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Abstract

This thesis presents two connectionist models, which can learn the thematic roles of words
in sentences by receiving aspects of real world situations to which the sentences are refer-
ring, and exhibit strong systematicity without prior syntactic knowledge. The models are
intended towards cognitively and biologically plausible connectionist models. Current mod-
els could be parts of the larger network to represent the meaning of a whole sentence. The
first model, closest, of the two models, to being purely connectionist, attains an acceptable
result (98.31% of the roles correctly identified). The second one, not purely connectionist,
achieves a perfect result. It could be argued that humans learn the thematic roles, as an
emergent property of learning the relationship between the words/sentences and the real
world situations. However, it is not claimed that the models are the human learning mech-
anism for language acquisition.

Keywords: Computational Cognitive Science; Connectionism; Systematicity; Thematic
Roles; Neural Networks; Semantic Role Labeling
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“Language is wine upon the lips.”
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Chapter 1

Introduction

Although semantic role labeling has been widely studied, the learning of such roles has
rarely involved connectionism, and has not addressed the requirements of systematicity.
This thesis presents research that is primarily intended as steps towards building cognitively
and biologically plausible models that might be similar to parts of the language learning
mechanisms in the human brain. Therefore, connectionism and systematicity, as two of the
major concepts of cognitive science in language learning, figure prominently in this thesis.

1.1 Semantic/Thematic roles

Roughly speaking, the semantic role of an entity expressed in a sentence is a role played by
that entity in the sentence. The semantic role labeling of entities in a sentence leads to the
answer of questions such as, “Who did what to whom?” (Palmer et al. [2010]).

A list of semantic roles can be defined to different extents, they can be coarse-grained or
fine-grained. In Jurafsky and Martin [2000], thematic roles are defined as a “a single finite
list of roles”, or more precisely they are a coarse-grained list of semantic roles. Therefore,
according to Jurafsky and Martin [2000], they are a subclass of semantic roles.

The proposed models of this thesis deal with thematic roles. This is mainly because
employing more fine-grained lists of roles would require a wider range of vocabulary and
sentence structures, which is beyond the scope of this thesis. The list of the thematic roles
used in the model designed in this research is agent, patient, instrument, source, recipient,

1



CHAPTER 1. INTRODUCTION 2

coagent, beneficiary, and location. More discussion is presented in 4.2.

Two other more fine-grained subclasses of semantic roles are defined in 2.1, and 2.2.

1.2 Connectionism and Systematicity

It is believed that we have certain intrinsic cognitive capabilities to learn a language in a
systematic way. As an example, one who can understand the sentence “Mary loves John”,
will necessarily understand “John loves Mary” as well.

Fodor and Pylyshyn [1988] in their paper “Connectionism and cognitive architecture:
A critical analysis” stated that human language has syntax and semantics, and there is a
systematic relationship between the elements of a language. There, they introduced the
term systematicity to refer to this property of language, and questioned the capacity of the
connectionist models for exhibiting systematicity in a language. However, they did not give
any precise definition for systematicity.

Later, Hadley [1994] in his paper “Systematicity in connectionist language learning”,
modified the concept and gave a more precise definition for the term. He defined three
degrees of systematicity:

• Weak Systematicity

• Quasi-Systematicity

• Strong Systematicity

Weak Systematicity
A system can perform weak systematicity if it can, during its testing phase, at least
successfully process sentences with the following properties:

1. All the words in all the test sentences are previously used while training the
system.
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2. Each test sentence is grammatically isomorphic to at least a sentence in the
training set.

3. Every word in every tested syntactic position was previously used in that syn-
tactic position during the training phase.

Since in some researchers’ opinion, the definition of weak systematicity is too weak to
be conceived as a type of systematicity, the term can be considered more as a technical
term than a degree of systematicity.

Quasi-Systematicity
A system can display quasi-systematicity if, during its testing phase, it can at least

1. display weak systematicity,

and can successfully process sentences containing embedded clauses such that,

2. all the words in all the sentences are previously used while training the system,

3. both the containing sentence and the embedded sentence are grammatically iso-
morphic to at least some sentences in the training corpus,

4. and every word in a syntactic position in any embedded sentence is previously
used in the same syntactic position in a simple sentence during the training phase.

Strong Systematicity
A system can display strong systematicity if, during its testing phase, it can

1. display weak systematicity,

and can successfully process simple sentences and sentences containing embedded
clauses such that,

2. all the words in all the sentences are previously used while training the system,

3. and there are words in syntactic positions such that those words were not pre-
viously seen in that syntactic position during the training phase, in both simple
sentences and sentences containing embedded clauses.1

1As an example, for a system to achieve strong systematicity, if it can process the sentence “Men sell
cookies to girls”, and the word boys has never appeared as the role recipient of any verb, but has been
previously encountered in other roles, the system must be able to process the sentence “Men sell cookies to
boys”, as well. Otherwise, the third condition is not met.
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Since these two watershed papers, satisfying systematicity, while learning a language,
has been an issue in the realm of connectionism. As an example, Hadley and Hayward
[1997] in their paper “Strong semantic systematicity from Hebbian connectionist learning”,
presented a neural network that could successfully exhibit strong semantic systematicity.
Their network could deal with rather complex sentences, with embedded clauses. Neverthe-
less, it could not handle sentences with passive voice.

Later, Hadley and Cardei [1999] in their paper “Language acquisition from sparse in-
put without error feedback”, presented an evolved version of the previous network. Their
network also exhibited strong semantic systematicity. It could deal with both active and
passive sentences, besides more complex sentences with embedded clauses. However, in both
these models, certain general aspects of innate knowledge of syntax in the human brain was
assumed. Therefore, there are doubts that these models, with minimal prior knowledge of
syntax wired into them, are purely connectionist models. It is controversial, however, to
what degree a purely connectionist model should be free of such innate knowledge.

1.3 The research task, challenges and contributions

We do not learn a language by memorizing a phrase book, neither do we learn it by pas-
sively listening to a radio. Watching, or rather, sensing the world is a requirement when first
learning a language. Therefore, a proper model for language learning must be involved not
only in being exposed to the sentences, but also to the aspects of the real world situation
the sentences are referring, as well.

In this research, connectionist models are designed and implemented to learn the the-
matic roles of sentence entities by receiving certain information about aspects of the real
world situation to which the sentence is referring. More details on the task to be carried
out by the models can be found in 4.1. The experiments are designed so that the models
are also tested for strong systematicity. The system exhibits strong systematicity, which is
a significant achievement. To the best of my knowledge, no connectionist model has so far
been designed and implemented that could satisfy strong systematicity while simultaneously
learning to assign a substantial range of roles to words. More information on the concept
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of systematicity can be found in 3.7.

Also, the system learns the thematic roles without any previous knowledge of the lan-
guage or syntactic parsing of the sentences. To the author’s knowledge, no semantic role
labeling system has ever been designed without assuming syntactic knowledge previously
learned.

This thesis presents a designed model that can be a part of a larger model for repre-
senting sentence meaning as well. After sufficient training, the current model recognizes the
thematic role of each word in a given sentence. A certain part of the model holds infor-
mation on the thematic role of each word. The thematic roles of words can be passed to
the other parts of the larger network to represent the meaning of a whole sentence using
Holographic Reduced Representations. This larger model, more conclusions, challenges and
contributions are discussed in chapter 5.

1.4 Holographic Reduced Representation

Holographic Reduced Representations (HRR) are distributed vector representations for rep-
resenting compositional structures. By having the capability to represent complex structures
such as trees, or other recursive structures, HRR can be employed to represent linguistic as
well as logical structures (Plate [1995]).

In both the fields of logic and language, to represent a complex structure using HRR, role
vectors are circularly convolved with their corresponding filler vectors and then added to the
other role/filler combinations. One possible model for representing a sentence using HRR is
to have the semantic/thematic role vector of each entity convolved with its corresponding en-
tity vector. Then, the convolved role/filler vectors must be added to each other to represent
the entire sentence. (See formula 1.1, where ∗ represents the circular convolution operation.)

sentence representation =
∑

i

wordi ∗ rolei (1.1)
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Finally, it must be mentioned that a major motivation of this thesis research is to allow
a system to learn to discover which roles are relevant to the words in a given sentence so
that the roles will be available for use in creating the given sentence’s HRRs.

1.5 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 covers a literature review on the
semantic role labeling systems. These systems include the FrameNet, and the PropBank
project, besides the systems that are based on these two projects, and also an unsupervised
system. All the mentioned systems adopt the approaches and pursue the goals that are
common in the field of Natural Language Processing. Besides these systems, a connection-
ist approach is reviewed as well.

In the first half of Chapter 3, basic concepts in connectionism are explained, including
neural networks, the backpropagation of errors, Hebbian learning, competitive learning, and
auto-encoder neural networks. The second half of this chapter first reviews Elman’s famous
network (1990) and his experiments with the network. Next, comes a discussion on system-
aticity. Finally, the chapter ends with a survey on a Hebbian-competitive network. This
network together with the Elman’s network were the main models that inspired this research.

Chapter 4 presents the primary original contributions of this thesis. First, the task for
which the models are designed, is defined. Next, the details of the designed experiments,
the designed models, and the results of the experiments are presented.

Finally, after giving a summary of the previous chapter and drawing some conclusions,
chapter 5 ends by introducing possible future directions to extend this research.



Chapter 2

Semantic Role Labeling

This chapter reviews systems that are designed for Semantic Role Labeling mostly in the
field of Natural Language Processing. Briefly speaking, the purpose of a Semantic Role
Labeling System is to assign semantic roles to the words of a sentence. These systems are
used in Information Extraction, Automatic Summarization, Machine Translation, and Au-
tomatic Question and Answering systems.

Recently, given the availability of semantically annotated corpora, there has been a con-
siderable improvement in the Semantic Role Labeling Systems that are based on statistical
learning. In sections 2.1 and 2.2 the two most important annotated corpora, FrameNet
and PropBank, are introduced. Then, in section 2.3, Semantic Role Labeling Systems that
employ FrameNet and PropBank as their training corpora are reviewed. These system are
all designed for purposes that root in the field of Natural Language Processing.

However, there has also been at least some research in the field of cognitive science to
design Semantic Role Labeling systems that are cognitively motivated. One of these con-
nectionist systems is reviewed in section 2.4.

All the Semantic Role Labeling systems that are referred to so far use supervised learn-
ing algorithms. In section 2.5 a system that employs unsupervised learning is also reviewed.

Finally, it worth mentioning that all the reviewed systems process previously syntacti-
cally parsed sentences. This means that for any sentence, a large amount of prior syntactic

7



CHAPTER 2. SEMANTIC ROLE LABELING 8

processing is done before the system tries to semantically labels its words, whereas the de-
signed system in this thesis assumes no syntactic knowledge and needs no prior syntactic
parsing of a sentence.

2.1 FrameNet

The FrameNet project [Baker, Fillmore, and Lowe, 1998, Johnson, Fillmore, Wood, Rup-
penhofer, Urban, Petruck, and Baker, 2001, Ruppenhofer, Ellsworth, Petruck, Johnson, and
Scheffczyk, 2010] is a semantic role labeling project that provides a lexical resource of se-
mantic role labels to be used in data annotation. It had been both beneficial to the fields
of linguistics and natural language processing. This project is one of the projects that pro-
vides training data for semantic role labeling algorithms, and the first major computational
project that provides a source of predicates with their corresponding roles.

The FrameNet project is based on the theory of Frame Semantics [Fillmore, 1982, 1985,
Fillmore, Johnson, and Petruck, 2003]. The Frame Semantics theory basically says that, to
understand the meaning of a word, you need to know the essential knowledge that relates
to that word. For instance, to understand the meaning of the word sell, one needs to know
the concepts of money, seller, buyer, etc.

Roles in the FrameNet are specific to a frame (aka semantic frame). A frame is “ a script-
like conceptual structure that describes a particular type of situation, object, or event along
with its participants and props” [Ruppenhofer et al., 2010]. Therefore, according to the
Frame Semantics theory, the meaning of words can be understood based on the semantic
frame they belong to.

As an instance, the word sell belongs to the Commercial Transaction frame and it is
defined as follows. 1

“These are words that describe basic commercial transactions involving a Buyer and a

1All the examples in this section are directly taken from the official website of FrameNet project.
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Seller who exchange Money and Goods. The individual words vary in the frame element re-
alization patterns. For example, the typical patterns for the verbs buy and sell are: BUYER
buys GOODS from the SELLER for MONEY. SELLER sells GOODS to the BUYER for
MONEY.”

Semantic roles that are defined according to this frame definition are: Buyer, Seller,
Goods, Money, Means, Rate, and Unit. These verb-specific and also frame-specific fine
grained semantic roles are referred to as Frame Elements (FE).

For example, in the sentence: “Robin SOLD a car to Abbey for $5000.”, Robin is the
Seller, a car is the Goods, to Abbey is the Buyer and for $5000 is the Money.

FEs are grouped in two categories: core and non-cores. Core FEs are the ones that are
conceptually necessary for the frame. In the previously mentioned frame, the FEs Buyer,
Seller, Goods, and Money are the core ones and Means, Rate, and Unit are the non-core
ones. As in this example, the non-core roles may not appear as parts of the frame definition.

A frame can be defined across different verbs with close semantics. Actually, verbs are
grouped together only according to their similarity in semantics, regardless of how different
their syntactic behaviours are. For example, the verb buy lies into the same category as sell
does. See the following example: “Abby bought a car from Robin for $5,000.”

The methodology of the FrameNet is as follows. First, the frames are defined. As a
frame is defined, so are the lexical items that invoke that frame. For example, the verb sell
is one of the lexical items that invokes the Commercial Transaction frame. The word that
invokes a specific frame is referred to as the Lexical Unit (LU). In most cases, verbs are the
frame-evoking word of each FE. When the LUs for each frame are identified, the appropriate
roles (FEs) of the frame are defined. At the end, example sentences in the corpus are found
and annotated according to the frame.

It is worth noting that no parse tree is used in FrameNet, but annotaters mark the FEs
in the text. The FrameNet has 10,000 lexical units and more than 1,000 semantic frames.
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2.2 PropBank

Another significant semantic role labeling project is PropBank or Propositional Bank [Palmer,
Gildea, and Kingsbury, 2005]. In this project, semantic roles are assigned to the nodes of
the Penn Treebank2. The main goal behind developing PropBank was to provide an anno-
tated training corpus as the training corpus for supervised machine learning and statistical
systems that support automatic semantic role labeling systems. It has been the primary
resource for research in this field and has been beneficial to statistical analysis in linguistics,
as well.

PropBank is based on the studies of Levin [1993]. In her studies, she claims that the
syntactic behaviours of verbs have strong correlation with their semantic behaviours and one
can distinguish verbs into semantic classes by examining the syntactic behaviours of them.
Therefore, PropBank is mostly based on the syntactic behaviours of verbs, in contrast to
the FrameNet that is basically based on the semantics of verbs.

Role labels in PropBank are more coarse grained than the ones in the FrameNet. They
do not have meaningful names, are not based on any theoretical standing and are verb-
specific. Roles or arguments are mostly named using numbers: Arg0, Arg1, etc. . Arg0
and Arg1 usually corresponds to prototypical agent and prototypical patient, respectively.
Other roles are not necessarily consistent across verbs.

As an example in the sentence 3:“Chuck bought a car from Jerry for $1000.”, Chuck is
Arg0, a car is Arg1, from Jerry is Arg2 and for $1000 is Arg3. As another example, in
the sentence “Jerry sold a car to Chuck for $1000.”, Jerry is Arg0, a car is Arg1, to Chuck
is Arg2 and for $1000 is Arg3.

For each verb, the labels of roles/arguments are specified in a framefile. A framefile
consists of the set of arguments/roles for each verb and their meaning. The set of argu-
ments for each verb is referred to as a frameset. Different senses of each verb have different
framesets. On the other hand, syntactic alternations of a verb, among which the meaning

2The Penn Treebank project provides syntactic parse trees for a given text.
3Examples are taken from Palmer et al. [2005].
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does not change, are kept together in a single frameset.

Compared to the FrameNet, there is less emphasis on the semantics of verbs and the
annotation in PropBank remains close to the syntactic level. Unlike FrameNet, there is
no metaphorical usage of roles [Ellsworth, Erk, Kingsbury, and Padó, 2004], but PropBank
annotates every clause in the Penn TreeBank no matter how complicated the clauses are. In
contrast to FrameNet, the sentences are initially syntactically parsed and PropBank actu-
ally adds a semantic layer to the syntax tree of every sentence. Finally, since in PropBank
the role names are mostly not consistent across verbs, no inferences or generalization can
be made based on the role labels.

2.3 Automatic Semantic Role Labeling Systems based on
FrameNet and Propbank

In 2002, Gildea and Jurafsky designed a semantic role labeling system based on the FrameNet
project. The main goal was to design a domain-independent, robust semantic role labeling
system. An algorithm was designed and tested for identifying semantic roles filled by con-
stituents in a sentence. They defined a list of syntactic features for this task. Their method
used statistical techniques, including probabilistic parsing and statistical classification.

The algorithm was as follows. First, sentences were parsed using an automatic parser
of Collins [1997]. The parser was previously trained on examples of Penn TreeBank. Then,
the predefined syntactic features were extracted from the parser. Finally, the probabilities
for semantic roles were estimated from the features and the best candidate was picked as
the predicted role.

The list of features with a brief description is as follows:

Phrase Type

The phrase type (phr) of a constituent is its syntactic category. Different semantic
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roles can be correlated to certain types of phrases. The phrase type of a constituent is
extracted from the label of the immediate parent of that constituent, in case of unary
production, the higher node’s label is assumed.

Governing Category

The governing category (gov) feature only points to the NP’s of a sentence and has
two types that can be extracted from the parse tree of a sentence. The governing
category of an NP is either S (for subject) or VP (for direct object(s)). As agents
mostly appear as the subject of a sentence, this feature also helps to make a better
guess about the role of the constituent.

Parse Tree Path

The parse tree path (path) feature of a constituent is the path from the target word
(verb) to that constituent in the parse tree. The feature can help the semantic role
prediction by indicating the syntactic relation of the constituent to the sentence.

Position

Position (pos) of a constituent simply indicates if the constituent is before or after the
predicate defining the semantic frame. It helps to distinguish subject and objects in
case there is an error in the parser.

Voice

The voice (voice) of a predicate is either active or passive. Subjects of active voiced
predicates normally have the same semantic role as the direct object(s) of predicates
with passive voice.
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Head Word

Parsers assign each constituent a head word (head) using Collins [1999] rules. Accord-
ing to Gildea and Jurafsky [2002], the head word of a constituent is strongly correlated
to its semantic type.

When the features of a constituent are extracted, the classifier is ready to get statisti-
cally trained. The probability of a given role for a target word is as follows:

P (role | phr, gov, path, pos, voice, head, target word) =
#(phr, gov, path, pos, voice, head, target word, role)

#(phr, gov, path, pos, voice, head, target word)
(2.1)

Intuitively speaking, if only the constituents with the same features in the training set
are considered, the probability would equal to the number of times the given role was as-
signed to any constituents over the number of all the constituents.

On the other hand, since the number of features compared to the size and the variety
of the training set is large, many of the feature patterns may be hardly covered. Therefore,
a simplification is made and the features are assumed to be independent. Then, by using
the Bayes rule, the formula 2.1 is simplified, and the counting for every feature is done
independently of the other features.

The sentences in the FrameNet were divided into 10 equal-sized groups, nine of which
were used for training and the last for testing the system. The system could identify 80.4%
of the roles correctly. Then, in another experiment, the set of roles was simplified into a set
of thematic roles of size 18. The result of this experiment was slightly better, 82.0%.

As one may remember from previous sections, the main goal behind developing Prop-
Bank was to provide an annotated training corpus for automatic semantic role labeling. The
same algorithm was implemented on the PropBank training corpus in Palmer et al. [2005].
Unlike the experiment in Gildea and Jurafsky [2002], the training and testing corpora were
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parsed by hand, therefore the parsing process was error free.

The result on the PropBank data was that the system could successfully identify the
correct role in 82.0% of the cases. Since the number of training examples for each predicate
in FrameNet was slightly more than the similar ones in PropBank, parts of predicates were
removed so that the results can be comparable. After this change, the experiment could
achieve the accuracy of 82.8%.

In later researches on both methods, the list of features was enhanced, and the learning
techniques were improved, and better accuracies were achieved. Here, we limit this discus-
sion on these two watershed researches.

2.4 A connectionist approach to Semantic Role Labeling

Apart from some semantic role labeling systems which take machine learning approaches
and try to identify semantic roles with acceptable accuracy, there are other systems that
take a cognitive science approach and try to implement a semantic role labeling method
that is biologically and cognitively plausible. Among these systems, a system called HTRP
(Hybrid Thematic Role Processor) is reviewed here [Rosa and Françozo, 1999].

HTRP is a combination of neural networks. Given a sentence, HTRP verifies if the sen-
tence is semantically sound, and if so, outputs the thematic grid of the sentence. The system
can handle a predefined list of ten thematic roles. Each sentence can have at most three
thematic roles besides the verb. Both semantically correct and incorrect sentences are gener-
ated by a sentence generator to be used as the training and the testing corpus of the system.

The main idea behind HTRP involves using meaningful feature vectors to represent
words. Each word, either noun or verb is represented as a binary feature vector of size 20.
To clarify how this helps the system to identify the thematic grids, take two sentences:

The stone broke the window.
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The man broke the window with a stone.

The thematic grid of the first sentence is [Agent, Patient], while the thematic grid of
the second one is [Cause, Patient, Instrument]. The two words, stone and man differ in
thematic roles due to their difference in meaning. This difference in the meaning is re-
flected in the difference in their features. For example, the animate feature is active and the
inanimate feature is inactive for the feature vector of the word man, while the inanimate
feature is active, and the animate feature is inactive for the feature vector of the word stone.

While the feature vector of each given noun remains the same, the feature vector of some
verbs may vary from sentence to sentence. Take the two above sentences. In the first one,
the verb break has the feature ‘no control of the action’ activated, and in the second one, has
the feature ‘control of the action’ activted. When any of these two sentences is presented
to the system as an input, it is not yet known which feature vector of the verb break must
be used, therefore, the average of the two vectors would be provided to the system.

The system contains three identical main neural networks, each for identifying one of
the three arguments of the verb. Each neural network contains 11 identical independent
subnetworks depicted in figure 2.1, one for the purpose of error detection, and 10 for the
10 thematic roles. Therefore, there are 33 subnetworks in total. Each of the subnetworks
consists of three layer: the input layer, the hidden layer, and the output layer. The input
layer has 40 nodes, 20 for inputting the verb and 20 for inputting the noun. The hidden
layer has only 2 nodes, one for the verb and one for the noun. Finally, the output layer has
only one node. In the error detector subnetwork, the activation of this node indicates that
the sentence is semantically incorrect. In the thematic role subnetworks, the activation of
the output node indicates that the inputted noun has the corresponding thematic role.

