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Abstract 

In this paper, we compare two risk measures, Value at Risk (VaR) and Expected Shortfall 

(ES) in their ability to capture risk associated with tail thickness. We test them under both normal 

and stressed market conditions using historical daily return data for capital-weighted stock indices 

from major markets around the world. Both log-returns (serially correlated) and ARMA-GARCH 

residuals (not serially correlated) are tested. 

We find that expected shortfall is better at capturing tail risk than VaR under all market 

conditions; the improvement is more dramatic in normal conditions and in serially correlated 

data. However, in crisis conditions, the stochastic component of returns shows that both risk 

measures contain very high tail risk. We recommend that practitioners and regulators using VaR 

consider switching to expected shortfall to be better prepared for extreme negative events. 
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1: Introduction 

1.1 Overview 

The objective of this study is to build upon the pioneering work of Artzner et al. (1997, 

1999) on coherent risk measures, which take into account the most extreme returns of a security, 

as a substitute for value at risk (VaR), which only considers a specific percentile of the returns 

distribution. We specifically consider expected shortfall, a well-known coherent risk measure. 

Yamai and Yoshiba (2002b, 2005) extend this concept by applying extreme value theory 

to measure tail thickness. By analysing foreign currency exchange rates during the Asian 

financial crisis, they establish that over this period both value at risk and expected shortfall have 

tail risk (risk due to fat tails, see Section 3.2), but that expected shortfall generally has less than 

value at risk. 

However, the above study does not make any comparison between typical market 

behaviour and stressed market behaviour. It is important to know whether or not expected 

shortfall offers a significant improvement over VaR under stressed conditions compared to 

typical conditions.  

This study therefore extends the existing body of work using similar methodology to that 

introduced by Yamai and Yoshiba (2002b, 2005) on differentiated normal and stressed stock 

index returns data. Data from the 2007-2008 financial crisis and from a more typical period 

shortly before it are used to establish normal and crisis regimes of returns behaviour. The 

distributions in each regime are analysed to determine the tail risk of both expected shortfall and 

value at risk. 

Furthermore, the work of Yamai and Yoshiba (2005) is expanded by applying their 

methodology to the stochastic component of returns through the application of an 

ARMA/GARCH model. This is done to provide insight into the ability of VaR and expected 

shortfall to capture truly unpredictable tail risk, removing the effects of autocorrelation. 

We find that VaR is outperformed by expected shortfall in all conditions in terms of the 

capture of tail risk. However, the outperformance in the crisis regime is not as extreme as 

expected, where both measures have significant tail risk. This is found to be especially true of the 
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stochastic component of returns, where both VaR and expected shortfall are found to have very 

significant tail risk. Indeed, much of expected shortfall’s superior performance in the crisis 

regime is eliminated when applied to data that are not auto correlated. 

1.2 Background 

Value at risk (VaR) is a risk measurement that describes the riskiness of the return of a 

portfolio. It is widely used across the financial industry, both by participants and by regulators. Its 

popularity is owed to its simplicity: it is reported as a single number that represents potential 

losses with some confidence level in raw dollar terms. As a result, it is easy to understand and 

intuitive to manage and regulate. Nevertheless, VaR has two major shortcomings, both of which 

are side effects of the way in which it is calculated. Its value is based completely on the losses at 

the specified confidence level, while no weight whatsoever is assigned to losses beyond that 

confidence level.  

The main concern with the use of VaR as a risk measure is that it does not respond to 

losses exceeding the confidence level. As a result, it works well when applied to normally 

distributed returns, but it cannot capture the risk associated with the shape of the distribution 

beyond the confidence level. In particular, if a portfolio’s returns distribution has thick tails 

representing low-probability, extreme-magnitude losses, VaR cannot accurately convey the 

riskiness of the portfolio’s tails. 

The second major problem is that VaR is super-additive under certain conditions. This 

means that VaR may suggest that combining two portfolios together may result in greater total 

risk than the sum of the component portfolios’ risk: it may fail to accurately capture the benefits 

of diversification. This happens because the weights assigned to losses beyond the VaR 

confidence level is a decreasing function of their probability (from 100% at the confidence level 

to 0% beyond it). It therefore fails to qualify as coherent risk measure defined by Artzner et al. 

(1997).  

To remedy the problems inherent in VaR, Artzner et al. (1997) propose the use of 

expected shortfall (ES) as an improvement on VaR. Expected shortfall is the expected value of 

losses beyond the confidence level. Since expected shortfall assigns non-decreasing weights 

(actually, equal weights) to losses beyond the confidence level, it is always sub-additive and 

therefore also a coherent risk measure. Furthermore, since losses beyond the confidence level are 

taken into account in the calculation of ES, it should by definition have a superior ability to pick 

up any risk associated with returns distributions whose tails are not normal. 
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Returns on stock markets generally follow normal distributions, and as a result, under 

typical conditions, VaR is thought to be almost as effective as ES at capturing risk. However, the 

recent financial crisis highlights the importance of measuring the risk associated with non-normal 

returns and extreme tails. It is therefore desirable to confirm that ES does, in fact, outperform 

VaR in its ability to capture the risk associated with thicker tails. 

