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Abstract

This project is an exploration of the performance of parametric and nonparametric meth-

ods in predicting time to recurrence (progression of cancer) and time to death in late stage

ovarian cancer patients. The Weibull survival model is a common parametric method and

is fit to the data for both death and recurrence, while Ishwaran et al’s method of fitting

random survival forests (2008) is employed as a nonparametric method. Performance of

these models is evaluated using Harrell’s C-index and Lawless & Yuan’s cross-validation

estimator (2010).
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Chapter 1

Introduction

Ovarian cancer is one of the most deadly gynecological cancers to afflict women. It is

“ranked fifth in cancer deaths among women” despite making up only 3% of cancers in

women (National Cancer Institute, NIH, 2013). Once diagnosed, an ovarian cancer pa-

tient will usually undergo treatment. Treatment can last from several months up to a

year after diagnosis. Treatment typically includes surgery (also referred to as debulking)

and chemotherapy. These methods are invasive, painful, and expensive, and vary in their

success. The physical, emotional, and financial demands of cancer treatment can have a

tremendous impact on the quality of life for patients. Having a more accurate method

of predicting individual patient prognosis would be beneficial to doctors and patients in

planning treatment and managing quality of life.

This project is intended to explore the predictive ability of parametric and nonpara-

metric methods for time to recurrence (or progression of cancer) and time to death after

recurrence (DAR) for ovarian cancer patients based on a wide array of predictor variables.

We describe these events in more detail in Section 2.1. We evaluate the performance of

such methods given missing and misconfigured data as well as longitudinal measurements

without associated times of observation.

Our approach differs from previous work (Rocconi et al, [2009, 2007], Asher et al [2011],

Altman [2012]) in that we predict events using models that incorporate several predictors

simultaneously. Other techniques such as nomograms have been used to generate prog-

noses for patients (Barlin et al, [2011]) that have improved prediction of mortality beyond

simply classifying patients via the Federation of Gynecology and Obstetrics staging sys-

tem. However, the nomogram method utilizes the results of univariate analysis of each

predictor and applies a competing risks framework to account for other causes of death.

1



CHAPTER 1. INTRODUCTION 2

To create our predictive models, we use two methods of survival analysis, also known

as the analysis of time-to-event data. We fit a variant of the Weibull model in which a

separate Weibull model is fit for recurrence and DAR times. We also fit a predictive model

for recurrence and DAR times using the nonparametric method of random survival forests

(RSFs).

The remainder of this thesis is organized as follows. Chapter 2 contains a description

of treatment of ovarian cancer and the events of interest in this project, followed by an

overview of measured variables. An in-depth discussion of the statistical methods used

to fit each predictive model can be found in Chapter 3, along with an overview of the

methods we select to quantify prediction error, Harrell’s C-index and an estimator used

by Lawless & Yuan (2010). Approaches to data cleaning and manipulation of variables

are described in Chapter 4. Chapter 5 provides the results of our work. We conclude with

a discussion and our recommendations for future research in Chapter 6.



Chapter 2

Ovarian Cancer Data

The data for this project were collected over the course of four years on 218 late-stage

ovarian cancer patients from the Tom Baker Cancer Centre in Calgary, Canada. Sur-

gical, clinical, and hematologic (blood marker) measurements were collected during the

treatment period. After diagnosis the typical patient1 is assessed for surgery. A patient’s

eligibility for surgery is decided by a gynecological oncologist, who takes into account how

ill the patient is (very ill patients may be deemed too fragile for surgery) and how perva-

sive the cancer is. If the cancer is widespread, the doctor may decide to have the patient

undergo chemotherapy to shrink the cancerous tissue prior to operating. If a patient is

considered a good candidate for immediate surgery, she will undergo debulking surgery to

remove as much of the tumor as possible.

Approximately 4-6 weeks after surgery, the patient will start chemotherapy. The usual

treatment is a platinum-containing agent, carbo-taxol, which is administered every three

weeks. If the patient experiences an adverse reaction to the standard chemotherapy agent,

she is switched to a different type of chemotherapeutic agent. If the patient becomes too

ill to continue chemotherapy, either due to cancer or other illness, chemotherapy is paused

until she recovers.

2.1 Responses of Interest

Once a patient has completed her course of treatment, the events of interest are time until

recurrence of cancer and time until death following such a recurrence. These events are

1At this cancer center. Other facilities may have differing protocols for treatment.

3



CHAPTER 2. OVARIAN CANCER DATA 4

similar to those considered by Rocconi et al (2009), who split survival into two categories:

progression free survival and overall survival. In our work, we refer to disease progres-

sion as recurrence of cancer (defined by an increase in cancer antigen levels in the blood,

increased cancerous mass, or other cancerous activity) as diagnosed by a clinician. In

contrast to Rocconi et al (2009), we focus on survival of patients who experienced disease

progression rather than on overall survival. In particular, we are interested in the trajec-

tory of patients for whom treatment response was initially successful and whose deaths

are likely attributable to cancer.

A brief discussion of the predictors and their implications for event times are as follows.

2.2 Hematologic Predictors

Hematologic predictors were measured repeatedly over the course of patients’ treatment.

The following is a list of variables that were measured.

CA125

CA 125 stands for cancer antigen 125 and is a tumor marker for ovarian cancer. Per-

sistently high levels of CA 125 throughout treatment have previously been associated with

poor prognosis (Rocconi et al, 2009), while lower levels of CA 125 or achieving normal-

ization is a positive sign. The earlier a patient’s CA 125 levels normalize the better the

prognosis appears (Rocconi et al, 2009).

Hemoglobin

Hemoglobin is a component of red blood cells and is responsible for carrying oxygen

through the blood and regulating iron levels. Anemia, or low hemoglobin, can be a common

side effect of chemotherapy and surgery. Anemic patients may face more health problems

than those patients with sufficient hemoglobin. If a patient’s hemoglobin drops below

certain levels, transfusions may be given and if surgery is scheduled, it may be delayed.