Two different versions of HTRP have been employed and tested: one with the random
initialization of weights of the networks, and the other with the initially known values for
weights. The networks were trained using backpropagation learning algorithm [Rumelhart,
Hinton, and Williams, 1986]. It is claimed that after 3,000 epochs of training, the system
can identify whether a sentence is semantically correct and if so can build the thematic grid
with high certainty. The two different versions show unnoticeable differences in terms of the
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Figure 2.1: The architecture of a subnetwork for one thematic role.

final weights of the trained networks.

The design of the neural networks is highly contrived to get the exact results rather
than being a plausible one. Also, since the system needs one neural network for each of the
thematic roles, it cannot handle sentences with more than three roles. Moreover, how each
sentence is segmented into a verb and nouns, is not explained in the paper. This requires
the learner to be already competent about the sentence syntax. One possible explanation
could be that sentences are previously parsed. But, this assumption is not fully realistic,
since the learner does not yet have knowledge of the semantic role assignments. How a cog-
nitively plausible model can be designed to parse the sentences, the authors do not consider.

2.5 An unsupervised system based on the VerbNet project

All the systems that are so far discussed use a supervised learning method. For supervised
learning, a training corpus of labeled data must be provided. This can sometimes be expen-
sive. The final system that will be reviewed here employs an unsupervised learning method
[Swier and Stevenson, 2004].

The system is based on the VerbNet [Dang, Kipper, Palmer, and Rosenzweig, 1998, Kip-
per, Dang, and Palmer, 2000, Schuler, 2005] project. VerbNet is a set of verb classes based
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on the works of Levin [1993]. Each class of verbs contains a set of syntactic frame patterns,
and also the assigned semantic roles for every slot in that syntactic pattern. Therefore, the
classification of verbs is based on the shared role patterns. See the following example of a
VerbNet entry4.

admire:

Frames:
Experiencer V Cause
Experiencer V Cause Prep(in) Oblique
Experiencer V Oblique Prep(for) Cause

Verbs in this class: [admire, adore, appreciate, cherish, enjoy,. . . ]

There are 24 semantic roles defined in the VerbNet project. Besides the syntactic frame
patterns and the semantic role assignments, semantic restrictions are also defined. Semantic
restrictions are used to constrain the type of words that can be assigned to a semantic role.
Unlike frame patterns, semantic restrictions are regarded as preferences rather than hard
rules.

As one can see, the VerbNet project is very similar to the FrameNet and the PropBank
project. But, unlike FrameNet and PropBank, it has no labeled corpus. Therefore, it is
mostly used for research purposes rather than in practically applied semantic role labeling
systems.

In the system that is designed based on VerbNet, for each given word in a previously
parsed sentence, the system picks the best matching role. The decision for picking a given
role for a target word is based on the probability of a role given the verb, the syntactic slot,
and the given word. Mathematically speaking, it is based on

4This example is taken from Swier and Stevenson [2004].
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P (role | verb, syntactic role, target word). (2.2)

For each given unannotated sentence, the following procedure assigns roles to the words
of the sentence. First, the roles that are unambiguous according to the verb’s lexicon in
VerbNet are assigned. Then, the following step is repeated iteratively, until there is no
unannotated word left. Considering the newly assigned roles, the probability that a given
role is assigned to a given unannotated word is recomputed. If the probability of that can-
didate role, and its difference with the probability of other candidate roles meet a certain
threshold, the role is assigned to its corresponding word. When a new set of roles are as-
signed, the threshold values relaxes one more level. Finally, please note that, the statistics
corresponding to each decision were based on the class of the target verb and the target
word rather than by the verb and the word itself.

For the testing phase, five random example sentences of each target verb were taken from
a text. Next, their argument slots were labeled by human annotators. Then, the result was
compared with the system’s result. The method could identify 90% of the roles correctly.



Chapter 3

Relevant Fundamentals of
Connectionism

This chapter cover concepts, research, and experiments that are immediately used in the
connectionist system designed in this thesis. First, in section 3.1 the concept of neural
networks, which is the core concept of this thesis, is introduced. Then, a couple of learning
algorithms that are later employed are briefly explained. In section 3.2, backpropagation
of errors is explained. This very widely used learning algorithm is later employed in the
network designed by Elman, that is discussed in section 3.6. Then, Hebbian learning and
competitive learning algorithms are introduced in sections 3.3 and 3.4, respectively. These
two learning algorithms are later used in the network discussed in section 3.8.

After an introduction to the basic concepts, three designed neural networks are dis-
cussed. First, in section 3.5, the auto-encoder neural network is briefly introduced. This
neural network will be later used in the design of the main network. Then, section 3.6
reviews Elman’s simple recurrent network. The network designed by Elman, and his exper-
iments, had a great impact in connectionist research, especially in the realm of language
learning. One of his experiments is discussed in section 3.6.1.

The concept of systematicity, and Hadley’s three levels of systematicity are explained in
section 3.7. After that, a Hebbian-competitive network is introduced in section 3.8. This

19
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network, which was partially inspired by Elman’s simple recurrent network, is another in-
fluential network designed in the realm of language learning. Its more detailed architecture,
the designed experiment, the information flow in the network, the analysis of the result and
a quick comparison to the results of Elman’s network come in the following subsections. The
network designed in this thesis is very much inspired by the Hebbian-competitive network.

3.1 Neural networks

Neural networks, which are also known as connectionist networks, artificial neural networks,
or parallel distributed processing networks are biologically inspired, and some forms of them
are biologically plausible models for information processing. In many cases, they are basi-
cally very similar to functions in the sense of mapping an input to an output.

Their design is based on the idea of the interaction of large number of connected simple
elements. The simple elements, whose biological counterparts are known as neurons, are
referred to as nodes. Each node in a neural network is connected to some other nodes
through links. Each node receives an input signal and sends out an output signal. In some
models, an activation function maps the input signal to the output signal. The value of the
output signal of a node is called the activation of that node.

The input to each node comes either from the input to the network, or from the activa-
tion of other nodes in the network which are connected to that node. Also, the activation
of each node is either part of the output of the network or the input to other nodes of the
network to which the node is connected. As mentioned earlier, the nodes are connected
through directed links. These links carry the activation of one node to another. In most
cases, links are weighted and their weights impact the value of activations they are carry-
ing. Mathematically speaking, if nodes n1, . . . , nk are respectively connected through links
w1, . . . , wk to node n, and they have activation values a1, . . . , ak, respectively, then the
input signal to node n would be the following equation, where b is the bias value of node n:
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b +
∑

i

(wi × ai) (3.1)

To elaborate the concept, a typical neural network known as a three layered feedforward
network will be explained here (See figure 3.1). The first layer of nodes in the network is
the input layer. The nodes in the input layer are fully connected1 to the second layer, and
the nodes in the second layer are fully connected to the third layer. Except for these links,
there are no other links in the network.

Figure 3.1: An example of three layered feedforward network. The input layer, the hidden
layer, and the output layer each have five, two and three nodes. The Input layer is fully
connected to the hidden layer, and the hidden layer is fully connected to the output layer.

For a typical three-layer neural network, the following will occur. Imagine that at time
t, nodes in the input layer are activated as the result of an external stimulus. The activation
of this layer will then move forward to the next layer through the weighted links between the
two layers, according to formula 3.1. Then, the activation of nodes in the second layer (aka
hidden layer) is calculated according to the second layer’s activation function, assuming all
the nodes in a layer have the same activation function. Next, the nodes in the second layer
will send out their activation through the weighted links that connect them to the nodes
in the output layer. Finally, the nodes in the output layer will calculate their activation
by inputting their received activation to their activation function, and the output is ready.

1If nodes in one layer are fully connected to nodes in another layer, it means that all the nodes in the
first layer are connected to all the nodes in the other layer.
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This way, an input vector to the network is mapped to an output vector.

One interesting property of neural networks is learning. Learning is the process in which
changes occur in the structure of the network so that the network can perform a specific
task. Most of the time, the changes occur in the weight of the links. There are various
learning algorithms, some of which are explained in later sections. Each neural network
designed for each task is usually exposed to a training corpus as its input. The phase in
which learning takes place in a network by using a training corpus is referred to as the
training phase. A network is usually exposed to the same training corpus for more than
once, during its training phase. Each pass through the training corpus is referred to as an
epoch. Then after training, the network is tested usually using another set of inputs called
the testing corpus. This phase, where normally no learning takes place, is referred to as
the testing phase. The network is supposed to ouput the desired output, in this phase. For
more reading on neural networks, see Rumelhart and McClelland [1986b].

3.2 Backpropagation of errors

Backpropagation of errors, or simply the backpropagation algorithm, is a supervised learning
method which was first used in the realm of neural networks in 1986, in the paper “Learning
representations by back-propagating errors” by Rumelhart, Hinton, and Williams [1986]. A
supervised learning is a learning method in which the desired output to each input is known
in advance during the training phase, and is used as a teacher to the network, so that the
network learns to modify itself to produce the desired output. In other words, each input
is labeled with the desired output for that input.

In the backpropagation algorithm, the error, which is the difference between the out-
putted vector and the teacher vector, is propagated in a backward direction of the activation
flow in the network, and the link weights are modified accordingly. Consider the three lay-
ered feedforward network explained in the previous section. For each input, as the activation
flows to the output layer, the output error is first calculated by comparing the output vector
with the teacher vector, and the links between the output layer and the hidden layer are
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modified accordingly. Then the indirect information about the error is propagated back-
wards from the hidden layer and the links from the input layer to the hidden layer are
modified accordingly.

The backpropagation of error is in fact a very slow process, for this reason besides other
reasons, it is often alledged to be cognitively implausible.

3.3 Hebbian learning

Hebbian learning was first discussed in 1949, by Hebb [1949], in the book “The organization
of behaviour: a neuropsychological theory”. In a nutshell, the Hebbian learning occurs when,

“Cells that fire together, wire together.”

Which means that neurons/nodes that are active at the same time “will tend to become
‘associated’, so that activity in one facilitates activity in the other.” Hebb [1949]

There are numerous variations, but in most implementations, this means that the weight
of the link between two nodes that have activation value of the same sign (positive or neg-
ative) will increase, whereas the weight of the links between two nodes that have opposite
activation value will decrease.

If the Hebbian learning takes place between two layers of a network, after sufficient
training, certain nodes of one layer would be associated with certain nodes of the other
layer. More precisely, the links between those pairs of nodes of the two layers, that were
often associated during the training, would have a greater weight, than the links between
those pair of nodes that have been rarely associated. This way, the network learns the
associations between pairs of nodes in the two layers of the network. Therefore, weights of
the links actually carry information on the pattern of training data.

An example equation for weight change would be the following equation, where wij is
the weight of the links between node i and node j, r is the learning rate, ai is the activation
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of node i, and aj is the activation of node j:

∆wij = r × ai × aj . (3.2)

3.4 Competitive learning

Competitive learning is when nodes in a layer, referred to as a competitive layer, compete
to win for a particular pattern of input activation. Competitive learning is an unsupervised
form of learning, meaning that unlike supervised learning, inputs are not labeled with the
desired output. It is mostly used to detect features or classify patterns of its input layer.
One type of competitive learning is briefly explained in the following paragraph.

At first, all the nodes in the layer are identical, except for a randomly distributed pa-
rameter that is assigned to each. The nodes are connected together through inhibitory links.
When two nodes are connected through inhibitory links, the increase in the activation of
one, will decrease the activation of the other one. So, when the activation of the input level
reaches the competitive layer, first the nodes compete until the activation of all the nodes
stabilizes, then one node, the winner, is assigned the maximum activation level and the
rest are assigned the minimum one. Then, the links between the input and the competitive
layer are trained, such that each winner will win for a particular input or a particular pat-
tern in the input (See figure 3.2). More reading can be found in Rumelhart and Zipser [1985].

Figure 3.2: A simple network with an input and a competitive layer.
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3.5 Auto-encoder neural network

An auto-encoder neural network is a neural network used to map the activation pattern of
one layer of nodes to that of another layer of a smaller size, such that there is a one-to-one
mapping between the two layers. Imagine we have a layer of nodes, such that the number
of nodes needed to represent all the possible activation vectors which can arise in that layer
in a specific network is less than the size of the layer. In this case, obviously, the layer could
be replaced with another layer of a smaller size, and each possible activation vector with
another one of a smaller size. This compression can be done using an auto-encoder neural
network.

An auto-encoder neural network is a three-layered neural network (see figure 3.3). It
consists of an input, an output and a hidden layer. It is called auto-encoder, because the
network is trained to produce the same output as the input. Therefore, the input and the
output layers have the same size, and the hidden layer’s size is less than theirs.

Figure 3.3: The architecture of an auto-encoder neural network.

The network is trained using the backpropagation learning algorithm. If after a num-
ber of training epochs the error in producing the correct output is small enough, then the
output vector would be identical to the input vector with a small error. Besides, there is a
functional relationship between the input and the hidden layer, and also the hidden and the
output layer of the network. But, the input and output are almost identical after training,
and therefore there is a one-to-one mapping between the hidden layer and the input layer.
Thus, the hidden layer could be regarded as the compressed form of the input layer. In this
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way the auto-encoder’s hidden layer could be employed to represent the compressed form of
the input layer. For more reading on auto-encoders, see Rumelhart and McClelland [1986a].

3.6 Elman’s network

Many language behaviours express themselves in temporal sequences and thus the concept
of time is involved in the field of linguistics. Then, if a system is to deal with language, it
must also be concerned with the concept of time. One of the systems that is developed to
implicitly deal with this concept is due to Elman [1990].

In 1990, Jeffrey L. Elman, in his paper “Finding Structure in Time”, introduced a con-
nectionist network which dealt with the concept of time. The architecture and the flow
of information in the network are as follows. The network consists of four layers: input,
hidden, context and output layer. The input layer is fully connected through trainable links
to the hidden layer, and the hidden layer is fully connected through trainable links to the
output layer. There is a loop between the hidden layer and the context layer. One set of
links consists of one-to-one links that copy the contents of hidden layer to the context layer,
and another set of links consists of fully trainable links through which the activation of the
context layer flows to the hidden layer. See figure 3.4.

Figure 3.4: The architecture of the network designed by Elman.

The input vectors are presented to the network sequentially; this is done by the use of a
clock. Imagine that at time t an input vector is presented to the input layer of the network.
The activation of this input flows to the hidden layer.
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When it comes to the hidden layer, it is not only the contents of the input layer that
feed into it, but the contents of the context layer feed into it as well. The context layer
acts as a memory for the network. Whenever the resulting contents of the hidden layer are
ready, they will be copied into the context layer. Therefore, the two layers have equal sizes.

The contents of the hidden layer are not only copied into the context layer, but also
propagate to the output layer. When the activation of the hidden layer reaches the output
layer, it is compared with an input teacher and all the trainable links of the network get
trained through backpropagation algorithm. At time t + 1 the above procedure is repeated
with the next input vector.

As in the feedforward networks, the hidden layer develops an internal representation of
the input layer which can usually enable the correct output to be generated. Here, not only
the external input provides the input to the hidden layer, but also the context layer which
is acting as a memory of the previous states of the network. Therefore, the hidden layer
can be interpreted as an approximate encoding of the sequential input, and not only the
current input. The degree of approximation depends upon the degree of success of network’s
training. This characteristic of the SRN will be studied in the next section.

3.6.1 Elman’s experiment

In his paper “Finding Structure in Time”, Elman reports several experiments implemented
with the SRN, among which the most relevant to this thesis is explained here. In this ex-
periment, the task to be carried out by the SRN is to predict the next word of a sentence
given previous words of that sentence. For this purpose, 29 words are used, each of which
is represented to the network by a vector of size 31. Each vector is a series of 0’s with a
single bit flipped on. This means that all pairs of vectors are orthogonal and the vector
representation of words is not in the form of a distributed representation.

A sentence generator is employed to make short sentences of size 2 or 3 out of a prede-
termined word set. This sentence generator uses syntactic and semantic restriction to make
10,000 meaningful sentences. These sentences altogether have 27,534 words. To make the
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training set, vectors of the words of all the sentences are concatenated in sequence with no
breaks between successive sentences. The vectors in the training set are then fed to the
network one after another.

The architecture of the SRN and the information processing are identical to what is al-
ready explained in the previous section. The input and output layer each have a size equal
to the size of each word vector which is 31, and the size of the hidden layer and context layer
is 150 units each. The SRN experiences six complete passes through the training corpus.

During the testing phase, Elman first measures the error by comparing the outputted
vector with the next word’s vector and the result was found to be acceptable, subject to some
qualification. Since the prediction task is non-deterministic, measuring the performance of
the network is not straightforward. So, Elman defines a likelihood vector for each input
vector. The likelihood vectors were of size 31 in which each bit is a fractional number that
represents the probability of the occurrence of the word corresponding to that bit, given
the current word and the previous words of current sentence. This probability is measured
using the statistics of the training set. Using this method results in the observation that
the network is outputting very acceptable vectors and is able to extract information from
the text.

The question which arises here is whether the network has only memorized the sequence
of words or is able to extract classes of words and learn how they are composed together to
make sentences. To answer this question, Elman studies the internal representations that
are developed by the network, which are the activation pattern produced on the units of
the hidden layer for each word as it appears in its context.

For each of the 29 words, the internal representations for that word in all the contexts
are averaged and then the averages were subject to a hierarchical clustering analysis. The
words are primarily categorized in two groups: verbs and nouns. In smaller details, they
are categorized according to their contextual word order roles. The contextual word order
role of each word is derived from that word’s context.
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3.7 Systematicity

As discussed in 1.2, human language has syntax and semantics, and there is a systematic
relationship between elements of a language. Fodor and Pylyshyn [1988], in their paper
“Connectionism and cognitive architecture: A critical analysis”, introduced the term sys-
tematicity to refer to this property of language. They claimed that systematicity is not
only in the external representation of a language, but also in its internal representation in
the brain, and therefore in human thoughts. They believed that connectionism cannot ex-
plain this property of language, unless it is used to implement traditional linguistic methods.

Later, Hadley [1994] in his paper “Systematicity in connectionist language learning”,
modifies the concept of systematicity. He defines systematicity in three levels (See sec-
tion 1.2). Citing experiments previously done in psycholinguistics, he argues that human
language exhibits at least strong systematicity. Therefore, it is desirable for a cognitive
system to exhibit this level of systematicity.

Hadley’s definition also provides a clear way to test a system for systematicity. Since
there is no word in any novel position while the SRN is tested in the experiment designed
by Elman, Hadley claims that the network was not shown to exhibit strong systematicity.

3.8 A Hebbian-competitive network

As discussed in section 3.6, the SRN designed by Elman [1990] employs local representation
of words in which each word is represented by flipping on a bit. To broaden the range
of syntactic patterns that a connectionist network can learn and to increase the degree of
systematicity it can achieve, the network designed in the paper “Syntactic systematicity
arising from semantic prediction in a Hebbian-competitive network”, by Hadley, Rotaru-
Varga, Arnold, and Cardei [2001], employs distributed representation of words. Here, the
distributed representation of a word is a vector in which every bit corresponds to a semantic
feature. A set of semantic features were previously defined. The set of features were not
chosen to be entirely realistic, but were selected to be examples that help to provide “proof
of concept”. Consequently, the task defined for the network will be to predict the typical
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semantic features of the next word, rather than predicting the next word itself.

The overall architecture of the network is as follows. The network has four layers: the
input layer, the first hidden layer (HL1), the second hidden layer (HL2) and the output
layer. Like the SRN, a clock determines the presentation of the input to the network. Also
like the SRN, the input and output layers are of equal sizes, and their size is equal to the
size of the word vectors.

The first hidden layer, HL1, consists of three distinct regions: A, B and C. The input
layer is fully connected to the region A through trainable links. Region A is a winner-take-
all (WTA) competitive cluster of size 20. Regions B and C act as memory copies of region
A. Therefore, region A is connected to region B through one-to-one mapping links, and so
is region B to region C. At each time step, the contents of region B is copied to region C,
and so is the contents of region A to region B. See figure 3.5.

Figure 3.5: The architecture of the Hebbian-competitive network.

All three regions of HL1 are fully connected to HL2 through trainable links. HL2 is also
a WTA competitive cluster of size 400. This layer is also fully connected to the output layer
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through trainable links.

All in all, the information flow is as follows. The previous contents of region B is already
copied into C, and the previous contents of region A into B. The activation from the input
layer flows to region A. A competition occurs in region A and a single node is selected as
the winner. Then, when the activation of nodes in regions A, B and C is stabilized, the
activation flows from HL1 to HL2. There, another competition occurs in HL2 and a single
node is selected as the winner.

During the training phase, the output layer is already activated with the semantic vector
of the next word and learning takes place on the links from HL2 to the output layer. During
the testing phase, the activation of HL2 flows into the output layer to produce an output
vector. The details will come in later sections.

3.8.1 Experiment on the Hebbian-competitive network

In the experiment which is designed to test the network, there are 27 words: 12 nouns, 11
verbs, also the words ‘that’, ‘from’, ‘with’, and ‘.’. The period is used as a break between
sentences. Each distinct word is represented to the network by a corresponding semantic
feature vector of size 51.

3000 sentences are made out of these words as the training set, and 3000 sentences as
the testing set. The sentences are of the following forms: they are either simple sentences
of size 3, having the form (Noun Verb Noun), or they have a prepositional phrase including
either of the words ‘with’ or ‘from’, or they have one or two relative clauses.

During the training phase, two third of nouns are limited to a single position in the
sentences, so that the network can later be tested for systematicity. This restriction is sub-
sequently relaxed during the testing phase.
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3.8.2 Information flow and the analysis of the results

Input vectors, which are the semantic features of the words of a sentence, are presented
to the network sequentially, in the same order as their corresponding words appear in the
sentences.

The activation of the input flows to the nodes in region A. Please remember that before
any change in the activation of nodes occurs in region A, its previous activation pattern
is copied into region B, as is the activation pattern of region B into region C. Then, the
activation of the nodes in region A is updated according to the following formula, where
Receivedj is the weighted sum of activation received in node j,Maxj is the maximum-so-far
value of Receivedj , and c is a constant. This formula is also used in HL2. In region A,
c = 0.9 and in HL2, c = 0.1.

Vj = c ∗Receivedj + {(1 − c) ∗ (Receivedj/Maxj))}. (3.3)

The competition starts when Vj is computed for every node in the layer. The winner
of the competition is the node with the utmost value of Vj . The winner will then take the
value of +1, and the activation of all other nodes will fall to zero.