To this end, the objective of this study is to compare VaR and expected shortfall by 

measuring their ability to pick up tail risk (see Section 3 for details on tail risk). We calculate 

return distributions from the daily values of major stock exchanges. We then analyze VaR and 

expected shortfall from these data series as functions of tail size to compare their abilities to pick 

up tail risk.  

Our findings suggest that expected shortfall is more effective at capturing tail risk and 

therefore should replace VaR as the risk measure of choice for the post-crisis financial industry, 

where stress testing and worst-case scenarios are at the forefront of risk managers’ thoughts. We 

also find that, under crisis conditions, both measures have significant tail risk, although expected 

shortfall has less than VaR. 

The rest of the paper is organized as follows. Section 2 formally defines value at risk and 

expected shortfall. Section 3 defines tail index as a measurement of tail thickness and explains 

how it is calculated. Tail risk is also defined. Section 4 explains our method of determining VaR 

and expected shortfall of a data series. Section 5 describes the empirical data chosen and how it 

was prepared for testing. Section 6 presents the results of the tests and the conclusions drawn 

from them. Section 7 summaries the paper. 
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2: Risk Measure Definitions 

We focus on two risk measures in this paper: value at risk (VaR) and expected shortfall 

(ES).  

2.1 Value at Risk 

Following convention, VaR represents the maximum loss that the portfolio will 

experience over some time interval, with some confidence level. For example, if portfolio A has a 

1-month 95% VaR of $150 000, then one is 95% confident that over a given month the portfolio 

will not lose more than $150 000.  

Mathematically, we denote the distribution of returns Z of the portfolio over the holding 

period T. VaR at the (100-X) % confidence level is then defined to be the upper X percentile of 

the loss distribution, as shown in Equation 1 below:  

                              Equation 1 

Where sup⁡{z|A} is the upper limit of Z given event A as used in Artzner et al. (1999). In this 

paper, we analyse the daily returns of stock indices, so all distributions Z are discrete 

distributions, but without a loss of generality the same definition of VaR holds for continuous 

distributions as well. 

2.2 Expected Shortfall 

We define expected shortfall as proposed by Artzner et al. (1999). It is the conditional 

expectation of a portfolio’s losses beyond VaR of the same confidence level over the same 

holding period. So, recalling portfolio A above with 95% one-month VaR of $150 000, if the 

same portfolio has a 95% ES of $300 000, then in the 5% of cases where losses exceed $150 000, 

expected shortfall tells us the expected loss is $300 000. Mathematically, expected shortfall is 

defined in Equation 2: 

                             Equation 2 

Where E[Z|A] is the expectation of Z given event A. For a continuous distribution, expected 

shortfall is therefore the probability-weighted average of all losses beyond VaR. Given that our 
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data is discrete and of equal weighting, the expected shortfall calculated is the simple average of 

all daily losses beyond VaR; numerically, the probability weighting is reflected in the frequency 

of losses at a given level. 

 Because of the way in which expected shortfall is calculated, larger data sets are 

generally required in order for it to achieve the same level of accuracy as VaR (Yamai and 

Yoshiba, 2002a). Specifically, Yamai and Yoshiba found that about 1000 data points are required 

in order for the accuracies of the two risk measures to converge for practical purposes. This is a 

significant limitation of expected shortfall, since it makes it less reliable than VaR for small data 

sets. 
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3: Tail index and tail risk 

3.1 Tail index 

We use extreme value theory to represent the tails of asset returns in this paper, following 

the same method as Yamai and Yoshida (2002b, 2005). In particular, we consider only the 

univariate case in this study. 

A brief introduction to extreme value theory is needed to explain our study of the tail 

index. We define Z as a return distribution representing the daily returns of an asset based on 

available data. The distribution function describing Z is denoted F and is not known. Only the 

extreme values are considered here, as this study focuses on the tail portion of the distribution 

beyond some threshold θ. Exceedances are defined as             . The resulting probability 

that Z is greater than θ is denoted p, so probability that it is smaller than or equal to θ is given by 

1 – p. The variable p is referred to as tail probability. Based on the above, the conditional 

distribution    is defined as: 

                    
         

      
        Equation 3 

Where    is the distribution function of (Z-θ) given that Z exceeds θ. Note that    is not known 

unless F is known. 

Under univariate extreme value theory, following Yamai and Yoshiba (2002b, 2005),    

for sufficiently high values of threshold θ, converges to a generalized Pareto distribution      (see 

Embrechts et al., 1997) of the form: 

               
 

 
 
  

  
          Equation 4 

Given Equations 3 and 4, and when the value of θ is sufficiently large, the distribution 

function of the exceedances m_θ can be approximated as follows: 

                              

         
   

 
 
  

  
         Equation 5 

Where    is hereafter referred to as the distribution of exceedances. 
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The distribution of exceedances is determined by three parameters: tail probability p, 

which directly determine the threshold θ; the shape (or scale) parameter   that describes how 

dispersed the distribution is; and the tail index ξ. Tail index is the parameter with which this study 

is primarily concerned: it describes how thick the tail of the distribution is. Larger values of ξ 

indicate thicker tails. 