White Blood Cell Count and Neutrophils

White blood cells are responsible for responding to infection in the body and regulating

immune response. There are several different types of white blood cells and the cells

responsible for immune function are called neutrophils. Chemotherapy can inhibit the

body’s ability to produce neutrophils, inducing a state known as neutropenia. There is

some evidence that patients who experience neutropenia during treatment may have some

survival advantages over those whose neutrophil levels remain high, especially among
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suboptimally debulked patients (Rocconi, 2007). This is attributed to the sensitivity of

the neutrophil-producing stem cells to chemotherapy: similar sensitivity affects cancer

producing cells. Patients experiencing very low white blood cell counts may be prescribed

medication to boost white blood cell production.

Platelets

Platelets are another cell type found in the blood. They are responsible for clotting

in healthy individuals. High levels can lead to blood clots and low levels can cause un-

controlled bleeding. Platelet levels at either end of the healthy range can severely affect a

patient’s health as well as delaying or complicating surgery.

Albumin

Albumin is a protein found in the blood and is used as a measure of nutritional sta-

tus. Patients with low albumin tend to be in poorer health and may even be considered

malnourished. Nutritional status has a far reaching impact on the general health and im-

munological status of an individual and may play a role in the effectiveness of treatment

and patient response.

2.3 Surgical Predictors

One of the first assessments a patient undergoes after being diagnosed is whether she

is eligible for immediate surgery. If the cancer is extremely widespread or particularly

difficult to excise, the oncologist may recommend chemotherapy first followed by what is

referred to as interval surgery. There is ongoing debate within gynocological oncology as

to whether the type of surgery has an effect on the success of debulking and subsequent

survival. (Vergote et al, 2010, Altman, A., personal communication). Optimal debulking

refers to the amount of residual disease left after surgery and a patient is considered

optimally debulked when residual disease is < 1 cm. Type of surgery, debulking, and

blood loss during surgery were also recorded in the dataset.

2.4 Clinical Predictors

One of the primary treatments of ovarian cancer is chemotherapy. Chemotherapy is typi-

cally made up of some combination of cytotoxic-anti-neoplastic drugs, which stop rapid cell

division. Some types of chemotherapy tend to be more effective than others, but individual
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patients may not be able to tolerate certain classes of drugs. Chemotherapy regimens that

include platinum have shown some benefits compared to other chemotherapy options (Du

et al, 2013) and platinum sensitivity has also been linked to faster normalization of CA

125 levels (Rocconi et al, 2009). The dataset includes the following chemotherapy-related

predictors: number of primary and neoadjuvant cycles, type of chemotheraputic agent

used for each cycle, and whether or not the drug contained platinum.

All patients in this dataset were in the later stages of disease progression, most with

stage 3 or 4 cancer and with grade2 ranging from 1 to 4. Patients’ stage, grade, age at

diagnosis, and amount of ascites (fluid in the abdomen, a possible byproduct of ovarian

cancer) were also listed in the dataset.

2.5 Missing Data

Missing data are also an issue with this dataset as some of the repeatedly measured

hematologic variables have only one measurement or are missing entirely for the duration

of a patient’s treatment. Even those variables that are measured only once (by design)

can be missing. It appears that patient location (either in Calgary or the surrounding

areas) may be a lurking confounder for quality of care as well as a source of missing data

(Altman, A., personal communication). This issue is discussed further in Chapter 6.

2Tumor grade is a measure of how abnormal the cells are, ranging from barely differentiable from normal
cells (grade 1) to the highly abnormal and typically fast-growing grade 4 cancer cells.



Chapter 3

Statistical Methods for Survival

Data

One feature that distinguishes survival data from other types of data is the fact that

not all subjects necessarily experience the event of interest while under observation, in

which case those subjects’ event times are considered incomplete (“censored”). There are

several different types of censoring, but in this project we consider only the case in which

an event did not occur during the given period of observation but is assumed to occur at

some (possibly hypothetical) time in the future, after observation ends (“right censoring”).

For individual i, we observe time Yi = min(Ti, Ci), where Ti is the time of the event and

Ci is the censoring time. We define the indicator variable δi as δi = 1 if Yi = Ti and δi = 0

if Yi = Ci.

As mentioned previously, the events of interest for the purposes of this particular

analysis are recurrence of cancer after treatment and death upon recurrence of cancer.

Recurrence is measured from time of treatment completion; DAR is measured from the

time of recurrence. A patient’s recurrence time can be censored if she drops out of the

study, dies, or reaches the end of the study without experiencing recurrence. Censoring of

DAR times can be due to dropping out or surviving past the end of the study. Cause of

death was not specified in the dataset but we treat death prior to recurrence as different

than death after recurrence, the latter of which is assumed to be more likely due to cancer.

Let the recurrence and DAR time for subject i be Ti1 and Ti2, respectively. Since we

expect these event times to be correlated, it seems naive to attempt to model time until

death without taking recurrence into account. Instead we specify a joint distribution for

Ti1 and Ti2 by writing it as

7
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FTi1,Ti2(ti1, ti2) = FTi1(ti1)FTi2|Ti1(ti2|ti1) ,

where FTi1,Ti2 is the joint cumulative distribution function (cdf) of the ith patient’s recur-

rence and DAR times, FTi1 is the cdf of the ith patient’s recurrence time, and FTi2|Ti1 is the

cdf of the ith patient’s DAR time conditional on the recurrence time. We then specify one

model for Ti1 and another for Ti2|Ti1. Our model is a very simple example of a recurrent

events model where each type of event can happen at most once.