For region A of HL1, repeated instances of such competition eventually results in group-
ing together words which have close semantic feature vectors. In other words, the activation
of words of close semantic features will cause the same node to win.

For modifying weights leading to the winning node of the competitive layer, as in Von der
Malsburg [1973], the von der Malsburg’s algorithm, which is a Hebbian-inspired competitive
learning algorithm, is employed, and uses weight modification equation 3.4, where j indexes
the nodes in the competitive layer, i and k both index the nodes in the layer below the
competitive layer, ai is the activation of node i in the lower layer, and finally wij is the
weight of the link from node i to node j, and η0 is the learning rate. In region A, η0 = 0.1
and in HL2, η0 = 0.001
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∆ωij = η0(ai/
∑

k

ak − ωij). (3.4)

Now, the activation of nodes in all three regions of HL1 flows into HL2. There, another
competition similar to the one in HL1 takes place. Here, the parameters c and η0 are set so
that the result of the competition would be a one-to-one mapping from activation patterns
in HL1 to a winner in HL2.

When the activation in HL2 has settled down, learning takes place in links from HL1 to
HL2. The learning algorithm is the same as the one for the links from input to region A in
HL1.

At this moment during the training phase, the next word’s vector is already in the
output layer. Links going from HL2 to the output layer are then modified using a simple
Hebbian learning method in which each link that connects the active node in HL2 to an
active node in the output layer is incremented by a constant value that is equal to 2.5 × 10−5.

During the testing phase, the activation flows from HL2 to the output layer. During the
testing phase, as each word in the word list appears in different sentences, all the output
vectors corresponding to that word are averaged. For each word, the average of correct
output vectors is then compared with the average vector resulting from the testing phase.
The comparison is made by calculating the cosine of the two vectors. The result of this
comparison is that the network can make an appropriate prediction of the semantic features
of the next word of the sentence. This appropriate prediction is made whether the word is
in a novel position in the sentence or not.

Briefly, by employing distributed representations rather than the local representation
used by Elman, and also due to the architecture of the network, the network was able to
group together words of semantically similar types. By the use of this grouping and other
aspects of the architecture, it could achieve strong systematicity.

On the other hand, by using Hebbian learning rather than backpropagation learning
used in SRN, the network can perform more than 30 times faster than the SRN in Elman’s
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paper. Comparing the number of training sentences and the number of passes used for
training will illuminate this fact.

3.9 The dual-path model

All the already reviewed systems are either aiming for semantic role labeling (chapter 2),
or are immediately used in the model designed in this thesis (chapter 3). However, the
dual-path model (Chang et al. [2006]) is of interest to this thesis for the similarity of its
design to the system proposed in this thesis.

Chang, Dell, and Bock, in their paper “Becoming Syntactic”, introduce a system which
is designed to resolve some debates in psycholinguistics that are beyond the scope of this
thesis. The task to be carried out by their model is to output the next word in a sentence
using the previous word in the sentence. According to previous researches (Altmann and
Kamide [1999], Federmeier and Kutas [1999], Kamide et al. [2003], Wicha et al. [2003]), the
authors claim that word prediction occurs during listening, and the process of predicting
the next word affects the process of language acquisition.

Word prediction is not the only task to be carried out by the dual-path system. The
model also employs the word prediction skill, together with another component that con-
tains the representation of an intended message, to produce a sentence. In fact, the sequence
of outputted words by the system is interpreted as the produced sentence.

The designed model, which is a variant of the dual-path model presented in Chang
[2002], consists of two main components (See figure 3.6):

• The sequencing system

• The meaning system

The design of the network is roughly explained in the following paragraphs.

The sequencing system
The sequencing system is basically an SRN. As discussed in section 3.6.1, SRN can
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Figure 3.6: The architecture of the dual-path model (Chang et al. [2006]). The right com-
ponent is the sequencing system, and the left one is the meaning system.

be employed to predict words. The challenge with the SRN is that unlike people, it
is not able to use words in “novel ways”. The authors do not use the the term sys-
tematicity, and by novel ways they mean words in novel roles, or words in previously
unencountered part of speeches 2, etc.

The words are presented to the system in the same local representation fashion as
the Elman [1990]’s experiment. Therefore, to overcome the SRN’s challenge in gen-
eralization, the modified version of the SRN is employed. This version was initially
introduced in Elman [1991]. As one can see in figure 3.6, two layers are added to
the SRN’s architecture: one between the input layer and the hidden layer, and the
other between the hidden layer and the output layer. Since these layers compress the
input/output layers 3, they are referred to as compress layers. In the experiments
presented in Elman [1991], scrutinization of the contents of these two layers for dif-
ferent words, after sufficient training, revealed that the content of these layers encode
important syntactic knowledge such as major syntactic category distinctions or verb
class information. Therefore, the modified version of the SRN can help to generalize
over words of the same category.

2The authors use the word Google as an example, claiming that one who has never heard this word as
a verb, can understand a sentence in which Google appears as a verb, and guess that it means searching in
Google.

3They have less number of nodes than the input/output layers.
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The other minor divergence from the Elman’s network (Elman [1990]) is that the input
to the system is not the current word, but the normalized sum of the current word
and the predicted word for the previous word. This minor alteration would help the
system to produce a sentence, when no current word is available as the input.

The meaning system
The meaning system contains the intended message of the sentence. It consists of two
parts: the where-what links, and the event-semantics.

The event-semantics contains information on the number of arguments in a sentence,
together with their relative prominence, which is basically their order in the sentence.
During sentence production they are set from an external environment and remain for
the entire sentence.

The where-what link is the temporary binding between the thematic role (where),
and the concept (what) of the current/next word. The binding is implemented by
temporarily increasing the weight between them. The increase in the weight of the
links is also set from an external environment.

When the system is supposed to produce a sentence for an intended message, the
intended message is represented to the system via the event-semantics for the whole
sentence, and also the where-what links for each word.

The training process of the model is by exposing it to sentences (sequence of words),
and also their meanings (intended messages). Except the where-what links, and the links
from hidden layer to the context layer, all the other links are trained by backpropagation of
error. The model was first exposed to a training set of 60,000 sentence-message pairs. Then
it is was tested by being exposed to a set of 2,000 messages for which it was supposed to
produce a sentence. The two sets had less than 1% overlap. For 89.1% of the messages, the
system could produce a grammatically correct sentence (not necessarily as intended). For



CHAPTER 3. RELEVANT FUNDAMENTALS OF CONNECTIONISM 37

82% of the messages, the intended sentence was produced.

The designed model can only deal with sentences with a single clause, and it is unable to
handle sentences with embedded clauses. Also, it is not purely connectionist. The meaning
system is a symbolistic system. On the other hand, the structure of the meaning system
contains syntactic information of the sentence to be produced.



Chapter 4

Solution Methods

This chapter covers the models designed and implemented for identifying the thematic roles
of words in a given sentence, in a way that the proposed model can satisty strong sys-
tematicity. First, the task for which the proposed connectionist models are designed and
implemented is defined in section 4.1. Then, in section 4.2, the designed experiments by
which the models are studied are described.

There are two approaches taken to deal with the defined task. The first approach comes
in two versions: the initial version and the modified version. The architecture of the initial
version of the designed model, the flow of information in it, the results of the experiment,
and the analysis of the results come in sections 4.3.1 to 4.3.6. Next comes the design of
the modified version and the results of the experiments and their analysis in section 4.4.
Likewise, the second approach is then explained in section 4.5. Finally, the chapter ends
with giving the numerical and algorithmic details of different parts of the proposed model
in section 4.6.

4.1 Task overview

The goal is to design a connectionist model that can learn to discover and later recognize
the thematic roles of words in sentences. The model is intended to comprise a substantial
step in the direction of the cognitive plausibility. For example, no exhaustive training is al-
lowed. It must exhibit strong systematicity, as well. Also, the model is supposed to perform

38
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the task for a considerable range of syntactic sentences, including active and passive voices,
sentences containing relative clauses, and prepositional phrases among others.

The design of the model is based on the presumption that we do not learn the thematic
roles of words in sentences by merely listening to sentences from radio. While learning a
language, we are typically exposed to the situations to which words and sentences are re-
ferring. Arguably, we frequently learn to infer the thematic role of each word by observing
the situation that word is referring to in the real world. Then, we learn how to associate
the structure of the sentence together with the position of the word in the sentence with a
thematic role.

To perform the defined tasks, two neural networks are designed based on the presump-
tion already explained. How the networks are trained and tested is explained in the following
paragraphs. What immediately follows holds for both networks.

During the training phase, not only the words of a sentence, but also encoding of aspects
of their situation in the real world are presented to the input layer of the network. More
exactly, what is meant by word is the approximate encoding of semantic features of that
word. Henceforth, word is sometimes the shorthand for “the semantic features belonging to
a word”.

The situation of an input word is what the listener perceives about the current input
word in the real world. For example, if the sentence presented to the listener is: "Women
eat cookies." , and the listener is also observing that "Women eat cookies." , and the current
word is women and the listener can see that women are the doers or agents of the action
eat, then an aspect of the situation presented to the input layer of the network would be
conceptualized, in some manner, as agent. Therefore, the input presented to the network in
the situation layer could also be interpreted as the thematic role of the current input word
in the current sentence. One can assume that the two inputs, the word and its situation in
the world, are two parts of a single input presented to two different parts of the network.

During the testing phase, it is assumed that the listener can only hear the sentence, and
cannot see the situation. Thus, the situation of the current word is not presented to the



CHAPTER 4. SOLUTION METHODS 40

network, and the network is supposed to output the thematic aspect of the situation corre-
sponding to the current word. This could be equivalent to the listener’s ability in imagining
the situation corresponding to the words of a sentence. In fact, the ability of the listener in
comprehending a sentence requires him/her to be able to understand the thematic role of
each word in a sentence, or in other words, the thematic aspects of the real world situation
to which the words are referring.

4.2 The designed experiment

A training and a testing corpus, each containing 3,000 sentences, are designed to train and
then test the network. There is also a set of roles assigned to each word of each sentence in
both corpora. For training the system the training set and the corresponding training roles
are inputted to the network. During the testing phase, only the testing corpus is available
to the network. The roles assigned by the trained network to each word of the testing set
are employed to verify the outputs produced by the network.

The sentences of the training and testing corpus are generated using a set of 33 words.
Each word is presented to the network as a binary feature vector of size 69. Thirty three
elements of each vector correspond to a semantic feature. Nouns and verbs are represented
using these 33 elements. Thirty six elements correspond to more complicated word features.
Prepositions, auxilary verb are, and the period are represented using these 36 elements.
Therefore, the semantic interpretation of these 36 elements is not straightforward.

The features were not chosen to be entirely realistic, but rather were selected to be ex-
amples that help to provide “proof of concept”. The selection of features was initially based
on the the features selected in Hadley et al. [2001]. Later modifications were needed, and
more features were introduced for representing the words not included in the initial word
list. It would be later discussed in coming sections that the exact semantic feature vector
representation of each word would only affect its semantic classification, and each word is
treated according to its semantic class, rather than its semantic feature vector. Therefore,
minor changes in each word’s semantic feature representation may not influence the whole
system.
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Features assigned to nouns are as follows: visible-object, tangible-object, occupies-space,
has-shape, can-eat, can-breath, inanimate-object, human, animal, child, female-human, mews,
can-fly, location, outdoor, can-play-in, part-of-body, kitchen-utensil, can-eat-with, edible,
metal, form-of-money, and features assigned to verbs are action, emotive, feeling-nice,
involves-light, involves-receiving, involves-delivering, involves-money, has-rules. Somewhat
more arbitrary features are assigned to pronoun that, prepositions, words by and are, and
the period. See Appendix A for the list of words and their feature assignments.

Eight distinct thematic roles for noun phrases are used : agent, patient, location, instru-
ment, coagent, source, recipient, and beneficiary. A role named action is also used relative
to the verb of each sentence. In the partially simplified experimental setup, in each sentence,
there are also words to which no situation in the real world corresponds. For example, in the
sentence “Women eat cookies in parks” the word in refers to no thematic role. This word,
together with the word parks, constructs a noun phrase which associates to the thematic
role location. For the sake of simplicity, a role called nothing is assumed to correspond to the
word in and the thematic role location is only associated to the word parks. Like words, the
roles are also presented to the network as binary vectors, each of size 40. See Appendix B
for the list of thematic roles and their vector representations.

The training and testing sentences are generated according to the same grammar rules.
According to the verb of each sentence, extra restrictions are set on words when they are
taking roles, so that sentences would be meaningful. For instance, the agent of the verb
love can only be an animate noun. Sentences could be as short as two words, or as long as
seven, be active or passive, be simple or include an embedded clause. The set of grammar
rules is designed so that the models can be tested for strong systematicity, and can cover a
wide variety of rules. The list of grammar rules are as follows.

S → N V | N V in N. | N V N. | N are V by N. | N V N in N. | N are V by N in N. | N
V N PP. | N are V by N PP. | N RC V N. | N V N RC.

RC → that N V | that V N
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N → women | boys | girls | men | cats | mice | birds | houses | parks | streets | spoons |
coins | cookies | hands

V → love | hate | eat | shine | buy | borrow | get | give | sell | lend

PP → Prep N

Prep → with | to | from | for

The full list of grammar rules with the roles assigned to each word, an example for each
and the frequency of each type of sentence are further explained in Appendix C.

To test the network for strong systematicity , for each role, some words are excluded
from taking that role in the training set. This restriction is relaxed during the testing phase.
The list of words excluded from taking a certain role during the training, but taking that
role during the testing phase is presented in Appendix D.

The training and testing corpora are generated in MATLAB1. The network and the
designed experiments are also implemented in MATLAB. All the programming codes are
included in Appendix E and F.

4.3 First approach

4.3.1 The architecture of the network

The network consists of the following components:

• An input layer through which the current input word is presented to the network,

• A winner-take-all (WTA) competitive cluster layer referred to as the semantic classifier
layer (SC layer). This layer is similar to region A in HL1 in the Hebbian-competitive
network of Hadley et al. [2001]. See section 3.8.

1The training and testing corpora are generated using function trainingSentenceGenerator.
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• A simple recurrent network (SRN) similar to the network in Elman [1990]. See section
3.6.

• A memory layer. Links to this layer do not go through any learning process. They
only copy the contents of another layer to this layer.

• A three-layered feed-forward backpropagation network (BPN),

• Another WTA competitive cluster layer referred to as the role layer,

• And finally, an I/O layer where aspects of the situation corresponding to the input
word are inputted/outputted. This layer is referred to as the situation layer.

These components are connected together as depicted in figure 4.1. As one can see, one
component might be the input or output of another component. How the components are
connected is explained in the following paragraphs. The functional overview of each com-
ponent is explained in sections 4.3.3, 4.3.4.

The input layer is fully connected through trainable links to the semantic classifier layer
(this layer is referred to as the input layer in 4.1). The semantic classifier layer is the input
to the SRN, thus it provides target values for the output of the SRN as well. The hidden
layer of the SRN is connected through links to the memory layer. These links copy the
contents of the hidden layer of SRN to the memory layer.

The hidden layer of the SRN together with the memory layer are the input layer of the
BPN. These two layers —the hidden layer of the SRN together with the memory layer —are
fully connected through trainable links to the hidden layer of the BPN. The hidden layer of
the BPN is fully connected through trainable links to the output of the BPN. The output
of the BPN is the role layer.

Two different sets of trainable links connect the role layer and the situation layer. One
set goes from role layer to the situation layer, and the other one goes from the situation
layer to the role layer.

For numerical details on each layer see section 4.6 .
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Figure 4.1: The architecure of the designed network and how the components are connected
together. BPN stands for the backpropagation network, and SRN stands for the simple
recurrent network. Please note that the layer indicated as the input layer of SRN is also
the SC layer; and the layer indicated as the role layer, is also the output layer of the BPN.
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4.3.2 The flow of information

During the training phase, each sentence is processed by the network twice, or in other
words, in two passes. In the first pass, the network goes through the words of the sentence
to extract the semantic-syntactic structure of the sentence. The network then keeps the
structure of the whole sentence in the memory layer. The memory layer retains that while
the second pass is in progress.

In the second pass, the network goes through the words of the sentence again. As each
word of the sentence is being processed, the network will have information on the semantic-
syntactic structure of the current word together with words that precedes the current word.

Also note that, during the training phase, the external world situation of the current
word is also available to the network. Therefore, the network needs to learn the functional
relationship between the semantic-syntactic structure of the whole sentence, together with
the syntactic structure of the part of the sentence up to and including the current word,
and the situation of the current word. In other words, the network will learn function f ,
where f is defined as follows,

f((semantic & syntactic structure of sentence,

semantic & syntactic position of the word and and its preceding words))

= role layer.

(4.1)

This functional relationship will be further elaborated in later sections.

Before moving to the details, it is important to note that when we refer to semantic-
syntactic information, we are not referring to traditional semantic-syntactic analysis, such
as a parse tree, but are referring to implicit structural information, such as the kind that
Elman [1990] discovered as a result of neural network training. Obviously, no semantic-
syntactic knowledge is assumed by the designed network.
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4.3.3 First pass

The flow of information in the first pass is depicted in 4.2. The current word of the sentence
is now in the input layer. The activation of the input flows to the SC layer (SC layer is
the input of the SRN in figure 4.1). The SC layer’s parameters are set so that as a result
of competitive training, words will be clustered into: animate nouns, inanimate nouns,
verbs. Also each preposition, pronoun that, and ‘.’ are clustered differently into single-
member clusters. The cluster to which a word belongs is considered as the semantic type of
that word. This categorization is the result of feature vectors of the input word, compet-
itive training of links entering the SC layer, together with the number of nodes in that layer.

Figure 4.2: The flow of information in the first pass.

When the training pass in the SC layer ends, the content of this layer is copied into the
input layer of the SRN. Then, the next word of the sentence is presented to the input layer
of the main network. The competition in the SC layer goes on again and the content of the
SC layer is copied into the output layer of the SRN. When the input and the output of SRN
are ready, backpropagation learning takes place in the SRN as described in Elman [1990].

The flow of information in the SRN is identical to the one described in Elman [1990].
The input of the network is the semantic type of the current word, and the SRN’s task
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is to predict the semantic type of the next word in the sentence. On the other hand, the
semantic type of one word is not enough to reliably predict the semantic type of the next
word. Therefore, when the learning takes place in the SRN, the network learns to keep the
semantic types and sequential order of all previous words in its context/hidden layer. When
the next word is ‘.’, the sentences’ first pass is completed and the content of the hidden layer
of the SRN is ready to be copied into the memory layer. In both passes, just after the last
word of the sentence is processed, the context layer’s content is cleared to make the SRN
ready for the next pass/next sentence. This is done, because, at this point, the content of
the context layer of SRN contains information on the already processed sentence, and will
interfere with the information of the next sentence.

The content of the memory layer now contains information on the semantic-syntactic
structure of the sentence. By this, we mean that if the contents of the memory layer for
different sentences are compared, the ones with more similar semantic-syntactic structure
will be closer in Euclidean metrics. As an example, if clustered, the ones for active sentences
will be clustered together and differently from the ones for passive sentences.

4.3.4 Second pass

The flow of information in the second pass is depicted in 4.3. In the second pass, again
the SC layer and the SRN are used as described in the earlier section. The content of the
memory layer is ready from the first pass. When the content of the context layer of SRN
is ready as well, the activation of these layers propagate into the hidden layer of BPN and
from there to the output layer of the BPN which is the role layer.

At this moment during the training phase, the situation layer is also provided as an
input to the network. The activation of the nodes in the situation layer propagates to the
role layer and then the WTA competition takes place in the role layer. The single winner
node in this layer corresponds to the thematic role of the current word, once the role layer
is well-trained. When the competition is completed and the winner is selected, the output
of the BPN is ready and the backpropagation learning takes place in the BPN. The learning
takes place first between the role layer and the hidden layer of BPN, and then between
the hidden layer and the input layer of BPN which consists of the context layer of SRN and
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Figure 4.3: The flow of information in the second pass.

the memory layer.

When the competition in the role layer ends, a simple Hebbian learning also takes
place between the role layer and the situation layer. This learning should not be confused
with the one that takes place in the opposite direction from the situation layer to the role
layer. The purpose of this learning will be more clear in the explanation of the testing phase.

At this level, the word’s processing is finished, and the network moves to the next word
of the sentence or the first word of the next sentence.

In summary the function of each component of the network is as follows.

• The SC layer classifies the words into semantic classes according to their semantic
features.

• The SRN learns the semantic-syntactic structure of the sentence up to and including
the current word in the input.

• The memory layer stores a distributed encoding of the semantic-syntactic structure of
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the whole sentence for the second pass.

• The BPN learns the association between the semantic-syntactic structure of the whole
sentence together with the semantic-syntactic structure of the sentence up to and
including the current word and the thematic role of the current word.

• During the training phase, the role layer classifies the provided aspects of the situations
of the current word into thematic role classes. During the testing phase, when the
nodes in the layer are activated, they feed into the situation layer to output the
identified situation of the current word.

4.3.5 The testing phase

For testing the system, it is assumed that the system is only hearing or reading the sen-
tence, but does not know the external situation. Testing the system is to see whether it
is able to understand the sentence and “imagine” the aspects of situation corresponding to
each word.

Therefore, during the testing phase, nothing is presented to the situation layer. When
the activation reaches the hidden layer of BPN, it moves forward to the role layer and
from there to the situation layer. When the nodes in the situation layer are activated, the
network is actually outputting aspects of the real world situation that corresponds to the
role being played by the current word. In other words, the listener is imagining an aspect
of situation of the current heard/read word of the sentence in the real world.

4.3.6 Results of the experiment and the analysis of the results

The network was trained2 and then tested3 using the corpora described in section 4.2. First,
the input layer, the SC layer and the SRN were isolated and trained for 25 number of epochs
through the training set. This might be justified by assuming different learning rates for
different regions of the brain. Then, the whole network was trained for 270 more epochs.

2Function train implements the training process of the network.
3The network is tested using function test.
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Finally, the network was tested using the testing corpus.

Altogether around 1008 words’ roles and situations among 15,596 were not outputted
correctly. This means that around 6.26% of roles and situation vectors were not outputted
correctly. Since none of the two errors were in the same sentence, around 33.6% of sentences
had a mistake in them. Several experiments were run and they had almost the same result.
Also, using more epochs of training was of no help for decreasing the errors. Due to the
small number of the thematic roles, the testing results may not be acceptable.

