al. 2008; Lynn et al. 2010). 

During my analysis of the inferred bovine pathways, I observed that the actual average 

number of genes per pathway (16) is not reconcilable with the average number of 

pathway participants that one would expect if pathways were disjoint (4.8). This lead me 

to examine the implications of component-sharing among pathways for the validity of 

results of current pathway analysis methods, and resulted in the development of the 

second thesis goal, a new pathway analysis tool (SIGORA) that focuses on the statistical 

overrepresentation of pathway specific gene combinations. In a comparative evaluation 

of several simulated and previously published datasets, SIGORA outperformed several 

existing, popular pathway analysis methods by delivering biologically more plausible and 

relevant results (Foroushani, Brinkman & Lynn, 2013).  

Another observation during the creation of the bovine InnateDB was the seemingly 

general lack of knowledge regarding the functional significance of the vast majority of 

genes in higher organisms. In chapter 4, I present the results of a preliminary 

(unpublished) attempt at enhancing the functional annotation of bovine genes by 

applying the guilt by association (GBA) principle to a large bovine issue expression data 

set that we had obtained through a collaboration with the US Department of Agriculture. 

A subsequent literature search provided supporting evidence for a considerable portion 

of the newly predicted annotations, suggesting that despite its limitations, this can be a 

viable approach. 

Lastly, I had the opportunity to partake in the analysis of changes to bovine 

microRNA expression profiles in response to infectious agents (Lawless et al. 2013; 
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Vegh et al. 2013). In chapter 5, I used the intersection of the results of one method 

(miRanda) with the union of two orthogonal approaches (TargetScanS PCT and 

context+ score) to arrive at target predictions for a set of differentially expressed 

microRNAs.  The subsequent functional analysis of combined targets (by SIGORA and 

InnateDB’s manually curated list of immunity relevant genes) showed significant 

associations to specific cellular/signaling pathways and concurred reasonably well with 

known biology of bovine mastitis, suggesting that the aforementioned pitfalls of 

straightforward combinations of miRNA target prediction methods can be partly avoided 

by more sophisticated strategies.  In chapter 6, I apply the same target prediction 

strategy to a larger catalog of all microRNAs encountered in the profiling of unchallenged 

bovine alveolar macrophages, thereby potentially facilitating the interpretation of the 

follow-up challenge and time-series experiments that are currently in preparation. 

The work and analyses reported in chapters 3 and 4 has been carried out by me.  In 

three cases (chapters 2, 5 and 6), a thesis objective is presented within the context of 

the results of a larger cooperative effort.  In those sections, I outline my contributions at 

the start of the chapter and provide the list of other contributors. 
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Chapter 2. InnateDB: systems biology of innate 
immunity and beyond  

Portions of this chapter have been published in the article “InnateDB: 
systems biology of innate immunity and beyond--recent updates and 
continuing curation”, co-authored by Breuer, Karin; Foroushani, Amir K; 
Laird, Matthew R; Chen, Carol; Sribnaia, Anastasia; Lo, Raymond; 
Winsor, Geoffrey L; Hancock, Robert E W; Brinkman, Fiona S L & Lynn, 
David J in Nucleic acids research, Database issue © The Authors 2012.  
Sections 2.5, 2.6, 2.7 (and all their subsections) and Appendix A are 
exclusively my work. Sections 2.5.2, 2.6, 2.7 had not been in the NAR 
article (of which I am a joint first author).  

2.1. Abstract 

InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been 
specifically designed to facilitate systems-level analyses of mammalian innate immunity 
networks, pathways and genes. In this article, we provide details of recent updates and 
improvements to the database. InnateDB now contains >196 000 human, mouse and 
bovine experimentally validated molecular interactions and 3000 pathway annotations of 
relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and 
interactions). In addition, the InnateDB team has, to date, manually curated in excess of 
18 000 molecular interactions of relevance to innate immunity, providing unprecedented 
insight into innate immunity networks, pathways and their component molecules. More 
recently, InnateDB has also initiated the curation of allergy- and asthma-related 
interactions. Furthermore, we report a range of improvements to our integrated 
bioinformatics solutions including web service access to InnateDB interaction data using 
Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology 
analysis for innate immunity, and the availability of new network visualizations tools. 
Finally, the recent integration of bovine data makes InnateDB the first integrated network 
analysis platform for this agriculturally important model organism.  

2.2. Introduction 

The innate immune response is a critical branch of immunity, which not only 

provides a first line of defence against pathogens, but also regulates and shapes 

subsequent adaptive responses.  Innate immunity, however, can also do great harm by 

http://www.innatedb.com/
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driving inappropriate inflammatory cascades.  Therefore complex molecular networks 

are required to regulate innate immunity and maintain appropriate and specific 

responses to different pathogens, while limiting potential harm from dysregulated 

inflammation (Delano et al. 2011; Karin, Lawrence, and Nizet 2006; Lin and Karin 2007; 

Shi, Ljunggren, and Sarvetnick 2001; Wen et al. 2008). The intricate interplay of a 

multitude of regulatory layers that initiate and coordinate the innate immune response 

has led to an ever-increasing interest in applying systems-oriented approaches to better 

understand innate immunity and its modulators (Gardy et al. 2009).  

InnateDB (publicly accessible at http://www.innatedb.com and mirrored at 

http://innatedb.teagasc.ie) is a knowledge base and analysis platform that was 

specifically designed to provide a system-oriented yet user-friendly tool for integrative 

analyses of the mammalian innate immune response(Lynn et al. 2008).  

2.3. InnateDB Curation 

A key component of the InnateDB project is the contextual manual curation of 

innate immunity interactions, pathways and their component molecules.  The curation 

process has previously been described in detail (Lynn et al. 2010).  InnateDB was first 

publicly released in 2008 (Lynn et al. 2008).  At that time, ∼3500 molecular interactions 

had been curated.  By 2010, the database contained 11 786 InnateDB-curated 

molecular interactions from the review of >3 000 published articles.  As of September 

2012, our curation team has reviewed >4 300 publications, and >18 000 interactions of 

relevance to innate immunity have been annotated (Figure 1; for detailed statistics see 

http://www.innatedb.com/statistics).  More recently, as part of the AllerGen Networks of 

Centres of Excellence (NCE) (http://www.allergen-nce.com), InnateDB curators have 

also begun to annotate interactions and pathways of relevance to allergy and asthma.  

All interactions in InnateDB are provided with detailed contextual information according 

to the minimum information required for reporting a molecular interaction experiment 

(MIMIx) standards (Orchard, Salwinski, et al. 2007) ,including the evidence supporting 

each interaction, the tissue or cell type the interaction was reported in, the type of 

interaction and the method of detection.  New interactions are added to the database 

weekly, providing up-to-date annotation on the innate immunity interactome.  This 

http://www.innatedb.com/
http://innatedb.teagasc.ie/
http://nar.oxfordjournals.org/content/41/D1/D1228.long#F1
http://www.innatedb.com/statistics
http://www.allergen-nce.com/
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resource can be mined to identify new relationships between innate immunity and other 

processes, to identify potential novel regulators of innate immunity and to interpret a 

user’s own data (e.g. gene expression data) from a network biology perspective.  

Figure  2-1 The InnateDB curated interactome in July 2012.  

 

Red edges represent interactions that have been added in 2011 and 2012.  Note: this figure was 
featured on the NAR database issue cover.  

2.3.1. Building a comprehensive list of innate immunity genes 

Aside from annotating molecular interactions, InnateDB now also annotates 

which genes have a published role in innate immunity, providing a brief summary of that 
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role and links to the relevant publications.  This data set, available at 

http://www.innatedb.com/curatedGenes, presently contains >1 500 genes (957 human, 

527 mouse and 46 bovine) and is the most comprehensive list of genes involved in 

innate immunity that is available.  This list was recently used by a group of researchers 

to show that human proteins which are targeted by viruses are highly enriched for having 

a role in innate immunity (Pichlmair et al. 2012).  

2.3.2. Contribution to the International Molecular Exchange 
Consortium 

In 2010, InnateDB became a member of the International Molecular Exchange 

Consortium (IMEx) (Orchard et al. 2012).  This organization is dedicated to developing 

rules for describing molecular interaction data, actively curating these interactions from 

the scientific literature and making them available through a common website.  

Within IMEx, InnateDB has committed to curating every issue of Nature 

Immunology from September 2010 onwards using IMEx curation standards (Orchard, 

Kerrien, et al. 2007).  Because IMEx curation requires more annotation detail than the 

MIMIx level (Orchard, Salwinski, et al. 2007) currently supported by InnateDB’s 

submission system, InnateDB curators are submitting these IMEx interactions through 

the IntAct interaction database (Kerrien et al. 2012).  On submission, each IMEx 

interaction is thoroughly reviewed by an IntAct curator before it is accepted and 

released.  In addition to submitting to IntAct, all InnateDB acceptable interactions (i.e. 

interactions of relevance to innate immunity) from Nature Immunology are also 

deposited into InnateDB.  

2.4. Integrating data from external resources 

To supplement our manual curation efforts and to provide a snapshot of the 

entire interactome beyond known innate immunity interactions, InnateDB imports data 

from a wide range of genome, interaction and pathway databases 

(http://www.innatedb.com/resources).  Currently, InnateDB contains 178 000+ imported 

experimentally validated interactions, 3000+ pathways and 300 000+ interactions based 

http://www.innatedb.com/curatedGenes
http://www.innatedb.com/resources


 

37 

on Ortholuge (Fulton et al. 2006) orthology predictions (interologs) in addition to the 18 

000+ InnateDB manually curated interactions.  

2.5. Integration of Bovine Data - Orthology based Pathway 
and Network Reconstruction 

In February 2012, a new version of InnateDB was released that included the 

incorporation of bovine gene, pathway and molecular interaction annotation in addition to 

the existing data for human and mouse.  This new version of the platform now also 

facilitates a systems biology approach to the investigation of the bovine innate immune 

response and is poised to deepen our understanding of important bovine infectious 

diseases associated with significant economic losses (e.g. bovine tuberculosis and 

mastitis), as well as enabling cross-species comparisons of innate immunity.  

As bovine experimentally validated interactions and pathways are virtually non-

existent, InnateDB uses an orthology-based approach to predict bovine pathways and 

interactions primarily from human data.  One should be aware that this approach results 

in a humanized and frequently incomplete representation of the bovine interactome, but 

in the absence of widespread experimental data it provides at least a network biology 

framework to build on and to generate hypotheses that can be subsequently 

experimentally validated.  InnateDB experimentally validated and predicted interactions 

are clearly labelled.  As of September 2012, InnateDB contained >70 000 bovine 

interologs (interactions based on orthology) involving 10 717 bovine genes.  In each 

case, one can link back to the orthologous human interaction to review evidence for the 

interaction.  

The latest release of InnateDB also uses orthology predictions to transfer human 

and mouse pathway annotations to bovine genes in real time.  Currently, pathway 

annotations can be assigned to 7032 bovine genes by orthology to human genes. 

Notably, although only ∼70% of all human genes (14 316 genes) have a predicted 

bovine ortholog, a significantly higher proportion (85%) of human genes with pathway 

annotations have a bovine ortholog.  This higher prevalence of conserved genes among 
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pathway-annotated genes indicates that many of the associated processes may be well 

preserved.  

2.5.1. Variability of pathway conservation 

To further examine the appropriateness of the orthology-based annotation 

transfer on a per-pathway basis, we determined the ‘conservation rate’ (cons) of each 

pathway, defined as the ratio of pathway participants in the source organism 

(human/mouse) that have a putative counterpart in the target organism (cow) to the total 

number of participants in the source organism.  As of September 2012, InnateDB 

contains 1536 human pathways with five or more pathway participants, 80% (1257 

pathways) of these have a conservation rate of 0.8 or better.  The corresponding number 

for a conservation rate of ≥0.7 is 93% (1442 pathways).  The high prevalence of strongly 

conserved pathways seems to largely justify an orthology-based approach for inferring 

bovine pathways.  Appendix A lists the remaining 107 pathways with a relatively low 

conservation rate (cons <0.7).  Notably, the list of pathways for which an orthology-

based reconstruction is challenging includes >30 immunologically important pathways.  

In some cases, the low conservation rate can be attributed to real divergence of the 

underlying processes.  The bovine Type I Interferon family, for example, has been 

shown to have undergone widespread expansion, including the divergence of a new 

Type I interferon (IFN) family (IFNX) in the cow from IFN alpha (Walker and Roberts 

2009).  In other cases, the conservation rate might further increase with future 

improvements to the quality of the bovine draft genome.  

2.5.2. Pathway conservation and cellular localization 

A closer look at the moderately or poorly conserved pathways suggests a distinct 

trend in the cellular localization of the non-conserved members of these pathways. 

Overall, there were 1,513 human genes with pathway annotations but without any 

predicted bovine orthologs. Gene Ontology (Ashburner et al. 2000) Cellular_Component 

(GO_CC) analysis of these genes revealed a strong enrichment for the terms “plasma-

membrane” (509 genes, FDR 4.26E-50) and “extra-cellular region” (260 genes, FDR 

3.33E-28).  This trend is even more marked for individual signaling pathways.  For 

instance, the human “Toll-like receptor signaling pathway” in KEGG (M Kanehisa and 

http://nar.oxfordjournals.org/cgi/content/full/gks1147/DC1
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Goto 2000) contains 102 distinct members, 68 (67%) of which have a predicted bovine 

ortholog.  The vast majority (30 out of 34) of the non conserved members of this 

pathway localize to either the “plasma membrane” or the “extracellular region”. 

Furthermore, 16 of these 30 genes are interferon receptors, which in turn are likely to 

diverge from human receptors due to aforementioned changes in the bovine interferon 

repository (reported by (Walker and Roberts 2009)).  Overall, the above observation is in 

concordance with the results of a very recent (June 2014) study (M. H. Schaefer et al. 

2014) which determined that for signaling pathways, the input layer (ligands and 

receptors) tends to be significantly less conserved across species. 

2.5.3. Tissue expression and function 

In addition to orthology-based annotation transfer, the tissue expression profile of 

a gene can provide some insight into its potential function (Dezso et al. 2008).  Through 

collaboration with colleagues at the United States Department of Agriculture, InnateDB 

now integrates bovine tissue expression data for >13 000 genes.  These data were 

sourced from the Bovine Gene Atlas (Harhay et al. 2010), which has profiled gene 

expression across 87 different bovine tissues using a next generation sequencing 

approach.  A graphical tissue expression profile is available on the Gene Card page of 

bovine genes (Figure 2-2).   
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Figure  2-2  An example for graphical tissue expression profiles in InnateDB 

 

According to the corresponding gene card on InnatDB, C-reactive protein (CRP) is a major acute phase 
protein.  It is involved in response to inflammatory stimuli (complement pathway, macrophage differentiation) 
and also plays a role in metabolism (regulation of lipid storage/ leptin pathway).  This information concurs 
with the expression profile. 

2.6. Analysis of InnateDB’s protein interaction networks 

Genome scale biological networks leave many powerful details of individual 

interactions aside, but despite or maybe because of these simplifications, they can help 

in identifying possibly important aspects and general trends of these interactions (Vidal, 

Cusick, and Barabási 2011).  A biological network can be analyzed with respect to 

several local and global topological properties, including degree, clustering coefficient, 

topological coefficient and path lengths (Assenov et al. 2008).  If substantially different 

from randomized models, such properties can then be related back to a better 

understanding of biological processes.  The structure and evolution of biological 

networks has been shown to follow basic organizing principles (Vidal, Cusick, and 

Barabási 2011).  The following sections discuss some notable topological properties of 

InnateDB’s interactome. 
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2.6.1. Connectivity analysis of the human interaction network in 
regard to conservation in cow 

As of January 2014, InnateDB contains about 160, 000 unique binary human 

interactions involving ca. 17, 700 human genes.  Close to 14, 000 (78%) of the 

interacting genes have a predicted bovine ortholog and approximately 120, 000 of the 

interactions (75%) can be reconstructed by orthology.   

The proportions of conserved nodes (78%) and (putatively) conserved 

interactions (75%) seem misleadingly similar, but it is worth noting  that the proportion of 

(putatively) conserved edges is decidedly higher than what one would expect in a 

randomized model: under the assumption that node degrees are normally distributed 

and nodes are randomly selected for conservation, one would expect only 60% (0.782) of 

the binary interactions to be conserved.  As described below, the assumptions of a 

randomized model are unjustified: 

A) The median degree of nodes in the source (human) network is 5, while the 

mean is 18.05. (If the number of interaction partners in human interaction network was 

normally distributed, the mean and the median of node degrees would be both close to 

18.)  In the actual network, about a third of the nodes have only one or two interaction 

partners, while 6 genes have a degree larger than 1000.  This is consistent previous 

observations on degree distribution in human protein interaction networks (Stelzl et al. 

2005) and in line with the postulated power-law distribution of degrees in biological 

networks (Barabási, Gulbahce, & Loscalzo, 2011; Barabási & Oltvai, 2004).  

B) Human genes with a predicted bovine ortholog (i.e. conserved, evolutionary 

older genes) tend to have more interaction partners within the human PPI than non-

conserved genes (Welch t-test p value of 0.0016).  The median number of interaction 

partners for conserved genes is 7, while the median degree of non-conserved genes is 

2.  This is consistent with the idea of network growth by preferential attachment, which 

postulates that recently added nodes (e.g. lineage-specific and duplicated genes) tend to 

preferentially interact with already established, well-connected nodes.  
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2.6.2. Confounding issues in application of interologs 

Notably, although the subset of human genes without a predicted bovine ortholog 

is highly enriched in nodes having small degrees in the (original) human interaction 

network, it also contains Ubiquitin C (UBC) and Small Ubiquitin-Like Modifier 2 

(SUMO2).  In the original network, UBC is the by far most prominent hub (involved in 

more than 9,600 interactions) and SUMO2 is the fourth largest hub (involved in over 

1,200 unique interactions).  The prominence of UBC in the human interaction network is 

consistent with the widely accepted notion that ubiquitin is one of the evolutionary most 

conserved proteins, but the lack of a predicted bovine ortholog for UBC accounts for 

about a quarter of all non-reconstructible interactions.   

  The case of UBC illustrates some of the confounding issues in high-throughput 

application of interologs that relate to the incoherencies of the “namespace maze” of 

biological identifies.  All analysis results reported in this chapter are based on Ensembl 

genes and orthology predictions by Ortholuge.  Using the Ensembl sequence for UBC as 

an input, currently neither Ortholuge (Fulton et al. 2006) nor reciprocal best-BLAST-hit 

method (RBH) (Altschul et al. 1990) can detect a  bovine ortholog of this gene.  The 

HGNC database (Gray et al. 2013) (http://www.genenames.org/cgi-

bin/hcop?species_pair=Human+and+Any+species&column=symbol&Search=Search&q

uery=UBC), on the other hand, reports a bovine ortholog for UBC, based on the Entrez 

gene for human UBC (Entrez gene 7316) and RBH.  The Entrez ID of this putative 

bovine ortholog (Entrez 444874), however, maps to two Ensembl bovine genes on two 

different loci: ENSBTAG00000032436 (Chromosome 17: 53142511-53143425, forward 

strand) and ENSBTAG00000017246 (Chromosome 19: 33853788-33855685, reverse 

strand). 

   Further complicating matters, there are some inconsistencies within the same 

repository. For instance, most repositories list UBC as a synonym of UBB, but do not list 

UBB as a synonym of UBC. Despite these issues (inconsistency of nomenclature for 

some individual genes), the general coherence of the above results suggest that the 

inferred network can be an overall useful starting point. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=7316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=default&list_uids=444874


 

43 

2.6.3. Analysis of the inferred bovine interaction network  

The inferred bovine interaction network contains a giant component (largest 

connected sub-graph) of 13, 904 nodes. This component contains the vast majority of 

the nodes and edges (all but 29 of the nodes and all but 28 of the edges), and exhibits 

several known properties of biological networks.  

The network is scale-free, i.e. the number of interaction partners per node follows 

a power-law distribution (the vast majority of the nodes have only few interaction 

partners, while a few hubs are extremely well-connected) (Figure 2-3). Further, the 

network exhibits the “small word” property: every node in the giant component can be 

reached from every other node by crossing only few intermediate nodes, with an 

average shortest path length of 3.14 (Figure 2-4). Finally, the topological coefficient of a 

node (a relative measure for the extent to which a node shares neighbors with other 

nodes) in this network decreases exponentially with the increase in its degree (the 

number of its neighbors) (Figure 2-5).  All of these finding are directly comparable to 

previous observations in human interaction networks (cf. Figure 3 in (Stelzl et al. 2005)).  

These similarities are to be expected, since the bovine network is reconstructed from a 

human one. 
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Figure  2-3 Degree distribution in the inferred interaction network 

 
 Number of nodes with a given number of interaction partners (k) in the network approximates a 
power-law.  The red line shows the fitted curve frequency(k)=a* kγ; with a=3431 and γ = -1.04, 
coefficient of determination (R2=0.99), p-value<2*e-16. 

 

Figure  2-4 Distribution of the length of shortest paths in the inferred network 

 

In over 96% of cases, there are less than 3 intermediate nodes between any two nodes in the 
network.  
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Figure  2-5 Dependency of topological coefficient on node degree 

 

Degree and topological coefficient are shown to logarithmic scale. The topological coefficient of a 
node n is calculated as average(J(m,n))/degree(n), where J(m,n) is the number of neighbors that 
node m has in common with n, plus one if m and n are also directly connected (J(m,n) is only 
defined only if share at least one neighbor). The red line has an slope of -0.85, i.e. the decline in 
the coefficient is approximately proportional to the reciproc of the degree.    

2.6.4. Analysis of the interaction network of innate-immunity 
related genes in the conserved network 

At the time of this writing, InnateDB curation team has identified 947 human 

genes with high relevance to innate immunity. Bovine orthologs of approximately 72% of 

these genes (641 genes) occur in the inferred interaction network and are involved in 

31,974 predicted interactions (25% of all inferred interactions). The number of 

interactions only involving bovine orthologs of innate immunity related genes is 4,259. 

Compared to the background of all genes in the inferred network, these conserved 

innate-immunity related genes tend to have a higher number of interaction partners: 

median degree of innate immunity related genes in the inferred network is 25, while the 

median number for all genes in this network is 5. They also have smaller average 
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topological coefficients (0.06 vs. 0.2) and smaller clustering coefficients (0.13 vs. 0.17). 

As these two coefficients are measures for the modularity of the network modularity and 

functional commitment of the nodes, respectively, these findings might reflect the context 

sensitivity of interactions involving innate immunity related genes.  

2.7. The mirror at innatedb.taegasc.ie 

Since 2011, a new European mirror of InnateDB (based at Teagasc facilities in 

Ireland and publicly available at innatedb.teagasc.ie) has been on line, to provide faster 

access for users outside North America. Like the original server, this mirror runs on two 

dedicated multi-core linux servers (one hosting the backend database and one hosting 

the web-server)   and deploys of a variety of technologies, including Apache Tomcat 

servlet container, Apache HTTP web server, MySQL database server, JavaServer 

Pages,  Apache Struts Framework ad CakePHP. 

As part of the work on integration of bovine data into InnateDB, an additional, 

experimental version of the mirror was also created, which differs from the public version 

by the integration of the R statistical framework. On this experimental version, bovine 

tissue expression barplots are not stored offline, but are rendered on demand and 

embedded into bovine gene-cards ‘on the fly’. When a user requests a bovine gene 

card, the server first determines if a tissue expression barplot for the gene in question 

already exists. If this is not the case, the web-server sends a request to  an R-daemon to 

run an R script which generates this graphic and stores it as a BLOB (binary large 

object) in the MySql database. Once the R-script has completed, the daemon notifies the 

web-server, which then retrieves the image along with the other necessary data from the 

database, generates the gene card with the embedded graphic and delivers it to the 

user.   The integration between Java code (web-server) and R is established through the 

Rserve package (http://www.rforge.net/Rserve), which is currently only available as a 

beta-release. Due to the still experimental nature of Rserve, this architecture is not 

currently deployed in the publicly available mirror, but this work demonstrates the 

potential that future releases of InnateDB could harness the vast array of available 

R/Bioconductor analysis packages to significantly enhance the range of analysis 

services that InnateDB can offer (Figure 2-6).   
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Figure  2-6 R integration on the test-version of the mirror 

 

2.8. InnateDB Data Analysis and Visualization 

InnateDB can serve as a knowledge base where users can search for particular 

genes or proteins of interest and their associated interactions and pathways, using a 

variety of search fields.  Alternatively, InnateDB can be queried in a more high-

throughput fashion, where users can upload a list of genes/proteins and associated 

quantitative data from up to 10 different conditions (e.g. gene expression data) and carry 

out more complex searches and analyses (Figure 2).  After uploading a list of gene IDs 

(human, mouse and bovine Ensembl, RefSeq, Entrez Gene, UniProt and InnateDB IDs 

are all accepted), users can quickly find which pathways, Gene Ontologies (including 

enhanced innate immunity gene annotation) or transcription factor binding sites are 

statistically over-represented in their dataset.  Users can also use InnateDB to build, 

visualize and analyse molecular interaction networks consisting of their uploaded genes 

and their encoded products.  One can, for example, construct a network of how 

differentially expressed genes interact with one another.  Quantitative data uploaded by 

the user is automatically overlaid on these networks.  Recent improvements to InnateDB 

include the option to incorporate interactions based on orthology in the construction of 

molecular interaction networks and the option to restrict the networks to contain only 

InnateDB manually curated interactions.  Further enhancements to the web-interface 

include more intuitive page layouts, faster searches and analyses, and a variety of other 

changes (see http://www.innatedb.com/news).  

http://nar.oxfordjournals.org/content/41/D1/D1228.long#F2
http://www.innatedb.com/news
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Figure  2-7 Data analysis workflow in InnateDB. 

 

2.8.1. Network visualization tools 

All interactions in InnateDB may be downloaded in several standardized formats 

including text-based formats (tab, csv, xls), the simple interaction format (sif) and the 

PSI-MI XML 2.5 and MITAB formats (Kerrien et al. 2007).  Additionally, interaction 

networks may also be visualized in our Cerebral program (Barsky et al. 2007), a Java 

plugin for the Cytoscape network visualization software (Shannon et al. 2003; Smoot et 

al. 2011) , which uses subcellular localization information to orientate interaction 

networks in a more biologically intuitive pathway-like layout.  Networks can also be 

visualized in other third-party software including the CyOog plugin (Royer et al. 2008), 

which uses Power Graph analysis to reduce network complexity by explicitly 

representing re-occurring network motifs.  Recently, we have also integrated BioLayout 
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Express 3D 2.2 (Theocharidis et al. 2009), an application designed for the visualization, 

clustering and analysis of large networks in 2D and 3D space.  

2.8.2. Proteomics Standards Initiative Common Query Interface 
implementation 

Interaction data in InnateDB can now also be queried using web services 

implementing The Proteomics Standards Initiative Common Query Interface 

(PSICQUIC).  PSICQUIC is an effort from the Human Proteome Organization 

Proteomics Standards Initiative (http://www.hupo.org/research/psi/) to standardize 

programmatic access to molecular interaction databases based on the PSI standard 

formats (PSI-MI XML and MITAB) (Kerrien et al. 2007).  It defines standard web services 

and also a query syntax for powerful and flexible searches.  

All data sources implementing PSICQUIC can be queried in the exact same way, 

i.e. the same query can be used to retrieve the relevant data from many different 

interaction data sources.  Independently published observations of an experimental 

system, curated by independent databases, are then integrated in response to a single 

user query (see http://www.ebi.ac.uk/intact/imex).  PSICQUIC web services are RESTful 

(REpresentational State Transfer) but can also be accessed through SOAP (Simple 

Object Access Protocol).  A list of available services for InnateDB can be found at 

http://imex.innatedb.com/psicquic-ws/webservices.  InnateDB updates the data files for 

the PSICQUIC web services weekly and additionally provides them for download in a 

compressed format at http://www.innatedb.com/downloads.  

2.9. Ongoing Developments 

InnateDB will maintain its curation efforts to annotate interactions and genes of 

relevance to innate immunity, with weekly updated annotation, thus continuing to provide 

a comprehensive platform for systems and network biology analyses of innate immune-

associated responses.  Continued incorporation of data from external resources, 

encompassing the wider human, mouse and bovine interactomes, will also continue to 

facilitate analyses beyond innate immunity by a wide range of researchers.  Additionally, 

http://www.hupo.org/research/psi/
http://www.ebi.ac.uk/intact/imex
http://imex.innatedb.com/psicquic-ws/webservices
http://www.innatedb.com/downloads
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InnateDB intends to expand beyond the curation of innate immunity relevant networks, 

incorporating more adaptive immunity information.  We are currently developing a first 

version of an Allergy and Asthma Portal that will further integrate data on allergy and 

associated immune interactions from both the literature and researchers from AllerGen.  

This portal will be built on InnateDB and will provide an analysis platform for more 

sophisticated network biology-based investigations of allergy and asthma responses.  

These interactions will be identifiable from innate immunity interactions, so that users 

can continue to have focused analyses on the innate immunity interactome.  

Further future developments will include improvements to InnateDB pathway 

analysis tools.  The over-representation–based methods for pathway analysis that are 

currently available through InnateDB’s data analysis interface are widely established and 

considered a ‘gold standard’; yet, they neglect the fact that many components are 

shared between seemingly unrelated pathways.  To address this issue, we have used 

the InnateDB collection of pathway annotations as a basis to identify pairs of genes that 

co-occur only in a single pathway and developed a novel pathway analysis method 

[signature over-representation analysis (SIGORA)] that focuses on the over-

representation of such gene pairs in a list of genes of interest (Foroushani, Brinkman, 

and Lynn 2013).  SIGORA is currently implemented as an R package [available from 

http://sigora.googlecode.com/svn/] and will be integrated into the future releases of 

InnateDB.  