For both our parametric and nonparametric analyses assumptions regarding censoring

times are required. Specifically, since end-of-study occurs at a fixed time and drop-out

presumably occurs at random, we assume that DAR times are independent of censoring

times. In addition, we assume that recurrence and censoring times are independent given

the observed predictors (since in this case, death time – which is likely related to the pre-

dictors – is treated as a form of censoring). We discuss the validity of these assumptions

in more detail in Chapter 6.

3.1 Parametric Survival Analysis

Having outlined the underlying framework for each event, we can discuss how to apply

each different method of predicting event times. Parametric survival analysis is based on

the assumption that the survival times are distributed according a standard parametric

distribution. The unknown parameters of this distribution, θ, are typically estimated

using the method of maximum likelihood. We define the density and survival function as-

sociated with the survival time of the ith individual as fi(t;θ) and Si(t;θ) = P(Ti > t;θ).

The likelihood is of the form

L(θ; y1, . . . , yN ) =
N∏
i=1

fi(yi;θ)δiSi(yi;θ)1−δi

The distribution we use to model time until recurrence and time until death (condi-

tional on recurrence) is the Weibull distribution. The Weibull model is well established in

survival analysis and is known for its flexibility in a wide variety of situations. Depending

on the parameters, the Weibull distribution can be highly right-skewed, a common feature

of survival data. The Weibull density is
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f(t) =
α

φ

(
t

φ

)α−1
exp

[
−
(
t

φ

)α]
with survival function

S(t) = exp

[
−
(

t

φ

)α]
, t > 0, α > 0, φ > 0

and cumulative hazard functionH(t) = −log[S(t)]. The shape and scale parameters for the

Weibull are α and φ, respectively. Covariates are included in the model as log(φi) = z′iβ,

where zi is a vector of observed covariate values for individual i (Klein & Moeschberger,

2003).

A Weibull model is assumed both for Ti1 and for Ti2|Ti1. We assume that there are

no parameters common to FTi1 and FTi2|Ti1 . Thus, model parameters for recurrence and

DAR are estimated separately using standard maximum likelihood methods. Twenty-

seven predictors are included in the Weibull model for recurrence times and the same

twenty-seven predictors plus time to recurrence are used in the model for DAR times. We

discuss the derivation and selection of predictor variables in Chapter 4.

Residuals for the Weibull model are formulated as described by Lawless (2003). In

particular, the probability integral transform is applied to the cumulative hazard function

to obtain residuals that, if the assumption of the Weibull model is appropriate, will be

approximately exponentially distributed. QQ-plots can then be created by plotting the

residuals against the quantiles of the standard exponential distribution. An additional

discussion of these residuals can be found in Appendix A.2.

3.2 Nonparametric Survival Analysis

3.2.1 Survival Trees

A recent development in the field of survival analysis is the application of classification

and regression trees (CART) to survival data (Bou-Hamad et al, 2011). Regression trees

are a non-parametric method for predicting responses. The sample space is iteratively

subdivided until a stopping criterion is reached, assigning each subdivision of observations

a different predicted value (Loughin, 2012). In the simplest case, the sample space is

divided (or “split”) based on the variable and split point that maximize the difference in
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responses. After we divide the observations based on this criterion, the two new subdi-

visions of observations are examined to determine the variable and split point that again

maximizes the difference in responses. By the end of the process, observations have been

grouped by similar values of the predictors in “terminal nodes”, but without a pre-selected

model. For a survival tree, the observed responses are time-to-event data and the method

of evaluating splits must be able to handle censored observations as well as observed event

times. Ishwaran et al (2008) use the Nelson-Aalen estimate of the cumulative hazard func-

tion (CHF) to summarize the estimated survival curve (see Lawless, [2003]).

While it is possible for the tree to have so many splits that each terminal node con-

tains only one response each, it is typical for the tree to have a stopping rule based on

a minimum number of responses per node. In the case of survival trees, the minimum

number of responses per node refers to the number of observed events per node.

With respect to defining a measure of distance between responses, survival trees typ-

ically use the estimated survival curve at each potential daughter node as a basis. The

survival curves incorporate censored observations and there are many options for quanti-

fying the distance between them (e.g. the log-rank statistic, likelihood ratio statistic, or

Wilcoxon-Gehan statistic). For a more in-depth discussion of this topic, see Bou-Hamad

et al (2011).

Unfortunately, using trees has some drawbacks. For example, once a variable has been

selected for a split, the entire sample space is divided. Thus, small changes in one split will

cascade throughout the rest of the sample space. Outliers and quirks of different sample

datasets from the same population can lead to very different trees and so the predictions

from a tree may be highly variable and unstable. The choice of stopping rule and the

values of the various tuning parameters can also affect the final tree selection. For these

and other reasons, trees are not typically used on their own.

3.2.2 Random Survival Forests

While a single tree can lead to unstable predictions, the aggregation of many trees tends

to be less variable (Loughin, 2012). Random survival forests are the result of averaging

over many survival trees after repeatedly resampling from the original data (Ishwaran

et al, 2008). This method leads to a more robust view of the data and subsequently,

better predictions. The first step in growing a random survival forest is to obtain a new

dataset of size N by sampling with replacement from the original data. A survival tree

is then fit to these new data. Within that tree, a subset of variables is randomly chosen
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at each node and the split that maximizes the difference between responses in the two

daughter nodes is chosen. The stopping rule for each tree is based on the minimum

number of observed deaths for each terminal node. The data are then repeatedly sampled

with replacement and a tree fit to each of these new datasets. To compute the predicted

outcome associated with an observation, all of the trees that were grown without using this

particular observation (i.e. all of those trees for which this observation is out-of-bag) are

considered. The observation is sent down each of these trees and the resulting estimated

CHFs based on these trees are recorded. The final estimated CHF for a given observation

is calculated by averaging across all these trees.