To see where the problem comes from, the context layer of SRN for all the positions in
all the words were clustered. The result of clustering was acceptable for all the sentences,
whether erroneous ones or not; meaning that words and their preceding words that had
identical semantic types were grouped together and differently from other words.

More scrutinizing on the experiments led to the idea that the problem may have arisen
due to the large size of the BPN’s hidden layer. The BPN is too big, and if its hidden layer
were to be directly decreased in size, it would not function due to its large input layer. There-
fore, in the modified version a method is used to decrease the size of the input of the BPN
and thus its hidden layer. Details on the numerical parameters could be found in section 4.6.

4.4 The enhanced version

One solution to decrease both the size of the input layer and also the hidden layer of the
BPN is to find a way to decrease the size of the hidden layer of SRN and thus the memory
layer. But according to the experiments, the size of the hidden layer of the SRN cannot
be decreased, or the SRN will not function well. On the other hand, one could think of
compressing the content of this layer into a smaller layer. An auto-encoder (AE) is employed
for this purpose. The architecture and the information flow of AE was previously explained
in section 3.5.

By employing an AE to compress the hidden layer of SRN, the architecture of the pre-
viously designed network will be modified as follows. The hidden layer of SRN will function
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as the input layer of AE, which in turn propagates activation to the hidden layer of AE. The
hidden layer of AE is connected to its output layer, as previously described in section 3.5.
Also, the hidden layer of AE is connected to the memory layer, and together with the mem-
ory layer, it will function as the input layer of BPN. Therefore, the links from the hidden
layer of SRN to the memory layer and to the hidden layer of BPN will all disappear. See
figure 4.4.

Figure 4.4: The architecture of the modified designed network and how the components are
connected together when AE is included.

The information flow in this modified version is as follows. At the end of the first pass,
instead of copying the content of the hidden layer of SRN to the memory layer, the content
of the hidden layer of SRN is inputted to the AE and after training the AE sufficiently,
the content of the hidden layer of AE is then copied into the memory layer. This is done,
because the hidden layer of AE after training, will contain a compressed equivalent of the
content of the SRN’s hidden layer.

In the second pass, instead of presenting the hidden layer of the SRN as the input to
the BPN, the hidden layer of SRN is presented as the input to AE and as the information
flows to the hidden layer of AE, the content of the hidden layer of AE together with the
memory layer will provide the input to the BPN.
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4.4.1 Results of the experiment and the analysis of the results

The enhanced network was trained and then tested using the corpora described in sec-
tion 4.2. As in the initial version, first the input layer, the SC layer and the SRN were
isolated and trained for 25 epochs. Then, the training continued with that part of the net-
work attached to AE for 175 epochs. Finally, all the network was under training for 300
more epochs.

The testing phase revealed that among the 15,596 word/role pairs, 263 predicted roles
were not correct. This means that 1.69% of the outputted role/situations were not correct.
These incorrect outputs were always for the last word of the sentence, and since there were
3,000 sentences in total, 8.77% of sentences had an incorrect output for their last word.
For the rest of the sentences, which is 91.23% of the whole testing corpus, the roles and
situations for each of the words in each sentence were identified correctly.

The pattern of errors were as follows. The recipient role was sometimes identified
as the source role, and the source role was identified as the recipient role. 23% of all
recipient roles were mistakenly identified as the source role and 64.67% of the source
roles were mistakenly identified as the recipient role. All the other roles/situations were
identified correctly. This means that all the agent, patient, location, instrument, coagent,
and beneficiary roles, as well as 77% of all the recipient roles and 35.33% of all the source
roles were identified correctly.

As the layers of the network were scrutinized, it was found out that a possible explana-
tion for the incorrect identifications is that the content of the hidden layer of SRN for the
confused roles are very similar. The syntactic and semantic structure of the troublesome
sentences are identical except for the preposition. Therefore, the similarity in their content
layer of the SRN is inevitable.4 Fortunately, the erroneous role assignment will vanish upon
a further refinement which is described presently.

4For example, for the two sentences Men sell cookies to boys, and Women buy spoons to girls the semantic-
syntactic structure would be very similar.
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The network was trained and tested for couple of times and around the same number of
errors happened each time. The errors always involved the last word of the sentence, but
the incorrectly identified roles varied from one experiment to another.

One may mistakenly assume that the better performance of this version of the network
compared to the initial version is due to the greater number of epochs employed in this
version. But, using more epochs did not improve the performance of the initial version.
Besides, the greater number of epochs was used to train the AE, and not the BPN which
is the troublesome part of the network. Moreover, it is worth noting that the sizes of the
layers of BPN in the modified version were dramatically decreased, and this means that the
training time for each epoch was also dramatically decreased.

Finally, please note that according to the experiments, the network’s ability in identi-
fying the right role was independent of the word itself, meaning that it would output the
same percent of errors for words in novel positions as the ones in the already encountered
positions. This means that the network exhibits strong systematicity.

4.5 Second approach

Since, the human brain could function better than the already described systems, further
refinements have been adopted to improve the accuracy of the system just described, and
to make the training phase shorter. Please note that the following approach is more of a
theoretical value to support the idea behind the system design. The new system may be a
too simplified version of the human learning, and may or may not be biologically plausible.
The newly designed network is explained presently.

As discussed in section 4.3.2, there is a functional relationship between the semantic-
syntactic structure of the whole sentence, together with the semantic-syntactic structure of
the part of the sentence up to and including the current word, and the situation/role of the
current word. The function was previously defined in (4.1).
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In both of the preceding approaches, the input layer of the BPN was either the hidden
layer of the SRN or its compressed form, together with the memory layer, which reflected
either the hidden layer of the SRN or its compressed form for the whole sentence. The
output layer of the BPN was also the role layer. This means that the purpose of BPN was
to learn the function f .

4.5.1 The architecture of the refined network

In the following refinement, instead of employing a backpropagation network to learn this
function, a lookup table, henceforth referred to as LUT, is used to memorize this function,
and the BPN is eliminated. Since the LUT does not necessarily need data compression,
the AE is also removed. Therefore, the architecture of the overall network is substantially
simplified.

The input data value of each entry in the LUT, which will correspond to the input of
the function f , will be the content of the hidden layer of the SRN, and also the content of
the memory layer. The output value of the entry in LUT will be the current content of the
role layer.

As explained in previous sections, the role vector is ready when the situation layer’s
activation flows to the role layer and the competition in the role layer is finished. Therefore,
the situation layer and the role layer remained unchanged.

All in all, the neural network will consist of the input layer of the network, the SRN,
the LUT, the role layer and the situation layer. The architecture of the links between these
layers will be identical to the first approach.

4.5.2 The flow of information

As in the previous approaches, the training corpus designed in section 4.2 is employed to
train and test the network. The SRN is isolated and trained for 30 epochs, and then in a
single epoch through the training corpus, the LUT is created.
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In the LUT creation process, for every word in each given training sentence, the infor-
mation flows as in the first approach in two passes, and the vector (hidden layer of SRN,
memory layer) is constructed when its two parts are ready in the network. This vector
is actually the concatenation of its two parts. Then, a new entry for every newly encoun-
tered (hidden layer of SRN, memory layer) vector is created. This new entry also saves the
output of the function as its output field in the entry, which is the corresponding role vector.

The process of adding a new entry for the (hidden layer of SRN, memory layer) vector
for each word is as follows 5. For each word in each sentence, the LUT is linearly searched,
and the (hidden layer of SRN, memory layer) vector of the word is compared with each
input entry thus far stored in the LUT. The comparison is made by computing the normal-
ized dot product of the two vectors. To check if two vectors are close enough, the result of
the normalized dot product is compared with a certain threshold. This threshold, which is
0.999, is set experimentally.

If the result of the comparison for any of the entries indicates that the two vectors are
close enough, it means that the (hidden layer of SRN, memory layer) vector is almost
identical to one of the entries in the LUT. Therefore, the search is terminated and no new
entry is added to the LUT. If none of the entries in the LUT is close enough to the (hidden
layer of SRN, memory layer) vector, then this vector together with its corresponding out-
put field is added to the end of the LUT. Finally, as the result of going through the training
corpus for one time, around 6,500 entries were saved in the LUT.

In the testing phase, for each word in a sentence, again the information flows in the
network in two passes. When the (hidden layer of SRN, memory layer) vector has been
produced for a word, the LUT is consulted. The process is as follows 6. The LUT is searched
linearly and the entry with the greatest normalized dot product of its input field with the
(hidden layer of SRN, memory layer) vector of that word is found, and its output field is
returned as the role vector of the current word in the testing corpus. As the role vector is
extracted, the role layer is updated, and the activation flows from there to the situation layer.

5Adding a new entry vector to the LUT is implemented using function findSentenceWordType
6Function findClosestInTable searches the LUT for the closest match of the input vector.
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The reasoning behind this process is as follows. The word in the training corpus corre-
sponding to the selected entry of the LUT, supposedly had the most similar or even identical
semantic-syntactic structure of the sentence, together with semantic-syntactic position of
the word and its preceding words, to the current word in the testing corpus. Therefore, its
corresponding output entry, which was the role vector of the word in the training corpus, is
output as the role vector of the current word in the testing phase.

4.5.3 The results of the experiment

During the testing phase, all the words’ role/situation in all sentences were identified cor-
rectly. So, the accuracy of this method is 100%, which is a notable advance. Moreover, the
network exhibits strong systematicity, which is one of the major goals of this thesis.

The result of the refined network demonstrates that the overall logic of using the compet-
itive learning together with the SRN and memory layer, was entirely correct. The previous
difficulties arose from the vast search space created by the current application of the back-
propagation algorithm, given the size of the input vectors within the BPN.

4.6 Numerical and algorithmic details of the designed net-
works

In the following subsections the numerical and algorithmic details of each part of the de-
signed neural network in all the versions is elaborated.

4.6.1 The Input Layer

The input layer is the layer through which the feature vector of each word in a sentence is
presentend to the network. Therefore, the size of this layer equals to the size of the feature
vector size of the words, which is 69.
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4.6.2 The two competitive layers: the Semantic Classifier Layer and the
Role Layer

There are two WTA competitive cluster layers in the network: the SC layer and the Role
layer. The structure of these two layers and the links leading to them are identical in all the
designed versions 7. These layers are similar to the region A of HL1 in Hadley et al. [2001],
which is previously described in section 3.8.

The two competitive layers have similar structures. They both have 30 nodes. The
parameter c, which is used in formula (3.3) to select the winning node, is set to 0.5 in the
SC layer and 0.6 in the Role layer.

Initially, links leading to these two competitive layers take a random weight value be-
tween 0 and +1, such that the sum of weights leading to each node in the layer equals
to one.8 During the training phase, the weights of the links leading to these two layers
are modified using formula (3.4). The learning rate or the η0 parameter in this formula is
set to 0.5 in the SC layer, and 0.1 in the role layer. These values are selected experimentally.

4.6.3 The Simple Recurrent Network

The SRN employed as a subnetwork in all these neural networks is identical to the SRN
introduced in Elman [1990]. This network is previously discussed in section 3.6. The input,
the hidden/context, and the output layer have 30, 200 and 30 number of nodes, respectively.9

Initially, the links between the layers of the SRN take a random value between -0.1 and
+0.1. Then the backpropagation learning algorithm is used for training the network. The
backpropagation learning parameter is initially set to 0.1 and gradually drops to 0.001 after
a certain number of epochs. Finally, please note that a normal Sigmoid function is used as
the threshold function of the backpropagation algorithm.

7The training algorithm for the links leading to all competitive layers is implemented in the function
trainCL.

8All the links and also nodes are initialized using function initialize.
9The training algorithm for the links in SRN is implemented in the function trainSRN.
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4.6.4 The Auto-encoder Network

The AE that is only used in the enhanced version of the first approach has three layers: the
input layer, the hidden layer and the output layer. The design of this network is previously
described in section 3.5. The input layer of the AE is the hidden layer of the SRN, so the
input layer has 200 nodes. The hidden layer of the AE has 35 nodes. The output layer,
which is identical to the input layer, also has 200 nodes. These three layers, with the links
between them, comprise the AE.10

Initially, the links between the layers of AE take a random value between -0.1 and
+0.1.Then, the backpropagation learning algorithm with learning parameter set to 0.1 is
employed to train the network. This parameter does not change during the training phase.
It is selected experimentally. The normal Sigmoid function is also used as the threshold
function.

4.6.5 The Memory Layer

In the very first approach, the memory layer has 200 nodes. The links leading to this layer
only copy the content of the hidden layer. Obviously, no training or modification takes place
on these links. In the modified version, the links copy the content of the hidden layer of
AE. Therefore, in this version the memory layer has 35 nodes.

4.6.6 The Backpropagation Network

The BPN has three layers. The input layer, the hidden layer and the output layer. The
input layer of the BPN consists of the concatenation of the memory layer and the hidden
layer of the SRN, or its compressed form. These two layers are considered as a single layer.
In the initial version, with no AE included, the input layer would have 400 nodes and the
hidden layer has 1,000 nodes. These sizes are selected experimentally, and they are the ones

10Links in the AE are trained using function trainAE.
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for which the network apparently performs best. 11

In the modified version, with AE also included, the input layer’s size would be 75 and
the hidden layer’s size is 60. The output layer, which is the role layer, has 30 nodes in both
versions. These three layers, with the links between them, construct the BPN.

Initially, the links between the layers of BPN take a random value between -0.1 and
+0.1.The backpropagation learning parameter is initially set to 0.1 and gradually drops to
0.001 after a certain number of epochs. As in the SRN and AE, the normal Sigmoid function
is used as the threshold function.

4.6.7 The Situation Layer

During the training phase, the situation layer acts as one of the input layers, and during
the testing phase, it acts as the output layer of the network. This layer has 40 nodes, which
is the size of a situation vector. There are links going from this layer to the role layer, and
also links from the role layer to this layer12. The training and modification of links leading
to the role layer has been previously discussed.

Intially, the weight of the links leading from the role layer to the situation layer are all
set to 0. For training these links, a very simple Hebbian algorithm is used. In this algorithm,
for each word, the weights of the links coming from the winner node of the role layer to the
active nodes of the situation layer are incremented by a constant size. The constant size is
set to 0.025.

11The training algorithm for the links in BPN is implemented in the function trainBL, where BL stands
for back lines.

12The function trainOutputLayer trains the links, which go from the role layer to the situation layer.
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Conclusion and Future Directions

5.1 Summary and Conclusion

In the previous chapter, connectionist models that can learn, and later recognize the the-
matic roles of words in sentences were presented. The range of sentence types covered a
wide variety of forms, including rather long sentences with active or passive voice, sentences
with more than one verb, containing relative clauses, and sentences containing prepositional
phrases, among others.

To deal with the task of identifying roles in sentences, two connectionist approaches
were taken. In both approaches, the task was performed by assuming that the learner can
perceive aspects of the real world situation corresponding to each given sentence. Mean-
ingful feature vectors were employed to present the words of the sentence and also the
aspects of the real world situation for each of the words presented to the network. Using
distributed representation and meaningful feature vectors was one significant property of
the presented connectionist models. This method helps the network to generalize across
words, and achieve strong systematicity.

Both approaches employed competitive layers, together with an SRN. The task of one
of the competitive layers was to categorize the words according to their semantics. This
categorization later leads to generalization among words with close semantics. The role of
the SRN was to derive the syntactic-semantic pattern underlying each sentence or a part
of the sentence. The two approaches shared another competitive layer as well. The layer

60
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categorized aspects of the world situation into thematic roles.

The difference between the two approaches concerned how each learned the relationship
between the thematic role of a given word in a given sentence with the information avail-
able in other parts of the network. To learn the foregoing relationship, the first approach
employed a backpropagation network, whereas the second one used a lookup table.

The models were trained using a set of meaningful sentences, and then tested using a
different set of sentences. The first approach attained an acceptable result in identifying the
thematic roles, whereas the second one achieved a perfect result.

The training and testing corpora were designed in a way that the models could be tested
for strong systematicity. No exhaustive training was used, because the network was trained
using an impoverished training set. During the training, for each thematic role some nouns
never appeared in that thematic role. This restriction was later relaxed during the test-
ing phase. The connectionist models could manage to exhibit strong systematicity, defined
by Hadley [1994]. The model was able to perform this without any previous syntactic
knowledge or syntactic parsing of a sentence. From these results, one can conclude that it
is possible to design and train a neural network in a fashion such that it can exhibit strong
systematicity in a manner that differs from what was proven by Hadley and Hayward [1997],
and Hadley et al. [2001]. This ability of the network arises not only from the design of the
network, but also from the data it receives as the input, which encode aspects of the seman-
tics of the words of the sentences and of the real world situation.

As discussed in section 1.3, some proposed connectionist models in the field of language
learning need the thematic role of words of a sentence to be known in advance. In particular,
one possible model for representing a sentence meaning is to use HRR. The role layer in the
presented connectionist model could be presented to these models in order to provide the
role vectors.

Finally, it could be argued that humans learn the thematic roles of words in a sentence,
as an emergent property of learning the relationship between the words/sentences and the



CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS 62

real world situations. However, please note that, we do not claim that the presented connec-
tionist model is the human learning mechanism for language acquisition. Still, we believe it
represents steps towards a cognitively and biologically plausible connectionist model, similar
to aspects of human language learning mechanisms.

5.2 Future Directions

The current networks have only been exposed to syntactically and semantically correct sen-
tences. Future experiments can be done to verify if the models can distinguish between
correct and incorrect sentences and still identify the roles correctly. One approach would be
to create a training and a testing corpus which contain some semantically and syntactically
incorrect sentences. Some sentences with semantic anomaly could refer to no acceptable
world situation, and other sentences with syntactic anomaly could refer to the world situa-
tion which the corrected sentence would have referred to, if possible. Minor modifications
in the design of the networks might be needed to deal with these cases.

The training and the testing set could be extended in other fashions as well. The vo-
cabulary could be easily expanded. As long as the SC layer can categorize the words in
acceptable classes, the network and the number of training epochs would possibly need no
modification to deal with the extended vocabulary. Other experiments could also be de-
signed to verify if the network can deal with more types of sentences. New thematic roles
and new sentence structures could be introduced to the training and testing corpora. In-
cluding negated sentences could be considered as well.

Another future direction would be to modify the situation layer in a way that renders it
closer to the real world situations to which a human learner is exposed. For this purpose,
the situation layer could be altered in the following way. Instead of presenting one situation
for each word of a sentence, the whole situation corresponding the whole sentence could be
presented as the input for all the words in that sentence. Then, the network would also
need to learn to distinguish between parts of the situation layer. It would also need to
learn the association between the input word and a part of the situation layer and ignore
the rest of that layer. The process of learning this association, would require learning the
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statistical correlation between the input words and parts of the situation layer. This could
be accomplished by adapting the method presented in Hadley and Hayward [1997].

One drawback of the current models concerns the SRN. To learn different sentence struc-
tures, the SRN needs a relatively large hidden layer of size 200. On the other hand, due to
the sentence structures, the information vectors stored in the SRN hidden layer for different
sentences are rather close. These two characteristics make the further learning between this
layer and the role layer rather difficult. One future enhancement would be to replace the
SRN with another sub-system. The new sub-system must be able to encode the sentence
structures in vectors, so that the vectors can be later passed to other parts of the whole
network.

In our model, the SRN was used to encode complete and incomplete sentence types. One
possible alternative system for the SRN could be a model that employs the idea of holo-
graphic reduced representation, Plate [1995]. As mentioned earlier in section 1.4, HRR can
be used to store and represent data with complex compositional structures. Due to the type
of data that is to be stored, the following approach might be used to substitute for the SRN.

In the current model, when the activation of the nodes in the SC layer are settled, one
node is selected as the winner. Therefore, the content of this layer would be a vector, where
the activation of all remaining nodes is zero, but the activation of the winner node is +1.
The identity of the winner node can be used as the seed to generate another random vector.

Suppose sci represents the random vector generated by the winner’s identity number
within the SC layer for word i in a given sentence. To encode and store the sentence
structure up to and including the word i in the given sentence, a neural network must be
designed and implemented that computes and stores results using the following recursive
equation, Plate [1995]:

sc1 + (sc1 ∗ sc2) + . . .+ (sc1 ∗ sc2 ∗ . . . ∗ sci), (5.1)

where ∗ represents the circular convolution operation. This HRR approach is introduced
in Plate [1995], as a representational method that can encode the order of a sequence of
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items.

The encoding that results from using this method would need to be stored in a specific
layer of the newly designed network. The represented data in the newly designed network
would flow to the rest of the network, as did the hidden layer of the SRN. Consequently,
the rest of the network would need no modification.