3.2 Tail Risk 

For any given shape of the distribution Z, VaR and expected shortfall give the same 

amount of information about the riskiness of the portfolio since they are simply be scalar 

multiples of one other. In particular, if the shape of the distribution is normal, both risk 

measurement are fixed scalar multiples of the standard deviation. 

The improvement of expected shortfall over VaR arises when the shape of the 

distribution changes to have fatter tails. Consider the two return distributions in Figure 3.1 below, 

assuming that they are plotted to the same scale. The distribution shown in (b) is clearly riskier, 

since it has a higher probability of extremely high losses while other elements of the distribution 

to the left of 95% VaR remain the same. While the VaR of these two return distributions is the 

same, since the value at 95% VaR is the same, ES is different: ES, since it is a probability-

weighted average of the top 5% of losses, is increased as a result of the peculiar shape of the tail 

in (b). So, VaRa = VaRb while ESa < ESb. Since ES increases with increase of risk due to tail 

shape, it appears to capture the risk associated with the tail shape, while VaR does not. 

Alternatively, we say that VaR has more tail risk than expected shortfall.  

To directly compare the effectiveness of value at risk and expected shortfall at capturing 

tail risk, we follow the definition of tail risk proposed by Yamai and Yoshiba (2002b, 2005): 

when comparing the tail indices ξ of two portfolios’ return distributions and their respective risk 

measurements, a risk measure has tail risk if it assigns higher risk to the portfolio with a smaller 

tail index. Under such conditions, the tested risk measure fails to increase to capture the increase 

in risk associated with a larger tail. In other words, when       but           or     

   , that risk measure has tail risk. 
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Figure 3-1: Probability density functions of loss distributions that follow (a) a normal distribution and (b) 

a distribution with extreme tail behavior. 
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4: Calculation of VaR and Expected Shortfall 

There are many ways to determine VaR and expected shortfall of a portfolio. Here, the 

historical method based on empirical data is used. This method was chosen because it is the most 

direct representation of the real market environment, with the least assumptions made to 

artificially affect the data. As a trade-off, the VaR and expected shortfall values calculated using 

real-world data are noisy, with less-predictable behavior. 

4.1 Method for VaR 

A fixed time interval for all indices in both normal and crisis regimes was selected, and 

daily ticker values were converted to daily log returns. For X% VaR, we simply identify the 1 – X 

percentile of the data and convert it back into percentage daily return form. 

4.2 Method for Expected Shortfall 

Because the data are discrete, we use the conditional definition to calculate expected 

shortfall. According to this method, expected shortfall is the average of all values beyond the 

threshold of VaR. For X% ES, we take the arithmetic mean of all data points beyond the X% VaR 

data point. 

4.3 Choice of Confidence Level 

A time interval of approximately 700 trading days was chosen due to concerns with 

accurately representing the financial crisis (a detailed explanation can be found in Section 5). The 

limited size of this data set makes extremely high confidence levels unreliable. Therefore, we 

choose to focus on 95% confidence level for both VaR and expected shortfall, consistent with 

common industry practice. 
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5: Data Selection and Processing 

The data used in the analysis were daily log-returns data representing two distinct periods 

of market operation: a “normal regime” and a “crisis regime.” Index values from Bloomberg were 

converted to log-returns for these periods, subjected to ARMA/GARCH to isolate the stochastic 

component of returns, and the tail index ξ is determined for both the log-returns and for the 

ARMA/GARCH stochastic component. 

5.1 Data Retrieval 

The data analyzed come from the daily values of thirteen internationally-prominent 

capital-weighted market indices. Daily index values were retrieved from Bloomberg for the time 

period from December 13th, 1999 to June 19th, 2014. This time period was used because it 

straddles the 2007-2008 financial crisis by a wide margin on either side.  

The analysis of indices was preferred over individual securities in order to ensure that 

only beta-risk was captured in the study. The indices used in the study were selected to satisfy 

two parameters. First, they are capital-weighted. This ensures that any return data on the indices 

are reflective of returns on capital invested in their respective markets. Second, they are 

geographically diverse but significant in size. Indices were selected subjectively for this 

parameter until a sufficiently large group of indices was generated. 

The Bloomberg ticker symbols for the selected indices are: CAC (CAC-40 from Paris), 

CCMP (NASDAQ composite index), UKX (FTSE-100 from London), HSI (Hang Seng from 

Hong Kong), RTY (Russell 2000 small caps), SPX (S&P 500 large caps), AS51 (S&P/ASX 200 

from Australia), SPTSX (S&P/TSX 500 from Canada), SENSEX (BSE from India), IBEX 

(IBEX-35 from Spain), MEXBOL (Bolsa IPC from Mexico), FMBKLCI (KLCI from Malaysia) 

and TWSE (TAIEX from Taiwan). 