We fit RSFs to both recurrence and DAR times, using recurrence time as an additional

predictor in the latter. Before the RSFs can be fitted to the data, some tuning parameters

must be chosen. The number of variables randomly selected at each node, the kind of

splitting rule used to determine maximal difference in survival outcomes, and, in the case

of a random splitting rule, the number of random splits per variable, must also be decided.

The number of variables randomly selected at each node has been extensively discussed.

Both Ishwaran & Kogalur (2013) and Hastie, Tibshirani & Friedman (2009) recommend

m =
√
p variables selected at each node, with p being the total number of available

predictors. For the purposes of this project, 27 variables including interactions were used

to predict recurrence. For DAR, 28 variables were used. Thus, the number of variables

chosen at each split was 5.

The splitting rule used in this case is random log-rank splitting, where the log-rank

statistic is used to represent the distance between grouped observations at each node.

Unlike the case in which all possible splits of the variable are considered, a random split of

each variable is used instead. Conventional log-rank splitting has been shown to perform

well in both proportional and non-proportional hazard settings and is easily interpretable.

Random log-rank splitting retains these favorable attributes while improving computa-

tional time and has demonstrated good performance (Ishwaran et al, 2008). Random

log-rank splitting rules also help to address the issue of end-cut preference (or the “favor-

ing of uneven splits” due to outliers and extreme values [Ishwaran & Kogular, 2007]) and

favoring continuous variables (Loh & Shih, 1997). “Using a reasonably small value [for the

number of splits considered] mitigates bias and may not compromise accuracy” (Ishwaran

& Kogalur, 2013) in predictions and too large a number of splits will diminish the benefit

of using random splitting at all.
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In this project, four splits per variable are considered, as this provides several op-

tions for prospective split points, but is still few enough that the prediction bias is not

overwhelming. Furthermore, our preliminary exploration suggests that our results are rel-

atively robust to the number of splits, at least when that number is in the neighborhood

of four. In particular, when we re-fit the RSF trying 3, 5, and 6 splits, the resulting

prediction error estimates varied only minimally.

3.3 Prediction Error

Point predictions of survival times are notoriously poor (Henderson et al, 2001). The

existence of censored observations makes the assessment of prediction error (an overall

measure of differences between observed and predicted values) more complicated than in

other circumstances. We know that censored patients have survived or been event-free

up to their censored time, but there is no information beyond that time point. For these

subjects, the event of interest may never have happened, it may have occurred immediately

after the censoring time, or several years later. For this reason, treating the censoring time

as just another event time can lead to wildly inaccurate error estimates. We have chosen

to use Harrell’s C-index and the Lawless-Yuan estimator (2010), both of which allow for

special treatment of the censored patient times. We discuss these estimators in detail in

Sections 3.3.2-3.3.4.

We also consider plots of observed vs. predicted values. While the difference between

predicted and censored values is of limited use, the distance between observed and pre-

dicted values does tell us approximately how well our model predicts for that subset of

the data. The observed vs. predicted value plots can be seen in Appendix A.1.

3.3.1 Cross-Validation

In ideal circumstances, in order to estimate the prediction error associated with our models,

the dataset would be randomly split into two partitions, with the models fit on one set of

observations and evaluated on the other independent test set. However, with the relatively

small size of the dataset and large number of predictors, this approach is not feasible. If

the model is fit on the full data and the same dataset is used to evaluate the predictive

ability of the model, we would expect that the model will underestimate prediction error.

As an alternative, cross-validation can be used. Cross-validation splits the dataset into

several groups (called folds), excludes one fold, and fits the model using the remaining
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observations. The observations in the omitted fold are then predicted using the fitted

model. The process is repeated until the observations in each fold have been predicted

based on a model fit to the non-fold data.

The number of folds is subject to a bias-variance trade-off. In particular, when a small

number of folds is used, fewer data are available to train the model, creating more variable

predictions and leading to an overestimate of prediction error (Loughin, 2012). However,

with many folds, the observations to predict the omitted folds have greater overlap and

thus the estimates of error based on each fold will be positively correlated. The overall

estimated prediction error (which is computed as the average of these fold-based estimates)

then tends to be more variable.

Lawless & Yuan (2010) say that n-fold cross-validation performs very well for the

evaluation of prediction error of a variety of prediction methods but is computationally

intensive and leads to high variance of the prediction error estimator (Hastie, Tibshirani

& Friedman, 2009). Luckily, 5-fold cross-validation did not lead to excessive bias in the

estimation of prediction error in the simulations done by Lawless & Yuan, while Hastie et

al (2009) suggest that 5- or 10-fold cross-validation should also perform adequately in most

situations. Given the relatively small size of the dataset to the large number of predictors,

10-fold cross-validation seems to be a reasonable compromise between bias and variance

as well as computational time. This implies approximately 20 observations per fold in the

recurrence data and approximately 15 observations per fold in the DAR data.

Since the selection of observations for each fold can affect the estimate of predicton

error, we make the cross-validation method even more robust by reallocating the sample

data 100 times into different folds and then averaging the resulting 100 prediction error

estimates.

3.3.2 C-Index

While traditional methods of estimating prediction error yield numeric estimates of dis-

tance between predicted and observed survival times, they do not reflect the ability of a

method to predict the survival times associated with censored observations. The C-index

allows us to incorporate some of the information found in censored observations by as-

certaining whether shorter predicted survival times correspond to actual shorter survival

times, including some censored survival times.