Finally, it must be remembered that the designed and implemented models, as well as
the sketch of the suggested models for future work, are not claimed to be the human learning
mechanism for language acquisition. They are intended as steps towards cognitively and
biologically plausible connectionist models that might be similar to parts of the language
learning mechanisms in the human brain.
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Appendix A

Assignment of features to words

number of words: 33;
number of features: 69;
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women 1 1 1 1 110 100100 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
boys 1 1 1 1 110 101000 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
girls 1 1 1 1 110 101100 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
men 1 1 1 1 110 100000 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
cats 1 1 1 1 110 010010 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
mice 1 1 1 1 110 010000 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
birds 1 1 1 1 110 010001 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
houses 1 1 1 1 001 000000 101 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
parks 1 1 1 1 001 000000 111 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
streets 1 1 1 1 001 000000 110 0 00000 000 0 0 0 0 0000000000000000000000000000000000000000
spoons 1 1 1 1 001 000000 000 0 11010 000 0 0 0 0 0000000000000000000000000000000000000000
coins 1 1 1 1 001 000000 000 0 00001 000 0 0 0 0 0000000000000000000000000000000000000000
cookies1 1 1 1 001 000000 000 0 00110 000 0 0 0 0 0000000000000000000000000000000000000000
hands 1 1 1 1 001 000000 000 1 01000 000 0 0 0 0 0000000000000000000000000000000000000000
love 0 0 0 0 000 000000 000 0 00000 111 0 0 0 0 0111000000000000000000000000000000000000
hate 0 0 0 0 000 000000 000 0 00000 110 0 0 0 0 0111000000000000000000000000000000000000
eat 0 0 0 0 000 000000 000 0 00000 101 0 0 0 0 0111000000000000000000000000000000000000
shine 0 0 0 0 000 000000 000 0 00000 100 1 0 0 0 0111000000000000000000000000000000000000
buy 0 0 0 0 000 000000 000 0 00000 100 0 1 0 1 1111000000000000000000000000000000000000
borrow0 0 0 0 000 000000 000 0 00000 100 0 1 0 0 1111000000000000000000000000000000000000
get 0 0 0 0 000 000000 000 0 00000 100 0 1 0 0 0111000000000000000000000000000000000000
give 0 0 0 0 000 000000 000 0 00000 100 0 0 1 0 0111000000000000000000000000000000000000
sell 0 0 0 0 000 000000 000 0 00000 100 0 0 1 1 1111000000000000000000000000000000000000
lend 0 0 0 0 000 000000 000 0 00000 100 0 0 1 0 1111000000000000000000000000000000000000
with 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000111100000000000000000000000000000000
in 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000011110000000000000000000000000000
to 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000000000000000111100000000
from 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000000000000000000011110000
for 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000000000000000000000001111
that 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000001111000000000000000000000000
are 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000000011110000000000000000
by 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000000000001111000000000000
. 0 0 0 0 000 000000 000 0 00000 000 0 0 0 0 0000000000000000111100000000000000000000
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Thematic Role Vectors

agent 1111000000000000000000000000000000000000
patient 0000111100000000000000000000000000000000
action 0000000011110000000000000000000000000000
nothing 0000000000001111000000000000000000000000
location 0000000000000000111100000000000000000000
instrument0000000000000000000011110000000000000000
coagent 0000000000000000000000001111000000000000
beneficiary0000000000000000000000000000111100000000
source 0000000000000000000000000000000011110000
recipient 0000000000000000000000000000000000001111
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Appendix D

Words and Roles

Role Excluded Words during Training Included Words during Training
Agent/Co-agent streets, boys, cats men , women , girls , birds ,

mice , parks , houses , spoons ,
coins

Patient women, birds, houses, spoons men , girls , boys , mice , cats ,
parks , streets , spoons , cookies ,
hands , coins

Location parks houses , streets
Instrument coins spoons , hands
Source houses, mice men , boys , girls , cats , birds ,

parks , streets , women
Beneficiary girls, birds men , boys , mice , cats , women
Recipient women, cats men , boys , girls , birds , mice
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Appendix E

The Programming Code for the
First Approach

Matlab Code

1 f u n c t i o n [ net ] = main ( )
2 %t h i s i s the main f u n c t i o n o f the program
3

4 c l e a r a l l
5

6 %tStartMain keeps the s t a r t time o f the running program
7 % f o r l og
8 tStartMain = t i c ;
9

10 net . numInputs = 2 ; %num of inputs
11 net . numLayers = 9 ; %num of non−i /o l a y e r s
12 net . numOfEpochs = 500 ;%t o t a l number o f epochs
13 net . numOfInitEpochs = 25 ;%num of epochs f o r t r a i n i n g SRN
14 net . numOfMidEpochs = 200 ;%num of epochs f o r t r a i n i n g SRN + AE ( not BPN)
15

16 % Semantic C l a s s i f i e r Layer
17 net . l a y e r {1} . c = 0 . 5 ;
18 net . l a y e r {1} . l ea rn ingRate = 0 . 5 ;
19 net . l a y e r {1} . s i z e = 30 ;
20 net . l a y e r {1} . f i r s t T i m e = 1 ;%i s i n i t i a l l y s e t to 1 , and then to 0
21

22 %SRN
23 % Hidden Layer o f SRN
24 net . l a y e r {2} . s i z e = 200 ;
25 net . l a y e r {2} . alpha = 0 . 1 ;%alpha = l e a r n i n g r a t e
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26

27 % Context Layer o f SRN
28 net . l a y e r {3} . s i z e = net . l a y e r {2} . s i z e ;
29 net . l a y e r {3} . alpha = 0 . 1 ;
30

31 %SRN Output
32 net . l a y e r {4} . s i z e = net . l a y e r {1} . s i z e ;
33 net . l a y e r {4} . alpha = 0 . 1 ;
34

35 %BPN
36 %Hidden Le f t ( o f BPN)
37 net . l a y e r {6} . s i z e = 60 ;
38 net . l a y e r {6} . alpha = net . l a y e r {2} . alpha ;
39

40 % Role Layer − output o f BPN
41 net . l a y e r {7} . s i z e = 30 ;
42 net . l a y e r {7} . c = 0 . 6 ;
43 net . l a y e r {7} . l ea rn ingRate = 0 . 1 ;
44 net . l a y e r {7} . f i r s t T i m e = 1 ;
45

46 %AE
47 % AE hidden Layer
48 net . l a y e r {8} . s i z e = 35 ;
49 net . l a y e r {8} . alpha = 0 . 0 1 ;
50

51 %AE output l a y e r
52 net . l a y e r {9} . s i z e = net . l a y e r {2} . s i z e ;
53 net . l a y e r {9} . alpha = net . l a y e r {8} . alpha ;
54

55 %Memory Layer
56 net . l a y e r {5} . s i z e = net . l a y e r {8} . s i z e ;
57 net . l a y e r {5} . alpha = 0 . 1 ;
58

59

60 %prepare the t r a i n i n g / t e s t i n g corpora ( v e c t o r s )
61 [ t ra in ingVector , ro l eVecto r s , t e s tVector , ro l eTes tVector ] = prepareInputOutput ( ) ;
62 d i s p l a y ( ’ Input Output Ready . ’ ) ;
63

64 % s e t the s i z e o f the input l a y e r o f the network accord ing to the input
65 % f i l e s
66 net . input {1} . s i z e = s i z e ( t ra in ingVector , 3) ;
67 net . input {2} . s i z e = s i z e ( ro l eVecto r s , 3) ;
68 %s e t the hebbian l e a r n i n g r a t e
69 net . input {2} . increment = 0 . 0 2 5 ;
70

71 % i n i t i a l i z e the network
72 net = i n i t i a l i z e ( net ) ;
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73 d i s p l a y ( ’ Network I n i t i a l i z e d ’ ) ;
74 %t r a i n the network
75 net = t r a i n ( net , t ra in ingVector , r o l e V e c t o r s ) ;
76 d i s p l a y ( ’ Network Trained ’ ) ;
77

78

79 %%C l u s t e r i n g the contents o f l a y e r s f o r debugging
80

81 %c l u s t e r i n g accord ing to the sentence type in memory l a y e r
82 groups = l i n k a g e ( net . contextLayerSentence ) ;
83 net . c l u s t e r s S e n t = c l u s t e r ( groups , 50) ;
84

85 %c l u s t e r i n g accord ing to words o f each sentence ( context l a y e r o f SRN)
86 groups = l i n k a g e ( net . contextLayerWords ) ;
87 c lustersWord = c l u s t e r ( groups , 100) ;
88 net . c lustersWord = makeItReadable ( clustersWord , net . aTrain ) ;
89

90 %c l u s t e r i n g the hidden l a y e r o f BPN ( corresponds to r o l e s )
91 groups = l i n k a g e ( net . t r a i n S i x ) ;
92 net . c l u s t e r R o l e = c l u s t e r ( groups , 10) ;
93

94

95 %t e s t the network
96 net = t e s t ( net , t e s t V e c t o r ) ;
97 d i s p l a y ( ’ Network Tested ’ ) ;
98

99 %Ver i fy i f the outputs o f the t e s t i n g phase i s c o r r e c t
100 net = j u s t i f y ( net , ro l eTestVector , t e s t V e c t o r ) ;
101 d i s p l a y ( ’ Resu l t s V e r i f i e d . ’ ) ;
102

103 %to keep the running time o f the program
104 %f o r log
105 tElapsed = toc ( tStartMain ) ;
106 minutes = tElapsed / 60
107

108 beep
109

110 end
111 %%%
112 f u n c t i o n [ t ra in ingVector , ro l eVecto r s , te s tVector , ro l eTes tVector ] =

prepareInputOutput ( )
113 %PREPAREINPUTOUTPUT prepares the vec to r input o f the network
114 %This f u n c t i o n f i r s t reads the word/ r o l e v e c t o r s and then reads the
115 %t r a i n / t e s t corpora and a s s i g n s a vec to r to each word/ r o l e in the corpora .
116

117 % e x t r a c t the r o l e /word v e c t o r s
118 % word . txt conta in s the vocabulary l i s t and v e c t o r s
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119 wordList = readTrainingWords ( ’ words . txt ’ ) ;
120 % r o l e . txt conta in s r o l e s l i s t and vec to r
121 r o l e L i s t = readTrainingWords ( ’ r o l e s . txt ’ ) ;
122

123 % prepare t r a i n i n g sentence v e c t o r s
124 % t r a i n S e t . txt conta in s t r a i n i n g s e n t e n c e s
125 t r a i n S e t = readSentences ( ’ t r a i n S e n t . txt ’ ) ;
126 % parse s e n t e n c e s i n t o v e c t o r s
127 t r a i n i n g V e c t o r = parseSentences ( t ra inSe t , wordList ) ;
128

129 % prepare t r a i n i n g r o l e v e c t o r s
130 % t r a i n R o l e . txt conta in s r o l e s cor re spond ing to s e n t e n c e s in the t r a i n i n g corpus
131 r o l e S e t = readSentences ( ’ t r a i n R o l e . txt ’ ) ;
132 % parse s e n t e n c e s i n t o v e c t o r s
133 r o l e V e c t o r s = parseSentences ( r o l e S e t , r o l e L i s t ) ;
134

135 % prepare t e s t i n g sentence v e c t o r s
136 % t e s t S e n t . txt conta in s t e s t i n g s e n t e n c e s
137 t e s t S e t = readSentences ( ’ t e s t S e n t . txt ’ ) ;
138 % parse s e n t e n c e s i n t o v e c t o r s
139 t e s t V e c t o r = parseSentences ( t e s t S e t , wordList ) ;
140

141 % prepare t e s t i n g r o l e v e c t o r s
142 % t e s t R o l e . txt conta in s r o l e s cor re spond ing to s e n t e n c e s in the t e s t i n g corpus
143 r o l e T e s t = readSentences ( ’ t e s t R o l e . txt ’ ) ;
144 % parse s e n t e n c e s i n t o v e c t o r s
145 ro l eTes tVector = parseSentences ( ro l eTest , r o l e L i s t ) ;
146

147 end
148 %%%
149 f u n c t i o n words = readTrainingWords ( f i leName )
150 %READTRAINING reads the word/ r o l e l i s t and t h e i r v e c t o r s
151 % outputs a s t r u c t conta in ing word/ r o l e and type and vec to r
152 % Note : type i s not used in t h i s program
153

154

155 f i d = fopen ( f i leName ) ;
156

157 %read f i r s t l i n e
158 l i n e = f g e t s ( f i d ) ;
159 numOfLines = 1 ;
160 whi le i s c h a r ( l i n e )% whi le the input f i l e i s not yet f i n i s h e d
161 % e x t r a c t word , then type , then vec to r from the l i n e
162 [ word , l i n e ] = s t r t o k ( l i n e ) ;
163 [ type , l i n e ] = s t r t o k ( l i n e ) ;
164 % c a s t s t r i n g −vec to r to numerica l vec to r
165 vec to r = str2num ( l i n e ) ;
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166 % c o n s t r u c t the output s t r u c t
167 words{numOfLines} = s t r u c t ( ’ word ’ , word , ’ type ’ , type , ’ vec to r ’ , vec to r ) ;
168

169 %read next l i n e
170 numOfLines = numOfLines + 1 ;
171 l i n e = f g e t s ( f i d ) ;
172 end
173

174

175 f c l o s e ( f i d ) ; % c l o s e the f i l e
176

177 end
178

179 end
180 %%%
181 f u n c t i o n s e n t e n c e s = readSentences ( f i leName )
182 %READSENTENCES reads and ouputs s e n t e n c e s from a f i l e ( f i leName )
183 % each l i n e i s a sentence
184

185 f i d = fopen ( f i leName ) ;%open the f i l e
186

187 % read f i r s t l i n e
188 numOfLines = 1 ;
189 l i n e = f g e t l ( f i d ) ;
190 whi le i s c h a r ( l i n e )% whi le the input f i l e i s not yet f i n i s h e d
191 % t h i s l i n e i s the cur rent sentence
192 s e n t e n c e s {numOfLines} = l i n e ;
193 %read next l i n e
194 numOfLines = numOfLines + 1 ;
195 l i n e = f g e t l ( f i d ) ;
196 end
197

198 f c l o s e ( f i d ) ; % c l o s e the f i l e
199

200 end
201 %%%
202 f u n c t i o n [ words ] = parseSentences ( sentences , wordList )
203 %PARSESENTENCES reads ∗ s e n t e n c e s ∗ and by the use o f ∗ wordList ∗
204 % parse s them i n t o ∗words ∗ .
205

206 %s i z e S i s the number o f s e n t e n c e s
207 [dummy s i z e S ] = s i z e ( s e n t e n c e s ) ;
208

209 f o r sentenceIndex= 1 : s i z e S %f o r a l l s e n t e n c e s
210 % r e s t i s f i r s t s e t to the whole sentence ( sentence ( sentenceIndex ) )
211 % and then the r e s t o f the sentence
212 r e s t = s e n t e n c e s ( sentenceIndex ) ;
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213 thisWord = r e s t ;
214 %index i s the word index in cur rent sentence
215 index = 1 ;
216 whi le ~strcmp ( ’ . ’ , thisWord )% parse each sentence , u n t i l pe r iod i s encountered
217 % thisWord i s the cur rent word o f the sentence
218 [ thisWord r e s t ] = s t r t o k ( r e s t ) ;
219 % f i n d and s e t the cor re spond ing vec to r ( to thisWord in sentence ( i ) )
220 words ( sentenceIndex , index , : ) = findWordsVector ( thisWord , wordList ) ;
221 index = index + 1 ;
222 end
223 %next sentence index
224 end
225

226 end
227

228 f u n c t i o n vec to r = findWordsVector ( thisWord , wordList )
229 % findWordsVector l o o k s f o r thisWord in wordList
230 % and output i t s cor re spond ing vec to r .
231

232 %sizeW i s the number o f words in wordList
233 [dummy sizeW ] = s i z e ( wordList ) ;
234 f o r i = 1 : sizeW %f o r a l l the words in the wordList
235 % i f thisWord i s the cur rent word o f the l i s t
236 % vecto r ( output ) w i l l be the cor re spond ing vec to r o f thisWord
237 %e l s e cont inue the search through the l i s t
238 i f ( strcmp ( thisWord , wordList { i } . word ) )
239 vec to r = wordList { i } . vec to r ;
240 r e turn
241 end
242 end
243 %output thisWord i f i t i s not in the l i s t (ERROR)
244 thisWord
245 d i s p l a y ( ’ parseSentence : word not found . ’ ) ;
246 end
247 %%%
248 f u n c t i o n net = i n i t i a l i z e ( net )
249 %INITIALIZE i n i t i a l i z e s the weights o f the l i n k s
250 % and the i n i t i a l i z a t i o n va lue s o f a c t i v a t i o n o f nodes in l a y e r s .
251

252 % i n i t i a l i z e weights from input−word to Semantic C l a s s i f i e r l a y e r .
253 net . l a y e r {1} .IW = i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s ( net . input {1} . s i z e , net . l a y e r {1} .

s i z e ) ;
254

255 % i n i t i a l i z e weights o f SRN
256 net . l a y e r {2} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {1} . s i z e , net . l a y e r {2} . s i z e ) ;
257 net . l a y e r {3} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {2} . s i z e , net . l a y e r {3} . s i z e ) ;
258 net . l a y e r {4} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {3} . s i z e , net . l a y e r {4} . s i z e ) ;
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259

260 % i n i t i a l i z e weights o f BPN (The same va lues as in SRN)
261 net . l a y e r {5} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {8} . s i z e + net . l a y e r {5} . s i z e ,

net . l a y e r {6} . s i z e ) ;
262 net . l a y e r {6} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {6} . s i z e , net . l a y e r {7} . s i z e ) ;
263

264 %i n i t i a l i z e weights from input−r o l e to Role Layer
265 net . l a y e r {7} .IW = i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s ( net . input {2} . s i z e , net . l a y e r {7} .

s i z e ) ;
266 %i n i t i a l i z e weights from ROLE l a y e r to input−r o l e ( Hebbian Links thus 0)
267 net . input {2} .IW = z e r o s ( net . l a y e r {7} . s i z e , net . input {2} . s i z e ) ;
268

269 % i n i t i a l i z e weights o f AE
270 net . l a y e r {8} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {2} . s i z e , net . l a y e r {8} . s i z e ) ;
271 net . l a y e r {9} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {8} . s i z e , net . l a y e r {9} . s i z e ) ;
272

273

274 %i n i t i a l i z e Bias Value
275 net . l a y e r {2} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {2} . s i z e ) ;
276 net . l a y e r {4} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {4} . s i z e ) ;
277 net . l a y e r {6} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {6} . s i z e ) ;
278 net . l a y e r {7} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {7} . s i z e ) ;
279 net . l a y e r {8} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {8} . s i z e ) ;
280 net . l a y e r {9} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {9} . s i z e ) ;
281

282

283 %I n i t i a l i z e a l l the nodes /max−up−to−now−node−va lue s to zero .
284 net . l a y e r {1} . next = z e r o s (1 , net . l a y e r {1} . s i z e ) ;
285 f o r i = 1 : net . numLayers
286 net . l a y e r { i } . nodes = z e r o s (1 , net . l a y e r { i } . s i z e ) ;
287 net . l a y e r { i } .max = z e r o s (1 , net . l a y e r { i } . s i z e ) ;
288 end
289

290 end
291 %%%
292 f u n c t i o n IW = i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s ( bottom , up )
293 %i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s i s used f o r i n i t i a l i z a t i o n o f l i n k s to competet ive

l a y e r s
294 % The i n i t i a l i z a t i o n i s such that the sum of the weights l e a d i n g to each
295 % node in the l a y e r = 1 , so that i t ’ s f a i r .
296 IW = uni f rnd (0 , 1 , [ bottom , up ] ) ;
297

298 f o r i = 1 : up
299 IW( : , i ) = IW( : , i ) . / sum(IW( : , i ) ) ;
300 end
301

302 end
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303 %%%
304 f u n c t i o n IW = in i t i a l i z e IWofBackPropL inks ( bottom , up )
305 %in i t i a l i z e IWofBackPropL inks i n i t i a l i z e s the weights that are t r a i n e d
306 % using backpropagat ion a lgor i thm .
307 % each l i n k take a random value between −0.1 and +0.1
308

309 IW = uni f rnd ( −0.1 , 0 . 1 , [ bottom , up ] ) ;
310

311 end
312 %%%
313

314 f u n c t i o n [ net ] = t r a i n ( net , sentences , r o l e s )
315 %TRAIN takes the network , and the network ’ s inputs and t r a i n s the l i n k s o f the

network .
316 % For #ofEpochs do
317 % For each sentence
318 % i n i t i a l i z e context l a y e r to 0 . Nothing in the memory .
319 % For each word in the sentence
320 % Train the SRN
321 % Keep the r e s u l t in the memory
322 % Again go through the words o f the sentence
323 % t r a i n the BPN.
324

325 %not f o r t ra in −f o r l og
326 index = 1 ; % t h i s i s used f o r keeping the context l a y e r index to c l u s t e r i f l a t e r
327 indexInner = 1 ;
328

329 numOfSentences = s i z e ( sentences , 1) ;
330 % −1: The per iod at the end o f the sentence i s not counted .
331 numOfWords = s i z e ( s e n t e n c e s (1 , : , : ) , 2) − 1 ;
332

333 %not f o r t ra in −f o r l og
334 net . ifThisWord = z e r o s ( numOfSentences , numOfWords) ;
335

336 %f o r num of epochs
337 f o r i = 1 : net . numOfEpochs
338

339 net . i = i ;
340 %s e t the l e a r n i n g r a t e by the i t e r a t i o n number , alpha :0.1 − >0.001
341 i f ( i == net . numOfMidEpochs + 20)
342 net . l a y e r {2} . alpha = 0 . 0 5 ;
343 net . l a y e r {3} . alpha = 0 . 0 5 ;
344 net . l a y e r {4} . alpha = 0 . 0 5 ;
345 net . l a y e r {6} . alpha = 0 . 0 5 ;
346 net . l a y e r {5} . alpha = 0 . 0 5 ;
347 end
348 i f ( i == net . numOfMidEpochs + 40)
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349 net . l a y e r {2} . alpha = 0 . 0 1 ;
350 net . l a y e r {3} . alpha = 0 . 0 1 ;
351 net . l a y e r {4} . alpha = 0 . 0 1 ;
352 net . l a y e r {6} . alpha = 0 . 0 1 ;
353 net . l a y e r {5} . alpha = 0 . 0 1 ;
354 end
355 i f ( i == net . numOfMidEpochs + 60)
356 net . l a y e r {2} . alpha = 0 . 0 0 5 ;
357 net . l a y e r {3} . alpha = 0 . 0 0 5 ;
358 net . l a y e r {4} . alpha = 0 . 0 0 5 ;
359 net . l a y e r {6} . alpha = 0 . 0 0 5 ;
360 net . l a y e r {5} . alpha = 0 . 0 0 5 ;
361 end
362 i f ( i == net . numOfMidEpochs + 90)
363 net . l a y e r {2} . alpha = 0 . 0 0 1 ;
364 net . l a y e r {3} . alpha = 0 . 0 0 1 ;
365 net . l a y e r {4} . alpha = 0 . 0 0 1 ;
366 net . l a y e r {6} . alpha = 0 . 0 0 1 ;
367 net . l a y e r {5} . alpha = 0 . 0 0 1 ;
368 end
369 %f o r time log
370 tStar tTra in = t i c ;
371 f o r sentenceIndex = 1 : numOfSentences
372 %context / hidden l a y e r − c l ean memory
373 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
374 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
375

376 %no o f words in each sentence i s one l e s s than i t s s i z e ( no per iod )
377 numOfWords = s i z e ( s e n t e n c e s ( sentenceIndex , : , : ) , 2) − 1 ;
378

379 %FIRST PASS : SRN t r a i n i n g
380 f o r wordIndex = 1 : numOfWords
381 %tempNext keeps the next word ’
382 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
383 nextWord = tempNext ’ ;
384 %i f the next word i s not empty = i f t h i s word i s not .
385 i f (~ any ( nextWord ) )
386 break ;
387 end
388 % temp keeps cur rent word
389 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
390 word = temp ’ ;
391 %tempNodes keeps the contents o f l a y e r 4 f o r the prev ious word .
392 %For speed ing up the computation only . Semantic o f cur rent word .
393 tempNodes = net . l a y e r {1} . next ;
394 %F i r s t compute the Semantic o f the next word − l a y e r 4 ( saved as
395 %l a y e r {1} . next ) .
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396 net . ac t iveLayer = 1 ;
397 net = trainCL ( net , nextWord ) ;
398 net . l a y e r {1} . next = net . l a y e r {1} . nodes ;
399