5.2 Trading Day Inconsistencies 

Due to differences in trading days between the exchanges, a technique similar to that 

described by Yamai and Yoshiba  (2002b) was applied, where all trading days that exist in any 

data set were added to all remaining data sets where they were non-trading days. The index value 
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on this non-trading day was then set to the same value as on the previous trading day. The change 

has no significant effect on the outcome of the analysis since this extra data point has a daily 

return of zero, which has no effect on the tails of the distribution except for a minor impact on 

where they begin. 

5.3 Determination of Normal and Crisis Regime Dates 

Given the base data, it is necessary to specify the starting and ending dates of the “normal 

regime” and the “crisis regime” to be analyzed; the time between the starting and ending dates is 

referred to as the “period length.” A trade-off exists in the determination of period length, since a 

shorter period length (under 500 days) offers the best direct representation of the 2007-2008 

financial crisis, yet the parameter estimations for ξ, VaR and particularly expected shortfall (see 

Section 2.2) are all superior for larger data sets. The same period length was used for the normal 

regime for consistency. 

 To optimize date selection, MATLAB was used. First, the complete data set was 

converted to log-returns. Next, it was assumed that, under the normal regime, average daily 

variance on the log-returns should be low, and that under the crisis regime, average daily 

downside variance of log-returns should be high. Based on these criteria, for a given period 

length, all possible combinations of start and end date were analyzed to determine the optimal 

start and end dates within the period. 

The period length of the crisis was determined manually in an iterative process in order to 

best match the onset of turmoil in the financial markets. Various period lengths were tested in 

order to obtain the highest possible maximum downside variance, satisfying the above criteria, 

while maximizing the number of data points used and subjectively starting just before the obvious 

downturn in markets. The results of the period selection process can be found in Table 5.1  

Table 5-1 Start and End Dates for Regimes 

Regime Start Date End Date Selection Criterion 

Normal 23-Jun-04 19-Feb-07 Minimum average daily variance 

Crisis 26-Jun-07 09-Mar-10 Maximum average daily downside variance 
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5.4 Generalized Pareto Distribution Fit of Stochastic Component 

In order to isolate the stochastic component of the daily returns, the data for the two 

selected regimes were run through an ARMA/GARCH process that ran as follows: 

 Convert index values to log-returns 

 Iteratively apply ARMA fit until a minimum acceptable fit is found – if no 

autocorrelation is detected, no ARMA fit is performed 

 Apply GARCH(1,1) if variances are correlated; do not apply GARCH if 

variances are uncorrelated 

The result of this automated process is summarized in Table 5.2 for the crisis regime data 

and in Table 5.3 for the normal regime data. The epsilon values left over from the 

ARMA/GARCH process – that is, the daily ARMA innovations divided by the squared daily 

GARCH sigma values – were accepted as the stochastic component of daily log returns.  

Finally, MATLAB was used to perform a generalized Pareto distribution fit to the data. 

This was done twice for each regime. First, it was applied to the log-returns data, consistent with 

the methodology employed by Yamai and Yoshiba (2005). Second, it was applied to the 

ARMA/GARCH epsilon values, in order to see if the pure stochastic component demonstrated 

any significant relationship.  

The MATLAB function applies maximum likelihood estimation to a specified tail portion 

of the data, returning the parameters ξ and σ for a generalized Pareto distribution fit of the data. 

There is some ambiguity in where the tails of the data ought to begin (that is to say, the quantile 

cut-off for the start of the generalized Pareto distribution fit). Yamai and Yoshiba (2002b) address 

this by considering a fit using tails ranging from 10% of the data (90% tails) to 1% of the data 

(99% tails). The same data are generated for analysis in this study; however, due to the shorter 

period lengths being examined, difficulties arise in the size of the confidence intervals of the fits. 
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 Table 5-2 Summary of ARMA/GARCH orders used to fit crisis regime data. 

Index 
ARMA(r,m) GARCH(p,q) 

r m p q 

CAC 2 1 1 1 

CCMP 1 0 1 1 

UKX 3 1 1 1 

HIS 0 0 1 1 

RTY 1 0 1 1 

SPX 0 1 1 1 

AS51 1 0 1 1 

SPTSX 3 1 1 1 

SENSEX 1 0 1 1 

IBEX 3 1 1 1 

MEXBOL 0 1 1 1 

FMBKLCI 0 1 1 1 

TWSE 0 0 1 1 

Table 5-3: Summary of ARMA/GARCH orders used to fit normal regime data.  

