
PATH SELECTION PROBLEM

IN NETWORK DESIGN

by

Xueying Shen

M.Sc, Dalian University of Technology, 2011

B.Sc, Dalian University of Technology, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

Department of Mathematics

Faculty of Science

c© Xueying Shen 2014

SIMON FRASER UNIVERSITY

Spring 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Xueying Shen

Degree: Master of Science

Title of Thesis: Path Selection Problem in Network Design

Examining Committee: Dr. Tamon Stephen

Chair

Dr. Abraham Punnen,

Professor, Supervisor

Dr. Snezana Mitrovic-Minic,

Adjunct Professor, External Examiner

Dr. Binay Bhattacharya,

Professor, Computer Science

Simon Fraser University

Supervisory Committee Member

Date Approved: Apr. 10, 2014

ii

Partial Copyright Licence

iii

Abstract

In this thesis we study several models for the Path Selection Problem associated with the

construction of fibre optic networks. Four different variations of the problem are studied:

Greedy Path Selection Problem (GPSP), Benevolent Path Selection Problem (BPSP), Dis-

counted Path Selection Problem (DPSP) and Path Selection with capacity expansion (EP-

SP). All the variations are NP-hard and polynomially solvable special cases are identified for

GPSP and BPSP. We also present detailed complexity analysis and integer programming

formulations for these problems. Heuristic algorithms including greedy algorithm, semi-

greedy algorithm and multi-start local search algorithm are developed for each problem.

Extensive computational results are provided with the algorithm performance analysis. We

also present some future directions for research.

iv

Acknowledgments

I would like to thank my supervisor Dr. Abraham Punnen, you guide me through my

research with tremendous patience and profound knowledge. I cannot express enough how

grateful I am for being your student. Without your help and encouragement, I will never

be who I am.

My deep gratitude to the thesis committee member Dr. Binay Bhattacharya and Dr.

Snezana Mitrovic-Minic, for your precious time and valuable comments on this work. Many

thanks to Dr. Zhaosong Lu, Dr. Tamon Stephen, Dr. Randall Pyke and Dr. Natalia

Kouzniak for your continuous help.

I would like to express my appreciation to all the graduate fellows: Yong Zhang, Annie

Zhang, Mahdieh Malekian, Piyashat Sripratak, Timothy James Yusun, Pooja Pandey and

Xiaorui Li. Special thanks to Krishna Teja Malladi, Daniel Karapetyan and Brad Woods.

Finally, I would like to express my sincere gratitude to my parents and friends, you are

the meaning of my life.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Multi-dimensional Knapsack Problem . 2

1.2 Unsplittable Flow Problem . 3

1.3 Column Restricted Packing Integer Programming 4

1.4 Set Packing Problem . 5

1.5 Practical motivation for Path Selection Problem 6

2 Greedy PSP 8

2.1 Integer programming formulation . 9

2.2 Complexity analysis . 15

2.3 Polynomially and pseudo polynomially solvable cases 19

2.4 Heuristic algorithms description . 29

2.4.1 Greedy algorithm . 29

vi

2.4.2 Semi-greedy algorithm . 31

2.4.3 Multi-start local search algorithm . 32

2.5 Computational results and analysis . 33

2.5.1 Instance generator and test bed description 34

2.5.2 Experimental analysis . 44

3 Benevolent PSP 54

3.1 BPSP formulation . 54

3.2 BPSP complexity and special case study . 59

3.3 Heuristic algorithms for BPSP . 67

3.3.1 Greedy algorithm . 67

3.3.2 Semi-greedy algorithm . 68

3.3.3 Multi-start local search algorithm . 69

3.4 Computational results and analysis . 70

3.5 A variation of BPSP . 75

4 Discounted PSP 77

4.1 “A priori” discounted PSP model . 77

4.2 Heuristic algorithms for DPSP . 84

4.3 Computational results and analysis . 87

4.4 Extension of DPSP . 97

5 PSP with Capacity Expansion 99

5.1 EPSP model . 99

5.2 Heuristic algorithm for EPSP . 102

5.3 Computational results and analysis . 106

6 Conclusion 110

Appendix A Computational Results for GPSP: other types 113

Bibliography 127

vii

List of Tables

2.1 GPSP greedy algorithm utility ratios . 29

2.2 GPSP instance generator parameters comparison 38

2.3 GPSP - the results of CPLEX on Test bed P: time limit 42

2.4 GPSP greedy algorithm parameter comparison: utility ratio 46

2.5 GPSP semi-greedy algorithm parameter comparison: lCand 46

2.6 GPSP multi-start local search algorithm parameter comparison: iLim 47

2.7 GPSP - the results of CPLEX on Test bed P 48

2.8 GPSP - the results of greedy algorithm on Test bed P 49

2.9 GPSP - the results of semi-greedy algorithm on Test bed P 50

2.10 GPSP - the results of multi-start local search algorithm on Test bed P 51

2.11 GPSP - the summary results of algorithms on Test bed P 52

3.1 BPSP instance generator parameters comparison 71

3.2 BPSP - the results of CPLEX on test bed . 72

3.3 BPSP semi-greedy algorithm parameter comparison: lCand 73

3.4 BPSP multi-start local search algorithm comparison: iLim 75

3.5 BPSP - the summary results of algorithms on test bed 75

4.1 DPSP discounted edge cost function φi(α) comparison 82

4.2 DPSP - the results of CPLEX on Test bed 1 88

4.3 DPSP greedy algorithm utility ratio comparison 89

4.4 DPSP semi-greedy algorithm parameter comparison: lCand 89

4.5 DPSP multi-start local search algorithm parameter comparison: iLim 90

4.6 DPSP solutions on Test bed 2 – Value . 92

4.7 DPSP solutions on Test bed 2 – Deviation . 93

viii

4.8 DPSP - the results of greedy algorithm on Test bed 2 94

4.9 DPSP - the results of semi-greedy algorithm on Test bed 2 95

4.10 DPSP - the results of multi-start local search algorithm on Test bed 2 96

4.11 DPSP - the summary results of algorithms on Testbed 2: n = 1000 97

4.12 DPSP - the summary results of algorithms on Testbed 2: n = 2000 97

4.13 DPSP - the summary results of algorithms on Testbed 2: n = 5000 97

5.1 EPSP - the result of CPLEX on test bed . 107

5.2 EPSP heuristic algorithms comparison . 109

A.1 GPSP - the results of CPLEX on Test bed W 113

A.2 GPSP - the results of CPLEX on Test bed R 114

A.3 GPSP - the results of CPLEX on Test bed U 115

A.4 GPSP - the results of CPLEX on Test bed S 116

A.5 GPSP - the results of CPLEX on Test bed N 117

A.6 GPSP - the results of greedy algorithm on Test bed W 118

A.7 GPSP - the results of greedy algorithm on Test bed R 118

A.8 GPSP - the results of greedy algorithm on Test bed U 119

A.9 GPSP - the results of greedy algorithm on Test bed S 119

A.10 GPSP - the results of greedy algorithm on Test bed N 120

A.11 GPSP - the results of semi-greedy algorithm on Test bed W 120

A.12 GPSP - the results of semi-greedy algorithm on Test bed R 121

A.13 GPSP - the results of semi-greedy algorithm on Test bed U 121

A.14 GPSP - the results of semi-greedy algorithm on Test bed S 122

A.15 GPSP - the results of semi-greedy algorithm on Test bed N 122

A.16 GPSP - the results of multi-start local search algorithm on Test bed W . . . 123

A.17 GPSP - the results of multi-start local search algorithm on Test bed R 123

A.18 GPSP - the results of multi-start local search algorithm on Test bed U 124

A.19 GPSP - the results of multi-start local search algorithm on Test bed S 124

A.20 GPSP - the results of multi-start local search algorithm on Test bed N 125

A.21 GPSP - the summary results of algorithms on Test bed W 125

A.22 GPSP - the summary results of algorithms on Test bed R 125

A.23 GPSP - the summary results of algorithms on Test bed U 126

A.24 GPSP - the summary results of algorithms on Test bed S 126

ix

A.25 GPSP - the summary results of algorithms on Test bed N 126

x

List of Figures

2.1 Example of strict inequality in Theorem 2.1.1 13

2.2 Construction GPSP from CMDKP . 17

2.3 Example of GNFP transformed from GPSP 22

2.4 GPSP CPLEX-200s solving process observation on P instance 39

2.5 GPSP CPLEX-200s solving process observation on W instance 40

2.6 GPSP CPLEX-200s solving process observation on R instance 40

2.7 GPSP CPLEX time limit comparison on Test bed P n = 1000 43

2.8 GPSP CPLEX time limit comparison on Test bed P n = 2000 44

2.9 GPSP CPLEX time limit comparison on Test bed P n = 5000 44

2.10 GPSP heuristic algorithms comparison on Test bed P 52

3.1 Construction BPSP from CCP . 60

3.2 BPSP semi-greedy algorithm parameter comparison: lCand 74

4.1 Discounted edge cost function: concave . 80

4.2 Discounted edge cost function: convex . 80

xi

Chapter 1

Introduction

The primary focus of this thesis is to develop efficient heuristic algorithms for the Path

Selection Problem (PSP) motivated by fibre optic network design. Let G = (V,E) be

a given graph, where the edge set E = {e1, e2, . . . , em} constitutes the union of n paths

F = {P1, P2, . . . , Pn}. For each edge ei ∈ E, a capacity bi is prescribed. Also, for each edge

ei, aij is the fraction of the capacity used by path Pj from the capacity bi of ei, which is

nonzero only when ei ∈ Pj . Let f : 2F → R be a real valued function that measures the

value of a subset of paths. Then PSP is to choose a subset S of paths in F such that f(S) is

maximized while the paths in S obey appropriate capacity restrictions; i.e.,
∑

Pj∈S aij ≤ bi
for all ei ∈ E. Depending on the nature of f and/or additional restrictions, we have different

variations of PSP. In particular, the variations that we consider are Greedy Path Selection

Problem (GPSP), Benevolent Path Selection Problem (BPSP), Discounted Path Selection

Problem (DPSP) and Path Selection with capacity expansion (EPSP). Formal definitions of

these variations will be discussed in later chapters. PSP can be formulated as the following

0-1 integer programming problem:

Maximize f(S(x))

Subject to: ∑
Pj∈F

aijxj ≤ bi ∀ei ∈ E

xj ∈ {0, 1} ∀Pj ∈ F

(1.1)

where S(x) = {Pj ∈ F : xj 6= 0}.
Throughout this thesis, we assume that for path Pj the capacity usage aij are equal for

1

CHAPTER 1. INTRODUCTION 2

all the edges in it and hence

aij =

aj if ei ∈ Pj ,

0 otherwise.

Let cj be the value of path Pj . Then if we choose f(S) =
∑

Pj∈S cj in (1.1), we get an

integer programming formulation of the GPSP. More details of the 0-1 integer programming

formulations of GPSP will be discussed in Chapter 2. Let us now review some well studied

problems closely related to GPSP.

1.1 Multi-dimensional Knapsack Problem

The Multi-dimensional Knapsack Problem (MDKP) [61] is the special 0-1 integer program-

ming problem

Maximize
∑
j∈N

cjxj

Subject to: ∑
j∈N

aijxj ≤ bi ∀i ∈M

xj ∈ {0, 1} ∀j ∈ N
Where aij ≥ 0. When aij = aj for aij 6= 0, we call the resulting MDKP a Column Restricted

Multi-dimensional Knapsack Problem (CMDKP).

We will show that CMDKP has the same form as the integer programming formulation

of GPSP. Thus, GPSP is a special case of MDKP and can be solved using any algorithm to

solve MDKP. However, exploiting the special structure of GPSP, more efficient algorithms

may be possible and exploring this possibility is part of the discussions in Chapter 2.

MDKP is strongly NP-hard and it is NP-hard to obtain a fully polynomial approximation

algorithm for the problem [32, 45]. However, polynomial time ε-approximation algorithms

are available for this problem[15, 29, 50]. Exact algorithms for MDKP have been studied

since 1960s based on dynamic programming, branch and bound or other enumeration tech-

niques [33, 11, 10]. Heuristic algorithms for MDKP have been studied by various authors

using different techniques such as greedy type algorithms [56], linear programming relax-

ation (LP relaxation) based algorithms [39], tabu search heuristics [22], genetic algorithm

[20], simulated annealing heuristics [25] and others [34, 35]. For a comprehensive literature

review on MDKP we refer to [20, 26, 40, 27].

CHAPTER 1. INTRODUCTION 3

1.2 Unsplittable Flow Problem

Another problem closely related to PSP (in particular, GPSP) is the Unsplittable Flow

Problem (UFP) [6]. In UFP, we are given a graph G = (V,E) with a capacity bi defined on

each edge ei ∈ E and a set of requests R = {R1, R2, . . . , Rn}. Each request Rj represents a

combination {sj , tj , aj , cj}, where (sj , tj) is a pair of nodes in V , aj is the flow demand and

cj is the profit realized. A request Rj is routed if we send a flow aj along a single path in G

from sj to tj , which brings profit cj . The objective of UFP is to route as many requests as

possible simultaneously so that the total profit is maximized while edge capacity restrictions

are satisfied by the flow.

It can be verified that GPSP is essentially the UFP when the underlying graph is a

tree. In this case, there is a unique path Pj connecting each node pair (sj , tj) and choosing

a path to send flow is not an issue for the UFP on a tree. Therefore the objective of

UFP becomes selecting a subset of paths such that the total profit is maximized without

violating the capacity constraints. This problem is precisely a GPSP. Hence the algorithmic

and complexity results available for UFP on a tree graph (UFP-T) are applicable for GPSP.

In the following paragraph, we discuss some of the results for UFP-T and its special case

UFP on a path graph (UFP-P).

When the underlying path is a single edge where each request contains identical copies

of node pair and different profits and flow demands, then UFP-P reduces to the knapsack

problem [51]. This implies that the UFP-P (hence the GPSP) is weakly NP-hard. Chrobak

[19] proved that UFP-P is in fact strongly NP-hard even for UFP-P with bi = b0 for ∀i,
cj = c0 for ∀j.

Note that, for a maximization problem, an algorithm A is called an ε-approximation

algorithm if
z∗(P)

zA(P)
≤ ε

holds for every instance P of the problem, where z∗(P) and zA(P) respectively are the

optimal objective function value and the objective function value of the solution obtained

by algorithm A. Phillips [54] presented the first constant factor (78.51) approximation

algorithm for UFP-P with uniform capacity (i.e. aj = a0 for all j). The approximation ratio

was improved by Bar-Noy [5] to 3, and further improved to 2 + ε by Calinescu et al. [12].

For UFP-P with no-bottleneck assumption (NBA) where one assumes max aj ≤ min bi, the

first constant factor approximation algorithm was proposed by Chakrabarti et al. [13]. This

CHAPTER 1. INTRODUCTION 4

ratio was improved to 2 + ε in 2003 [18]. A pseudo polynomial approximation algorithm

for UFP-P was given in [3]. Bansal et al. [4] gave the first polynomial time O(log n)-

approximation algorithm for UFP-P, and Bonsma et al. [9] proposed the first polynomial

time constant factor approximation algorithm for the problem yielding an approximation

ratio of 7 + ε where ε > 0.

UFP-T is a generalization of UFP-P. By using randomized rounding, Chekuri et al. [17]

proposed a constant factor approximation algorithm for UFP-T with NBA. Inspired by [4],

Chekuri et al. [16] proposed poly-logarithmic approximation algorithms with approximation

ratio log l for UFP-T with uniform profit and approximation ratio O(lmin{log l, log n}) for

the weighted case where l = |V |.
Compard to a fairly large volume of works on approximation algorithms, study of heuris-

tic algorithms for UFP and experimental analysis of such algorithms are relatively small.

Based on the relationship between GPSP and UFP-T, the work presented in this thesis is

also a contribution to the progress in solving some versions of UFP by heuristic algorithms.

1.3 Column Restricted Packing Integer Programming

Another problem closely related to GPSP is the Column Restricted Packing Integer Pro-

gramming (CPIP) [43, 41]. Given A = (aij) ∈ [0, 1]m×n, b ∈ [1,∞)m and c ∈ [0, 1]n, a

Packing Integer Programming (PIP) is defined as follows:

Maximize cTx

Subject to:

Ax ≤ b

x ∈ Zn+

(PIP)

If all the non-zero entries in each column j have the same value aj in PIP, we get CPIP.

GPSP is essentially CPIP with binary variables and all involving coefficients are allowed to

take any nonnegative value.

CPIP was first studied by Kolliopoulos and Stein [43, 41] when addressing Disjoint Edge

Paths Problem (DEPP), which is a special case of UFP. A CPIP was constructed in their

algorithm for DEPP to transform the fractional single-path routing into a final feasible

approximate solution. They developed an approximation algorithm for CPIP. Baveja and

Srinivasan [7] also studied CPIP and obtained results similar to that of [41] independently

CHAPTER 1. INTRODUCTION 5

by using a rounding scheme. A δ-bounded CPIP is a CPIP satisfying maxj aij ≤ (1 − δ)bi
where δ ∈ (0, 1). Chekuri et al. [16] proved that the integrality gap of a δ-bounded CPIP

is at most O(log(1/δ)/δ3) times the integral gap of its unit-demand version by using the

method proposed in [41], where the unit-demand version is the CPIP with all right hand

side values are 1.

As the duality relation between set packing problem and set covering problem, re-

searchers also studied the corresponding Column Restricted Covering Integer Programming

(CCIP) [57, 42, 5, 59, 44, 14].

1.4 Set Packing Problem

So far we observed that GPSP is a special case of MKDP and CPIP but overlaps with UFP.

Also we point out that GPSP is a generalization of another well studied problem, the Set

Packing Problem (SPP). Given a finite set U and a family of subsets F of U , a weight is

assigned to each element in F . The SPP is to find a subset C ⊆ F with maximum total

weights such that all the elements of C are pairwise disjoint, i.e., the intersection of any

elements of C is empty. SPP can be formulated as an integer programming problem:

Maximize
∑
j∈N

cjxj

Subject to: ∑
j∈Ni

xj ≤ 1 ∀i ∈M

xj ∈ {0, 1} ∀j ∈ N

If aij ∈ {0, 1} and bi = 1, the GPSP reduces to SPP. SPP is one of the first studied

NP-hard problems [31]. There is no constant factor polynomial time approximation algo-

rithm available for SPP. The best known polynomial time approximation algorithm has a

performance ratio O(
√
n) [48, 37]. A branch and cut algorithm proposed by Padberg [53]

is one of the best performing exact algorithm for the problem. Alidaee et al. [2] formulated

a SPP as an unconstrained binary quadratic programming. For other exact algorithms for

SPP we refer to [62, 21, 46].

Although there are a considerable amount of works devoted to exact algorithm for SPP,

we found relatively few heuristics for the problem. Lou and Goh [47] modeled the brokering

problem as an SPP and an iterative greedy approximation algorithm was proposed to solve

CHAPTER 1. INTRODUCTION 6

it. Greedy randomized adaptive search procedure (GRASP) was applied to SPP by Delorme

et al. [24]. The same researchers [30] also developed an ant colony optimization procedure

to solve SPP. This algorithm was then used to solve a railway infrastructure management

problem. Guo et al. [36] studied a bidding problem which was formulated as an SPP and

solved it using simulating annealing algorithm. Merel et al. [52] proposed a hybrid algorithm

combining Column Generation and ant colony optimization.

1.5 Practical motivation for Path Selection Problem

GPSP being generalization and/or specialization of some well studied optimization problem,

its theoretical importance is explicit. However, our study of GPSP and other variations of

PSP are primarily motivated by a practical application. The PSP appears in the fibre

optic network design. We present below some details taken from [55] to illustrate practical

implications of the model studied in this thesis.

a2b fibre Inc. [55] provides fibre optic network planning, design, construction and man-

agement. Revenue for the company includes both revenue generated by construction and

expansion of the network and operation fee paid by the clients. Hence, the goal of the

company is to build new fibre optic network connections for clients and enlarge the net-

work it manages. To maximize revenue, the company introduced a strategy that clients

who share the network segments share the construction cost to some extent, and it is called

Participatory fibre Optic Network PFONTM (Trade mark of a2b fibre Inc.) model.

Typically, a client is interested in building a fibre optic link between an origin-destination

pair (O-D pair) and the company wishes to provide an optimal quote for the work. It is

important for the company to provide an optimal quote, otherwise the client may not give

the order or may choose a competitor. An O-D pair connection can be viewed as a path

linking the origin and destination node in a network while passing through various specified

intermediate nodes. The portion of path between two consecutive nodes is called an edge

or a segment. For each segment, two crucial parameters are identified which are capacity

and cost. Due to different structural properties of these segments, the capacities and costs

varies. For example, they may need to be constructed afresh or there may exist unused

water pipes or other structures that could sometimes be used as conduits. The company

actively manages all such information in a database. By using the available information,

a database manager will determine the “best path” to connect the O-D pair. Hence given

CHAPTER 1. INTRODUCTION 7

an O-D pair, choosing a path connecting them is not an issue for the company. Also the

cost and the capacity for each edge in the path are known. A path belonging to a client

connecting an O-D pair may share some edges with the other clients who (partially) own it.

This makes the capacity restriction an important consideration. The construction cost of a

path is the summation of its edge costs, which is called the nominal cost. The quote for a

path is based on its nominal cost but not necessarily equal to it. Path selection becomes an

issue when multiple paths are to be selected in present quote.

We consider Path Selection Problem from different perspectives. For example, the sim-

plest scenario is that setting the quote for each path as its nominal cost. Then the problem

becomes selecting clients so that the revenue is maximized and all the capacity constraints

on edges are satisfied. This is the greedy path selection model. Other variations include dis-

count based models, capacity expansion, or shared costs. Details of these will be discussed

in the chapters to follow.

Chapter 2

Greedy PSP

Let G = (V,E) be a graph, where the edge set E = {e1, e2, . . . , em} is the union of n given

paths P1, P2, . . . , Pn in G. Note that two or more paths may share some common edges. For

each edge ei ∈ E, a cost wi and a capacity bi are prescribed. Also aij is the fraction of the

capacity bi of ei used by path Pj , which is only nonzero when ei ∈ Pj . For each path Pj ,

the nominal path cost cj =
∑

ei∈Pj
wi. Then the Greedy Path Selection Problem (GPSP) is

to choose a subset of paths S such that
∑

Pj∈S cj is maximized while the paths in S obey

appropriate capacity restrictions; i.e.,
∑

Pj∈S aij ≤ bi for all ei ∈ E.

Let the capacity of a path Pj be aj . Thus we assume that aij = aj for each ei ∈ Pj .
This assumption is consistent with the real life problem that initiated this study. Without

loss of generality, we assume

aj ≤ bi if ei ∈ Pj

Otherwise, the path Pj is redundant and can never be selected. Also, we assume that all

the associated data are nonnegative which is consistent with the underlying application of

the model.

According to the fibre optic network design problem, we call it Greedy Path Selection

Problem due to the fact that the nominal cost of a path is charged to each client even though

some of its segments (edges) may be shared by more than one client.

8

CHAPTER 2. GREEDY PSP 9

2.1 Integer programming formulation

Given a graph G = (V,E) with the edge set E = {e1, e2, . . . , em} and n given paths

P1, P2, . . . , Pn in G, we introduce following notations which are used throughout this thesis:

• M = {1, 2, . . . ,m}

• N = {1, 2, . . . , n}

• Ni = {j : ei ∈ Pj} for i ∈M

• Mj = {i : ei ∈ Pj} for j ∈ N

• L =
∑

j∈N |Mj |

• E = B|N1| × B|N2| × . . .× B|Nm|

We now formulate GPSP as an integer programming problem. For each j ∈ N , define

xj =

1 if path Pj is selected,

0 otherwise.
(2.1)

Then it follows that the capacity restriction for each edge can be formulated as∑
j∈Ni

ajxj ≤ bi i ∈M (2.2)

We call constraints (2.2) as edge capacity constraints. Therefore, GPSP can be formulated

as CMDKP with n variables and m constraints:

GPSP1: Maximize f1(x) =
∑
j∈N

cjxj

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

xj ∈ {0, 1} ∀j ∈ N

where

cj =
∑
i∈Mj

wi. (2.3)

CHAPTER 2. GREEDY PSP 10

Given a matrix A, let aij represent its (i, j)th entry. Consider the m× n matrix A defined

as

aij =

aj if i ∈Mj

0 otherwise
(2.4)

Also let b = (b1, b2, . . . , bm)T , cT = (c1, c2, . . . , cn), xT = (x1, x2, . . . , xn). Then the matrix

form of the above CMDKP formulation can be written as

Maximize cTx

Subject to:

Ax ≤ b

x ∈ {0, 1}n

(2.5)

and A is called the coefficient matrix. The formulation GPSP1 allows us to solve a GPSP

of reasonable size using general purpose integer programming solvers such as CPLEX.

In the previous model, the decision variables represent paths. Let us now modify the

model using variables representing edges. This formulation is useful in applications where

additional constraints are added in relation to edges.

For i ∈M , j ∈ Ni, define

yij =

1 if edge ei is selected in path j

0 otherwise.
(2.6)

If a path Pj is selected then all its edges should be selected as well, i.e., yij = 1 for i ∈Mj .

This can be guaranteed by the following constraints∑
i∈Mj

yij = |Mj |xj ∀j ∈ N (2.7)

We call constraints (2.7) the path selection constraints. Moreover, we can even relax the

integrality restriction on yij into

0 ≤ yij ≤ 1 (2.8)

This is because when xj = 0, yij = 0 for i ∈Mj due to nonnegativity of yij and constraints

(2.7). When xj = 1, there are yij = 1, j ∈Mj due to the cardinality of the left side of (2.7)

CHAPTER 2. GREEDY PSP 11

is exactly |Mj |. As for edge capacity constraints, an edge ei is used by path Pj if and only

if yij = 1, and the corresponding capacity usage will be aj . Hence we have∑
j∈Ni

ajyij ≤ bi ∀i ∈M (2.9)

Thus we have another formulation of GPSP following as a mixed integer programming

problem:

GPSP2: Maximize f2(y) =
∑
j∈N

∑
i∈Mj

wiyij (2.10)

Subject to: ∑
j∈Ni

ajyij ≤ bi ∀i ∈M (2.11)

∑
i∈Mj

yij = |Mj |xj ∀j ∈ N (2.12)

xj ∈ {0, 1} ∀j ∈ N (2.13)

0 ≤ yij ≤ 1 ∀i ∈M, j ∈ Ni (2.14)

The formulation GPSP2 is a variation of the formulation given in [55]. Note that L denotes

the number of yij variables and n ≤ L ≤ mn. Thus GPSP2 has n+ L variables and n+m

constraints without considering the bound restrictions on variables.

Note that the path selection constraints are equivalent to

yij = xj j ∈ N, i ∈Mj (2.15)

Substituting (2.15) for (2.12) in GPSP2 leads to our next mixed integer programming for-

mulation:

GPSP3: Maximize f2(y) =
∑
j∈N

∑
i∈Mj

wiyij (2.16)

Subject to: ∑
j∈Ni

ajyij ≤ bi ∀i ∈M (2.17)

yij = xj j ∈ N, i ∈Mj (2.18)

xj ∈ {0, 1} ∀j ∈ N (2.19)

0 ≤ yij ≤ 1 ∀j ∈ N, i ∈Mj (2.20)

CHAPTER 2. GREEDY PSP 12

which has n+ L variables and m+ L constraints.

We introduce notation 〈·, ·〉 to represent a pair of elements which may have different

dimensions. Let x0 be an optimal solution to the LP relaxation of GPSP1, 〈x∗, y∗〉 be an

optimal solution to the LP relaxation of GPSP2 where x ∈ Bn and y ∈ E, 〈x̄|ȳ〉 be an

optimal solution to the LP relaxation of GPSP3 where x̄ ∈ Bn and ȳ ∈ E.

Theorem 2.1.1. f1(x
0) = f2(ȳ) ≤ f2(y∗).

Proof. First we will show that the equality f1(x
0) = f2(ȳ) holds. Given x0, define y0 = (y0ij)

as

y0ij =

x0j i ∈Mj

0 otherwise.
j ∈ N

Then 〈x0, y0〉 is a feasible solution to the LP relaxation of GPSP3. First path selection

constraints are satisfied by construction of y0 and edge capacity constraints are satisfied

due to feasibility of x0 to the LP relaxation of GPSP1. Moreover,

f2(y
0) =

∑
j∈N

∑
i∈Mj

wiy
0
ij =

∑
j∈N

∑
i∈Mj

wix
0
j =

∑
j∈N

cjx
0
j = f1(x

0).

Thus x0 and 〈x0, y0〉 share the same objective function value. Since f2(ȳ) is optimal for the

LP relaxation of GPSP3, and 〈x0, y0〉 is a feasible solution to the LP relaxation of GPSP3,

we have

f1(x
0) = f2(y

0) ≤ f2(ȳ) (2.21)

Similarly, given 〈x̄, ȳ〉, x̄ is a feasible solution to GPSP1 and

f2(ȳ) = f1(x̄) ≤ f1(x0) (2.22)

The equality f1(x
0) = f2(ȳ) follows from (2.21) and (2.22).