400 %I f the f i r s t word o f the sentence then tempNodes i s not use .
401 %Find the Semantic o f the cur rent word .
402 i f ( wordIndex == 1)
403 net = trainCL ( net , word ) ;
404 e l s e
405 net . l a y e r {1} . nodes = tempNodes ;
406 end
407

408 %t r a i n the SRN
409 net . ac t iveLayer = 2 ;
410 net = transferSRN ( net ) ;
411 net = backpropSRN ( net ) ;
412

413

414 i f ( i > net . numOfInitEpochs )
415 %t r a i n autoencoder
416 net = transferAE ( net ) ;
417 net = backpropAE ( net ) ;
418

419 end
420 %LOG − e r r o r in AE
421 net . errorAE ( sentenceIndex , wordIndex ) = s q r t (sum ( ( net . l a y e r {9} . nodes −

net . l a y e r {2} . nodes ) . ^ 2) ) ;
422

423 %LOG − e r r o r in SRN
424 net . errorSRNRight ( sentenceIndex , wordIndex ) = s q r t (sum ( ( net . l a y e r {4} .

nodes − net . l a y e r {1} . next ) . ^ 2) ) ;
425

426 %LOG − semantic c l a s s i f i e r , context l a y e r contents
427 net . ifThisWord ( sentenceIndex , wordIndex ) = 1 ;
428 i f ( i == net . numOfEpochs )
429 net . aTrain ( sentenceIndex , wordIndex ) = f i n d ( net . l a y e r {1} . nodes ) ;
430 net . contextLayerWords ( index , : ) = net . l a y e r {3} . nodes ;
431 index = index + 1 ;
432 end
433 end
434 %i f i t ’ s time to s t a r t t r a i n i n g BPN
435 i f ( i < net . numOfMidEpochs )
436 cont inue ;
437 end
438

439

440 %FOR LOG: keep the hidden l a y e r
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441 net . contextLayerSentence ( sentenceIndex , : ) = net . l a y e r {8} . nodes ;
442 %Keep the HL o f SRN in the MEMORY l a y e r
443 net . l a y e r {5} . nodes = net . l a y e r {8} . nodes ;
444

445 %context / hidden l a y e r − c l ean memory
446 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
447 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
448

449 %%%%%%%%%%%%
450 %SECOND PASS
451

452 %f o r each word in the sentence
453 f o r wordIndex = 1 : numOfWords
454 %tempNext keeps the next word ’
455 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
456 nextWord = tempNext ’ ;
457 %i f the next word i s not empty = i f t h i s word i s not .
458 i f (~ any ( nextWord ) )
459 break ;
460 end
461 % temp keeps cur rent word
462 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
463 word = temp ’ ;
464

465 %tempNodes keeps the contents o f l a y e r 4 f o r the prev ious word .
466 %For speed ing up the computation only . Semantic o f cur r ent word .
467 tempNodes = net . l a y e r {1} . next ;
468 %F i r s t compute the Semantic o f the next word − l a y e r 4 ( saved as
469 %l a y e r {1} . next ) .
470 net . ac t iveLayer = 1 ;
471 net = trainCL ( net , nextWord ) ;
472 net . l a y e r {1} . next = net . l a y e r {1} . nodes ;
473 %I f the f i r s t word o f the sentence then tempNodes i s not use .
474 %Find the Semantic o f the cur rent word .
475 i f ( wordIndex == 1)
476 net = trainCL ( net , word ) ;
477 e l s e
478 net . l a y e r {1} . nodes = tempNodes ;
479 end
480 %a c t i v a t i o n propagates through SRN and AE ( no t r a i n i n g )
481 net . ac t iveLayer = 2 ;
482 net = transferSRN ( net ) ;
483 net = transferAE ( net ) ;
484 %r o l e i s input {2} , the s i t u a t i o n vec to r from f i l e
485 tempR ( : , : ) = r o l e s ( sentenceIndex , wordIndex , : ) ;
486 r o l e = tempR ’ ;
487
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488 %a c t i v a t i o n propagetes to output o f BPN, and a s i n g l e node i s
489 %s e l e c t e d in the WTA compet i t ion in Layer 7 ( r o l e l a y e r )
490 net . ac t iveLayer = 7 ;
491 net = trainCL ( net , [ r o l e ] ) ;
492

493 %BPN t r a i n e d
494 net = trans ferBL ( net ) ;%
495 net = backpropBL ( net ) ;%
496

497 %The l i n k s from l a y e r {7}( r o l e l a y e r ) to input / output l a y e r
498 %tra ined −Simple Hebbian
499 net . ac t iveLayer = 7 ;
500 net = trainOutputLayer ( net , [ r o l e ] ) ;
501 %LOG
502 net . errorSRNLeft ( sentenceIndex , wordIndex ) = s q r t (sum ( ( net . l a y e r {7} . nodes

− net . l a y e r {7} . fake ) . ^ 2) ) ;
503 % LOG
504 i f ( i == net . numOfEpochs )
505 net . t ra inSeven ( sentenceIndex , wordIndex ) = f i n d ( net . l a y e r {7} . nodes ) ;
506 net . t r a i n S i x ( indexInner , : ) = net . l a y e r {6} . nodes ;
507 indexInner = indexInner + 1 ;
508 end
509 end
510 end
511 %LOG the accuracy
512 x = sum( net . errorSRNRight ) ;
513 s = sum( net . ifThisWord ) ;
514 y = x . / s ;
515 net . averageErrorRight ( i , : ) = y ;
516

517 i f ( i > net . numOfInitEpochs )
518

519 xx = sum( net . errorAE ) ;
520 % s i z e ( x )
521 yy = xx . / s
522 end
523 %LOG the accuracy
524

525 net . averageErrorRight ( i , : ) = y ;
526 %LOG the accuracy
527

528 i f ( i > net . numOfMidEpochs )
529 z = sum( net . errorSRNLeft ) ;
530 t = z . / s
531 net . ave rageErro rLe f t ( i , : ) = t ;
532

533 % max( net . errorSRNRight )
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534 max( net . errorSRNLeft )
535 end
536 % LOG the time
537 tElapsed = toc ( tSta r tTra in )
538 min = tElapsed / 60
539

540 end
541

542 end
543 %%%
544

545 f u n c t i o n [ net ] = trainCL ( net , input )
546 %trainCL t r a i n s the competet ive l a y e r
547 % input i s the input l a y e r to the network
548

549 layerNo = net . ac t iveLayer ;
550 net = trans ferCL ( net , input ) ; %c a l c u l a t e the a c t i v e l a y e r s ’ a c t i v a t i o n value
551 winner = f i n d ( net . l a y e r { layerNo } . nodes , 1) ; % winner i s the winner node in the a c t i v e

l a y e r ( f o r speed ing up the l e a r n i n g phase )
552 % t r a i n the l i n k s l e a d i n g to the winner node .
553 net . l a y e r { layerNo } .IW( : , winner ) = vonDerMalsburg ( net , input ) + net . l a y e r { layerNo } .IW

( : , winner ) ;
554

555 end
556

557

558 f u n c t i o n net = trans ferCL ( net , input )
559 %trans ferCL t r a n s f e r f u n c t i o n f o r competet ive l a y e r s
560 % input i s the input l a y e r to the a c t i v e layer , the a c t i v a t i o n f l o w s to
561 % the a c t i v e l a y e r through t h i s f u n c t i o n .
562

563 layerNumber = net . ac t iveLayer ;
564 %r e c i e v e d i s the a c t i v a t i o n r e c e i v e d in the l a y e r .
565 r e c e i v e d = input ∗ net . l a y e r { layerNumber } .IW;
566 % i f the f i r s t time l e a r n i n g ( no max s t i l l a v a i l a b l e . )
567 i f ( ~ net . l a y e r { layerNumber } . f i r s t T i m e )
568 %t r a n s f e r f u n c t i o n
569 a c t i v a t i o n = ( net . l a y e r { layerNumber } . c ∗ r e c e i v e d ) + . . .
570 ( (1 − net . l a y e r { layerNumber } . c ) ∗ ( r e c e i v e d . / ( net . l a y e r { layerNumber } .max) ) ) ;
571 temp = compet ( a c t i v a t i o n ’ ) ; %compet : 0 i f not the winner . ow 1 .
572 e l s e
573 net . l a y e r { layerNumber } . f i r s t T i m e = 0 ;
574 temp = compet ( rece ived ’ ) ;
575 end
576 % nodes <− temp
577 net . l a y e r { layerNumber } . nodes = z e r o s (1 , net . l a y e r { layerNumber } . s i z e ) ;
578 net . l a y e r { layerNumber } . nodes (1 , f i n d ( temp , 1) ) = 1 ;
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579 % update the max
580 net . l a y e r { layerNumber } .max = max ( [ r e c e i v e d ; net . l a y e r { layerNumber } .max ] ) ;
581

582 end
583 %%%
584 f u n c t i o n dw = vonDerMalsburg ( net , input )
585 %VONDERMALSBURG i s used f o r t r a i n i n g the l i n k s .
586 % input i s the l a y e r below the a c t i v e l a y e r . dw i s the change in the
587 % l i n k s between the input l a y e r and the a c t i v e l a y e r .
588

589 layerNo = net . ac t iveLayer ;
590 % winner i s found to speed up the l e a r n i n g .
591 winner = f i n d ( net . l a y e r { layerNo } . nodes , 1) ;
592 % the change i s only made in the l i n k s l e a d i n g to the winner node .
593 dw = net . l a y e r { layerNo } . l ea rn ingRate . ∗ . . .
594 ( ( input . / sum( input ) ) ’ − net . l a y e r { layerNo } .IW( : , winner ) ) ;
595

596 end
597 %%%
598 f u n c t i o n net = transferSRN ( net )
599 %TRANSFERSRN i s the f e ed forward phase o f the SRN
600

601 % hidden l a y e r <− l o g s i g ( context l a y e r & input (POS) l a y e r ∗ t h e i r weights & b i a s )
602 % to speed up the c a l c u l a t i o n o f l a y e r 2
603 winner = f i n d ( net . l a y e r {1} . nodes , 1) ;
604 net . l a y e r {2} . nodes = l o g s i g ( net . l a y e r {3} . nodes ∗ net . l a y e r {3} .IW + net . l a y e r {2} .IW(

winner , : ) + net . l a y e r {2} . b i a s ) ;
605

606 %copy hidden l a y e r (2 ) i n t o context l a y e r (3 )
607 net . l a y e r {3} . nodes = net . l a y e r {2} . nodes ;
608

609 %output l a y e r (4 ) <− l o g s i g ( hidden l a y e r ∗ t h e i r weights & b i a s )
610 net . l a y e r {4} . nodes = l o g s i g ( net . l a y e r {2} . nodes ∗ net . l a y e r {4} .IW + net . l a y e r {4} . b i a s )

; % output l a y e r <− hidden l a y e r & b i a s
611 end
612 %%%
613 f u n c t i o n net = backpropSRN ( net )
614 %BACKPROPSRN performs the backpropagat ion a lgor i thm on the SRN
615

616 % d e l t a { out } = teacher − output
617 % other de l ta ’ s = delta_upper ∗ W in the middle
618 % W += alpha ∗ input ∗ [ output ∗ (1 − output ) ∗ delta_output ]
619

620 % to speed up the computation
621 % d e l t a <− output l a y e r . ∗ (1 − output l a y e r ) . ∗ ( t eacher − output l a y e r )
622 d e l t a = ( net . l a y e r {4} . nodes . ∗ (1 − net . l a y e r {4} . nodes ) ) . ∗ ( net . l a y e r {1} . next − net .

l a y e r {4} . nodes ) ;
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623 % d e l t a hidden l a y e r <− ( d e l t a ∗ l i n k s to output layer ) . ∗ hidden l a y e r . ∗ (1 − hidden
l a y e r )

624 deltaHidden = ( ( net . l a y e r {4} .IW) ∗ ( d e l t a ) ’ ) ’ . ∗ net . l a y e r {2} . nodes . ∗ (1 − net .
l a y e r {2} . nodes ) ;

625

626 %modify the l i n k s / b i a s e s accord ing to d e l t a o f each l a y e r
627 net . l a y e r {2} .IW = net . l a y e r {2} .IW + net . l a y e r {2} . alpha ∗ net . l a y e r {1} . nodes ’ ∗ (

deltaHidden ) ;
628 net . l a y e r {3} .IW = net . l a y e r {3} .IW + net . l a y e r {3} . alpha ∗ net . l a y e r {3} . nodes ’ ∗ (

deltaHidden ) ;
629 net . l a y e r {4} .IW = net . l a y e r {4} .IW + net . l a y e r {4} . alpha ∗ net . l a y e r {2} . nodes ’ ∗ (

d e l t a ) ;
630

631 net . l a y e r {2} . b i a s = net . l a y e r {2} . b i a s + net . l a y e r {2} . alpha ∗ ( deltaHidden ) ;
632 net . l a y e r {4} . b i a s = net . l a y e r {4} . b i a s + net . l a y e r {4} . alpha ∗ ( d e l t a ) ;
633

634 end
635 %%%
636 f u n c t i o n net = transferAE ( net )
637 %transferAE t r a n s f e r s a c t i v a t i o n through the AE
638 %input : l a y e r {2} , hidden : l a y e r {8} , output : l a y e r {9}
639 % each l a y e r <− lower l a y e r ∗ weights + b i a s
640 net . l a y e r {8} . nodes = l o g s i g ( net . l a y e r {2} . nodes ∗ net . l a y e r {8} .IW + net . l a y e r {8} . b i a s )

;
641 net . l a y e r {9} . nodes = l o g s i g ( net . l a y e r {8} . nodes ∗ net . l a y e r {9} .IW + net . l a y e r {9} . b i a s )

;
642

643 end
644 %%%
645 f u n c t i o n [ net ] = backpropAE ( net )
646 %backpropAE does the backpropagat ion l e a r n i n g p r o c e s s though AE
647 %input : l a y e r {2} , hidden : l a y e r {8} , output : l a y e r {9}
648

649 % d e l t a { out } = teacher − output
650 % other de l ta ’ s = delta_upper ∗ W in the middle
651 % W += alpha ∗ input ∗ [ output ∗ (1 − output ) ∗ delta_output ]
652

653 % to speed up the computation
654 % d e l t a <− output l a y e r . ∗ (1 − output l a y e r ) . ∗ ( t eacher − output l a y e r )
655 d e l t a = ( net . l a y e r {9} . nodes . ∗ (1 − net . l a y e r {9} . nodes ) ) . ∗ ( net . l a y e r {2} . nodes − net

. l a y e r {9} . nodes ) ;
656 % d e l t a hidden l a y e r <− ( d e l t a ∗ l i n k s to output layer ) . ∗ hidden l a y e r . ∗ (1 − hidden

l a y e r )
657 deltaHidden = ( ( net . l a y e r {9} .IW) ∗ ( d e l t a ) ’ ) ’ . ∗ net . l a y e r {8} . nodes . ∗ (1 − net .

l a y e r {8} . nodes ) ;
658

659 %modify the l i n k s / b i a s e s accord ing to d e l t a o f each l a y e r
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660 net . l a y e r {8} .IW = net . l a y e r {8} .IW + net . l a y e r {8} . alpha ∗ net . l a y e r {2} . nodes ’ ∗ (
deltaHidden ) ;

661 net . l a y e r {9} .IW = net . l a y e r {9} .IW + net . l a y e r {9} . alpha ∗ net . l a y e r {8} . nodes ’ ∗ (
d e l t a ) ;

662

663 net . l a y e r {8} . b i a s = net . l a y e r {8} . b i a s + net . l a y e r {8} . alpha ∗ ( deltaHidden ) ;
664 net . l a y e r {9} . b i a s = net . l a y e r {9} . b i a s + net . l a y e r {9} . alpha ∗ ( d e l t a ) ;
665

666 end
667 %%%
668

669 f u n c t i o n [ net ] = trans ferBL ( net )
670 %trans ferBL t r a n s f e r s the a c t i v a t i o n through the BPN ( aka BL: backprp l i n e s )
671

672 %For r e a d a b i l i t y − the se two make the input l a y e r : [ contextLayerNodes , memoryLayerNodes
]

673 contextLayerNodes = net . l a y e r {8} . nodes ;
674 memoryLayerNodes = net . l a y e r {5} . nodes ;
675 %hidden l a y e r : l a y e r {6}
676 %output l a y e r : r o l e l a y e r : l a y e r {7}
677

678 net . l a y e r {6} . nodes = l o g s i g ( [ contextLayerNodes , memoryLayerNodes ] ∗ net . l a y e r {5} .IW +
net . l a y e r {6} . b i a s ) ;

679 net . l a y e r {7} . fake = l o g s i g ( net . l a y e r {6} . nodes ∗ net . l a y e r {6} .IW + net . l a y e r {7} . b i a s ) ;
680

681 end
682 %%%
683 f u n c t i o n [ net ] = backpropBL ( net )
684 %does the backpropagat ion l e a r n i n g in the BL( aka BPN)
685 %For r e a d a b i l i t y − the se two make the input l a y e r : [ contextLayerNodes , memoryLayerNodes

]
686 % d e l t a { out } = teacher − output
687 % other de l ta ’ s = delta_upper ∗ W in the middle
688 % W += alpha ∗ input ∗ [ output ∗ (1 − output ) ∗ delta_output ]
689

690 contextLayerNodes = net . l a y e r {8} . nodes ;
691 memoryLayerNodes = net . l a y e r {5} . nodes ;
692 %hidden l a y e r : l a y e r {6}
693 %output l a y e r : r o l e l a y e r : l a y e r {7}
694

695 % to speed up the computation
696 % d e l t a <− output l a y e r . ∗ (1 − output l a y e r ) . ∗ ( t eacher − output l a y e r )
697 d e l t a = ( net . l a y e r {7} . fake . ∗ (1 − net . l a y e r {7} . fake ) ) . ∗ ( net . l a y e r {7} . nodes − net .

l a y e r {7} . fake ) ;
698 % d e l t a hidden l a y e r <− ( d e l t a ∗ l i n k s to output layer ) . ∗ hidden l a y e r . ∗ (1 − hidden

l a y e r )
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699 deltaHidden = ( ( net . l a y e r {6} .IW) ∗ ( d e l t a ) ’ ) ’ . ∗ net . l a y e r {6} . nodes . ∗ (1 − net .
l a y e r {6} . nodes ) ;

700

701 %modify the l i n k s / b i a s e s accord ing to d e l t a o f each l a y e r
702 net . l a y e r {5} .IW = net . l a y e r {5} .IW + net . l a y e r {5} . alpha ∗ [ contextLayerNodes ,

memoryLayerNodes ] ’ ∗ ( deltaHidden ) ;
703 net . l a y e r {6} .IW = net . l a y e r {6} .IW + net . l a y e r {6} . alpha ∗ net . l a y e r {6} . nodes ’ ∗ (

d e l t a ) ;
704

705 net . l a y e r {6} . b i a s = net . l a y e r {6} . b i a s + net . l a y e r {6} . alpha ∗ ( deltaHidden ) ;
706 net . l a y e r {7} . b i a s = net . l a y e r {7} . b i a s + net . l a y e r {6} . alpha ∗ ( d e l t a ) ;
707

708 end
709

710 %%%%
711

712 f u n c t i o n [ net ] = trainOutputLayer ( net , input )
713 %trainOutputLayer t r a i n s the l i n k s between the s i t u a t i o n l a y e r ( input {2})
714 % and the r o l e l a y e r ( layerNo )
715 % The l i n k s are from r o l e l a y e r to the s i t u a t i o n l a y e r
716 % The t r a i n i n g a lgor i thm = simple Hebbian
717

718

719 layerNo = net . ac t iveLayer ;
720 %to speed up computation
721 winner = f i n d ( net . l a y e r { layerNo } . nodes ) ;
722

723 %i n c r e a s e the weights from the winner node to the a c t i v e nodes in s i t u a t i o n
724 % l a y e r by the constant " increament "
725 net . input {2} .IW( winner , : ) = net . input {2} .IW( winner , : ) . . .
726 + input . ∗ ( net . input {2} . increment ) ;
727 end
728

729 %%%
730 f u n c t i o n c o s i n e = normalizedDotProduct (x , y )
731 % NormalizedDotProduct computes the value o f the
732 % c o s i n e between two v e c t o r s . x . y = | x | ∗ | y | ∗ cos ( xoy ) ; where x . y means the
733 % dot product o f the two v e c t o r s x and t , | x | and | y | mean the
734 % norm/magnitude o f v e c t o r s x and y r e s p e c t i v e l y , and xoy i s the c o s i n e
735 % between v e c t o r s x and y .
736 % According to th i s , cos ( xoy ) = x . y / ( | x | ∗ | y | ) .
737 % NDP ~ C o r r e l a t i o n
738

739 normx = norm( x ) ;%the f u n c t i o n norm computes the norm/magnitude o f a vec to r
740 normy = norm( y ) ;
741

742 i f ( s i z e (x , 2) ~= s i z e (y , 2) )
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743 %i f the two v e c t o r s are not o f the same s i z e / dimension ; no dot product
744 %d e f i n e d .
745 d i s p l a y ( ’ normalizedDotProduct : vec to r s i z e dismatch ’ ) ;
746 c o s i n e = 0 ;
747 e l s e i f ( normx == 0 | | normy == 0 )
748 %i f one o f the v e c t o r s i s o r i g i n , they are p e rp e n d i c u l a r
749 c o s i n e = −100;
750 d i s p l a y ( ’ normalizedDotProduct : One o f the v e c t o r s was O. ’ ) ;
751 e l s e
752 c o s i n e = ( x∗y ’ ) / ( normx ∗ normy ) ;
753 end
754

755 end
756 %%%
757 f u n c t i o n net = t e s t ( net , s e n t e n c e s )
758 % TEST t e s t s the tra inednetwork
759 % inputs are net and the t e s t s e n t e n c e s
760 % Al l the outputs ( s i t u a t i o n l a y e r f o r every word ) i s saved
761 % to be l a t e r v e r i f i e d
762

763

764 numOfSentences = s i z e ( sentences , 1) ;
765 %LOG index
766 index = 1 ;
767

768 %For every sentence in the t e s t corpus
769 f o r sentenceIndex = 1 : numOfSentences
770 %context / hidden l a y e r − c l ean memory
771 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
772 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
773

774 %num of words i s l e s s than the s i z e o f each sentence ( no per iod )
775 numOfWords = s i z e ( s e n t e n c e s ( sentenceIndex , : , : ) , 2) − 1 ;
776 %%%FIRST PASS
777 %f o r each word in the sentence
778 f o r wordIndex = 1 : numOfWords
779 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
780 %word i s the cur rent word o f the sentence
781 word = temp ’ ;
782 %tempNext keeps the next word ’
783 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
784 nextWord = tempNext ’ ;
785 i f (~ any ( nextWord ) )% i f the sentence i s proce s s ed
786 break ;
787 end
788