Finally, together with the PSICQUIC development team and other IMEx 

members, we are working on an improved reference implementation of PSICQUIC.  We 

are also preparing to export our data in MITAB 2.7 format.  

 

http://sigora.googlecode.com/svn/
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Chapter 3. Pathway-GPS and SIGORA: 
identifying relevant pathways based on the over-
representation of their gene-pair signatures 

Portions of this chapter have been published in the article “Pathway-GPS 
and SIGORA: identifying relevant pathways based on the over-
representation of their gene-pair signatures”, co-authored by Foroushani, 
Amir K; Brinkman, Fiona S L & Lynn, David J in PeerJ © The Authors 
2013. I performed all analyses for this paper, with the support of my 
thesis co-supervisors which are co-authors.  

3.1. Abstract 

Motivation: Predominant pathway analysis approaches treat pathways as collections of 
individual genes and consider all pathway members as equally informative.  As a result, 
at times spurious and misleading pathways are inappropriately identified as statistically 
significant, solely due to components that they share with the more relevant pathways. 

Results: We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as 
pairs of genes that, as a combination, are specific to a single pathway.  We devised and 
implemented a novel approach to pathway analysis, Signature Over-representation 
Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-
GPS in a user-specified gene list of interest.  In a comparative evaluation of several 
published datasets, SIGORA outperformed traditional methods by delivering biologically 
more plausible and relevant results. 

Availability: An efficient implementation of SIGORA, as an R package with precompiled 
GPS data for several human and mouse pathway repositories is available for download 
from http://sigora.googlecode.com/svn/. 

3.2. Introduction  

Pathway analysis identifies biological pathways that are statistically enriched in a 

given dataset and plays a crucial role in the interpretation of high-throughput 

experimental datasets including gene or protein expression profiles (Khatri and Drăghici 

2005; D. W. Huang, Sherman, and Lempicki 2009) and genome-wide association 

http://sigora.googlecode.com/svn/
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studies (GWAS) (K. Wang, Li, and Hakonarson 2010).  Pathway analysis can guide the 

understanding of complex biological datasets through the statistical association of 

observations at the molecular level to processes at the systems level.  Such analysis 

can, for example, highlight processes that are dysregulated in certain pathological 

conditions, such as cancer (Copeland and Jenkins 2009) or infection (Wherry et al. 

2007) . 

Currently, two types of pathway analysis methods are widely used: Over-

representation Analysis (ORA) methods (reviewed in Khatri and Drăghici 2005) and 

methods related to Gene Set Enrichment Analysis (GSEA) (Mootha et al. 2003; 

Subramanian et al. 2005; Dinu et al. 2009).  

Despite major differences between ORA and GSEA methods (see e.g. (Emmert-

Streib and Glazko 2011) for a discussion), these approaches share a notable limitation: 

most current methods treat all genes in a given pathway as equal indicators that that 

pathway is significant.  This assumption, that each gene in a pathway has the same 

power to distinguish one pathway from another, and that genes assume their roles 

without consideration of the context and expression of other genes, is undoubtedly 

flawed (Gillis and Pavlidis 2011; J. Ma, Sartor, and Jagadish 2011; Khatri, Sirota, and 

Butte 2012). 

To illustrate this point, consider four protein kinases, PRKACA, PRKACB, 

PRKACG, and PRKX.  Within the KEGG (Minoru Kanehisa et al. 2011b) pathway 

repository, these genes are members of 24 different pathways, i.e. they co-occur in 

roughly 10% of KEGG human pathways (Figure 3-1).  Consider a dataset where all four 

of these genes were observed to be differentially expressed - many pathway analysis 

tools would identify all 24 different pathways as statistically significant leaving the 

biologist perplexed as to which of these pathways are the most biologically relevant to 

their study.  The underlying problem (that genes may be associated with multiple 

pathways and, as such, that all genes are not equivalent “Signatures” of a given 

pathway) is widespread and not limited to kinases.  Within KEGG, 52% of genes are 

annotated in more than one pathway (Table 3-1). 
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Figure  3-1 Not all genes have the same power to distinguish between different 
pathways.  

 

In this example, all current KEGG annotations of seven selected genes are shown.  Red: annotated in 
pathway; white: not annotated in this pathway. 

As a result, many pathway analysis methods return misleading statistically 

significant pathways that are significant solely due to shared components with other 

pathways (e.g. “Prion Disease” is identified as a significant pathway in a dengue fever 

microarray study (Hoang et al. 2010) simply because many of the genes annotated in 

this "pathway" are co-annotated in inflammation-related pathways). 
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Table  3-1 Annotation and co-annotation of human genes in current pathway 
repositories. 

 Repository annotated 
genes 

  Genes with a 
single pathway 
annotation in 

the Repository  

Genes with 
multiple 
pathway 

annotation in 
the 

Repository 

co-
annotated 
gene-pairs 

 Gene Pairs 
that co-occur 

in a single 
pathway  

KEGG 5,660 48% 52% 1,205,807 90% 
REACTOME 5,046 62% 38% 197,034 87% 
PID_BIOCARTA 1,368 54% 46% 32,361 78% 
PID_NCI 2,374 51% 49% 116,852 87% 
The number of human genes annotated in pathways in the KEGG, Reactome and PID databases.  On 
average more than 40% of genes are annotated in more than one pathway whereas gene-pairs rarely co-
occur in multiple pathways. 

Here, we report a novel approach to address this problem, which involves the 

identification of statistically over-represented Pathway Gene-Pair Signatures (Pathway-

GPS) (i.e. weighted pairs of genes which uniquely occur together in a single pathway).  

The use of such gene pairs is also motivated by the data in Table 3-1: in contrast to 

single genes, co-annotated gene pairs tend to be specific to a single pathway.  We 

provide an implementation of this approach in R (SIGORA; downloadable from 

http://sigora.googlecode.com/svn/).  We describe this approach and demonstrate how 

SIGORA significantly reduces the identification of spurious pathways in analyses of 

simulated and real biological datasets.  

3.3. Materials and Methods 

3.3.1. Algorithm 

As illustrated in Figure 3-2, our approach to the problem consists of two phases: 

In an offline phase, we compile a set of weighted markers/Signatures for each pathway 

in a repository, which we call Pathway Gene-Pair Signatures (Pathway-GPS).  

Subsequently, in an online phase, the method identifies the statistical over-

http://sigora.googlecode.com/svn/
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representation of such Signatures in a user-specified gene list using an adapted version 

of the hypergeometric test. 

Figure  3-2 SIGORA’s two phases. 

 

In the off-line phase (left) a pathway repository is transformed to disjoint sets of weighted GPS.  These 
precompiled signatures are used in the on-line phase (right) to evaluate a user specific input gene list. 

Given a pathway repository (e.g. KEGG), for each gene-pair in a pathway, 

SIGORA investigates the co-appearance of the two genes in other pathways of the 

repository.  A gene-pair that uniquely occurs in a single pathway is considered a 

Signature of that pathway and is assigned a weight.  The weight of a Signature (from 

[0,1]) quantifies the average commitment of the components of the GPS towards the 

common pathway, i.e. the weight scores the reliability of the Signature as evidence for 

the associated pathway.  For hierarchically organized repositories (like REACTOME 

(Matthews et al. 2009)), this process is repeated iteratively after the removal of pathways 

on the top level of the repository, i.e. in each iteration, new weighted Signatures are 

identified for the pathways on the lower, more specific levels of the hierarchy.  Once this 

offline stage is completed, the resulting sets of weighted gene-pairs that represent each 

pathway are non-overlapping and can be re-used for pathway analysis of any user-

specified gene lists. 

When presented with a gene list of interest (e.g. genes that are differentially 

expressed), SIGORA determines which of the pairs from its (pre-compiled) Signature 

repository can be reconstructed from the genes in the list.  A Signature is considered 
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"present" only if both of its constituent genes are found in the user-specified query list.  

This inherently leads to the selection of the more relevant roles of a gene in the 

experimental context, as SIGORA relies on the status of the other genes in the pathway 

for the reconstruction of the Signatures.  For each pathway, the weights of present 

Signatures are summed up and hypergeometric probabilities are used to assess the 

statistical significance of the observed Signature sets.  

Pathway Gene-Pair Signatures (Pathway-GPS) 

A pathway database/repository contains (at least) two types of entities: pathways 

and genes.  This can be represented by a bipartite graph (or bipartite network) B = (Vg, 

Vp, E) with two distinct sets of nodes (Vg: gene nodes and Vp: pathway nodes) where 

the edges in E connect the genes to the pathways and signify the annotation of a gene 

in a particular pathway (Figure 3-3, panel a).  In this graph, the degrees (number of 

incident edges) of the pathway nodes correspond to pathway sizes (i.e. the number of 

genes annotated in the pathway) and the degree of the gene nodes corresponds to the 

number of different pathways a gene is annotated in.  In particular, genes with degree 

one are exclusively annotated within a single pathway (‘Pathway Unique Genes 

(PUGs)’). 

Figure  3-3 Overview of the signature transformation. 

 

A schematic pathway repository as a bipartite graph (B); G1…G5: genes; P1…P3: pathways.  (B) A 
pathway unique gene.  (C) A Gene-Pair Signature (GPS): G3 and G4 co-occur only in P2.  (D) Each GPS is 
associated with a single pathway and has a weight equal to the average inverse degree (in B) of its 
constituent genes. 
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Using the igraph (Csardi and Nepusz 2006) package of the R-Statistical 

Framework (R Development Core Team 2008) , B can be manipulated and transformed.  

A weighted one-mode projection (M. E. Newman 2001) of B into the gene dimension, 

yields a new graph Proj=(Vg, E’, W) with only one type of nodes (only gene nodes Vg), 

where two genes are connected by an edge in E’  if (and only if)  they are co-annotated 

in one or more pathways, and each edge is associated with a weight (in W) which 

signifies the number of pathways that are shared between the two incident genes (i.e. 

the two genes connected by the edge).  Two genes connected by an edge of weight one 

in Proj are, as a combination, unique to a single pathway.  We call such pairs Pathway 

Gene-Pair Signatures (Pathway-GPS) of that pathway.  The process of identifying  

Pathway-GPS for all pathways in a given repository is termed the ‘Signature 

Transformation’ of the repository.  

Need for combinations 

A simplistic approach to the challenges posed by shared components would be 

to discard genes with multiple pathway annotations and to limit the analysis to the 

investigation of single characteristic genes that have only one pathway annotation (we 

call these pathway unique genes).  This would, however, drastically reduce the 

discovery power of the analysis, because most genes are not pathway unique genes 

and many pathways do not have such markers.  Furthermore, genes with multiple 

pathway annotations do contain valuable information on the underlying biological 

processes. 

Hypothetically, one could go beyond gene-pairs and also consider n-tuples (with 

n > 2) of genes that co-occur in a single pathway P as signatures of P.  As explained in 

the next section, the possible benefits of such extensions, however, do not currently 

seem to justify the associated complications to the computational and methodological 

framework.   

Viability of higher order combinations as signatures (Sufficiency of Gene pairs) 

The move from PUGs to GPS is motivated by the observation that if the method 

were to focus exclusively on PUGs, pathway-membership information for a substantial 

fraction of human genes would be lost.  Our analysis suggests that GPS deal with this 
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issue rather effectively: for instance, all human genes with a KEGG pathway-annotation 

participate in at least 9 (in average, 382) KEGG-GPS, i.e. there are no ‘orphan’ genes. 

A naturally arising question is: “Would an extension of the signature concept to 

sets of more than two genes not provide even more information about the relevant 

pathways?” 

To answer this question, let us first recall that for a pathway containing n genes, 

there are (n choose k) distinct subset of size k and a total of 2n -1 distinct non-empty 

subsets. (e.g. for a pathway with 102 genes –like TLR – there are around 5000 gene 

pairs , 171700 possible triplets, and over 4,2 million possible 4-tuples ).  Overall, there 

are over 256 Million co-annotated triplets and approximately 62 Billion co-annotated 

quartets of human genes in KEGG.  

The vast majority of these higher order combinations of co-annotated genes are 

bound to be specific to a single pathway, but this is due to a rather trivial effect: 

Expanding any GPS g1,g2 by an additional gene g3 from the same pathway would 

automatically create  a new ‘triplet signature’ g1,g2,g3 (otherwise g1,g2 could not be a 

GPS).  Only in an estimated 4.8 million out of  256 million or 1.9% of all cases, these 

triplets would potentially contain novel information: (There are ~100,000 non-GPS co-

annotated gene pairs, the average human KEGG pathway contains around 50 genes, 

which means that each non-GPS pair can be expanded by -in average- 50-2=48 

different genes to build a triplet).   

In other words, the GPS capture at least 98.1% of the information that can be 

coded by triplet signatures, at a much smaller computational cost. 

A more refined strategy would seek to identify triplets that genuinely carry novel 

information.  In order for a set of more than two genes to provide new evidence (i.e. 

information that is not already captured by the GPS), such set would have to include 

three or more genes such that a) all the genes in the set co-occur in a single pathway 

and  b) no combination of two of the genes in the set (e.g. triplet Signature) is a GPS. 

Although the second criterion reduces the number of candidate set, the resulting gene 

sets still do not add an actionable amount of additional information.  
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To further elucidate this point, we identified 619 ‘triplet signatures’ for the TLR 

pathway fulfilling the above criteria and involving AKT1.  AKT1 is annotated in TLR and 

several other pathways.  All TLR-GPS involving AKT1 contain a TLR-PUG, (i.e. no 

combination of AKT1 with another multi-pathway gene results in a TLR GPS).  All 619 

TLR-triplets contained AKT1 and two additional genes g1, g2, such that g1,g2 was not a 

GPS of TLR (or in fact a GPS of any KEGG pathway).  In total, 66 out of the 102 TLR 

genes were involved in these triplets.  Using the list of these 66 genes (the building 

blocks of the signature triplets) as (the query list) input, SIGORA identified 169 TLR-GPS 

as present and declared TLR as significant.  To understand this behaviour, consider two 

triples g1,g2,g3 and g1,g4,g5.  Although by construction we postulate that g2g3, g1g3, 

g4g5 and g1g5 should not be GPS, g4g2, g5g2, g4g3 and g5g3 still might be.  For a 

concrete example, consider the triplet signatures (AKT1, TRAF3, MAPK12) and (AKT1, 

CXCL11, IL10RB) of TLR-signaling: although within each of these triplets, there is no 

gene-pair specific to any single pathway, (MAPK12, CXCL11) and (TRAF3, CXCL11) 

are TLR-GPS. 

Assignment of weights to GPS 

As, by definition, each Pathway-GPS is uniquely associated with a single 

pathway, identifying such Signatures in a gene list of interest (e.g. observing that both 

constituent genes of a Pathway-GPS are in the list of differentially expressed genes) can 

serve as an indicator of the activation/perturbation of the associated pathway.  Each 

pathway can (and usually does) have multiple possible Pathway-GPS, and (as 

discussed below) the method does not rely on the observation of an individual GPS but 

rather on the statistical over-representation of multiple GPS in comparison to the 

expected proportion. 

Yet before the over-representation of GPS can be used for the identification of 

relevant pathways, we need to emphasize that different GPS vary in their reliability as 

indicators of a particular pathway.  This is due to the fact that, while the two genes 

comprising a Pathway-GPS can only be co-annotated in a single pathway, each of the 

two genes –considered individually- can be a member of several distinct pathways.  

Consider GPS of the form (g1,g2)  for a pathway P, where g1 is annotated in i 

pathways and g2 is in j pathways.  Intuitively, a GPS that consists of two PUGs (i.e.  a 
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case where i=j=1) is a more appealing signature than a GPS that consists of two 

‘multifunctional’ genes (say, i =4 and j=3), where the simultaneous observation of the 

two genes might be due to other factors (e.g. simultaneous activation of two different 

pathways).  To address this issue, a weight is assigned to each GPS to quantify its 

reliability as an indicator of its associated pathway. 

Choosing an appropriate weighting scheme 

As it is often the case in harnessing information from projections of bipartite 

networks (Padrón, Nogales, and Traveset 2011; Allali, Magnien, and Latapy 2013) , 

there are many different plausible and ‘natural’ ways to quantify this intuitively clear 

notion that with increasing i and j, the reliability of (g1,g2) as an indicator of P 

monotonically decreases.  

We have explored five different such weighting functions (Figure 3-4).  

A: Jaccard B: cosine C: inverse harmonic mean D: independent decisions E: topological 
overlap. 

A) 
1

1
−+ ji

:  The Jaccard similarity of g1 and g2.  (Number of common 

annotations of g1 and g2, which is by definition of GPS always 1, divided 
by the total number of annotations of g1 and g2.)  The inverse of total 
number of pathways annotations of g1 and g2 (considered individually). 

Figure  3-4  The monotonic decline of five alternative GPS-weighting schemes with 
increasing i and j. Only the values for i and j up to six are illustrated 
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B) 
ji *

1  : The cosine normalization of i and j. 

C)  







+

ji
11*

2
1

: The inverse of the harmonic mean of i and  j. 

D) 
ji *

1  : The reciprocal of the product of i and j. 

E) 
),min(

1
ji

: The topological overlap of g1 and g2: number of common 

pathways (by definition of GPS always 1) divided by min (i,j).  

 

All of these functions are plausible weighting schemes and each has its own 

strengths and limitations.  For example, the weighting scheme D corresponds to the 

probability that, assuming that g1 and g2 uniformly and independently ‘decide’ to engage 

in one of their annotated pathways, they both choose P.  At the same time, the 

independence assumption in this scheme seems biologically unsupportable.  

In practical terms, the functions A and D do not seem very useful as they decline 

rapidly with increasing i and j (Figure 3-4).  In these schemes, for most possible values 

of i and j, the resulting weights are very close to zero and hardly distinguishable from 

each other.  Similarly, weighting scheme (E) could be interpreted as the possibility that 

any of the two constituent genes ‘regulates’ P.  In this scheme, however, all GPS with 

the same value of min(i,j) obtain the same weight, regardless of their respective values 

for max(i,j), which again does not necessarily result in extracting most information out of 

the query genes in a mathematically sound manner (Figure 3-4). 

Among the functions listed above, the weighting function (C) seems to offer a 

more gradual and fine grained monotonic decline (Figure 3-4).  It corresponds to a 

normalized voting scheme in (Allali, Magnien, and Latapy 2013)  or to the shared visits 

model in (Padrón, Nogales, and Traveset 2011).  Figuratively, one could think of g1 and 

g2 (the two genes in the GPS) as actors collaborating towards a common goal (the 

common pathway P):  g1 commits 1/i of its resources to P, while g2 assigns 1/j of its 

resources to P.  The function under C is the average commitment of g1, g2 to P. 



 

62 

 In addition to the above practical considerations, there are also some epistemic 

and biological arguments in favor of a less stringent penalty for GPS that involve genes 

with higher i and j: 

1) The “correlated expression problem”: Goeman and Bühlmann (Goeman and 

Bühlmann 2007) have argued that the statistical framework of Over-representation 

based methods is flawed: In their view, Over-representation analysis does not account 

for the fact that changes in the expression levels of a gene are not random and 

independent of expression levels of other genes, as genes are often subject to common 

regulatory mechanisms.  While this critique seems particularly convincing in the case of 

the individual gene ORA, one can argue that if g1 is member of i pathways and g2 

member of j pathways, and g1 and g2 have a single common pathway, then there are 

i+j-1 counter-examples to the assumption that g1 and g2 are subject to exactly the same 

transcriptional regulatory mechanisms.  Notably, this type of “evidence for transcriptional 

independence of g1 and g2” strengthens with increasing i and j.  

2) The “knowledge bias problem”: Some well studied genes might be annotated 

in a relatively large number of pathways, in part because these genes have been known 

for a longer time and been subjected to more intensive scrutiny, and conversely, other 

genes might be annotated in only a few pathways, simply because they have not been a 

research focus.  

Paradoxically, these considerations suggest that a GPS with rather large i and j 

could be a relatively reliable indicator of P, because the co-annotation of g1 and g2 in P 

(and only P) is less likely to be due to gaps in the state of our knowledge about pathway 

annotation of g1 and g2, and less likely to be due to the transcriptional co-regulation of 

g1 and g2.  

Hence, a gradually declining weighting scheme (like B or C) seems overall more 

appropriate than the more steeply declining alternatives.  Weighting scheme C is the 

default in the implementation of SIGORA, and all results presented here are based on 

this scheme.  Nevertheless, in the implementation, the user also has the option to use 

any of the other weighting schemes mentioned above or assign a constant weight of 1 to 

all GPS.  Certain user-defined weighting schemes are also supported. 
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 In summary, let (g1, g2) be a GPS associated with a pathway P and let i and j be 

the number of individual pathways annotations of g1 and g2, respectively.  The weight of 

the GPS is  

  ji
ji
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w ji **2
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Identifying statistically over-represented Pathway-GPS  

Analogous to traditional (individual gene) ORA (IG-ORA) methods, the 

distribution function of hypergeometric probabilities is used to calculate p-values 

indicating the statistical enrichment of Pathway-GPS in a user-specified gene list, which 

is given by:  
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In individual gene ORA, k denotes the number of query genes in the tested 

pathway, n the number of the genes in the pathway, N the number of all (assayed or 

annotated) genes, and m the length of the query list (i.e. the number of the genes with 

interesting status).  In contrast to these traditional approaches, however, the parameters 

of the hypergeometric function in SIGORA are calculated as sums of GPS weights rather 

than frequency statistics of individual gene annotations.  The Signature ORA parameters 

for p-value calculations are summarized in Table 3-2.  
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Table  3-2 Interpretation of the hypergeometric distribution test parameters used in 
SIGORA. 

Parameter  Interpretation in Signature ORA 
k (success) Rounded sum of the weights of all present GPS of the tested pathway. 
n (success states) Rounded sum of the weights of all possible GPS of the tested pathway. 
N (universe) Rounded sum of the weights of all possible GPS of the repository. 
m (sample size) Rounded sum of the weights of all present GPS  

A GPS is present if both of its component genes are in the query list. 

Note that -strictly speaking- hypergeometric probabilities are only defined on 

natural numbers while the sums of GPS weights are positive floating point values, which 

is why the table refers to rounded values of the sums (to the closest integer). 

Theoretically, this rounding could lead to a ‘blurring of the weights for pathways with few 

GPS’, however, in practice this issue hardly materializes, as such pathways are very 

rare (e.g. 219 out of 226 KEGG human pathways in our repository are associated with 

10 or more possible GPS).  In tests with simulated and real biological data sets, different 

choices of the rounding strategy (floor, ceiling or nearest integer) did not substantially 

affect the significance or the rank order of the identified pathways.  As an aside, in the 

widely popular statistical framework R, the phyper function (which computes the 

distribution function of the hypergeometric distribution) does accept non-integer (floating 

point) parameters and handles such input by applying the following rounding strategy: 

the number of successes is rounded down, all remaining parameters are rounded to the 

closest integer value. In our implementation, the user has the option to restrict the GPS-

sets for the universe (N), and the success states (n) by providing a list of assayed genes 

(background).  Furthermore, all PUGs are by default considered to represent a GPS of 

weight 1 (as a combination of the PUG with itself), but the user has the option to restrict 

the analysis to pairs of genuinely distinct genes.  

Multiple Testing Correction 

Undertaking pathway analysis generally involves a large numbers of significance 

tests.  As testing a multitude of hypotheses will inevitably lead to some ‘significant’ 

results, adjustment of p-values for multiple testing is a crucial feature of any pathway 

analysis tool.  Bonferroni’s method is used by default in SIGORA for multiple testing 
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correction (MTC).  It is, however, relatively easy to change the MTC procedure, if a user 

prefers to explore other adjustment methods (see the implementation section). 

Selection of cut-off threshold for statistical significance of pathways 

The choice of a reasonable cut-off threshold for statistical significance of the 

hypergeometric test results is an open methodological question in IG-ORA.  In practice, 

values smaller than 0.1 or 0.05 after correction for multiple testing are commonly 

considered significant.  Shifting the perspective from individual genes to the weighted 

Gene-Pair Signatures brings an additional challenge: as the size of the universe for the 

hypergeometric test dramatically increases (we move from a few thousand genes to up 

to a few hundred thousand weighted gene-pairs), the calculated p-values become by 

several orders of magnitude smaller than those observed in a typical IG-ORA analysis. 

Based on our experience with simulated and biological datasets, we recommend 

a significance threshold of 0.001 after MTC (by Bonferroni).  In the implementation, the 

default output of the analysis is the ranked list of pathways that achieve a corrected p-

value up to this value.  The user can also export the entire results table (including the p-

values, corrected p-values and the parameters of the hypergeometric test) and the 

evidence (lists of present PUGs, list of the genes involved in present GPS or list of all 

present GPS along with their weights).  

Dealing with redundancies of semantic origin  

Thus far, we have described the motivation for Signature Transformation from a 

biological perspective.  However, in some cases, there are additional semantic reasons 

for sharing of components among pathways.  In particular, some repositories (e.g. 

REACTOME (Matthews et al. 2009), INOH (Yamamoto et al. 2011) and Gene Ontology 

(Ashburner et al. 2000)) are organized in a hierarchical structure, where all genes 

associated with one pathway (child) are also included in a more general pathway 

(parent).  This poses a general challenge for pathway analysis tools that ideally should 

identify the most relevant level of the hierarchy (Alexa, Rahnenführer, and Lengauer 

2006; Grossmann et al. 2007; Jupiter, Sahutoglu, and VanBuren 2009).  

The hierarchical nature of such repositories poses a special challenge for our 

method.  As any gene-pairs from a child category also co-occur in the parent pathway, 
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they would thus be excluded from being identified as a possible Signature.  This would 

have the undesirable effect that all child pathways on the lower levels of the hierarchy 

would be left without any Signatures at all in the offline stage and hence be undetectable 

by SIGORA in the online stage.  

 To address this issue, we deploy the following iterative top-down strategy in the 

offline stage (Signature Transformation): 

1) Set level=1.  Compile the repository Signatures as described for the 
non-hierarchical case.  Assign the compiled signatures to level 1. 

2) Remove all pathways from the top level of the hierarchy, increase the 
level and recompile Signatures for the remaining pathways.  Assign 
the GPS to the current level.  Iterate this step until no further 
hierarchical levels can be removed. 

Figure 3-5 illustrates this procedure on a simplified hierarchical repository.  In the online 

stage (the identification of significantly over-represented Signatures in a user-specified 

gene list) the user can specify how many levels of the hierarchy should be considered in 

the analysis.  Any GPS (and any pathways) that are deeper down the hierarchy (i.e. are 

at a higher threshold level) are left out of the universe (and the analysis).  If the user (for 

instance) asks for analysis up to the second level, then only GPS from levels one and 

two are considered. 
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Figure  3-5 Signature Transformation of a hierarchically organized pathway 
repository as an iterative process. 

 
Here, G0 to G7 are genes that are annotated in the hierarchically organized pathways P1 to P5, 
as shown in the Vann-Diagram (inset).  In the first iteration, only signatures for the outer-most 
level of the hierarchy(P5) are determined. The GPS for the higher levels are the ones associated 
with the less general pathways, and are only visible after removal of the more general terms. For 
example, the GPS of P1, P2 and P3 are only visible at level 3, after removal of P5 and P4. 

The effect of this simple modification (i.e. the iterative strategy for Signature 

Transformation) is similar to a combination of the Elim (Alexa, Rahnenführer, and 

Lengauer 2006), and TreeHugger (Jupiter, Sahutoglu, and VanBuren 2009) algorithms 

in dealing with GO’s structure.  Elim essentially excludes genes in more specific 

categories from consideration in more general categories, whereas TreeHugger 

weakens the contribution of such genes to the higher levels.  

Complexity and computational cost of the method 

The complexity of the transformation step (in an implementation based on the 

outlined bipartite network interpretation of gene-pathway membership) is dominated by 

the complexity of the bipartite projection, which is given as:  

  )( 2 EdVO +∗  
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With ||V||: number of nodes in the network (number of genes + number of 

pathways), d the average degree of nodes, ||E|| the number of edges in the bipartite 

network.  For most inputs, the online phase (i.e. analysis of user specific input lists using 

the precompiled Signatures) completes within 15 seconds on a standard laptop (1.8 

GHZ, 2 GB of RAM). 

Implementation 

SIGORA is implemented as an R package.  The package and a detailed manual 

are available for download from http://sigora.googlecode.com/svn/.  The following 

highlights the most important steps in a typical work-follow in R (requires R version 

≥2.10): 

## install and load the downloaded package  

> install.packages(‘sigora_0.9.8.tar.gz’, type=’source’, repos = NULL) 

> library(‘sigora’)  

## (please note that all of the following commands require that the 
package is already loaded) 

## import the query list from a file (assuming the list is given as 
Ensembl gene IDs): 

> myquerylist <-ens_converter(scan(‘myfile.txt’,what=’character’)) 

## Alternatively, if the file consists of Entrez gene IDs  

> myquerylist <-entrez_converter(scan(‘myfile.txt’)) 

## perform signature over-representation analysis, using KEGG GPS 

> sigs(myquerylist,’k’,markers=1,level=2) 

## multiple testing correction is done by Bonferroni and FDRs are also 
provided.  In order to add Hommel’s method: 

> cbind(summary_results,p.adjust(summary_results[,5],’hommel’)) 

## export the results into a file 

>  export_results(filename=’my_results.csv’, genes=T) 

## help (on Windows systems, help is shown in the web-browser)  

> help(sigs) 

## the following demo is also available 

> demo(sigora) 

http://sigora.googlecode.com/svn/


 

69 

3.3.2. Evaluation methods 

We evaluated the performance of SIGORA by comparison to several other 

analysis tools on simulated and published biological datasets.  Three of the methods 

compared are based on individual gene over-representation (DAVID (Jiao et al. 2012; D. 