Index 
ARMA(r,m) GARCH(p,q) 

r m p q 

CAC 1 0 1 1 

CCMP 0 0 1 1 

UKX 1 0 1 1 

HIS 1 0 1 1 

RTY 1 0 1 1 

SPX 1 0 1 1 

AS51 1 0 1 1 

SPTSX 0 0 1 1 

SENSEX 2 2 1 1 

IBEX 1 0 1 1 

MEXBOL 1 0 1 1 

FMBKLCI 1 0 1 1 

TWSE 0 0 1 1 
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5.5 Determining Tail Parameter ξ 

As mentioned above, tail parameter values were calculated for tails beginning at 90% 

(10% tails) out to tails beginning at 99% (1% tails). The specific values of ξ used in the analysis 

had to be selected from these. Two requirements were applied in this selection process. First, ξ 

values should be taken from the smallest tail possible in order to best reflect the behaviour of the 

most extreme returns in the distribution. Second, they should have reasonably tight confidence 

intervals since the confidence intervals were quite large relative to the size of each calculated ξ. 

The size of the confidence intervals calculated by MATLAB increases within a given 

index as the size of the tail decreases; this logically reflects the decreasing number of data points 

available for the estimation of progressively more extreme tails. To balance depth into the tail 

against confidence interval size, analysis of the complete data set was performed to determine 

which consecutive set of 5 tail sizes had the smallest variance, constrained by the requirement 

that MATLAB determine the tail parameter estimates to be statistically significant (such 

estimates’ confidence intervals were reported by the software as statistically irrelevant). The most 

consistent set of ξ estimates overall was found to be tails ranging from 4% to 8% (alternatively, 

the tails corresponding to cut-offs at 96% to 92%). The average of these 5 tails was then 

calculated and used to represent a best-estimate of the tail parameter for each index, within each 

regime. 

Note that the tail parameters calculated correspond to tail thickness that should be 

apparent in the data set beneath the 95% level. As such, 95% VaR should be able to capture at 

least some of the risk associated with thickness since the thicker tail would have an effect on 

returns at the 95th percentile. 
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6: Analysis and Findings 

In this section, the analysis methodology is outlined, and findings and important 

conclusions are presented. Expected shortfall is found to have less tail risk than VaR, and tail risk 

is found to be higher in the crisis regime than in the normal regime. 

6.1 Analysis Methodology 

The analysis methodology used here followed the logic outlined by Yamai and Yoshiba 

(2002b, 2005). Tail risk must exist in any data where an increase in the tail size, measured by an 

increase in the value if ξ from the generalized Pareto distribution fit, did not result in a 

corresponding increase in the VaR and/or ES risk measures. This analysis was performed on both 

the normal and crisis regimes, using log-return data and using the stochastic component of returns 

(epsilons remaining after an ARMA/GARCH process), and attempts were made to identify any 

patterns in the strength of identified patterns.  

In order to state definitely that tail risk is at least partially captured by a risk parameter 

(ES or VaR), it must be true that if ξ1 < ξ2, then ES1 < ES2 (or VaR1 < VaR2). If this 

relationship does not hold, then the increase in tail risk from ξ1 to ξ2 is not captured by the risk 

measure and it therefore has tail risk. The more times this rule is violated, the worse a risk 

measure is at capturing the risk associated with tail shape. This is the method used by Yamai and 

Yoshiba (2002b, 2005). Such violations are referred to as “tail exceptions” for the purposes of 

reporting below. 

6.2 Log-Return Data 

This analysis follows the methodology of Yamai and Yoshiba (2002b, 2005) by 

comparing log-returns data. 

6.2.1 Normal Regime 

Under the normal regime, expected shortfall appears to capture tail risk more effectively 

than value at risk: expected shortfall has 34 tail exceptions, while VaR has 39. Complete data can 

be found in Table 6.1. 
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Table 6-1: Value at risk and expected shortfall as a function of average tail (4% - 8%) ξ for normal regime 

log returns data. 

Log-Returns Normal Regime 

Index Left Tail ξ 95% VaR 95% ES 

CCMP -0.5576 1.4937 1.8394 

SPX -0.3244 1.0178 1.2838 

AS51 -0.2621 1.1151 1.5539 

SPTSX -0.1928 1.1368 1.5681 

HSI -0.1581 1.3405 1.8215 

RTY -0.1260 1.6970 2.0742 

CAC -0.0764 1.2066 1.7689 

IBEX -0.0294 0.9828 1.5681 

SENSEX -0.0279 1.9537 2.9611 

MEXBOL -0.0099 1.8282 2.4341 

UKX 0.0241 0.9955 1.4579 

FMBKLCI 0.1131 0.7626 1.0295 

TWSE 0.2215 1.4071 2.0858 

Exceptions 39 34 

 

There is an interesting trend in the data, observable in Figures 6.1 and 6.2: generally, 

indices with smaller tails are found in more developed economies (CCMP, SPX, AS51, SPTSX, 

HIS, RTY, CAC), and within this group, both VaR and ES increase very reliably with ξ. In 

indices with higher tail parameters (SENSEX, MEXBOL, UKX, FMBKLCI, TWSE), which 

generally are less-developed or emerging markets with the exception of UKX, the relationship 

between the risk parameter and the tail size is completely unreliable. It is unclear from the data 

how their emerging-market status affects these indices’ ξ, VaR and ES values, and what (if any) 

causal relationship exists between these factors. The correlation, however, is quite plain. 