Next, we will show f1(x
0) ≤ f2(y∗). 〈x0, y0〉 is feasible for LP relaxation of GPSP2 since∑
i∈Mj

y0ij =
∑
i∈Mj

x0j = |Mj |x0j j ∈ N

∑
j∈Ni

ajy
0
ij =

∑
j∈Ni

ajx
0
j ≤ bi i ∈M

Also it satisfies

f2(y
∗) ≥ f2(y0) =

∑
j∈N

∑
i∈Mj

wiy
0
ij =

∑
j∈N

(
∑
i∈Mj

wi)x
0
j =

∑
j∈N

cjx
0
j = f1(x

0)

Thus the result follows.

CHAPTER 2. GREEDY PSP 13

The inequality in Theorem 2.1.1 could satisfy as a strict inequality as illustrated in the

following example.

Example 2.1.1. A GPSP instance with m = 3 and n = 3 is shown in the graph below:

v0 v1 v2 v3

u v

e1[3, 2] e2[2, 2] e3[2, 1]

ei[wi, bi]

Figure 2.1: Example of strict inequality in Theorem 2.1.1

There are three paths P1 = {e2, e3}, P2 = {e1, e2, e3}, P3 = {e1, e2} with path capacity usage

as a1 = 1, a2 = 1, a3 = 2 respectively. Then this problem can be formulated as

GPSP1:
Maximize 4x1 + 7x2 + 5x3

Subject to:

x2 + 2x3 ≤ 2 (e1)

x1 + x2 + 2x3 ≤ 2 (e2)

x1 + x2 ≤ 1 (e3)

x1, x2, x3 ∈ {0, 1}

CHAPTER 2. GREEDY PSP 14

GPSP2:
Maximize 2y12 + 2y13 + 2y21 + 2y22 + 2y23 + y31 + y32

Subject to:

y21 + y31 = 2x1

y12 + y22 + y32 = 3x2

y13 + y23 = 2x3

y12 + 2y13 ≤ 2

y21 + y22 + 2y13 ≤ 2

y31 + y32 ≤ 1

x1, x2, x3 ∈ {0, 1}

0 ≤ yij ≤ 1 ∀j ∈ N = {1, 2, 3}, i ∈Mj

and GPSP3:

Maximize 2y12 + 2y13 + 2y21 + 2y22 + 2y23 + y31 + y32

Subject to:

y12 + 2y13 ≤ 2

y21 + y22 + 2y23 ≤ 2

y31 + y32 ≤ 1

y21 = x1 y31 = x1

y12 = x2 y22 = x2 y32 = x2

y13 = x3 y23 = x3

x1, x2, x3 ∈ {0, 1}

0 ≤ yij ≤ 1 ∀j ∈ N, i ∈Mj

The optimal objective function value is 7 for all of these formulations. However, the

optimal objective function values of the LP relaxations of GPSP1, GPSP2 and GPSP3 are

9.5, 10.5 and 9.5 respectively. The optimal solutions for each of these LP relaxations are

given below:

Solution for LP relaxation of GPSP1

x = (0, 1, 0.5)

CHAPTER 2. GREEDY PSP 15

Solution for LP relaxation of GPSP2

x = (1, 0.67, 0.5)

y =


0 1 0.5

1 1 0

1 0 0


Solution for LP relaxation of GPSP3

x = (0, 1, 0.5)

y =


0 1 0.5

0 1 0.5

0 1 0


In summary, GPSP1 is the most compact formulation and gives equally good upper

bound as that of the LP relaxation of GPSP3. Both upper bounds given by these LP

relations are tighter than that of GPSP2. The models GPSP2 and GPSP3 include variables

corresponding to edges, which may give us flexibility to develop variants of GPSP with

additional restrictions on edges.

2.2 Complexity analysis

In the last section, we have shown that GPSP can be formulated as CMDKP along with

several other formulations. Interestingly, any CMDKP can be formulated as a GPSP as

well.

Theorem 2.2.1. GPSP and CMDKP are equivalent in the sense that they can be reduced

to each other in polynomial time.

Proof. In the previous section, we have formulated GPSP into GPSP1, which is a CMDKP.

Now let us show that any CMDKP can be reduced to a GPSP.

CHAPTER 2. GREEDY PSP 16

A CMDKP with n variables and m constraints can be defined as (2.23),

Maximize
∑
j∈N

cjxj

Subject to: ∑
j∈N

aijxj ≤ bi i ∈M

xj ∈ {0, 1} ∀j ∈ N

(2.23)

where

aij =

aj i ∈Mj ⊆M

0 otherwise.

We construct a graph G′ for GPSP as follows: Let V 1 = {vi : i = 0, 1, . . . ,m}, and

E1 = {e1i = (vi−1, vi) : i = 1, 2, . . . ,m}. Assign the capacity and cost of e1i as bi and 0

respectively. Corresponding to each variable xj , consider the ordered set Sj = {e1i : aij 6= 0}
where the ordering of the elements in Sj are such that e1i appears before e1k if and only if

i < k. Note that Sj contains at least one edge (assume w.l.o.g. the coefficient matrix of

CMDKP has no columns of zeros), and is a collection of paths in G′. Two paths in Sj can

be joined to form a single path by introducing a new node and connecting one of the end

points of each path to this node by an edge with capacity ∞ and cost 0. Finally, Repeat

this process while we get a single path containing all edges of Sj . At last, for each set Sj we

append an edge with capacity ∞ and cost cj at the end to form a path Pj . Let G = (V,E)

be the graph obtained by taking the union of all Pj , j = 1, 2, . . . , n. Now we show that

GPSP on G is equivalent to the CMDKP under consideration.

We will prove that any feasible solution of one problem can be mapped to that of the

other problem, and they share the same objective function value. In the GPSP instance

constructed above, selecting path Pj is equivalent to setting xj = 1 in the CMDKP. A

one-to-one map can be defined between their solutions x ∈ {0, 1}n and S ⊆ N as

xj = 1 if and only if j ∈ S,∀j ∈ N

If x is feasible for the CMDKP, constraint
∑

j∈N aijxj ≤ bi is satisfied for each i ∈M . Then

the capacity restriction for each edge e1i ∈ E1 is satisfied for GPSP. Note that there are no

capacity limit on the other edges, hence the corresponding S is feasible for the GPSP. If S

is feasible for the GPSP, due to the capacity restrictions on edge e1i ∈ E1, x is also feasible

CHAPTER 2. GREEDY PSP 17

for the CMDKP. Moreover, since the value of path Pj equals to cj , the objective function

value of x for GPSP equals to that of S for CMDKP. The result follows.

u v

v0 v1 v2 v3 v4 v5 vm

v11

vj2

[b3, 0][b1, 0]

[∞, 0] [∞, 0] [∞, c1]

P1

[capacity, cost]

Figure 2.2: Construction GPSP from CMDKP

The reduction discussed in the proof Theorem 2.2.1 preserves objective function value

and hence it is approximation preserving. Thus we have

Corollary 2.2.1. CMDKP can be solved by a polynomial time ε-approximation algorithm

if and only if GPSP can be solved by a polynomial time ε-approximation algorithm.

As a consequence of Corollary 2.2.1, non-approximability results for CMDKP yields

non-approximability results for GPSP. For example, consider the Maximum Clique Problem

(MCP) on a graph G = (V,E). This can be formulated as the 0-1 integer programming

problem:

Maximize

|V |∑
j=1

xj

Subject to:

xi + xj ≤ 1 (i, j) /∈ E

xj ∈ {0, 1} ∀j ∈ N

(2.24)

This is a CMDKP where bi = 1, aj = 1 and cj = 1. Since MCP cannot be approximated

within a factor of |V |1−ε for any ε > 0 in polynomial time [38], from Corollary 2.2.1, we

have

CHAPTER 2. GREEDY PSP 18

Corollary 2.2.2. GPSP is NP-hard and cannot be approximated within a factor of n1−ε

for any ε > 0 in polynomial time even if aj ∈ {0, 1}, cj ∈ {0, 1}, bi = 1, and each edge is

contained in at most two paths.

We now observe that GPSP remains NP-hard even if the underlying graph has a simple

structure.

Theorem 2.2.2. [55]GPSP on a star graph (GPSP-S) is NP-hard.

Proof. We reduce the partition problem to GPSP-S. Given n numbers a1, a2, . . . , an, the

partition problem is to determine if there exists a partition S1, S2 of {1, 2, . . . , n} such that∑
k∈S1

ak =
∑

k∈S2
ak. Using this instance of the partition problem we construct an instance

of GPSP-S as follows. Construct a star with center node 0 and leaf nodes 1, 2, . . . , n+ 1.

Let Pi be the path < n + 1, 0, i > for i = 1, 2, . . . , n with capacity usage ai. Let edge cost

wn+1,0 = 0 and w0j = aj for j = 1, 2, . . . , n and set edge capacity bn+1,0 = 1
2

∑n
k=1 ak and

b0j = aj for j = 1, 2, . . . , n. It is easy to verify that the required partition of {1, 2, . . . , n}
exists precisely when the optimal objective function value of the constructed instance of

GPSP is 1
2

∑n
k=1 ak. The proof now follows from the NP-completeness of the partition

problem.

Theorem 2.2.3. GPSP on a path graph (GPSP-P) is NP-hard.

Proof. The NP-hardness of GPSP-P is proved by reduction from knapsack problem. Given

item set N = {1, 2, . . . , n} and maximum weight W . For each item j ∈ N a profit pj and

weight aj are specified. The knapsack problem is to determine a subset of items S so that

the total profit is maximized while the total weight is within weight limit. We reorder the

items so that

p1 ≤ p2 ≤ . . . ≤ pn

We construct a path graph G for GPSP as follows: Let V = {vi : i = 0, 1, . . . , n}, and

E = {ei = (vi−1, vi) : i = 1, 2, . . . , n}. We assign W and p1 as the capacity and cost of e1

respectively, and assign the capacity and cost to be ∞ and (pi − pi−1) respectively for ei,

i > 1. The path Pj is defined as (v0, v1, . . . , vj) with path capacity usage aj for j ∈ N .

From the construction, the path Pj has cost pj and path capacity wj , which corresponds

to the item j in knapsack problem. A path selection S is feasible if and only if the capacity

restriction on edge e1 is satisfied, which implies
∑

j∈S wj ≤ W . Hence a feasible path

CHAPTER 2. GREEDY PSP 19

selection in above constructed GPSP corresponds to a feasible item selection in underlying

knapsack problem. Moreover, they share the same objective function value. The result

follows form the NP-hardness of the knapsack problem.

2.3 Polynomially and pseudo polynomially solvable cases

Let us now identify some polynomially solvable cases. We say GPSP is separable if N can

be divided into several disjoint subsets {N t, t ∈ I} such that for any t 6= s ∈ I, Pi ∩ Pj = ∅
where i ∈ N t, j ∈ N s.

Theorem 2.3.1. If GPSP is separable, also maxt∈I |N t| = O(logm), then it can be solved

in polynomial time.

Proof. First, we point out a fact that GPSP can be solved in O(2nmn) time by enumeration.

Since GPSP is separable, the problem can be divided into |I| subproblems. Then any sub-

problem with paths set N t, t ∈ I can be solved within O(2|Nt|m|Nt|) = O(2logmm logm) =

O(m2 logm) time, the whole problem will be solved in O(m2n logm) in the worst case.

Another simple case is when GPSP is restricted on a path graph and all path capacities

are identical.

Theorem 2.3.2. GPSP-P with aj = a0 > 0 for j ∈ N is solvable in polynomial time.

Proof. Consider the integer programming formulation GPSP1. First, when aj = a0 for all

j ∈ N , we can always transform the coefficient matrix A into a 0-1 matrix by dividing both

sides of the constraints Ax ≤ b by a0. We obtain the constraints A′x ≤ 1
a0
b where A′ = 1

a0
A,

x ∈ {0, 1}n. Since the left hand side of A′ is integer and x ∈ {0, 1}n, A′x ≤ 1
a0
b, x ∈ {0, 1}n

are equivalent to A′x ≤ b ba0 c, x ∈ {0, 1}
n.

When G is a path, all the edges in a path Pj are consecutive, which together with the

fact that A′ is a 0-1 matrix, the 1’s in each column of A′ are consecutive. Hence A′ is totally

unimodular and hence
Maximize cx

Subject to:

A′x ≤
⌊
b

a0

⌋
x ∈ {0, 1}n

CHAPTER 2. GREEDY PSP 20

is polynomially solvable.

From Theorem 2.3.2 the following corollary can be derived.

Corollary 2.3.1. If G is a collection of node disjoint paths with aj = a0 > 0 for j ∈ N ,

then GPSP is polynomially resolvable.

Theorem 2.3.3. GPSP-P can be formulated as a Generalized Network Flow Problem(GNFP).

Proof. Consider the formulation GPSP1 of GPSP-P. Let A be the coefficient matrix of the

resulting formulation. Then as we pointed in the proof of Theorem 2.3.2, all the nonzero

entries in the column of A are consecutive such as

A =



a1 0 0 . . .

a1 a2 0 . . .

a1 a2 a3 . . .

0 0 a3 . . .

.


(2.25)

Insert a n dimension of zero row vector in A right after the last row and set the corresponding

right hand side bm+1 to be 0 as well, the problem is not affected. Then subtract (i − 1)th

row from ith row for i = n to 2 iteratively. Due to the consecutiveness of nonzero entries,

we obtain a matrix with each column has exactly two nonzero entries of the same absolute

value but with opposite sign. Again, row operation does not change original problem. An

integer programming with such a coefficient matrix can always be seen as a GNFP (maybe

with multiple edges).

The proof given above is a modification of the well known idea of transforming matrices

with consecutive ones property into node-arc incidence matrix of a graph [1]. We give below

an example to illustrate the transformed GNFP discussed above.

CHAPTER 2. GREEDY PSP 21

Example 2.3.1. Consider GPSP

Maximize 2x1 + 3x2 + x3 + 2x4 + 5x5 + x6 + 3x7 + 3x8 + 5x9 + x10

Subject to:

1 3 0 0 0 0 0 0 0 0

0 3 2 2 1 0 0 0 0 0

0 0 0 2 1 7 4 0 0 0

0 0 0 0 1 0 4 3 2 0

0 0 0 0 0 0 0 0 2 5




x1

x2
...

x10

 =



3

5

7

8

2


x ∈ {0, 1}10

After row operations described in the proof of Theorem 2.3.3, we obtain the matrix

A′ =



1 3 0 0 0 0 0 0 0 0

−1 0 2 2 1 0 0 0 0 0

0 −3 −2 0 0 7 4 0 0 0

0 0 0 −2 0 −7 0 3 2 0

0 0 0 0 −1 0 −4 −3 0 5

0 0 0 0 0 0 0 0 −2 −5


Now A′ is the coefficient matrix of the generalized network flow problem with inequality

constraints on the graph 2.3. Thus we get the following GNFP formulation of GPSP

Maximize 2x1 + 3x2 + x3 + 2x4 + 5x5 + x6 + 3x7 + 3x8 + 5x9 + x10

Subject to:

x1 + x3 ≤ 3

− x1 + 2x3 + 2x4 + x5 ≤ 2

− 3x2 − 2x3 + 7x6 + 4x7 ≤ 2

− 2x4 − 7x6 + 3x8 + 2x9 ≤ 1

x5 + 4x7 + 3x8 − 5x+ 10 ≥ 6

2x9 + 5x10 ≥ 2

CHAPTER 2. GREEDY PSP 22

u

demand

v

demand

v13

v2

2

v3

2

v4

1

v5

-6

v6 -2

[1,2]

[3,3]

[2,1]

[2,2]

[1,5]

[7,1]

[4,3]

[3,3]

[2,5]

[5,1]

[multiplier, cost]

Figure 2.3: Example of GNFP transformed from GPSP

One knot GPSP

A matrix A is said to be 1-knot if

1. Two consecutive rows have exactly one non-zero element in common column

2. All non-zero elements in a column are the same

3. Two non-consecutive rows have no column with two non-zero entries

Such a matrix can be represented as A below (if necessary by renaming columns)

A =



a1 · · · al1

al1 · · · al2
. . .

alm−2 · · · alm−1

alm−1 · · · alm


(2.26)

where lm = n.

CHAPTER 2. GREEDY PSP 23

A GPSP with the coefficient matrix in its GPSP1 formulation that is 1-knot is called a

1-knot GPSP (1-KPSP). Such a problem can be formulated as

Maximize:
∑
j∈N

cjxj

Subject to:

li∑
j=li−1

ajxj ≤ bi i ∈M

xj ∈ {0, 1} j ∈ N.

where l0 = 1.

The variables xl1 , xl2 ,..., xlm are called knot variables. When m = 1, 1-KPSP is the

knapsack problem and hence 1-KPSP is NP-hard. However, knapsack problem can be solved

in pseudopolynomial time by dynamic programming [8]. We now show that 1-KPSP can

also be solved by a pseudopolynomial algorithm.

Consider the subproblem P (k) constitutes the first k constraints and lk variables

P (k) : Maximize:

lk∑
j=1

cjxj

Subject to:

li∑
j=li−1

ajxj ≤ bi i = 1, 2, . . . , k

xj ∈ {0, 1} j = 1, 2, . . . , lk.

Let P (k|0) be the restriction of P (k) with the additional constraint that xlk = 0. Similarly,

let P (k|1) be the restriction of P (k) with the additional constraint that xlk = 1. Let V (k|0)

and V (k|1) be the optimal objective function values of P (k|0) and P (k|1) respectively.

Consider the knapsack problems:

KP (k|0|0) Maximize:

lk+1−1∑
j=1+lk

cjxj

Subject to:

lk+1−1∑
j=1+lk

ajxj ≤ bk+1

xj ∈ {0, 1} j = lk + 1, lk + 2, . . . , lk+1 − 1.

CHAPTER 2. GREEDY PSP 24

KP (k|0|1) Maximize:

lk+1−1∑
j=1+lk

cjxj

Subject to:

lk+1−1∑
j=1+lk

ajxj ≤ bk+1 − alk+1

xj ∈ {0, 1} j = lk + 1, lk + 2, . . . , lk+1 − 1.

KP (k|1|0) Maximize:

lk+1−1∑
j=1+lk

cjxj

Subject to:

lk+1−1∑
j=1+lk

ajxj ≤ bk+1 − alk

xj ∈ {0, 1} j = lk + 1, lk + 2, . . . , lk+1 − 1.

KP (k|1|1) Maximize:

lk+1−1∑
j=1+lk

cjxj

Subject to:

lk+1−1∑
j=1+lk

ajxj ≤ bk+1 − alk − alk+1

xj ∈ {0, 1} j = lk + 1, lk + 2, . . . , lk+1 − 1.

Let W (k|0|0), W (k|0|1), W (k|1|0), W (k|1|1) be the optimal objective function values of

KP (k|0|0), KP (k|0|1), KP (k|1|0), KP (k|1|1) respectively. Then

V (k + 1|0) = max {V (k|0) +W (k|0|0), V (k|1) +W (k|1|0) + clk} (2.27)

V (k + 1|1) = max
{
V (k|0) +W (k|0|1) + clk+1

, V (k|1) +W (k|1|1) + clk + clk+1

}
(2.28)

The optimal objective function value is given by

max{V (m|0), V (m|1)}. (2.29)

Using the recurrence relations (2.27) and (2.28) and equation (2.29), by backtracking using

the corresponding solutions of the knapsack problems, an optimal solution to 1-KPSP can

be constructed.

Theorem 2.3.4. 1-KPSP can be solved in O(m+nbmax) time, where bmax = maxi∈M{bi}.

CHAPTER 2. GREEDY PSP 25

Proof. Knapsack problem KP (k| · |·) can be solved in O((lk− lk−1)bk) time by dynamic pro-

gramming, then the complexity of solving all knapsack problems isO
(∑

k∈M (lk − lk−1)bk
)

=

O(nbmax). Given values W (k| · |·), update of V (k|·) takes O(m) time due to constant time

for each k ∈M . The total complexity of solving 1-KPSP is O(m+ nbmax).

In the above algorithm, the knapsack problems KP (k| · |·) are solved using an exact algo-

rithm. If we use an ε-approximation algorithm to solve KP (k|·|·), an ε-approximate solution

to 1-KPSP can be constructed. We summarize this observation in following theorem:

Theorem 2.3.5. 1-KPSP can be solved by a fully polynomial approximation scheme.

Proof. First we show that given an ε-approximation algorithm A for knapsack problem, let

WA(k|0|0), WA(k|0|1), WA(k|1|0), WA(k|1|1) be the objective function values ofKP (k|0|0),

KP (k|0|1), KP (k|1|0), KP (k|1|1) obtained from algorithm A respectively. Then we have

W (k| · |·) ≤ εWA(k| · |·)

Let V A(k|·) be the resulting value obtained from recurrence relation (2.27) and (2.28) by

substituting W (k| · |·) with WA(k| · |·). Then due to the fact that ε ≥ 1, we have

V (k|·) ≤ εV A(k|·)

The results follows from equation (2.29).

Since knapsack problem can be solved by a fully polynomial approximation scheme [60],

the conclusion follows.

Extending our definition of 1-knot matrix, we define a matrix A as r-knot if

1. Two consecutive rows have exactly r non-zero elements in common column

2. All non-zero elements in a column are the same

3. Two non-consecutive rows have no column with two non-zero entries

CHAPTER 2. GREEDY PSP 26

Then GPSP with r-knot matrix as constraint coefficient matrix is called r-knot GPSP (r-

KPSP). It can be formulated as

Maximize:
∑
j∈N

cjxj

Subject to:

li∑
j=li−1−r+1

ajxj ≤ bi i ∈M

xj ∈ {0, 1} j ∈ N.

where l0 = r, lm = n.

The algorithm discussed for 1-KPSP can be extended in a natural way to obtain an

algorithm for solving r-KPSP. Thus we have

Theorem 2.3.6. r-KPSP can be solved in pseudopolynomial time for any fixed r or r =

O(log n).

Proof. For r-KPSP, let P (k) be its subproblem constituting the first k constraints and lk

variables. Applying the similar idea of 1-KPSP, for any z ∈ {0, 1}r we construct P (k|z) as

the restriction of P (k) with additional constraint that knot variables {xj}lklk−r are fixed as

z. Let V (k|z) be the optimal objective function value of P (k|z). For any y, z ∈ {0, 1}r,
consider knapsack problem KP (k|y|z) defined as

KP (k|y|z) Maximize:

lk+1−r∑
lk+1

cjxj (2.30)

Subject to:

lk+1−r∑
lk

ajxj ≤ bk+1 −
lk∑

j=lk−r+1

ajyj −
lk+1∑

j=1−r+lk+1

ajzj (2.31)

xj ∈ {0, 1} j = lk + 1, lk + 2, . . . , lk+1 − r. (2.32)

Let W (k|y|z) be the optimal objective function values of KP (k|y|z). Then the recurrence

relation becomes

V (k + 1|z) = max
y∈{0,1}r

{V (k|y) +W (k|y|z)}+

lk+1∑
j=1−r+lk+1

cjzj (2.33)

The optimal objective function value is given by

max
z∈{0,1}r

V (m|z) (2.34)

CHAPTER 2. GREEDY PSP 27

Then r-KPSP can be solved by using dynamic programming with recurrence relation defined

by (2.33) and equation (2.34). The optimal solution can be constructed by backtracking the

corresponding solutions of subproblems.

For each k, there are 22r knapsack problems generated during the process, and KP (k|·|·)
can be solved in O((lk − lk−1)bk) time. Given values W (k| · |·), the update of V (k|·) take

O(m22r) time in total. Hence r-KPSP can be solved in O(m22r + n22rbmax) time, which is

pseudopolynomial for r = O(log n).

Theorem 2.3.7. r-KPSP can be solved by a fully polynomial approximation scheme when

r = O(log n).

Proof. The conclusion follows from techniques in Theorem 2.3.6 with similar deduction in

Theorem 2.3.5.

Nested GPSP

In this section we will discuss another special structure of GPSP: nested GPSP (NGPSP).

Here “nest” refers to the structure of constraint coefficient matrix A. We say a GPSP is

nested if in its GPSP1 formulation the nonzero entries in a row of A are all contained in its

successor, i.e., Mi ⊆Mj when i < j. After some adjustment of index, the coefficient matrix

A of NGPSP can be formulated as

A =


a1 a2 . . . al1

a1 a2 . . . al1 . . . al2

. . .

a1 a2 . . . al1 . . . alm

 (2.35)

where alm = n. NGPSP is a special case of GPSP-P.

The nested structure leads to simplicity for solving. For example, CPLEX is able to solve

NGPSP within one minute when n is up to 5000 and m = 0.5n. This result is impressive if

we consider that the general GPSP can not be solved optimally even when n = 500.

Theorem 2.3.8. For NGPSP, if it satisfies aj is nondecreasing and cj is nonincreasing

a1 ≥ a2 ≥ . . . ≥ an,

c1 ≤ c2 ≤ . . . ≤ cn,

then the problem is polynomially solvable.

CHAPTER 2. GREEDY PSP 28

Proof. Any problem of the type NGPSP with n variables, we claim that there exist an

optimal solution x0 with x0n = 1. Suppose this is not true. Let x∗ be the optimal solution

and k is the first index such that x∗k = 1, k < n. Then consider x̄ given by

x̄j =


x∗j if j 6= k, n

0 if j = k

1 if j = n

x̄ is clearly feasible and
∑

j∈N cjx
∗
j ≤

∑
j∈N cj x̄j . Thus x̄ is also optimal contradicting

our assumption. Eliminate the variable xn from NGPSP by setting xn = 1, and adjust

the right hand side bn as bn − an. Let NGPSP(n − 1) be the resulting problem. If x0 =

(x01, x
0
2, . . . , x

0
n−1) is an optimal solution to NGPSP(n − 1) then (x01, x

0
2, . . . , x

0
n−1, 1) is an

optimal solution to NGPSP(n). If the last two rows of NGPSP(n − 1) are identical, one

of them is redundant and can be discarded. The resulting NGPSP(n − 1) has the same

structure as NGPSP(n) and hence x0n−1 = 1 in an optimal solution (x01, x
0
2, . . . , x

0
n−1). The

proof now follows from recursion.

Note that this result is not true for the general case as the following example shows.

Example 2.3.2.

Maximize

n−1∑
j=1

xj + 2xn

Subject to:

xj + xn ≤ 1 j ∈ N\{n}

xj ∈ {0, 1} j ∈ N

Although nth item has higher profit and the same capacity consumption, its selection

prevents all the other items’ from being chosen. The greedy algorithm described in above

proof fails to give an optimal solution.

CHAPTER 2. GREEDY PSP 29

2.4 Heuristic algorithms description

In this chapter we discuss various heuristics for GPSP and study the quality of the solution

produced by systematic experimental analysis. We present several heuristics based on stan-

dard algorithmic ideas studied extensively for various combinatorial optimization problems.

In particular, we develop the algorithms from the following classes:

1. greedy algorithm,

2. semi-greedy algorithm, and

3. multi-start local search algorithm with 2-swap neighborhood.

2.4.1 Greedy algorithm

The greedy algorithm is an adaptation of the corresponding greedy algorithms studied in

the context of MDKP [58, 49]. The “greediness” is controlled by a number r, which is called

the utility ratio. We consider eight different types of utility ratios which are summarized in

Table 2.1. The column “Complexity” gives the complexity of both calculating and ordering

the variables. Ratio 1 and 2 are new and others are adopted (derived) from the study of

MDKP [58, 50, 34].

Ratio Definition Remark Complexity

1
cj
aj
− β

∑
i∈Mj

aj
bi

β = 0.25 O(L+ n log n)

2
cj
aj
− βqj , qj = maxi∈Mj

aj∑
k 6=j,k∈Ni

ak
β = 0.25 O(Lmaxi{|Ni|}+ n log n)

3 cj/(
∑

i∈Mj
µiaj) µ -

4 cj/(|Mj |aj) O(n log n)

5 cj/aj O(n log n)

6 cj O(n log n)

7 j O(1)

8 random -

Table 2.1: GPSP greedy algorithm utility ratios

The static greedy algorithm chooses a utility ratio r and identifies a permutation π of

CHAPTER 2. GREEDY PSP 30

N = {1, 2, . . . , n} such that

rπ(1) ≥ rπ(2) ≥ . . . ≥ rπ(n) (2.36)

First of all, the instance-independent Ratio 7 and 8 are presented for the comparison reason.

The complexity of Ratio 8 depends on the randomness system. Ratio 7 and its corresponding

permutation are obtained without calculation, hence its complexity is O(1). Ratios 5 and 6

are a group of intuitive ratios. Ratio 6 considers the variable contribution to the objective

function value which is cj . Its complexity lies in obtaining the corresponding permutation

which takes O(n log n) time. Ratio 5 considers the price-performance ratio
cj
aj

for j ∈ N .