W. Huang, Sherman, and Lempicki 2009), gProfileR (Reimand et al. 2007) , InnateDB 

(Lynn et al. 2008)) and the remaining three (GSEA_Preranked ,GSEA (Subramanian et 

al. 2005), GSEA_AF (J. Ma, Sartor, and Jagadish 2011)) are GSEA based.  

Acknowledging the inherent challenges associated with comparison of p-values 

across different statistical frameworks, for each tool we follow the recommendations of 

the authors of that tool regarding the choice of the most appropriate significance 

threshold and multiple testing correction (MTC) method (Table 3-3). 

Table  3-3  Overview of pathway analysis methods that are compared to SIGORA in 
this chapter. 

Method   Reference MTC and Threshold  
DAVID v.6.7 (Jiao et al. 2012; D. W. Huang, 

Sherman, and Lempicki 2009) 
FDR < 0.05 

gProfiler  
 

(Reimand et al. 2007) g:SCS < 0.05 

GSEA_Preranked  (Subramanian et al. 2005) FDR< 0.05 
GSEA  (Subramanian et al. 2005) FDR <0.25 
GSEA_AF (AF)  (J. Ma, Sartor, and Jagadish 2011) FDR <0.25 
InnateDB (Lynn et al. 2008) FDR < 0.05 

Among the methods listed above, we use DAVID, gProfileR, 

GSEA_PRERANKED for the simulation study, as these tools (like SIGORA) can be run 

on any pre-selected gene list and in ‘batch mode’.  GSEA and Appearance frequency 

modulated GSEA (AF) are limited to particular experimental designs and have specific 

input data format requirements, and are used here only in the analysis of three biological 

dataset for which data in the required input format was available.  InnateDB is used as a 

reference point in evaluation of the biological datasets, because SIGORA’s GPS are 

based on pathway annotation data as present in InnateDB.  The rationale for selecting 

GSEA is its popularity; while AF was chosen because it attempts to address similar 
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issues as SIGORA.  A short summary of the relevant characteristics of each of these 

methods is given below. 

 

InnateDB (www.innatedb.com (Lynn et al. 2008; Breuer et al. 2013)) 

InnateDB’s pathway analysis interface provides traditional IG-ORA using the 

standard hypergeometric test.  Its recommended MTC method is Benjamini-Hochberg.  

The pathway GPS in SIGORA’s current implementation are calculated using the 

pathway annotation as present in the latest release of InnateDB.  In other words, any 

observed differences in analysis results between SIGORA and InnateDB are solely due 

to the differences between Signature-over-representation and individual-gene over-

representation, and there are no additional confounding issues regarding the gene 

identifier mapping or different update status of the repositories across tools.  We 

compare InnateDB to SIGORA using three biological datasets. 

gProfileR (http://biit.cs.ut.ee/gprofiler/ (Reimand et al. 2007)) 

gProfileR is the R package associated with the web-server of same name.  Like 

InnateDB, it deploys a traditional individual gene over-representation based method 

using the standard hypergeometric test.  In gProfileR, p-values are corrected by default 

using a unique multiple testing correction method (MTC), called the Set Counts and 

Sizes (SCS) procedure, which is analytically derived from extensive simulation 

experiments and purports to account for “the actual structure behind functional 

annotations”.  In other words, issues relating to the overlapping structures within 

annotation repositories are believed to be addressed indirectly and implicitly, as a 

special case of MTC.  We use gProfileR in the simulation experiment.  For 

completeness, we also list gProfileR’s results on the three biological datasets evaluated 

here; however, some of the pathways listed by gProfileR are very recent additions to the 

KEGG repository that are as yet not available in other tools, including our current 

implementation of SIGORA. 

DAVID (http://david.abcc.ncifcrf.gov/ (D. W. Huang, Sherman, and Lempicki 2009; 
Jiao et al. 2012) 

DAVID provides individual-gene pathway analysis over-representation analysis 

using the EASE Score, a modified Fisher Exact p-value that is designed to raise the bar 

http://www.innatedb.com/
http://biit.cs.ut.ee/gprofiler/
http://david.abcc.ncifcrf.gov/
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for statistical significance of smaller pathways.  This avoids situations in which 

observation of only a few genes from a small pathway would make it equally (or even 

more) significant than observing dozens of genes from a larger pathways.  The EASE 

Score is generally more conservative than the Fisher Exact p-values. 

Apart from this modification, DAVID’s functional annotation charts implement a 

traditional individual gene over-representation based method that treats all genes 

equally.  DAVID has also introduced the concept of functional annotations clusters that 

are motivated by the idea that rather than focusing on significance of individual 

pathways, the true nature of a phenotype should be examined by considering the overall 

emerging picture of interrelated pathways.  In some situations, clusters of interrelated 

pathways can be considered collectively significant while some (or most) of the 

individual pathways in those clusters might fall slightly beyond the significance threshold.  

Although this is undoubtedly a sensible statement, the measure of interrelatedness used 

in DAVID’s functional clusters is in diametrical contrast to the reasoning behind 

SIGORA:  DAVID’s authors postulate that similar pathways tend to contain similar gene 

members.  In DAVID’s functional annotation charts, the more common genes 

annotations share, the higher chance they will be grouped together as interrelated 

pathways, and the better the chances of the emerging cluster to become (collectively) 

significant.  

For the simulation experiment, we will focus on DAVID’s functional charts.  In our 

evaluation of analysis results on biological datasets, we will also briefly exemplify the 

pitfalls of DAVID’s Functional clusters. 

GSEA (Subramanian et al. 2005) 

The three methods discussed above (InnateDB, gProfileR and DAVID) are over-

representation based methods that (like SIGORA) operate on a pre-filtered list of genes 

of interest (query list).  The list of genes of interest is often determined using a 

(combination of) threshold(s) (e.g. fold change and p-value of differential expression).  

The p-values are in essence derived from a contingency table. 

 GSEA, in contrast, is the most prominent representative of a very different 

category of pathway analysis tools that do not operate on a pre-selected list and do not 
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use contingency tables.  In GSEA, all genes in the dataset are first ranked by their 

difference regarding a single biological metric (e.g. signal to noise ratio) between the two 

conditions.  This ranked gene list is then used to assign a normalized enrichment score 

(NES) - defined as the maximum deviation of a running sum statistic from zero, adjusted 

for the number of genes in the pathway - to each pathway.  The statistical significance of 

the NES is determined by sample permutation (i.e. randomly exchanging the phenotype 

class labels).  

We compare GSEA and SIGORA in the analysis of three biological datasets.  

Some of the observed differences in the results of GSEA analysis to SIGORA are 

inevitably due to the fundamental differences between ORA and GSEA methods.  In 

particular, regardless of their biological relevance to the examined dataset (or lack 

thereof), the significance of some of pathways observed by GSEA is due to ‘subtle but 

coordinated changes’ in expression levels of genes that are not in the list of differentially 

expressed genes.  

This issue equally applies to the two remaining methods, GSEA-PRERANKED 

and AF, which are described below. 

GSEA-PRERANKED 

As the name suggests, this is a variant of GSEA where the input format is not an 

expression matrix, but a pre-ranked list of genes.  Accordingly, as there is no sample 

information available, the statistical significance is derived from gene set permutation 

instead of sample permutations.  Technically, applying GSEA and GSEA-PRERANKED 

to the same dataset can lead to identical NES, but very different FDRs 

(http://www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html).  Hence, the 

recommended threshold for statistical significance is different ( 0.05 instead of 0.25).  

We compare GSEA-PRERANKED to SIGORA in analysis of simulation datasets.  Like 

standard GSEA, GSEA-PRERANKED does not provide a mechanism for dealing with 

shared components of pathways. 

Appearance Frequency modulated GSEA (AF) (J. Ma, Sartor, and Jagadish 2011) 

AF is a recently proposed variant of GSEA that is explicitly designed to deal with 

issues posed by shared components.  In this respect (the intended benefit), AF is the 

http://www.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html
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most similar method to SIGORA among all methods compared here.  AF assigns 

weights to individual genes based on number of associated pathways and performs a 

GSEA analysis.  Methodologically, AF inherits most of GSEA’s characteristics and is 

quite distinct from SIGORA.  We compare AF and SIGORA in the analysis of three 

biological datasets.  

Simulation experiment 

 

Creation of simulated input lists 

As a preliminary measure to quantify the effect of shared components on the 

number of spurious pathways, we conducted a simulation experiment over 1,000s of 

simulated gene lists that are created by applying the following procedure:  From a set of 

175 human KEGG human pathways that are in the repository of all four compared tools 

(SIGORA, DAVID, gProfiler and GSEA_preranked), n pathways are chosen at random 

and a fraction (alpha) of genes in each selected pathway are marked as differentially 

expressed (DE).  The restriction to 175 common pathways is intended to reduce the 

effects of diverging update-status across analysis tools.  The list of DE genes from five 

selected pathways is used as a query list for SIGORA, gProfiler and DAVID.  To create 

an input list for GSEA_preranked, a score of 2 is assigned to the selected DE genes and 

a score of 1 to all remaining human genes.  This procedure is repeated 1,000 times at 

fixed values for alpha and n. 

Biological datasets 

We further compare each of the different pathway analysis tools by examining 

their results when applied to three different gene expression datasets.  These datasets 

incorporate the results of microarray studies investigating the host response to a 

parasite infection (Experimental Cerebral Malaria), a viral infection (Dengue Fever), and 

a bacterial infection (Tuberculosis) (Lovegrove et al. 2007; Hoang et al. 2010; Thuong et 

al. 2008).  We map the lists of differentially expressed genes in each experiment (as 

provided by the authors of the respective studies) to unique Ensembl/Entrez IDs and use 

the resulting sets as input lists for four over-representation based methods (InnateDB, 

DAVID, gProfiler and SIGORA), ensuring that all methods are run on identical input lists.  
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Additionally, two GSEA-based methods (GSEA and AF) are also applied to the 

corresponding expression datasets obtained from the gene expression omnibus (GEO): 

GSE25001, GSE11199, GSE11199.  

3.4. Results 

3.4.1. Results on simulated gene lists 

To evaluate the performance of SIGORA, we compared it to three other popular 

pathway analysis methods (DAVID, gProfiler and GSEA_Preranked) applied to 

simulated data, where we know a priori which are the significant pathways.  The 

simulated input data was created by randomly choosing five KEGG pathways and 

selecting a fraction (alpha, 50% or 15%) of the genes in each of these pathways as 

being "differentially expressed".  Each of the methods was then applied to the selected 

gene list to determine the statistically significant pathways (using the respective 

recommended significance threshold and MTC approach, see Table 3-3). 

 If the sharing of genes between different pathways was not a factor, we would 

expect that each method should identify only the five preselected pathways as 

significant.  As can be seen in Table 3-4, in our experiments (using 1,000 simulated 

datasets with alpha=50% and 1,000 datasets with alpha=15%), this was not the case: 

gProfileR, for example, identified more than 60 pathways on average as being significant 

at alpha=50%, despite only 5 pathways being simulated as significant in the input data.  

SIGORA performed best by this measure and identified on average 8 pathways as 

significant across the different datasets.  
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Table  3-4 Performance metrics for several pathway analysis methods run on 1,000 
simulated gene lists at two different alphas (15% or 50%). 

Alpha Method Average 
number of 
significant 
pathways  

Average 
Recall 

Average 
Precision 

F1 score 
(harmonic 
mean of 

precision 
and recall) 

Average rank 
of the original 

pathways 
within the 
analysis 
results  

15% DAVID 11.22 0.71 0.32 0.44 6.8 (sd: 8.55) 
gProfiler 34.17 0.95 0.14 0.24 7.8 (sd:10.71) 
GSEA_Preranked 0.09 0.01 0.74 0.03 29.6 (sd:26.73) 

SIGORA 6.41 0.72 0.56 0.63 3.6 (sd:2.08) 
50% DAVID 30.25 0.98 0.16 0.28 6.8 (sd:9.07) 

gProfiler 62.48 0.99 0.08 0.15 8 (sd:11.87) 
GSEA_Preranked 13.91 0.87 0.32 0.46 5.6 (sd:7.82) 
SIGORA 8.87 0.89 0.50 0.64 3.7 (sd:2.31) 

Each of the simulated datasets contained either 15 or 50% of genes in 5 randomly chosen pathways.  For 
each analysis method and each input gene list, the identified (statistically significant) pathways were 
recorded and the Precision (true positive results/all significant pathways), Recall (true positive/chosen) and 
F1 score (harmonic mean of Precision and Recall) were calculated by comparing the list of the (n) chosen 
pathways with the list of identified pathways.  More specifically, for the purpose of this analysis, a 
statistically significant pathway is considered a true positive if it is among the five chosen pathways and a 
false positive otherwise; furthermore, any chosen pathways that are not identified by a method as 
statistically significant are considered false negatives. The values in parentheses in the last column show 
the standard deviations for the ranks. The entries in bold show the method with the best performance 
according to each measure. 

The Recall and Precision metrics in the third and fourth columns of Table 3-4 

capture the relationship between originally preselected ‘target’ pathways and the 

identified pathways.  More specifically: Recall describes the fraction of the target 

pathways that were identified as significant and Precision signifies the fraction of 

statistically significant pathways that were among the originally selected pathways.  

Neither of these two metrics by itself is decisive, and there is a certain trade-off between 

the two metrics.  This trade-off is captured by the F1-score, the harmonic mean of 

Precision and Recall.  As can be seen in Table 3-4, SIGORA had the best F1 scores 

when compared to the other methods.  
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Finally, note that although this analysis is based on recommended significance 

thresholds in each method, Precision, Recall and F1 score are all dependent on the –

ultimately arbitrary- choices of significance thresholds.  The last column in Table 3-4 

describes the results according to a less threshold-dependent measure.  Ideally, the 

preselected pathways would occupy the first five positions in the list of the identified 

pathways, resulting in an average rank of 3.  As can be seen in the last column of Table 

3-4, at both choices for alpha (15% or 50% of the genes in each pathway selected) the 

average rank of the originally preselected pathways (‘target pathways’) in SIGORA’s 

results (3.6 and 3.8 respectively) is very close to this ideal value, whereas the other 

methods tend to identify several additional pathways as more significant than the target 

pathways, resulting in higher average ranks of target pathways in these methods. 

3.4.2. Results on published datasets 

In addition to the simulated data, we also compared SIGORA to five different 

methods (InnateDB, DAVID, gProfileR, GSEA and AF) applied to real biological data, in 

this case three different gene expression datasets.  Full details of the input genes, p-

values and highlighted pathways obtained by each method can be found in the 

Appendices B to D. 

Tuberculosis: 

SIGORA was compared to five different pathway analysis methods (InnateDB, 

DAVID, gProfileR, GSEA and AF) applied to a gene expression dataset (GSE11199) 

which measured the host transcriptional response in human macrophages infected with 

Mycobacterium tuberculosis (Thuong et al. 2008).  1,250 transcripts (corresponding to 

1,100 distinct Ensembl genes) were identified by Thuong et al. as being induced in 

response to this infection.  Figure 3-6 shows the pathways that were identified as 

statistically significant by each of the six methods.  The first thing that one notes is that 

the GSEA-based methods tended to predict large numbers of pathways as statistically 

significant (the AF method predicted nearly a third of the KEGG database as significant 

in this example).  This is somewhat by design, as GSEA methods attempt to identify 

subtle but coordinated changes in gene expression.  This may be very helpful in 

investigating cases where there are only subtle differences between conditions but in a 
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dataset like this one, it leaves the biologist bewildered as to which pathways should be 

followed-up on experimentally.  In the other extreme is DAVID, which predicted only 4 

pathways as statistically significant.  SIGORA, on the other hand, identified 12 pathways 

as statistically significant; 10 of which were also identified by at least two other methods.  

Comparing the pathways identified by SIGORA as significant to the significant pathways 

identified by the other methods, one can see (Figure 3-7) that many of the pathways 

identified by other methods as significant but not by SIGORA share many genes with the 

SIGORA pathways.  Notably, after removing the multifunctional genes that are involved 

in the pathways identified by SIGORA from the input list, the individual gene over-

representation based methods (DAVID, InnateDB and gProfileR) did not return any 

significant pathways at all.  This reinforces our observation from the simulated data that 

SIGORA will identify truly significant pathways but avoid identifying pathways that are 

significant because they share genes with other more relevant pathways.  

Interestingly, SIGORA may also be able to identify some important pathways that 

are not significant using other methods.  One pathway was identified as significant in this 

dataset only by SIGORA; Fc gamma R−mediated phagocytosis.  Fcγ receptors regulate 

immune activation and susceptibility during Mycobacterium tuberculosis infection 

(Maglione et al. 2008; Maertzdorf et al. 2011) and it has been implied that “entry through 

Fcγ receptors may specify a distinct intracellular trafficking pathway for virulent M. 

tuberculosis”(Ernst 1998).  Finally, DAVID’s top functional cluster for this dataset 

(Enrichment score 0.99) contained 16 pathways, 12 of which are different cancer 

subtypes (Appendix B).  

Appendix B lists all Pathways identified as statistically significant by each of the 

considered methods and their respective ranks (by p-value) in analysis of this dataset.  
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Figure  3-6 Results of six different pathway analysis methods applied to a gene 
expression dataset measuring the host transcriptional response to 
M. tuberculosis infection of human macrophages. 
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The heatmap shows all pathways that were identified as statistically significant by at least one of the six 
different pathway analysis methods.  The more red the color the higher the rank of that pathway for a 
particular method.  The heatmap is sorted by the number of methods identifying a particular pathway as 
significant. 
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Figure  3-7 Number of differentially expressed genes that are shared between 
SIGORA’s pathways (columns, ordered by rank) and additional 
pathways identified as significant by other methods on the TB 
dataset. 
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Experimental Cerebral Malaria: 

Example 2 is a mouse cerebral malaria (ECM) dataset, comparing the whole-

brain transcriptional responses of genetically susceptible (C57BL/6) and resistant 

(BALB/c) inbred mouse strains 6 days after infection with Plasmodium berghei ANKA 

(NCBI GEO: GSE7814) (Lovegrove et al. 2007).  We first performed a differential 

expression analysis using Geo2R to obtain a list of up-regulated genes at FDR < 0.01 

(637 Ensembl genes, Appendix C).  We use this list as input for SIGORA, InnateDB, 

gProfileR and DAVID, and apply GSEA and AF to the corresponding expression matrix. 

Similar to the previous example, the number of KEGG pathways that different 

methods identified as statistically significantly enriched in this dataset varied widely: AF 

identified 59 pathways  (out of 185 in its repository), while DAVID highlighted just two 

pathways.  SIGORA identified 14 pathways as significant, 13 of which were also 

reported by at least two other methods (Figure 3-8, Appendix C).  The remaining 

pathway is PPAR signaling pathway (discussed further below). 

 Aside from this big-picture view, the strong changes in the rank orders of the 

following individual pathways are also worth mentioning:  

Complement and coagulation cascades: This pathway is the 6th ranked pathway 

in SIGORAs results.  Three additional tools (InnateDB, GSEA and AF) also identify this 

pathway as significant, but only at considerably lower ranks (the17th, 25th and 27th 

position, respectively).  Complement and coagulation pathways have been shown to be 

critically involved in the development of ECM (Francischetti, Seydel, and Monteiro 2008; 

van der Heyde et al. 2006; Ramos et al. 2012). 

Leukocyte transendothelial migration: This pathway is the 7th ranked pathway in 

SIGORA’s results, the 23rd ranked pathway in GSEA and the 44th ranked pathway in AF.  

The remaining methods do not identify this pathway as statistically significant.  

Polymorphonuclear leukocyte recruitment has been shown to be responsible for 

increased permeability of the blood-brain-barrier, and is strongly associated with fatality 

rates in ECM (Senaldi et al. 1994; Bell, Taub, and Perry 1996). 
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PPAR signaling pathway: This pathway is at position 14 of SIGORA’s results.  

The only other method to identify PPAR signaling is AF, at position 47.  Targeting of 

PPAR is currently being explored as a novel adjunctive therapy for cerebral malaria 

(Balachandar and Katyal 2011; Serghides 2012).  Notably, PPARγ has been reported to 

be one of only two genes in a cerebral malaria-resistance locus identified using a 

genome-wide analysis of 32 different inbred mouse lines (Bopp et al. 2010) and 

modulation of the inflammatory response to  P. berghi infection by an antagonist of this 

gene has greatly enhanced the survival rates in mice (Serghides et al. 2009).  

At the same time, SIGORA avoids a few biologically implausible pathways that 

are considered highly significant by at least two other methods: e.g. “Staphylococcus 

aureus infection” (a bacterial infection) is the most significant pathway in InnateDB’s 

results, and the second highest ranked pathway in gProfileR’s results, but is not 

significant in SIGORA’s results.  Similarly, GSEA and AF both identify “Prion diseases” 

as significant (position 2 and 4, respectively) and again, this pathway is not significant in 

SIGORA’s results.  Other examples include: “Small cell lung cancer” (GSEA, AF), “Viral 

myocarditis” (InnateDB, gProfileR , AF), “Type I diabetes mellitus”  (InnateDB, gProfileR) 

(Figure 3-8 and Appendix C). 

DAVID’s top ranking functional cluster for this dataset (Enrichment Score: 2.7) 

groups “Antigen processing and presentation”, “Viral myocarditis”, “Allograft rejection”, 

“Graft-versus-host disease”, “Type I diabetes mellitus” and “Autoimmune thyroid 

disease” together (Appendix C).  All of these pathways having highly overlapping 

annotations.  It seems plausible that “Type I diabetes mellitus” , “Autoimmune thyroid 

disease” and  “Viral myocarditis” are considered statistically significant by current 

methods due to the fact that they each share several (8 or more) differentially expressed 

genes with the natural killer cell pathway (Figure 3-9), which has been shown to be a 

determinant of murine malarial fatalities (Hansen et al. 2003). 
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Figure  3-8 Comparison of results of six different methods on a mouse 
experimental cerebral malaria dataset. 
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The heatmap shows all pathways that were identified as statistically significant in at least one of five 
different pathway analysis methods.  The more red the color the higher the rank of that pathway for a 
particular method.  The heatmap is sorted by the number of methods identifying a particular pathway as 
significant. 

Figure  3-9 Number of differentially expressed genes that are shared between 
SIGORA’s pathways (rows, ordered by rank) and additional 
pathways identified as significant by other methods on the ECM 
dataset. 

 

Dengue fever 

 As a third evaluation set, we re-examined a list of 483 up-regulated genes in the 

whole blood transcriptome of patients infected with dengue virus (NCBI GEO: 

GSE25001) (Hoang et al., 2010) More specifically, we compared expression profiles of 

hospitalized patients with uncomplicated Dengue during acute phase (≤72 h of illness 

history) to follow up samples of such subjects two weeks after discharge (n=72). 



 

88 

 Here, for the most part, the SIGORA results contain well-defined immunity 

related pathways.  As before, some additional, potentially spurious pathways that are 

identified by other methods are not significant in the SIGORA analysis.  Examples 

include "Staphylococcus aureus infection" (the second ranked pathway in InnateDB 

results) and the "Prion Disease" pathway (identified by both InnateDB and AF).  These 

two pathways share components with the complement pathway (4 and 6 up-regulated 

genes respectively, Figure 3-10), which has been shown to have a role in neutralising 

Dengue (Shresta 2012).  

Figure  3-10 Number of differentially expressed genes that are shared between 
SIGORA’s pathways (rows, ordered by rank) and additional 
pathways by other methods (columns) in the analysis of the Dengue 
dataset. 
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Again, this example contains a possibly relevant pathway that was significant in 

SIGORA’s results, but overlooked by the other methods: “Lysosome”, at position eight of 

SIGORA’s results (Table 3-5, Appendix D).  Recent experimental evidence suggests that 

manipulation of the host’s autophagolysosomes by the dengue virus is an important part 

of the virus’s life cycle (Khakpoor et al. 2009; Heaton and Randall 2010). 

DAVID does not return any functional clusters for this dataset.  

Table  3-5 List of all pathways identified as statistically significant by each method 
compared in this study and their respective ranks (by p-value) in the 
analysis of a Dengue fever gene expression dataset. 

  DAVID GSEA AF gProfileR InnateDB SIGORA 

Systemic lupus erythematosus 1 3 2   1 1 

Hepatitis C         10 2 

Complement and coagulation cascades 2     3 3 3 

RIG-I-like receptor signaling pathway   1 3   9 4 

Cytosolic DNA-sensing pathway   2 1   4 5 

Osteoclast differentiation         7 6 

Chemokine signaling pathway     6     7 

Lysosome           8 

Antigen processing and presentation     9     9 

NOD-like receptor signaling pathway   4 4     10 

Toll-like receptor signaling pathway   6 8   5 11 

Staphylococcus aureus infection         2   

Long term potentiation     10       

Leishmania infection   5 11       

Ribosome     5       

Malaria         6   

Allograft rejection     7       

Prion diseases     12   8   

Measles       1     

Influenza A       2     

Herpes simplex infection       4     
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  DAVID GSEA AF gProfileR InnateDB SIGORA 

Pertussis       5     

The entries in bold are significant largely due to sharing genes with other more relevant pathways. 

3.4.3. Alternative evaluation criteria  

So far, we have discussed that compared to existing methods, SIGORA performs 

favorably on biological and simulated datasets.  There are, however, inherent challenges 

in developing and evaluating methods in a situation like this, where the ground truth is 

simply unknown.  Comparisons of analysis results on biological datasets remain 

ultimately anecdotal, and the relevance of simulated datasets to real biological situations 

is questionable.  The choice of datasets and metrics deployed in a comparative analysis 

might affect the outcome.  In order to provide some additional evidence for the viability of 

signature over-representation analysis, in the next section we examine the performance 

of SIGORA in the context of evaluation criteria and datasets chosen by authors of other 

methods. 

Reproducibility of results across independent datasets  

One criterion for measuring the reliability of a method is the consistency of its 

results for two (or more) biologically similar yet independently created datasets.  In such 

a setup, the method is applied to both datasets independently and the number of 

(relevant) significant pathways that are identified in both datasets is determined.  The 

idea is that the higher the number of such common pathways, the more robust the 

method.  Ma et al used this criterion to compare GSEA and AF (J. Ma, Sartor, and 

Jagadish 2011).  More specifically, they applied both GSEA and AF to histological grade 

1 vs. grade 3 ER+ tumors from GSE3494 (Miller et al. 2005) and histological grade 1 vs. 

grade 3 ER+ tumors from GSE2990 (Sotiriou et al. 2006)  and reported that while GSEA 

identifies only three cancer related pathways in both datasets, AF identifies four. (Table 

1 in (J. Ma, Sartor, and Jagadish 2011)).  Furthermore, they reported one overlapping 

pathway in the top 5 results for GSEA, and two overlapping pathways in the top 5 results 

of AF (Figure 2b of their paper).  We applied SIGORA to the same two datasets (DE 

genes for grade 1 vs. 3 samples were obtained from Genomic portals (Shinde et al. 

2010) at a p-value of 0.001) and observed more consistent results than AF and GSEA.  
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There were four common cancer related pathways within the top five results ("Cell 

cycle", "RNA transport", "Proteasome" and "Spliceosome"), and a fifth pathway ("DNA 

replication") within the top seven results for the two datasets.  Additional consistently 

significant pathways identified by SIGORA include "Colorectal cancer”, "Oocyte 

meiosis", "Cysteine and methionine metabolism", "Aminoacyl-tRNA biosynthesis" and 

"Base excision repair".   

Identification of ‘target pathways’ on a large collection of datasets.   

The authors of PADOG (Tarca et al. 2012) proposed a different, presumably 

objective criterion to measure the performance of their method: they selected 24 

expression datasets where the corresponding disease is the name of a KEGG pathway.  

The KEGG pathway describing that disease was then considered to be the ‘target 

pathway’ for this dataset.  The analysis methods were compared in terms of their ability 

to identify the target pathway as statistically significant in the analysis of each data set.  

They report that PADOG was able to identify one (4.2%) of the 24 target pathways as 

significant (after adjusting for multiple testing) whereas GSEA and GSA did not identify 

any of the target pathways.  In order to compare SIGORA to PADOG using this 

benchmark, SIGORA was applied to the 24 lists of differentially expressed (p < 0.0001) 

genes from these 24 datasets.  In two cases (GSE9348 and GSE9476), SIGORA 

identified the target pathway as significant after adjusting for multiple testing.  This is 

twice the number of such hits by PADOG on these datasets. 

3.4.4. Coexpression and co-annotation 

As mentioned on page 60 (the section discussing possible GPS-weighting 

schemes), correlated expression of genes has been long considered a methodological 

challenge to ORA-based methods, where the statistical framework presupposes 

sampling from an independent and identically distributed gene pool (Goeman and 

Bühlmann 2007).  

To determine whether Pathway-GPSs were more or less likely to be 

compounded by co-expression biases than traditional methods, we investigated the 

relationship between the number of shared pathway annotations and correlated gene 

expression on a repository wide scale (in KEGG), using the ‘human top three highest 
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correlated genes’ list from COXPRESdb (Obayashi and Kinoshita 2011).  COXPRESdb 

annotates the top three most correlated genes for each of over 19,000 genes, across 

hundreds of samples. The results can be summarized as follows: as is to be expected, 

highly co-expressed gene pairs tend to share pathway affiliations at much higher rates 

than randomly selected pairs of gene.  From the 33,000 unique gene pairs of the 

COXPRESdb highly correlated list, 1402 (4.2%) co-occur in at least one KEGG pathway, 

while the corresponding fraction among randomly selected pairs of human genes is less 

than 0.07% (1,205,807 out of more than 180,000,000 possible pairs).  