789 net . ac t iveLayer = 1 ;
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790 %f i n d the semantic l a y e r a c t i v a t i o n
791 net = trans ferCL ( net , word ) ;
792 %then the i n f o f low and f i n d the a c t i v a t i o n in l a y e r s o f SRN
793 net . ac t iveLayer = 2 ;
794 net = transferSRN ( net ) ;
795 % and then AE ( to compress )
796 net = transferAE ( net ) ;
797 end
798 %copy the hidden l a y e r o f AE ( compressed form o f hid o f SRN) i n t o l a y e r M
799 net . l a y e r {5} . nodes = net . l a y e r {8} . nodes ;
800 %LOG
801 net . TESTfive ( sentenceIndex , : ) = net . l a y e r {5} . nodes ;
802

803 %context / hidden l a y e r − c l ean memory
804 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
805 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
806 %SECOND PASS
807 f o r wordIndex = 1 : numOfWords
808 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
809 %word i s the cur rent word o f the sentence
810 word = temp ’ ;
811 %tempNext keeps the next word ’
812 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
813 nextWord = tempNext ’ ;
814 i f (~ any ( nextWord ) )% i f the sentence i s proce s s ed
815 break ;
816 end
817

818 %f i n d the semantic l a y e r a c t i v a t i o n
819 net . ac t iveLayer = 1 ;
820 net = trans ferCL ( net , word ) ;
821 %then the i n f o f low and f i n d the a c t i v a t i o n in l a y e r s o f SRN
822 net . ac t iveLayer = 2 ;
823 net = transferSRN ( net ) ;
824 %then the i n f o f low and f i n d the a c t i v a t i o n in l a y e r s o f AE
825 net = transferAE ( net ) ;
826 % propagate the i n f o through BPN
827 net = trans ferBL ( net ) ;
828 %exactOut the exact va lue s that f low i n t o output − s i t u a t i o n l a y e r
829 net . exactOut ( index , : ) = net . l a y e r {7} . fake ∗ net . input {2} .IW;
830 index = index + 1 ;
831 %LOG
832 net .TESTa( sentenceIndex , wordIndex ) = f i n d ( net . l a y e r {1} . nodes ) ;
833 %t h i s i s when the a c t i v a t i o n i s f lowed to output a f t e r a WTA in R

l a y e r .
834 net . TESToutput ( sentenceIndex , wordIndex ) = f i n d ( net . l a y e r {7} . fake == max( net

. l a y e r {7} . fake ) ) ;
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835

836 end
837 end
838

839 end
840 %%%
841 f u n c t i o n net = j u s t i f y ( net , r o l e s , s e n t e n c e s )
842 %JUSTIFY j u s t i f i e s / v e r i f i e s the r e s u l t s
843 %goes through the saved outputs f o r each word
844 %checks i t with the r o l e s in the t e s t i n g corpus
845

846 numOfSentences = s i z e ( r o l e s , 1) ;
847 index = 1 ;
848 %For every sentence
849 f o r sentenceIndex = 1 : numOfSentences
850 numOfWords = s i z e ( r o l e s ( sentenceIndex , : , : ) , 2) ;
851 %For every word
852 f o r wordIndex = 1 : numOfWords
853 temp ( : , : ) = r o l e s ( sentenceIndex , wordIndex , : ) ;
854 %r o l e i s the r o l e o f the cur rent word
855 r o l e = temp ’ ;
856 % i f the sentence i s not f i n i s h e d yet
857 i f (~ any ( r o l e ) )
858 break ;
859 end
860 %c a l c u l a t e the r e c e i v e d value from l a y e r 3 to s i t u a t i o n l a y e r
861 %compare them with r o l e s vec to r
862 winner = net . TESToutput ( sentenceIndex , wordIndex ) ;
863 %IF AN ERROR OCCURS
864 i f (~ any ( net . input {2} .IW( winner , : ) ) )
865 winner
866 d i s p l a y ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ) ;
867 end
868 %c o r r e c t i s the normal ized dot product o f the c o r r e c t r e s u l t and

output ( a f t e r WTA)
869 net . c o r r e c t ( sentenceIndex , wordIndex ) = normalizedDotProduct ( net .

input {2} .IW( winner , : ) , r o l e ) ;
870 %exactCorrect i s the normal ized dot product o f the exactOutput and

output ( no WTA)
871 net . exactCorrect ( sentenceIndex , wordIndex ) = normalizedDotProduct ( net

. exactOut ( index , : ) , r o l e ) ;
872 index = index + 1 ;
873 end
874 end
875 end



Appendix F

The Programming Code for the
Second Approach

Matlab Code

1 f u n c t i o n [ net ] = main ( )
2 %t h i s i s the main f u n c t i o n o f the program
3

4 c l e a r a l l
5

6 %tStartMain keeps the s t a r t time o f the running program
7 % f o r l og
8 tStartMain = t i c ;
9

10 net . numInputs = 2 ; %num of inputs
11 net . numLayers = 5 ; %num of non−i /o l a y e r s
12 net . numOfEpochs = 40 ; %t o t a l number o f epochs
13 net . thresholdDP = 0 . 9 9 9 ;%To check i f two v e c t o r s are c l o s e enough , the r e s u l t o f

t h e i r normal ized
14 %dot product i s compared with t h i s

t h r e s h o l d .
15 net . logDP = 10 ; % f o r l o g g i n g purposes
16

17 % Semantic C l a s s i f i e r Layer
18 net . l a y e r {1} . c = 0 . 5 ;
19 net . l a y e r {1} . l ea rn ingRate = 0 . 5 ;
20 net . l a y e r {1} . s i z e = 30 ;
21 net . l a y e r {1} . f i r s t T i m e = 1 ;%i s i n i t i a l l y s e t to 1 , and then to 0
22

23 % Hidden Layer o f SRN

92
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24 net . l a y e r {2} . s i z e = 200 ;
25 net . l a y e r {2} . alpha = 0 . 1 ;%alpha = l e a r n i n g r a t e
26

27 % Context Layer o f SRN
28 net . l a y e r {3} . s i z e = net . l a y e r {2} . s i z e ;
29 net . l a y e r {3} . alpha = 0 . 1 ;
30

31 %SRN Output
32 net . l a y e r {4} . s i z e = net . l a y e r {1} . s i z e ;
33 net . l a y e r {4} . alpha = 0 . 1 ;
34

35

36 %Memory Layer
37 net . l a y e r {5} . s i z e = net . l a y e r {2} . s i z e ;
38

39 % Role Layer
40 net . l a y e r {6} . s i z e = 30 ;
41 net . l a y e r {6} . c = 0 . 6 ;
42 net . l a y e r {6} . l ea rn ingRate = 0 . 1 ;
43 net . l a y e r {6} . f i r s t T i m e = 1 ;
44

45 %prepare the t r a i n i n g / t e s t i n g corpora ( v e c t o r s )
46 [ t ra in ingVector , ro l eVecto r s , t e s tVector , ro l eTes tVector ] = prepareInputOutput ( ) ;
47 d i s p l a y ( ’ Input Output Ready . ’ ) ;
48

49 % s e t the s i z e o f the input l a y e r o f the network accord ing to the input
50 % f i l e s
51 net . input {1} . s i z e = s i z e ( t ra in ingVector , 3) ;
52 net . input {2} . s i z e = s i z e ( ro l eVecto r s , 3) ;
53 %s e t the hebbian l e a r n i n g r a t e
54 net . input {2} . increment = 0 . 0 2 5 ;
55

56 % i n i t i a l i z e the network
57 net = i n i t i a l i z e ( net ) ;
58 d i s p l a y ( ’ Network I n i t i a l i z e d ’ ) ;
59

60 %t r a i n the network
61 net = t r a i n ( net , t ra in ingVector , r o l e V e c t o r s ) ;
62 d i s p l a y ( ’ Network Trained ’ ) ;
63

64 %t e s t the network
65 net = t e s t ( net , t e s t V e c t o r ) ;
66 d i s p l a y ( ’ Network Tested ’ ) ;
67

68 %Ver i fy i f the outputs o f the t e s t i n g phase i s c o r r e c t
69 net = j u s t i f y ( net , ro l eTestVector , t e s t V e c t o r ) ;
70 d i s p l a y ( ’ Resu l t s V e r i f i e d . ’ ) ;
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71

72 %to keep the running time o f the program
73 %f o r log
74 tElapsed = toc ( tStartMain ) ;
75 minutes = tElapsed / 60
76

77 beep
78

79 end
80 f u n c t i o n [ t ra in ingVector , ro l eVecto r s , te s tVector , ro l eTes tVector ] =

prepareInputOutput ( )
81 %PREPAREINPUTOUTPUT prepares the vec to r input o f the network
82 %This f u n c t i o n f i r s t reads the word/ r o l e v e c t o r s and then reads the
83 %t r a i n / t e s t corpora and a s s i g n s a vec to r to each word/ r o l e in the corpora .
84

85 % e x t r a c t the r o l e /word v e c t o r s
86 % word . txt conta in s the vocabulary l i s t and v e c t o r s
87 wordList = readTrainingWords ( ’ words . txt ’ ) ;
88 % r o l e . txt conta in s r o l e s l i s t and vec to r
89 r o l e L i s t = readTrainingWords ( ’ r o l e s . txt ’ ) ;
90

91 % prepare t r a i n i n g sentence v e c t o r s
92 % t r a i n S e t . txt conta in s t r a i n i n g s e n t e n c e s
93 t r a i n S e t = readSentences ( ’ t r a i n S e n t . txt ’ ) ;
94 % parse s e n t e n c e s i n t o v e c t o r s
95 t r a i n i n g V e c t o r = parseSentences ( t ra inSe t , wordList ) ;
96

97 % prepare t r a i n i n g r o l e v e c t o r s
98 % t r a i n R o l e . txt conta in s r o l e s cor re spond ing to s e n t e n c e s in the t r a i n i n g corpus
99 r o l e S e t = readSentences ( ’ t r a i n R o l e . txt ’ ) ;

100 % parse s e n t e n c e s i n t o v e c t o r s
101 r o l e V e c t o r s = parseSentences ( r o l e S e t , r o l e L i s t ) ;
102

103 % prepare t e s t i n g sentence v e c t o r s
104 % t e s t S e n t . txt conta in s t e s t i n g s e n t e n c e s
105 t e s t S e t = readSentences ( ’ t e s t S e n t . txt ’ ) ;
106 % parse s e n t e n c e s i n t o v e c t o r s
107 t e s t V e c t o r = parseSentences ( t e s t S e t , wordList ) ;
108

109 % prepare t e s t i n g r o l e v e c t o r s
110 % t e s t R o l e . txt conta in s r o l e s cor re spond ing to s e n t e n c e s in the t e s t i n g corpus
111 r o l e T e s t = readSentences ( ’ t e s t R o l e . txt ’ ) ;
112 % parse s e n t e n c e s i n t o v e c t o r s
113 ro l eTes tVector = parseSentences ( ro l eTest , r o l e L i s t ) ;
114

115 end
116 %%%
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117 f u n c t i o n words = readTrainingWords ( f i leName )
118 %READTRAINING reads the word/ r o l e l i s t and t h e i r v e c t o r s
119 % outputs a s t r u c t conta in ing word/ r o l e and type and vec to r
120 % Note : type i s not used in t h i s program
121

122

123 f i d = fopen ( f i leName ) ;
124

125 %read f i r s t l i n e
126 l i n e = f g e t s ( f i d ) ;
127 numOfLines = 1 ;
128 whi le i s c h a r ( l i n e )% whi le the input f i l e i s not yet f i n i s h e d
129 % e x t r a c t word , then type , then vec to r from the l i n e
130 [ word , l i n e ] = s t r t o k ( l i n e ) ;
131 [ type , l i n e ] = s t r t o k ( l i n e ) ;
132 % c a s t s t r i n g −vec to r to numerica l vec to r
133 vec to r = str2num ( l i n e ) ;
134 % c o n s t r u c t the output s t r u c t
135 words{numOfLines} = s t r u c t ( ’ word ’ , word , ’ type ’ , type , ’ vec to r ’ , vec to r ) ;
136

137 %read next l i n e
138 numOfLines = numOfLines + 1 ;
139 l i n e = f g e t s ( f i d ) ;
140 end
141

142

143 f c l o s e ( f i d ) ; % c l o s e the f i l e
144

145 end
146

147 end
148 %%%
149 f u n c t i o n s e n t e n c e s = readSentences ( f i leName )
150 %READSENTENCES reads and ouputs s e n t e n c e s from a f i l e ( f i leName )
151 % each l i n e i s a sentence
152

153 f i d = fopen ( f i leName ) ;%open the f i l e
154

155 % read f i r s t l i n e
156 numOfLines = 1 ;
157 l i n e = f g e t l ( f i d ) ;
158 whi le i s c h a r ( l i n e )% whi le the input f i l e i s not yet f i n i s h e d
159 % t h i s l i n e i s the cur rent sentence
160 s e n t e n c e s {numOfLines} = l i n e ;
161 %read next l i n e
162 numOfLines = numOfLines + 1 ;
163 l i n e = f g e t l ( f i d ) ;
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164 end
165

166 f c l o s e ( f i d ) ; % c l o s e the f i l e
167

168 end
169 %%%
170 f u n c t i o n [ words ] = parseSentences ( sentences , wordList )
171 %PARSESENTENCES reads ∗ s e n t e n c e s ∗ and by the use o f ∗ wordList ∗
172 % parse s them i n t o ∗words ∗ .
173

174 %s i z e S i s the number o f s e n t e n c e s
175 [dummy s i z e S ] = s i z e ( s e n t e n c e s ) ;
176

177 f o r sentenceIndex= 1 : s i z e S %f o r a l l s e n t e n c e s
178 % r e s t i s f i r s t s e t to the whole sentence ( sentence ( sentenceIndex ) )
179 % and then the r e s t o f the sentence
180 r e s t = s e n t e n c e s ( sentenceIndex ) ;
181 thisWord = r e s t ;
182 %index i s the word index in cur rent sentence
183 index = 1 ;
184 whi le ~strcmp ( ’ . ’ , thisWord )% parse each sentence , u n t i l pe r iod i s encountered
185 % thisWord i s the cur rent word o f the sentence
186 [ thisWord r e s t ] = s t r t o k ( r e s t ) ;
187 % f i n d and s e t the cor re spond ing vec to r ( to thisWord in sentence ( i ) )
188 words ( sentenceIndex , index , : ) = findWordsVector ( thisWord , wordList ) ;
189 index = index + 1 ;
190 end
191 %next sentence index
192 end
193

194 end
195

196 f u n c t i o n vec to r = findWordsVector ( thisWord , wordList )
197 % findWordsVector l o o k s f o r thisWord in wordList
198 % and output i t s cor re spond ing vec to r .
199

200 %sizeW i s the number o f words in wordList
201 [dummy sizeW ] = s i z e ( wordList ) ;
202 f o r i = 1 : sizeW %f o r a l l the words in the wordList
203 % i f thisWord i s the cur rent word o f the l i s t
204 % vecto r ( output ) w i l l be the cor re spond ing vec to r o f thisWord
205 %e l s e cont inue the search through the l i s t
206 i f ( strcmp ( thisWord , wordList { i } . word ) )
207 vec to r = wordList { i } . vec to r ;
208 r e turn
209 end
210 end
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211 %output thisWord i f i t i s not in the l i s t (ERROR)
212 thisWord
213 d i s p l a y ( ’ parseSentence : word not found . ’ ) ;
214 end
215 %%%
216 f u n c t i o n net = i n i t i a l i z e ( net )
217 %INITIALIZE i n i t i a l i z e s the weights o f the l i n k s
218 % and the i n i t i a l i z a t i o n va lue s o f a c t i v a t i o n o f nodes in l a y e r s .
219

220 % i n i t i a l i z e weights from input−word to Semantic C l a s s i f i e r l a y e r .
221 net . l a y e r {1} .IW = i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s ( net . input {1} . s i z e , net . l a y e r {1} .

s i z e ) ;
222

223 % i n i t i a l i z e weights o f SRN
224 net . l a y e r {2} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {1} . s i z e , net . l a y e r {2} . s i z e ) ;
225 net . l a y e r {3} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {2} . s i z e , net . l a y e r {3} . s i z e ) ;
226 net . l a y e r {4} .IW = in i t i a l i z e IWofBackPropL inks ( net . l a y e r {3} . s i z e , net . l a y e r {4} . s i z e ) ;
227

228 %i n i t i a l i z e weights from input−r o l e to Role Layer
229 net . l a y e r {5} .IW = i n i t i a l i z e I W o f C o m p e t i t i v e L a y e r s ( net . input {2} . s i z e , net . l a y e r {5} .

s i z e ) ;
230 %i n i t i a l i z e weights from ROLE l a y e r to input−r o l e ( Hebbian Links thus 0)
231 net . input {2} .IW = z e r o s ( net . l a y e r {5} . s i z e , net . input {2} . s i z e ) ;
232

233 %i n i t i a l i z e Bias Value
234 net . l a y e r {2} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {2} . s i z e ) ;
235 net . l a y e r {4} . b i a s = in i t i a l i z e IWofBackPropL inks (1 , net . l a y e r {4} . s i z e ) ;
236

237 %a dummy input i n t o LUT − c r e a t i n g the t a b l e
238 net . sentenceWordTable = z e r o s (1 , 2 ∗ net . l a y e r {2} . s i z e ) ;
239

240 %I n i t i a l i z e a l l the nodes /max−up−to−now−node−va lue s to zero .
241 net . l a y e r {1} . next = z e r o s (1 , net . l a y e r {1} . s i z e ) ;
242 f o r i = 1 : net . numLayers
243 net . l a y e r { i } . nodes = z e r o s (1 , net . l a y e r { i } . s i z e ) ;
244 net . l a y e r { i } .max = z e r o s (1 , net . l a y e r { i } . s i z e ) ;
245 end
246

247 end
248 %%%
249

250 f u n c t i o n IW = i n i t i a l i z e I W o f H L ( bottom , up )
251 %INITIALIZEIWOFHL i s used f o r i n i t i a l i z a t i o n o f competet ive l a y e r s
252 % The i n i t i a l i z a t i o n i s such that the sum of the weights l e a d i n g to each
253 % node in the l a y e r = 1 , so that i t ’ s f a i r .
254 IW = uni f rnd (0 , 1 , [ bottom , up ] ) ;
255
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256 f o r i = 1 : up
257 IW( : , i ) = IW( : , i ) . / sum(IW( : , i ) ) ;
258 end
259

260 end
261 %%%
262 f u n c t i o n IW = in i t ia l i z e IWofSRN ( bottom , up )
263 %INITIALIZEIWOFSRN i n i t i a l i z e s the weights in the SRN
264 % each l i n k take a random value between −0.1 and +0.1
265

266 IW = uni f rnd ( −0.1 , 0 . 1 , [ bottom , up ] ) ;
267

268 end
269 %%%
270

271 f u n c t i o n [ net ] = t r a i n ( net , sentences , r o l e s )
272 %TRAIN takes the network , and the network ’ s inputs and t r a i n s the l i n k s o f the

network .
273 % For #ofEpochs do
274 % For each sentence
275 % i n i t i a l i z e context l a y e r to 0 . Nothing in the memory .
276 % For each word in the sentence
277 % Train the SRN
278 % Again go through the words o f the sentence
279 % Make the LUT.
280

281 %not f o r t ra in −f o r l og
282 index = 1 ; % t h i s i s used f o r keeping the context l a y e r index to c l u s t e r i f l a t e r
283 indexInner = 1 ;
284

285 numOfSentences = s i z e ( sentences , 1) ;
286 % The per iod at the end o f the sentence i s not counted .
287 numOfWords = s i z e ( s e n t e n c e s (1 , : , : ) , 2) − 1 ;
288

289 %not f o r t ra in −f o r l og
290 net . ifThisWord = z e r o s ( numOfSentences , numOfWords) ;
291

292 %f o r num of epochs
293 f o r i = 1 : net . numOfEpochs
294

295 f o r sentenceIndex = 1 : numOfSentences
296 %context / hidden l a y e r − c l ean memory
297 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
298 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
299

300 %no o f words in each sentence i s one l e s s than i t s s i z e ( no per iod )
301 numOfWords = s i z e ( s e n t e n c e s ( sentenceIndex , : , : ) , 2) − 1 ;
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302

303 %FIRST PASS : SRN t r a i n i n g
304 f o r wordIndex = 1 : numOfWords
305 %tempNext keeps the next word ’
306 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
307 nextWord = tempNext ’ ;
308 %i f the next word i s not empty = i f t h i s word i s not .
309 i f (~ any ( nextWord ) )
310 break ;
311 end
312 % temp keeps cur rent word
313 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
314 word = temp ’ ;
315 %tempNodes keeps the contents o f l a y e r 4 f o r the prev ious word .
316 %For speed ing up the computation only . semantic c l a s s i f i e r o f cur r ent

word .
317 tempNodes = net . l a y e r {1} . next ;
318 %F i r s t compute the semantic c l a s s i f i e r o f the next word − l a y e r 4 ( kept

as
319 %l a y e r {1} . next ) .
320 net . ac t iveLayer = 1 ;
321 net = trainCL ( net , nextWord ) ;
322 net . l a y e r {1} . next = net . l a y e r {1} . nodes ;
323

324 %I f the f i r s t word o f the sentence then tempNodes i s no use .
325 %Find the semantic c l a s s i f i e r o f the cur rent word .
326 i f ( wordIndex == 1)
327 net = trainCL ( net , word ) ;
328 e l s e
329 net . l a y e r {1} . nodes = tempNodes ;
330 end
331

332 %t r a i n the SRN i f not the l a s t epoch
333 net . ac t iveLayer = 2 ;
334 net = transferSRN ( net ) ;
335 i f ( i < net . numOfEpochs )
336 net = backpropSRN ( net ) ;
337 end
338

339 %r o l e i s input {2} , the s i t u a t i o n vec to r from f i l e
340 tempR ( : , : ) = r o l e s ( sentenceIndex , wordIndex , : ) ;
341 r o l e = tempR ’ ;
342 %a c t i v a t i o n propagetes to r o l e layer , and a s i n g l e node i s
343 %s e l e c t e d in the WTA compet i t ion in Layer 6 ( Role l a y e r )
344 net . ac t iveLayer = 6 ;
345 net = trainCL ( net , [ r o l e ] ) ;
346
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347 %The l i n k s from l a y e r {6}( r o l e l a y e r ) to input / output l a y e r
348 %tra ined −Simple Hebbian
349 net . ac t iveLayer = 6 ;
350 net = trainOutputLayer ( net , [ r o l e ] ) ;
351

352 end
353

354 % i f SRN s t i l l needs t r a i n i n g − keep t r a i n i n g
355 i f ( i < net . numOfEpochs )
356 cont inue ;
357 end
358

359 % Now l a y e r 2 r e p r e s e n t s the sentence type . Search i f any po int i s
360 % c l o s e enough to t h i s po int . I f so f i n d the index and save the words

a c c o r d i n g l y .
361 % Otherwise , save i f t h i s i s a new one .
362

363 %Keep the HL o f SRN in the MEMORY l a y e r
364 net . l a y e r {5} . nodes = net . l a y e r {2} . nodes ;
365

366 %context l a y e r − c l ean memory
367 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
368 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
369

370 numOfWords = s i z e ( s e n t e n c e s ( sentenceIndex , : , : ) , 2) − 1 ;
371

372 %Second PASS the l a s t epoch through the sentence
373 f o r wordIndex = 1 : numOfWords
374 %tempNext keeps the next word ’
375 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
376 nextWord = tempNext ’ ;
377 %i f the next word i s not empty = i f t h i s word i s not .
378 i f (~ any ( nextWord ) )
379 break ;
380 end
381 % temp keeps cur rent word
382 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
383 word = temp ’ ;
384 %tempNodes keeps the contents o f l a y e r 4 f o r the prev ious word .
385 %For speed ing up the computation only . semantic c l a s s i f i e r o f cur r ent

word .
386 tempNodes = net . l a y e r {1} . next ;
387 %F i r s t compute the semantic c l a s s i f i e r o f the next word − l a y e r 4 ( kept

as
388 %l a y e r {1} . next ) .
389 net . ac t iveLayer = 1 ;
390 net = trainCL ( net , nextWord ) ;
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391 net . l a y e r {1} . next = net . l a y e r {1} . nodes ;
392

393 %I f the f i r s t word o f the sentence then tempNodes i s no use .
394 %Find the semantic c l a s s i f i e r o f the cur rent word .
395 i f ( wordIndex == 1)
396 net = trainCL ( net , word ) ;
397 e l s e
398 net . l a y e r {1} . nodes = tempNodes ;
399 end
400

401 %go through the SRN
402 net . ac t iveLayer = 2 ;
403 net = transferSRN ( net ) ;
404

405 % Now l a y e r 2 r e p r e s e n t s the sub−sentence type up to t h i s po int . Search
i f any po int i s

406 % c l o s e enough to t h i s po int . I f so f i n d the index and save the words
a c c o r d i n g l y .