The calculation includes
cj
aj

and corresponding permutation, which is O(n) + O(n log n) =

O(n log n). Ratio 3 and 4 are variations of ratio cj/(
∑

i∈M uiaij) where u is called surrogate

multiplier. In our case it becomes cj/(
∑

i∈Mj
uiaj) due to the problem structure. In Ratio

4 ui = 1 and its complexity is O(n log n). In Ratio 3 u is set to be the optimal solution of

the dual problem of the GPSP1 LP relaxation problem. We develop Ratio 1 and 2 based on

the problem nature. The term
cj
aj

are included in both ratios for the same reason of Ratio 5.

The value
aj
bi

measures the capacity usage of variable xj respect to constraint i. The larger

it is, the more capacity consuming it is to select path Pj . Hence, a weighted summation of

these ratios is subtracted from
cj
aj

in Ratio 1. It takes O(Mj) time to calculate rj , hence

the complexity of Ratio 1 is O(L) + O(n log n) = O(L + n log n). In Ratio 2, we measure

the relative capacity consumption defined as
aj∑

k 6=j,k∈Ni
ak

of xj for constraint i instead. The

weighted maximum of this value among all i ∈Mj is subtracted from
cj
aj

to get Ratio 2.

We scan variables xj in the order given by π and set its value to 1 if feasibility is not

violated. Let (x|xk = 1) represent the solution x′ such that x′j = xj for j 6= k and x′k = 1.

A formal description of the static greedy algorithm is given below.

Algorithm 1: Greedy Algorithm for GPSP

Input: permutation π based on the utility ratio r satisfying (2.36)

Initialize x← 0;

for j ← 1 to n do

if (x|xπ(j) = 1) is feasible then

xπ(j) = 1;

return x

Feasibility checking of setting xj = 1 costs O(|Mj |) time. Thus the complexity of feasi-

bility checking is O(L) in total (recall that L =
∑

j∈N |Mj |). Let ψr be the computational

CHAPTER 2. GREEDY PSP 31

complexity to calculate the pseudo utility ratio r and to obtain corresponding permutation

as given in Table 2.1. Then the complexity of the greedy algorithm is O(L+ ψr).

2.4.2 Semi-greedy algorithm

In the greedy algorithm we always consider the first available variable with highest possible

utility ratio. In the semi-greedy algorithm we pick an element randomly from a candidate

list which constitutes of variables with “good enough” utility ratio values, and scan all the

variables until the candidate list is empty. The greedy selection is repeated several iter-

ations and the best found solution over all iterations is returned. The parameters length

of candidate list lCand and iteration limit iLim together determine the semi-greedy algo-

rithm. When lCand = 1 and iLim = 1, the algorithm reduces to the greedy algorithm.

Semi-greedy type algorithms are successfully studied in the context of vehicle routing prob-

lem [23]. Let f(·) denote the objective function. A formal description of the semi-greedy

algorithm is given below:

CHAPTER 2. GREEDY PSP 32

Algorithm 2: Semi-greedy Algorithm for GPSP

Input: lCand, iLim, permutation π determined by utility ratio r

Initialize: x∗ ← 0, iter ← 1;

repeat

next← lCand+ 1, x← 0, candidate list C ← {π(1), π(2), . . . , π(lCand)};
while C 6= ∅ do

j ← select a random element in C ; /* random selection */

if (x|xj = 1) is feasible then

xj = 1;

if next ≤ n then /* update C */

C ← C ∪ {π(next)} \ {j};
next← next+ 1 ; /* next← next index to add in C */

else

C ← C \ {j};

if f(x) > f(x∗) then /* update best known solution */

x∗ ← x;

iter ← iter + 1;

until iter = iLim;

return x∗

We choose lCand as an instance independent parameter, hence the complexity of semi-

greedy algorithm is that of the corresponding greedy algorithm times the iteration limit

iLim.

2.4.3 Multi-start local search algorithm

The multi-start is a strategy combined with neighborhood searching to overcome getting

trapped at a local optimum. We develop a multi-start local search algorithm for GPSP based

on 1-flip and 2-swap neighborhood. The algorithm starts from an initial solution generated

by semi-greedy algorithm, and applies first-improving local search (the search moves to the

first improved solution) based on 1-flip and 2-swap neighborhood until a local optimum is

reached. These two steps are seen as one iteration. We perform iLim iterations where

iLim is a prescribed parameter and return the best known solution found in the whole

CHAPTER 2. GREEDY PSP 33

procedure. Due to the diversity of initial solution obtained from semi-greedy algorithm,

different solution spaces are expected to be explored. A formal description of the algorithm

is given below:

Algorithm 3: Multi-start local search algorithm for GPSP

Input: iteration limit iLim

Initialize: x∗ ← 0;

for iter ← 1 to iLim do

x← obtained from semi-greedy algorithm;

improve← true;

while improve do

improve = false;

for add ∈ J0(x) and !improve do

if (x|xadd = 1) is feasible then

xadd = 1;

improve← true;

else

for drop ∈ J1(x) and !improve do

if cadd > cdrop and (x|xadd = 1, xdrop = 0) is feasible then

xadd = 1, xdrop = 0;

improve← true;

if f(x) > f(x∗) then

x∗ ← x;

return x∗.

where J0(x) = {j ∈ N : xj = 0}, J1(x) = {j ∈ N : xj = 1}.

2.5 Computational results and analysis

In this section we report results of extensive computational experiments to analyze the

efficiency of the developed heuristic algorithms. In order to conduct effective computational

experiments and draw reasonable conclusions, it is important to use general enough test

bed. No standard test sets are available for GPSP. Thus we first develop a problem instance

CHAPTER 2. GREEDY PSP 34

generator. The algorithm performance results follows.

2.5.1 Instance generator and test bed description

Because of the equivalence between GPSP and CMDKP established in Theorem 2.2.1, in-

stead of generating GPSP instances, we generate instance of CMDKP. Recall that a CMDKP

instance is specified by constraint coefficient matrix A, constraint right hand side vector b

and objective function coefficient vector c. Moreover, due to the special structure of A, a

vector a and a family of subsets {Ni ∈ N : i ∈M} together determine A .

This instance generator is inspired by the instance generator of MDKP [20, 28] and

follows similar procedures as in [28].

We use the following functions within our generator:

• urand(l, u): generates uniformly distributed random integer x such that l ≤ x ≤ u.

• nrand(l, u): generates normally distributed random integer x with mean l+u
2 such that

l ≤ x ≤ u is satisfied with high probability (99%). If x < l, it is reset to l and if x > u,

it is reset to u in our application.

To generate aj values, we simply use urand(l, u) or nrand(l, u) depending on the desired

data type with l and u as input parameters which may depend on the instance size.

To generate the set Ni, we first generate |Ni| for all i ∈M as a random integer between

two input values, say l and u with l ≤ u. Once these values are generated, Ni is filled with

random integers from {1, 2, . . . , n} for all i ∈ M . The aj values together with the sets Ni,

i ∈ M defines our tentative coefficient matrix A′. We then examine the columns of A′. If

there are any columns with all zero entries, for each such column j we generate two row

numbers, say r1, r2, from {1, 2, . . . ,m}, then extend Nr1 to Nr1 ∪ {j} and Nr2 to Nr2 ∪ {j}.
The right hand side value bi is generated as a function of aj and Ni using the formula

bi = max

α∑
j∈Ni

aj ,max
j∈Ni

aj

 i ∈M, (2.37)

where α ∈ (0, 1) is an input parameter. The smaller the value of α, the tighter the corre-

sponding constraint is.

We then generate the cj values. Depending on the nature of the cj values, the instances

generated are classified into

CHAPTER 2. GREEDY PSP 35

1. random instances (denoted by R)

2. positively correlated instances (denoted by P)

3. negatively correlated instances (denoted by N)

4. uniform instances (denoted by U)

5. semi uniform instances (denoted by S)

6. PSP inspired instances (denoted by W)

For random instances, we simply choose cj as a uniformly distributed random integer.

Positively correlated instances are generated by first generating a random c vector and re-

arrange its elements so that cj ’s and aj ’s have the same ordering. Negatively correlated

instances are generated in a similar way except that cj ’s and aj ’s now have opposite orien-

tation. For uniform instances, we set aj = cj , ∀j ∈ N and for semi uniform instances cj is

set to aj + urand(l, u), where l and u are input parameters. In PSP inspired instances cj is

generated as
∑

i∈Mj
wi, where wi, i ∈M is generated as urand(1, 20).

In order to assess the nature of the different classes of problem instances generated,

we conduct some preliminary experiments by setting n = 200 and generate large number of

problems with different characteristics and solve the resulting GPSP problems using CPLEX

applied on the GPSP1 formulation. The following set of parameter values are used:

• m/n: the ratio of number of constraints to number of variables;

• α: constant used in formula (2.37).

When α = 0, for each constraint we randomly set it as 0.25, 0.50 or 0.75;

• rL: the lower bound of cardinality of set Ni, set as 2 by default;

• rU : the upper bound of cardinality of set Ni;

• Uau: the upper bound parameter of aj with uniform distribution. Then the upper

bound of u of aj is defined as u = Uau ∗ n+ 20. Note that adding 20 is to ensure that

when n is small, there is still a room for diverse aj value;

• Nau: the upper bound parameter of aj with normal distribution. Then the upper

bound u of aj is defined as u = Nau ∗ n+ 20;

CHAPTER 2. GREEDY PSP 36

• aL: the lower bound of aj , set as 1 by default;

• cL: the lower bound of cj , set as 1 by default;

• cU : the upper bound of cj ;

• acRel: This parameter determines the problem class.

We analyze the above parameters’ affect to the instance solvability from the solving

results of CPLEX which is reported in Table 2.2. The parameters and their tested values

are in column Parameter and Value respectively. For each parameter value (corresponds

to each row in table), take m/n = 0.30 for example, we generate instances by varying all

other parameter values while fixing m/n = 0.30. The number of these instances is shown

in column Total. The average solving time of all the optimally solved instances is shown in

column AveOptTime, and the percentage of instances that are solved optimally out of its

total instances is presented in column AveOpt. We assume that the less AveOptNum is,

the more likely that the corresponding parameter value produces difficult (to solve) GPSP

instances. Also, given the same number of optimally solved instances, the long AveOptTime

is, the more difficult the resulting instances are. The solving time limit of CPLEX is set to

be one minute. We give thorough analysis based on the results of Table 2.2 below.

Regarding instance size, we fix variable size n at 200 and ratio κ = m
n ranges from 0.3

to 5, which determines the number of the constraints m. As κ increases, the instance size

increments. As expected, the optimally solved instances number drops as κ increases. There

is an exception when κ increases from 3 to 5, it is probably due to the dramatic shrink of

feasible solution set resulting from larger constraints number.

Regarding α, which determines the tightness of constraints according to (2.37), we test

the value as 0.25, 0.50 and 0.75. When α = 0, we randomly set α as 0.25, 0.50 or 0.75 for

each constraints. Hence it is a mixture of the three. As we can see from the second block

of Table 2.2, medium value α = 0.5 has 34% instanced solved optimally which is the lowest

in comparison with 51% for α = 0.25 and 43% for α = 0.75. This is in accordance with our

expectation. When α is small, the set of feasible solutions is smaller. Whereas when α is

large, most of the variables may be fixed at 1. The reduced feasible solution set may also be

the reason why α = 0.25 produces more difficult instances than α = 0.75. We observe that

mixed type α = 0 yields 67% instances to be solved optimally which is the largest among

all.

CHAPTER 2. GREEDY PSP 37

Regarding rL, rU , they together determine the cardinality of sets Ni, i ∈ M . We fix

rL = 2 so that there is no redundant constraints. rU is set to be 0.2n and 0.5n. Since the

larger rU is, the denser matrix A is, rU = 0.5n produces instances that are harder to solve

.

Regarding parameters of setting aj , uniform distribution and normal distribution can

be compared from rows where Uau = 0.02 and Nau = 0.02. According to the percentage of

optimally solved instances number 53% vs. 41%, normal distribution leads to more difficult

instances. Further, we compare Uau = 0.01 and Uau = 0.02. When n = 200, the difference

between them is not much. However, from the AveOptTime and AveOptNum, it still shows

that 0.01n produces slightly harder to solve instances.

Regarding acRel, it seems that this parameter heavily affects the solvability of resulting

instances. Negatively correlated instances (AveOptNum=100%) and randomly generat-

ed instances (AveOptNum=93%) are easiest to solve. Semi uniform instances (AveOpt-

Num=30%) and PSP inspired instances (AveOptNum=34%) are on the medium level while

positively correlated instance (AveOptNum=19%) and uniform instance (AveOptNum=18%)

are hardest to solve.

CHAPTER 2. GREEDY PSP 38

Parameter Value AveOptTime AveOptNum(%) Total

n 200 18.88 49 1440

m/n 0.30 20.86 74 288

0.50 18.55 56 288

1.00 23.86 45 288

3.00 13.10 33 288

5.00 18.03 35 288

α 0.25 25.43 51 360

0.50 14.86 34 360

0.75 10.31 43 360

0.00 24.92 67 360

rU 0.20 21.21 55 720

0.50 16.55 43 720

Uau 0.01 19.16 53 480

0.02 22.98 52 480

Nau 0.02 14.50 41 480

cU 0.01 19.19 48 720

0.02 18.57 49 720

acRel rand(R) 29.84 93 240

pos(P) 11.65 19 240

neg(N) 5.80 100 240

semi(S) 25.82 30 240

uni(U) 11.84 18 240

psp(W) 28.34 34 240

Table 2.2: GPSP instance generator parameters comparison

CHAPTER 2. GREEDY PSP 39

We further analyze the solving process of CPLEX on different types of instances to

understand the problem nature. According to the above analysis, we only consider positively

correlation instance, PSP inspired instance and random instance that represent different

level of hardness. The other instance generator parameters are fixed as n(1000), m/n(0.5),

α(0.50), rL(2), rU(0.5n), Uau(0.1), aL(1), cL(1), cU(0.1m) and 30 instance are generated

for each type of instance. We record the average objective function values of the 30 instances

over the time period 60s, 90s, 120s, 150s, 180s, 210s during CPLEX solving process. The

results are are presented in Figure 2.4 to 2.6.

We can see that for positively correlated instances and PSP inspired instances, CPLEX

stops improving after a certain amount of time. This implies that it either finds an optimum

but fails to prove optimality in the given time, or quickly gets stuck at a deep local maximum.

However, for random instance CPLEX keeps improving trend in our observation period.

50 100 150 200

3.02

3.02

3.02

·104

solving time (/s)

ob
je

ct
iv

e
va

lu
e

Figure 2.4: GPSP CPLEX-200s solving process observation on P instance

CHAPTER 2. GREEDY PSP 40

50 100 150 200

8.78

8.78

8.78

·105

solving time (/s)

ob
je

ct
iv

e
va

lu
e

Figure 2.5: GPSP CPLEX-200s solving process observation on W instance

50 100 150 200

4.62

4.62

4.62

·104

solving time (/s)

ob
je

ct
iv

e
va

lu
e

Figure 2.6: GPSP CPLEX-200s solving process observation on R instance

Now we build our test bed by using above instance generator to test the developed

heuristic algorithm. We consider different instance classes with various instances size which

is defined by (n,m): n(1000, 2000, 5000), m/n(0.1, 0.15, 0.2, 0.25, 0.3). Given instance

type and size, the other instance generator parameters are fixed as follows to produce

CHAPTER 2. GREEDY PSP 41

relatively hard to solve instances: α(0.50), rL(2), rU(0.5n), Uau(0.05), aL(1), cL(1), cU(20).

To eliminate the bias, 5 instances are generated for each set of fixed instance generator

parameters.

The data structure for each instance includes path cost vector c and path capacity usage

vector a, edge capacity vector b and edge cost vector w (only in the case of PSP inspired

instances). Sets Ni, i ∈ M and Mj , j ∈ N are also stored. We maintain a non-zero entry

matrix A′ ∈ Zm×n, of which the (i, j)th element is defined as follows:

a′ij =

1 if j ∈ Ni

0 otherwise

Given A′ and a,, the coefficient matrix A is well defined.

All the instances in the test bed are solved by CPLEX given 1 minute, 10 minutes and

1 hour as time limit. The results are presented in the Table 2.3 for positively correlated

instances. Different instance sizes are given in the first two columns. The result is re-

ported from the aspects of objective function value, gap percentage between best known

upper bound and lower bound returned by CPLEX and the computational time, which are

presented in column Obj, Gap and Time respectively. For each instance size (n,m), we cal-

culate the average, maximum and minimum of above values over the 5 randomly generated

instances and summarize them in Table 2.3.

We observe that CPLEX reached a good quality solution quickly within one minute and

keep improving very slowly in the remaining time, especially for the smaller instances where

n = 1000. Take the first instance size (1000, 100) for example, CPLEX obtained solution

with objective function value 19429, 19455 and 19458 within the three time periods. From

1 minute to 10 minute, the increase in objective function value is 26 and from 10 minutes

to 1 hour the improvement is 3.

CHAPTER 2. GREEDY PSP 42

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

time = 60s

1000 100 19429 0.63 60.11 19887 0.67 60.12 19032 0.55 60.10

1000 150 19221 0.97 60.09 19567 1.03 60.10 18682 0.90 60.09

1000 200 18993 1.41 60.07 19317 1.65 60.10 18765 1.17 60.06

1000 250 18801 1.70 60.06 19202 1.98 60.08 18463 1.46 60.05

1000 300 18464 2.01 60.08 18878 2.34 60.12 17888 1.73 60.03

2000 200 65397 0.71 60.08 65953 0.85 60.14 64600 0.60 60.06

2000 300 64083 1.11 60.09 65387 1.44 60.15 63444 0.93 60.04

2000 400 63138 1.39 60.05 64643 1.52 60.06 61908 1.30 60.04

2000 500 62180 1.75 60.07 63886 2.01 60.08 60432 1.60 60.06

2000 600 62292 2.05 60.07 63355 2.34 60.09 60644 1.79 60.04

5000 500 360668 0.69 60.14 362306 0.89 60.22 358234 0.57 60.11

5000 750 356587 1.11 60.20 359674 1.14 60.28 350058 1.04 60.15

5000 1000 350757 1.28 60.31 352323 1.47 60.33 347805 1.17 60.29

5000 1250 346362 3.29 60.42 355756 10.37 60.51 324287 1.38 60.34

5000 1500 319565 11.03 60.41 324119 13.82 60.64 311387 10.16 60.25

time = 600s

1000 100 19455 0.47 601.97 19921 0.51 602.09 19058 0.43 601.86

1000 150 19239 0.85 602.03 19593 0.94 602.45 18703 0.78 601.68

1000 200 19032 1.17 602.09 19366 1.24 602.45 18798 1.06 601.69

1000 250 18856 1.38 601.96 19292 1.48 602.12 18487 1.30 601.76

1000 300 18532 1.61 601.46 18964 1.78 601.89 17972 1.46 601.09

2000 200 65496 0.55 602.38 65998 0.60 602.92 64658 0.52 601.92

2000 300 64311 0.75 601.98 65556 0.83 602.21 63641 0.67 601.75

2000 400 63199 1.29 601.69 64746 1.60 602.17 62128 1.16 600.89

2000 500 62216 1.70 600.57 63886 1.78 600.80 60432 1.60 600.34

2000 600 62417 1.84 601.23 63355 1.90 603.04 60923 1.77 600.29

5000 500 361102 0.57 600.81 362364 0.59 601.19 359117 0.55 600.64

5000 750 357833 0.75 601.15 361107 0.77 602.41 351216 0.73 600.66

5000 1000 351890 0.96 600.90 353409 1.26 601.09 349152 0.83 600.82

5000 1250 353451 1.11 602.57 357255 1.42 607.09 350406 0.96 600.86

5000 1500 350454 1.23 601.30 353900 1.40 601.62 345675 1.07 601.08

time = 3600s

1000 100 19458 0.44 3602.98 19921 0.49 3603.39 19059 0.42 3602.65

1000 150 19253 0.77 3602.67 19601 0.80 3603.01 18715 0.73 3602.42

1000 200 19045 1.09 3602.62 19370 1.20 3603.26 18802 0.99 3602.21

1000 250 18870 1.28 3602.65 19304 1.39 3603.57 18495 1.22 3601.97

1000 300 18541 1.53 3602.77 18986 1.61 3603.16 17972 1.35 3602.23

2000 200 65503 0.54 3602.70 65999 0.57 3602.97 64665 0.51 3602.24

2000 300 64333 0.71 3602.76 65565 0.80 3603.99 63672 0.63 3602.05

2000 400 63399 0.96 3602.23 64893 1.00 3604.56 62291 0.89 3601.31

2000 500 62526 1.19 3602.51 64093 1.33 3604.44 60764 1.09 3601.28

2000 600 62630 1.49 3605.09 63604 1.54 3609.34 61193 1.42 3601.69

5000 500 361102 0.57 3606.96 362364 0.59 3613.09 359117 0.55 3601.27

5000 750 357833 0.75 3606.47 361107 0.77 3612.02 351216 0.73 3600.91

5000 1000 352197 0.87 3602.07 353409 0.93 3602.66 349152 0.82 3601.61

5000 1250 353705 1.04 3604.57 357255 1.12 3606.48 351677 0.96 3601.89

5000 1500 350863 1.11 3604.96 353900 1.25 3608.03 345675 1.00 3601.88

Table 2.3: GPSP - the results of CPLEX on Test bed P: time limit

CHAPTER 2. GREEDY PSP 43

To get a better view, we plot the average objective function values obtained from CPLEX

during different time periods in the following graphs for n = 1000, 2000, 5000 respectively.

Except for instance size (5000, 1250), i.e., m/n = 0.25 and (5000, 1500), i.e., m/n = 0.3,

there is a uniform trend that only a slight improvement happens during the different times

periods. However, for the other two instances, we still observe very close objective function

values between time limit 10 minutes and 1 hour.

0.1 0.15 0.2 0.25 0.3
1.84

1.86

1.88

1.9

1.92

1.94

·104

Ratio m/n

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e

CPLEX-60

CPLEX-600

CPLEX-3600

Figure 2.7: GPSP CPLEX time limit comparison on Test bed P n = 1000

CHAPTER 2. GREEDY PSP 44

0.1 0.15 0.2 0.25 0.3
6.2

6.3

6.4

6.5

·104

Ratio m/n

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e

CPLEX-60

CPLEX-600

CPLEX-3600

Figure 2.8: GPSP CPLEX time limit comparison on Test bed P n = 2000

0.1 0.15 0.2 0.25 0.3

3.2

3.3

3.4

3.5

3.6

·105

Ratio m/n

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e

CPLEX-60

CPLEX-600

CPLEX-3600

Figure 2.9: GPSP CPLEX time limit comparison on Test bed P n = 5000

2.5.2 Experimental analysis

All algorithms are coded in C++ and complied in Visual Studio 2010. We use CPLEX1.25

of ILog 64-bit version with all default settings as the integer programming solver. All

CHAPTER 2. GREEDY PSP 45

experiments are conducted on a PC with Intel Core i703770 CPU @ 3.40GHz, RAM 16 GB.

We set as criteria to measure algorithm performance: computational time and solution

quality. We use optimally solved instance number and relative percentage deviation from

the optimal objective function value if available or from that of the LP relaxation problem

otherwise to indicate solution quality. More precisely, let q∗, q0 and qA be the objective

function value of GPSP1, its LP relaxation problem and that of a solution obtained from

algorithm A. Then if q∗ is available, the deviation percentage is defined as

δ =
q∗ − qA

q∗
× 100

Otherwise, the deviation percentage is defined as

δ =
q0 − qA

q0
× 100

Our experiments are designed as follows:

1. Algorithm parameter tuning: for each algorithm, different algorithm parameters com-

parison experiments are performed on a subset of test bed.

2. Algorithm performance evaluating: for each algorithm with fixed algorithm parame-

ters, a performance experiments are performed on the entire test bed.

Based on our instance generator parameter analysis in the previous subsection, the

positively correlated instances are chosen as the test bed of our algorithm parameter tuning

experiments since they represent the hardest to solve instances. The instance size is fixed

at (n,m) = (1000, 200) while other parameters are fixed as specified above.

Greedy algorithm with different utility ratios is tested and the results are presented in

Table 2.4. We can see that Ratio 4 gives the overall best performance respect to solution

quality while the computational time is on the same order as all its peers. Note that

some computational time is shown as 0 in the table which implies that it is less than 10

milliseconds.

CHAPTER 2. GREEDY PSP 46

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 1.44 60.07 1.67 60.10 1.21 60.06 0

GREEDY-1 12.12 0.00 13.51 0.00 11.22 0.00 0

GREEDY-2 13.35 0.10 14.88 0.11 12.56 0.09 0

GREEDY-3 14.64 0.00 15.52 0.00 13.39 0.00 0

GREEDY-4 6.44 0.00 7.33 0.00 5.64 0.00 0

GREEDY-5 13.25 0.00 15.09 0.01 11.98 0.00 0

GREEDY-6 14.30 0.00 15.08 0.02 12.99 0.00 0

GREEDY-7 14.07 0.00 15.25 0.00 13.23 0.00 0

GREEDY-8 14.44 0.00 15.18 0.00 13.52 0.00 0

Table 2.4: GPSP greedy algorithm parameter comparison: utility ratio

Semi-greedy algorithm with different candidate list length lCand is tested and the results

are presented in Table 2.5. The more iteration we allow, the more likely we get an improved

performance. However, limited to the algorithm itself, there is a limited space for this

improvement, so we set iLim = 50. The underlying utility ratio is chosen as Ratio 4 based

on the performance analysis regarding greedy algorithm above. The candidate list length

lCand varies from 5 to 25. As we see from the table, although the computational time is

not as negligible as greedy algorithm but still very small. The lCand = 20 and lCand = 25

give roughly the same solution quality while lCand = 20 costs less time.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

SEMIGREEDY-4-5-50 5.85 0.013 6.76 0.02 5.38 0.000 0

SEMIGREEDY-4-10-50 5.87 0.009 6.66 0.02 5.34 0.000 0

SEMIGREEDY-4-15-50 5.80 0.012 6.42 0.02 5.53 0.000 0

SEMIGREEDY-4-20-50 5.67 0.009 6.48 0.02 5.40 0.000 0

SEMIGREEDY-4-25-50 5.67 0.010 6.53 0.02 5.32 0.000 0

Table 2.5: GPSP semi-greedy algorithm parameter comparison: lCand

Multi-start local search algorithm with different iteration limit iLim is tested and the

results are reported in Table 2.6. The semi-greedy algorithm embedded in it employs greedy

algorithm with Ratio 1,2, 4 and 5 randomly with iteration limit as 50 and candidate list

CHAPTER 2. GREEDY PSP 47

length 20. The iteration limit for multi-start local search algorithm varies from 10 to 100.

Normally the more iterations we run, the more likely we get better quality solution with

the price of longer computational time. This is also shown by our experimental results that

iLim = 100 provides lowest average deviation 4.11% with longest computational time.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

MULLS-10 4.15 0.696 4.51 0.76 3.82 0.652 0

MULLS-20 4.15 1.378 4.73 1.58 3.76 1.189 0

MULLS-30 4.17 2.094 4.50 2.29 3.84 1.772 0

MULLS-40 4.03 2.731 4.23 3.06 3.75 2.554 0

MULLS-50 4.07 3.446 4.36 4.02 3.90 2.959 0

MULLS-60 4.04 4.018 4.48 4.50 3.67 3.551 0

MULLS-70 4.13 4.647 4.36 5.08 3.88 4.133 0

MULLS-80 3.95 5.284 4.20 5.71 3.67 4.956 0

MULLS-90 4.02 6.043 4.29 6.75 3.78 5.380 0

MULLS-100 3.89 6.565 4.01 7.14 3.72 5.785 0

Table 2.6: GPSP multi-start local search algorithm parameter comparison: iLim

Finally, based on the analysis from algorithm parameter tuning, greedy algorithm with

utility Ratio 4, semi-greedy algorithm with Ratio 4, lCand = 20, iLim = 50 and multi-start

local search algorithm with iLim = 100 are tested on the whole test bed. The solving

results on positively correlated instances (P) are presented in Table 2.8 to 2.10. In each

table, instance size n,m are given in the first two columns. For each instance size (n,m), we

calculate the average, maximum and minimum of deviations and computational time over

the 5 randomly generated instances. We also present the same results for CPLEX with one

hour time limit for comparison reason in Table 2.7. Note that here instead of “gap”, the

deviation is from the optimal objective function value of LP relaxation problem, which is

as the same as for the other algorithms. In this way we can have a more fair comparison of

algorithm performance.