 However, if we limit the analysis to gene-pairs that have at least one pathway 

annotation in common, then highly co-expressed gene-pairs are more likely to be found 

among gene-pairs that share multiple annotations than those having just one shared 

annotation.  From the 1402 highly correlated gene pairs that share a pathway  

annotation,  542  (39%) share more than one annotation (Figure 3-11, panel A) , while 

the corresponding fraction among all gene pairs that share any pathway annotation is 

10% (Figure 3-11, panel B).  In other words, Pathway-GPSs are less likely to display 

highly correlated expression behavior.  

Figure  3-11 Coexpression and co-annotaion in KEGG 

 

A)  Distribution of number of shared pathway affiliations for highly co-expressed, co-annotated human gene 
pairs  in KEGG  B) Distribution of number of shared pathway affiliations for all co-annotated human gene 
pairs in KEGG. 
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We were able to replicate these results in a case by case examination of several 

published lists of differentially expressed (DE) genes for individual pathological 

conditions.  We observed that although such lists often contained many (hundreds) gene 

pairs from the above COXPRESdb-list, only a fraction (i.e. less than 10%) of such pairs 

were comprised of genes that shared a single pathway annotation.  For example, DE 

genes in GSE781 (the dengue fever data set) contained 304 correlated gene pairs, only 

22 of which were ‘Signatures’.  In the implementation, the user can examine the 

proportion of highly correlated genes and gene-pair signatures in a dataset (by executing 

coexpress-sigs after sigs). 

3.5. Discussion, related and future work 

The existence of shared components between pathways poses a challenge for 

pathway analysis methods: which of the statistically significant pathways associated with 

such components are the most biologically significant? In 2005, Khatri and Drăghici 

surveyed the state of the art analysis methods and tools of the time and outlined several 

limitations as the challenges for the next generation of analysis tools.  One such 

challenge “is related to genes that are involved in several biological processes.  For such 

genes, all current tools weight all the biological processes equally.  At the moment, it is 

not possible to single out the more relevant one by using the context of other genes [of 

interest] in the current experiment.”(Khatri and Drăghici 2005)  

The years since have seen many interesting developments in the functional 

analysis of high throughput biological data: Several methods (Alexa, Rahnenführer, and 

Lengauer 2006; Grossmann et al. 2007; Jupiter, Sahutoglu, and VanBuren 2009) have 

been described to highlight processes at the appropriate level of specificity and to 

reduce the redundancy of the results in the context of Gene Ontology (GO) analysis, 

where the overlap between categories are often due to the hierarchical organization of 

the ontology.  These methods, however, fail to account for overlap between pathways 

that don’t involve the full inclusion of all members of a pathway in another pathway.  To 

deal with such cases, (Antonov et al. 2008) proposed the creation of new functional 

categories as complex Boolean combinations of available GO terms.  Unfortunately, 
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such combinations are often not easy to interpret and a comprehensive search over all 

possible combinations is computationally infeasible. 

Outside of GO, a few methods have been proposed that indirectly tackle the 

issue by either discriminative treatment of individual genes or alternative representation 

of the pathway repository in specific scenarios.  An example of the later approach 

(alternative representation of the pathway repository) is Bayesian Pathway Analysis, 

BPA (Isci et al. 2011).  BPA transforms each pathway in a pathway repository into a 

separate Bayesian Network (BN) and scores the fit of each model with the experimental 

(expression) data.  BPA is expected to leverage the expression status of other genes in 

the experimental context, as BNs, in contrast to simple lists of genes, are deemed 

capable of accommodating local interactions between genes.  Although highly 

sophisticated, BPA is computationally intensive and by design limited to the 

interpretation of expression datasets.  

An early example of the former approach (non-egalitarian treatment of individual 

genes) is impact-analysis (Draghici et al. 2007).  Impact analysis integrates the 

magnitude of each gene's expression change along with the type (e.g. receptor, 

transcription factor) and position of each gene within the given pathways and their 

interactions into the statistical framework, however, the authors do not explicitly address 

the problems related to component sharing among pathways. 

More recently, it has been proposed to add an appearance frequency based 

parameter to the statistical framework of GSEA.  This additional parameter is intended to 

weaken the contribution of genes with multiple pathway memberships to the statistical 

significance of all of their associated pathways (J. Ma, Sartor, and Jagadish 2011).  

While this is a significant step in the right direction, the addition of such a parameter 

does not exploit the status of other genes in the experiment for the selection of the most 

relevant function of a gene in the experimental context.  As exemplified by the gene, 

BRCA1 in (Khatri and Drăghici 2005), even key players of one process (maintaining 

genomic stability) can have several less prominent roles in other unrelated pathways 

(response to nutrient and brain development).  Nor can appearance frequency 

distinguish between the causes of appearance of a gene in several pathways, which, 
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aside from functional pleiotropy of genes, can be partly due to the hierarchical 

organization of some pathway repositories like REACTOME and GO. 

Here we introduced the concept of Pathway-GPS, as genes or gene-pairs that 

(as a combination) are specific to a single pathway, and we described Signature Over-

representation Analysis (SIGORA) as a novel (and comparably efficient) approach to 

pathway analysis.  SIGORA uses Pathway-GPS to bridge the gap between the context 

sensitive and collaborative nature of biological processes on one side and the universal 

and discrete statistical framework of over-representation analysis on the other side.  

Although each Signature’s weight is fixed in advance, the net contribution of an 

individual gene G to the measured success (parameter k in Table 3-2) of each of its 

associated pathways is not fixed and depends explicitly on the status of its partners 

(genes that together with G form a GPS).  

In contrast to individual gene ORA, SIGORA seems relatively robust to biases 

that are introduced by correlated expression of genes.  In contrast to the GSEA-based 

solutions, SIGORA inherits the versatility of the ORA statistical framework and is 

applicable to lists of genes of interest obtained in any type of high throughput 

experimental set-up (e.g. copy number variations from cellular profiling, lists of 

epigenetically silenced genes from promoter methylation analysis, differential gene 

expression data from NGS and microarrays or SNPs from GWAS experiments) without 

the need for adaptation of the computational method.  This is especially notable in 

situations where ranking of the entire dataset by a single biological parameter (as 

required by GSEA) is not feasible (see (Huang et al., 2009) for a few examples). 

As described in 3.4.4,  the independence assumption of hypergeometric test is 

already controversial for individual gene ORA (as used in InnateDB, DAVID, gProfileR): 

the fundamental assumption of the hypergeometric test, sampling without replacement 

from an independent and identically distributed gene pool (Goeman and Bühlmann 

2007) is biologically questionable, as gene expression is a coordinated and correlated 

process (page 60 and 91ff).  The move from single genes to gene pairs to some degree 

mitigates that (biologically motivated) issue, in part because (according to the notion of 

present signatures) a single gene’s (G) contribution is not fixed but amplified or 

annihilated by presence or absence of other genes that build a signature with G. (In the 
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context of natural language processing / text labeling the use of GPS instead of single 

genes would correspond to using a certain class of bi-grams instead of a ‘bag of words’ 

model of language: Apple+ Windows -> computers; Apple + Banana-> fruits ; Apple 

alone-> abstain from  using this word as evidence for any classification).     

Among the four parameters of the hypergeometric test, a growth in the size of 

universe (or background) and  the number of successes result in smaller p-values, 

where as growing sample size or larger success state sizes decrease the significance 

(i.e. lead to larger p-values).  Due to the nature of the test, these effects are non-linear, 

i.e. doubling (for instance) the size of the universe does not result in halving the p-value.  

In the context of signature-overrepresentation, all four parameters are affected by the 

move from genes to gene-pairs, which might seem to further complicate a direct 

comparison of SIGORA’s p-values to p-values from IG-ORA.  

Desirable as it may seem, mathematically, one cannot compare methods across 

different statistical frameworks, tool-update statuses, significance thresholds and MTC.  

Even leaving SIGORA out of the comparison, the methods compared in this chapter use 

different MTCs, thresholds and statistically frameworks (Table 3.3 : FDR 0.25 or FDR 

0.05, or g:SCS 0.05, permutation based versus urn-model/differential expression based, 

gene permutation vs. sample permutation).  This has indeed been a confounding issue 

through-out the creation of this manuscript.   

It is however important to remember that p-values do not make any claims about 

the truth of a hypothesis, and as such, their actual values are not very relevant to a 

meaningful comparison of the results of different methods.  In my humble opinion, the 

only meaningful comparison is one from the pragmatic point of view.  Will using a tool 

(viewed as a black-box, with parameter-settings according to recommendations made by 

the tool’s authors) result in hints towards planning biologically meaningful follow-up 

experiments?  Are “Prion diseases” in a Dengue dataset, “Cholera infection” in a breast 

cancer dataset and “small cell cancer” in Tuberculosis examples of such meaningful 

hints?  This said, the chapter mentions several alternative criteria for comparison, 

including robustness across independently collected biological datasets (3.4.3).   
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One could argue that e.g. the sample size is still the number of genes, not the 

sum of weights of present GPS (the cumulative amount of encountered evidence).  

Presumably, this is the case because e.g. microarrays measure the expression levels of 

genes, not of GPS.  Let us, however, recall that even for the same dataset and same 

traditional ORA method, the choice of biological identifier-type to which the probes are 

mapped (e.g. Entrez vs. Ensembl genes) can affect p-values, significance and ranking of 

the identified pathways (a good example is the Dengue fever dataset in this chapter, for 

which Entrez and Ensembl mappings lead to different pictures using the standard 

hypergeometric test in InnateDB).  In light of this observation, would it be desirable that 

all ORA based analyses should cease until further notice? 

This being said, it is reasonable to assume that if the sample size were to be 

considered to be the number of genes, then the p-values should be calculated by gene 

re-sampling.  This is a valuable insight and an avenue that I did follow as part of 

development of SIGORA.  Unfortunately, there are several confounding issues with this 

presumably methodologically sound approach, which would make a good research topic 

in their own right: Should the simulated samples correspond to the original sample only 

in their size?  In size and overall co-expression behavior under ‘normal’ circumstances? 

In size, correlation behavior and annotation distribution?  The results are indeed each 

time different depending on the respective underlying definition of ‘similarity’ for gene 

samples.  

The comparably small suggested significance threshold (of 0.001) might raise 

concerns about increased power of the analysis.  Examining the Appendices B-D (where 

all results for all methods are listed, regardless of significance threshold) shows that 

even at a significance threshold of 0.05, there would be no more  ‘significant’ pathways 

in SIGORA’s results than there are in InnateDB’s results (which uses the traditional IG-

ORA).  The same observation is true for the simulated datasets: E.g. using a 

significance threshold of 0.05 and FDR as MTC, the entries for SIGORA in the first 

column of Table 3-4  would be ‘10.42’ and ‘7.93’ (instead of  ‘8.87’  and ‘6.41’), which is 

sill considerably smaller than the number of pathways returned by any of the other 

methods. 
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Getting pathway analysis right continues to remain a hotbed of fierce debate.  A 

few examples were mentioned in the previous sections, additional examples for debates 

on methodological soundness of presumably established methods can be seen in 

(Tamayo et al.; Tripathi, Glazko, and Emmert-Streib 2013).  In this light, clearly the 

method introduced here won’t be the last word in pathway analysis or the only possible 

or ‘correct’ way of using pathway-GPS to highlight relevant pathways.  For the inclined 

readers who accept that -given the limitations of ‘bag of genes’ pathway models- the 

concepts of ‘GPS’ and ‘present GPS’ that were introduced in this chapter might be 

worthy of their consideration, but object to the way the p-values (or maybe more 

appropriately: ‘p-value like scores’) of SIGORA are computed, it is relatively easy to 

obtain the list of all precompiled GPS for all repositories from SIGORA in order to 

develop their own (improved) methods.  

3.6. Conclusions  

This chapter highlights the level of component sharing between pathways and 

demonstrates how this can lead to misleading/spurious results in current pathway 

analysis approaches that treat all pathway members as equally informative.  Here we 

introduce a novel approach that accounts for the overlapping structure of pathway 

annotation by focusing on unique features (‘Signatures’) of pathways.  To our 

knowledge, this is the first over-representation based method to do so. 

Applied to several published datasets, our approach highlights biologically 

meaningful processes that would otherwise fall below statistical significance thresholds, 

and avoids some of the biologically implausible processes highlighted by other methods.  

This suggests that our approach delivers a useful complementary tool for pathway 

analysis. 
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Chapter 4. Application of Guilt by Association to 
a bovine tissue-expression dataset 

4.1. Abstract 

Background: Orthology based annotation transfer (as used for reconstruction of 

bovine pathways in InnateDB) is a useful approach, but it cannot be applied to genes 

without known orthologs or genes that don’t have a functional annotation in any species.  

An alternative, complementary approach for predicting the biological roles of such genes 

is the application of the “guilt by association (GBA)” principle to expression or interaction 

datasets.  The bovine gene atlas (BGA) is a large tissue expression dataset containing 

the count statistics for 175,203 unique digital gene expression tag sequences in 105 

tissue samples. 

Objective: This chapter examines the application of guilt by association to the 

BGA dataset, to formulate hypotheses about potential gene functions from similarity of 

expression behaviour. 

 Results: Application of two different normalization strategies, followed by 

calculation of pair-wise Pearson’s correlation coefficients (PCC) across all tissues, 

resulted in construction of two very different co-expression networks from the BGA 

dataset at the same correlation cut-off threshold (PCC> 0.9).  Concordance with bovine 

protein-protein interaction networks (PPIs) and KEGG-GPS (Gene-Pair Signatures), as 

well as additional considerations on overall robustness to both normalization methods, 

were used to select one of these two networks for further analysis.  The selected 

network was then subjected to clustering and functional analysis. Functionally enriched 

clusters satisfying additional quality criteria were selected to generate hypotheses on 

possible biological roles of (functionally) un-annotated genes that were contained in 

them.   
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4.2. Introduction  

In higher organisms, the biological roles and functions of many genes and 

proteins are as yet unknown. In Chapter 2, we reported that - using orthology – more 

than 80% of human pathways can be reconstructed in cow. The genes annotated by that 

approach, however, correspond to only about a third of all bovine genes. Orthology 

based annotation transfer (as used for reconstruction of bovine pathways in InnateDB) is 

a useful approach, but it cannot be applied to genes without known/predicted orthologs 

or genes that don’t have functional annotation in any species.  An alternative, 

complementary, approach for predicting the biological roles of such genes is the 

application of the “guilt by association (GBA)” principle. An early step in most GBA 

approaches is the construction of a “functional linkage” network. In such networks, two 

nodes (genes) are connected by an edge if there is some indirect ‘evidence’ that they 

might share a common function. The underlying assumption is that the position of a 

given node within the network and known functions of its neighbors can help in 

generating new hypotheses about its function.    A further assumption is that connectivity 

analysis or functional enrichment analysis can be used to further prioritize the 

hypothetical functions (Wolfe, Kohane, and Butte 2005).  

Co-expression networks are a special case of functional linkage networks, where 

two genes are connected by an edge if they exhibit similar expression behaviour across 

conditions or tissues.   Here, one assumes that correlated, seemingly coordinated, 

expression behavior across (subsets of) tissues or conditions potentially provides some 

evidence for common regulatory mechanisms like transcription factors, shared promoter 

regions or regional transcriptional domains (N. Chen and Stein 2006) and/or 

collaboration towards a common purpose, i.e. membership in a common module or 

pathway. 

 The similarity of expression behavior of genes is often measured by their pair-

wise Pearson’s correlation coefficient (PCC), which is defined as the covariance of two 

variables divided by the product of their standard deviations and provides a measure for 

the linear dependence of the genes being compared. After calculation of pair-wise PCC 

for all gene pairs in a dataset, the network is constructed either by connecting gene pairs 

that have a pair-wise PCC above an arbitrary threshold, or by linking each gene to the 
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top k most similar genes (k>1) (i.e. using the top k highest PCC scores for each gene).  

Regardless of method used to construct the network, it is important to note that the 

intuitive idea -that ‘similar expression behaviour suggests similar function’ is both 

extremely vague (hard to formalize, hard to exploit and hard to evaluate) and in many 

cases not true (Box 4-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 4-1: Known limitations of GBA for expression datasets 

 In co-expression networks, functional linkage is established through similarity 
of expression behavior.  There is, however, some inherent vagueness in the concept of 
‘similarity’. Different similarity metrics e.g. Pearson’s correlation coefficient vs. 
Spearman's rank correlation - can result in substantially different co-expression 
networks.  If pairwise Pearson’s coefficient correlation (PCC) is applied, the choice of 
the samples  that are used for the co-expression analysis can affect the correlation 
score for a given gene pair (Usadel et al. 2009).  This is in part due to the sensitivity of 
PCC to single sample outliers: two genes that both reach their highest expression 
levels (within a given set of samples) in the same sample will automatically score a 
high correlation coefficient regardless of their differences in the remaining samples.   

An important confounding issue for both the inference of functions and 
evaluation of inferred functions concerns the depth, quality and extent of existing 
functional annotations: the notion of ‘genes with known function’ used in GBA to predict 
the functions of ‘genes of unknown function’ needs to be considered critically, as only a 
minority of genes has been exhaustively studied and the set of known functions of a 
gene are in most cases incomplete. Hence, a substantial portion of genes with known 
function might have many additional, as yet ‘unknown functions’ (Peña-Castillo et al. 
2008).   In contrast to ‘molecular functions’,  ‘biological process’ roles are systems-level 
properties (McGary et al. 2010).  As a result, in case of genes with multiple ‘known 
functions’, the subset of relevant functions are often context sensitive (c.f. the BRCA1 
example in chapter 3).  When using GO annotations in  GBA, there are additional 
caveats regarding the quality of annotations with an unreviewed computational 
evidence code (Rhee et al. 2008), which are marked as “Inferred from Electronic 
Annotation (IEA)”.  Many ‘biological process’ annotations for higher organisms are 
unreviewed: As of release of March 2014, over 87% of GO_BP annotations for Bos 
taurus genes carry the evidence cod IEA.  Multi-functionality also affects the evaluation 
of GBA methods. A commonly used evaluation procedure for assessing the quality of 
the inferred functions is cross-validation, a procedure in which the known functions of a 
random subset of nodes is masked, and one determines how well a GBA method 
retrieves this masked functions. However, the authors of (Gillis and Pavlidis 2012) 
recently reported that the existence of ‘exceptional links’ between highly multifunctional 
nodes can also skew the results of cross-validation. 

  Finally and most importantly, the dynamics of mRNA reflected in co-
expression data are only one aspect of information flow from genome to protein and 
correlated expression is neither necessary nor sufficient for functional linkage (Y. 
Huang et al. 2007; Usadel et al. 2009).   Co-expression GBA has been reported to 
work better for plants than in animals, partly because the more complex tissue 
organization and regulatory mechanisms in animals, as well as the higher frequency of 
alternative splicing in mammals hinder a precise evaluation of the strength of gene 
coexpression (Obayashi and Kinoshita 2011). 
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 Many online resources including COXPRESdb (Obayashi and Kinoshita 2011), 

Gemma (Zoubarev et al. 2012), and GeneMania (Mostafavi et al. 2008) can be used to 

obtain co-expression (and/or other functional-linkage) networks or to lookup a gene 

within such networks. 

GBA has been extensively applied to mRNA expression, protein interaction and 

genomic sequence datasets as well as networks constructed by integrating such 

datasets (Wolfe, Kohane, and Butte 2005; Eisen et al. 1998; S. K. Kim et al. 2001; 

Marcotte et al. 1999; H. K. Lee et al. 2004; Usadel et al. 2009; Chua, Sung, and Wong 

2006; I. Lee et al. 2008). Early network-based GBA methods used simple majority votes 

in local neighborhoods (Marcotte et al. 1999): a gene with unknown function would be 

assigned the function of the majority of its neighbors in a co-expression or interaction 

network. Using a compendium of gene expression datasets in C. elegans, (S. K. Kim et 

al. 2001) constructed a three-dimensional expression map that displays correlations of 

gene expression profiles as distances in two dimensions and gene density in the third 

dimension, and showed how terrain map mountains in this map can be interpreted as 

clusters of genes with similar function. Network based neighborhood based methods 

were later extended to include second degree neighbors by (Chua, Sung, and Wong 

2006) who noted that in protein-protein interaction networks “a substantial number of 

proteins are observed to share functions with level-2 neighbors but not with level-1 

neighbors”, while extending the radius beyond second degree neighbors was generally 

shown to reduce the quality of the results. 

 A different family of methods (called “label propagation algorithms”) generalize 

local neighborhoods into a more global ‘diffusion’ process (P. I. Wang et al. 2012). Label 

propagation is an iterative process in which starting with a set of seed nodes (nodes with 

‘known function’), a node’s function at each step “spills over” to its immediate neighbors.  

The function assignments for all nodes are then updated as the weighted average of the 

flow into the node and the node’s previous status.  Eventually, label propagation 

methods return continuous values for ‘probability’ of a node being associated with 

particular functions. 

As a general trend, over the past decade, positions on viability of the 

assumptions behind the application of guilt by association to animal co-expression 
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datasets have shifted.  While (Wolfe, Kohane, and Butte 2005) claimed that the principle 

is  ‘generally and systematically applicable’ to human datasets, more recent publications 

(Gillis and Pavlidis 2012) conclude that  ‘guilt by association is rather the exception than 

the rule’. This is in part due to the fact that  as demonstrated  in vivo for C. elegans (Z. 

Zhao et al. 2005) even in simple animals, co-expression does not necessarily imply co-

regulation, and similar expression patterns can arise from distinct regulatory 

mechanisms. The neighborhood relationship in the co-expression network (i.e. 

seemingly coordinated expression patterns, as measured by correlation analysis of 

expression data) may or may not reflect a neighborhood relationship in the genomic 

sequence.  Clearly, a combination of shared genetic loci, common direction of 

transcription and coordinated transcription, as described for C. elegans in (N. Chen and 

Stein 2006), is a stronger indicator of common regulatory mechanisms and functional 

relationships than possibly spurious similar expression patterns alone.  

 A related, concurrent, trend is the rise of probabilistic functional gene networks 

(PFGN), that combine heterogeneous types and sources of biological information into a 

single, predictive model, in order to increase both the reliability and coverage (number of 

genes) of the network (I. Lee et al. 2010).  The individual datasets might -for instance- 

contain gene expression patterns, protein-protein interactions, genetic-interactions, 

gene-disease association and mutant phenotype data from several different species. In 

order to combine these very heterogeneous lines of evidence into a single model, each 

individual network is assigned a weight according to the level of its concordance with 

known co-annotation networks. Integrating different layers of information in this way is 

expected to enhance the reliability of the model, because links detected by several 

methods are considered more likely to be of functional relevance. For instance, 

observation of conserved correlated expression across several species reduces the 

possibility of experimental/technical artifacts. This type of  GBA has been applied to C. 

elegans (I. Lee et al. 2008), mouse (Peña-Castillo et al. 2008), and Arabidopsis thaliana 

(Horan et al. 2008). 

Before such combined models can be created for cow, bovine-specific gene co-

expression networks are needed. These approaches in cow have been substantially 

limited to date by a lack of gene expression from a large number of conditions or tissues. 
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Here, we report the construction and analysis of a bovine gene co-expression network 

from a large bovine tissue expression dataset.  

4.3. Material and Methods 

4.3.1. The Bovine Gene Atlas (BGA) Dataset 

Through a collaboration with USDA, we obtained the dataset behind the Bovine 

Gene Atlas (BGA) (Harhay et al. 2010). BGA is a genome-wide transcriptomic study 

across 105 tissue samples (87 unique tissue types) from a cow (L1 Dominette 01449, 

the Hereford cow whose genome serves as the bovine reference sequence), her calf, 

fetus and sire.  The BGA dataset is the result of sequencing 20-base tags (including the 

GATC restriction site) from the 3’- most restriction site that were obtained by restriction 

digestion of bovine cDNA with the enzyme DpnII.  BGA is currently “the deepest and 

broadest transcriptome survey of any livestock genome” (Harhay et al. 2010).   

The profiling technology used for the creation of the Bovine Gene Atlas dataset is 

called Digital Gene Expression (DGE). DGE was a relatively short lived NGS technology 

and there are far fewer published studies using this technology than there are e.g. RNA-

seq studies. Compared to RNA-seq, there are both some limitations and advantages:    

the required sequencing depth is smaller and there is no need for assembly of short 

reads, because –as per protocol- every gene should be represented by at most one tag 

(there is at most one most 3’ restriction site per gene).  On the other hand, the coverage 

(the number of genes whose expression can be profiled by this technology) is smaller in 

DGE than in RNA-seq studies (not all cDNAs have a DpnII restriction site) and partial 

digestion and potential isoforms might distort the quality of the final transcript counts for 

a portion of genes (Asmann et al. 2009; Harhay et al. 2010; Nicolae and Măndoiu 2011). 

The BGA dataset contained count statistics for 175,203 unique digital gene 

expression tag sequences in 105 tissue samples (libraries).   In total, 102,901 

sequences had been mapped to 17,392 Wikigenes-IDs (Hoffmann 2008).  For the 

analysis presented here, the tissue-expression data for a subset of 13,447 genes from 

this dataset, that fulfilled the following criteria, was used:  
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• The tag could be mapped to a unique Ensembl gene. 

• The gene had a total transcript count (summing up across all 105 samples) 
above 10 tags per million. 

• If multiple transcripts were mapped to a gene, then only the tag comprising at 
least 70% of the total expression over all tissues was considered to represent 
the gene and all other tags were discarded. If such a tag was not present, all 
tags were discarded and the gene was excluded from the subsequent analysis 
(because as per experimental design, there should be one tag type per gene: 
the GATC restriction site followed by 16 bases from the 3’-most DpnII binding 
site). 

4.3.2. Normalization and network construction 

Expression profiling by Digital Gene Expression technology has not been used in 

many studies.  In contrast to other NGS technologies, (e.g. RNA-seq ((Bullard et al. 

2010)) technology-specific guidelines for the statistical handling of this type of datasets 

are virtually non-existent.   The prevailing assumption for analysis of DGE data is that, 

due to the experimental protocol (which in theory results in at most one tag per gene, 

independent of the length of the gene), “more complex normalization of the data is not 

necessary” (Asmann et al. 2009).    

For my analysis, two different normalization methods (described below) were 

applied to the BGA dataset.  For each normalization strategy, pairwise Pearson’s 

correlation coefficients (PCC) were calculated for all 13,447 genes across all 105 tissue 

samples, resulting in approximately 9,000,000 pairwise correlation scores per 

normalization method. For each normalization method, gene pairs displaying strongly 

correlated expression behaviour (gene pairs with PCC > 0.90) were selected for 

construction of a co-expression network.   

1) Tag per million (TPM) normalization: In TPM, each sample is independently 

scaled so that the expression values sum up to one million (i.e. the expression 

value of each gene in a given sample is multiplied by one million divided by the 

sum of all transcript counts for that sample).  Tags per million is the method used 

by (Harhay et al. 2010) to examine the relations between different samples 

(tissues) in BGA.  
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2) Bi-stochastic normalization (BSN): is an approach successfully used for bi-

clustering of microarray data (Kluger et al. 2003), and has been reported to 

improve clustering performance in other contexts (F. Wang et al. 2011).  Bi-

clustering (Oghabian et al. 2014) allows for simultaneous clustering of genes and 

conditions, thereby acknowledging that two different types of similarity contribute 

to a meaningful analysis of correlated gene expression: a) the expression levels 

of co-regulated genes are expected to show correlated behavior and at the same 

time b) the expression profiles of closely related samples (tissues) are expected 

to be correlated.  A bi-stocastically normalized expression matrix is a matrix in 

which all rows (each representing the expression level of a single gene across all 

samples) sum to a constant and all columns (each representing the expression 

levels of all genes in a single sample) sum to a different constant. 

4.3.3. Network analysis, network Clustering and functional 
analysis 

To obtain an estimate of the quality of the constructed co-expression networks, 

both networks, as well as their intersection, were examined with regard to their overlap 

with  a) inferred bovine protein-protein interactions (from chapter 2), and b) the KEGG-

GPS (from chapter 3).   

The agreement of co-expression networks with the PPI or GPS network was 

measured in terms of precision and recall. For the purpose of this analysis, precision 

was defined as the fraction of suggested functional links between conserved genes (in 

the co-expression network) that corresponded to an edge in the PPI or the GPS network, 

(“confirmed divided by suggested”). Similarly, recall was defined as the number of 

retrieved functional links (between conserved genes in the co-expression network) 

divided by the number of all known connections between the same genes in the PPI or 

GPS network (“found divided by known”).  

  The network with the more favorable performance (the BSN network) was then 

subjected to network clustering using the Cytoscape (Smoot et al. 2011) plug-in MINE 

(Rhrissorrakrai and Gunsalus 2011), to identify groups of densely interconnected genes 

(set of genes that are more strongly connected to each other than to the rest of the 
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network).  MINE is a soft network clustering tool, meaning that an individual gene can be 

a member of multiple clusters, thereby potentially allowing for pleiotropy. Clusters 

identified by MINE were analysed to identify statistically enriched Gene Ontology 

biological processes (GO-BP), using the Hypergeometric test. The enrichment analysis 

was performed using the Cytoscape plug-in BINGO (Maere, Heymans, and Kuiper 2005) 

and custom bovine gene ontology and annotation files (downloaded from 

http://www.geneontology.org in May 2013).   

To prioritize ensuing hypotheses about possible biological functions of genes 

without functional annotations in these clusters, additional size, enrichment and 

proportional filters were applied: clusters were discarded if they contained less than four 

genes or contained less than three ‘genes with known function’ (GKF), if they were not 

enriched in any biological processes (FDR>0.05) or if none of the top 10 statistically   

significant functions for the cluster was associated with at least 40% of the GKF in the 

cluster. Approximately 40% of the highly prioritized hypotheses were evaluated by 

literature search in PubMed.   