Interestingly, Yamai and Yoshiba (2002b, 2005) observed similar effects on the tail parameters, 

expected shortfall and value at risk for emerging markets compared to mature markets in the 

Asian crisis of the late 1990s. 
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Figure 6-1 Expected shortfall as a function of average tail (4% - 8%) ξ for normal regime log returns data. 

 

 

Figure 6-2 Value at risk as a function of average tail (4% - 8%) ξ for normal regime log returns data. 
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6.2.2 Crisis Regime 

In the log-returns data, as expected, tail parameter ξ was generally found to be higher in 

the crisis regime than it was under the normal regime. This is consistent with the expectation that 

fatter tails are observed during periods of market stress. 

As in the normal regime, value at risk is found to have more tail risk than expected 

shortfall. ES has 36 tail exceptions, while VaR has 44 in total. For complete results, see Table 

6.2. 

 

Table 6-2 Value at risk and expected shortfall as a function of average tail (4% - 8%) ξ for crisis regime 

log returns data. 

Log-Returns Crisis Regime 

Index Left Tail ξ 95% VaR 95% ES 

MEXBOL -0.2676 2.9212 4.2590 

TWSE -0.1619 3.3476 4.1188 

CAC -0.0526 3.1268 4.5987 

IBEX 0.0451 2.8957 4.5145 

CCMP 0.0777 3.1373 4.6821 

SPX 0.0819 3.0010 4.7703 

RTY 0.0842 3.6521 5.4785 

SENSEX 0.0973 3.5314 4.9975 

UKX 0.1017 2.6252 4.2435 

AS51 0.1053 2.5373 3.8510 

SPTSX 0.1112 2.9925 4.6411 

HIS 0.1134 3.8143 5.3963 

FMBKLCI 0.3125 1.5842 2.5639 

Exceptions 44 36 

 

The pattern of smaller tails for mature markets and larger tails for emerging markets was 

not observed in this data set. The obvious pattern in Figures 6.3 and 6.4 is a very tight cluster of 

data with ξ = 0.08 to 0.11 where the VaR and ES were quite similar between the different 

securities (CCMP, SPX, RTY, SENSEX, UKX, AS51, SPTSX, HIS). A logical hypothesis is that 

this cluster exists due to the increased correlation between markets observed during the financial 

crisis (Grote, 2012), which should cause index return distributions’ shapes (ξ) and extreme losses 



 

 19 

(VaR and ES) to converge. Further specific study taking into account correlations between 

indices (using, for example, vector autoregressive techniques) might reveal interesting trends in 

the risk-measurement capabilities of ξ, value at risk and expected shortfall as functions of 

correlations. 

  



 

 20 

 

Figure 6-3 Expected shortfall as a function of average tail (4% - 8%) ξ for crisis regime log returns data. 

 

  

Figure 6-4 Value at risk as a function of average tail (4% - 8%) ξ for crisis regime log returns data. 
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6.3 ARMA/GARCH Data 

This analysis attempts to improve on the log-returns analysis by isolating the stochastic 

component of returns to attempt to identify any patterns there. This is important to isolate the 

truly random component of the crisis regime activity, so that the tail parameter ξ is actually a 

measurement of the stochastic process driving the data and not simply dependent on 

autocorrelations in the data or its volatility. 

6.3.1 Normal Regime 

As in the previous data sets, both VaR and ES have tail exceptions, indicating some tail 

risk in each. Expected shortfall has 31 and value at risk has 37, suggesting again that expected 

shortfall is better at capturing tail risk than value at risk. Table 6.3 shows the results. 

Table 6-3 Value at risk and expected shortfall as a function of average tail (4% - 8%) ξ for normal regime 

ARMA/GARCH data. 

ARMA/GARCH Normal Regime 

Index Left Tail ξ 95% VaR 95% ES 

SPTSX -0.3215 1.1368 1.5681 

CAC -0.2819 1.2066 1.7689 

SPX -0.2475 1.0178 1.2838 

AS51 -0.2363 1.1151 1.5539 

CCMP -0.2341 1.4937 1.8394 

MEXBOL -0.2222 1.8282 2.4341 

UKX -0.2089 0.9955 1.4579 

RTY -0.1710 1.6970 2.0742 

HSI -0.1233 1.3405 1.8215 

IBEX -0.0197 0.9828 1.5681 

TWSE 0.0750 1.4071 2.0858 

FMBKLCI 0.0887 0.7626 1.0295 

SENSEX 0.1136 1.9537 2.9611 

Exceptions 37 31 

 

As illustrated in Figures 6.5 and 6.6, the trend of lower tail risk in developed markets 

observed in Section 6.2.1 appears to hold true even on the ARMA/GARCH data set, for the most 

part. Here, data are generally well-distributed with very low tail parameters, but there is a cluster 
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of indices with much higher tail parameters: TWSE, FMBKCLI and SENSEX. This is may be 

suggestive of a geographical trend in the tail behaviour of the stochastic component of returns, 

since all of those are Asian indices. 