CHAPTER 2. GREEDY PSP 48

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 0.53 3602.98 0.57 3603.39 0.49 3602.65

1000 150 0.85 3602.67 0.90 3603.01 0.79 3602.42

1000 200 1.17 3602.62 1.27 3603.26 1.10 3602.21

1000 250 1.37 3602.65 1.48 3603.57 1.32 3601.97

1000 300 1.61 3602.77 1.70 3603.16 1.43 3602.23

2000 200 0.56 3602.70 0.59 3602.97 0.53 3602.24

2000 300 0.73 3602.76 0.82 3603.99 0.65 3602.05

2000 400 0.97 3602.23 1.01 3604.56 0.90 3601.31

2000 500 1.19 3602.51 1.34 3604.44 1.10 3601.28

2000 600 1.49 3605.09 1.53 3609.34 1.41 3601.69

5000 500 0.57 3606.96 0.59 3613.09 0.56 3601.27

5000 750 0.75 3606.47 0.77 3612.02 0.73 3600.91

5000 1000 0.87 3602.07 0.92 3602.66 0.82 3601.61

5000 1250 1.03 3604.57 1.11 3606.48 0.96 3601.89

5000 1500 1.11 3604.96 1.24 3608.03 0.99 3601.88

Table 2.7: GPSP - the results of CPLEX on Test bed P

In Table 2.8, we present the solutions achieved by greedy algorithm on positively cor-

related testing instances (P). Regarding computational time, greedy algorithm is very fast.

For smaller instance (n = 1000) the computational time is less than 0.01 seconds, and for

largest testing instances (n = 5000) it is less than 0.01 seconds. Regarding the solution

quality, the average deviation is between 3.44% and 7.37%, which is reasonable. Also, a

clear pattern can be observed that given n, as m increases, the average deviation increases

as well. This is true for all average, maximal and minimal deviation.

CHAPTER 2. GREEDY PSP 49

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 4.92 0.00 5.29 0.00 4.47 0.00

1000 150 5.32 0.00 5.68 0.00 5.10 0.00

1000 200 6.44 0.00 7.33 0.02 5.64 0.00

1000 250 6.80 0.00 7.29 0.00 6.40 0.00

1000 300 7.37 0.00 8.70 0.00 6.37 0.00

2000 200 4.70 0.00 5.00 0.00 4.25 0.00

2000 300 4.83 0.00 5.05 0.02 4.58 0.00

2000 400 5.43 0.00 6.01 0.00 5.04 0.00

2000 500 5.60 0.01 6.08 0.02 5.10 0.00

2000 600 5.84 0.00 6.10 0.01 5.32 0.00

5000 500 3.64 0.01 4.01 0.02 3.44 0.00

5000 750 3.71 0.01 3.91 0.02 3.51 0.00

5000 1000 4.00 0.00 4.31 0.02 3.82 0.00

5000 1250 3.97 0.01 4.37 0.02 3.70 0.00

5000 1500 4.41 0.01 4.58 0.02 4.03 0.00

Table 2.8: GPSP - the results of greedy algorithm on Test bed P

In Table 2.9, the solutions achieved by semi-greedy algorithm on positively correlated

testing instances (P) are presented. Regarding computational time, it is not as negligible

as greedy algorithm. For smaller instances, the computational time is 0.01 seconds and for

largest testing instances it increases to as much as 0.25 seconds. However, within less than

1 second, semi-greedy algorithm improves the solution quality for all the testing instances.

The average deviation is between 3.17% and 6.96%, which is at least 0.30% less than that

of greedy algorithm on average. We also observe a pattern that for fixed n, as m increases

the average deviation increases.

CHAPTER 2. GREEDY PSP 50

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 4.36 0.01 4.66 0.01 3.98 0.00

1000 150 4.84 0.01 5.18 0.02 4.64 0.00

1000 200 5.67 0.01 6.35 0.02 5.30 0.00

1000 250 6.09 0.01 6.47 0.02 5.67 0.00

1000 300 6.52 0.01 6.96 0.01 6.04 0.00

2000 200 4.29 0.03 4.52 0.03 3.78 0.02

2000 300 4.40 0.03 4.67 0.03 4.24 0.03

2000 400 4.77 0.04 4.99 0.05 4.43 0.03

2000 500 5.19 0.04 5.46 0.05 4.88 0.03

2000 600 5.42 0.05 5.92 0.05 4.80 0.05

5000 500 3.42 0.16 3.71 0.17 3.17 0.16

5000 750 3.53 0.18 3.57 0.19 3.50 0.17

5000 1000 3.76 0.20 3.95 0.22 3.43 0.19

5000 1250 3.70 0.22 3.90 0.23 3.52 0.20

5000 1500 4.13 0.25 4.29 0.27 3.87 0.23

Table 2.9: GPSP - the results of semi-greedy algorithm on Test bed P

In Table 2.10 multi-start local search algorithm solving results on positively correlated

testing instances are presented. Regarding computational time, we see a dramatic increase

comparing to greedy type algorithms. For smaller instances, it is less than 10 seconds

while for largest testing instances it goes up to 13 minutes. In return, a further improved

solutions are reported. The average deviation is between 2.37% to 4.99%, which is around

1% less than that of semi-greedy algorithm on average. However, we point out the fact that

CPLEX outperforms this multi-start local search algorithm respect to both solution quality

and computational time. This is because as we analyzed before, the solutions from CPLEX

does not improve too much from the first 10 minute to one hour, hence the results in Table

2.7 can roughly represent the results of CPLEX in 10 minutes. In this way, on the same

order of time 10 minutes, CPLEX provides better solution with deviation between 0.53% to

1.61%.

CHAPTER 2. GREEDY PSP 51

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 2.98 5.34 3.09 6.42 2.78 4.25

1000 150 3.30 6.53 3.58 7.20 2.90 6.29

1000 200 3.95 7.42 4.00 8.13 3.86 6.85

1000 250 4.54 8.06 4.87 8.58 4.11 6.64

1000 300 4.71 9.65 4.99 10.73 4.35 9.08

2000 200 2.84 28.57 3.05 31.68 2.61 23.54

2000 300 3.26 33.37 3.48 35.85 3.11 30.55

2000 400 3.55 42.48 3.74 46.00 3.25 39.61

2000 500 3.94 49.70 4.25 51.84 3.67 47.21

2000 600 4.18 55.00 4.60 61.65 3.93 49.72

5000 500 2.45 323.93 2.57 356.83 2.37 285.09

5000 750 2.62 428.80 2.81 504.18 2.51 353.23

5000 1000 2.74 533.56 2.88 607.14 2.62 449.86

5000 1250 2.90 656.40 3.09 768.94 2.74 602.44

5000 1500 3.02 778.91 3.17 876.10 2.89 698.55

Table 2.10: GPSP - the results of multi-start local search algorithm on Test bed P

A summary graph of average deviation of above three heuristic algorithms and CPLEX

is given in Figure 2.10. Note that the x coordinates corresponds to the instance size in

the same order as Table 2.10. The first group of segments where x from 1 to 5 represents

n = 1000 with m/n varies from 0.1 to 0.3. The second and the third group of segments

represent n = 2000 and n = 5000 respectively with various m/n from 0.1 to 0.3.

First we observe that fixing n the deviation increase as m increase for all algorithms

including CPLEX. Second, the supreme relation respect to solution quality is maintained

for all instance size that CPLEX is better than multi-start local search, which is better than

semi-greedy algorithm and greedy algorithm. Third, for our developed heuristic algorithms,

as n increases, the deviation of heuristic algorithm decreases. We believe that it is mostly

due to the larger order of objective function value instead of algorithm performance itself.

However, CPLEX manages to maintain the same level deviation for all instances. Finally

the conclusion can be drawn that CPLEX is very efficient to solve GPSP. If a fast and

reasonable solution is required, semi-greedy algorithm is recommended.

CHAPTER 2. GREEDY PSP 52

0 2 4 6 8 10 12 14 16
0

2

4

6

8

Instance size index

A
ve

ra
ge

d
ev

ia
ti

on
Greedy

Semi-greedy

Multi-start LS

CPLEX

Figure 2.10: GPSP heuristic algorithms comparison on Test bed P

A summary results of the deviation and computational time for all the algorithms on

Test bed P is given in Table 2.11. We can draw the same conclusion obtained from above

figure.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.99 3603.600 1.70 3613.09 0.49 3600.910 0

GREEDY-4 5.13 0.003 8.70 0.02 3.44 0.000 0

SEMIGREEDY-4-20-50 4.67 0.093 6.96 0.31 3.17 0.000 0

MULLS-100 3.40 197.848 4.99 876.10 2.37 4.245 0

Table 2.11: GPSP - the summary results of algorithms on Test bed P

Due to the limitation of space, the results on other types of instance (R, N, U, S, W)

are shown in Appendix A. This is because we observe a very similar results to positively

correlated instance (P) on other types of testing instances. All the algorithm performance

are in accordance with that of CPLEX. In other words, the hard to solve instance for CPLEX

CHAPTER 2. GREEDY PSP 53

remains hard for our heuristic algorithms, which is indicated by the deviation from optimum

or LP relaxation objective function value.

Chapter 3

Benevolent PSP

3.1 BPSP formulation

In the previous chapters, we consider PSP with objective function defined as

f(x) =
∑
j∈N

cjxj =
∑
j∈N

(
∑
i∈Mj

wi)xj =
∑
i∈M

(
∑
j∈Ni

xj)wi

where wi is the cost of edge ei. Hence the edge cost wi contributes to the objective value as

many times as the number of selected paths containing it which is
∑

j∈Ni
xj . Corresponding

to the fibre optic network design problem, the nominal cost of a path is charged to each client

even though some of its segments (edges) may be shared by more than one client. It seems

beneficial for the construction company. However, when the quote is too high, potential

clients may cancel their projects or turn to competitor companies. Given this concern, we

propose another model that the cost of each edge is equally shared by the clients (paths)

that use it.

Let G = (V,E) be a given graph, where the edge set E = {e1, e2, . . . , em} is the union

of n given paths P1, P2, . . . , Pn in G. For each edge ei ∈ E, a cost wi and a capacity bi

are prescribed. Also let F i denote the set of paths that contain edge ei. Each path Pj has

capacity usage aj . Given a selected set of paths S, we say an edge ei is selected if there is

a selected path that contains it and denote this as ei ∈ S. The Benevolent Path Selection

Problem (BPSP) is to choose a subset of paths S such that the total cost of the selected

edges
∑

ei∈S wi is maximized while the paths in S obey appropriate capacity restrictions,

i.e.,
∑

Pj∈S∩F i aj ≤ bi for all ei ∈ E.

54

CHAPTER 3. BENEVOLENT PSP 55

We now formulate BPSP as an integer programming problem. For each j ∈ N , define

xj as (2.1). Then an edge ei is selected if and only if there exists j ∈ Ni such that xj = 1.

Hence the objective function can be expressed as∑
i∈M

wi max
j∈Ni

{xj}

With capacity constraints ∑
j∈Ni

ajxj ≤ bi i ∈M, (3.1)

BPSP can be formulated as the following integer programming problem:

CCP: Maximize
∑
i∈M

wi max
j∈Ni

{xj}

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

xj ∈ {0, 1} ∀j ∈ N

We call the integer programming problem with above form as Capacity Cover problem

(CCP) since the the problem is to select/cover as many rows as possible while maintaining

capacity constraints.

To linearize this formulation, introduce variable

zi =

1 if ei is selected

0 otherwise
i ∈M (3.2)

Then the objective function can be expressed as
∑

i∈M wizi. Since an edge ei is selected if

and only if there is a selected path containing it, it implies zi = 1 if and only if
∑

j∈Mi
xj ≥ 1.

This relation can be ensured by constraints as follows:

zi ≤
∑
j∈Ni

xj ≤ |Ni|zi (3.3)

We refer constraints (3.3) as the edge selection constraints. When
∑

j∈Mi
xj = 0, zi = 0

due to the first inequality. When
∑

j∈Mi
xj ≥ 1, we have zi = 1 resulting from the second

inequality.

CHAPTER 3. BENEVOLENT PSP 56

Combining these constraints with path capacity constraints, the BPSP can also be for-

mulated as following integer linear programming problem:

BPSP1: Maximize g1(z) =
∑
i∈M

wizi

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

zi ≤
∑
j∈Ni

xj ≤ |Ni|zi i ∈M

xj ∈ {0, 1} ∀j ∈ N

zi ∈ {0, 1} ∀i ∈M

A matrix version is also given for later convenience. Recall matrix A = (aij)m×n and

A′ = (a′ij)m×n defined for GPSP as

aij =

aj if i ∈Mj

0 otherwise,
a′ij =

1 if aij 6= 0

0 otherwise

Let diagonal matrix D = (dij)m×m be given as

dij =

|Ni| if i = j

0 otherwise
(3.4)

With edge capacity vector b = (b1, b2, . . . , bm)T , edge cost vector w = (w1, w2, . . . , wm),

zT = (z1, z2, . . . , zm) and xT = (x1, x2, . . . , xn), the matrix form of the above formulation

BPSP1 can be written as

Maximize g1(z) = wz

Subject to:

Ax ≤ b

z −A′x ≤ 0

A′x−Dz ≤ 0

x ∈ Bn, z ∈ Bm

CHAPTER 3. BENEVOLENT PSP 57

In BPSP1, there are m+n variables and 3m constraints. Note that when wi is positive, the

objective function drives zi to be 1. Then the corresponding constraints
∑

j∈Ni
xj ≤ |Ni|zi

are always satisfied. In this case, the constraints number can be reduced to 2m.

In the previous model, the decision variables represent paths and edges separately. We

modify the model using additional variables so that it can be used in applications where

additional constraints are added in relation to edges. For i ∈M, j ∈ Ni, define yij as (2.6)

yij =

1 if edge ei is selected by path Pj

0 otherwise

Then edge capacity constraints can be formulated as∑
j∈Ni

ajyij ≤ bi ∀i ∈M

The path selection constraints ∑
i∈Mj

yij = |Mj |xj ∀j ∈ N

are required to ensure that the whole path is selected. Then an alternative formulation of

BPSP is given below.

BPSP2: Maximize g1(z) =
∑
i∈M

wizi

Subject to: ∑
j∈Ni

ajyij ≤ bi i ∈M

∑
i∈Mj

yij = |Mj |xj j ∈ N

zi ≤
∑
j∈Ni

xj ≤ |Ni|zi i ∈M

xj ∈ {0, 1} ∀j ∈ N

yij ∈ {0, 1} ∀i ∈M, j ∈ Ni

zi ∈ {0, 1} ∀i ∈M

This is a variation of the formulation given in [55]. BPSP2 has m + n + L variables and

3m+ n constraints.

CHAPTER 3. BENEVOLENT PSP 58

Note that with variable yij , the edge selections constraints (3.3) can be replaced by

zi ≤
∑
j∈Ni

yij ≤ |Ni|zi i ∈M (3.5)

The path selection constraints can also be enforced by yij = xj . Then the third formulation

can be formulated as follows:

BPSP3: Maximize g1(z) =
∑
i∈M

wizi

Subject to: ∑
j∈Ni

ajyij ≤ bi i ∈M

yij = xj i ∈M, j ∈ Ni

zi ≤
∑
j∈Ni

yij ≤ |Ni|zi i ∈M

xj ∈ {0, 1} ∀j ∈ N

yij ∈ {0, 1} ∀i ∈M, j ∈ Ni

zi ∈ {0, 1} ∀i ∈M

There are m+ n+ L variables and 2m+ L constraints.

These three formulations are equivalent for BPSP. However, the following theorem shows

their difference when we relax the integer restrictions. The resulting upper bounds are

tighter for some than others. Let 〈x0, z0〉, 〈x∗, y∗, z∗〉 and 〈x̄, ȳ, z̄〉 be optimal solutions for

the LP relaxation of BPSP1, BPSP2 and BPSP3 respectively, where x0, x∗, x̄ ∈ Bn, y∗, ȳ ∈ E
and z0, z∗, z̄ ∈ Bm.

Theorem 3.1.1. g1(z
0) = g1(z̄) ≤ g1(z∗).

Proof. Given 〈x0, z0〉, define y0 = (y0ij) for i ∈M, j ∈ Ni as

y0ij =

x0j if i ∈Mj

0 otherwise
(3.6)

Then 〈x0, y0, z0〉 is a feasible solution to the LP relaxation of BPSP3. Due to equivalence

of yij and xj , they also share the same objective function value g1(z
0). By optimality of

〈x̄, ȳ, z̄〉, we have g1(z
0) ≤ g1(z̄). Given 〈x̄, ȳ, z̄〉, 〈x̄, z̄〉 also forms a feasible solution for

CHAPTER 3. BENEVOLENT PSP 59

BPSP1 with the same objective function value g1(z̄). This implies g1(z
0) ≥ g1(z̄). Hence

g1(z
0) = g1(z̄).

In fact, 〈x0, y0, z0〉 also maintains the feasibility for BPSP2. Therefore, we have the

inequality holds.

3.2 BPSP complexity and special case study

In the previous section, we have shown that BPSP can be formulated as a CCP. In fact,

any CCP can be reduced to BPSP as well.

Theorem 3.2.1. BPSP and CCP are equivalent in the sense that they can be reduced to

each other in polynomial time.

Proof. We have formulated BPSP into the CPP before. Now let us show that any CCP

can be reduced to a BPSP. Given a CCP problem, we construct a graph G of BPSP: Let

V 1 = {vi : i = 0, 1, . . . ,m}, and E1 = {e1i = (vi−1, vi) : i = 1, 2, . . . ,m}. Let the capacity

and cost of e1i be bi and wi respectively. Corresponding to each variable xj , consider the

ordered set Sj = {e1i : aij 6= 0} where the ordering of the elements in Sj are such that e1i

appears before e1k if and only if i < k. Note that Sj contains at least one edge (assume

w.l.o.g. the coefficient matrix of CCP has no columns of zeros), and is a collection of paths

in G′. Two paths in Sj can be joined to form a single path by introducing a new node and

connecting one of the end points of each path to this node by an edge with capacity ∞ and

cost 0. Finally, Repeat this process while we get a single path Pj containing all edges of Sj .

Let G = (V,E) be the graph obtained by taking the union of all Pj , j = 1, 2, . . . , n.

Note that there is a one-to-one map between the solution x ∈ {0, 1}n to CCP and the

solution S ⊆ N to BPSP given by

xj = 1 if and only if j ∈ S, ∀j ∈ N (3.7)

We will show that BPSP on above constructed graph G is equivalent to the CCP under

consideration, i.e., given a feasible solution to one problem, the corresponding solution

defined by (3.7) to the other problem is feasible as well and they share the same objective

function value.

If given x ∈ {0, 1}n is feasible to CCP, by edge capacity constraints (3.1), S satisfies

capacity constraints therefore is a feasible solution, and vice versa. Also, ei is selected if and

CHAPTER 3. BENEVOLENT PSP 60

only if there exists j ∈ Ni such that j ∈ S which implies maxj∈Ni{xj} = 1 by the mapping

relation, hence x and S share the same objective function value. The results follows.

u v

v0 v1 v2 v3 v4 v5 vm

v11

[b3, w3]

P1

[b1, w1]

[∞, 0] [∞, 0]

[capacity, cost]

Figure 3.1: Construction BPSP from CCP

With different objectives, BPSP remains NP-hard as GPSP. However, on some special

cases BPSP is shown to be solvable in polynomial time. We now present the NP-hardness

of BPSP and identify several polynomial time solvable cases for it.

Theorem 3.2.2. BPSP is NP-hard.

Proof. We reduce the partition problem to BPSP. Given a set of number s1, s2, . . . , sn, the

partition problem is to find a subset S of N = {1, 2, . . . , n} such that
∑

i∈S si =
∑

i 6∈S si.

Using this instance, we construct a GPSP instance on graph G as follows: Let vertex set

V = {vk: k = 0, 1, . . . , n, n+1}, define edge set E = {(v0, vk) : k ∈ N ∪{n+1}}. For j ∈ N ,

path Pj consists of edge (vn+1, v0) and (v0, vj) with capacity usage sj . Assign edge cost

w(0,n+1) = 0 and w(0,i) = si for i ∈ N and edge capacity b(0,n+1) = 1
2

∑
j∈N sj and b(0,i) =∞

for i ∈ N . Then it is easy to prove that the partition problem has feasible solution if and

only if BPSP based on above graph G has optimal objective value as 1
2

∑
j∈N sj . Due to

NP-hardness of the partition problem, BPSP is NP-hard.

Because of the proof for Theorem 3.2.2, we have

Corollary 3.2.1. BPSP on a star graph (BPSP-S) is NP-hard.

According to the equivalent relation between CCP and BPSP shown in Theorem 3.2.1,

an immediate result follows that CCP is NP-hard as well. Here we also we point out some

facts regarding the complexity of CCP:

CHAPTER 3. BENEVOLENT PSP 61

Lemma 3.2.1. Given a feasible solution x to CCP, a corresponding optimal solution z can

be found in polynomial time. They are selected as follows:

zi =

1 if
∑

j∈Ni
xj > 0

0 otherwise
(3.8)

However, given solution z, to find a corresponding feasible solution x is NP-hard. We

prove this by reduction from the minimum set covering problem (MSCP). Let U be a finite

set and F be a family of subsets of U . The MSCP is to find a subset C ⊆ F with minimal

cardinality |C| such that the union of subsets in C is U . The MSCP can be formulated as

an integer programming problem:

Minimize
∑
j∈N

xj

Subject to: ∑
j∈Ni

xj ≥ 1 ∀i ∈M

xj ∈ {0, 1} ∀j ∈ N

(3.9)

Given an integer K, the MSCP decision problem can be formulated as

Maximize 0

Subject to: ∑
j∈N

xj ≤ K∑
j∈Ni

xj ≥ 1 ∀i ∈M

xj ∈ {0, 1} ∀j ∈ N

(3.10)

Theorem 3.2.3. Given a solution z ∈ {0, 1}n to CCP, obtaining the corresponding feasible

solution x satisfying (3.8) is NP-hard.

Proof. Given z, let M ′ = {i : zi = 1}. Then finding a corresponding x of CCP becomes a

CHAPTER 3. BENEVOLENT PSP 62

feasibility problem which can be formulated as follows:

Maximize 0

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

∑
j∈Ni

xj ≥ 1 i ∈M ′

xj ∈ {0, 1} ∀j ∈ N

(3.11)

We can see that the formulation of MSCP decision problem (3.10) is a special case of (3.11).

The result follows from the NP-completeness of MSCP decision problem.

Theorem 3.2.4. BPSP on a path graph (BPSP-P) with aj = a0 for all j ∈ N and wi > 0

for i ∈M is solvable in polynomial time.

Proof. Consider the integer programming formulation BPSP1. As we mentioned earlier,

when w > 0, constraints
∑

j∈Ni
xj ≤ |Ni|zi, for i ∈M are redundant due to the fact that to

maximize wz, zi is driven to be 1 for
∑

j∈Ni
xj ≥ 1. Because of the uniform path capacity

aj = a0 for all j ∈ N , we can transform the constraint Ax ≤ b into A′x ≤ 1
a0
b by dividing

both sides of the constraints by a0. Since the left hand side of A′ is integer and x ∈ {0, 1}n,

A′x ≤ 1
a0
b is equivalent to A′x ≤

⌊
bi
a0

⌋
. Therefore the formulation of BPSP-P simplifies to

Maximize wz (3.12)

Subject to: (
A′ 0

−A′ I

)(
x

z

)
≤

(
0

b′

)
(3.13)

x ∈ {0, 1}n, z ∈ {0, 1}m (3.14)

When the underlying graph is a path, all the edges in a path are consecutive, which to-

gether with the fact that A′ is a 0-1 matrix, we have 1’s in each column of A′ are consecutive.

Therefore, A′ is totally unimodular and the coefficient matrix of constraints (3.13)(
A′ 0

−A′ I

)
is totally unimodular as well. By solving this integer programming, BPSP-P satisfying given

conditions can be solved in polynomial time.

CHAPTER 3. BENEVOLENT PSP 63

A BPSP where the coefficient matrix A of its BPSP1 formulation is 1-knot is called

1-knot BPSP (1-KBPSP). Such a problem can be formulated as

Maximize:
∑
i∈M

wizi

Subject to:

li∑
j=li−1

ajxj ≤ bi i ∈M

zi ≤
li∑

j=li−1

xj ≤ |Ni|zi i ∈M

xj ∈ {0, 1} j ∈ N

zi ∈ {0, 1} i ∈M.

where l0 = 1.

Consider the problem P (k) constitutes the first k constraints and lk variables

P (k) : Maximize:
k∑
i=1

wizi

Subject to:

li∑
j=li−1

ajxj ≤ bi i = 1, 2, . . . , k

zi ≤
li∑

j=li−1

xj ≤ |Ni|zi i = 1, 2, . . . , k

xj ∈ {0, 1} j = 1, 2, . . . , lk

zi ∈ {0, 1} i = 1, 2, . . . , k.

Let P (k|0) be the restriction of P (k) with the additional constraint that xlk = 0. Similarly,

let P (k|1) be the restriction of P (k) with the additional constraint that xlk = 1. Let V (k|0)

and V (k|1) be the optimal objective function value of P (k|0) and P (k|1) respectively.

CHAPTER 3. BENEVOLENT PSP 64

Consider the subproblems for p, q ∈ {0, 1}:

SP (k|p|q) Maximize: wk+1zk+1

Subject to:

lk+1∑
j=lk

ajxj ≤ bk+1

zk+1 ≤
lk+1∑
j=lk

xj ≤ |Nk|zk+1

xlk = p, xlk+1
= q

xj ∈ {0, 1} j = lk, lk + 2, . . . , lk+1.

Let W (k|p|q) be the optimal objective function values of SP (k|p|q) for p, q ∈ {0, 1} respec-

tively. In fact, we have

W (k|p|q) =



−∞ if SP (k|p|q) is infeasible

wk+1 if p = 1, or q = 1 and SP (k|p|q) is feasible

0 if p+ q = 0 and SP (k|p|q) is feasible, aj > bk+1, ∀j ∈ NSP
j

wk+1 if p+ q = 0 and SP (k|p|q) is feasible, ∃aj ≤ bk+1, j ∈ NSP
k

where NSP
k = {j = 1 + lk, . . . , lk+1 − 1}. Note that by checking whether inequality palk +

qaalk+1
≤ bk+1 holds or not, we obtain the feasibility of SP (k|p|q). Hence SP (k|p|q) can be

solved in polynomial time. Then

V (k + 1|0) = max {V (k|0) +W (k|0|0), V (k|1) +W (k|1|0)} (3.15)

V (k + 1|1) = max {V (k|0) +W (k|0|1), V (k, 1) +W (k|1|1)} (3.16)

The optimal objective function value is given by

max{V (m|0), V (m|1)}. (3.17)

Using the recurrence relations (3.15) and (3.16) and equation (3.17), by backtracking using

the corresponding solutions of the knapsack problems, an optimal solution to 1-KBPSP can

be constructed.

Theorem 3.2.5. 1-KBPSP can be solved in O(L+m) time.

CHAPTER 3. BENEVOLENT PSP 65

Proof. There are at most m subproblems SP (k| · |·) are constructed and they can be solved

in polynomial time O(|Nk|). Hence the complexity of solving subproblems SP (k|·|·) is O(L).

Given values W (k| · |·), updating V (k|·) costs O(m) time in total. Hence the complexity of

solving 1-KBPSP is O(L+m).

Extending the 1-KBPSP, a BPSP is called r-knot BPSP (r-KBPSP) if the constraint

coefficient matrix A of its BPSP1 formulation is r-knot. It can be formulated as follows:

Maximize:
∑
i∈M

wizi

Subject to:

li∑
j=li−1−r+1

ajxj ≤ bi i ∈M

zi ≤
li∑

j=li−1−r+1

xj ≤ |Ni|zi i ∈M

xj ∈ {0, 1} j ∈ N.

where l0 = r, lm = n.

Theorem 3.2.6. r-KBPSP can be solved in polynomial time for r = O(log n).

Proof. For r-KBPSP, let P (k) be its subproblem constituting the first lk variables:

Maximize:

lk∑
i=l1

wizi

Subject to:

li∑
j=li−1−r+1

ajxj ≤ bi i = 1, 2, . . . , lk

zi ≤
li∑

j=li−1−r+1

xj ≤ |Ni|zi i = 1, 2, . . . , lk

xj ∈ {0, 1} i = 1, 2, . . . , lk.

Applying the similar idea of 1-KBPSP, for any η ∈ {0, 1}r we construct P (k|η) as the

restriction of P (k) with additional constraint that knot variables {xj}lklk−r+1 are fixed as

η, i.e., xlk−i = ηi. Let V (k|η) be the optimal objective function value of P (k|η). For any

CHAPTER 3. BENEVOLENT PSP 66

y, η ∈ {0, 1}r, consider subproblems SP (k|y|η) defined as

SP (k|y|η) Maximize: wk+1zk+1

Subject to:

lk+1∑
lk

ajxj ≤ bk+1

zk+1 ≤
lk+1∑
lk

xj ≤ |Nk+1|zk+1

xlk+1−j+1 = ηj ∀j = 1, . . . r

xlk−j+1 = yj ∀j = 1, . . . r

xj ∈ {0, 1} j = lk − r + 1, lk − r + 2, . . . , lk+1.