4.4. Results  

4.4.1. Comparison of the BSN and the TPM network 

The application of the two normalization methods (bi-stochasic vs. tags per 

million) to the BGA dataset resulted in two very different co-expression networks: in the 

TPM network, there were over 104,000 suggested functional links between pairs of 

distinct genes at PCC>0.9, whereas at the same cut-off threshold (PCC>0.9), there were 

only 28,011 suggested functional linkages in the BSN network.  The number of nodes 

(genes) in the two networks was less dramatically affected (3,100 vs. 2,841), i.e. on 

average, the application of tags per million normalization resulted in over three times 

more functional linkages per gene than the application of bi-stochasic normalization (67 

vs. 20).  The intersection of BSN and TPM networks contained 20,964 gene pairs, i.e. 

75% (20,964 out of 28,011) of BSN links (or 20% of TPM links) were robust with regards 

to the effects of the two normalization methods (Table 4-1).   

http://www.geneontology.org/
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 4-1 Properties of the coexpression network at fixed PCC threshold for two 
different normalization schemes 

Network/ Attribute BSN TPM Intersection of BSN and TPM 

1. V (genes) 2,841 3,100 2,239 

2. E (links) 28,011 104,461 20,964 
3. Number of genes with conserved 

human ortholog 1,765 1,859 1,339 
4. Number of edges (in E) that correspond 

to conserved PPI 142 131 82 

5. Conserved PPIs between genes from V 2,023 2,326 1,219 

6. recall(PPI) 7% 5.6% 6.7% 
7. Number of edges that connect two 

conserved genes in the network 9,329 52,124 5,864 

8. precision(PPI) 1.5% 0.025% 1.3% 
9. Number of edges (in E) that correspond 

to (human) KEGG-GPS 530 628 462 

10. KEGG-GPS consisting of genes from V 14,408 15,636 9,829 

11. recall(KEGG-GPS) 3.6% 4.0% 4.7% 

12. precision(KEGG-GPS) 5.6% 1.2% 7.8% 
BSN: bi-stochasic normalization, PCC > 0.9. TPM: tags per-million normalization, PCC> 0.9. For both 

networks, approximately 60% of the nodes were conserved genes (having a human ortholog) and 
approximately 12-14% of the nodes were KEGG-PUGs. The values in the 6th  row are calculated by 
division of the 4th row by the 5th row.  The values in the 8 row are the result of division of the 4th row 
by the 7th row.  Row 11 is obtained by dividing row 9 by row 10.  Row 12 equals row 9 divided by 
row 7.      

Comparison to co-annotation networks 

As previously mentioned, congruence of correlated expression and co-annotation 

is sometimes used to estimate the quality of a co-expression network (I. Lee et al. 2008).  

Exploiting the fact that KEGG-GPS (chapter 3) represent a special class of co-annotated 

pairs, and that GPS come in the same format (pairs of genes) as co-expression data, it 

was determined how many of the proposed functional links in each network correspond 

to GPS.   
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In terms of agreement with KEGG-GPS at the fixed PPC threshold of 0.9, the 

BSN network had a 4.7 fold better precision than the TPM-network (5.6% vs. 1.2%, 

Table 4-1), and a comparable recall (3.6% vs. 4.0%).  The proportion of GPS in the BSN 

network (the precision regarding GPS) was also six fold larger than the proportion of 

GPS in  randomly constructed networks from the same genes (in average, 0.09%), 

whereas the performance of the TPM network was only 1.3 folds better than random. 

  For both networks, the fraction of links corresponding to GPS seems very small 

and this is certainly a further empirical confirmation of the caveats regarding inference of 

functional annotations from co-expression data (Box 4-1).  KEGG-GPS are, however, a 

conservative measure of co-annotation (only considering co-annotation of orthologs in 

manually curated pathways, and only counting pairs that co-occur in a single pathway).  

For comparison, in section 3.4.4 of this thesis, we reported that for the list of most highly 

correlated human gene-pairs obtained from COXPRESdb, there were 860 KEGG-GPS 

among 33,000 unique gene pairs – corresponding to a precision score of 2.6%.  

Co-expression and protein-protein interactions  

The co-expression networks were also compared to the inferred bovine protein-

protein interaction network (as present in InnateDB).  Again, for both networks (TPM and 

BSN at PCC 0.9), co-expression seemed to be a poor predictor of known protein-protein 

interactions, for which there are several possible explanations: many interacting protein 

pairs are not necessarily co-expressed, co-expressed genes do not necessarily interact 

and the known interactome is incomplete.  Again, relative to its size, the BSN network 

contained six times more conserved protein-protein interactions than the TPM network 

(1.5% vs. 0.25%), with both networks recognizing a comparable portion of all PPIs 

between their respective genes (7% of protein-protein interactions between the genes in 

BSN network corresponded to links in BSN network  and 5.6% for TPM)  (Table 4-1).  Of 

the co-expressed gene pairs from the BSN network that did correspond to protein-

protein interactions, 28 (20%) also corresponded to KEGG-GPS; and half of these (13) 

were annotated to complement and coagulation cascades.  To be sure, complement 

components work as a functional complex and must be co-expressed together.  The 

prominence of this sub-network in the overlap of the interaction- , the co-expression- and 
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the co-annotation-network possibly reflects the bias in the interactome of InnateDB 

towards innate immunity related interactions.  

Amplification of differences in tissue specificity 

The discrepancies in the number of strong pairwise correlations between the two 

networks (28,000 vs. 104,000 gene pairs) were in part due to the fact that bi-stochastic 

normalization amplifies differences in tissue-specificity.  An illustrative example is the 

case of C2 (complement C2 precursor) and CYP1A2 (Cytochrome P450 1A2).  In the 

BGA dataset, CYP1A2 is detected only in the liver at 87 tags per million (tpm), while  C2 

is detected in the liver at 29 tpm and (at much lower abundances) in 24 additional tissue 

samples, including ‘perirenal adipocytes’, ‘spleen’, ’ileum’ and ‘thyroid’.  Since both 

genes achieve their highest expression level in the liver and both genes are not detected 

in 80 additional samples, in the TPM-normalized dataset, the two genes have a PCC of 

0.92, leading to a functional link between the two genes in TPM-network.  After bi-

stochasic normalization, the correlation coefficient between these two genes drops to 

0.67, hence the BSN network does not include a link between C2 (a gene with primarily 

immunological functions) and CYP1A2 (a gene with primarily metabolic roles). 

MicroRNA-mRNA linkages in BSN and TPM networks  

The BGA data set contains 31 miRNAs.  Although these miRNA-genes (as to be 

expected) in general exhibit slight to moderately negative correlation with most genes 

(including their putative/verified targets), there are also a few strong positive correlations 

involving MIRNAs in both the BSN and the TPM network. 

Interestingly, despite its smaller size, the BSN-network contained more 

microRNA-gene functional linkages than the TPM-network: In BSN, there are 190 

correlations (PCC>0.9) between 11 distinct microRNAs and 190 distinct genes.  Using 

tags per million normalization, there are only 6 links between genes and miRNAs among 

the top 28,000 correlations.  The number of such links in the entire TPM network (over 

100,000 edges) is 155.  

MIR-122 is the miRNA gene with the highest number of strong positive 

correlations (PCC> 0.9) in the BSN network (71 correlations), followed by MIR223 (34 

correlations) and MIR-140 (27 correlations).  These positive miRNA-mRNA correlations 
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might encode some meaningful information.  The subsequent clustering of the BSN 

network (see next section) suggests for example a relationship between MIR-122 and 

coagulation, which agrees with the results of a recent study in human sepsis patients, 

that identified serum levels of MIR-122 as a predictor of aberrant coagulation (H.-J. 

Wang et al. 2014).  

4.4.2. Module identification in the BSN network 

Analysis of high-throughput expression datasets is often confounded by “the 

curse of dimensionality” or the “problem of under-determination” (De Smet and Marchal 

2010): there are usually far more genes than available samples. Clustering of expression 

data is a way of reducing dimensionality by grouping mutually similar genes together.  In 

the case of co-expression data, network clustering (i.e. identifying groups of genes that 

are densely interconnected with each other, but only loosely connected to the rest of the 

network) can reveal functionally coherent groups of genes (H. K. Lee et al. 2004).  

The BSN network (2,841 genes, 28,011 edges) was subjected to clustering by 

the Cytoscape (Smoot et al. 2011) plug-in MINE (Rhrissorrakrai and Gunsalus 2011), 

resulting in 127 modules of size 3 to 96 (Thereof 97 modules containing at least 4 

elements). MINE is a soft network clustering tool, meaning that an individual gene can 

be member of multiple clusters, thereby potentially allowing for pleiotropy.  

4.4.3. Function prediction and literature evaluation 

 In total, 2,120 genes were member of at least one MINE cluster.  Among these, 

1,500 had an associated Gene Ontology-Biological Process (GO-BP) function 

(Ashburner et al. 2000) , while 612 were not previously annotated.  To infer the potential 

functions of the unannotated genes, first any clusters with less than 4 total genes, as 

well as clusters with less than 3 (GO-) annotated genes and clusters without any 

unannotated genes were discarded.  Next, each of the remaining 45 modules were 

subjected to GO-BP enrichment analysis, using the Hypergeometric test, and ontology 

and bovine annotation files downloaded from http://www.geneontology.org in May 2013.  

For each module, only GO-BP categories achieving a False Discovery Rate (FDR) < 

0.05 (Benjamini and Hochberg 1995) were considered statistically significant. 

http://www.geneontology.org/


 

112 

Examining the results of this ORA analysis showed that for 16 out of the 45 

modules, the highest ranking GO-BP category (i.e. the category with the smallest p-

value) contained more than 40% of all of the annotated genes.  For such modules, the 

GO-BP category with the smallest p-value was assigned as the putative function of all 

un-annotated genes in the module.  One example of such modules is shown in Figure 4-

1:  

Figure  4-1 an example for assignment of function by GBA. 

 

This cluster contains 18 genes, 13 of which are annotated in GO- BP (panel A).  Out of 13 annotated genes, 
6 (46%) are annotated in “defense response to bacterium” (yellow in panel B), which is the category with 
the smallest p-value for this module (FDR 1.12E-07).  Hence, the remaining 5 un-annotated genes in 
the cluster (blue in both panels) were also assigned to this category (i.e. “defense response to 
bacterium”).  Notably, a subsequent literature search provided support for involvement of 4 of 
these genes (or their orthologs) in this category (Table 4-3). 

For modules where the highest ranking GO-BP category contained 40% or less 

of all of the annotated genes, it was examined if any of the top ten significant GO-BP 

categories satisfies this criterion.  This resulted in the putative assignment of (more 

general) GO-BP categories to un-annotated genes in 13 additional modules (Appendix 

E). 

Overall, 180 previously uncharacterized bovine genes could be assigned a 

putative biological process by the approach outlined above.  Table 4-1 lists existing 

literature evidence for 36 (20%) such predictions. 
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Table  4-2 Example of GBA based gene function predictions that are supported by 
literature. 

Gene  Predicted putative function PubMed ID of supporting 
publication 

C5AR1 immune system process 23402022 
CABP5 visual perception 18586882 
CD180 immune system process 15852007 
CD22 immune system process 1007929 
CD300A regulation of phagocytosis 22302738 
CD53 immune system process 8335905 20407468 
CLEC12A regulation of phagocytosis 14739280 
DAPP1 immune system process 21930970 
FAIM3 immune system process 22675200 
FAM65B immune system process 23241886 
FAM81B cellular component assembly (cilia) 17971504 
GMFG immune system process 23677465 
IL10RA regulation of phagocytosis 10433356 
LOC100294770 defense response to bacterium 8454635 (cow) 
LOC100298591 defense response to bacterium 22138257 
LRRC23 cellular component assembly (cilia) 17971504 
LYZ immune system process 23578963 
MIR140 single-organism developmental process 21576357 
MIR146A immune system process 23028621 
MIR223 immune system process 22937006 
PDZK1IP1 transmembrane transport 19447883 
PIK3R5 immune system process 21277760 
PILRA regulation of immune system process 21241660 
POPDC2 circulatory system development 22290329 (zebrafish) 
PSORS1C2 epidermis development 12664160 
RETN defense response to bacterium 12387885 
RNASE2 defense response to bacterium 23711849 15032578 
RP1L1 visual perception 22466457 
SAMD9 immune system process 23758988 
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Gene  Predicted putative function PubMed ID of supporting 
publication 

SBSN epidermis development 17330888 
Six6 pituitary gland development 10473118 
SLAMF6 immune system process 18501771 
SLC7A13 transmembrane transport 19184091 
SPAG6 cellular component assembly  12167721 
VSNL1 synaptic transmission 18989702 
WDFY4 immune system process 20169177 

4.4.4. Tissue specificity 

Overall, 106 genes were detected in only one tissue sample (at TPM > 10).  The vast 

majority of these genes (91) are only expressed in testis (cluster 1 in Appendix C). There 

are also five liver-specific genes (CYP1A2, INMT, UGT2B4, LOC100138908, 

LOC100140261), seven retina-specific genes (CABP5, GRK7, KCNV2, NR2E3, 

OPN1SW, PDE6H, TEX28), as well as one bone specific (ACAN), one kidney-specific 

(LOC506670) and one abomasums-specific gene (PGC). 

A substantial portion of the testis specific genes (74 genes) do not have any predicted 

human orthologs.  These findings are consistent with the result of an independent study 

(Brawand et al. 2011), that had examined the evolution of gene expression in six tissues 

from 10 mammalian species and birds, and reported accelerated changes in evolution of 

the transcriptome in testis. 

In the BGA dataset, MIR-122, which has been previously reported to be a liver-specific 

miRNA (Jopling 2012)  is detected at comparable levels also in the hypothalamus, and 

at much lower levels in three additional tissues. 

4.5. Discussion, limitations and future work 

As mentioned before (Box 4-1), there are a range of known limitations to any co-

expression based GBA for inferring function.  Additional, dataset specific challenges 
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arise for the work in this chapter, as publicly available ‘best practices’ guidelines in 

dealing with DGE datasets are missing. 

After comparing two different co-expression networks derived from applying two 

different normalization methods to this dataset, I chose the one with fewer predicted 

links but (proportionally) better agreement with inferred bovine PPI (from chapter 2) and 

KEGG-GPS (from chapter 3). This network (the BSN network) was then subjected to 

clustering and functional analysis, and a set of ad-hoc rules were used to select clusters 

that result in (presumably) most promising hypotheses.   

To be sure, there are other possible candidate approaches for the normalization 

step which should be further explored and compared in future work. Examples of such 

alternative methods include log-transformation, square root  transformation, and row-

transformation (division of all values in a sample by the count value for a house-keeping 

gene in that sample, assuming that this gene’s  expression will be near constant in all 

cell-types).  Preliminary experiments, however, indicate that each normalization method 

will come with its own benefits and limitations: log-transformation, for instance, seemed 

to slightly improve the agreement with the PPI-network, but severely reduce the 

coverage (the number of genes in the co-expression network at the PPC>0.9 threshold 

dropped by over 50%).   

The reasoning behind the use of density based network-clustering (identification 

of sub-networks of highly interconnected nodes) instead of seed based diffusion-

processes (starting from nodes with known function and iteratively propagating their 

function through the network) was the idea that the latter might be more sensitive to 

single missing or spurious exceptional links.  Once the clusters are identified, however, 

one is still left with the problem of selecting the most relevant functions within the cluster.  

This is particularly true for larger clusters that are enriched in several –at times 

seemingly unrelated- functions.  To be sure, a thorough manual review of all clusters 

and their functional enrichments - as well as a case by case selection of hypotheses that 

should be prioritized for verification - would be a better approach to leveraging this 

dataset than the ad-hoc criteria used here (FDR + proportional filter).  Any such ad-hoc 

criteria for hypotheses-selection will inadvertently lead to a substantial number of non-

verifiable predictions, while missing other, possibly relevant hypotheses.  One illustrative 
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example is cluster 3 in Appendix E, in which MIR-122 (from section 4-5) is a prominent 

member (a hub).  The cluster consists of 133 highly interconnected genes, 80 of which 

have known functions.  The most significant GO-BP category (FDR < E-19) for this 

cluster is ‘coagulation’; however, this category is associated with only 17 genes in this 

cluster.  Despite the low p-value, it seems unlikely that all 53 un-annotated genes in this 

cluster are coagulation related.  On the other hand, serum levels of MIR-122  have 

recently been shown to be a predictor of abnormal coagulation in human sepsis patients 

(H.-J. Wang et al. 2014).  

 In future studies, it would be interesting to integrate the co-expression network 

with the inferred interaction network from chapter 2, in order to identify potential tissue-

specific interactions. Once more comprehensive --and reliable-- bovine transcription 

factor binding site (TFBS) data become available, one could also investigate the clusters 

of co-expressed genes with respect to transcriptional co-regulation – an approach 

previously successfully applied to other organisms (Gasch and Eisen 2002).  A related, 

but more topological question is the identification of potential ‘date and party hubs’ in the 

inferred PPI network by comparing the expression patterns of hubs (i.e. nodes having a 

remarkably high number of interaction partners) with that of their interaction partners. 

Such an approach can potentially distinguish hubs that coordinate specific cellular 

processes within functional modules (‘party hubs’) from hubs that  organize the 

interactome by linking different processes (‘date hubs’) (Barabási, Gulbahce, and 

Loscalzo 2011).  
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Chapter 5. Next Generation Sequencing Reveals 
the Expression of a Unique miRNA Profile in 
Response to a Gram-Positive Bacterial Infection   

This chapter is based on a modified version of the article “Next 
Generation Sequencing Reveals the Expression of a Unique miRNA 
Profile in Response to a Gram-Positive Bacterial Infection.”, co-authored 
by Lawless, Nathan; Foroushani, Amir B K; McCabe, Matthew S; 
O'Farrelly, Cliona and Lynn, David in PloS one © The Authors 2013 .  My 
contribution has been the prediction of putative targets for the 
differentially expressed miRNAs, the analysis of overrepresentation of 
innate immunity related genes among these targets, pathway analysis of 
the targets, and the discussion of these results. 

.  

5.1. Abstract 

MicroRNAs (miRNAs) are short, non-coding RNAs, which post-transcriptionally 

regulate gene expression and are proposed to play a key role in the regulation of innate 

and adaptive immunity.  Here, we report a next generation sequencing (NGS) approach 

profiling the expression of miRNAs in primary bovine mammary epithelial cells (BMEs) at 

1, 2, 4 and 6 hours post-infection with Streptococcus uberis, a causative agent of bovine 

mastitis.  Analysing over 450 million sequencing reads, we found that 20% of the 

approximately 1,300 currently known bovine miRNAs are expressed in unchallenged 

BMEs.  We also identified the expression of more than 20 potentially novel bovine 

miRNAs.  There is, however, a significant dynamic range in the expression of known 

miRNAs.  The top 10 highly expressed miRNAs account for >80% of all aligned reads, 

with the remaining miRNAs showing much lower expression.  Twenty-one miRNAs were 

identified as significantly differentially expressed post-infection with S. uberis.  Several of 

these miRNAs have characterised roles in the immune systems of other species.  This 

miRNA response to the Gram-positive S. uberis is markedly different, however, to 
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lipopolysaccharide (LPS) induced miRNA expression.  Of 145 miRNAs identified in the 

literature as being LPS responsive, only 9 were also differentially expressed in response 

to S. uberis.  Computational analysis has also revealed that the predicted target genes 

of miRNAs, which are down-regulated in BMEs following S. uberis infection, are 

statistically enriched for roles in innate immunity.  This suggests that miRNAs, which 

potentially act as central regulators of gene expression responses to a Gram-positive 

bacterial infection, may significantly regulate the sentinel capacity of mammary epithelial 

cells to mobilise the innate immune system. 

5.2. Introduction 

MicroRNAs (miRNAs) are an abundant class of highly conserved, small (19–24 

nt long), non-coding, double-stranded RNA molecules.  They act as post-transcriptional 

regulators of gene expression, altering mRNA stability and translation efficiency by 

hybridizing to the 3′ untranslated regions (UTRs) of certain subsets of mRNAs 

(collectively as many as 60% of all mRNA transcripts) (Bi, Liu, and Yang 2009).  Since 

their initial discovery in Caenorhabditis elegans in 1993 (R. C. Lee, Feinbaum, and 

Ambros 1993), researchers have gained much insight into the prevalence of miRNAs in 

other species.  The latest miRBase database (release 19) contains 21,264 precursor 

miRNAs, expressing 25,141 mature miRNA products, in 193 species (Kozomara and 

Griffiths-Jones 2010).  miRNAs have been shown to play key roles in the regulation of 

innate and adaptive immunity in humans and mice (O’Connell et al. 2010).  miR-146a, 

for example, regulates the innate immune response to bacterial infection, targeting TNF 

receptor-associated factor 6 (TRAF6) and Interleukin-1 receptor-associated kinase 1 

(IRAK1) (Williams et al. 2008), while miR-150 regulates the production of mature B cells 

(Xiao et al. 2007).  Studies elucidating the regulatory roles of miRNAs in bovine infection 

and immunity, however, are more limited.  Bovine miRNAs are expressed in a wide 

range of tissues, including immune-related ones (Coutinho et al. 2006), but only a 

handful of studies have investigated how the expression of bovine miRNAs are altered in 

response to infection.  A recent RT-qPCR study, for example, highlighted the differential 

expression of five inflammation related miRNAs (miR-9, miR-125b, miR-155, miR-146a 

and miR-223) in response to E. coli lipopolysaccharide (LPS) and S. aureus enterotoxin 

B stimulation of bovine monocytes (Dilda et al. 2012).  Two other recent studies have 
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used a similar approach to identify several miRNAs that were differentially expressed in 

the mammary gland tissue of cattle with mastitis (Naeem et al. 2012; Hou et al. 2012).  

These and other studies suggest roles for individual miRNAs in regulating bovine 

immunity, however, according to Ensembl v66 (Flicek et al. 2011; Hubbard et al. 2009)  

there are over 1,300 annotated miRNAs in the bovine genome.  Therefore, studies which 

adopt genome-wide approaches are required to gain greater insight into the repertoire of 

bovine miRNAs involved in immunity and infection. 

Although microarray technologies to profile miRNA expression have been around 

for some time (V. N. Kim, Han, and Siomi 2009), next generation sequencing (NGS) 

based technologies are revolutionising the field and provide the opportunity to profile the 

expression of known miRNAs with discriminating resolution and accuracy, and also to 

identify novel miRNAs (Buermans et al. 2010).  Furthermore, these technologies allow 

one to differentiate between the expression of alternative mature miRNAs from the same 

precursor and to identify the differential expression of miRNA isomiRs (L. W. Lee et al. 

2010).  To date, a limited number of studies have applied these approaches to profile 

miRNAs in different bovine tissues (J. Huang 2011; X. Chen et al. 2010; Guduric-Fuchs 

et al. 2012) and only one study has used an NGS approach to investigate the expression 

of bovine miRNAs in response to infection (Glazov et al. 2009). 

In this study, we implemented a NGS approach to profile the expression of 

bovine miRNAs at multiple time-points in primary mammary epithelial cells infected in 

vitro with Streptococcus uberis, a causative agent of bovine mastitis.  This inflammatory 

disease of the mammary gland has significant economic impact on the global dairy 

industry.  To the best of our knowledge, this study represents the most comprehensive 

NGS study to date that profiles the host miRNA response to infection, in any species.  In 

comparison to previous studies, we have sequenced un-pooled miRNA libraries to a 

previously unprecedented sequencing depth from multiple replicates and controls across 

multiple time-points, allowing us to explore the statistically significant temporal changes 

in miRNA expression in response to infection. 
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5.3. Materials and Methods 

5.3.1. Bovine Mammary Epithelial Cell Culture 

Primary bovine mammary epithelial cells, which had been isolated from 

mammary parenchyma, were purchased from AvantiCell (AvantiCell Science Ltd., Ayr, 

UK) (Blatchford et al. 1999).  The source animal was in her third trimester of first 

pregnancy, was aged between 26–30 months, and was negative for bovine viral 

diarrhoea and Bovine spongiform encephalopathy.  Cells were plated (seed density of 

1×106) directly onto collagen coated plastic flasks (Greiner-Bio-One GmbH, 

Frickenhausen, Germany) and immersed in AvantiCell medium – (199/Ham’s F12 

(50 50) pH 7.4 containing 5% (v/v) horse serum, 5% (v/v) fetal bovine serum, 5 µg/ml 

bovine insulin, 1 µg/ml hydrocortisone, 3 µg/ml cortisol, 10 ng/ml epidermal growth factor 

(EGF), 2 mM sodium acetate, 10 mM Hepes, U/ml penicillin/streptomycin and single 

strength Fungizone™). 

Media was initially replaced after 48 h.  Cells were split twice (75 cm2 and 175 

cm2) and were then seeded at a concentration of 1.8×105 cells/well into collagen coated 

6-well plates.  Media was then changed after 24 h, and cells were inspected under 

microscopy for confluence.  Cells were harvested by washing with Hanks Balanced Salt 

Solution (HBSS) pH 7.4 and treated with 4 ml of 0.25% trypsin for approximately 5 min 

at 37°C.  An equal volume of medium to trypsin (1 1) neutralised trypsin. 

Infection of Cells with Streptococcus uberis 0140J 

Streptococcus uberis 0140J was purchased from the American Type Culture 

Collection (ATCC), Virginia, USA (Cat# BAA-854).  S. uberis 0140J was first isolated in 

milk obtained from a clinical case of bovine mastitis in the United Kingdom in 1972. S. 

uberis was cultured as per ATCC instructions.  BMEs were challenged with S. uberis 

0140J at a multiplicity of infection (MOI) of 50, over a time course of 1, 2, 4, & 6 h.  

Three replicates were infected at each time point and three replicate uninfected controls 

were also maintained for each time point. 
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miRNA Extraction 

Total RNA and small RNA were extracted from each of the 24 samples using the 

mirVana™ miRNA Isolation Kit (Life Technologies, Carlsbad, CA, USA).  Procedures 

were performed according to the manufacturer’s protocol.  Briefly, cells were lysed using 

500 µl lysis/binding solution directly on a culture plate.  50 µl of miRNA homogenate was 

added; solution was mixed by vortexing and left on ice for 10 min.  500 µl of acid-phenol 

chloroform was added and solution was mixed by vortexing for ∼60 sec.  The solution 

was then centrifuged for 5 min at 10,000×g at room temperature to separate phases.  

Aqueous phase was removed and transferred to a separate tube.  1/3 volume of 100% 

ethanol was added to the aqueous phase and mixed by vortexing.  Samples were 

passed through a filter cartridge (glass-fiber filter) by centrifuge for ∼30 sec at 10,000×g.  

The filtrate was collected (residue on filter contained RNA <200 nt, was retained for later 

use) and 2/3 volume 100% ethanol was added and mixed by vortexing.  Filtrate was 

passed through a second filter cartridge by centrifuge for ∼30 sec at 10,000×g.  The flow 

through was discarded, and the filter was washed with 700 µl wash solution 1 and 500 µl 

wash solution 2 (twice).  After discarding all flow through after each step, the filter was 

centrifuged for a further 1 min. 50 µl of pre-heated (95°C) nuclease free water was 

applied to the filter for 1 min, and the filter was centrifuged for 30 sec.  Eluate was 

collected and stored at −80°C.  Total RNA integrity was measured by the Agilent RNA 

6000 Nano Kit using the 2100 Bioanalyzer (Agilent Technologies, Colorado Springs, CO, 

USA).  The Agilent Small RNA Kit (Agilent Technologies) was used to quantify miRNA. 

Small RNAseq Library Preparation and Sequencing 

Twenty-four indexed miRNA libraries were prepared using the ScriptMiner™ 

Small RNAseq Library Preparation Kit (Epicentre, Madison, WI, USA).  Procedures were 

performed according to the manufacturer’s protocol.  Briefly, a 3′-tagging sequence was 

added to the 3′- end of the RNA followed by treatment with a degradase enzyme to 

reduce excess 3′ adaptor oligo.  A tagging sequence was then added to the 5′- end of 

the RNA.  The RNA, now tagged at both ends (di-tagged), was purified using the 

Zymogen RNA Clean and Concentrator (Zymogen, Irvine, CA, USA).  The di-tagged 

RNA was then reverse transcribed into cDNA, and the remaining RNA was removed 

using RNase.  The PCR step used by the ScriptMiner™ kit, is a two stage process, firstly 

an analytical PCR step was carried out to optimise the number of cycles necessary for 
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amplification.  Once this was determined, the libraries were amplified and adaptors were 

added.  Size fractionation of the miRNA libraries to separate them from adapter dimers 

was achieved by electrophoresis on an 8% TBE polyacrylamide gel (Life Technologies, 

Carlsbad, CA, USA) (1.00 mm×10 well).  The libraries were then purified from the gel 

and the Agilent High Sensitivity DNA Kit (Agilent Technologies, Colorado Springs, CO, 

USA) was used to quantify the molarity and size of finished miRNA-seq libraries.  miRNA 

libraries were randomised across three lanes of a flowcell, with eight indexed samples 

on each lane.  Libraries were sequenced on an Illumina HiSeq 2000 by the Norwegian 

Sequencing Centre with TruSeq v3 reagents.  Fastq files were produced using the 

CASAVA pipeline v1.8.2.  Barcodes (indexes) and adaptor sequences for multiplexed 

samples are provided (Appendix F). 

5.3.2. Small RNAseq Analysis 

Preliminary quality control analysis of the 24 fastq files was carried out with 

FASTQC software v0.10.0 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

Cutadapt v1.1 (http://www.cutadapt/) was then used to trim 3′ adaptor sequences.  