A direct comparison of the exceptions shows that all of the exceptions found in expected 

shortfall are also exceptions in VaR; as such, there is no individual instance of tail risk in 

expected shortfall when VaR does not have tail risk. There are, however, six instances of tail risk 

in VaR that are not observed in expected shortfall. This suggests that, in a normal regime, 

expected shortfall strictly outperforms VaR. Table 6-4 shows the point-by-point comparison of 

the exceptions in the two risk measures. 

 

 

Table 6-4 Point-by-point comparison of exceptions as found in VaR and/or ES under the normal regime. 

Text indicates what, if any, risk measures have exceptions in each comparison. 

  

AS51 CAC CCMP FMBKLCI HSI IBEX MEXBOL RTY SENSEX SPTSX SPX TWSE

CAC Both

CCMP None None

FMBKLCI Both Both Both

HSI None None Both Both

IBEX VaR Only Both Both Both Both

MEXBOL None None None Both Both Both

RTY None None None Both Both Both Both

SENSEX None None None None None None None None

SPTSX Both None None Both None Both None None None

SPX None Both None Both None VaR Only None None None Both

TWSE None None VaR Only Both None None Both VaR Only None None None

UKX Both Both Both Both None VaR Only Both None None Both VaR Only None

Normal Regime Exception Comparison
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Figure 6-5 Expected shortfall as a function of average tail (4% - 8%) ξ for normal regime ARMA/GARCH 

data. 

  

 

Figure 6-6 Value at risk as a function of average tail (4% - 8%) ξ for normal regime ARMA/GARCH data. 
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6.3.2 Crisis Regime 

The ARMA/GARCH crisis regime data suggest that neither expected shortfall nor value 

at risk is able to compensate effectively for the risk associated with bigger tails, as indicated by 

the fact that both ES and VaR have huge numbers of tail exceptions – far larger than in any other 

data set. ES has 49 tail exceptions while VaR has 51, suggesting slightly worse capture of tail risk 

by VaR – however, both risk measures clearly are unable to capture differences in tail risk under 

crisis conditions. Results for this analysis can be found in Table 6.5. 

Table 6-5 Value at risk and expected shortfall as a function of average tail (4% - 8%) ξ for crisis regime 

ARMA/GARCH data. 

ARMA/GARCH Crisis Regime 

Index Left Tail ξ 95% VaR 95% ES 

RTY -0.3831 3.6521 5.4785 

SPTSX -0.3542 2.9925 4.6411 

TWSE -0.3050 3.3476 4.1188 

MEXBOL -0.3031 2.9212 4.2590 

SPX -0.2145 3.0010 4.7703 

SENSEX -0.1343 3.5314 4.9975 

UKX -0.1126 2.6252 4.2435 

HSI -0.0795 3.8143 5.3963 

CCMP -0.0633 3.1373 4.6821 

AS51 -0.0462 2.5373 3.8510 

FMBKLCI 0.1441 1.5842 2.5639 

CAC 0.1833 3.1268 4.5987 

IBEX 0.2610 2.8957 4.5145 

Exceptions 51 49 

 

The dramatic increase in the number of tail exceptions in the purely stochastic component 

compared to the log-returns (Section 6.2.2) is surprising. The magnitudes of the tail parameters 

themselves are far smaller on the ARMA/GARCH data. This suggests that much of the shape of 

the tails in the crisis data can be modelled by data and variance serial correlation, and is not 

merely random movement.  
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Furthermore, the dense clump of data points observed in the crisis regime using log-

returns (Figures 6.3 and 6.4) is not apparent in the ARMA/GARCH data (Figures 6.7 and 6.8). 

This is an extremely interesting result, and suggests that the increases in correlation in financial 

crises can be modelled alternatively as serial correlation of daily returns and variances. 

Point-by-point comparison of the tail risk exceptions is less predictable than what is 

found in the normal regime. In the crisis regime, five instances of tail risk that are not observed in 

VaR are found in expected shortfall, while seven exceptions from VaR are not found in expected 

shortfall. This indicates that expected shortfall is better on average, with two fewer overall 

exceptions. However, the strict improvement of expected shortfall over VaR observed in the 

normal regime is not replicated in the crisis regime data. In some data points, VaR performs 

better than expected shortfall and vice versa. Detailed comparisons can be found in Table 6-6. 

Table 6-6 Point-by-point comparison of exceptions as found in VaR and/or ES under the crisis regime. Text 

indicates what, if any, risk measures have exceptions in each comparison. 

 
  

AS51 CAC CCMP FMBKLCI HSI IBEX MEXBOL RTY SENSEX SPTSX SPX TWSE

CAC None

CCMP Both Both

FMBKLCI Both None Both

HSI Both Both Both Both

IBEX None Both Both None Both

MEXBOL Both None None Both None VaR Only

RTY Both Both Both Both ES Only Both Both

SENSEX Both Both Both Both None Both None Both

SPTSX Both ES Only None Both None Both Both Both None

SPX Both ES Only ES Only Both None Both None Both None None

TWSE Both VaR Only VaR Only Both None VaR Only VaR Only Both None ES Only VaR Only

UKX Both None None Both None None Both Both Both Both Both VaR Only

Crisis Regime Exception Comparison
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Figure 6-7 Expected shortfall as a function of average tail (4% - 8%) ξ for crisis regime ARMA/GARCH 

data. 