Let W (k|y|η) be the optimal objective function values of SP (k|y|η). Then the recurrence

relation becomes

V (k + 1|η) = max
y∈{0,1}r

{V (k|y) +W (k|y|η)} (3.18)

The optimal objective function value is given by

max
η∈{0,1}r

V (m|η) (3.19)

SP (k|y|η) can be solved in polynomial time and the optimal value W (k|y|η) is calculated

as

W (k|y|η) =



−∞ if SP (k|y|η) is infeasible

wk+1 if |η|+ |y| ≥ 1, SP (k|y|η) is feasible

0 if |η|+ |y| = 0, SP (k|y|η) is feasible, aj > bk+1, ∀j ∈ NSP
k

wk+1 otherwise

(3.20)

where NSP
j = {1 + lk, . . . , lk+1}. Hence r-KBPSP can be solved by using (3.20) with

recurrence relation defined by (3.18) and equation (3.19). The optimal solution can be

constructed by backtracking the corresponding solutions of subproblems.

For each k, there are 22r subproblems SP (k| · |·) generated during the process, and

SP (k| · |·) can be solved in O(|Nk|) time. Given values W (k| · |·), the update of values V (k|·)
take O(m22r) time in total. Hence r-KBPSP can be solved in O(m22r + 22rL) time, which

is polynomial for r = O(log n).

CHAPTER 3. BENEVOLENT PSP 67

3.3 Heuristic algorithms for BPSP

In this section, we develop several heuristic algorithms for BPSP and present the algorithm

performance analysis based on experimental results. The heuristic algorithms we studied are

greedy type algorithms including greedy algorithm, semi-greedy algorithm and local search

type algorithm with multi-start.

3.3.1 Greedy algorithm

The greedy algorithm of the BPSP starts from the trivial solution x = 0 and considers to

select variables one by one in an order determined by a prescribed utility ratio. Before the

algorithm terminates, the continuously updated solution x is called partial solution. Let x

be the current partial solution, the utility ratio rj , j ∈ N is defined as

rj =
∑
i∈Mj

(1−max
k∈Ni

{xk})wi ∀j ∈ N (3.21)

which is interpreted as the total cost of the unselected edges that the path Pj contains. The

utility ratio depends on the partial solution hence is updated during the greedy selection

procedure. In each iteration, the variable with the greatest utility ratio is considered and is

set to 1 if the feasibility is not violated, which is followed by utility ratio update before the

next iteration. A formal description of the greedy algorithm of BPSP is given below:

CHAPTER 3. BENEVOLENT PSP 68

Algorithm 4: Greedy Algorithm for BPSP

Initialize x← 0;

for j ← 1 to n do /* initialize r */

rj =
∑

i∈Mj
wi;

π ← the permutation of N with decreasing value rj ;

for j ← 1 to n do

add← π(j);

if radd = 0 then /* return x if no possible improvement */

return x;

if (x|xadd = 1) is feasible then

xadd = 1;

Update r as (3.21) with updated x;

Reorder π(j + 1) to π(n) according to r;

return x

The initialization of the utility ratio takes O(L) time. For each xj , the feasibility checking

costs O(Mj) and the total feasibility checking complexity is O(L). Since cost wi can be newly

added once and the update of utility ratio takes O(|Ni|) time, hence the total time cost for

ratio update is up to O(L). With reordering in each iteration, the complexity of the greedy

algorithm for BPSP is O(3L+
∑n

j=1 j log j).

3.3.2 Semi-greedy algorithm

In semi-greedy algorithm, we also employ greedy selection procedure. However, in each

iteration we sequentially consider a variable randomly chosen from a candidate list which

consists of variables with “good enough” utility ratio values. The underlying utility ratio is

as the same as the one used in greedy algorithm defined as (3.21). This randomness allow us

to repeat the greedy selection procedures and the best found solution is returned. A formal

description of the semi-greedy algorithm is given below:

CHAPTER 3. BENEVOLENT PSP 69

Algorithm 5: Semi-greedy Algorithm for BPSP

Input: lCand, iLim, permutation π determined by utility ratio r

Initialize: x∗ ← 0, iter ← 1;

repeat

next← lCand+ 1, x← 0, candidate list C ← {π(1), π(2), . . . , π(lCand)};
while C 6= ∅ do

j ← select a random element in C ; /* random selection */

if (x|xj = 1) is feasible then

xj = 1;

Update utility ratio r and reorder π(j + 1) to π(n);

if next ≤ n then /* update C */

C ← C ∪ {π(next)} \ {j};
next← next+ 1;

else

C ← C \ {j};

if f(x) > f(x∗) then /* update best known solution */

x∗ ← x;

iter ← iter + 1;

until iter = iLim;

return x∗

The parameter lCand determines the length of candidate list and the iteration limit iLim

is the number of iterations that we repeat the greedy selection procedure. We set lCand as a

constant which is independent from instance size so thats the complexity of the semi-greedy

algorithm is the same as the greedy algorithm times iLim: O(iLim(3L+
∑n

j=1 j log j)).

3.3.3 Multi-start local search algorithm

We develop a multi-start local search algorithm based on 2-swap neighborhood for BPSP.

The algorithm starts from an initial solution generated by semi-greedy algorithm, and ap-

plies first-improving local search based on 2-swap neighborhood until a local optimum is

reached. These two steps form one iteration. We perform iLim iterations where iLim is a

prescribed parameter and return the best known solution found in the whole procedure. Due

CHAPTER 3. BENEVOLENT PSP 70

to the diversity of initial solution obtained from semi-greedy algorithm, different solution

spaces are expected to be explored. Let g(·) be the objective function. A formal description

of the algorithm is given below:

Algorithm 6: Multi-start local search algorithm for BPSP

Input: iteration limit iLim

Initialize: x∗ ← 0;

for iter ← 1 to iLim do

x← obtained from semi-greedy algorithm;

improve← true;

while improve do

improve = false;

for add ∈ J0(x) and !improve do

for drop ∈ J1(x) and !improve do
if g(x|xadd = 1, xdrop = 0) > g(x) and (x|xadd = 1, xdrop = 0) is feasible

then

xadd = 1, xdrop = 0;

improve← true;

if g(x) > g(x∗) then

x∗ ← x;

return x∗.

We also implemented a 1-flip local search after the 2-swap local search procedure. First

we scan all the variables in {j ∈ N : xj = 1} and set xj = 0 if it does not affect the objective

function value. Then we scan all the variable in {j ∈ N : xj = 0} and perform greedy

selection if the feasibility is not violated. However, the experiments show that although

there are always redundant variables can be removed, no feasible adding move is available

to improve the solution. Hence we do not include that procedure.

3.4 Computational results and analysis

In this section, experimental results are presented to analyze the performance of above

developed heuristic algorithms for BPSP.

CHAPTER 3. BENEVOLENT PSP 71

In order to draw reasonable conclusion, we first develop the instance generator to gen-

erate representative test bed. Due to the equivalent relation between BPSP and CCP

established in Theorem 3.1.1, we generate CCP instance instead of BPSP instance. The

instance generator is based on that of GPSP for PSP inspired instance. In fact, except

for objective function definition, they contain exactly the same data including constraint

coefficient matrix A, edge capacity vector b, edge cost vector w and path capacity usage

vector a. Hence the same instance generator parameters are used. We analyze the above

parameters’ affect to the instance solvability from the solving results of CPLEX which is

reported in Table 3.1. The time limit for CPLEX is set as 1 minute.

Parameter Value AveOptTime AveOptNum(%) Total

n 1000 8.42 91 108

m/n 0.50 0.64 100 36

1.00 1.19 100 36

5.00 23.44 72 36

α 0.25 5.52 75 36

0.50 9.39 100 36

0.75 10.36 97 36

rU 0.10 4.53 89 36

0.20 6.42 89 36

0.50 14.32 94 36

Uau 0.05 9.18 91 54

Nau 0.05 7.66 91 54

Table 3.1: BPSP instance generator parameters comparison

We can see that CPLEX is very efficient at solving BPSP. In fact, most of the testing

instances can be solved within one minute. Regarding ratio κ = m/n, we test three values

0.5, 1 and 5. When m/n is as small as 0.5 or 1, all the generated instances are solved

optimally within one minute. However, when m/n increases to 5, we have 72% instances

optimally solved within given time limit. Hence a larger constraints size produces harder

to solve instance. Regarding α, we test three values 0.25, 0.50 and 0.75. The optimally

CHAPTER 3. BENEVOLENT PSP 72

solved instance percentages are 75%, 100% and 97% respectively. This is completely the

opposite for GPSP for which α = 0.50 produce the hardest instance. We believe that the

larger α is, the easier to find a feasible x such that the objective function values reaches

its upper bound
∑

i∈M wi. Hence α = 0.25 gives hardest instance. Regarding rU , which

determinates upper bound of nonzero entries in each constraint, we test three values 0.1, 0.2

and 0.5. The latter two values have the same percentage of optimally solved instance 89%,

which is smaller than 94% of rU = 0.1. This result is in accordance with our expectation.

A larger rU leads to a denser coefficient matrix A, hence a larger chance that an edge is

selected.

Based on above analysis on instance generator parameters, we see that BPSP is easy for

CPLEX to solve. Hence we choose our parameter as follows to generate relatively hard to

solve instance: n(1000), m(5000), α(0.25), rU(0.2), Uau(0.05), cU(0.05). All the instances

are generated with the same set of instance generator parameters with different seed. The

solving results of the chosen test bed instances are summarized in Table 3.2, all the instances

are optimally solved by CPLEX within 6 minutes.

ID m n α rU Uau OPT Time(s) UBD(LP relax)

1 5000 1000 0.25 0.2 0.05 671139 165.830 671145

2 5000 1000 0.25 0.2 0.05 681342 281.465 681364

3 5000 1000 0.25 0.2 0.05 675577 324.710 675588

4 5000 1000 0.25 0.2 0.05 674118 334.192 674158

5 5000 1000 0.25 0.2 0.05 668746 108.204 668746

6 5000 1000 0.25 0.2 0.05 669418 336.606 669463

7 5000 1000 0.25 0.2 0.05 676430 118.983 676430

8 5000 1000 0.25 0.2 0.05 674522 294.641 674522

9 5000 1000 0.25 0.2 0.05 673592 341.660 673592

10 5000 1000 0.25 0.2 0.05 683176 213.536 683176

Table 3.2: BPSP - the results of CPLEX on test bed

Greedy algorithm and semi-greedy algorithm with different values of candidate list length

lCand are tested and the results are reported in Table 3.3. For semi-greedy algorithm,

the iteration limit is fixed at 50 and lCand varies from 5 to 20. First we observe that C-

PLEX solved all the instances optimally with average computational time around 4 minutes.

CHAPTER 3. BENEVOLENT PSP 73

Greedy algorithm solved all the instances in negligible time and the average deviation from

the optimal value is 0.33%. Semi-greedy algorithm solved all the instances with average

deviation within 0.19% in average time less than 4 seconds. Comparing to CPLEX, greedy

type algorithm costs 80 times less computational time with good quality solutions. Com-

pare semi-greedy algorithm with greedy algorithm, its average deviation is nearly half of the

latter. Although semi-greedy algorithm costs more time, it is still very efficient. Comparing

different candidate list length lCand, it seems that lCand = 10 provides the average best

performance. However, from Figure 3.2 we can see that a supreme lCand value for all the

instances is not possible.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.00 251.983 0.00 341.66 0.00 108.204 10

GREEDY 0.33 0.003 0.40 0.02 0.26 0.000 0

SEMIGREEDY-5-50 0.17 3.381 0.25 3.70 0.07 3.292 0

SEMIGREEDY-10-50 0.16 3.371 0.24 3.63 0.12 3.322 0

SEMIGREEDY-15-50 0.19 3.371 0.29 3.60 0.09 3.307 0

SEMIGREEDY-20-50 0.18 3.367 0.33 3.65 0.10 3.307 0

Table 3.3: BPSP semi-greedy algorithm parameter comparison: lCand

CHAPTER 3. BENEVOLENT PSP 74

2 4 6 8 10

1

2

3

·10−3

Instance ID

D
ev

ia
ti

on

SEMIGREEDY-5-50

SEMIGREEDY-10-50

SEMIGREEDY-15-50

SEMIGREEDY-20-50

Figure 3.2: BPSP semi-greedy algorithm parameter comparison: lCand

Multi-start local search algorithm with different iteration limits iLim are tested on BPSP

test bed and the results are reported in Table 3.4. The iteration limit iLim ranging from 10

to 50. The larger iLim is, the more likely the algorithm return higher quality solutions but

with a larger time cost. This is also proven by the numerical results that iLim = 50 provides

lowest average deviation 0.05% and longest computational time. The solution quality gets

improved comparing to greedy type algorithms. However, the computational time increases

dramatically that it takes longer time than CPLEX without returning any optimal solution.

Regarding different values of iLim, as it increase, the average deviation decreases and the

computational time increases. Overall iLim = 50 provides the lowest average deviation,

whereas iLim = 10 provides same level quality solution with a much less computational

time.

CHAPTER 3. BENEVOLENT PSP 75

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.00 251.983 0.00 341.66 0.00 108.204 10

MULLS-10 0.08 77.626 0.12 91.85 0.05 62.697 0

MULLS-20 0.07 166.228 0.15 205.55 0.02 139.103 0

MULLS-30 0.06 247.658 0.11 295.60 0.00 197.537 0

MULLS-40 0.06 323.823 0.11 391.08 0.02 257.460 0

MULLS-50 0.05 406.859 0.11 484.62 0.01 348.697 0

Table 3.4: BPSP multi-start local search algorithm comparison: iLim

A summary results of the deviation and computational time for all the algorithms on

BPSP Test bed is given in Table 3.5. First, we observe that CPLEX solved all the testing

instances optimally with average time 251 seconds, while no heuristic algorithm solved any

instance optimally. However, semi-greedy algorithm provided solutions in less than 4 seconds

with average deviation 0.16%.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time # Opt Inst

CPLEX 0.00 251.983 0.00 341.66 0.00 108.204 10

GREEDY 0.33 0.003 0.40 0.02 0.26 0.000 0

SEMIGREEDY 0.16 3.371 0.24 3.63 0.12 3.322 0

MULLS 0.05 406.859 0.11 484.62 0.01 348.697 0

Table 3.5: BPSP - the summary results of algorithms on test bed

3.5 A variation of BPSP

BPSP only considers to select as many edges as possible. However, in practice, enlarging the

network, i.e., selecting more paths, is also a goal for the company. Hence, given two sets of

paths with the same selected edges, the one with more paths is preferred to the other. Then a

variation of BPSP is to find the lexicographic maximum of (
∑

i∈M wi(maxj∈Ni xj),
∑

j∈N xj).

CHAPTER 3. BENEVOLENT PSP 76

This problem can be formulated by modifying the objective function of BPSP as

Maximize Θ
∑
i∈M

wi max
j∈Ni

{xj}+
∑
j∈N

xj

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

xj ∈ {0, 1} ∀j ∈ N

where Θ is a large enough positive number. This variation of BPSP select the path set with

maximum cardinality among all the optimal solutions of original BPSP.

Chapter 4

Discounted PSP

In the previous chapters, we studied two models, GPSP and BPSP, for the Path Selection

Problem. Each model selects a class of paths that are interesting for the company to make

planing decision in addition to the immediate objective of providing quote for one or more

projects. The value of the quote need not be the proposed cost identified by the model and

it may depend on various “what if” kind of considerations. Offering discount on the nominal

cost is one such possibility. To provide a quote for a potential customer, the company have

additional information from the set of paths selected under the GPSP or BPSP models.

Using this information, the company can determine possible number of the future clients

that may use a particular edge. A discount of the construction of such an edge can be

calculated based on this information. Such a model for offering discounts is called discount

after selection. Discount after selection is an available approach. We now discuss another

model where path selection consider discounted costs.

4.1 “A priori” discounted PSP model

Recall that the objective function of GPSP

f(x) =
∑
j∈N

cjxj =
∑
j∈N

(
∑
i∈Mj

wi)xj =
∑
i∈M

wi(
∑
j∈Ni

xj),

and the objective function of BPSP

g(x) =
∑
i∈M

wi(max
j∈Ni

{xj}).

77

CHAPTER 4. DISCOUNTED PSP 78

In GPSP model each client is charged the full cost of an edge, while in BPSP model all the

clients using an edge share the cost of such edges. These models are useful when discount

after selection is considered as explained earlier. An additional tool to perform appropriate

“what if” analysis is to optimize selected paths where discounts are applied “a priori”.

We introduce a discounted edge cost function as follows: For each i ∈ M , let φi be a

real valued function of
∑

j∈Ni
xj , i.e., φi : {1, 2, . . . , |Ni|} → R+ ∪ {0}. Then the “a priori”

discounted Path Selection Problem (DPSP) is defined as

Maximize h(x) =
∑
i∈M

φi(αi)

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M

xj ∈ {0, 1} ∀j ∈ N

(4.1)

where αi =
∑

j∈Ni
xj . DPSP reduces to GPSP when φi(αi) = φgi (αi) := wiαi, and it reduces

to BPSP when φi(αi) = φbi(αi) := wi min{αi, 1}. By definition, φi(αi) represents the total

cost of edge ei while 1
αi
φi(αi) is the partial cost shared by each path that uses this edge. To

offer a discount, φi(·) should satisfy following conditions:

φi(0) = 0 (4.2)

φi(α) ≤ φi(β) ∀ 0 ≤ α ≤ β (4.3)

1

α
φi(α) ≥ 1

β
φi(β) ∀ 0 < α ≤ β (4.4)

wi ≤ φi(α) ≤ αwi α > 0 (4.5)

By condition (4.2), the incurred edge cost is zero when no selected paths containing it.

Condition (4.3) guarantees that the total cost brought by edge ei is nondecreasing when

the selected paths number increases. However, condition (4.4) implies that 1
αφi(α) is a

nonincreasing function so that the individual share of each edge cost is nonincreasing as the

number of selected paths that share this edge increases. Finally, the total cost of each edge

is between that of BPSP and GPSP. Hence DPSP provides a trade-off between BPSP and

GPSP.

Regarding the choice of φi(·), we first point out following observation:

Lemma 4.1.1. If φi(α) = kiαwi where ki ∈ (0, 1) for each i ∈M , DPSP reduces to GPSP

with modified edge costs.

CHAPTER 4. DISCOUNTED PSP 79

Proof. If φi(αi) = kiαiwi, then the objective function of DPSP becomes∑
i∈M

φi(αi) =
∑
i∈M

wi ∗ ki(
∑
j∈Ni

xj) =
∑
i∈M

(kiwi) ∗ (
∑
j∈Ni

xj)

which is as the same as the objective function of GPSP with edge cost w′i = kiwi. The

result follows.

We consider two types of discounted edge cost function φi(α): concave function and

convex function. For each type, three functions are studied:

φ1i (α) =
√
α · wi

φ2i (α) = 0.5(α+
√
α) · wi

φ3i (α) = (2
√
α− 1) · wi

φ4i (α) = (α−
√
α+ 1) · wi

φ5i (α) = (α−
√
α+ 1− 1.5 logα) · wi

φ6i (α) = (α− α0.7 + 1− logα) · wi

We define φki (0) = 0 for k = 1, 2, . . . , 6. The following Figure 4.1 and 4.2 illustrates the

differences of these discounted edge cost function. All the functions lies in between φbi(·)
and φgi (·).

CHAPTER 4. DISCOUNTED PSP 80

α

φi(α)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10 φgi (α) = α · wi

φbi(α) = 1 · wi

φ1i (α) =
√
α · wi

φ3i (α) = (2
√
α− 1) · wi

φ2i (α) = 0.5(α+
√
α) · wi

Figure 4.1: Discounted edge cost function: concave

α

φi(α)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10 φgi (α) = α · wi

φbi(α) = 1 · wi

φ5(α) = (α−
√
α+ 1− 1.5 logα) · wi

φ4i (α) = (α−
√
α+ 1) · wi

φ6i (α) = (α− α0.7 + 1− logα) · wi

Figure 4.2: Discounted edge cost function: convex

We use CPLEX to solve the DPSP instances with the same data but different choices

CHAPTER 4. DISCOUNTED PSP 81

of discounted edge cost function φi(α). (The details of DPSP instance generator is given in

Section 4.3). Given 0.5 hour as time limit, the solving results of CPLEX are presented in

Table 4.1. We choose different instance sizes with n = 500, 1000 and various m/n = 0.5, 1

accordingly which is given in column (m,n). In column φ the corresponding superscript of

discounted edge cost functions are given, where k denotes the function φki (·). The column |x|
shows the number of selected paths in the returned best known solution. The best known

objective function value is reported in column OPT if it’s optimal and in column LBD

otherwise. At last, column Time and LPR give the computational time and the optimal

objective function value of its LP relaxation problem respectively.

We first notice that only BPSP instance can be optimally solved by CPLEX in half an

hour. Also the objective function values of the best known solutions of DPSP are always

between that of BPSP and GPSP. Second, the best known objective function value varies

due to the discount and they follow the same order with that of the edge discounted cost

function. However, the number of chosen paths are approximately the same or at least on

the same level. This implies that different discount function options may mainly affect the

objective function value but have little affect to the selected path number. Third, even for

instance size (1000, 200) CPLEX fails to return any feasible solution. We also run the same

experiments for n = 2000, m varies from 300 to 1200 and no feasible solution is returned.

This fact demonstrates the necessity to develop heuristic algorithms for DPSP.

CHAPTER 4. DISCOUNTED PSP 82

Index (m,n) φ |x| OPT LBD Time/s UBD(LP relax)

1 (250,500) g 334 - 333442.000 1806.199 339583.231

2 (250,500) b 106 3865.000 - 163.725 3886.402

3 (250,500) 1 333 - 34176.976 1913.730 34580.258

4 (250,500) 2 331 - 182474.142 1815.594 187077.365

5 (250,500) 3 332 - 64370.924 1814.268 65275.296

6 (250,500) 4 328 - 297370.468 1807.115 313752.296

7 (250,500) 5 322 - 282706.664 1807.086 305840.661

8 (250,500) 6 326 - 239988.933 1812.620 260892.017

9 (500,500) g 325 - 647076.000 1802.309 667129.708

10 (500,500) b 101 7594.000 - 1063.644 7618.261

11 (500,500) 1 - - 0.000 1842.290 67723.367

12 (500,500) 2 - - 0.000 1900.250 367421.747

13 (500,500) 3 319 - 124421.354 1838.551 127829.449

14 (500,500) 4 316 - 570708.690 1809.469 616898.420

15 (500,500) 5 317 - 551881.813 1822.313 601621.788

16 (500,500) 6 - - 0.000 1803.959 513601.954

17 (200,1000) g 684 - 541394.000 1807.115 545859.301

18 (200,1000) b 568 3004.000 - 19.656 3004.000

19 (200,1000) 1 677 - 38265.715 1820.537 38598.294

20 (200,1000) 2 681 - 288395.535 1923.346 292221.524

21 (200,1000) 3 678 - 73655.991 1808.311 74192.588

22 (200,1000) 4 - - 0.000 1801.857 515928.951

23 (200,1000) 5 - - 0.000 1801.173 508757.665

24 (200,1000) 6 - - 0.000 1801.620 444470.604

25 (500,1000) g 669 - 1315270.000 1809.315 1334750.199

26 (500,1000) b 334 7951.000 - 291.112 7968.511

27 (500,1000) 1 - - 0.000 1807.535 97405.285

28 (500,1000) 2 - - 0.000 1802.678 716072.506

29 (500,1000) 3 - - 0.000 1806.514 186842.059

30 (500,1000) 4 - - 0.000 1801.809 1259993.134

31 (500,1000) 5 - - 0.000 1814.385 1241632.919

32 (500,1000) 8 - - 0.000 1822.918 1083515.008

Table 4.1: DPSP discounted edge cost function φi(α) comparison

CHAPTER 4. DISCOUNTED PSP 83

Note that DPSP is nonlinear due to the discounted edge cost function φi(·). We

now introduce an integer linear programming formulation for DPSP. For each i ∈ M ,

l = 1, 2, . . . , |Ni|, we introduce variable

zli =

1 if ei is selected by l paths,

0 otherwise.
(4.6)

By definition, zli = 1 if and only if
∑

j∈Ni
xj = l, this relation can be formulated as follows:

∑
j∈Ni

xj =

|Ni|∑
l=1

lzli i ∈M (4.7)

|Ni|∑
l=1

zli ≤ 1 i ∈M (4.8)

These two constraints together make sure that there is at most one zli is nonzero, which is the

one corresponding to
∑

j∈Ni
xj = l > 0. We refer this as edge selection number constraints.

Since φi(·) is given, the value φi(l) for l = 1, 2, . . . , |Ni| can be calculated in advance.

When
∑

j∈Ni
xj = l > 0, the cost brought by edge ei is φi(l). With variable zli, this can be

expressed as
∑|Ni|

l=1 φi(l)z
l
i. Hence the objective function is linearized as

∑
i∈M

|Ni|∑
l=1

φi(l)z
l
i (4.9)

Then the nonlinear integer programming problem (4.1) is transformed into an integer

CHAPTER 4. DISCOUNTED PSP 84

linear programming problem:

DPSP1: Maximize
∑
i∈M

|Ni|∑
l=1

φi(l)z
l
i (4.10)

Subject to: ∑
j∈Ni

ajxj ≤ bi i ∈M (4.11)

∑
j∈Ni

xj =

|Ni|∑
l=1

lzli i ∈M (4.12)

|Ni|∑
l=1

zli ≤ 1 i ∈M (4.13)

xj ∈ {0, 1} ∀j ∈ N (4.14)

zli ∈ {0, 1} ∀i ∈M, l = 1, 2, . . . , |Ni| (4.15)

The NP-hardness of DPSP can be derived from GPSP directly.

Theorem 4.1.1. DPSP is NP-hard.

Proof. As we mentioned before, GPSP is a special case of DPSP when the discounted edge

cost function is φgi (·). Due to the NP-hardness of GPSP, the result follows.

4.2 Heuristic algorithms for DPSP

In this section we develop various heuristic algorithms for DPSP and evaluate their perfor-

mances based on the computational results. First, widely used heuristic algorithmic ideas

are applied to develop algorithms for DPSP. It includes greedy algorithm, semi-greedy al-

gorithm and multi-start local search algorithm. The detailed algorithm description is given

in subsections and computational results follow.

Greedy algorithm for DPSP

Greedy algorithm considers the paths one by one in an given order which is determined by

an utility ratio. A path under consideration is selected if the feasibility is not violated. A

formal description of the greedy algorithm is given below:

CHAPTER 4. DISCOUNTED PSP 85

Algorithm 7: Greedy Algorithm for DPSP

Input: permutation π based on the decreasing utility ratio value r

Initialize x← 0;

for j ← 1 to n do

if (x|xπ(j) = 1) is feasible then

xπ(j) = 1;

return x

We use the utility ratios summarized in Table 2.1, which are introduced for GPSP. The

feasibility checking takes O(L) in total and the calculation of objective function value takes

O(L). Together with the variable ordering, the complexity of the greedy algorithm for DPSP

is O(L+ψr), where ψr is the computational complexity to calculate the pseudo utility ratio

r and to obtain corresponding permutation.

Semi-greedy algorithm for DPSP

In the semi-greedy algorithm we consider an element randomly picked from a candidate list

which constitutes of paths with “good enough” utility ratio values and apply greedy selection

procedure. The greedy selection procedure continues until all the paths are scanned. We

repeat it several iterations with the best found solution recorded. The parameters candidate

list size lCand and iteration limit iLim together determine the semi-greedy algorithm.

When lCand = 1 and iLim = 1, the algorithm reduces to the greedy algorithm. A formal

description of the semi-greedy algorithm is given below:

CHAPTER 4. DISCOUNTED PSP 86

Algorithm 8: Semi-greedy Algorithm for DPSP

Input: lCand, iLim, permutation π determined by utility ratio r

Initialize: x∗ ← 0, iter ← 1;

repeat

next← lCand+ 1, x← 0, candidate list C ← {π(1), π(2), . . . , π(lCand)};
while C 6= ∅ do

j ← select a random element in C ; /* random selection */

if (x|xj = 1) is feasible then

xj = 1;

if next ≤ n then /* update C */

C ← C ∪ {π(next)} \ {j};
next← next+ 1;

else

C ← C \ {j};

if h(x) > h(x∗) then /* update best known solution */

x∗ ← x;

iter ← iter + 1;

until iter = iLim;

return x∗

The complexity of semi-greedy algorithm is iteration limit iLim times that of the cor-

responding greedy algorithm. We choose lCand as an instance independent constant, then

the complexity becomes the same.

Multi-start local search algorithm for DPSP

A similar idea of multi-start local search algorithm is also adapted to solve DPSP. The

neighborhood of local search is based on 2-swap neighborhood and 1-flip neighborhood.