Reads which were shorter than 18 nucleotides after trimming were discarded.  Trimmed 

reads were then further filtered using the fastq quality filter 

(http://hannonlab.cshl.edu/fastx_toolkit/) v0.0.13.  Reads where at least 50% of the 

bases had a Phred score <20 were removed (Cock et al. 2009).  Finally, reads passing 

all the above filters were also trimmed at their ends to remove low quality bases (Phred 

score <20).  Reads which successfully passed filtering were aligned to the bovine 

genome (UMD3.1) using novoalign version 2.07.11 (http://www.novocraft.com) using the 

“-m” miRNA mode.  Reads that did not uniquely align to the genome were discarded.  

HTSeq version 0.5.3p3 (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html) using the union model was used 

to assign uniquely aligned reads to Ensembl (v66) bovine gene and miRNA annotation 

(separately). 

miRNAseq fastq files have been submitted to the NCBI Gene Expression 

Omnibus (GEO) database (Barrett et al. 2010) with experiment series accession number 

GSE41278. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s004
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.cutadapt/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.novocraft.com/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41278
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Differential Expression Analysis 

Prior to assessing differential expression, count data were first normalised across 

libraries using either the trimmed mean of M-values (TMM) normalisation method 

(Robinson, McCarthy, and Smyth 2009) or upper-quantile normalisation (Bullard et al. 

2010).  Differential expression analysis of miRNAseq data has been shown to be 

sensitive to the normalisation approach implemented (Garmire and Subramaniam 2012).  

To address this issue, we identified differentially expressed miRNAs in three alternatively 

normalised datasets; TMM-normalised, upper-quantile normalised and no normalisation.  

Only miRNAs which were identified as differentially expressed across all three datasets 

were considered further i.e. the differential expression of these miRNAs was robust to 

the normalisation procedure.  As an aside, we found that the two different normalisation 

approaches resulted in very similar miRNAs being detected as differentially expressed. 

The R (version 2.14.1) Bioconductor package EdgeR (v2.4.6) (Robinson, 

McCarthy, and Smyth 2009), which uses a negative binomial distribution model to 

account for both biological and technical variability was applied to identify statistically 

significant differentially expressed miRNAs.  Only miRNAs that had at least 1 count per 

million in at least 3 samples were analysed for evidence of differential gene expression.  

The analysis was undertaken using moderated tagwise dispersions.  Differentially 

expressed miRNAs were defined as having a Benjamini and Hochberg (Benjamini and 

Hochberg 1995) corrected P value of <0.05. 

Novel miRNA Discovery 

In addition to profiling the expression of known miRNAs, miRNAseq data can 

also be used to identify the expression of potentially novel miRNAs.  To do this, 

miRNAseq data from this study was analysed using the software package miRDeep2 

v0.0.5 (Mackowiak 2011).  The miRDeep2 algorithm mines high-throughput sequencing 

data for the presence of multiple sequenced RNAs corresponding to predicted miRNA 

hairpin structures in the genome.  It then uses Bayesian statistics to score the fit of 

sequenced RNAs to the biological model of miRNA biogenesis.  MiRDeep2 predicted a 

large number of potentially novel miRNAs from our miRNAseq data.  We further parsed 

this data using a number of different parameters to identify those novel miRNAs that 

have the highest likelihood of being true positives.  Specifically, we identified those 
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predictions where both the mature and star stands were expressed with a minimum of 5 

reads each; where miRDeep2 predicted that the miRNA had >90% probability of being a 

true positive; where the hairpin structure had a significant Randfold p-value and where 

the novel miRNA was independently predicted in two or more different miRNAseq 

samples. 

Customised Perl scripts were also written in house to examine the miRDeep2 

output for the presence of miRNA isomiRs.  These scripts were used to identify isomiRs 

that were expressed at a level of at least 100 reads and to identify cases where the 

expression of the isomiR was higher than the expression of the miRBase consensus 

mature sequence.  Furthermore, we identified whether isomiRs were modified at the 5′ 

or 3′ ends (first and last 5 nucleotides).  IsomiRs with >1 mismatch to the reference 

sequence were excluded from the analysis. 

miRNA Target Predictions 

Target genes that are potentially regulated by differentially expressed miRNAs 

were predicted using the consensus of two computational approaches, miRanda v3.3a  

(Betel et al. 2007) and TargetScan v6.2 (Lewis, Burge, and Bartel 2005; Friedman et al. 

2008; Grimson et al. 2007).  Given the high false positive rates for miRNA target 

prediction, we identified only those potential target genes that were predicted by both 

methods.  More specifically, we first established a broad pool of potential targets by 

applying miRanda to bovine mature miRNA (miRBase v18) and cDNA sequences 

(UMD3.1, Ensembl v66) under default threshold settings.  This resulted in the prediction 

of thousands of possible target genes per differentially expressed miRNA.  To narrow 

down this pool of potential targets, we used TargetScan to independently identify 

conserved targets with a PCT-score above 0.9 and/or non-conserved targets with a 

context+ score above the 90th percentile of all targets of the respective miRNA.  Target 

genes that were not corroborated by one of the two methods (PCT or context+ score) 

were discarded (Figure 5-1).  Pathway analysis of predicted gene targets was 

undertaken using the SIGORA R package (http://sigora.googlecode.com/svn/) with 

KEGG pathway annotations (Minoru Kanehisa et al. 2012).   

http://sigora.googlecode.com/svn/
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Figure  5-1 miRNA target prediction 

 

Genes that have an annotated role in innate immunity were identified using 

www.innatedb.com (Lynn et al. 2008), a curated database of innate immunity genes, 

pathways and molecular interactions. 

5.3.3. Results 

Isolation of Small RNA from Bovine Mammary Epithelial Cells 

Small RNA was isolated for NGS sequencing from S. uberis infected primary 

bovine mammary epithelial cells at 1, 2, 4 and 6 hours post-infection (hpi) (n = 3 infected 

and n = 3 controls at each time-point).  Total RNA and small RNA were examined for 

quantity and integrity in each of the 24 samples (Appendix G).  Total RNA was assessed 

to be of high quality based on both Bioanalyzer and 28S/18S analysis.  RNA integrity 

numbers (RIN) for total RNA were >8 for each sample.  The concentration of miRNA in 

each sample was also assessed (Appendix G).  Sufficient quantities were present to 

proceed with RNAseq library preparation. 

High-throughput Sequencing of Small RNA Libraries Prepared from Bovine 
Mammary Epithelial Cells 

Small RNA libraries were prepared from size selected RNA (<200 nucleotides).  

Libraries were prepared using the ScriptMiner™ protocol with indexing before cluster 

generation, sequencing and imaging on an Illumina Hiseq 2000.  Samples were 

http://www.innatedb.com/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
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randomly multiplexed over 3 flowcell lanes for sequencing.  Sequencing of small RNA 

libraries yielded more than 450 million raw sequence reads from mammary epithelial 

cells.  Following a pipeline of adaptor removal, quality filtering and the removal of 

sequences that were too short, more than 213 million reads were retained for further 

analysis (78,604,161 and 134,850,887 for control and infected replicates, respectively).  

These filtered reads were then aligned to the reference Bos taurus UMD 3.1 genome.  

Over 116 million reads aligned uniquely to the genome (Appendix F).  Reads that 

aligned to more than one position in the genome were discarded.  Uniquely aligning 

reads were then assigned to known miRNAs using HTseq (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html) based on Ensembl v66 

(Hubbard et al. 2009; Flicek et al. 2011) annotation of the bovine genome. 

Repertoire of RNA Species in Small RNA Libraries 

The proportion of reads (averaged across 24 samples) uniquely aligning to 

different RNA biotypes demonstrates that miRNAs are the dominant ncRNA species 

sequenced in our small RNA libraries (Figure 5-2).  The vast majority (>90%) of reads 

that align uniquely to known ncRNAs align to known miRNAs.  There was no significant 

difference in the proportion of reads aligning to different RNA biotypes in the infected 

and control samples.  The majority of the remaining reads primarily mapped to snoRNAs 

(Figure 5-2) (Guduric-Fuchs et al. 2012).  Although the vast majority of reads align to 

known bovine ncRNAs, a low density of reads can be observed along each chromosome 

(Appendix K).  These possibly represent mRNA degradation products. 

Figure  5-2 The proportion of reads aligning uniquely to bovine ncRNAs (averaged 
across 24 samples). 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
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The Expression of miRNAs in Primary Bovine Mammary Epithelial Cells 

To characterise the bovine mammary epithelial cell microRNome, miRNAs that 

were expressed at an appreciable level (based on mapped read counts in tags per 

million sequenced (tpm)) were identified.  276 miRNAs had a count of greater than 1 tpm 

(Appendix H).  Of these, 114 miRNAs were expressed at a level >100 tpm.  To 

determine whether these miRNAs were expressed from related genomic regions, we 

examined all miRNAs with >100 tpm for genomic clustering (Figure 5-3).  There was no 

evidence of a substantial genomic bias from which these miRNAs were encoded. 

Figure  5-3 The genomic position of bovine mammary epithelial cell expressed 
miRNAs with >100 tpm (red). 

 

Highly expressed miRNAs were relatively evenly distributed across the genome. Vertical bars 
represent chromosomes, blue horizontal bars known miRNA locations. Red horizontal bars show 
highly expressed (>100 RPM) miRNA locations. 

The top 10 highly expressed miRNAs, which accounted for >80% of all aligned 

reads (Figure 5-4), were evolutionarily conserved across multiple species.  These 

miRNAs represent seven different miRNA families; miR-let-7 (bta-let-7i & bta-miR-3596), 

miR-21 (bta-miR-21), miR-27 (bta-miR-27a & bta-miR-27b), miR-28 (bta-miR-151), miR-

184 (bta-miR-184), miR-200 (bta-miR-200a & bta-miR-200b), and miR-205 (bta-miR-

205).  Many of these miRNAs have been shown to have pleiotropic roles in other 

species (Table 5-1).  miR-21 and miR-205, have been shown to have role in cancer, 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
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regulating tumour suppressor genes such as VEGF-A and TGFI-R2 (R. Yang et al. 

2009; Wu, Zhu, and Mo 2009; Y. Yu et al. 2011; Yue et al. 2012). 

Figure  5-4 The top 10 most highly expressed miRNAs in bovine mammary 
epithelial cells. 

 

Table  5-1 Highly expressed miRNAs in bovine mammary epithelial cells have been 
shown to have pleiotropic functions in other species. 

miRNA Species Tissue Target Function Reference 

miR-21 Human Monocytes CAMP/DEFB4A Immune (P. T. Liu et al. 
2012) 

miR-21 Human Colon Cancer 
Cell TGFI-R2 Cancer (Y. Yu et al. 

2011) 

miR-184 Human HeLa/HEK SHIP2 Immune (J. Yu et al. 
2008) 

miR-205 Human 

MCF-7, MDA-
MB-231, MDA-
MB-453 and 
MDA-MB-468 
cells 

VEGF-A Cancer 
(Yue et al. 2012; 
Wu, Zhu, and Mo 
2009) 

miR-27b Human Monocytes PPARgamma Immune (Jennewein et al. 
2010) 
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Of particular interest to our study is the fact that several of the most highly 

expressed miRNAs in BMEs have been shown to have a role in immunity.  miR-27b, for 

example, has been shown to negatively regulate the mRNA stability of peroxisome 

proliferator-activated receptor gamma (PPARgamma), a transcriptional regulator of the 

inflammatory response (Jennewein et al. 2010).  Interestingly, miR-27b has also been 

found to be degraded by a viral transcript in lytic murine cytomegalovirus (MCMV) 

infection, further highlighting its role in immunity (Marcinowski et al. 2012).  miR-21 has 

also recently been shown to be the most highly expressed miRNA in Mycobacterium 

leprae infected monocytes and to negatively regulate the Vitamin D-dependent 

antimicrobial pathway (P. T. Liu et al. 2012).  Evidence from previous studies also 

suggests that highly expressed miRNAs in BMEs may also regulate each other.  miR-

184, for example, has been demonstrated to antagonise miR-205 to maintain SHIP2 

levels in epithelia (J. Yu et al. 2008). 

 

Multiple miRNAs are Differentially Expressed in Response to S. uberis 
Infection 

Once we had characterised which miRNAs were expressed in unchallenged 

bovine mammary epithelial cells, we then utilised the EdgeR statistical package 

(Robinson, McCarthy, and Smyth 2009) to determine which miRNAs were significantly 

differentially expressed in response to S. uberis infection at 1, 2, 4 and 6 hpi.  It has 

been suggested that differential expression analysis of miRNAseq is sensitive to the 

normalisation approach implemented (Garmire and Subramaniam 2012).  To address 

this issue, we identified differentially expressed miRNAs in three alternatively normalised 

datasets; TMM-normalised (Bullard et al. 2010), upper-quantile normalised and no 

normalisation.  Only miRNAs which were identified as differentially expressed across all 

three datasets were considered as significantly differentially expressed i.e. the 

differential expression of these miRNAs was robust to the normalisation procedure.  We 

found that the two different normalisation approaches actually resulted in very similar 

miRNAs being detected as differentially expressed. 
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Fifteen different miRNAs were identified as being significantly up-regulated in 

response to the S. uberis challenge.  No miRNAs were identified as differentially 

expressed at 1 hpi.  At 2 hpi, 2 miRNAs, bta-mir-29e and bta-mir-708, were found to be 

up-regulated (Figure 5-5).  bta-mir-29e was subsequently observed to be down-

regulated at 6hpi.  At 4 hpi, bta-let-7b and bta-miR-98 were up-regulated (Figure 5-6).  

Additionally, bta-miR-let-7c and bta-miR-708 were observed to be up-regulated at 4 hpi 

when the miRNAseq count data were normalised (both methods), but this was not 

observed in the un-normalised data.  At 6 hpi, 12 miRNAs were found to be up-regulated 

(Figure 5-7), including bta-let-7b, which was also up-regulated at 4 hpi. 

Figure  5-5 Differentially expressed miRNAs at 2 hours post-infection (hpi). 
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Figure  5-6 Heatmap of miRNA expression (tpm) across infected and control 
replicates for each 4 hpi differentially expressed miRNA. 
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Figure  5-7 Heatmap of miRNA expression (tpm) across infected and control 
replicates for each 6 hpi differentially expressed miRNA. 

 

Seven different miRNAs were identified as down-regulated in response to the S. 

uberis challenge.  No miRNAs were down-regulated at 1 or 2 hpi.  At 4 hpi, bta-miR-29b-

2, bta-miR-193a, and bta-miR-130a were down-regulated.  At 6 hpi, bta-miR-29b-2, bta-

miR-29c, bta-miR-29e, bta-miR-100, bta-miR-130a and Ensembl predicted miRNA 
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ENSBTAG00000047296, were down-regulated.  Two miRNAs, bta-miR-29b-2 and bta-

miR-130a were down-regulated at both 4 and 6 hpi.  Additionally, bta-miR-15a, bta-miR-

17, bta-miR-26a-2, bta-miR-29a, bta-miR-29b-1, and bta-miR-193a were identified as 

down-regulated in the normalised data (both methods), but not in the un-normalised 

data.  Fold changes in expression for miRNAs that are differentially expressed at 4 and 6 

hpi are shown in Appendix L and Appendix M. 

These results indicate that there are rapid temporal changes in the expression of 

miRNAs in response to a Gram-positive infection, with different miRNA repertoires being 

identified as differentially expressed at time-points that are 2 hours apart. 

 

The miRNA Response to the Gram-positive S. uberis is Markedly Different 
to the LPS miRNA Response 

To date, many immune-relevant miRNAs have been identified as part of the host 

response to lipopolysaccharide (LPS) stimulation (J. Qi et al. 2012; L. A. O’Neill, 

Sheedy, and McCoy 2011), which is frequently used to mimic a Gram-negative bacterial 

infection.  We have completed a literature survey and identified over 145 miRNAs that 

have been shown to be differentially expressed in response to LPS across multiple 

different species and tissues (Appendix I).  Eighty-four of the 145 LPS inducible miRNAs 

were found not be expressed above 1 tpm in BMEs.  Of the 21 miRNAs that we 

identified as being differentially expressed in response to the Gram-positive S. uberis, 

only 9 of these (bta-let-7d, bta-let-7b, bta-mir-98, bta-miR-100, bta-mir-130a, bta-miR-

193a, bta-miR-210, bta-miR-494, bta-miR-652) have also been reported to be 

differentially expressed in response to LPS in other species.  Furthermore, 5 of these 9 

(bta-miR-98, bta-miR-100, bta-miR-193a, bta-miR-210, bta-miR-494) show an inverse 

response to S. uberis infection in comparison to LPS.  Most notably, bta-miR-100 and 

bta-miR-494, which were previously identified as up- and down-regulated, respectively, 

in mouse lung 6h post-stimulation with LPS, showed the inverse response at the same 

time-point in response to S. uberis infection (Moschos et al. 2007; Hsieh et al. 2012).  

This would suggest that the miRNA response to Gram-positive bacteria may be 

markedly different to Gram-negative. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
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Predicted Targets of Down-regulated miRNAs are Enriched for Genes with 
a Role in Innate Immunity 

Target genes that are potentially regulated by differentially expressed miRNAs in 

response to S. uberis infection at 2, 4 and 6 hpi were predicted using two computational 

approaches, miRanda (Betel et al. 2007; Enright et al. 2003) and TargetScan (Lewis, 

Burge, and Bartel 2005; Grimson et al. 2007; Friedman et al. 2008), where the predicted 

targets by TargetScan were in turn selected by two independent criteria (PCT or 

Context+ scores).  Given the high false positive rates for miRNA target prediction, we 

identified only those potential target genes that were predicted by both methods (Table 

5-2).  Target genes that were not corroborated by both  methods were discarded.  In 

total 1,417 unique genes were predicted to be targeted by differentially expressed 

miRNAs (Appendix J).  This resulted in 2,491 miRNA-target interactions; 477 of these 

were targeted by down-regulated miRNAs; 1,921 were targeted by up-regulated 

miRNAs; and 93 were targeted by both up and down-regulated miRNAs.  Because of the 

difficulties in accurately predicting miRNA targets, it is more appropriate to examine 

whether broad functional categories of genes are statistically over-represented among 

predicted target genes, rather than focusing on individual gene predictions.  Statistical 

analysis (Hypergeometric test) revealed that the predicted target genes of down-

regulated miRNAs at 4 and 6 hpi were significantly enriched (P = 0.01) in genes 

annotated by www.innatedb.com (Lynn et al. 2008) as having a role in innate immunity 

(Figure 5-8).  The predicted target genes of up-regulated miRNAs were not enriched for 

a role in innate immunity suggesting that up and down-regulated miRNAs target different 

processes in response to S. uberis infection. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/#pone.0057543.s005
http://www.innatedb.com/


 

135 

Figure  5-8 A network of miRNAs (arrow shapes) that were identified as being 
differentially expressed in BMEs at 4 hours post-infection with S. 
uberis and their predicted target genes (circles). 

 

The combination of the target prediction methods used here results in an overall 

target list that is substantially different from the results by any of the underlying methods 

alone or any simple combination of those methods.  This reflects the fact that the 

underlying criteria in the individual methods are independent and either complementary 

(genomic context in context+ score and phylogenetic conservation in PCT) or orthogonal 

(thermodynamics and a particular multiple alignment in miRanda and site type and a 

different multiple alignment in TargetScan).  For instance, at 4 hours post infection, the 

combined target list for the up-regulated miRNAs contains 323 genes, compared to 536 

genes by PCT, 47 genes by context+ score and 6310 genes by miRanda (Figure 5-9).  
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At this time point, the target list from the three-way intersection of miRanda and the two 

TargetScan criteria contains a single gene (SLC35C1), while the three way union would 

result in 6570 predicted targets (Figure 5-9). . 

Table  5-2 miRNA target predictions by miRanda and TargetScan and their 
intersect. 

Name MiRanda 
Targets 
(default 
settings) 

TargetScan
(PCT>0.9) 

TargetScan (Conte
xt+ Score above 
the 90th percentile) 

Number of 
IntersectingTargets 
(miRanda and either 
one of the two 
TargetScan criteria) 

bta-let-7b 6377 576 58 311 
bta-let-7d 5637 576 53 290 
bta-let-7e 5447 576 60 280 
bta-mir-98 5095 576 58 274 
bta-mir-185 5696 0 338 177 
bta-mir-494 2952 0 336 151 
bta-mir-200c 3362 74 201 123 
bta-mir-29c 5131 179 76 115 
bta-mir-29b-2 5394 179 76 114 
ENSBTAG00000047296 5523 0 204 108 
bta-mir-29e 5488 0 174 93 
bta-mir-708 6414 0 179 84 
bta-mir-210 4012 0 206 83 
bta-mir-193a 3337 0 160 76 
bta-mir-130a 2630 87 76 63 
bta-mir-24-2 2157 0 107 45 
bta-mir-2342 4296 0 64 37 
bta-mir-128-2 4266 83 0 33 
bta-mir-128-1 4266 83 0 33 
bta-mir-100 946 0 13 1 
bta-mir-652 0 0 0 0 
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Figure  5-9 Predicted targets of up-regulated miRNA at 4 hours post infection by 
each method and their relation. 

 

The overall list of predicted targets for up-regulated genes at this time point contains 
19+1+303=323 unique genes.  

Pathway analysis of the predicted gene targets of up-regulated miRNAs (at 4 and 

6 hpi), revealed that pathways which have been previously implicated in mastitis are 

statistically enriched among the predicted gene targets of up-regulated miRNAs (Table 

5-3).  These pathways include MAPK signalling; Cytokine-Cytokine Receptor Signalling 

and the JAK-STAT Signalling Pathway.  The MAPK signalling pathway, for instance, has 

been identified as one of the top canonical pathways highlighted in a microarray study 

examining the bovine mammary tissue response to mastitis, 20 hpi with S. uberis 

(Moyes et al. 2009).  Many of the other pathways that we identified as statistically 

enriched among the predicted gene targets of up-regulated miRNAs were also 

highlighted as significant in this previous microarray study. 
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Table  5-3 Pathway analysis of the predicted target genes of up-regulated miRNAs 
4 and 6 hours post-infection. 

KEGG Pathway FDR 4 hpi FDR 6 hpi 
MAPK signalling pathway 4.15E-33 2.79E−21 
Cytokine-cytokine receptor interaction 4.71E-08 1.96E−32 
Axon guidance ns 3.35E−11 
Calcium signalling pathway ns 1.15E−06 
MTOR signalling pathway ns 1.36E−06 
Colorectal cancer ns 1.81E−06 
Insulin signalling pathway ns 3.69E−06 
Jak-STAT signalling pathway ns 3.56E−05 
Fatty acid biosynthesis ns 4.86E−05 
*FDR = false discovery rate. *hpi = hours post-infection. 

Taken together, these analyses strongly suggest that miRNAs that are 

differentially expressed during infection of BMEs with S. uberis are key regulators of the 

host response to this pathogen. 

MicroRNA isomiRs 

MicroRNA isomiRs are heterogeneous variants of canonical miRNA species, 

which are, increasingly, being suggested to be of functional importance (Cloonan et al. 

2011).  It has been suggested that these miRNA variants can be cell type specific, have 

functional differences, and vary in their response to biological stimuli.  Evidence 

suggests that although isomiRs show similar expression patterns to their equivalent 

canonical miRNA, their targets can vary (Peng et al. 2012).  Deletions at both the 5′ and 

3′ end of isomiRs may change the specificity of the seed binding region effecting miRNA 

function. 

We have found that the expression of isomiRs was common for the majority of 

BME expressed miRNAs (Table 5-4).  100 known miRNAs were found to have at least 

one isomiR expressed at a level of >100 reads and more than 1,000 different isomiRs 

were identified.  Notably, in 40% of cases at least one isomiR was more highly 

expressed than the miRbase consensus sequence, suggesting that the isomiR should in 

fact be annotated as the consensus.   

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/table/pone-0057543-t004/
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On further examination, we found that isomiR ‘nibbling’ was 1.4 more times likely 

than post-transcriptional additions and isomiR editing was 2.3 times more likely to be 3′ 

modified than 5′ modified, agreeing with current literature (Neilsen, Goodall, and Bracken 

2012).  That said, almost 40% of isomiRs were 5′ modified, potentially impacting on 

which targets they regulate, though the majority of 5′ modified isomiRs were expressed 

at low levels.  Further work is required to determine whether isomiRs have a functional 

role in response to infection. 

Table  5-4 Analysis of isomiR heterogeneity across 24 miRNAseq samples. 

Sample # miRs 
with 
isomiRs* 

# 
isomiRs 

# longer 
than 
consensus 

# shorter 
than 
consensus 

# 5′ 
modified 

# 3′ 
modified 

# cases 
where isomiR 
expressed 
more highly 
than 
consensus 

1 hour 
control repl.1 

78 592 185 276 213 494 30 

1 hour 
control repl.2 

108 1159 354 520 437 948 42 

1 hour 
control repl.3 

95 818 242 372 260 694 36 

1 hour 
infected 
repl.1 

103 1148 355 514 442 936 39 

1 hour 
infected 
repl.2 

94 810 233 378 269 682 34 

1 hour 
infected 
repl.3 

52 341 111 167 97 309 21 

2 hour 
control repl.1 

104 1114 341 515 426 922 41 

2 hour 
control repl.2 

94 999 307 460 390 828 40 

2 hour 
control repl.3 

92 876 256 416 280 753 37 

2 hour 
infected 
repl.1 

98 1075 321 513 437 881 37 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/table/pone-0057543-t004/#nt103
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2 hour 
infected 
repl.2 

91 870 259 418 346 713 40 

2 hour 
infected 
repl.3 

91 829 249 366 297 676 37 

1 hour 
infected 
repl.1 

114 1165 362 526 478 945 41 

1 hour 
infected 
repl.2 

101 1086 310 482 411 879 39 

1 hour 
infected 
repl.3 

141 1629 572 651 549 1341 59 

2 hour 
control repl.1 

98 1048 314 446 343 867 37 

2 hour 
control repl.2 

100 1008 313 467 410 824 32 

2 hour 
control repl.3 

91 899 269 406 338 738 43 

2 hour 
infected 
repl.1 

96 1056 321 495 419 881 40 

2 hour 
infected 
repl.2 

97 1002 307 459 349 851 39 

2 hour 
infected 
repl.3 

102 1062 330 504 441 881 38 

4 hour 
control repl.1 

120 1245 448 533 397 1070 51 

4 hour 
control repl.2 

119 1165 408 510 371 998 52 

4 hour 
control repl.3 

137 1796 633 723 597 1500 63 

*Only isomiRs present at >100 reads are shown. 
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Novel miRNA Discovery 

In addition to profiling the expression of known miRNAs, miRNAseq data can 

also be used to identify the expression of potentially novel miRNAs.  To do this, 

miRNAseq data from this study was analysed using the software package, miRDeep2 

(Mackowiak 2011).  We identified 21 high-confidence, putatively novel, bovine miRNAs 

that were independently predicted in multiple BME miRNAseq datasets (Table 5-5).  

Homology searching of the miRBase database (v 19) (Kozomara and Griffiths-Jones 

2010) using BLAST (Altschul et al. 1990) identified that 2 of the novel miRNAs had 

100% identity to known miRNAs in other species, ssc-miR-664-3p (pig) and hsa-miR-

219-1 (human). 

  Additionally 5 of the novel bovine miRNAs had significant homology with the 

bta-mir-2285 family.  The bta-mir-2285 family has over 40 members spanning the entire 

bovine genome (Guduric-Fuchs et al. 2012).  Two additional novel miRNAs showed 

homology to the bta-mir-2284 family.  The remaining miRNAs did not show significant 

homology to other known miRNAs in other species.  However, given the very high read 

counts observed for several of these predicted miRNAs, and the fact that were 

independently predicted in multiple different samples, it would suggest that many of 

these predictions represent true novel bovine miRNAs. 

Table  5-5 Putative novel bovine miRNAs discovered through miRDeep2 analysis 
of miRNAseq data from 24 bovine primary mammary epithelial cell 
samples. 