407 % Otherwise , save i f t h i s i s a new one .
408 %f i n d the r o l e
409

410 %r o l e i s input {2} , the s i t u a t i o n vec to r from f i l e
411 tempR ( : , : ) = r o l e s ( sentenceIndex , wordIndex , : ) ;
412 r o l e = tempR ’ ;
413 %a c t i v a t i o n propagetes to r o l e layer , and a s i n g l e node i s
414 %s e l e c t e d in the WTA compet i t ion in Layer 6 ( Role l a y e r )
415 net . ac t iveLayer = 6 ;
416 net = trainCL ( net , [ r o l e ] ) ;
417 % which node i s on in r o l e l a y e r ? = r o l e type
418 roleType = f i n d ( net . l a y e r {6} . nodes ) ;
419 %The l i n k s from l a y e r {6}( r o l e l a y e r ) to input / output l a y e r
420 %tra ined −Simple Hebbian
421 net . ac t iveLayer = 6 ;
422 net = trainOutputLayer ( net , [ r o l e ] ) ;
423

424 %net . sentenceWordType <− s e e which row o f the t a b l e the (
hidden layer , memory l a y e r ) belong to

425 net = findSentenceWordType ( net , roleType ) ;
426 %LOG
427 net . logSeven ( sentenceIndex , wordIndex ) = roleType ;
428 net . logSentWords ( sentenceIndex , wordIndex ) = net . sentenceWordType ;
429

430 % f i l l the LU table , that row keeps the r o l e type and the (
hidden layer , memory l a y e r )

431 net . LUtable (1 , net . sentenceWordType ) = roleType ;
432

433 end
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434

435 end
436

437 end
438

439 end
440 %%%%
441 f u n c t i o n [ net ] = trainCL ( net , input )
442 %trainCL t r a i n s the competet ive l a y e r
443 % input i s the input l a y e r to the network
444

445 layerNo = net . ac t iveLayer ;
446 net = trans ferCL ( net , input ) ; %c a l c u l a t e the a c t i v e l a y e r s ’ a c t i v a t i o n value
447 winner = f i n d ( net . l a y e r { layerNo } . nodes , 1) ; % winner i s the winner node in the a c t i v e

l a y e r ( f o r speed ing up the l e a r n i n g phase )
448 % t r a i n the l i n k s l e a d i n g to the winner node .
449 net . l a y e r { layerNo } .IW( : , winner ) = vonDerMalsburg ( net , input ) + net . l a y e r { layerNo } .IW

( : , winner ) ;
450

451 end
452 %%%
453 f u n c t i o n net = trans ferCL ( net , input )
454 %trans ferCL t r a n s f e r f u n c t i o n f o r competet ive l a y e r s
455 % input i s the input l a y e r to the a c t i v e layer , the a c t i v a t i o n f l o w s to
456 % the a c t i v e l a y e r through t h i s f u n c t i o n .
457

458 layerNumber = net . ac t iveLayer ;
459 %r e c i e v e d i s the a c t i v a t i o n r e c e i v e d in the l a y e r .
460 r e c e i v e d = input ∗ net . l a y e r { layerNumber } .IW;
461 % i f the f i r s t time l e a r n i n g ( no max s t i l l a v a i l a b l e . )
462 i f ( ~ net . l a y e r { layerNumber } . f i r s t T i m e )
463 %t r a n s f e r f u n c t i o n
464 a c t i v a t i o n = ( net . l a y e r { layerNumber } . c ∗ r e c e i v e d ) + . . .
465 ( (1 − net . l a y e r { layerNumber } . c ) ∗ ( r e c e i v e d . / ( net . l a y e r { layerNumber } .max) ) ) ;
466 temp = compet ( a c t i v a t i o n ’ ) ; %compet : 0 i f not the winner . ow 1 .
467 e l s e
468 net . l a y e r { layerNumber } . f i r s t T i m e = 0 ;
469 temp = compet ( rece ived ’ ) ;
470 end
471 % nodes <− temp
472 net . l a y e r { layerNumber } . nodes = z e r o s (1 , net . l a y e r { layerNumber } . s i z e ) ;
473 net . l a y e r { layerNumber } . nodes (1 , f i n d ( temp , 1) ) = 1 ;
474 % update the max
475 net . l a y e r { layerNumber } .max = max ( [ r e c e i v e d ; net . l a y e r { layerNumber } .max ] ) ;
476

477 end
478 %%%
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479 f u n c t i o n dw = vonDerMalsburg ( net , input )
480 %VONDERMALSBURG i s used f o r t r a i n i n g the l i n k s .
481 % input i s the l a y e r below the a c t i v e l a y e r . dw i s the change in the
482 % l i n k s between the input l a y e r and the a c t i v e l a y e r .
483

484 layerNo = net . ac t iveLayer ;
485 % winner i s found to speed up the l e a r n i n g .
486 winner = f i n d ( net . l a y e r { layerNo } . nodes , 1) ;
487 % the change i s only made in the l i n k s l e a d i n g to the winner node .
488 dw = net . l a y e r { layerNo } . l ea rn ingRate . ∗ . . .
489 ( ( input . / sum( input ) ) ’ − net . l a y e r { layerNo } .IW( : , winner ) ) ;
490

491

492 end
493 %%%
494 f u n c t i o n net = transferSRN ( net )
495 %TRANSFERSRN i s the f e ed forward phase o f the SRN
496

497 % hidden l a y e r <− l o g s i g ( context l a y e r & input (POS) l a y e r ∗ t h e i r weights & b i a s )
498 % to speed up the c a l c u l a t i o n o f l a y e r 2
499 winner = f i n d ( net . l a y e r {1} . nodes , 1) ;
500 net . l a y e r {2} . nodes = l o g s i g ( net . l a y e r {3} . nodes ∗ net . l a y e r {3} .IW + net . l a y e r {2} .IW(

winner , : ) + net . l a y e r {2} . b i a s ) ;
501

502 %copy hidden l a y e r (2 ) i n t o context l a y e r (3 )
503 net . l a y e r {3} . nodes = net . l a y e r {2} . nodes ;
504

505 %output l a y e r (4 ) <− l o g s i g ( hidden l a y e r ∗ t h e i r weights & b i a s )
506 net . l a y e r {4} . nodes = l o g s i g ( net . l a y e r {2} . nodes ∗ net . l a y e r {4} .IW + net . l a y e r {4} . b i a s )

; % output l a y e r <− hidden l a y e r & b i a s
507 end
508 %%%
509 f u n c t i o n net = backpropSRN ( net )
510 %BACKPROPSRN performs the backpropagat ion a lgor i thm on the SRN
511

512 % d e l t a { out } = teacher − output
513 % other de l ta ’ s = delta_upper ∗ W in the middle
514 % W += alpha ∗ input ∗ [ output ∗ (1 − output ) ∗ delta_output ]
515

516 % to speed up the computation
517 % d e l t a <− output l a y e r . ∗ (1 − output l a y e r ) . ∗ ( t eacher − output l a y e r )
518 d e l t a = ( net . l a y e r {4} . nodes . ∗ (1 − net . l a y e r {4} . nodes ) ) . ∗ ( net . l a y e r {1} . next − net .

l a y e r {4} . nodes ) ;
519 % d e l t a hidden l a y e r <− ( d e l t a ∗ l i n k s to output layer ) . ∗ hidden l a y e r . ∗ (1 − hidden

l a y e r )
520 deltaHidden = ( ( net . l a y e r {4} .IW) ∗ ( d e l t a ) ’ ) ’ . ∗ net . l a y e r {2} . nodes . ∗ (1 − net .

l a y e r {2} . nodes ) ;
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521

522 %modify the l i n k s / b i a s e s accord ing to d e l t a o f each l a y e r
523 net . l a y e r {2} .IW = net . l a y e r {2} .IW + net . l a y e r {2} . alpha ∗ net . l a y e r {1} . nodes ’ ∗ (

deltaHidden ) ;
524 net . l a y e r {3} .IW = net . l a y e r {3} .IW + net . l a y e r {3} . alpha ∗ net . l a y e r {3} . nodes ’ ∗ (

deltaHidden ) ;
525 net . l a y e r {4} .IW = net . l a y e r {4} .IW + net . l a y e r {4} . alpha ∗ net . l a y e r {2} . nodes ’ ∗ (

d e l t a ) ;
526

527 net . l a y e r {2} . b i a s = net . l a y e r {2} . b i a s + net . l a y e r {2} . alpha ∗ ( deltaHidden ) ;
528 net . l a y e r {4} . b i a s = net . l a y e r {4} . b i a s + net . l a y e r {4} . alpha ∗ ( d e l t a ) ;
529

530 end
531 %%%
532

533 f u n c t i o n [ net ] = trainOutputLayer ( net , input )
534 %trainOutputLayer t r a i n s the l i n k s between the s i t u a t i o n l a y e r ( input {2})
535 % and the r o l e l a y e r ( layerNo )
536 % The l i n k s are from r o l e l a y e r to the s i t u a t i o n l a y e r
537 % The t r a i n i n g a lgor i thm = simple Hebbian
538

539

540 layerNo = net . ac t iveLayer ;
541 %to speed up computation
542 winner = f i n d ( net . l a y e r { layerNo } . nodes ) ;
543

544 %i n c r e a s e the weights from the winner node to the a c t i v e nodes in s i t u a t i o n
545 % l a y e r by the constant " increament "
546 net . input {2} .IW( winner , : ) = net . input {2} .IW( winner , : ) . . .
547 + input . ∗ ( net . input {2} . increment ) ;
548 end
549

550 %%%
551

552 f u n c t i o n net = findSentenceWordType ( net , roleType )
553 % f i n d s the column o f LUT to which ( hidden layer , memory l a y e r ) be longs to
554 % i f none c r e a t s new column f o r that .
555 % r o l e l a y e r i s here f o r e r r o r d e t e c t i o n
556 % net . sentenceWordType w i l l be the column o f the cur rent ( hidden layer , memory l a y e r )
557

558 % Now (memory layer , hiddedn l a y e r ) r e p r e s e n t s the sentence type and words p o s i o t i o n .
559 % Search i f any po int i s c l o s e enough to t h i s po int .
560 % I f so f i n d the index and save the words a c c o r d i n g l y .
561 % Otherwise , save i f t h i s i s a new one .
562

563 [ t a b l e S i z e dummy] = s i z e ( net . sentenceWordTable ) ;
564 f o r i = 1 : t a b l e S i z e
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565 %f o r every column in the t a b l e
566

567 % see how c l o s e are (memory layer , hiddedn l a y e r ) and the cur rent item o f the
LUT

568 dotP = normalizedDotProduct ( [ net . l a y e r {5} . nodes net . l a y e r {2} . nodes ] , net .
sentenceWordTable ( i , : ) ) ;

569

570 % i f the f i r s t item in the t a b l e
571 i f ( dotP == −100)
572 %newEntry
573 net . sentenceWordTable ( i , : ) = [ net . l a y e r {5} . nodes net . l a y e r {2} . nodes ] ;
574 net . sentenceWordType = i ;
575 r e turn ;
576 end
577 i f ( net . LUtable (1 , i ) ~= roleType )
578 cont inue ;
579 end
580 i f ( dotP >= net . thresholdDP )%i f they are c l o s e enough
581 net . sentenceWordType = i ; % column found
582 %LOGGING PURPOSES TO SET THRESHOLD
583 i f ( dotP < net . logDP )
584 net . logDP = dotP ;
585 end
586 r e turn ;
587 end
588

589 end
590 % i f not returned means new entry must be added at the end o f the t a b l e
591 %d i s p l a y ( ’ one added ’ )
592 net . sentenceWordTable ( t a b l e S i z e + 1 , : ) = [ net . l a y e r {5} . nodes net . l a y e r {2} . nodes ] ;
593 net . sentenceWordType = t a b l e S i z e + 1 ;
594

595 end
596 %%%
597

598 f u n c t i o n c o s i n e = normalizedDotProduct (x , y )
599 % NormalizedDotProduct computes the value o f the
600 % c o s i n e between two v e c t o r s . x . y = | x | ∗ | y | ∗ cos ( xoy ) ; where x . y means the
601 % dot product o f the two v e c t o r s x and t , | x | and | y | mean the
602 % norm/magnitude o f v e c t o r s x and y r e s p e c t i v e l y , and xoy i s the c o s i n e
603 % between v e c t o r s x and y .
604 % According to th i s , cos ( xoy ) = x . y / ( | x | ∗ | y | ) .
605 % NDP ~ C o r r e l a t i o n
606

607 normx = norm( x ) ;%the f u n c t i o n norm computes the norm/magnitude o f a vec to r
608 normy = norm( y ) ;
609
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610 i f ( s i z e (x , 2) ~= s i z e (y , 2) )
611 %i f the two v e c t o r s are not o f the same s i z e / dimension ; no dot product
612 %d e f i n e d .
613 d i s p l a y ( ’ normalizedDotProduct : vec to r s i z e dismatch ’ ) ;
614 c o s i n e = 0 ;
615 e l s e i f ( normx == 0 | | normy == 0 )
616 %i f one o f the v e c t o r s i s o r i g i n , they are p e rp e n d i c u l a r
617 c o s i n e = −100;
618 d i s p l a y ( ’ normalizedDotProduct : One o f the v e c t o r s was O. ’ ) ;
619 e l s e
620 c o s i n e = ( x∗y ’ ) / ( normx ∗ normy ) ;
621 end
622

623 end
624 %%%
625 f u n c t i o n net = t e s t ( net , s e n t e n c e s )
626 % TEST t e s t s the tra inednetwork
627 % inputs are net and the t e s t s e n t e n c e s
628 % Al l the outputs ( s i t u a t i o n l a y e r f o r every word ) i s saved
629 % to be l a t e r v e r i f i e d
630

631 numOfSentences = s i z e ( sentences , 1) ;
632 %LOG index
633 index = 1 ;
634

635 %For every sentence in the t e s t corpus
636 f o r sentenceIndex = 1 : numOfSentences
637 %context / hidden l a y e r − c l ean memory
638 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
639 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
640

641 %num of words i s l e s s than the s i z e o f each sentence ( no per iod )
642 numOfWords = s i z e ( s e n t e n c e s ( sentenceIndex , : , : ) , 2) − 1 ;
643 %%FIRST PASS
644 %f o r each word in the sentence
645 f o r wordIndex = 1 : numOfWords
646

647 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
648 %word i s the cur rent word o f the sentence
649 word = temp ’ ;
650 %tempNext keeps the next word ’
651 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
652 nextWord = tempNext ’ ;
653 %i f the next word i s not empty = i f t h i s word i s not .
654 i f (~ any ( nextWord ) )% i f the sentence i s proce s s ed
655 break ;
656 end
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657 %f i n d the semantic l a y e r a c t i v a t i o n
658 net . ac t iveLayer = 1 ;
659 net = trans ferCL ( net , word ) ;
660 %then the i n f o f low and f i n d the a c t i v a t i o n in l a y e r s o f SRN
661 net . ac t iveLayer = 2 ;
662 net = transferSRN ( net ) ;
663 end
664 %copy context l a y e r to the memory l a y e r
665 net . l a y e r {5} . nodes = net . l a y e r {2} . nodes ;
666 %context / hidden l a y e r − c l ean memory
667 net . l a y e r {3} . nodes = z e r o s (1 , net . l a y e r {3} . s i z e ) ;
668 net . l a y e r {2} . nodes = z e r o s (1 , net . l a y e r {2} . s i z e ) ;
669

670 %SECOND PASS
671 f o r wordIndex = 1 : numOfWords
672 temp ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex , : ) ;
673 %word i s the cur rent word o f the sentence
674 word = temp ’ ;
675 %tempNext keeps the next word ’
676 tempNext ( : , : ) = s e n t e n c e s ( sentenceIndex , wordIndex + 1 , : ) ;
677 nextWord = tempNext ’ ;
678 i f (~ any ( nextWord ) )% i f the sentence i s proce s s ed
679 break ;
680 end
681 %f i n d the semantic l a y e r a c t i v a t i o n
682 net . ac t iveLayer = 1 ;
683 net = trans ferCL ( net , word ) ;
684 %then the i n f o f low and f i n d the a c t i v a t i o n in l a y e r s o f SRN
685 net . ac t iveLayer = 2 ;
686 net = transferSRN ( net ) ;
687 %f i n d the match f o r the memory l a y e r + context l a y e r o f SRN in the LU
688 sentenceWordType = f i n d C l o s e s t I n T a b l e ( [ net . l a y e r {5} . nodes net . l a y e r {2} . nodes

] , net . sentenceWordTable ) ;
689 %f i n d the ro l e , by the r o l e
690 roleType = net . LUtable (1 , sentenceWordType ) ;
691 %t h i s i s going to be the r o l e l a y e r
692 net . l a y e r {7} . nodes = z e r o s (1 , net . l a y e r {7} . s i z e ) ;
693 net . l a y e r {7} . nodes (1 , roleType ) = 1 ;
694 %exactOut ( index , : ) : output −s i t u a t i o n l a y e r
695 net . exactOut ( index , : ) = net . l a y e r {7} . nodes ∗ net . input {2} .IW;
696 %LOG
697 index = index + 1 ;
698 %LOG
699 net . logTestSentType ( sentenceIndex , wordIndex ) = sentenceWordType ;
700 net .TESTa( sentenceIndex , wordIndex ) = f i n d ( net . l a y e r {1} . nodes ) ;
701 net . TESToutput ( sentenceIndex , wordIndex ) = roleType ;
702
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703 end
704 end
705

706 end
707 %%%
708 f u n c t i o n index = f i n d C l o s e s t I n T a b l e ( input , t a b l e )
709 %f i n d s the c l o s e s t ( g r e a t e s t normal ized dot product ) item in the LU to the input
710 %to f i n d the cor re spond ing r o l e
711 [ s i zeT dummy] = s i z e ( t a b l e ) ;
712 min = −1;
713 %go through a l l the items in t a b l e
714 f o r i = 1 : s i zeT
715 %dotP i s how c l o s e i s t h i s item to the input
716 dotP = normalizedDotProduct ( input , t a b l e ( i , : ) ) ;
717 %i f t h i s item i s not b e t t e r than the p r e v i o u s l y found item move on
718 i f ( dotP < min )
719 cont inue ;
720 end
721 % other wise keep t h i s item ’ s index and update min ( d i s t a n c e )
722 min = dotP ;
723 index = i ;
724

725 end
726

727 end
728 %%%
729 f u n c t i o n net = j u s t i f y ( net , r o l e s , s e n t e n c e s )
730 %JUSTIFY j u s t i f i e s / v e r i f i e s the r e s u l t s
731 %goes through the saved outputs f o r each word
732 %checks i t with the r o l e s in the t e s t i n g corpus
733

734 numOfSentences = s i z e ( r o l e s , 1) ;
735 index = 1 ;
736 %For every sentence
737 f o r sentenceIndex = 1 : numOfSentences
738 numOfWords = s i z e ( r o l e s ( sentenceIndex , : , : ) , 2) ;
739 %For every word
740 f o r wordIndex = 1 : numOfWords
741 temp ( : , : ) = r o l e s ( sentenceIndex , wordIndex , : ) ;
742 %r o l e i s the r o l e o f the cur rent word
743 r o l e = temp ’ ;
744 % i f the sentence i s not f i n i s h e d yet
745 i f (~ any ( r o l e ) )
746 break ;
747 end
748

749 %c a l c u l a t e the r e c e i v e d value from l a y e r 3 to s i t u a t i o n l a y e r
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750 %compare them with r o l e s vec to r
751 winner = net . TESToutput ( sentenceIndex , wordIndex ) ;
752 %ERROR LOG
753 i f (~ any ( net . input {2} .IW( winner , : ) ) )
754 winner
755 d i s p l a y ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ) ;
756 end
757 net . c o r r e c t ( sentenceIndex , wordIndex ) = normalizedDotProduct ( net . input {2} .IW(

winner , : ) , r o l e ) ;
758 net . exactCorrect ( sentenceIndex , wordIndex ) = normalizedDotProduct ( net .

exactOut ( index , : ) , r o l e ) ;
759 index = index + 1 ;
760 end
761 end
762 end
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