In each iteration, the algorithm starts from a initial solution obtained from semi-greedy

algorithm and applies first-improving local search algorithm based on 2-swap neighborhood

to explore the neighbors. After reaching a local optimum, a first-improving local search

based on 1-flip neighborhood is followed to seek for a saturated solution. We perform iLim

iterations where iLim is a prescribed parameter and return the best known solution found

CHAPTER 4. DISCOUNTED PSP 87

in the whole procedure. To control the running time, we add time limit in this procedure

so the computational time is within certain level. A formal description of the algorithm is

given below:

Algorithm 9: Multi-start local search algorithm for DPSP

Input: iteration limit iLim, time limit tLim

Initialize: x∗ ← 0, start← current time;

for iter ← 1 to iLim do

x← obtained from semi-greedy algorithm;

improve← true ; /* local search 2-swap */

while improve do

improve = false;

for add ∈ J0(x) and !improve do

for drop ∈ J1(x) and !improve do

x′ = (x|xadd = 1, xdrop = 0);

if h(x′) ≥ h(x) + 1 and x′ is feasible then

xadd = 1, xdrop = 0;

improve← true;

for add ∈ J0(x) do /* local search 1-flip */

if (x|xadd = 1) is feasible then

xadd = 1;

if h(x) > h(x∗) then

x∗ ← x;

if current time - start ≥ tLim then

return x∗;

return x∗.

4.3 Computational results and analysis

We present our computational results of developed heuristic algorithms in this section. The

instance generator of DPSP is based on that of GPSP for PSP inspired instance. The

generator first generate GPSP instances with given parameter, which together with the

CHAPTER 4. DISCOUNTED PSP 88

discounted edge cost function form DPSP instances.

To form our DPSP test bed, we fix instance generator parameters as follows: α(0.50),

rL(2), rU(0.5n), Uau(0.05), aL(1), cL(1), cU(30). According to the previous analysis,

different functions φi(·) seem to only affect the objective function value. The selected path

numbers of the best known solutions are approximately the same or on the same level.

Hence we choose φ3i (·) as our discounted edge cost function for all DPSP testing instances.

The experiments include two parts: algorithm parameter tuning and algorithm performance

evaluating.

Algorithm parameter tuning

The algorithm parameter tuning experiments are conducted on Test bed 1, of which five

randomly generated instances with fixed instances size (n,m) = (1000, 200) and fixed other

parameters specified as above. For comparison, they are solved by CPLEX given time limit

as 10 minutes and the solving results are summarized in Table 4.2. Although no optimal

solution is returned within the time limit, the solution quality is high since the objective

value is close to that of the LP relaxation.

Index (m,n) OPT LBD Time/s UBD(LP relax)

1 (200,1000) - 73485.848 600.723 74192.588

2 (200,1000) - 78877.555 600.535 79644.897

3 (200,1000) - 73153.738 600.530 73992.515

4 (200,1000) - 76238.198 600.574 76911.462

5 (200,1000) - 74810.366 600.517 75547.094

Table 4.2: DPSP - the results of CPLEX on Test bed 1

Greedy algorithm with different utility ratios is tested and the results are presented in

Table 4.3. The utility Ratio 4 gives the overall best performance regarding to solution qual-

ity and computational time. In fact, its average, maximal and minimal deviation are all the

lowest among all the greedy algorithm ratios. Also the utility ratios can be divided into two

groups by the quality solution. Ratio 1, 2, 4, 5 provide solutions with average deviation be-

tween 1.65% and 1.88%, while other ratios provide solution with average deviation between

16.95% and 17.15%.

CHAPTER 4. DISCOUNTED PSP 89

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.98 600.58 1.13 600.72 0.88 600.52 0

GREEDY-1 1.84 0.01 1.99 0.02 1.72 0.00 0

GREEDY-2 1.88 0.09 1.99 0.09 1.76 0.08 0

GREEDY-3 16.95 0.00 18.27 0.02 16.14 0.00 0

GREEDY-4 1.65 0.00 1.94 0.00 1.45 0.00 0

GREEDY-5 1.88 0.00 1.99 0.00 1.76 0.00 0

GREEDY-6 17.08 0.00 17.85 0.01 15.93 0.00 0

GREEDY-7 16.95 0.00 18.27 0.00 16.14 0.00 0

GREEDY-8 17.15 0.00 18.04 0.02 16.58 0.00 0

Table 4.3: DPSP greedy algorithm utility ratio comparison

Semi-greedy algorithm with different candidate list length lCand is tested and the results

are presented in Table 4.4. We fix iteration limit iLim = 50 and use utility Ratio 4 since it

performs better than others. We can see on the same level of computational time, lCand =

20 gives overall lowest deviations.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.98 600.58 1.13 600.72 0.88 600.52 0

SEMIGREEDY-5-50 1.49 0.02 1.73 0.03 1.33 0.02 0

SEMIGREEDY-10-50 1.42 0.02 1.64 0.03 1.32 0.01 0

SEMIGREEDY-15-50 1.44 0.02 1.64 0.03 1.33 0.02 0

SEMIGREEDY-20-50 1.39 0.02 1.56 0.03 1.22 0.01 0

SEMIGREEDY-25-50 1.39 0.02 1.56 0.03 1.24 0.02 0

Table 4.4: DPSP semi-greedy algorithm parameter comparison: lCand

Multi-start local search algorithm with different iteration limit iLim is tested and the

results are reported in Table 4.5. The semi-greedy algorithm embedded in it employs utility

Ratio 1,2, 4 and 5 randomly with iteration limit as 50 and candidate list length as 20.

The iteration limit for multi-start local search algorithm varies from 10 to 100. We see

that iLim = 80 and 90 give lowest average deviation. However, the computational time is

proportional to the iteration limit. Taking this into account, iLim = 50 uses shorter time

CHAPTER 4. DISCOUNTED PSP 90

with an average deviation 1.07 which is close to the best value 1.05 and obtain a lowest

minimal deviation among all.

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.98 600.58 1.13 600.72 0.88 600.52 0

GREEDY-4 1.65 0.00 1.94 0.00 1.45 0.00 0

MULLS-10 1.26 10.83 1.53 12.78 1.06 9.61 0

MULLS-20 1.15 21.43 1.27 23.04 1.08 18.65 0

MULLS-30 1.11 31.39 1.27 37.94 1.04 28.56 0

MULLS-40 1.11 45.05 1.33 51.45 0.99 38.16 0

MULLS-50 1.07 54.23 1.19 60.06 0.93 49.38 0

MULLS-60 1.09 64.62 1.23 72.65 1.01 57.36 0

MULLS-70 1.07 73.58 1.18 78.98 0.96 67.74 0

MULLS-80 1.05 87.07 1.23 95.79 0.95 79.14 0

MULLS-90 1.05 97.38 1.12 104.63 1.01 89.63 0

MULLS-100 1.07 108.45 1.22 121.14 0.96 101.35 0

Table 4.5: DPSP multi-start local search algorithm parameter comparison: iLim

DPSP algorithm performance evaluating

Based on the analysis from algorithm parameter tuning, we test the greedy algorithm with

Ratio 4, semi-greedy algorithm with Ratio 4, iteration limit 50 and candidate list length as

20, multi-start local search with iteration limit 50 on the Test bed 2. It consists of DPSP

instances with fixed generator parameters specified as above and the instances size n varies

from 1000, 2000 and 5000, and m/n ranges from 0.1 to 0.3. In this case, for each instance

size 3 instances are generated randomly to eliminate bias. These instances are also solved

by CPLEX based heuristic with time limit as 0.5 hour. The algorithms solving results are

presented in Table 4.6 and Table 4.7 reporting objective value and deviation respectively.

We first observe that only 9 instances out of 45 have nonzero feasible solution returned

by CPLEX in half an hour. For these instances, the deviation of the returned solutions of

CPLEX are within 1.09%. However, multi-start local search algorithm outperforms CPLEX

on 2 instances out of these 9 instances. Second, comparing greedy algorithm with semi-

greedy algorithm, semi-greedy algorithm improves the solution quality with reducing the

CHAPTER 4. DISCOUNTED PSP 91

deviation around 0.3% at a cost of longer computational time. Comparing semi-greedy

algorithm with multi-start local search algorithm, the latter further provides better quality

solution with an average 0.3% reduced deviation but with a larger computational time. At

last, column BT gives the computational time of obtaining the best returned solution of

multi-start local search algorithm. There is no clear pattern that the best returned solution

can be found in short time or right before the algorithm terminates.

CHAPTER 4. DISCOUNTED PSP 92

CPLEX GREEDY-4 SEMIGREEDY-20-50-4 MULLS-50

Inst Opt LBD Time Val Time Val Time Val Time BT

n = 1000

1 - 41207.44 1815.70 40832.75 0.00 40946.36 0.02 41085.15 31.70 31.09

2 - 37692.29 1828.16 37661.19 0.00 37687.74 0.01 37772.47 23.06 14.85

3 - 34940.97 1823.17 34820.02 0.00 34961.28 0.01 35054.31 26.37 19.53

4 - 56658.11 1818.11 56142.92 0.00 56296.10 0.02 56477.49 47.39 14.35

5 - 54119.11 1808.08 53566.65 0.00 53671.56 0.02 53920.42 40.92 16.79

6 - 51700.14 1805.55 51305.19 0.00 51379.22 0.02 51620.35 52.92 42.83

7 - 73655.99 1853.63 73019.13 0.01 73207.05 0.02 73482.06 65.30 55.80

8 - 79080.85 1821.97 78492.17 0.00 78689.06 0.03 78832.70 67.01 34.98

9 - 73194.08 1821.83 72647.34 0.00 72842.56 0.02 73159.69 60.65 25.30

10 - 0.00 1802.02 96058.96 0.00 96124.68 0.03 96392.03 61.15 49.35

11 - 0.00 1802.78 88947.42 0.00 89296.54 0.02 89548.96 87.52 5.85

12 - 0.00 1801.86 80876.25 0.00 81102.68 0.03 81315.38 93.40 54.60

13 - 0.00 1800.41 113856.14 0.00 114077.99 0.03 114561.07 74.26 18.63

14 - 0.00 1800.80 109679.40 0.00 109827.76 0.03 110122.93 95.17 50.19

15 - 0.00 1819.43 106404.52 0.00 106852.06 0.03 107003.86 94.94 30.04

n = 2000

1 - 0.00 1839.60 105668.40 0.00 105748.97 0.06 106006.12 303.87 89.54

2 - 0.00 1804.57 98938.77 0.00 99005.59 0.06 99378.59 416.19 370.52

3 - 0.00 1802.56 103297.83 0.00 103411.52 0.06 103610.35 298.37 52.86

4 - 0.00 1811.30 158793.82 0.00 158835.87 0.08 159359.59 544.42 195.77

5 - 0.00 1809.24 160422.53 0.00 160725.86 0.08 161077.84 520.22 375.17

6 - 0.00 1832.66 155765.71 0.00 155980.97 0.08 156306.62 534.78 450.55

7 - 0.00 1803.90 205395.22 0.01 205639.12 0.09 206057.80 767.79 244.66

8 - 0.00 1803.00 219622.95 0.00 219793.61 0.08 220321.24 707.75 211.66

9 - 0.00 1807.04 209546.51 0.00 209901.17 0.09 210245.57 547.61 492.17

10 - 0.00 1802.85 273833.21 0.01 274142.06 0.15 274817.32 961.01 306.91

11 - 0.00 1807.94 245274.62 0.00 245658.09 0.11 246345.59 1177.91 60.20

12 - 0.00 1806.62 260187.84 0.00 260711.60 0.10 261306.47 924.39 679.11

13 - 0.00 1804.50 308899.94 0.00 308987.74 0.13 309566.81 1213.49 267.99

14 - 0.00 1804.26 314471.41 0.00 314942.66 0.13 315925.00 1233.62 939.67

15 - 0.00 1808.14 311851.38 0.00 312479.76 0.13 313293.69 1402.93 913.96

n = 5000

1 - 0.00 1805.32 440855.19 0.01 441147.81 0.35 441648.62 1979.33 95.617

2 - 0.00 1808.09 415341.88 0.01 415569.52 0.33 415082.83 1918.53 1918.53

3 - 0.00 1803.98 408052.27 0.01 408455.27 0.35 409066.17 1878.10 937.428

4 - 0.00 1804.52 629984.32 0.03 630049.68 0.61 631128.92 1980.33 1231.64

5 - 0.00 1803.98 624029.56 0.02 624135.73 0.44 625044.06 1936.34 1936.33

6 - 0.00 1806.77 632979.02 0.01 633109.88 0.42 632485.01 2193.47 974.587

7 - 0.00 1810.31 856520.91 0.02 857288.91 0.52 858611.29 2017.72 790.321

8 - 0.00 1820.24 830287.45 0.02 831267.48 0.62 832425.27 2257.97 2257.96

9 - 0.00 1841.31 835310.06 0.02 835481.86 0.58 837038.74 2204.84 558.123

10 - 0.00 1816.12 1085101.00 0.03 1085975.97 0.63 1084937.19 1850.22 1219.25

11 - 0.00 1810.31 1050882.27 0.03 1051723.59 0.60 1050344.90 1827.06 604.264

12 - 0.00 1826.84 1026288.69 0.02 1027122.88 0.69 1028201.42 1837.23 1837.22

13 - 0.00 1823.88 1291241.84 0.03 1292144.55 0.72 1293838.88 1839.48 630.789

14 - 0.00 1816.50 1248116.12 0.03 1249832.22 0.71 1251754.12 1825.81 1217.07

15 - 0.00 1810.79 1237909.07 0.03 1239678.53 0.80 1241231.63 1840.96 1840.94

Table 4.6: DPSP solutions on Test bed 2 – Value

CHAPTER 4. DISCOUNTED PSP 93

CPLEX GREEDY-4 SEMIGREEDY-20-50-4 MULLS-50

Inst Dev(%) Time Dev(%) Time Dev(%) Time Dev(%) Time

n = 1000

1 0.50 1815.70 1.41 0.00 1.13 0.02 0.80 31.70

2 1.08 1828.16 1.16 0.00 1.09 0.01 0.87 23.06

3 1.19 1823.17 1.53 0.00 1.13 0.01 0.87 26.37

4 0.64 1818.11 1.55 0.00 1.28 0.02 0.96 47.39

5 0.59 1808.08 1.60 0.00 1.41 0.02 0.95 40.92

6 0.87 1805.55 1.63 0.00 1.49 0.02 1.03 52.92

7 0.72 1853.63 1.58 0.01 1.33 0.02 0.96 65.30

8 0.71 1821.97 1.45 0.00 1.20 0.03 1.02 67.01

9 1.08 1821.83 1.82 0.00 1.55 0.02 1.13 60.65

10 - 1802.02 1.51 0.00 1.44 0.03 1.16 61.15

11 - 1802.78 1.85 0.00 1.46 0.02 1.18 87.52

12 - 1801.86 1.82 0.00 1.54 0.03 1.28 93.40

13 - 1800.41 1.77 0.00 1.58 0.03 1.17 74.26

14 - 1800.80 1.61 0.00 1.48 0.03 1.21 95.17

15 - 1819.43 1.85 0.00 1.44 0.03 1.30 94.94

n = 2000

1 - 1839.60 1.09 0.00 1.02 0.06 0.78 303.87

2 - 1804.57 1.22 0.00 1.15 0.06 0.78 416.19

3 - 1802.56 0.95 0.00 0.85 0.06 0.65 298.37

4 - 1811.30 1.14 0.00 1.12 0.08 0.79 544.42

5 - 1809.24 1.23 0.00 1.04 0.08 0.83 520.22

6 - 1832.66 1.08 0.00 0.94 0.08 0.73 534.78

7 - 1803.90 1.20 0.01 1.08 0.09 0.88 767.79

8 - 1803.00 1.20 0.00 1.13 0.08 0.89 707.75

9 - 1807.04 1.09 0.00 0.92 0.09 0.76 547.61

10 - 1802.85 1.24 0.01 1.13 0.15 0.89 961.01

11 - 1807.94 1.44 0.00 1.28 0.11 1.01 1177.91

12 - 1806.62 1.35 0.00 1.15 0.10 0.92 924.39

13 - 1804.50 1.22 0.00 1.19 0.13 1.00 1213.49

14 - 1804.26 1.46 0.00 1.32 0.13 1.01 1233.62

15 - 1808.14 1.52 0.00 1.32 0.13 1.06 1402.93

n = 5000

1 - 1805.32 0.78 0.01 0.71 0.35 0.60 1979.33

2 - 1808.09 0.88 0.01 0.83 0.33 0.94 1918.53

3 - 1803.98 0.85 0.01 0.75 0.35 0.60 1878.10

4 - 1804.52 0.82 0.03 0.81 0.61 0.64 1980.33

5 - 1803.98 0.80 0.02 0.78 0.44 0.63 1936.34

6 - 1806.77 0.85 0.01 0.83 0.42 0.93 2193.47

7 - 1810.31 0.92 0.02 0.83 0.52 0.68 2017.72

8 - 1820.24 0.94 0.02 0.82 0.62 0.69 2257.97

9 - 1841.31 0.89 0.02 0.87 0.58 0.68 2204.84

10 - 1816.12 0.90 0.03 0.82 0.63 0.92 1850.22

11 - 1810.31 0.95 0.03 0.87 0.60 1.00 1827.06

12 - 1826.84 1.00 0.02 0.92 0.69 0.81 1837.23

13 - 1823.88 0.90 0.03 0.83 0.72 0.70 1839.48

14 - 1816.50 1.18 0.03 1.04 0.71 0.89 1825.81

15 - 1810.79 1.10 0.03 0.96 0.80 0.84 1840.96

Table 4.7: DPSP solutions on Test bed 2 – Deviation

CHAPTER 4. DISCOUNTED PSP 94

To further analyze each algorithm, we also present a summarized results for each algo-

rithm in Table 4.8 to 4.10. Recall that 3 instances are generated for each given instance

size, we calculate the average, maximum, minimum deviation and time over the 3 instances

with each given size to eliminate bias.

Greedy algorithm summary solving results are given in Table 4.8. We first observe

that the computational time is negligible even for largest testing instance and the deviation

is between 0.78% and 1.85%. Second we see a trend that the deviation is decreasing as

the instance size increasing. However, we believe this results from the enlarged objective

function value order instead of algorithm performance. This observation and conclusion also

applicable for semi-greedy algorithm and multi-start local search algorithm.

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.37 0.00 1.53 0.00 1.16 0.00

1000 150 1.59 0.00 1.63 0.00 1.55 0.00

1000 200 1.62 0.00 1.82 0.01 1.45 0.00

1000 250 1.72 0.00 1.85 0.00 1.51 0.00

1000 300 1.74 0.00 1.85 0.00 1.61 0.00

2000 200 1.09 0.00 1.22 0.00 0.95 0.00

2000 300 1.15 0.00 1.23 0.00 1.08 0.00

2000 400 1.17 0.00 1.20 0.01 1.09 0.00

2000 500 1.34 0.01 1.44 0.01 1.24 0.00

2000 600 1.40 0.00 1.52 0.00 1.22 0.00

5000 500 0.84 0.01 0.88 0.01 0.78 0.01

5000 750 0.82 0.02 0.85 0.03 0.80 0.01

5000 1000 0.92 0.02 0.94 0.02 0.89 0.02

5000 1250 0.95 0.03 1.00 0.03 0.90 0.02

5000 1500 1.06 0.03 1.18 0.03 0.90 0.03

Table 4.8: DPSP - the results of greedy algorithm on Test bed 2

Semi-greedy algorithm summary solving results are given in Table 4.9. Its computational

time is still less than one second even for the largest testing instance with n = 5000,m =

1500. The deviation is between 0.71% and 1.58%.

CHAPTER 4. DISCOUNTED PSP 95

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.12 0.02 1.13 0.02 1.09 0.01

1000 150 1.39 0.02 1.49 0.02 1.28 0.02

1000 200 1.36 0.02 1.55 0.03 1.20 0.02

1000 250 1.48 0.03 1.54 0.03 1.44 0.02

1000 300 1.50 0.03 1.58 0.03 1.44 0.03

2000 200 1.00 0.06 1.15 0.06 0.85 0.06

2000 300 1.03 0.08 1.12 0.08 0.94 0.08

2000 400 1.05 0.09 1.13 0.09 0.92 0.08

2000 500 1.19 0.12 1.28 0.15 1.13 0.10

2000 600 1.27 0.13 1.32 0.13 1.19 0.13

5000 500 0.76 0.34 0.83 0.35 0.71 0.33

5000 750 0.81 0.49 0.83 0.61 0.78 0.42

5000 1000 0.84 0.57 0.87 0.62 0.82 0.52

5000 1250 0.87 0.64 0.92 0.69 0.82 0.60

5000 1500 0.95 0.74 1.04 0.80 0.83 0.71

Table 4.9: DPSP - the results of semi-greedy algorithm on Test bed 2

Multi-start local search algorithm summary solving results are given in Table 4.10. We

see that its computational time increases dramatically as the instance size increase. The

deviation is between 0.60% to 1.17%. We also tested multi-start local search algorithm

without time limit. The computational time for n = 5000 goes to 5 hours. There are 4

cases that this algorithm fails to improve the solution quality comparing to semi-greedy

algorithm. It is due to the time limit we set so in half an hour it fails to find an improved

solution.

CHAPTER 4. DISCOUNTED PSP 96

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 0.85 27.05 0.87 31.70 0.80 23.06

1000 150 0.98 47.08 1.03 52.92 0.95 40.92

1000 200 1.03 64.32 1.13 67.01 0.96 60.65

1000 250 1.21 80.69 1.28 93.40 1.16 61.15

1000 300 1.22 88.12 1.30 95.17 1.17 74.26

2000 200 0.74 339.48 0.78 416.19 0.65 298.37

2000 300 0.78 533.14 0.83 544.42 0.73 520.22

2000 400 0.84 674.38 0.89 767.79 0.76 547.61

2000 500 0.94 1021.10 1.01 1177.91 0.89 924.39

2000 600 1.02 1283.35 1.06 1402.93 1.00 1213.49

5000 500 0.72 1925.32 0.94 1979.33 0.60 1878.10

5000 750 0.74 2036.71 0.93 2193.47 0.63 1936.34

5000 1000 0.68 2160.18 0.69 2257.97 0.68 2017.72

5000 1250 0.91 1838.17 1.00 1850.22 0.81 1827.06

5000 1500 0.81 1835.42 0.89 1840.96 0.70 1825.81

Table 4.10: DPSP - the results of multi-start local search algorithm on Test bed 2

A summary result is presented in Table 4.11, 4.12 and 4.13. In summary, greedy algo-

rithm has excellent speed advantage and the solution quality is good with deviation within

1.85%. Semi-greedy algorithm returns better solution with deviation at most 1.58% while

maintaining the advantage of short computational time. Multi-start local search algorithm

returns the best known solution with deviation within 1.30% in most cases at a compromis-

ing speed. All the heuristic algorithms are able to provide feasible solutions, while CPLEX

is able to return nonzero feasible solutions for 9 instances out of 45 in half an hour.

We also did experiments to solve a DPSP instance with n = 2000,m = 600 with time

limit up to 5 hours. CPLEX is able to find feasible solutions within this time and the

solution quality is better than our heuristic algorithms. Moreover, taking greedy solution

as initial solution, CPLEX manages to get improvement within 15 minutes of which the

quality is better than that of our heuristic algorithms.

CHAPTER 4. DISCOUNTED PSP 97

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX - 1814.90 100.00 1853.63 0.50 1800.41 0

GREEDY-4 1.61 0.00 1.85 0.01 1.16 0.00 0

SEMIGREEDY-20-50-4 1.37 0.02 1.58 0.03 1.09 0.01 0

MULLS-50 1.06 61.45 1.30 95.17 0.80 23.06 0

Table 4.11: DPSP - the summary results of algorithms on Testbed 2: n = 1000

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX - 1809.88 100.00 1839.60 100.00 1802.56 0

GREEDY-4 1.23 0.00 1.52 0.01 0.95 0.00 0

SEMIGREEDY-20-50-4 1.11 0.10 1.32 0.15 0.85 0.06 0

MULLS-50 0.87 770.29 1.06 1402.93 0.65 298.37 0

Table 4.12: DPSP - the summary results of algorithms on Testbed 2: n = 2000

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX - 1813.93 100.00 1841.31 100.00 1803.98 0

GREEDY-4 0.92 0.02 1.18 0.03 0.78 0.01 0

SEMIGREEDY-20-50-4 0.85 0.56 1.04 0.80 0.71 0.33 0

MULLS-50 0.77 1959.16 1.00 2257.97 0.60 1825.81 0

Table 4.13: DPSP - the summary results of algorithms on Testbed 2: n = 5000

4.4 Extension of DPSP

Based on the above DPSP model, more realistic elements could be taken into consideration.

In this section, we further introduce our extended DPSP model. Two issues can be added

into the model.

First, some edges may be owned or partially owned by existing customers or an interested

third party, for whom a future sharing fee is promised. Let βl ∈ (0, 1) be the payout ratio

if such an edge is selected by l paths, then amount βlφi(l) of edge cost goes to the edge

owner and (1−βl)φi(l) is the revenue of the company. However, this situation can be easily

CHAPTER 4. DISCOUNTED PSP 98

incorporated in our original DPSP model by modifying the corresponding function φi(·)
to φ′i(·) such that φ′i(l) = (1 − βl)φi(l) for l ∈ Ni. This modification is always applicable

since the discounted edge cost function need not be continuous. Note that the resulting

discounted edge cost function may not obey conditions in (4.2) to (4.5).

Second, the budget information of some clients may be available already. Deciding to

construct these paths of the customers requires that the path cost meets the budget. Let

N b ⊆ N be a path index set and for each j ∈ N b a budget θj is prescribed. To formulate

this budget restriction, we recall that for each edge ei, the total discounted cost is expressed

as
∑|Ni|

l=1 z
l
iφi(l). Then for each selected path that shares this edge, the cost it shares is∑|Ni|

l=1
1
l z
l
iφi(l). Hence the total cost of the path Pj is given by cj :=

∑
i∈Mj

∑|Ni|
l=1

1
l z
l
iφi(l).

The budget restriction comes to effect only when path Pj is selected, the budget constraint

can be formulated as

∑
i∈Mj

|Ni|∑
l=1

1

l
zliφi(l) ≤ θj + Θ(1− xj) j ∈ N b (4.16)

where Θ is a large enough number. When the path is selected xj = 1, the constraint is

effective. Otherwise, Θ ensures that the constraint always holds. We refer it as path budget

constraints.

Chapter 5

PSP with Capacity Expansion

5.1 EPSP model

In this section, we study another version of PSP to provide lower quotes for clients. Since

network maintenance and lease are also sources of revenue for the company, it is willing

to take certain risks to invest on building some segments by itself. Moreover, the edge

capacities are not strict restrictions. As long as there are enough additional investment,

increasing the edge capacity is very possible. Hence we consider another problem that

provide the minimum investment the company has to make so that at least a number of

paths are selected. In this way, the cost of a path is reduced to the nominal cost subtracted

by the cost of selected building edges. A resulting lower quote may attract more customers

and an enlarged network will lead to a return in the future.

We consider the following scenario: Let G = (V,E) be a underlying graph of GPSP with

paths F = {Pj : j ∈ N} in G. Define Ni = {j ∈ N : ei ∈ Pj}. For each edge ei, i ∈ M , a

cost wi and a capacity bi are prescribed. To increase the capacity of edge ei, a minimum

unit ui with a cost di are given, i.e., the expanded edge capacity is always in the form of

bi + lui where l is a nonnegative integer. Let aj denotes the capacity of a path Pj and

for j ∈ N b ⊆ N a budget θj is prescribed. The Path Selection Problem with edge capacity

expansion (EPSP) is to select a set of edge M b ⊆M to build and assign expansion amount

ti for each edge ei, i ∈M such that the total cost on edge building and capacity expansion

is minimized while at least γ paths are selected, and these selected paths obey edge capacity

restriction and budget constraints.

We now formulate EPSP into integer programming problem. For each j ∈ N , define xj

99

CHAPTER 5. PSP WITH CAPACITY EXPANSION 100

as (2.1). For i ∈M , let

si =

1 if ei is selected to build

0 otherwise
(5.1)

Then the edge building expense is
∑

i∈M wisi. For j ∈ M , define nonnegative integer

variable ti ∈ Z+ as the edge capacity expansion amount for ei, and the resulting capacity of

ei becomes bi + tiui. Then the edge expansion cost is
∑

i∈M diti. Therefore, the objective

function is formulated as

p(s, t) =
∑
i∈M

wisi +
∑
i∈M

diti (5.2)

Since the expanded edge capacity for edge ei becomes bi + tiui, the edge capacity con-

straints are modified to ∑
j∈Ni

ajxj ≤ bi + tiui ∀i ∈M (5.3)

The client does not pay for edge ei if it is selected to build and the path cost is reduced

from its nominal cost
∑

i∈Mj
wi to

∑
i∈Mj

wi −
∑

i∈Mj
wisi. Let cj =

∑
i∈Mj

wi, hence the

budget constraints are modified as

cixj −
∑
i∈Mj

wisi ≤ θj + Θ(1− xj) ∀j ∈ N b (5.4)

where Θ is a large enough positive number. Together with the selected paths quantity

restriction, the integer programming formulation for EPSP is given as follows:

EPSP: Minimize p(s, t) =
∑
i∈M

wisi +
∑
i∈M

diti

Subject to: ∑
j∈Ni

ajxj ≤ bi + tiui ∀i ∈M

cjxj −
∑
i∈Mj

wisi ≤ θj + Θ(1− xj) ∀j ∈ N b

∑
j∈N

xj ≥ γ

xj ∈ {0, 1} ∀j ∈ N

si ∈ {0, 1} ∀i ∈M

ti ∈ Z+ ∀i ∈M

CHAPTER 5. PSP WITH CAPACITY EXPANSION 101

We now given our complexity analysis for EPSP.