Name * Mature Sequence Best 
miRBase BLAST Hit 
(e-value <1) 

# Samples 
miRNAis 
Predicted in 

Mature Tag 
Count ** 

Predicted Mature 
Sequence 

bta-mir-6537 N/A 7 272,924 Gugggacgcgugcguuuu 
bta-mir-6538 N/A 22 22,094 Auagccaguuggggaagaaugc 
bta-mir-6539 N/A 20 9,687 Acgcaauucuucaaaaucuuagc 
bta-mir-6540 N/A 16 2,840 Aaaaacuggcagcuucauguaa 
bta-mir-2285i-1 bta-miR-2285i 13 2,241 Aaaacuggaacgaacuuuugggc 
bta-mir-2285f-3 bta-miR-2285f 18 2,202 Aaaaccugaaugaacuucuugg 
bta-mir-2284z-8 bta-miR-2284z 15 2,013 Uaaaaguuugguuggguuuuu 
bta-mir-664b ssc-miR-664-3p 20 1,736 Uauucauuuaucucccagccuac 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/table/pone-0057543-t005/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/table/pone-0057543-t005/#nt104
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589390/table/pone-0057543-t005/#nt105
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bta-mir-6541 N/A 8 1,501 Uggagcggcugcacagagcgu 
bta-mir-2285c-1 bta-miR-2285c 14 694 Aaaaccugaagagacuuuuugg 
bta-mir-6542 N/A 13 693 Ugcuaccuagucugagugaguga 
bta-mir-6544 N/A 18 332 Uggugcucccuggagcugagc 
bta-mir-6516 gga-miR-6516-5p 7 242 Uuugcaguaacaggugugaac 
bta-mir-219-1 hsa-miR-219-1-3p 3 173 Agaguugagucuggacgucccg 
bta-mir-6545 N/A 3 121 Auggacugucaccugaggagc 
bta-mir-2285m-6 bta-miR-2285m 2 107 Aaaacccaaaugaacuuuuugg 
bta-mir-2284b-1 bta-miR-2284b 5 86 Aaauguucgcuuggcuuuuucc 
bta-mir-2285f-4 bta-miR-2285f 2 64 Agaaaguucauuuagguuuuuc 
bta-mir-6546 N/A 4 52 Cuuccucuuccgguuggcaga 
bta-mir-6547 N/A 3 29 Auucuccauuggauauaauagu 
bta-mir-6643 gga-miR-6643-5p 2 21 Cagggagggcaggggaggg 

5.3.4. Discussion 

In this study, we have used a next generation sequencing approach to profile the 

expression of bovine miRNAs at multiple time-points in primary bovine mammary 

epithelial cells (BMEs) infected in vitro with S. uberis, a causative agent of bovine 

mastitis.  In comparison to previous NGS studies investigating the host miRNA response 

to infection, we have sequenced un-pooled miRNA libraries to a previously 

unprecedented sequencing depth from multiple replicates and controls across multiple 

time-points, allowing us to explore statistically significant temporal changes in miRNA 

expression in response to infection.  Analysing over 450 million sequenng reads, we 

found that approximately 20% of known bovine miRNAs are expressed in BMEs.  A 

similar diversity of miRNA expression has also been recently reported in other tissues, 

including bovine retinal microvascular endothelial cells (RMECs) and in testicular and 

ovarian tissues (J. Huang 2011).  As has also been reported in other studies, there is a 

significant dynamic range in the expression of known miRNAs in BMEs.  A few miRNAs 

are expressed at very high levels, with the majority being expressed at low levels.  The 

top 10 most highly expressed miRNAs account for >80% of all aligned reads and are 

highly conserved across species.  Whether or not the other more lowly expressed 

miRNAs play a significant biological role remains an open question. 
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We have also found that the expression of isomiRs was common for many of the 

BME expressed miRNAs.  Most significantly, in 40% of cases, at least one isomiR was 

more highly expressed than the miRbase consensus sequence, indicating that studies 

such as ours can also be used to improve miRNA annotation.  In particular, changes to 

the 5′ of the consensus sequence could lead to dramatically different target genes being 

computationally predicted.  We identified a large number of 5′ isomiRs although they 

were mostly expressed at low levels. 

In addition to profiling known miRNAs, we have also analysed the sequencing 

data to identify potentially novel bovine miRNAs.  Twenty-one high-confidence, 

putatively novel, bovine miRNAs were identified independently across multiple different 

samples.  The mature sequences of two of the novel miRNAs were 100% identical to 

known miRNAs in other species.  Seven of the other predicted miRNAs exhibited 

significant homology to two bovine miRNA families, bta-mir-2284 and bta-mir-2285. 

Few studies have previously investigated temporal changes in global miRNA 

expression using an NGS approach (Cui et al. 2010), although several have used 

microarray technology (P. Mukhopadhyay et al. 2010; Reinsbach et al. 2012; Li et al. 

2010; F.-Z. Wang et al. 2008).  Thus far, many immune-relevant miRNAs have been 

identified as part of the host response to LPS stimulation (J. Qi et al. 2012; L. A. O’Neill, 

Sheedy, and McCoy 2011).  We completed a literature survey and identified more than 

145 miRNAs across multiple different species and tissues that have been shown to be 

LPS responsive.  In our study, the miRNA response to the Gram-positive S. uberis was 

markedly different to the reported LPS miRNA response.  Over the 6 hour time-course, 

we identified 21 known bovine miRNAs as significantly differentially expressed in 

response to the S. uberis challenge.  Only 9 of these miRNAs have also been reported 

to be differentially expressed in response to LPS.  For those in common, an inverse 

pattern of expression was observed in 5 of the 9 cases suggesting that the miRNA 

response to Gram-positive bacteria may be markedly different to Gram-negative.  

Further global studies of the miRNA response to Gram-positive and Gram-negative 

bacteria in the same tissue at the same time-points will be required to confirm this. 

It is notable that we found most miRNAs were differentially expressed at different 

time-points post-infection, suggesting that miRNAs exhibit rapid dynamics in their 
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temporal expression.  It is also notable that the majority of miRNAs that we report as 

being differentially expressed exhibit relatively subtle changes in gene expression in 

response to infection.  This subtle change in expression is in line with existing literature 

and strengthens the hypothesis that miRNAs are fine-tuners of gene expression (L. A. 

O’Neill, Sheedy, and McCoy 2011; Bartel 2009).  For example, miR-let-7d, miR-652 and 

miR-494 demonstrated similar levels of differential expression 6 hours post LTA 

stimulation in mouse tissues (Hsieh et al. 2012). 

Computational analysis revealed that the predicted target genes of S. uberis 

down-regulated miRNAs were statistically enriched for roles in innate immunity.  This 

would suggest that these miRNAs may significantly regulate the sentinel capacity of 

mammary epithelial cells to mobilise the innate immune system (Swamy et al. 2010).  

Pathway analysis of the predicted targets of up-regulated miRNAs has also identified the 

statistical over-representation of several pathways previously implicated in the host 

response to mastitis, such as the MAPK, JAK-STAT and other cytokine signaling 

pathways.  Furthermore, several of the differentially expressed miRNAs have been 

shown to have roles in the immune systems of other species.  For example, bta-let-7 

miRNAs were up-regulated at both 4 and 6 hours post-infection with S. uberis.  The let-7 

family has been extensively described in the literature for having a role in immunity.  The 

down-regulation of let-7 family members, for example, was shown to promote expression 

of IL-10 and IL-6 in HeLa cells infected with Salmonella enterica serovar Typhimurium 

(Schulte et al. 2011).  The observed up-regulation of let-7 miRNAs in our study may lead 

to the repression of anti-inflammatory cytokines to promote innate immunity. 

We also report the down-regulation of two other miRNAs, bta-miR-29b-2 and bta-

miR-130a, both of which have known roles in immunity and infection in other species.  

miR-29a/miR-29b down-regulation has been demonstrated to facilitate IFN-γ up-

regulation in NK cells and TH1 cells (F. Ma et al. 2011; K. M. Smith et al. 2012).  IFN- γ 

is well known as an innate inflammatory mediator and its secretion promotes host 

resistance against viral and intracellular bacteria.  Furthermore, IFN-γ mRNA expression 

has been demonstrated in human mammary epithelial cells (Khalkhali-Ellis et al. 2008), 

suggesting that this may be a relevant target in our model.  LPS induced TNF-α 

expression in neonatal and adult monocytes has been shown to be greatly suppressed 

by the induction of miR-130a (H.-C. Huang et al. 2012).   
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Taken together, the evidence suggests that the differentially expressed miRNAs 

identified in this study are likely regulators of the innate immune response to S. uberis 

and thus might represent potential therapeutic targets or novel biomarkers of infection 

and inflammation. 
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Chapter 6. Profiling microRNA expression in bovine 
alveolar macrophages using RNA-seq 

This chapter is based on a modified version of the article “Profiling 
microRNA expression in bovine alveolar macrophages using RNA-seq.”, 
co-authored by Peter Vegh, Amir B.K. Foroushani, David A. Magee, 
Matthew S. McCabe, John A. Brown, Nicolas C. Nalpas, Kevin M. 
Conlon, Stephen V. Gordon, Daniel G. Bradley, David E. MacHugh and 
David J. Lynn in Vet Immunology Immunopathology © 2013 Published by 
Elsevier B.V.  My contribution has been the prediction of putative targets 
for the detected miRNAs, the analysis of overrepresentation of innate 
immunity related genes among these targets, pathway analysis of the 
targets, and the discussion of these results.  

6.1. Abstract 

MicroRNAs (miRNAs) are important regulators of gene expression and are 

known to play a key role in regulating both adaptive and innate immunity. Bovine 

alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front 

line of host defense against several infectious respiratory diseases, such as bovine 

tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this 

study, we used a high-throughput sequencing approach, RNA-seq, to determine the 

expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung 

lavages of eight different healthy Holstein–Friesian male calves. Approximately 80 

million sequence reads were generated from eight BAM miRNA Illumina sequencing 

libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of 

at least 100 reads per million (RPM). The expression levels of miRNAs varied over a 

large dynamic range, with a few miRNAs expressed at very high levels (up to 

800,000 RPM), and the majority lowly expressed. Notably, many of the most highly 

expressed miRNAs in BAMs have known roles in regulating immunity in other species 

(e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-

miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, 
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which has been shown to regulate the expression of antimicrobial peptides in 

Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target 

genes of BAM-expressed miRNAs were found to be statistically enriched for roles in 

innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq 

data was also analysed to identify potentially novel bovine miRNAs. One putatively novel 

bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq 

study to profile miRNA expression in BAMs and provides an important reference dataset 

for investigating the regulatory roles miRNAs play in this important immune cell type. 

6.2.  Introduction 

MicroRNAs (miRNAs) are an approximately 22 nucleotide (nt) long subset of 

non-coding RNAs, which post-transcriptionally regulate gene expression by base-pairing 

with target messenger RNAs (mRNAs). miRNAs are transcribed as pri-miRNAs in the 

nucleus and are then processed into pre-miRNAs. After export to the cytoplasm, a 

mature 22 nt duplex is formed. One miRNA strand is then incorporated into the RNA-

induced silencing complex (RISC), and interacts with its target mRNA via base-pairing at 

binding sites usually located within 3′ untranslated regions (UTRs), meanwhile the other 

strand is usually degraded  (Holley and Topkara 2011). Depending on the level of 

miRNA-mRNA complementarity, the target mRNA can be degraded or its translation 

repressed (Bartel 2009). Several diseases and conditions have been linked to abnormal 

expression of miRNAs (Alvarez-Garcia and Miska 2005; Bushati and Cohen 2007), as 

they have a regulatory role in most biological processes, such as differentiation, 

apoptosis, and development  (Ivey and Srivastava 2010; O’Connell et al. 2010; Xiao and 

Rajewsky 2009). 

It is also becoming increasingly clear that both adaptive and innate immunity are 

finely regulated by miRNAs. In the adaptive immune system, the differentiation of B 

cells, antibody generation, and T cell development and function, are all influenced by 

miRNAs (Belver, Papavasiliou, and Ramiro 2011). Innate immune cell activation is also 

regulated by miRNAs, including miR-155, miR-146a, miR-21, and miR-9 (Gantier 2010). 

For example, miR-155 is a positive regulator of Toll-like receptor (TLR) signalling, and is 
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induced upon stimulation of murine macrophages with interferon beta (IFN-β) or TLR 

ligands (Liston, Linterman, and Lu 2010; O’Connell et al. 2007). 

Furthermore, tumour necrosis factor (TNF) biosynthesis has been shown to be 

inhibited by Mycobacterium tuberculosis, an intracellular mycobacterial pathogen that 

infects alveolar macrophages, by regulating levels of a human macrophage miRNA, 

miR-125b (Rajaram et al. 2011). Alveolar macrophages have important roles in lung 

homeostasis and in many respiratory diseases, such as asthma in humans (Peters-

Golden 2004), and are the first cells to encounter several respiratory pathogens during 

the early stages of infection (Lambrecht 2006; Marriott and Dockrell 2007). In cattle, 

bovine alveolar macrophages (BAMs) are the major target cell type infected by 

Mycobacterium bovis, the causative agent of bovine tuberculosis (BTB) (Pollock et al. 

2006), which results in losses of approximately US$3 billion to global agriculture 

annually (Garnier et al. 2003). 

Currently, 755 bovine miRNAs are annotated in miRBase (version 19, 

http://www.mirbase.org) (Kozomara and Griffiths-Jones 2010), of which only 22 have 

been shown to be expressed in BAMs (G. Xu et al. 2009). In this study, we present the 

first next-generation sequencing approach to profile miRNA expression in unchallenged 

BAMs, providing an important reference atlas for further elucidating the role miRNAs 

play in regulating immune networks in this important immune cell type. 

6.3.  Materials and methods 

6.3.1. Ethics statement 

All animal procedures were performed according to the provisions of the Irish 

Cruelty to Animals Act, and ethical approval for the study was obtained from the 

University College Dublin (UCD) Animal Ethics Committee (protocol number AREC-13-

14-Gordon). 

http://www.mirbase.org/
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6.4.  Animals 

Eight unrelated Holstein–Friesian male calves (aged between 7 and 12 weeks 

old) were used in this study. All animals were maintained under uniform housing 

conditions and nutritional regimens at the UCD Lyons Research Farm (Newcastle, 

County Kildare, Ireland). The animals were selected from a herd without a recent history 

of bovine tuberculosis infection. 

6.4.1. Lung lavages, alveolar cell preparation and storage 

BAMs were harvested by pulmonary lavage of lungs obtained post-mortem from 

eight animals. Lungs were washed using a total of 3 L of calcium- and magnesium-free 

sterile Hank's Balanced Salt Solution (HBSS, Invitrogen, Life Technologies Ltd., Paisley, 

UK); HBSS was infused into the lungs (500 ml per infusion) via the trachea. After each 

500 ml infusion of HBSS, the lungs were gently massaged and resulting HBSS-cell 

suspension was collected into sterile beakers. All lung washes were performed in a 

laminar flow hood. 

50 ml of HBSS-cell suspension collected from the first 500 ml wash was 

centrifuged (200 × g for 10 min at room temperature) and the resulting cell pellet was 

resuspended in 10 ml HBSS and screened for microbial contamination by incubation on 

agar plates using the following conditions: Columbia blood agar with 5% defibrinated 

sheep blood (aerobic and CO2-enriched atmosphere, 37 °C, 36 h); Chocolate agar 

(CO2-enriched atmosphere, 37 °C, 36 h); Columbia-colistin-nalidixic acid agar (aerobic, 

37 °C, 36 h); MacConkey agar number 2 (aerobic, 37 °C 36 h); Sabouraud dextrose 

agar (aerobic, 37 °C, 5 days); and Mycoplasma agar (CO2-enriched atmosphere, 14 

days). All media was obtained from Oxoid Ltd. (Basingstoke, Hampshire, UK). All 

animals were negative for microbial contamination. 

The remaining HBSS-cell suspension (∼2 L) was transferred to 50 ml sterile 

tubes and centrifuged (200 × g for 10 min at room temperature). After centrifugation, the 

supernatants were discarded and the resulting cell pellets were pooled and resuspended 

in 50 ml cold R10 media (RPMI 1640 medium [Invitrogen], supplemented with 10% 

foetal bovine serum [FBS; Sigma–Aldrich, Dublin, Ireland], 2.5 μg/ml amphotericin B 
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[Sigma–Aldrich], 2 mM l-glutamine [Sigma–Aldrich]). The cell suspension was repelleted 

(200 × g for 10 min at room temperature) and resuspended in 10 ml R10+ media (RPMI 

1640 medium supplemented with 10% FBS, 2.5 μg/ml amphotericin B, 2 mM l-

glutamine, 100 μg/ml ampicillin [Sigma–Aldrich] and 25 μg/ml gentamycin [Sigma–

Aldrich]). Cells were then counted using a haemocytometer, recentrifuged at 200 × g for 

10 min and re-suspended in freezing solution (10% DMSO [Sigma–Aldrich], 90% FCS) 

at a density of 2.5 × 107 cells/ml. 1 ml cell aliquots were made in 2 ml sterile cryovials 

(Sarstedt Ltd., Wexford, Ireland) and placed into Mr. Frosty® Cryo 1 °C Freezing 

Containers (Nalgene®, Thermo Fisher Scientific, Waltham, MA, USA) containing 100% 

isopropanol. Cryovials were stored at −80 °C for a period of 18 h after which they were 

removed from the freezing containers and transferred to −140 °C storage conditions until 

required for further use. 

6.4.2. Alveolar cell culture 

Cells were thawed and incubated in a 175 cm2 flask (Cellstar, Greiner Bio-One 

Ltd., Stonehouse, UK) in R10+ media for 24 h at 37 C, 5% CO2. After incubation, media 

was removed together with nonadherent cells, and replaced with HBSS. After removing 

HBSS, adherent cells were dissociated with 15 ml 1× non-enzymatic cell dissociation 

solution (Sigma–Aldrich). Collected cells were pelleted at 400×g for 5 min, then 

resuspended in 10 ml sterile PBS (Invitrogen). Cells were counted with a 

haemocytometer (BRAND, Wertheim, Germany), and then 4×106cells were pelleted and 

lysed for each RNA extraction, except for sample BAM-8 which had a cell count of 

0.8×106. 

6.4.3. Small RNA 

In total, eight RNA-seq libraries were prepared for sequencing. Eight small and 

total RNA fractions were prepared from the pelleted cells, using the RNeasy Plus Mini kit 

and RNeasy MinElute Cleanup Kit (Qiagen Ltd., Manchester, UK), according to the 

appendix E part of the manufacturer's protocol. The quality and quantity of the prepared 

total and small RNA were assessed using an Agilent 2100 Bioanalyzer (Agilent 

Technologies Ireland Ltd., Cork, Ireland) with the 6000 Nano and small RNA LabChip 

kits (Agilent Technologies). Total RNA had RIN values of 9.4–9.8 and 28S/18S rRNA 
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ratios of 1.5–1.9. Small RNA concentrations were 10,000–25,000 pg/μl, and miRNA 

concentrations were ≈660–1900 pg/μl (Appendix N.). Samples were stored at −80 °C 

until further use. 

6.4.4. RNA-seq libraries 

Illumina RNA-seq libraries were prepared with the Epicentre Scriptminer 

multiplex kit (Epicentre Biotechnologies, Illumina Inc., Madison, WI, USA), according to 

the manufacturer's protocol, using 8 μl of the prepared small RNA. The Epicentre 

FailSafe™ Enzyme mix was used in the PCR amplification step, and Epicentre RNA-Seq 

barcode primers (Epicentre Biotechnologies) were used for indexing. Libraries were 

sequenced (50 bp single-end) on one lane with an Illumina HiSeq 2000 machine 

(Norwegian Sequencing Centre, Oslo, Norway). 

6.4.5. Analysis of RNA-seq data 

The quality and number of the reads for each sample were assessed using 

FASTQC v0.10.0 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Cutadapt v1.0 

(http://code.google.com/p/cutadapt/) was used to trim 3′ Illumina adapter sequences 

from reads. Reads which were less than 18 nt after trimming and all untrimmed reads 

were discarded. The remaining reads were then further filtered using FASTQ Quality 

Filter (FASTX Toolkit v0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/). Reads where at 

least 50% of the bases had a Phred score <20 were removed. Finally, reads passing all 

the above filters were also trimmed at their ends using FASTQ Quality Trimmer (FASTX 

Toolkit v0.0.13) to remove low quality bases (Phred score <20), and reads less than 

18 nt after the trimming were discarded. 

Reads which passed all quality control steps were aligned to the bovine genome 

(UMD3.1 assembly (Zimin et al. 2009)) using Novoalign (Novocraft Technologies, 

version 2.07.11) in ‘miRNA’ mode. HTSeq-count (part of the HTSeq framework, version 

0.5.3p3) in ‘union’ mode was then used to count aligned reads that overlapped with 

known miRNA gene annotation from Ensembl version 66 (www.ensembl.org). To 

investigate the proportion of reads sequenced from non-miRNA genes, HTSeq-count 

was also separately used to count aligned reads that overlapped with all bovine gene 

http://www.mirbase.org/
http://code.google.com/p/cutadapt/
http://www.mirbase.org/
http://www.mirbase.org/
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annotations from Ensembl. A graphical depiction of the analysis pipeline is shown in 

Figure 6-1. 

 6-1 Bioinformatics analysis pipeline overview 

 

miRDeep2 (version 2.0.0.5) (Friedländer et al. 2008) was used to identify 

potentially novel miRNAs from the data. The predicted novel miRNAs that were 

independently predicted in at least three samples and fulfilled all of the following criteria 

were submitted to miRBase: both the mature and star strand had a minimum five reads 

each; the predicted miRNA had a high (>90%) probability of being a true miRNA by 

miRDeep2; the hairpin structure had a RandFold P value <0.05. 

Customised Perl scripts were also written in house to examine the miRDeep2 

output for the presence of miRNA isomiRs as described recently by us (Lawless et al. 

2013). The Perl code is available upon request from the authors. 

Target genes that are potentially regulated by expressed miRNAs were predicted 

using the consensus of two computational approaches, miRanda v3.3a (Betel et al. 

2007) and TargetScan v6.2 (Friedman et al. 2008; Grimson et al. 2007; Lewis, Burge, 

and Bartel 2005). Given the high false positive rates for miRNA target prediction, we 

identified only those potential target genes that were predicted by both methods as 

described in detail previously  (Lawless et al. 2013). The InnateDB (www.innatedb.com) 

http://www.mirbase.org/
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(Lynn et al. 2008) pathway analysis tool was used to identify potential pathways that 

were statistically overrepresented among predicted targets. Predicted target genes with 

a role in innate immunity were also identified using InnateDB and a hypergeometric test 

was used to investigate whether innate immune genes were statistically 

overrepresented. 

R (v2.14.0, http://cran.r-project.org) was used to create the boxplot showing the 

miRNA expression levels, and the scatter plots showing the correlation between 

samples. The RNA-seq fastq files have been uploaded to the NCBI Gene Expression 

Omnibus (GEO) database (Barrett et al. 2010) with experiment series accession number 

GSE41138. 

6.4.6. RT-qPCR validation 

The relative expression of three miRNAs (bta-miR-21, bta-miR-148a, and bta-

miR-708) in BAM-5 and BAM-7 was also determined by quantitative reverse 

transcription PCR (RT-qPCR), using the Taqman MicroRNA Reverse Transcription Kit 

(Applied Biosystems, Life Technologies Ltd.), according to the manufacturer's protocol, 

and using 5μl of 1:30 dilution of the prepared small RNA fraction, in 15μl reverse 

transcription reaction (30 min 16 C, 30 min 42°C, 5 min at 85°C, and then maintained at 

4 °C). Taqman MicroRNA Assays (Applied Biosystems) with TaqMan Universal Master 

Mix II (no UNG) (Applied Biosystems), were used according to the manufacturer's 

protocol. A 4-point 1:10 serial dilution of miR-21 and a 1:10 dilution of miR-148a was 

also measured. Additionally, the expression of miR-21 and miR-148a were also 

measured in BAM-3 and BAM-4. 

RT-qPCR was performed on a 7500 Fast Real-Time PCR System (Applied 

Biosystems) with 7500 Software (version 2.0.6), using MicroAmp Fast optical 96-well 

plate and Optical Adhesive Film (Applied Biosystems). 20 μl reaction volumes were used 

for each well and amplification was performed using the following thermal cycle: 95°C 

10min, and 40 cycles: 95°C for 15s, 60° C for 1 min. Technical replication was 

performed in triplicate. Non-template controls had no amplification. 

http://www.mirbase.org/
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6.5. Results and discussion 

6.5.1. BAM-expressed miRNAs 

The aim of this study was to identify, catalogue and quantify the expression of all 

known and novel miRNAs in non-activated BAMs using RNA-seq. In total, 86 million 

reads were generated by sequencing the eight libraries. After the sequence processing 

steps of quality control and adapter removal, 62.5 million reads remained for further 

analysis; 86% of these reads were 19–24 nt long, thus validating the miRNA extraction 

and library preparation procedure. 

42.5 million reads aligned uniquely to the reference genome. 96.6% of reads 

aligning to known gene annotations from Ensembl (v66) aligned to miRNAs (Figure 6-2), 

2.1% to small nucleolar RNAs (snoRNAs), 0.5% to small nuclear RNAs (snRNAs), and 

the rest to other RNA species including messenger RNAs (mRNAs), transfer RNAs 

(tRNAs), ribosomal RNAs (rRNAs) and mitochondrial RNAs (mtRNAs). Approximately 

one million reads aligned to unannotated regions of the genome; these possibly include 

novel miRNAs, other novel non-coding RNAs (ncRNAs), or mRNA degradation products. 

Highly expressed miRNAs were distributed relatively evenly across the genome (Figure 

6-3). 

 6-2 The proportion of reads aligning uniquely to annotated bovine genes 
(averaged across eight samples). 

 

96.6% percent of annotated reads aligned to known miRNAs. snoRNA, small nucleolar RNA; 
snRNA, small nuclear RNA; mt, mitochondrial; rRNA, ribosomal RNA; tRNA, transfer RNA. 
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 6-3 Distribution of miRNAs in the bovine genome. 

 

Highly expressed miRNAs were relatively evenly distributed across the genome. Vertical bars 
represent chromosomes, blue horizontal bars known miRNA locations. Red horizontal bars show 
highly expressed (>100 RPM) miRNA locations. 

Recently it has been reported that miRNAs expressed below 100 reads per 

million (RPM) are unlikely to be functional (Mullokandov et al. 2012).  Using 100 RPM as 

a threshold for functional expression, we found that more than 10% (80/755) of known 

bovine miRNAs were expressed in BAMs. As has been previously reported in the RAW 

264.7 mouse macrophage cell line (Garmire and Subramaniam 2012),  there is a large 

dynamic range in the expression of known miRNAs – a few miRNAs (bta-mir-21, miR-

27a and bta-let-7i) are expressed at very high levels (up to 800,000 RPM), with the 

majority being expressed at low levels (around 1000 RPM). Figure 6-4 shows all 

miRNAs expressed in BAMs above 100 RPM (the read counts for all known bovine 

miRNAs can be found in Appendix O). Read counts were highly correlated between 

biological replicates (Figure 6-4). 
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 6-4 Box plot of miRNAs expressed in BAMs above a threshold of 100 RPM. 

 

The expression of Ensembl annotated bovine miRNAs in BAMs. Read counts shown are the 
number of reads aligning uniquely to that miRNA. 

Several of the miRNAs which we identified as expressed in BAMs (>100 RPM) 

have been shown to have regulatory roles in monocytes and macrophages of other 

species. The most highly expressed BAM miRNA, miR-21, for example, regulates the 

expression of antimicrobial peptides and was found to be up-regulated in M. leprae 

infected human monocytes (P. T. Liu et al. 2012).  miR-27, which was also found to be 

highly expressed in BAMs, has been shown to be involved in the activation of human 

macrophages (Cheng et al. 2012; Graff et al. 2012).  The third mostly highly BAM-

expressed miRNA, bta-let-7i, belongs to the let-7 family, a family of miRNAs that has 

several well-documented roles in immunity (Androulidaki et al. 2009; Satoh et al. 2012).  

For example, several let-7 family members, including let-7i, were observed to be down-

regulated in murine macrophages during Salmonella infection (Schulte et al. 2011). 

Other BAM-expressed miRNAs identified in our study, including miR-21, miR-27b, miR-

146, miR-147, miR-155, and miR-223, have all been found to be up-regulated by TLR 
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signalling in other studies (Ghorpade et al. 2012; G. Liu et al. 2009; L. A. O’Neill, 

Sheedy, and McCoy 2011). In addition to regulation by the host's immune system, 

miRNAs may also be regulated by pathogens to modulate the immune response in a 

way that is advantageous to the pathogen. For example, miR-99b, another BAM-

expressed miRNA, is up-regulated by M. tuberculosis in infected murine dendritic cells, 

and this inhibits the production of pro-inflammatory cytokines (Singh et al. 2013). 

6.5.2. Relative expression of miR-21, miR-148a and miR-708 

To assess reliability of the RNA-seq data presented in this study and to confirm that the 

high relative expression of miR-21 in BAMs is not an artefact of the sequencing 

technology, we measured the relative expression of three miRNAs (miR-21, miR-148a, 

and miR-708) using RT-qPCR, in two samples (BAM-5 and BAM-7). We chose these 

miRNAs for the following reasons: according to our RNA-seq data, miR-21 was the 

highest expressed miRNA in BAMs (Appendix O); miR-148a was expressed at a level 

approximately 100-fold less than miR-21; and miR-708 was expressed at a very low 

level (only a few reads mapped to it). RT-qPCR confirmed the same profile of expression 

of these miRNAs. miR-148a was found to be expressed two orders of magnitude less 

than miR-21 (Cq (quantification cycle) values for all four samples are shown in Appendix 

P); while miR-708 was observed to be very lowly expressed compared to miR-21 

(ΔCq≈16), which corresponds to the count numbers. These data were further confirmed 

using serial dilutions of the miRNA cDNA. We have found that 100× dilution of the miR-

21 RT product cDNA used in the qPCR resulted in approximately the same Cq values as 

undiluted miR-148a (ΔCq< 0.35) in both samples. We had similar results for 1000× 

dilution of miR-21 and 10× dilution of miR-148a cDNA (ΔCqBAM-5=−1 and ΔCqBAM-7=0.1). 

6.5.3. Analysis of predicted miRNA target genes 

To identify the genes and pathways that may be under miRNA control in BAMs, 

we performed target prediction on the miRNAs which are expressed above 100 RPM. 

The targets that were predicted by both miRanda and TargetScan, are listed in Appendix 

Q. Using InnateDB, we found that innate immunity related genes were (slightly) 

overrepresented (P= 0.049) among predicted targets of miRNAs. Pathway analysis of 

the predicted genes showed no pathways to be significantly overrepresented. 
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Figure  6-5 Combined targeting frequencies. 

 

Figure  6-6 Distribution of the number of predicted targets per microRNA. 