Recall that Yi is the observed time for subject i, and that δi is an indicator as to

whether Yi is the censoring time (δi = 0) or event time (δi = 1). The C-index is calculated
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by considering all pairs of observations, then removing those pairs where both subjects’

times are censored or where the shorter survival time is censored. The remaining pairs are

then evaluated as follows. We treat (Yi, Yj) as the same as (Yj , Yi) and present the pairs

such that Yi ≤ Yj . Let Pi be the predicted value for the ith individual. The C-index is

defined as

C =
1

L

∑
i,j

dij ,

where, for the (i, j)th pair,

dij =



1, if Yi < Yj , Pi < Pj , δi = 1

0.5, if Yi < Yj , Pi = Pj , δi = 1

1, if Yi = Yj , Pi = Pj , δi = δj = 1

0.5, if Yi = Yj , Pi 6= Pj , δi = δj = 1

1, if Yi = Yj , Pi > Pj , δi = 0, δj = 1

0.5, if Yi = Yj , Pi < Pj , δi = 0, δj = 1

0, otherwise

.

C can be interpreted as the approximate percentage of correctly classified (based on length

of survival time) pairs of observations. Prediction error can be calculated as 1− C.

3.3.3 Lawless-Yuan Estimator

The C-index provides a measure of how closely the order of our predicted values matches

that of the observed values (including some censored observations). However, it does

not reflect the distance between the predicted and observed values. Another method of

assessing prediction error that quantifies the distance between predicted and observed

survival times is the cross-validation estimator of the expected loss proposed by Lawless

& Yuan (2010). The data are subdivided into V mutually exclusive groups, with the vth

group denoted by Sv. The predicted value for observation i in group Sv, ŷi(−v), is derived

using all observations except those in Sv. The estimator, which includes an adjustment

for the probability of censoring, has the form

π̂cv =
1

N

V∑
v=1

∑
i∈Sv

δi

Ŝc(−v)(yi|zi)
L(yi, ŷi(−v)) , (3.1)

where L(yi, ŷi(−v)) is a loss function. Ŝc(−v) is the survival function for censoring times

based on all observations except those in Sv.
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Loss Function

For the purposes of this project, the loss function implemented in (3.1) is

L(yi, ŷi(−v)) =

∣∣∣∣log

(
yi(−v)

ŷi(−v)

)∣∣∣∣ ,
henceforth called the absolute value of the log ratio (AVLR). By using the AVLR we con-

sider relative rather than absolute differences in survival times. The AVLR is especially

appropriate for recurrence of cancer since check-ups post-treatment become less frequent

the longer a patient is cancer free. More time betwen scheduled appointments may mean

recorded recurrence time is less exact. Thus, we would not want to put too much weight

on absolute differences observed on patients with long recurrence times. In addition, a

difference in predicted and observed times of a year is less extreme in a 10 year survival

time than in a 1 year survival time (Yuan, 2008). Using a loss function based on rela-

tive rather than absolute differences takes into account these considerations. Finally, the

AVLR has a nice interpretation. In particular, exponentiating the AVLR is equivalent to

taking a weighted geometric mean of the ratios of observed and predicted values, or more

specifically, of the values max
(

yi
yi(−v)

,
yi(−v)
yi

)
.

IPCW Weights

Each summand in (3.1) is weighted by the estimated probability that an individual’s sur-

vival time will be censored after her observed survival time, called the inverse probability

censoring weight (IPCW) by Lawless & Yuan (2010). In the case where censoring time is

independent of the predictors, i.e., Sc(−v)(yi | zi) = Sc(−v)(yi), the Kaplan-Meier method

can be used to estimate the censoring distribution. As discussed earlier, since censoring

of DAR times is due to either dropping out of the study or end-of-study, censoring can

reasonably be assumed to be independent of the predictors. In the case of recurrence,

it is much less likely that censoring could be considered independent of the predictors

since death is counted as a form of censoring, and is presumably a function of clinical and

treatment data. In these circumstances, Sc(yi|zi) is estimated using the Weibull model

described in Section 3.1, reversing the roles of the event and censoring times.

In Lawless & Yuan’s estimator, the IPCW weights should ideally be calculated for

each new fold. This is feasible for the DAR analysis since we assume censoring times are

iid. However, for the recurrence analysis, we allow censoring times to depend on all the

predictors. In these circumstances, Sc(yi|zi) is estimated using the Weibull model. The
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large number of predictors and possibility of insufficient quantity of censored observations

in each training set leads to difficulty in estimating the censoring distribution paramet-

rically. In order to address this issue, the IPCW weights for censoring in recurrence are

estimated only once using the full data. For limitations of this approach, see Chapter 6.

3.3.4 Confidence Intervals

Any estimate of prediction error (PE) may be affected by peculiarities of sample data. To

gain an understanding of the distribution of our point estimators of PE, we resampled with

replacement the original data M times and re-computed the C-index and Lawless-Yuan

estimator based on the “new” data, B∗. With these bootstrapped estimates of PE, we

can form confidence intervals (CIs). We define

P̂E∗ =
1

M

∑
P̂E∗b

as the average point estimate of PE and

v̂ar(P̂E∗) =
1

M − 1

B∑
b=1

(P̂E∗b − P̂E∗)
2

as the sample variance of PE. Due to the difficulty of calculating the variance of their

prediction error estimator, Lawless & Yuan (2010) recommend using a simple normal

approximation for the CIs. An approximate 100(1− α)% CI can be created as follows:

P̂E ± v̂ar(P̂E∗)(1/2)zα
2
,

Where P̂E is the estimate of PE based on the original dataset.

Lawless & Yuan suggest creating CIs for log(PE) if the estimates of PE are severely

right-skewed. The logged estimates are then used in the above formula. The end points

of the CIs are calculated for PE, then exponentiated. The CIs for DAR are calculated

based on 1,000 bootstrapped estimates, while the CIs for recurrence are based on only

500 bootstrapped estimates due to associated computational intensity. To further reduce

the computational burden and because each resampled dataset is similar to a permutation

of the original data, we omit the additional re-folding procedure (discussed at the end of

Section 3.3.1) when computing P̂E
∗
b .