Theorem 5.1.1. EPSP is NP-hard.

Proof. The formulation (3.10) of MSCP decision problem is a special case of EPSP where

wi = 0, di = 0, ui = 0 for i ∈ M and aj = 1 for j ∈ N . Due to the NP-completeness of

MSCP, EPSP is NP-hard.

Theorem 5.1.2. Given a feasible solution x ∈ {0, 1}n to EPSP, the corresponding optimal

solution t ∈ can be obtained in polynomial time while solving the corresponding optimal

solution s is NP-hard.

Proof. Given x, let J = {j : xj = 1}. To find the corresponding feasible solution s, t, EPSP

becomes
Minimize:

∑
i∈M

wisi +
∑
i∈M

diti

Subject to: ∑
i∈Mj

tiui ≥ bi −
∑

j∈Ni∩J
aj i ∈M

∑
i∈Mj

wisi ≥ cj − θj j ∈ N b ∩ J

si ∈ {0, 1} i ∈M

ti ∈ Z+ i ∈M

(5.5)

It is obvious that problem (5.5) can be divided into two independent subproblems respect

to s and t. Moreover, the optimal solution t of (5.5) is given as follows

ti = max

{
0,

⌈
bi −

∑
j∈Ni∩J aj

ui

⌉}
i ∈M (5.6)

This implies that t can be obtained within polynomial time.

We prove the second part is true by showing that it is true on a special case. Consider a

EPSP instance where γ = n, wi = 1, di = 0 for i ∈M and θj = cj − 1 for j ∈ N . Then the

only feasible solution x is xj = 1 for all j ∈ N . The above feasibility problem (5.5) (which

CHAPTER 5. PSP WITH CAPACITY EXPANSION 102

is also equivalent to the original EPSP1) becomes

Minimize:
∑
i∈M

si

Subject to: ∑
i∈Mj

si ≥ 1 j ∈ N

si ∈ {0, 1} i ∈M

Since there is no restriction for Mj , the above problem is a general MSCP. Due to the

NP-completeness of MSCP, the result follows.

5.2 Heuristic algorithm for EPSP

We develop a greedy algorithm and a semi-greedy algorithm for EPSP in this section.

Greedy algorithm for EPSP

The objective function contains two parts: the cost of building edges and the cost of expand-

ing edge capacities. The greedy algorithm first considers to select path without building any

edges or expanding edge capacity. To do this, we apply greedy algorithm on all the paths

without budget restrictions with given original edge capacity. Let x be the resulting partial

solution and initialize s = 0, t = 0. Then for the remaining paths including those with bud-

get constraints and those are not selected in the first round, we calculate the approximate

cost to select path Pj as

rj = max{0, cj − θj −
∑
i∈Mj

wisi}+
∑
i∈Mj

max{0,
⌈∑

k∈Ni
akxk + aj − bi − tiui

ui

⌉
∗ di} (5.7)

In each iteration, we select the path with lowest value rj . To do this, we expand edge

capacity to meet capacity constraints and select edges to build to meet budget constraints.

It is straightforward to expand edge capacity as given in formula (5.6). To select edges

to build, we simply check all the edges that are not chosen to build before and add them

to be build until the cost of the path under consideration is less than its budget. At last

we update rj for unconsidered paths and the procedure terminates as soon as γ paths are

selected. A formal description of the greedy algorithm is given below:

CHAPTER 5. PSP WITH CAPACITY EXPANSION 103

Algorithm 10: Greedy Algorithm for EPSP

Input: permutation π of N \N b

Initialize x← 0, s← 0, t← 0;

for j ← 1 to |N \N b| do /* first round selection */

path← π(j) ;

if (x|xpath = 1) is feasible then

xpath = 1;

if
∑

j∈N xj ≥ γ then

return x;

S′ = {j ∈ N : xj = 0};
for j ∈ S′ do /* initialize rj */

rj = max{0, cj − θj}+
∑

i∈Mj
max{0, d

∑
k∈Ni

akxk+aj−bi
ui

e ∗ di};

σ ← permutation of S′ according to decreasing value rj ;

for j ← 1 to |S′| do /* second round selection */

path← σ(j);

xpath = 1;

for k ∈Mj do /* expand capacity */

if akxk + aj − bi − tiui > 0 then

ti ← ti + d
∑

k∈Ni
akxk+aj−bi−tiui

ui
e;

δj = cj − θj −
∑

i∈Mj
wisi;

if δj > 0 then /* build edge */

for k ∈Mj ∩ {i ∈M : si = 0} and δj > 0 do

sk = 1;

Update ratio rσ(k) for k = j + 1 to |S′| according to (5.7);

Update permutation from σ(j + 1) to σ(|S′|);
if
∑

j∈N xj ≥ γ then

return x;

CHAPTER 5. PSP WITH CAPACITY EXPANSION 104

Semi-greedy algorithm for EPSP

Based on the greedy algorithm, we develop a semi-greedy algorithm. In each iteration, we

keep the first round selection as the same as greedy algorithm and allow some extent of less

“greediness” in the second round selection. More precisely, instead of selecting path with

lowest value rj , we pick one randomly from a candidate list with good enough values rj and

set it as one. We repeat the greedy selection procedure iLim iterations and return the best

found solution. A formal description of the semi-greedy algorithm is given below:

CHAPTER 5. PSP WITH CAPACITY EXPANSION 105

Algorithm 11: Semi-greedy Algorithm for EPSP

Input: lCand, iLim, permutation π of N

Initialize: x∗ ← 0, s∗ ← 0, t∗ ← 0, iter ← 1;

repeat

x← 0, s← 0, t← 0;

for j ← 1 to |N \N b| do /* first round selection */

path← π(j) ;

if (x|xpath = 1) is feasible then

xpath = 1;

if
∑

j∈N xj ≥ γ then

Go to step 1;

S′ = {j ∈ N : xj = 0};
for j ∈ S′ do /* initialize rj */

rj = max{0, cj − θj}+
∑

i∈Mj
max{0, d

∑
k∈Ni

akxk+aj−bi
ui

e ∗ di};

σ ← permutation of S′ according to decreasing value rj ;

next← lCand+ 1, candidate list C ← {σ(1), σ(2), . . . , σ(lCand)};
while C 6= ∅ do

path← select a random element in C ; /* random selection */

xpath = 1;

for k ∈Mj do /* expand capacity */

if akxk + aj − bi − tiui > 0 then

ti ← ti + d
∑

k∈Ni
akxk+aj−bi−tiui

ui
e;

if cj − θj −
∑

i∈Mj
wisi > 0 then /* build edge */

for k ∈Mj ∩ {i ∈M : si = 0} do
if cj − θj −

∑
i∈Mj

wisi > 0 then

sk = 1;

Update permutation from σ(j + 1) to σ(|S′|) according to updated value rj ;

if next ≤ n then /* update C */

C ← C ∪ {σ(next)} \ {path};
next← next+ 1;

else

C ← C \ {path};

if
∑

j∈N xj ≥ γ then

Go to step 1;

Step 1:

if p(s, t) > p(s∗, t∗) then /* update best known solution */

x∗ ← x, s∗ ← s, t∗ ← t;

iter ← iter + 1;

until iter = iLim;

CHAPTER 5. PSP WITH CAPACITY EXPANSION 106

5.3 Computational results and analysis

The instance generator for EPSP is based on that of GPSP. The additional data of EPSP

is generated as follows: Given β ∈ (0, 1), we set the cardinality of path set with budget N b

as βn and the elements of N b are filled randomly from N . After setting N b, the budget

θj is set as a percentage of the nominal path cost κcj where κ ∈ (0, 1) which is generated

between a predefined bounds. The selected path number γ is set as τn where τ ∈ (0, 1).

At last, we set the edge capacity expansion unit ui = 1 with associated cost di = wi
2bi

. The

involved parameters are summarized as follows:

• β ∈ (0, 1): determines cardinality of N b, |N b| = βn;

• dl, du: lower bound and upper bound to generate κ, κ = urand(dl∗100, du∗100)/100;

• τ ∈ (0, 1): determines selected path number γ, γ = τn;

For our test bed instance, we set instance size as n(2000), m(600, 1000), α(0.50), rl(2),

ru(0.2n), Uau(0.05), al(1), cl(1), cu(30), β(0.5, 0.8), τ(0.5, 0.6, 0.7), dl(0.50), du(0.80). The

instances are solved by CPLEX given time limit 0.5 hour, the solving results are reported

in Table 5.1. There are no optimal solution returned during the time limit for all instances

in test bed.

CHAPTER 5. PSP WITH CAPACITY EXPANSION 107

ID (m,n) α β dl − du τ OPT LBD Time/s UBD(LP relax)

1 (600,2000) 0.5 0.5 0.5-0.8 0.5 - 723.75 1800.49 0.00

2 (600,2000) 0.5 0.5 0.5-0.8 0.5 - 531.64 1800.97 0.00

3 (600,2000) 0.5 0.5 0.5-0.8 0.5 - 488.48 1801.67 0.00

4 (600,2000) 0.5 0.5 0.5-0.8 0.6 - 1885.11 1803.48 0.00

5 (600,2000) 0.5 0.5 0.5-0.8 0.6 - 1841.16 1800.70 0.00

6 (600,2000) 0.5 0.5 0.5-0.8 0.6 - 1872.15 1800.72 0.00

7 (600,2000) 0.5 0.5 0.5-0.8 0.7 - 2808.33 1807.00 33.77

8 (600,2000) 0.5 0.5 0.5-0.8 0.7 - 2679.09 1808.17 27.80

9 (600,2000) 0.5 0.5 0.5-0.8 0.7 - 2851.57 1807.44 33.52

10 (600,2000) 0.5 0.8 0.5-0.8 0.5 - 1757.87 1800.94 0.00

11 (600,2000) 0.5 0.8 0.5-0.8 0.5 - 1755.31 1802.93 0.00

12 (600,2000) 0.5 0.8 0.5-0.8 0.5 - 1785.08 1803.73 0.00

13 (600,2000) 0.5 0.8 0.5-0.8 0.6 - 2455.69 1804.00 0.00

14 (600,2000) 0.5 0.8 0.5-0.8 0.6 - 2327.19 1800.84 0.00

15 (600,2000) 0.5 0.8 0.5-0.8 0.6 - 2511.15 1802.13 0.00

16 (600,2000) 0.5 0.8 0.5-0.8 0.7 - 3346.91 1806.00 33.92

17 (600,2000) 0.5 0.8 0.5-0.8 0.7 - 3140.13 1805.47 27.92

18 (600,2000) 0.5 0.8 0.5-0.8 0.7 - 3309.58 1804.77 33.67

19 (1000,2000) 0.5 0.5 0.5-0.8 0.5 - 1076.52 1802.82 0.00

20 (1000,2000) 0.5 0.5 0.5-0.8 0.5 - 1058.27 1800.65 0.00

21 (1000,2000) 0.5 0.5 0.5-0.8 0.5 - 1284.08 1800.59 0.00

22 (1000,2000) 0.5 0.5 0.5-0.8 0.6 - 3294.17 1800.60 0.00

23 (1000,2000) 0.5 0.5 0.5-0.8 0.6 - 2965.40 1801.51 0.00

24 (1000,2000) 0.5 0.5 0.5-0.8 0.6 - 3415.54 1800.73 0.00

25 (1000,2000) 0.5 0.5 0.5-0.8 0.7 - 4844.88 1800.45 72.27

26 (1000,2000) 0.5 0.5 0.5-0.8 0.7 - 4456.49 1800.69 55.98

27 (1000,2000) 0.5 0.5 0.5-0.8 0.7 - 4908.44 1800.88 123.63

28 (1000,2000) 0.5 0.8 0.5-0.8 0.5 - 2828.26 1802.62 0.00

29 (1000,2000) 0.5 0.8 0.5-0.8 0.5 - 2889.61 1800.72 0.00

30 (1000,2000) 0.5 0.8 0.5-0.8 0.5 - 2990.17 1800.72 0.00

31 (1000,2000) 0.5 0.8 0.5-0.8 0.6 - 3836.34 1801.18 0.00

32 (1000,2000) 0.5 0.8 0.5-0.8 0.6 - 3890.76 1801.44 0.00

33 (1000,2000) 0.5 0.8 0.5-0.8 0.6 - 4118.56 1800.55 0.00

34 (1000,2000) 0.5 0.8 0.5-0.8 0.7 - 5148.10 1800.09 72.68

35 (1000,2000) 0.5 0.8 0.5-0.8 0.7 - 5008.74 1804.80 56.34

36 (1000,2000) 0.5 0.8 0.5-0.8 0.7 - 5361.79 1800.16 124.13

Table 5.1: EPSP - the result of CPLEX on test bed

CHAPTER 5. PSP WITH CAPACITY EXPANSION 108

We test greedy algorithm on instance E-1, E-1 and E-3 with different ratios defined in

Table 2.1. All the ratios give the same solution, hence we choose Ratio 5 for the greedy

algorithm to run on the whole test bed. Semi-greedy algorithm with iLim = 50, lCand = 5

and Ratio 5 is tested on the test bed. The result is given in Table .

We first observe that CPLEX almost always provides better solution than our developed

greedy algorithm and semi-greedy algorithm. However, for instances 1, 2, 3, 19, 20 and 21

it loses this supreme. These instance are generated with τ = 0.5. Second, comparing

greedy algorithm with semi-greedy algorithm, the former gives a better solution only for

3 out of 36 instances. Although semi-greedy algorithm does not outperform its peer in all

cases, its overall more competitive performance is still proved. Third, we notice that the

computational time for both greedy algorithm and semi-greedy algorithm are on a larger

order comparing to that for GPSP, BPSP and DPSP. This is due to the ratio update and

the fact that even given selected path set we also need to select the edges to build.

CHAPTER 5. PSP WITH CAPACITY EXPANSION 109

CPLEX GREEDY-5 SEMIGREEDY-50-5-5

Inst Opt LBD Time Val Time Val Time

1 - 723.75 1800.49 183.19 0.06 183.19 2.92

2 - 531.64 1800.97 185.03 0.05 185.03 2.59

3 - 488.48 1801.67 148.93 0.05 264.21 2.50

4 - 1885.11 1803.48 3036.17 0.19 2893.06 8.14

5 - 1841.16 1800.70 2820.31 0.17 2749.49 7.75

6 - 1872.15 1800.72 2903.22 0.19 2763.52 7.80

7 - 2808.33 1807.00 4492.12 0.30 4468.05 11.72

8 - 2679.09 1808.17 4244.17 0.28 4138.37 10.90

9 - 2851.57 1807.44 4420.98 0.30 4346.04 11.12

10 - 1757.87 1800.94 2784.52 0.50 2808.98 19.56

11 - 1755.31 1802.93 2803.57 0.47 2697.53 18.30

12 - 1785.08 1803.73 2766.83 0.48 2711.86 19.05

13 - 2455.69 1804.00 3807.04 0.67 3725.28 24.57

14 - 2327.19 1800.84 3764.00 0.65 3627.46 24.01

15 - 2511.15 1802.13 3794.70 0.67 3713.79 24.23

16 - 3346.91 1806.00 5071.53 0.81 4965.54 27.94

17 - 3140.13 1805.47 4908.17 0.79 4761.66 26.83

18 - 3309.58 1804.77 4803.11 0.81 4764.53 27.61

19 - 1076.52 1802.82 211.41 0.09 211.41 4.07

20 - 1058.27 1800.65 322.15 0.13 322.15 5.40

21 - 1284.08 1800.59 378.38 0.12 378.38 5.71

22 - 3294.17 1800.60 5188.72 0.31 5025.73 12.95

23 - 2965.40 1801.51 4778.46 0.33 4624.53 13.88

24 - 3415.54 1800.73 5113.41 0.31 5027.05 13.74

25 - 4844.88 1800.45 7775.31 0.48 7684.93 18.39

26 - 4456.49 1800.69 7377.70 0.50 7269.29 19.11

27 - 4908.44 1800.88 7632.54 0.50 7627.20 19.10

28 - 2828.26 1802.62 4889.03 0.78 4774.13 30.90

29 - 2889.61 1800.72 4839.75 0.75 4754.50 29.61

30 - 2990.17 1800.72 4693.28 0.78 4612.43 30.87

31 - 3836.34 1801.18 6491.61 1.11 6438.60 39.72

32 - 3890.76 1801.44 6525.06 1.08 6355.12 39.17

33 - 4118.56 1800.55 6326.89 1.09 6328.61 40.00

34 - 5148.10 1800.09 8506.46 1.34 8373.49 45.05

35 - 5008.74 1804.80 8384.49 1.29 8247.37 44.10

36 - 5361.79 1800.16 8498.41 1.34 8471.31 45.72

Table 5.2: EPSP heuristic algorithms comparison

Chapter 6

Conclusion

In our thesis, we consider a network design problem arising in fiber optical network construc-

tion. The problem is formulated to an integer program. Four different models are covered:

(1) Greedy Path Selection Problem (GPSP) (2) Benevolent Path Selection Problem (BPSP)

(3) “a priori” Discounted Path Selection Problem (DPSP) and (4) Path Selection Problem

with capacity expansion (EPSP). The optimal solution in each model is a collection of paths.

Although the company is not considering the construction of all these paths, the solution of

paths obtained can be used to estimate potential revenue structure and allow the company

to make appropriate quotes for clients under consideration.

Each of the models GPSP, BPSP, DPSP and EPSP are analyzed in detail. GPSP is

shown to be NP-hard and equivalent to Column Restricted Multi-dimensional Knapsack

Problem (CMDKP). The transformation given in the proof is approximation preserving

and hence all approximation (non-approximation) results for CMDKP can be translated

into GPSP. We also identified some polynomially solvable special cases. In addition, dif-

ferent integer programming formulations are analyzed for their strength by means of the

corresponding linear programming relaxations.

We developed various types of greedy heuristics for GPSP with different characteristics.

Extensions of these heuristics within a semi-greedy framework are also considered. For

experimental analysis, we constructed different classes of test problem showing approximate

relationship between value of cj ’s (cost) and aj ’s (capacity usage) used in the model. This

resulted in six different classes of problems: (1) random instances (2) positively correlated

instances (3) negatively correlated instances (4) uniform instances (5) semi uniform instances

and (6) PSP inspired instances. The greedy and semi-greedy algorithms are tested for each

110

CHAPTER 6. CONCLUSION 111

of these classes. These algorithms produced very good solutions (average deviation from LP

relaxation upper bound within 7.37%) in almost negligible computational effect.

We also used a general purpose ILP solver (CPLEX) with fixed time limit as a heuristic.

This performed better than semi-greedy and greedy algorithm but at the expense of compu-

tational time on the average 600 times more than that of semi-greedy. A multi start version

of a local search heuristic was also investigated but it was not competitive with CPLEX

heuristic.

For BPSP we have obtained complexity results similar to that we discussed in the case of

GPSP. In particular, we show that BPSP is equivalent to Capacity Cover Problem. Unlike

GPSP, the BPSP on r-knot problem are solvable in polynomial time.

The greedy, semi-greedy, CPLEX and multi-start local search are extended to BPSP

as well along with experimental analysis. We observed that BPSP is relatively simpler

compared to GPSP.

One drawback of the BPSP model is that if a path selection covers all edges, it is

optimal and including more paths will not affect the objective function value. However, for

the purpose of our original problem, it is useful to select as many paths as possible. To

accommodate this, we introduced a lexicographic version of the problem which can also be

formulated as an integer linear programming problem.

Another model considered in this thesis is the discounted path selection model. We

briefly discuss “discount after selection” model followed by extensive analysis of “a priori”

discounted model (DPSP). We developed greedy, semi-greedy and multi-start versions of

heuristics for this problem along with CPLEX based heuristic.

If CPLEX is used without specifying a starting solution, it could not produce any feasible

solution (except zero solution) within half an hour. However, when the greedy solution

(which uses almost negligible computational time) is provided as a starting solution, it

produced solutions better than multi-start version of the local search heuristic.

Finally, we analyzed the capacity expansion problem and showed that it is also NP-hard.

Computational results with CPLEX based heuristics are provided.

Our experimental analysis produced some interesting outcome. Note that GPSP is a

special case of the multi-dimensional knapsack problem, which is well studied using various

heuristics, including variations of flip and 2-exchange based heuristics. However, when

restricted to GPSP, such heuristics were not competitive with CPLEX used on a heuristic

with time limit. This may be because we used the most recent version of CPLEX while

CHAPTER 6. CONCLUSION 112

studies on multi-dimensional knapsack problem are somewhat old. Further, it is possible

that the restriction that nonzero elements in each column are the same may have some role

to play in such impressive performance of CPLEX.

We did not consider theoretical analysis of heuristics for these problems and it is left

as a topic for future investigation. Since the maximum clique problem is a special case of

GPSP, interesting results with nice performance ratios may be difficult. However, we believe

domination analysis could be used to obtain interesting theoretical results.

Appendix A

Computational Results for GPSP:

other types

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

1000 100 186587 0.43 3605.15 202610 0.49 3606.69 171017 0.35 3604.38

1000 150 274658 0.59 3605.74 288663 0.66 3606.72 255968 0.46 3604.72

1000 200 361009 0.66 3606.03 390925 0.71 3606.88 339244 0.60 3605.38

1000 250 444566 0.72 3605.86 476517 0.77 3607.06 390276 0.66 3605.38

1000 300 542272 0.85 3612.00 586076 0.90 3617.25 507592 0.76 3608.75

2000 200 724985 0.37 3607.35 738663 0.39 3608.41 701297 0.32 3605.16

2000 300 1086669 0.47 3606.30 1125257 0.49 3609.59 1066562 0.46 3604.13

2000 400 1427765 0.52 3615.98 1499139 0.56 3623.59 1312204 0.49 3602.56

2000 500 1757717 0.58 3603.29 1867167 0.62 3605.97 1605451 0.54 3602.22

2000 600 2092842 0.65 3612.59 2235938 0.68 3624.38 2021612 0.59 3602.44

5000 500 4564144 0.27 3603.36 4665680 0.29 3604.72 4442887 0.25 3602.56

5000 750 6829932 0.34 3602.86 7008941 0.37 3603.09 6676311 0.31 3602.41

5000 1000 9087050 0.38 3603.14 9375483 0.40 3603.31 8770072 0.35 3602.97

5000 1250 11247795 0.43 3602.78 11568992 0.45 3603.56 11051914 0.41 3601.94

5000 1500 13553428 0.47 3602.03 13819853 0.49 3602.81 13026055 0.43 3601.38

Table A.1: GPSP - the results of CPLEX on Test bed W

113

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 114

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

1000 100 28012 0.17 3605.23 28514 0.19 3606.43 27457 0.15 3604.57

1000 150 27853 0.27 3605.87 28581 0.31 3608.62 26889 0.21 3604.06

1000 200 27803 0.33 3607.70 28070 0.39 3609.75 27614 0.28 3604.32

1000 250 27598 0.44 3607.74 28275 0.50 3612.54 26966 0.38 3605.26

1000 300 27405 0.47 3612.58 27854 0.51 3619.38 26783 0.41 3606.09

2000 200 96526 0.19 3607.08 97077 0.22 3614.66 96056 0.14 3604.30

2000 300 95975 0.28 3612.54 98308 0.33 3632.85 94864 0.25 3602.64

2000 400 95787 0.33 3625.87 98375 0.38 3664.95 93063 0.27 3603.94

2000 500 94485 0.36 3619.24 96382 0.40 3635.81 91633 0.35 3609.19

2000 600 95078 0.44 3626.71 96394 0.46 3631.88 92753 0.41 3620.69

5000 500 543957 0.17 3612.16 545886 0.18 3627.09 539698 0.15 3603.19

5000 750 541900 0.22 3614.94 547689 0.23 3629.69 537331 0.21 3602.81

5000 1000 536238 0.27 3603.37 540547 0.31 3606.27 532919 0.22 3602.33

5000 1250 539791 0.31 3603.19 545587 0.33 3604.39 537591 0.31 3602.55

5000 1500 535720 0.35 3603.24 541657 0.37 3604.31 531889 0.32 3602.64

Table A.2: GPSP - the results of CPLEX on Test bed R

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 115

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

1000 100 19336 0.44 3603.85 19576 0.50 3604.06 19132 0.38 3603.50

1000 150 19511 0.74 3602.99 20317 0.78 3603.13 19045 0.72 3602.88

1000 200 18797 0.99 3602.64 19196 1.11 3602.81 18464 0.92 3602.38

1000 250 18828 1.28 3602.61 19096 1.38 3603.31 18486 1.09 3602.44

1000 300 18604 1.51 3602.94 18903 1.61 3604.13 18251 1.43 3602.25

2000 200 65285 0.45 3602.28 66193 0.49 3602.50 64208 0.41 3602.13

2000 300 64199 0.68 3608.34 64889 0.70 3630.81 63317 0.65 3601.94

2000 400 62497 0.89 3602.35 63914 0.94 3603.75 61764 0.84 3601.31

2000 500 62405 1.07 3603.80 64545 1.12 3605.06 61060 1.00 3602.31

2000 600 62557 1.33 3603.29 63998 1.37 3604.69 61480 1.29 3601.75

5000 500 358248 0.50 3608.24 359632 0.52 3613.00 357235 0.48 3601.31

5000 750 353240 0.72 3603.33 354715 0.74 3606.69 351409 0.68 3601.69

5000 1000 350292 0.87 3603.34 354086 0.90 3607.19 347518 0.80 3601.44

5000 1250 350077 1.01 3605.92 351682 1.21 3612.19 346803 0.94 3601.44

5000 1500 346777 1.18 3601.76 349762 1.29 3602.69 341435 1.03 3601.25

Table A.3: GPSP - the results of CPLEX on Test bed U

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 116

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

1000 100 45780 0.42 3604.00 46243 0.49 3604.22 45360 0.36 3603.59

1000 150 45933 0.58 3603.96 46533 0.66 3604.59 45360 0.45 3603.56

1000 200 45292 0.69 3603.80 45720 0.74 3604.16 44853 0.65 3603.50

1000 250 45067 0.88 3603.43 45832 0.97 3604.00 44340 0.73 3603.00

1000 300 44746 0.95 3604.07 45322 1.12 3604.19 43961 0.76 3603.94

2000 200 157383 0.41 3602.95 157959 0.46 3603.03 156850 0.34 3602.88

2000 300 156090 0.53 3609.32 157650 0.60 3611.69 154422 0.48 3607.31

2000 400 154458 0.63 3607.20 157559 0.67 3612.00 153279 0.61 3603.81

2000 500 153008 0.72 3615.34 156984 0.82 3622.09 149366 0.61 3604.38

2000 600 153897 0.84 3613.64 155134 0.87 3618.78 151316 0.82 3604.53

5000 500 880364 0.33 3618.68 884306 0.37 3632.88 874740 0.30 3603.50

5000 750 873993 0.44 3602.54 881000 0.46 3604.00 868033 0.42 3602.09

5000 1000 866034 0.53 3603.20 869161 0.58 3603.81 862593 0.48 3602.13

5000 1250 869826 0.57 3602.63 874956 0.61 3603.25 865386 0.52 3602.09

5000 1500 862836 0.66 3602.39 871594 0.72 3603.44 856780 0.55 3601.31

Table A.4: GPSP - the results of CPLEX on Test bed S

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 117

AVE MAX MIN

n m Obj Gap Time Obj Gap Time Obj Gap Time

1000 100 31541 0.06 3606.12 32224 0.08 3609.00 30969 0.04 3604.06

1000 150 31666 0.08 3605.68 32193 0.10 3607.56 30670 0.07 3602.19

1000 200 31774 0.11 3606.09 32153 0.14 3606.69 31345 0.09 3605.56

1000 250 31577 0.12 3608.65 32352 0.15 3615.94 30924 0.11 3604.88

1000 300 31378 0.16 3622.56 31985 0.19 3638.25 30685 0.14 3608.50

2000 200 109579 0.07 3607.70 110857 0.08 3616.94 108283 0.06 3605.13

2000 300 108983 0.10 3629.41 110279 0.11 3639.75 107660 0.07 3610.69

2000 400 108669 0.11 3624.84 110789 0.13 3651.38 106374 0.10 3606.06

2000 500 107958 0.12 3628.68 110036 0.14 3662.75 105335 0.11 3606.69

2000 600 108261 0.14 3641.84 109435 0.16 3656.81 106117 0.11 3633.25

5000 500 614575 0.07 3640.20 616005 0.08 3646.81 612261 0.07 3635.19

5000 750 614822 0.09 3639.29 619032 0.09 3654.56 607909 0.08 3615.88

5000 1000 608546 0.10 3636.67 612629 0.10 3645.38 605070 0.09 3630.19

5000 1250 612281 0.12 3651.32 618247 0.13 3686.88 609931 0.10 3610.63

5000 1500 609234 0.12 3644.75 613116 0.13 3675.94 602635 0.10 3605.50

Table A.5: GPSP - the results of CPLEX on Test bed N

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 118

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 2.69 0.00 3.01 0.00 2.51 0.00