 

For two of the eighty microRNAs, no targets could be predicted.  These two 

microRNAs happened to be among the top five most abundant microRNAs in the 

samples, at position 2 and 4.  The remaining 78 microRNAs had collectively 4,119 

unique predicted targets.  Examining the predicted targets showed a wide range in 

number of microRNAs predicted to act on each target (Figure 6-5) as well as a wild 
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range in the number of predicted targets per microRNA (Figure 6-6).  For instance, 2,354 

of the 4,119 genes were predicted to be targeted by just one miRNA, were as 8 genes 

(GATM , MFSD8 , ARRDC4 , HIF3A , SNX16 , TMOD2 , PPARGC1B,UBN2) were 

predicted targets of 10-12 (out of 78) microRNAs.  Notably, the members of the let family 

(bta-let-7b, bta-let-7i, bta-let-7c, bta-let-7d, bta-let-7e, bta-let-7g) had 280-311 predicted 

targets each, followed by bta-mir-98, bta-mir-326, bta-mir-186 (232-274 predicted targets 

each).  On the other end of the spectrum, there were only 2-6 predicted targets for bta-

mir-99b, bta-mir-99a and bta-mir-2419 and 15-26 predicted targets for bta-mir-147,bta-

mir-191 and bta-mir-147.  

In contrast to the study in chapter 5, the aim of the present study was to 

determine ‘which microRNAs are present in unchallenged alveolar macrophages’, 

without any information on ‘how these microRNA profiles change over time after 

exposure to a particular pathogen and which -if any- subsets of these micoRNAs change 

most significantly’. Hence, any pathway analysis results would only suggest that in 

resting condition, certain pathways are more likely to be partially maintained by the 

totality of the encountered microRNA repertoire (including those at very low expression 

levels)  than others.   

Using InnateDB, there were no statistically significant pathways for the predicted 

targets.  Depending on the number of most abundant microRNAs that were considered, 

analysis of the predicted targets by SIGORA highlighted different sets of pathways.  

Regardless of how many of the top abundant microRNAs were taken into consideration, 

endocytosis, MAPK-signaling and JAK-Stat signaling always among SIGORA’s top 5 

results.  These pathways are known to be closely intertwined with microRNA networks - 

(Johnson et al. 2005; Paroo et al. 2009; Bode, Ehlting, and Häussinger 2012; Collins et 

al. 2013)- and have a known function in macrophages (e.g. sampling of the environment 

by endocytosis).   

6.5.4. IsomiR expression in BAMs 

IsomiRs are isoforms of miRNAs that differ in a few nucleotides from the 

canonical sequence, and may have functional importance. Compared to the canonical 

sequence, isomiRs can be modified at either ends, with modifications at the 3′ end being 
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more common (Neilsen, Goodall, and Bracken 2012).  We have found that isomiRs are 

commonly expressed in BAMs. More than 100 miRNAs had isomiRs that were 

expressed at >100 reads. Furthermore, over half of these miRNAs had an isomiR more 

highly expressed than the miRBase consensus sequence. 

IsomiRs were generally a few nucleotides shorter than the consensus miRNAs; 

in agreement with earlier findings (L. W. Lee et al. 2010; M. A. Newman, Mani, and 

Hammond 2011) modifications at the 3′ end were twice as common as at the 5′ end 

(Appendix R). This is in concordance with observations that usually a short seed 

sequence at the 5′ end is responsible for most of the miRNA target specificity 

(Brennecke et al. 2005). 

6.5.5. Prediction of novel bovine miRNAs expressed in BAMs 

In comparison with miRBase version 19, we also identified five putatively novel 

bovine miRNAs in the RNA-seq data. Four of these were also recently discovered by us 

in bovine mammary epithelial cells (Lawless et al. 2013).  One putatively novel miRNA, 

bta-miR-8550, found on chromosome 7, with a predicted mature sequence 

‘caggcucuggaacacgggagc’, is entirely novel and showed no homology to miRNAs in 

miRBase. 

6.6. Conclusion 

Here we have provided the first atlas of miRNA expression in unchallenged 

BAMs, which will serve as a reference point for future functional studies or challenge 

experiments directed to uncover the role of miRNAs in these critical immune cells. 
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Chapter 7. Concluding Remarks 

A better understanding of the processes that govern the immune response is 

crucial to reduce the direct and indirect burden of infectious disease and to limit the 

unintended damage caused by dysregulated inflammatory processes.    The immense 

complexity and the intricate nature of immunological processes necessitate the use of 

the tools of systems biology.  The goal of this thesis was the development and 

application of systems biology tools to help further this understanding.  Acknowledging 

the importance of agricultural model organisms, several specific aims of this thesis 

focused on utilizing the relatively recently completed draft of bovine genome and 

analyzing high throughput bovine ‘omics’ data,  but -as computational approaches- they 

are relatively easily transferable to other mammals.   

The first goal of this thesis was to computationally reconstruct bovine interaction 

networks and pathways and to make these available to the bovine research community.  

I tackled this task by orthology based transfer of gene functions and protein interactions 

and subsequently incorporating these into the InnateDB knowledge discovery and 

analysis platform.  Overall, about three quarter of experimentally validated human 

protein interactions –as present in InnateDB- and about 80% of human pathways could 

be reconstructed in cow.  A subsequent analysis of the global interaction partners 

showed that human genes with a predicted ortholog and innate immunity related genes 

have distinct topological properties in the network.  The quality of these predictions could 

be further improved, e.g. for interactions classified as direct physical interactions, one 

could examine the conservation of interaction sites.  Examining the inferred pathways 

showed that although some immunity related pathways do not seem to be very well 

conserved, this issue is more prevalent among basic, metabolism related pathways.  

This observation was rather surprising, but can be partly explained by several factors; 

including the gene-centric view of pathways in the repository (and the selected high-

throughput transfer methodology), which neglects the question of conservation of small 

molecules and metabolites, the less than optimal quality of the current draft of the bovine 
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genome (and the confidence in bovine gene calling methods), but also real biological 

divergence, including duplications of bovine interferon families (Walker and Roberts 

2009) and new insights into slower metabolic rates in primates than other mammals 

(Pontzer et al, 2014).  To be sure, even after further improvements, the inferred bovine 

pathways and networks would remain a temporary surrogate for the real networks, and 

would have to be eventually replaced or supplemented by experimentally validated data.  

This is particularly true for bovine specific genes without human orthologs such as 

members of duplicated interferon families.  InnateDB’s submission platform (Lynn et al. 

2010) will be useful in integrating such data, if and when they become available.  In the 

meantime, InnateDB remains one of the first analysis platforms for systems level 

analysis of bovine datasets in a pathway- and network oriented context. 

Two observations in course of completion of this first thesis-goal motivated the 

development of two new thesis goals.  

The first observation was that genes with known pathway annotations tend to be 

simultaneously annotated in multiple, at times seemingly unrelated pathways. This 

observation led me to examine the implications of this issue for pathway analysis 

methods that treat pathways as collections of individual genes and treat each gene in a 

pathway as equally informative.  Microarray and next generation sequencing (NGS) 

investigations of pathological conditions (such as infection and cancer) often report 

dramatic changes in expression levels of hundreds or thousands of genes. Pathway 

analysis statistically links these molecular changes to higher level cellular or organismal 

processes and thereby facilitates the biological interpretation of the experimental results. 

It is, however, not uncommon for pathway analysis methods to replace the long list of 

differentially expressed genes with an only slightly less confusing long list of potentially 

perturbed pathways. In addition to the inherent complexity of pathological conditions, 

several methodological factors contribute to this situation: first, traditional pathway 

analysis methods treat different members of a pathway as interchangeable markers of 

that pathway-- regardless of differences in number of pathways associated with each 

gene. Second, every pathway associated with a multifunctional gene is commonly 

treated as an equally likely candidate for the biological role assumed by that gene in the 

examined condition-- despite the fact that the biological role of a gene is highly context-

sensitive and dependent on the set of available interaction partners. Third, as the 
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statistical tests for significance of a pathway are affected the size of the pathway 

(measured in number of genes in the repository that are annotated in the pathway), the 

differential expression of just a few multifunctional genes can push several irrelevant but 

relatively small pathways towards the top of the list of significant pathways. Once I 

realized that “single-gene multi-functionality” does result in identification of potentially 

misleading, spurious pathways as statistically significant in a range of situations, I tried 

to improve pathway analysis results by developing a new method that focuses on the 

statistical over-representation of pathway-specific gene combinations in a user defined 

list of genes of interest (e.g. list of genes that show differential expression behaviour in a 

case-control study). The shift from single genes to specific gene-pairs as markers of a 

pathway offers a more context-oriented perspective and the resulting method (Signature 

over-representation analysis, SIGORA) improves upon the performance of many 

existing, popular methods, according to a range of different evaluation criteria.  Like all 

pathway analysis methods, SIGORA’s results ultimately depend on the extent and 

quality of the underlying repositories.   

  This leads to the second observation: in higher organisms, the biological role of 

most genes is simply unknown.  Currently, only about a third of all human protein coding 

genes have a pathway affiliation in any pathway repository.  In the case of inferred 

bovine pathways, this fraction becomes even smaller.  Gene ontology biological process 

(GO-BP) annotations are often used as an alternative means of functional analysis, but 

here too, a substantial fraction of genes are not associated with any biological 

processes.  As a minor step towards ameliorating this issue, I applied a “guilt by 

association” approach to identify highly co-expressed, potentially functionally related 

clusters of genes in a large scale bovine tissue expression dataset extracted from a 

broad and diverse set of tissue samples. The identified clusters were then subjected to 

functional analysis, and under strict pre-conditions, the un-annotated genes in each 

cluster were assigned a statistically significant function of the respective cluster.  Despite 

the ‘proof of concept’ nature of this approach, about 20% of obtained functional 

predictions showed literature support, but more work is needed to improve the results.  

Finally, I also had the opportunity to contribute to two high throughput studies on 

the role of microRNA in bovine infectious disease, one of which (a mastitis study) was a 

time-series, post-infection study. Bovine mastitis (an inflammatory disease of the 
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mammary gland in response to infection or physical damage) is the most prevalent 

health disorder in dairy farms that can be caused by a range of different pathogens 

(Staphylococcus aureus, Streptococcus spp., coliforms, gram-positive bacilli, 

Corynebacterium bovis, Staphylococcus spp., among others) (Sargeant et al. 1998) and 

results in significant losses in milk yield and quality. The frequency of infection and the 

type of causative agents vary strongly depending on geographical location, dairy farm 

management practices, usage of growth hormones and implemented mastitis control 

programs (Dohoo et al. 2003; Keane et al. 2013).  Estimations of Incidence rates are 

additionally affected by variations in perception, definition and detection method of 

mastitis (somatic cell counts above an arbitrary threshold, abnormalities in milk and/or 

udder) as well as farmers’ reporting habits.  Conservative estimates report that -in 

average- annually 20% of dairy cows experience clinical mastitis during lactation.   

An interesting possibility arising from the study presented in chapter 5 (which 

examined the differential expression of microRNAs at several time points after exposure 

of bovine mammary epithelial cells to S. uberis) is a notable difference in miRNA 

response to Gram-positive bacteria vs. Gram-negative ones (e.g. E. coli).  If confirmed 

by future studies (the same tissue at the same time-points), one might speculate that –

similar to recent developments in oncology (Ajit 2012)- specific combinations of 

microRNAs could one day be used as biomarkers that distinguish different causative 

agents of infection and possibly inform the most appropriate treatment course.  For the 

time being, however, the observation of dynamic changes in the microRNA profile in 

course of the same study (chapter 5) points to additional confounding factors for 

translational potential of such markers in infectious disease studies.   

A more basic question posed by the differentially expressed microRNA is: what 

are they doing?  Here, I used a combination of three target prediction methods to arrive 

at a target list for the differentially expressed microRNAs. Subsequent statistical analysis 

showed that predicted target genes of S. uberis down-regulated miRNAs were 

statistically enriched for roles in innate immunity, and that the results of pathway analysis 

of the predicted targets (by SIGORA) was largely in line with the known biology of bovine 

mastitis. Furthermore, in contrast to previously reported results, this combination of 

methods seemed to deliver a more plausible biological picture than any of the methods 
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taken individually. Whether this is due to specific properties of this dataset or a possibly 

more generalizable approach, remains to be seen.  

It has been noted that due to biases in the bio-medical publishing system -where 

reports on positive results are preferred-  most published results findings are wrong 

(Ioannidis 2005).  It will be interesting for me to revisit some of the results presented 

here in a few years, when more mature technologies are likely to be available at a 

smaller cost for detecting, quantifying, modifying and functionally analyzing cellular and 

organismal constituents, to learn from the extent of systematic biases in my approaches.  

Examples of such technologies include HITS-CLIP (Thomson, Bracken, and Goodall 

2011) and RNA immunoprecipitation (RIP) experiments (Zhang et al., 2007), which could 

be used to identify the actual targets of microRNAs in vivo and a context specific 

manner, as well as clustered regularly interspaced short palindromic repeats (CRISPR), 

which –by providing powerful and precise genome editing tools capable of 

simultaneously targeting several genes- is poised to strongly accelerate the 

experimental investigation of biological functions of genes and genomic regions, 

including those coding for miRNA (L. S. Qi et al. 2013; Y. Zhao et al. 2014; Cong et al. 

2013).   
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Appendix A.  
 
Human pathways with a relatively low conservation rate 
in cow 

 

Pathway name Source Number of 
bovine genes 
(predicted) 

Number 
of human 
genes 

Conserved 
genes ratio 
(%) 

          
Defensins REACTOME 3 37 8 
RNA Polymerase I Promoter Opening REACTOME 3 29 10 
Classical antibody-mediated complement 
activation REACTOME 3 28 11 
IFN alpha signaling pathway(JAK1 TYK2 
STAT1) ( IFN alpha signaling(JAK1 TYK2 
STAT1 STAT2 STAT3) )  INOH 2 16 13 
Beta defensins REACTOME 5 35 14 
Xenobiotics REACTOME 2 13 15 
Sema3A PAK dependent Axon repulsion REACTOME 2 11 18 
IFN alpha signaling pathway(JAK1 TYK2 
STAT1 STAT3) ( IFN alpha signaling(JAK1 
TYK2 STAT1 STAT2 STAT3) )  INOH 3 17 18 
IFN alpha signaling pathway(JAK1 TYK2 
STAT3) ( IFN alpha signaling(JAK1 TYK2 
STAT1 STAT2 STAT3) )  INOH 3 16 19 
Packaging Of Telomere Ends REACTOME 6 30 20 
Alpha-defensins REACTOME 2 9 22 
Glutathione conjugation REACTOME 2 9 22 
IFN alpha signaling pathway((JAK1 TYK2 
STAT1 STAT2) ( IFN alpha signaling(JAK1 
TYK2 STAT1 STAT2 STAT3) )  INOH 4 18 22 
Generic Transcription Pathway REACTOME 65 214 30 
Ascorbate and aldarate metabolism KEGG 8 25 32 
Metabolism of xenobiotics by cytochrome 
P450 KEGG 22 69 32 
Caffeine metabolism KEGG 2 6 33 
IFN gamma signaling pathway(JAK1 JAK2 
STAT1) ( IFN gamma signaling(JAK1 JAK2 
STAT1) )  INOH 2 6 33 
Olfactory Signaling Pathway REACTOME 116 351 33 
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Pathway name Source Number of 
bovine genes 
(predicted) 

Number 
of human 
genes 

Conserved 
genes ratio 
(%) 

Drug metabolism - cytochrome P450 KEGG 24 70 34 
Graft-versus-host disease KEGG 13 37 35 
Immunoregulatory interactions between a 
Lymphoid and a non-Lymphoid cell REACTOME 32 90 36 
Olfactory transduction KEGG 133 364 37 
Autoimmune thyroid disease KEGG 19 50 38 
Eicosanoids REACTOME 2 5 40 

Ifn gamma signaling pathway 
PID 
BIOCARTA 2 5 40 

Pentose and glucuronate interconversions KEGG 12 30 40 
Retinol metabolism KEGG 25 62 40 
Steroid hormone biosynthesis KEGG 22 54 41 
Endosomal/Vacuolar pathway REACTOME 3 7 43 
IL-3 signaling pathway(JAK1 JAK2 STAT5) ( 
IL-3 signaling(JAK1 JAK2 STAT5) )  INOH 3 7 43 
RNA Polymerase I Chain Elongation REACTOME 20 46 43 

Ifn alpha signaling pathway 
PID 
BIOCARTA 4 9 44 

Systemic lupus erythematosus KEGG 39 88 44 
Drug metabolism - other enzymes KEGG 23 50 46 
Deposition of New CENPA-containing 
Nucleosomes at the Centromere REACTOME 21 44 48 
Allograft rejection KEGG 17 35 49 
Meiotic Recombination REACTOME 26 53 49 
Amine ligand-binding receptors REACTOME 3 6 50 
Calcitonin-like ligand receptors REACTOME 4 8 50 
Ras-independent pathway in nk cell-mediated 
cytotoxicity 

PID 
BIOCARTA 11 22 50 

Asthma KEGG 14 28 50 
Antigen processing and presentation KEGG 34 66 52 
Regulation of autophagy KEGG 18 34 53 
Natural killer cell mediated cytotoxicity KEGG 70 133 53 
NCAM signaling for neurite out-growth REACTOME 7 13 54 
Linoleic acid metabolism KEGG 15 28 54 
Type I diabetes mellitus KEGG 22 41 54 
Chemokine receptors bind chemokines REACTOME 25 46 54 
Interferon gamma signaling REACTOME 25 46 54 
Meiotic Synapsis REACTOME 30 56 54 
Interferon alpha/beta signaling REACTOME 24 44 55 
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Pathway name Source Number of 
bovine genes 
(predicted) 

Number 
of human 
genes 

Conserved 
genes ratio 
(%) 

Digestion of dietary carbohydrate REACTOME 4 7 57 
NAD+ + 3 4-Dihydroxy-phenyl-ethyleneglycol 
= NADH + 3 4-Dihydroxy-mandelaldehyde ( 
Tyrosine metabolism )  INOH 4 7 57 
Starch and sucrose metabolism KEGG 28 49 57 
Staphylococcus aureus infection KEGG 31 53 58 
Smooth Muscle Contraction REACTOME 13 22 59 
Porphyrin and chlorophyll metabolism KEGG 24 41 59 
Intestinal immune network for IgA production KEGG 27 46 59 
APOBEC3G mediated resistance to HIV-1 
infection REACTOME 3 5 60 
JNK (c-Jun kinases) phosphorylation and 
activation mediated by activated human TAK1 REACTOME 3 5 60 
LDL endocytosis REACTOME 3 5 60 
Miscellaneous substrates REACTOME 3 5 60 
Post-chaperonin tubulin folding pathway REACTOME 11 18 61 
Termination of O-glycan biosynthesis REACTOME 14 23 61 
Activation of DNA fragmentation factor REACTOME 8 13 62 
Other types of O-glycan biosynthesis KEGG 28 45 62 
Ca-calmodulin-dependent protein kinase 
activation 

PID 
BIOCARTA 5 8 63 

Gene expression of SOCS1 by STAT dimer ( 
JAK-STAT pathway and regulation pathway 
Diagram )  INOH 5 8 63 
Gene expression of SOCS3 by STAT dimer ( 
JAK-STAT pathway and regulation pathway 
Diagram )  INOH 5 8 63 
Signal dependent regulation of myogenesis 
by corepressor mitr 

PID 
BIOCARTA 5 8 63 

Cytosolic DNA-sensing pathway KEGG 34 54 63 
Recycling of bile acids and salts REACTOME 7 11 64 
Translocation of ZAP-70 to Immunological 
synapse REACTOME 9 14 64 
Stathmin and breast cancer resistance to 
antimicrotubule agents 

PID 
BIOCARTA 14 22 64 

Cytokine-cytokine receptor interaction KEGG 174 270 64 
Taste transduction KEGG 31 48 65 
Ribosome KEGG 57 88 65 
Activation of the AP-1 family of transcription 
factors REACTOME 4 6 67 
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Pathway name Source Number of 
bovine genes 
(predicted) 

Number 
of human 
genes 

Conserved 
genes ratio 
(%) 

Basic mechanisms of sumoylation 
PID 
BIOCARTA 4 6 67 

Cytosolic sulfonation of small molecules REACTOME 4 6 67 
ERK cascade ( EGF signaling pathway 
Diagram )  INOH 4 6 67 
ERK cascade ( HGF signaling pathway )  INOH 4 6 67 
ERK cascade ( Integrin signaling pathway )  INOH 4 6 67 
ERK cascade ( PDGF signaling pathway )  INOH 4 6 67 
ERK cascade ( VEGF signaling pathway )  INOH 4 6 67 
Gene expression of smad7 by R-smad:smad4 
( TGF-beta super family signaling 
pathway(canonical) )  INOH 4 6 67 
JNK cascade ( TGF-beta signaling(through 
TAK1) )  INOH 4 6 67 
Methylation REACTOME 4 6 67 
Synthesis of bile acids and bile salts via 27-
hydroxycholesterol REACTOME 4 6 67 
TRAIL signaling REACTOME 4 6 67 
p75NTR negatively regulates cell cycle via 
SC1 REACTOME 4 6 67 
Inactivation of Cdc42 and Rac REACTOME 6 9 67 
Opsins REACTOME 6 9 67 

Antigen processing and presentation 
PID 
BIOCARTA 8 12 67 

Il 3 signaling pathway 
PID 
BIOCARTA 8 12 67 

Antigen Presentation: Folding  assembly and 
peptide loading of class I MHC REACTOME 14 21 67 
Biosynthesis of unsaturated fatty acids KEGG 14 21 67 
Formation of tubulin folding intermediates by 
CCT/TriC REACTOME 14 21 67 
IL3-mediated signaling events PID NCI 14 21 67 
TSLP NETPATH 16 24 67 
Eukaryotic Translation Termination REACTOME 56 84 67 
Toll-like receptor signaling pathway KEGG 68 102 67 
Arachidonic acid metabolism KEGG 39 57 68 
Viral myocarditis KEGG 46 68 68 
Peptide chain elongation REACTOME 57 84 68 
Viral mRNA Translation REACTOME 57 84 68 
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Appendix B.   
 
Detailed results for the pathway analysis of a TB 
expression dataset (GSE11199) by 6 different methods 

The attached worksheets file (Appendix_B.xlsx) forms part of this work.  The file can be 
opened with Microsoft Excel. 

The worksheet contains 9 tabs: the list of the input genes, the full results of each of the 
six compared analysis tools for this data-set, a summarizing 6way-comparison sheet of 
the ranks of pathways that were identified as significant by at least one method, and an 
additional tab for DAVID’s functional clusters. 
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Appendix C.   
 
Detailed results for the pathway analysis of a mouse 
experimental cerebral malaria (ECM) expression dataset 
(GSE7814) by 6 different methods 

The attached worksheets file (Appendix_C.xlsx) forms part of this work.  The file 

can be opened with Microsoft Excel. 

The worksheet contains 9 tabs: the list of the input genes (for the ORA-based 

methods), the full results of each of the six compared analysis tools for this data-set, a 

summarizing 6way-comparison sheet of the ranks of pathways that were identified as 

significant by at least one method, and an additional tab for DAVID’s functional clusters. 
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Appendix D.  
 
Detailed results for the pathway analysis of a Dengue 
fever dataset (GSE25001) by 6 different methods. 

The attached worksheets file (Appendix_D.xlsx) forms part of this work.  The file 

can be opened with Microsoft Excel. 

The worksheet contains 8 tabs: the list of the input genes, the full results of each 

of the six compared analysis tools for this data-set, a summarizing 6 way-comparison 

sheet of the ranks of pathways that were identified as significant by at least one method. 
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Appendix E.  
 
Clusters of highly co-expressed genes in BGA and 
predictions based on GBA. 

The attached worksheets file (Appendix_E.xlsx) forms part of this work.  The file can be 
opened with Microsoft Excel. 

The worksheet contains three tabs: ‘Clusters identified by MINE’, ‘Predictions part 1’ and 
‘Predictions part 2’.  

In both prediction tabs, genes listed in column L are predicted to be associated with 
functions in column J based on GBA. 

 In the tab labeled ‘Predictions part 1’, the functions in column J are the top scoring 
functions for the clusters in column B, and the function passes the proportional filter, i.e. 
at least 40% of all annotated genes in the cluster are associated with the function in J.  

In the ‘Predictions part 2’ tab, the functions in column J are not the top scoring functions 
for the clusters in column B, but the first significant function that fulfills the fractional test, 
i.e. at least 40% all annotated genes in the cluster are associated with the function in J. 



 

215 

Appendix F.  
 
Sample descriptions for the miRNA study 

The attached spreadsheets file (Appendix_F.xls) can be opened with Microsoft 

Excel. 
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Appendix G.  
 
RNA integrity values and miRNA concentrations for the 
samples in the miRNA study  

The attached spreadsheets file (Appendix_G.xls) can be opened with Microsoft 

Excel. 
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Appendix H.  
 
Average transcript counts per miRNA 

The attached spreadsheets file (Appendix_H.xls) can be opened with Microsoft 

Excel. 
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Appendix I.  
 
miRNAs involved in response to S uberis in the 
literature  

The attached spreadsheets file (Appendix_I.xls) can be opened with Microsoft 

Excel. 
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Appendix J.  
 
Genes predicted to be targeted by differentially 
expressed miRNAs 

The attached worksheets file (Appendix_J.xlsx) forms part of this work.  The file 

can be opened with Microsoft Excel. 
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Appendix K.  
 
Alignment of reads to bovine ncRNAs   
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Appendix L.  
 
Fold changes in expression of differentially expressed 
miRNAs at 4 hpi 
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Appendix M.  
 
Fold changes in expression of differentially expressed 
miRNAs at 6hpi 
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Appendix N.  
 
RNA quality and read numbers.  

Sample 
ID 

RNA 
conc. 
[ng/uL] 

rRNA 
ratio 
(28s/18s) RIN 

Small RNA 
conc. 
[pg/µL] 

miRNA 
conc. 
[pg/µL] 

Total # of 
reads 

#of reads 
after 
quality 
control 
steps 

#of 
uniquely 
aligned 
reads 

Uniquely 
aligned 
as % of 
total 

BAM-1 383 1.6 9.4 15,674 746 11,268,106 7,767,806 5,370,197 48% 
BAM-2 530 1.6 9.4 19,602 1,144 10,359,205 6,486,994 4,657,271 45% 
BAM-3 483 1.7 9.4 18,441 1,404 8,379,883 5,628,363 3,867,637 46% 
BAM-4 446 1.6 9.6 13,306 1,005 11,322,893 8,759,869 5,928,652 52% 
BAM-5 372 1.7 9.7 17,380 1,875 9,957,402 8,195,175 5,641,224 57% 
BAM-6 470 1.7 9.6 11,565 1,830 13,108,422 9,174,465 6,270,685 48% 
BAM-7 656 1.5 9.4 9,854 1,820 10,561,796 8,550,114 5,941,310 56% 
BAM-8 80 1.9 9.8 9,869 660 11,380,422 8,018,972 4,916,793 43% 

RNA Integrity Number (RIN) values were above 9 for all samples. 
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Appendix O.  
 
The expression of Ensembl annotated bovine miRNAs in 
BAMs.  

The attached worksheets file (Appendix_O.xlsx) forms part of this work.  The file 

can be opened with Microsoft Excel. Read counts shown are the number of reads 

aligning uniquely to that miRNA. 
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Appendix P.  
 
The RT-qPCR results for miR-21, miR-148a and miR-708 
in four samples.  

  
bta-miR-
21 (RPM) 

bta-miR-
21 (Cq) 

bta-miR-
21 (Cq) 
1:100 
dilution 

bta-miR-
148a 
(RPM) 

bta-miR-
148a (Cq) 

bta-miR-
708 
(RPM) 

bta-miR-
708 (Cq) 

BAM-5 796,997 19.23 26.92 8,045 26.98 0.00 35.78 
BAM-7 792,299 18.73 26.10 12,734 25.78 0.72 34.38 
BAM-3 798,224 17.56 N/A 6,909 25.06 0.27 N/A 
BAM-4 759,241 19.03 N/A 5,541 26.80 0.72 N/A 

Means of Cq values of three wells are shown. (* Cq Threshold = 0.15) 
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Appendix Q.  
 
List of target genes that are computationally predicted 
to be regulated by miRNAs expressed above a threshold 
of 100 RPM in BAMs.  

The attached worksheets file (Appendix_Q.xlsx) forms part of this work.  The file 

can be opened with Microsoft Excel. Only genes that were predicted by both of the 

computational approaches, miRanda v3.3a and TargetScan v6.2, are listed. 
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Appendix R.  
 
Summary of isomiR expression across samples.  

Sample  Strand 

# miRs 
with 
isomiRs 

# of 
isomiRs 
>100 reads  

# isomiRs 
longer 
than 
consensus 

# isomiRs 
shorter 
than 
consensus 

# isomiRs 
5' modified 
(first 5nt) 

# 
isomiRs 
3' 
modified 
(last 5nt) 

# cases 
where 
isomiR 
expressed 
more 
highly than 
consensus 

BAM-1 5p 54 456 65 344 183 418 31 
BAM-1 3p 39 352 100 136 167 268 27 
BAM-2 5p 53 432 63 321 176 393 28 
BAM-2 3p 42 308 95 132 135 245 28 
BAM-3 5p 49 435 59 327 180 395 26 
BAM-3 3p 41 303 99 117 132 241 25 
BAM-4 5p 55 512 76 378 218 463 28 
BAM-4 3p 42 423 125 175 202 336 28 
BAM-5 5p 56 463 74 333 198 409 29 
BAM-5 3p 39 377 119 136 177 290 25 
BAM-6 5p 57 498 76 361 220 445 30 
BAM-6 3p 43 436 125 173 215 338 28 
BAM-7 5p 55 479 63 362 183 435 32 
BAM-7 3p 42 389 104 164 181 298 27 
BAM-8 5p 49 462 64 340 191 416 25 
BAM-8 3p 39 295 101 115 119 240 26 

IsomiRs were found to be generally shorter than consensus sequences. Modifications at 

3′ ends were more common than at 5′ ends. Several isomiRs were more highly 

expressed than their consensus sequences. 
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