Chapter 4

Data Cleaning and Manipulation

Blood work and surgical indicators were measured during treatment. Unfortunately, the

exact dates of repeated measurements taken during patient visits during treatment are

unavailable, procluding analysis based on a joint longitudinal survival model. However,

the chronological order of the measurements is available. We are thus able to derive

clinically meaningful univariate summaries such as minimum, mean, and maximum values

of each variable and incorporate these in subsequent models as predictors. Since the

ultimate goal of this project is eventual clinical utility as well as predictive power, the

simplicity of those derived predictors is a priority as well. In this chapter, we describe

the rationale behind each of the predictor variables used in the models and how each final

predictor is derived.

4.1 Hematologic Predictors

Rocconi et al (2009) found that CA 125 was an important predictor for patient prognosis.

Not only were levels of CA 125 in and of themselves useful, but the trend of CA 125 over

time and the speed with which a patient’s levels normalized were also important predictors.

In order to approximate this information without having treatment times, we include the

difference between the first and last CA125 measurements, as well as the lowest observed

CA 125 measurement. The difference between first and last measurements is intended to

summarize how levels of CA 125 changed over the course of treatment, while the minimum

CA 125 level provides an idea of whether the patient ever approached normal levels of the

antigen.

We are able to summarize the rest of the hematologic predictors relatively simply

17
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based on the known effects of each variable on patient health outlined in Chapter 2. In

particular, since hemoglobin levels reflect patient health and low hemoglobin may imply

illness, we use minimum and average hemoglobin levels as predictors. Due to the the par-

allel sensitivity of neutrophil-producing stem cells and cancer producing cells, we include

both the minimum and the average neutrophil level for each patient. Since the total white

blood cell count includes neutrophils, the difference in the average level of neutrophils and

average white blood cell count is also used as a predictor. When the level of neutrophils

is too low, a prescription may be issued to artificially increase the number of white blood

cells. The usage of neutrophil boosting drugs is also incorporated in our predictive meth-

ods. In addition, minimum, maximum, and average platelet levels are considered, as well

as minimum albumin measurements.

4.2 Surgical and Clinical Predictors

Blood loss during surgery can weaken a patient and is included as a predictor, as well as

interaction between type of surgery and blood loss. The effect of ascites on patient health

may be moderated by treatment type and the effect of treatment may in turn be influenced

by ascites. We treat ascites as binary (present/absent) and include both its main effect and

its interaction with type of surgery in the models. Whether or not a patient recieved the

standard chemotherapy drugs usually used in ovarian cancer (carboplatin-taxol), whether

any of their chemotherapy drugs contained platinum, and the number of pre- and post-

surgery chemotherapy courses, otherwise known as neoadjuvant and primary adjuvant

cycles, are all considered as predictors in this project. Since the length of treatment

may depend on the patient’s health, and hence impact recurrence and DAR times, the

length of treatment is included as a predictor. For predicting death after recurrence, the

transformed log time from end of treatment to time of recurrence is also included. A list

of final predictors can be found in Appendix B.

4.3 Missing Predictor Values and Incomplete Records

Some patients in our dataset did not appear to achieve normalization of their CA 125 levels.

This may not be due to lack of response to treatment, but rather, may be a problem of

missing data. It has been established that not all patient records were complete and so

normalization of CA 125 levels may have been unrecorded if information for those visits

was not included. Similarly, the difference between first and last CA 125 measurements
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may not have been the true difference if the last recorded measurement and the first

recorded measurement were not from the first and final visits, respectively. This issue is

not unique to CA 125; missing data or few recorded measurements may impact the utility

of all the hematologic variables as predictors.

We treat the missing predictor measurements as missing completely at random. When

a patient is missing all measurements on a given covariate, the median value for the

covariate measurement is substituted in the case of continuous variables and the mode in

the case of categorical variables. While this is a very rudimentary method of incomplete

data imputation, the number of patients missing all values of a covariate is reasonably

small (< 10 per covariate). One patient who is missing all covariate values is excluded

from the analysis.

For the six patients who are missing last contact dates and were alive at their last check-

up, the end of study date is used as their last follow-up date. Three patients are missing

recurrence dates, four patients experienced significant disease progression prior to finishing

treatment, two patients are recorded as having died before treatment ended, four patients

are documented as experiencing recurrence on the same day they completed treatment,

and one patient’s records indicate recurrence after death. All 15 of the aforementioned

subjects are excluded from analysis for time until recurrence, leaving 204 patient records

for analysis. Of these 204 patients, 153 patients experienced recurrence of their disease.

Of these 153 patients, 112 patients died after recurrence.



Chapter 5

Results

Once the dataset is processed as described in Chapter 4, the models presented in Chapter

3 are fit and their fit evaluated (in the case of our parametric analysis).

For the Weibull models, the QQ-plots of the residuals (see Appendix A.2) show no

evidence of lack of fit for either recurrence or DAR times. Residuals are also plotted against

all continuous covariates and no evidence of lack of fit is apparent (plots not shown). Both

observed recurrence and DAR times are plotted against the predicted values based on the

Weibull and RSF methods and can be seen in Appendix A.1.

CIs are created for prediction error for recurrence and DAR times, for both Weibull

and RSFs. The results of assessing each method using the C-index (where 1 − C can

be interpreted as the proportion of misclassified observations) can be seen in Table 5.1.

The bootstrapped estimates of 1−C appeared to be approximately normally distributed,

lending support for our choice to use the normal quantiles for constructing CIs.

Table 5.1: Estimates of Prediction Error (1− C)

Event Weibull RSF

Recurrence 0.42 (0.35, 0.49) 0.40 (0.35, 0.45)
DAR 0.41 (0.34, 0.49) 0.43 (0.36, 0.50)

From these results, it appears that the Weibull and RSF methods have similar error

rates. Given the presumable noise in these estimates, it is unclear whether either method

is superior according to this measure of prediction error. Neither method appears to

be doing very well: an error rate of approximately 40% is substantial and means that

40% of the time, our predictions of longer or shorter survival times did not correspond

20
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to observed longer or shorter survival times. That said, if we naively predicted Yi by

choosing a smaller or larger value with 50% probability, a C-index of 0.5 would result.