 

 

 

Figure 6-8 Value at risk as a function of average tail (4% - 8%) ξ for crisis regime ARMA/GARCH data.  
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6.4 Relationships and Trends 

The analysis performed allows comparisons along two primary vectors: between the 

normal and crisis regimes; and between serially correlated and uncorrelated time series (log-

returns vs. ARMA/GARCH epsilons). Several core relationships bear emphasis here: 

1. Expected shortfall has less tail risk than value at risk. All data confirm that, under 

any regime and regardless of correction for autocorrelation, expected shortfall 

has fewer tail exceptions than value at risk. 

2. Tail risk increases in the crisis regime compared to the normal regime. Both 

expected shortfall and value at risk exhibit more tail exceptions in the crisis 

regime than in the normal regime, suggesting that their abilities to capture tail 

risk are lower in a crisis regime. Furthermore, the strict improvement of expected 

shortfall over VaR observed in the normal regime disappears in crisis. 

3. Neither expected shortfall nor value at risk fully captures tail risk in any 

situation. Since tail exceptions were observed in all data sets, both expected 

shortfall and value at risk have significant tail risk, despite expected shortfall’s 

superior relative performance. This is an important finding because it highlights 

the fact that neither risk measure is perfect. 

4. Adjustment for autocorrelation in the data severely impedes tail risk capture in 

the crisis regime. Furthermore, the improvement of expected shortfall over value 

at risk under the crisis regime is extremely small when the autocorrelation-

adjusted ARMA/GARCH data are used. 

6.5 Other Interesting Results 

While Section 6.4 summarizes the results pertaining scope of this study, several other 

interesting trends in the data may be worthy of future study. 

6.5.1 Emerging vs. Mature Markets 

The size of the tail parameter ξ appears to be significantly larger in emerging markets 

compared to in developed markets, without a significant corresponding increase in the risk 

measures. Although the trend is most obvious in the normal-regime log-returns data, it is also 

present to some extent in the normal-regime ARMA/GARCH data (see Tables 6.1 and 6.3). It 

would be interesting to examine whether or not the apparent extra tail risk is priced into emerging 
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markets differently, or whether or not an increase in the number of both mature and emerging 

markets would validate this apparent trend. 

6.5.2 Correlations in Crisis Regimes 

This is most pronounced in Figures 6.3 and 6.4, where 9 of the 13 indices all have very 

tightly-grouped ξ (0.08 to 0.11), ES (3.9 to 5.5) and VaR (2.5 to 3.8) values. This cluster is 

consistent with the observation that returns converge in periods of stress (Grote, 2012). 

The clustering effect appeared to be removed by the application of ARMA/GARCH to 

the data. However, it would be interesting to perform a multivariate analysis to see how the 

correlations between the indices vary through the onset of the crisis, and to see if the data would 

behave significantly differently when subjected to such an analysis. The ability of 

ARMA/GARCH to effectively model an apparent correlation phenomenon is noteworthy. 

Relating back to section 6.5.1, the data not in the cluster in Figures 6.3 and 6.4 appears to 

be disproportionately made up of emerging markets (MEXBOL, TWSE and FMBKCLI). The 

inclusion of a broader array of emerging markets would be interesting here – for example, 

validation of this trend might suggest that the lower correlation observed in the crisis regime may 

be the result of less integration with developed markets. 
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7: Summary 

This study compared the effectiveness of value at risk and expected shortfall in terms of 

their ability to capture tail risk in crisis and normal regimes. The data used were daily index 

values over a selected time period in each regime. Value at risk and expected shortfall were 

determined empirically from the data. Tail parameters were determined by applying extreme 

value theory and fitting the data to generalized Pareto distributions using maximum likelihood 

methods. Tail risk quantification followed the univariate method employed by Yamai and 

Yoshiba (2002b, 2005). 

 We find that, while neither risk measure captured tail risk perfectly in any 

regime, expected shortfall was found to have less tail risk than value at risk. Furthermore, both 

risk measures were found to be less effective at capturing tail risk in a crisis regime compared to a 

normal regime. They were particularly ineffective at capturing the tail risk in the stochastic 

component in a crisis regime, suggesting that unpredictable losses under such conditions cannot 

be effectively quantified by either risk measure. 

 The superior performance of expected shortfall indicates that it would be sensible 

for the financial industry and regulators to adapt risk measurement practices to work with 

expected shortfall instead of VaR. This will also require adaptation to the limitations of expected 

shortfall, such as the need for larger data sets. Furthermore, risk managers must be conscious of 

the fact that both risk measures cannot be relied upon to capture extreme tail behaviour, and 

expected shortfall must be used in conjunction with stress-testing to ensure that risks under such 

conditions are anticipated.  
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