1000 150 3.05 0.00 3.77 0.00 2.64 0.00

1000 200 2.99 0.00 3.69 0.00 2.72 0.00

1000 250 3.09 0.00 3.34 0.02 2.64 0.00

1000 300 3.39 0.00 3.92 0.00 2.98 0.00

2000 200 2.01 0.00 2.31 0.00 1.75 0.00

2000 300 2.25 0.00 2.44 0.00 1.95 0.00

2000 400 2.36 0.00 2.46 0.00 2.20 0.00

2000 500 2.55 0.00 2.93 0.02 2.29 0.00

2000 600 2.88 0.01 3.17 0.02 2.56 0.00

5000 500 1.71 0.00 1.81 0.02 1.65 0.00

5000 750 1.74 0.01 1.82 0.02 1.65 0.00

5000 1000 1.80 0.01 1.93 0.02 1.63 0.00

5000 1250 1.94 0.01 2.10 0.02 1.73 0.00

5000 1500 2.00 0.01 2.13 0.02 1.81 0.01

Table A.6: GPSP - the results of greedy algorithm on Test bed W

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.66 0.00 1.96 0.01 1.35 0.00

1000 150 1.90 0.00 2.18 0.00 1.50 0.00

1000 200 2.53 0.00 2.77 0.00 2.17 0.00

1000 250 2.23 0.00 2.53 0.00 2.03 0.00

1000 300 2.48 0.00 2.78 0.02 2.29 0.00

2000 200 1.41 0.00 1.72 0.00 1.15 0.00

2000 300 1.49 0.00 1.62 0.00 1.32 0.00

2000 400 1.70 0.00 1.90 0.00 1.41 0.00

2000 500 1.94 0.00 2.34 0.00 1.64 0.00

2000 600 2.05 0.00 2.38 0.01 1.81 0.00

5000 500 1.18 0.01 1.33 0.02 1.10 0.00

5000 750 1.30 0.01 1.37 0.02 1.20 0.00

5000 1000 1.33 0.02 1.63 0.02 1.13 0.01

5000 1250 1.40 0.01 1.45 0.02 1.32 0.00

5000 1500 1.59 0.02 1.71 0.02 1.50 0.02

Table A.7: GPSP - the results of greedy algorithm on Test bed R

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 119

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 5.17 0.00 6.21 0.01 4.86 0.00

1000 150 5.55 0.00 6.29 0.00 4.95 0.00

1000 200 6.17 0.00 6.88 0.00 4.97 0.00

1000 250 6.73 0.00 7.11 0.00 5.96 0.00

1000 300 7.15 0.00 7.88 0.02 6.60 0.00

2000 200 4.30 0.00 4.62 0.01 3.98 0.00

2000 300 4.65 0.00 4.81 0.00 4.53 0.00

2000 400 5.34 0.00 5.62 0.02 4.87 0.00

2000 500 5.79 0.00 6.22 0.00 5.21 0.00

2000 600 6.33 0.01 6.77 0.02 6.11 0.00

5000 500 3.53 0.00 3.68 0.00 3.36 0.00

5000 750 3.79 0.00 4.00 0.02 3.58 0.00

5000 1000 3.99 0.01 4.25 0.02 3.87 0.00

5000 1250 4.01 0.01 4.12 0.02 3.78 0.00

5000 1500 4.21 0.02 4.46 0.02 3.98 0.02

Table A.8: GPSP - the results of greedy algorithm on Test bed U

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 3.04 0.00 3.46 0.00 2.32 0.00

1000 150 3.33 0.00 3.68 0.00 2.97 0.00

1000 200 4.15 0.00 4.79 0.00 3.74 0.00

1000 250 3.66 0.00 4.18 0.00 3.29 0.00

1000 300 3.72 0.00 4.63 0.00 3.18 0.00

2000 200 2.44 0.00 2.56 0.00 2.24 0.00

2000 300 2.66 0.00 3.57 0.00 2.30 0.00

2000 400 2.93 0.00 3.60 0.00 2.39 0.00

2000 500 3.18 0.00 3.60 0.01 2.79 0.00

2000 600 3.50 0.01 3.64 0.02 3.41 0.00

5000 500 2.04 0.01 2.19 0.01 1.88 0.00

5000 750 2.16 0.01 2.31 0.02 2.00 0.00

5000 1000 2.26 0.02 2.49 0.02 2.13 0.01

5000 1250 2.42 0.02 2.68 0.02 2.25 0.02

5000 1500 2.84 0.02 3.05 0.02 2.61 0.01

Table A.9: GPSP - the results of greedy algorithm on Test bed S

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 120

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 0.73 0.00 0.94 0.00 0.62 0.00

1000 150 0.94 0.00 1.21 0.00 0.82 0.00

1000 200 0.96 0.00 1.23 0.01 0.77 0.00

1000 250 1.05 0.00 1.20 0.00 0.81 0.00

1000 300 1.15 0.00 1.36 0.00 1.05 0.00

2000 200 0.62 0.00 0.71 0.00 0.52 0.00

2000 300 0.72 0.00 0.83 0.02 0.59 0.00

2000 400 0.69 0.00 0.76 0.02 0.59 0.00

2000 500 0.81 0.00 0.91 0.02 0.71 0.00

2000 600 1.03 0.00 1.20 0.00 0.92 0.00

5000 500 0.56 0.01 0.61 0.02 0.51 0.00

5000 750 0.53 0.01 0.59 0.02 0.45 0.00

5000 1000 0.59 0.01 0.74 0.02 0.51 0.00

5000 1250 0.63 0.01 0.69 0.02 0.58 0.00

5000 1500 0.66 0.02 0.69 0.02 0.60 0.02

Table A.10: GPSP - the results of greedy algorithm on Test bed N

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 2.27 0.01 2.54 0.02 2.07 0.01

1000 150 2.72 0.02 3.21 0.03 2.19 0.01

1000 200 2.67 0.02 3.32 0.02 2.36 0.01

1000 250 2.56 0.02 2.78 0.02 2.23 0.01

1000 300 2.93 0.02 3.15 0.02 2.77 0.01

2000 200 1.81 0.04 2.18 0.05 1.60 0.03

2000 300 1.91 0.04 2.03 0.06 1.74 0.03

2000 400 2.07 0.05 2.24 0.05 1.79 0.05

2000 500 2.29 0.05 2.56 0.06 2.14 0.05

2000 600 2.60 0.05 2.92 0.06 2.27 0.05

5000 500 1.54 0.19 1.68 0.20 1.46 0.17

5000 750 1.55 0.24 1.60 0.25 1.48 0.22

5000 1000 1.67 0.27 1.76 0.31 1.48 0.25

5000 1250 1.73 0.29 1.82 0.30 1.61 0.28

5000 1500 1.81 0.33 1.93 0.37 1.68 0.30

Table A.11: GPSP - the results of semi-greedy algorithm on Test bed W

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 121

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.30 0.01 1.43 0.01 1.10 0.01

1000 150 1.57 0.01 1.80 0.01 1.38 0.01

1000 200 1.99 0.01 2.24 0.01 1.67 0.00

1000 250 1.93 0.01 2.33 0.02 1.63 0.00

1000 300 2.06 0.02 2.22 0.03 1.82 0.01

2000 200 1.21 0.03 1.51 0.05 1.02 0.03

2000 300 1.36 0.04 1.54 0.05 1.22 0.03

2000 400 1.56 0.05 1.85 0.05 1.29 0.05

2000 500 1.60 0.05 1.80 0.05 1.39 0.05

2000 600 1.83 0.06 2.14 0.06 1.59 0.05

5000 500 1.06 0.18 1.18 0.19 1.00 0.17

5000 750 1.19 0.21 1.30 0.22 1.06 0.20

5000 1000 1.20 0.24 1.40 0.25 1.04 0.23

5000 1250 1.30 0.28 1.34 0.30 1.22 0.27

5000 1500 1.45 0.31 1.57 0.33 1.38 0.30

Table A.12: GPSP - the results of semi-greedy algorithm on Test bed R

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 4.48 0.01 5.00 0.01 4.18 0.01

1000 150 4.73 0.01 5.17 0.03 4.26 0.00

1000 200 5.58 0.01 6.35 0.02 4.92 0.00

1000 250 5.98 0.02 6.43 0.02 5.49 0.01

1000 300 6.56 0.01 6.93 0.02 6.24 0.00

2000 200 4.04 0.03 4.31 0.03 3.58 0.03

2000 300 4.35 0.04 4.52 0.05 4.16 0.03

2000 400 5.10 0.03 5.49 0.05 4.78 0.03

2000 500 5.29 0.04 5.64 0.05 5.06 0.03

2000 600 5.84 0.05 6.41 0.05 5.40 0.05

5000 500 3.40 0.17 3.70 0.19 3.13 0.16

5000 750 3.54 0.19 3.72 0.20 3.47 0.19

5000 1000 3.82 0.22 4.18 0.23 3.57 0.20

5000 1250 3.83 0.24 3.92 0.25 3.71 0.23

5000 1500 4.00 0.28 4.33 0.30 3.74 0.26

Table A.13: GPSP - the results of semi-greedy algorithm on Test bed U

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 122

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 2.56 0.01 3.06 0.01 1.88 0.01

1000 150 2.85 0.01 3.28 0.01 2.35 0.01

1000 200 3.50 0.02 4.07 0.02 3.19 0.01

1000 250 3.32 0.02 3.98 0.03 2.98 0.01

1000 300 3.27 0.02 4.09 0.02 2.63 0.02

2000 200 2.23 0.03 2.27 0.05 2.20 0.03

2000 300 2.41 0.04 3.10 0.05 2.11 0.03

2000 400 2.62 0.04 3.00 0.05 2.29 0.03

2000 500 2.94 0.05 3.26 0.05 2.53 0.05

2000 600 3.17 0.05 3.54 0.06 2.82 0.05

5000 500 1.84 0.18 2.01 0.19 1.65 0.17

5000 750 2.03 0.21 2.18 0.22 1.88 0.20

5000 1000 2.09 0.25 2.46 0.25 1.95 0.25

5000 1250 2.30 0.28 2.48 0.28 2.15 0.26

5000 1500 2.56 0.30 2.68 0.31 2.43 0.28

Table A.14: GPSP - the results of semi-greedy algorithm on Test bed S

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 0.66 0.02 0.85 0.02 0.56 0.01

1000 150 0.75 0.01 0.96 0.01 0.63 0.01

1000 200 0.83 0.01 1.03 0.01 0.67 0.01

1000 250 0.91 0.02 1.04 0.02 0.75 0.01

1000 300 0.96 0.02 1.06 0.02 0.87 0.01

2000 200 0.51 0.03 0.57 0.05 0.43 0.03

2000 300 0.64 0.03 0.74 0.03 0.52 0.03

2000 400 0.60 0.04 0.61 0.05 0.58 0.03

2000 500 0.73 0.05 0.82 0.06 0.65 0.05

2000 600 0.90 0.05 1.01 0.06 0.80 0.05

5000 500 0.50 0.19 0.54 0.20 0.44 0.19

5000 750 0.49 0.22 0.53 0.23 0.42 0.22

5000 1000 0.53 0.25 0.64 0.26 0.44 0.25

5000 1250 0.58 0.29 0.62 0.30 0.52 0.28

5000 1500 0.60 0.33 0.64 0.36 0.58 0.31

Table A.15: GPSP - the results of semi-greedy algorithm on Test bed N

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 123

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.40 4.12 1.49 5.08 1.27 3.54

1000 150 1.70 5.12 1.89 5.38 1.50 4.90

1000 200 1.79 6.03 2.08 6.35 1.57 5.62

1000 250 1.84 6.78 2.01 7.67 1.63 6.30

1000 300 2.07 7.92 2.17 8.28 1.99 7.16

2000 200 1.14 22.42 1.30 23.63 0.99 20.97

2000 300 1.31 28.64 1.41 30.25 1.24 25.86

2000 400 1.39 35.73 1.42 38.14 1.35 33.76

2000 500 1.52 45.41 1.58 49.69 1.45 41.71

2000 600 1.73 54.03 1.88 60.84 1.64 49.76

5000 500 0.95 364.88 0.97 404.38 0.92 315.70

5000 750 0.99 510.91 1.04 587.50 0.88 415.88

5000 1000 1.09 672.87 1.12 744.45 1.05 620.63

5000 1250 1.16 859.60 1.22 942.26 1.12 751.95

5000 1500 1.21 1016.13 1.26 1072.99 1.16 933.05

Table A.16: GPSP - the results of multi-start local search algorithm on Test bed W

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.04 3.34 1.12 3.60 0.98 3.07

1000 150 1.41 4.32 1.56 4.53 1.22 4.14

1000 200 1.64 5.29 1.92 5.68 1.44 5.07

1000 250 1.64 5.95 1.92 6.19 1.48 5.68

1000 300 1.79 7.02 1.88 7.67 1.65 6.05

2000 200 1.01 17.79 1.24 18.75 0.83 17.29

2000 300 1.16 22.94 1.27 24.65 1.00 21.61

2000 400 1.37 28.86 1.51 30.08 1.16 27.78

2000 500 1.35 35.46 1.59 40.39 1.16 31.89

2000 600 1.55 41.66 1.73 43.31 1.40 37.14

5000 500 0.91 226.10 1.01 254.16 0.87 196.59

5000 750 1.06 303.89 1.11 353.78 0.96 267.24

5000 1000 1.09 380.95 1.27 415.66 0.94 354.15

5000 1250 1.15 460.03 1.19 537.83 1.12 404.70

5000 1500 1.31 527.88 1.43 579.29 1.26 465.74

Table A.17: GPSP - the results of multi-start local search algorithm on Test bed R

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 124

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 3.07 5.67 3.34 5.93 2.81 5.41

1000 150 3.38 6.67 3.74 7.04 3.21 6.07

1000 200 3.94 7.69 4.37 7.92 3.67 7.49

1000 250 4.32 8.64 4.73 9.28 4.12 7.66

1000 300 4.69 9.54 5.15 9.73 4.33 9.27

2000 200 2.92 29.80 3.15 32.49 2.70 28.36

2000 300 3.19 36.89 3.44 40.62 2.98 33.45

2000 400 3.65 46.07 3.95 49.72 3.28 41.92

2000 500 4.03 54.30 4.11 58.45 3.87 47.45

2000 600 4.34 66.14 4.72 69.79 3.98 60.14

5000 500 2.49 320.89 2.58 374.81 2.43 292.30

5000 750 2.69 465.23 2.79 506.44 2.60 413.26

5000 1000 2.82 560.02 2.94 796.04 2.69 437.27

5000 1250 2.91 704.14 3.06 875.85 2.75 633.64

5000 1500 3.00 895.27 3.06 1055.70 2.95 748.60

Table A.18: GPSP - the results of multi-start local search algorithm on Test bed U

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 1.77 4.50 2.07 5.02 1.37 4.04

1000 150 2.08 5.24 2.35 5.56 1.86 5.08

1000 200 2.51 6.32 2.69 6.82 2.35 6.02

1000 250 2.64 7.14 3.05 7.58 2.37 6.68

1000 300 2.64 8.08 3.07 8.66 2.15 7.44

2000 200 1.68 22.01 1.73 22.45 1.60 21.39

2000 300 1.86 28.25 2.25 28.89 1.67 27.55

2000 400 2.05 34.64 2.32 36.30 1.75 33.27

2000 500 2.33 41.47 2.47 46.13 2.02 38.77

2000 600 2.46 47.40 2.56 51.51 2.37 41.65

5000 500 1.43 268.56 1.53 284.45 1.36 246.51

5000 750 1.61 372.39 1.74 452.63 1.42 317.27

5000 1000 1.69 441.34 1.92 535.63 1.57 406.08

5000 1250 1.87 526.81 2.03 613.39 1.73 469.09

5000 1500 1.99 608.78 2.10 693.20 1.90 555.91

Table A.19: GPSP - the results of multi-start local search algorithm on Test bed S

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 125

AVE MAX MIN

n m Dev(%) Time Dev(%) Time Dev(%) Time

1000 100 0.48 3.04 0.65 3.25 0.41 2.77

1000 150 0.61 3.90 0.76 4.18 0.55 3.59

1000 200 0.67 4.80 0.88 5.06 0.52 4.59

1000 250 0.72 5.72 0.77 6.22 0.63 5.26

1000 300 0.83 6.60 0.96 7.08 0.76 6.10

2000 200 0.39 15.43 0.44 16.60 0.30 14.34

2000 300 0.53 19.29 0.60 20.28 0.43 18.78

2000 400 0.51 23.98 0.53 24.85 0.48 23.14

2000 500 0.62 29.77 0.70 32.25 0.55 28.19

2000 600 0.77 35.38 0.89 39.33 0.68 33.04

5000 500 0.39 170.65 0.43 188.98 0.34 160.20

5000 750 0.41 213.28 0.46 236.73 0.34 193.89

5000 1000 0.45 280.13 0.55 296.81 0.38 253.16

5000 1250 0.51 334.83 0.54 355.04 0.47 322.64

5000 1500 0.54 391.47 0.58 424.13 0.49 373.36

Table A.20: GPSP - the results of multi-start local search algorithm on Test bed N

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.61 3606.298 1.16 3624.38 0.28 3601.380 0

GREEDY-4 2.43 0.004 3.92 0.02 1.63 0.000 0

SEMIGREEDY-4-20-50 2.14 0.108 3.32 0.37 1.46 0.010 0

MULLS-100 1.42 242.705 2.17 1072.99 0.88 3.539 0

Table A.21: GPSP - the summary results of algorithms on Test bed W

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.43 3611.165 0.82 3664.95 0.17 3602.330 0

GREEDY-4 1.75 0.005 2.78 0.02 1.10 0.000 0

SEMIGREEDY-4-20-50 1.51 0.100 2.33 0.33 1.00 0.000 0

MULLS-100 1.30 138.099 1.92 579.29 0.83 3.070 0

Table A.22: GPSP - the summary results of algorithms on Test bed R

APPENDIX A. COMPUTATIONAL RESULTS FOR GPSP: OTHER TYPES 126

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.94 3603.845 1.69 3630.81 0.43 3601.250 0

GREEDY-4 5.11 0.003 7.88 0.02 3.36 0.000 0

SEMIGREEDY-4-20-50 4.70 0.090 6.93 0.30 3.13 0.000 0

MULLS-100 3.43 214.465 5.15 1055.70 2.43 5.406 0

Table A.23: GPSP - the summary results of algorithms on Test bed U

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.70 3606.477 1.35 3632.88 0.31 3601.310 0

GREEDY-4 2.95 0.005 4.79 0.02 1.88 0.000 0

SEMIGREEDY-4-20-50 2.65 0.100 4.09 0.31 1.65 0.010 0

MULLS-100 2.04 161.527 3.07 693.20 1.36 4.045 0

Table A.24: GPSP - the summary results of algorithms on Test bed S

Average Max Min

Alg Dev(%) Time Dev(%) Time Dev(%) Time #Opt Inst

CPLEX 0.24 3626.253 0.50 3686.88 0.10 3602.190 0

GREEDY-4 0.78 0.005 1.36 0.02 0.45 0.000 0

SEMIGREEDY-4-20-50 0.68 0.104 1.06 0.36 0.42 0.010 0

MULLS-100 0.56 102.552 0.96 424.13 0.30 2.775 0

Table A.25: GPSP - the summary results of algorithms on Test bed N

Bibliography

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, and H. Wang. A new approach for
modeling and solving set packing problems. European Journal of Operational Research,
186(2):504–512, April 2008.

[3] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for unsplittable
flow on line graphs. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing - STOC ’06, page 721, New York, New York, USA, 2006. ACM
Press.

[4] N. Bansal and Z. Friggstad. A logarithmic approximation for unsplittable flow on
line graphs. Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 702–709, 2009.

[5] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach
to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090, Sep
2001.

[6] C. Barnhart, C.A. Hane, and P.H. Vance. Integer multicommodity flow problems.
In WilliamH. Cunningham, S.Thomas McCormick, and Maurice Queyranne, editors,
Integer Programming and Combinatorial Optimization, volume 1084 of Lecture Notes
in Computer Science, pages 58–71. Springer Berlin Heidelberg, 1996.

[7] A. Baveja and A. Srinivasan. Approximating low-congestion routing and column-
restricted packing problems. Information Processing Letters, 74(1-2):19–25, April 2000.

[8] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[9] P. Bonsma, J. Schulz, and A. Wiese. A Constant Factor Approximation Algorithm for
Unsplittable Flow on Paths. 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 47–56, October 2011.

[10] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon. A multi-level search
strategy for the 01 Multidimensional Knapsack Problem. Discrete Applied Mathematics,
158(2):97–109, jan 2010.

127

BIBLIOGRAPHY 128

[11] A.V. Cabot. An enumeration algorithm for knapsack problems. Operations Research,
18:306–311, 1970.

[12] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. Improved approximation
algorithms for resource allocation, 2002.

[13] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation Algorithms for
the Unsplittable Flow Problem. Algorithmica, 47(1):53–78, August 2006.

[14] D. Chakrabarty, E. Grant, and J. Könemann. On column-restricted and priority cov-
ering integer programs. In Proceedings of the 14th international conference on Integer
Programming and Combinatorial Optimization, IPCO’10, pages 355–368, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[15] A.K. Chandra, D.S. Hirshberg, and C.K. Wong. Approximate algorithms for some
generalized knapsack problems. Theoretical Computer Science, 3:293–304, 1976.

[16] C. Chekuri, A. Ene, and N. Korula. Unsplittable Flow in Paths and Trees and Column-
Restricted Packing Integer Programs. in Proceedings of the 12th International Work-
shop (APPROX 09) and 13th International Workshop (RANDOM 09) on Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
5687:42–55, 2009.

[17] C. Chekuri, M. Mydlarz, and F.B. Shepherd. Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. Algorithms, 3(3), aug 2007.

[18] C. Chekuri, M. Mydlarz, F.B. Shepherd, B. Labs, M. Ave, and M. Hill. Multicommodity
Demand Flow in a Tree (Extended Abstract). pages 410–425, 2003.

[19] M. Chrobak, G.J. Woeginger, K. Makino, and H. Xu. Caching is hard even in the fault
model. 6346:195–206, 2010.

[20] P.C. Chu and J.E. Beasley. A Genetic Algorithm for the Multidimensional Knapsack
Problem. 86:63–86, 1998.

[21] G. Cornujols. Combinatorial optimization: Packing and covering, 2000.

[22] F. Dammeyer and S. Voß. Dynamic tabu list management using the reverse elimination
method. Annals of Operations Research, 41(2):29–46, jun 1993.

[23] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6(1):pp. 80–91, 1959.

[24] X. Delorme, X. Gandibleux, and J. Rodriguez. GRASP for set packing problems.
European Journal of Operational Research, 153(3):564–580, March 2004.

[25] A Drexl. A simulated annealing approach to the multiconstraint zero-one knapsack
problem. Computing, 40(1):1–8, mar 1988.

BIBLIOGRAPHY 129

[26] A. Fréville. The multidimensional 01 knapsack problem: An overview. European Jour-
nal of Operational Research, 155(1):1–21, may 2004.

[27] A. Fréville and S. Hanafi. The Multidimensional 0-1 Knapsack ProblemBounds and
Computational Aspects. Annals of Operations Research, 139(1):195–227, oct 2005.

[28] A. Freville and G. Plateau. An efficient preprocessing procedure for the multidimen-
sional 01 knapsack problem. Discrete Applied Mathematics, 49(1-3):189–212, mar 1994.

[29] A.M. Frieze and M.R. Clarke. Approximation algorithms for the m-dimensional 0-1
knapsack problem: Worst-case and probablistic analyses. European Journal of Opera-
tional Research, 15:100–109, 1984.

[30] X. Gandibleux. An ant colony optimization inspired algorithm for the Set Packing
Problem with application to railway infrastructure Outline of the ACO heuristic for
the SPP. 2005.

[31] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[32] G.V. Gens and E.V. Levner. Computational complexity of approximation algorithms
for combinatorial problems. In Ji Bev, editor, Mathematical Foundations of Computer
Science 1979, volume 74 of Lecture Notes in Computer Science, pages 292–300. Springer
Berlin Heidelberg, 1979.

[33] P.C. Gilmore and R.E. Gomory. The Theory and Computation of Knapsack Functions.
Operations Research, 14(6):1045–1074, nov 1966.

[34] F. Glover. Heuristics for integer programming using surrogate constraints. Decision
Sciences, 8(1):156–166, 1977.

[35] J. Gottlieb. Permutation-based evolutionary algorithms for multidimensional knapsack
problems. In Proceedings of the 2000 ACM symposium on Applied computing - SAC
’00, pages 408–414, New York, New York, USA, 2000. ACM Press.

[36] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics for a bidding problem. Comput.
Oper. Res, 33, 2006.

[37] M.M. Halldórsson. Approximations of weighted independent set and hereditary subset
problems. Journal of Graph A and Applications, 4(1):1–16, 2000.

[38] J. Hastad. Clique is hard to approximate within n1- epsiv;. In Foundations of Computer
Science, 1996. Proceedings., 37th Annual Symposium on, pages 627–636, 1996.

[39] F.S. Hillier. Efficient Heuristic Procedures for Integer Linear Programming with an
Interior. Operations Research, 17(4):600–637, jul 1969.

[40] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

BIBLIOGRAPHY 130

[41] S.G. Kolliopoulos and C. Stein. Approximating Disjoint-Path Problems Using Packing
Integer Programs. 2004.

[42] S.G. Kolliopoulos. Approximating covering integer programs with multiplicity con-
straints. Discrete Appl. Math, 129:461–473, 2000.

[43] S.G. Kolliopoulos and C. Stein. Approximating Disjoint-Path Problems Using Greedy
Algorithms and Packing Integer Programs. pages 153–168, 1998.

[44] S.G. Kolliopoulos and N.E. Young. Approximation algorithms for covering/packing
integer programs, 2005.

[45] B. Korte and R. Schrader. On the existence of fast approximation schemes. in: O.L.
Mangasarian, R.R. Meyer, S.M. Robinson (Eds.), Nonlinear Programming, 4, Aca-
demic Press, pages 415–437, 1980.

[46] M. Landete, J.F. Monge, and A.M. Rodŕıguez-Ch́ıa. Alternative formulations for the
Set Packing Problem and their application to the Winner Determination Problem.
Annals of Operations Research, January 2012.

[47] H.C. Lau and Y.G. Goh. An intelligent brokering system to support multi-agent web-
based 4th-party logistics. In Tools with Artificial Intelligence, 2002. (ICTAI 2002).
Proceedings. 14th IEEE International Conference on, pages 154–161, 2002.

[48] S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. Approximation algorithms for
bandwidth and storage allocation problems under real time constraints. In Proceedings
of the 20th Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FST TCS 2000, pages 409–420, London, UK, UK, 2000. Springer-Verlag.

[49] R. Loulou and E. Michaelides. New Greedy-Like Heuristics for the Multidimensional
0-1 Knapsack Problem. Operations Research, 27(6):1101–1114, nov 1979.

[50] M.J. Magazine and O. Oguz. A fully polynomial approximation algorithm for the 0-1
knapsack problem. European Journal of Operational Research, 8:270–273, 1981.

[51] G.B. Mathews. On the partition of numbers. Proceedings of the London Mathematical
Society, 28:486–490, 1897.

[52] A. Merel, X. Gandibleux, and S. Demassey. A collaborative combination between
column generation and ant colony optimization for solving set packing problems. In
9th Metaheuristics International Conference (MIC’11), Udine, Italy, jul 2011.

[53] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Pro-
gramming, 5(1):199–215, December 1973.

[54] C.A. Phillips, R.N. Uma, and J. Wein. Off-line admission control for general scheduling
problems. In Journal of Scheduling, pages 879–888, 2000.

BIBLIOGRAPHY 131

[55] A.P. Punnen. The path selection problem and optimal pricing. 2013.

[56] S. Senju and Y. Toyoda. An Approach to Linear Programming with 0-1 Variables.
Management Science, 15(4):B–196–B–207, December 1968.

[57] A. Srinivasan. Improved approximation guarantees for packing and covering integer
programs. SIAM J. Comput, 29:648–670, 1995.

[58] Y. Toyoda. A simplified algorithm for obtaining approximate solutions to zero-one
programming problems. Management Science, 21(12):pp. 1417–1427, 1975.

[59] L. Trevisan. Non-approximability results for optimization problems on bounded degree
instances, 2001.

[60] V.V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

[61] H.M. Weingartner and D.N. Ness. Methods for the solution of the multidimensional
0/1 knapsack problem. Operations Research, 15:83–103, 1967.

[62] P.J. Zwaneveld, L.G. Kroon, E. Romeijn, M. Salomon, and S. P.M. van Hoesel. Rout-
ing trains through railway stations: model formulation and algorithms. Open access
publications from maastricht university, Maastricht University, 1996.