Both prediction methods appear to perform slightly better than this random allocation of

outcomes.

Next, we compute the Lawless-Yuan estimator. Since the initial distribution of boot-

strapped estimates of the Lawless-Yuan error appears to be somewhat skewed, we take

the log of the estimates. After this adjustment, the distribution of the Lawless-Yuan

estimator appears approximately normal. We thus determine point estimates and CI end-

points based on the logged estimates. The point estimates and CI endpoints in Table

5.2 are the twice-exponentiated values of these quantities. They can be interpreted as

the IPWC-weighted geometric average distance between predicted and observed values.

In terms of implications for individual prediction, these estimates represent the factor by

which, on average (in the geometric sense) predicted observations will differ from their

true values. In particular, our methods over- or under-estimate survival times by a factor

of approximately 2.

Table 5.2: Estimates of Prediction Error (Lawless-Yuan)

Event Weibull RSF

Recurrence 1.99 (1.79, 2.24) 1.82 (1.64, 2.08)
DAR 2.24 (1.78, 3.08) 1.87 (1.5, 2.67)

Neither RSFs nor the Weibull model differ egregiously in terms of the width of each

CI within an event type. DAR does have greater estimated PE and wider CIs, which is

unsurprising given that the sample size for the DAR analysis is much smaller than that

for the recurrence analysis.

Where the C-index does not demonstrate great differences between the predictive abil-

ities of RSFs and the Weibull model, the Lawless-Yuan estimates are slightly lower for

RSFs. Since the CIs based on these estimates overlap, we cannot make definitive con-

clusions about the relative performance of the two methods, but all else being equal, the

slightly smaller observed prediction error would seem to justify use of RSFs. Thus, we

would tentatively recommend using RSFs in lieu of parametric methods for prediction of

ovarian cancer survival times.



Chapter 6

Discussion

While preliminary results indicate that the RSFs may have better performance, there

are some caveats. Firstly, peculiarities of this particular dataset may greatly influence

our results and the missing covariate and measurement time data may obscure the true

relationship between predictors and the events of interest.

All of our models were trained on subsets of the same data and so the estimates of

prediction error were also based on the same dataset, despite all attempts to conduct

pseudo-independent error evaluation through cross-validation. Cross-validation itself is

not without faults: it can lead to overestimates of error (Hastie et al, 2009) and the number

of folds will impact the bias-variance trade-off mentioned in Section 3.3.1. However, the

comparisons between methods should still be valid if both utilize cross-validation.

One of the other issues that arose with having a small dataset is the re-estimation of

the censoring distribution for each fold. By re-estimating the censoring distribution for

each fold and each new dataset B∗ (as we did for DAR), the estimates of PE incorporate

the uncertainty about the censoring distribution. In contrast, as a result of estimating the

IPCW weights only once (as we did for recurrence), the estimates of PE will not. In other

words, we are implicitly assuming that the IPCW weights for recurrence are from the true

censoring distribution, which is not likely the case.

Furthermore, the choice of loss function will have an effect on the bias of PE (Hastie

et al, 2009). Efron (2004) suggests several bias adjustment penalties for different loss

functions, although the absolute loss is not among them. Further work is warranted on

the behavior and performance of potential loss functions in a survival setting.

Our ability to gauge the performance of a given method by using the C-index would be

augmented by CIs; however, creation of such intervals is not addressed by either Lawless &
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Yuan (2010) or Ishwaran et al (2008). We have proposed approximately normal confidence

intervals for a bootstrap-based method but its performance has not yet been explored.

The predictive abilities of our methods may be improved by the addition of new pre-

dictors that perform better than those available to us – or the subtraction of unimportant

variables. While it is beyond the scope of this project, assessing the impact of geographic

location of patients should be undertaken as well. It is possible that the area in which

patients lived and their distance from Calgary are important predictors of survival times

and missingness.

A larger dataset will allow for independent training and test sets. We are expecting

such a dataset from Winnipeg to be available within the next one or two years. We

are optimistic that more conclusive results concerning the performance of our prediction

methods will follow. In addition, our current results are confined to those patients for

whom treatment was successfully completed and the analysis of patient survival limited

to those who experienced recurrence of their disease. A larger dataset would permit

the analysis of death times prior to recurrence and the application of more sophisticated

methods for handling missing data.

Finally, our choice of tuning parameters in RSFs may also impact our estimated pre-

diction error.

We hope that our work will provide a starting point for creating a tool for patients and

physicians to generate accurate predictions of time until recurrence and post-recurrence

survival. We also recommend the development of methods for obtaining prediction inter-

vals for a given patient. Naively, we might assume that the estimated survival function is

the true underlying survival function and build prediction intervals based on the quantiles

of this function. However, such intervals would not incorporate uncertainty regarding the

estimated survival function. Lawless (2003) explores more nuanced methods in the case

where a pivotal function not relying on estimated parameters can be used to create exact

prediction intervals for new data. Lawless also briefly addresses how to build prediction

intervals based on non-parametric simulation under different types of censoring and us-

ing Bayesian methods. While there is much to be done on this topic, we hope that our

preliminary analysis will provide a solid foundation for subsequent research.



Bibliography

Altman, A., Nelson, G., Chu, P. Nation, J., and P. Ghatage (2012). “Optimal Debulking

Targets in Women With Advanced Stage Ovarian Cancer: A Retrospective Study of

Immediate Versus Interval Debulking Surgery”, Journal of Obstetric Gynaecology, 34

(6); 558-566.

Asher, V., Lee, J., and A. Bali (2011). “Preoperative Serum Albumin is an Independent

Prognostic Predictor of Survival in Ovarian Cancer”, Medical Oncology, 29 (3); 45-97.

Barlin, J.N., Yu, C., Hill, E.K, Zivanovic, O., Kolev, V., Levine, D.A., Sonoda, Y., Abu-

Rustum, N.R., Huh, J., Barakat, R.R., Kattan, M., and D.S. Chi (2012). “Nomogram for

Predicting 5-year Disease-Specific Mortality After Primary Surgery for Epithelial Ovarian

Cancer”, Gynecologic Oncology, 125 (1); 25-30.

Bou-Hamad, I., Larocque, D.,and H. Ben-Ameur (2011). “A Review of Survival Trees”,

Statistics Surveys, 5 (1); 44-71.

Du XL, Parikh RC, Lairson DR, Giordano SH, and P. Cen (2013). “Comparative Ef-

fectiveness of Platinum-Based Chemotherapy Versus Taxane and Other Regimens for

Ovarian Cancer”, Medical Oncology, 30 (1); 440.

Efron, B. (2004) “How Biased is the Apparent Error Rate of a Prediction Rule?”, Journal

of the American Statistical Association, 81 (394); 461-476.

Hastie, T., Tibshirani, R.,and J. Friedman (2009). The Elements of Statistical Learning,

Second Edition, Springer. 587-604.

Henderson, R., Jones, M., and J. Stare (2001). “Accuracy of Point Predictions in Survival

Analysis”, Statistics in Medicine, 20 (1); 3083-3096.

Ishwaran, H. and U.B. Kogalur (2013). “Package ’randomSurvivalForest’ ”, R Documen-

tation, CRAN Repository. Dec. 23rd, 2013.

24



BIBLIOGRAPHY 25

Ishwaran, H. and U.B. Kogalur (2007). “Random Survival Forests for R”, R News, 7 (2);

25-31.

Ishwaran, H. Kogalur, U.B., Blackstone, E.U., and M.S. Lauer (2008). “Random Survival

Forests”, The Annals of Applied Statistics, 2 (3); 841-860.

Klein J.P., and M.L. Moeschberger (2003). Survival Analysis: Techniques for Censored

and Truncated Data, 22-61.

Lawless, J.F. (2003). Statistical Models and Methods for Lifetime Data, 2nd Edition,

269-329.

Lawless, J.F., and Y. Yuan (2010). “Estimation of Prediction Error for Survival Models”,

Statistics in Medicine, 29 (2); 262-274.

Loh, W. and Y. Shih (1997). “Split Selection Methods for Classification Trees”, Statistica

Sinica, 7; 815-840.

Loughin, T. (2012). “Model Assessment and Multi-Model Inference”, Statistics 890: Mod-

ern Applied Statistics, Lecture on September 11, 2012.

Loughin, T. (2012). “Regression Trees”, Statistics 890: Modern Applied Statistics, Lec-

ture on October 15, 2012.

National Cancer Institute at the National Instutites of Health. (2013) “A Snapshot

of Ovarian Cancer”, http://www.cancer.gov/researchandfunding/snapshots/ovarian, Ac-

cessed 12/06/2013.

Rocconi, R.P, Matthews, K.S., Kemper, M.K., Hoskins, K.E., Huh, W.K., and J.M.

Straughn Jr.(2009). “The Timing of Normalization of CA-125 Levels During Primay

Chemotherapy is Predictive of Survival in Patients with Epithelial Ovarian Cancer”,

Gynecologic Oncology, 114 (2); 242-245.

Rocconi, R.P, Matthews, K.S., Kemper, M.K., Hoskins, K.E., and M.N. Barnes (2008).

“Chemotherapy-related Myelosuppresision as a Marker of Survial in Epithelial Ovarian

Cancer Patients”, Gynecologic Oncology, 108 (2); 336-341.

Yuan, Y. (2008). “Prediction Performance of Survival Models”, PhD Thesis, University

of Waterloo.



BIBLIOGRAPHY 26

Vergote I., Trop C.G., Amant F., Kristensen G.B., Ehlen T., Johnson N., Verheijen

R.H., van der Burg M.E., Lacave A.J., Panici P.B., Kenter G.G., Casado A., Mendiola

C., Coens C., Verleye L., Stuart G.C., Pecorelli S., and N.A. Reed (2010). “Neoadjuvant

Chemotherapy or Primary Surgery in Stage IIIC or IV Ovarian Cancer”, New England

Journal of Medicine, 2; 363 (10); 943-953.



Appendix A

Model Fit Diagnostics

A.1 Observed vs. Predicted Value Plots

A.1.1 Recurrence

Figure A.1: Predicted vs. Observed Recurrence Times

27
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A.1.2 DAR

Figure A.2: Predicted vs. Observed DAR Times

A.2 Weibull Residuals

Residuals for the Weibull model were derived using the probability intergral transform

on the CHF (Lawless, 2003). If our specified model is correct, the standard exponential

distribution will approximately describe the distribution of these residuals. The CHF for

the Weibull is

Hi(t) =
1

φαi
tα

and so we formulate residuals as

ei =

(
yi
φi

)α
+ (1− δi) .

The residuals can be highly skewed so taking the log of both the residuals and the ap-

propriate standard exponential quantiles is recommended. This transformation facilitates

the detection of observations with relatively small associated residuals that deviate from

our proposed model. For more details, see Lawless (2003).

Plots of the Weibull residuals for both recurrence times and DAR times are shown in

Figure A.3.
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(a) Recurrence Residuals

(b) DAR Residuals

Figure A.3: QQ-Plots



Appendix B

Final Predictors

All predictors were included in both models, with the exception of time until recurrence,

which was included only in the DAR models. Table B.1 contains the full list of predictors.
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