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Abstract

Diblock copolymer melts are of great interest in industry today. Their ability to naturally

self-assemble at a microscopic scale is a great asset in manufacturing complex materials

such as plastics, textiles, and integrated circuits. The modified Cahn-Hilliard (mCH) equa-

tion studied in this thesis is a partial differential equation (PDE) based mathematical model

for diblock copolymer self-assembly. This is a stiff, non-linear, fourth-order parabolic PDE

that presents some challenges when numerically solving it on general surfaces. This thesis

presents several methods employed in overcoming these difficulties and produces results

that support the accuracy of these methods. Our software uses the Closest Point Method

(CPM), a central feature of which is geometric flexibility. This allows us to compute on

simple analytically defined shapes, such as the sphere, as well as on complex shapes defined

by triangulation with no modification to the code.
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Chapter 1

A Modified Cahn-Hilliard Equation

The modified Cahn-Hilliard equation is a mathematical model for the micro-phase sepa-

ration of diblock copolymers. These have many applications in industry due to their self-

assembling properties. There are still many unanswered questions as to how curvature

affects this model. The goal of this thesis is to solve the modified Cahn-Hilliard (mCH)

equation on general surfaces. The methods implemented in this endeavour are general and

are designed to be readily extended to any general smooth surface.

This introductory chapter presents diblock copolymers, provides a brief derivation of

the mCH equation, and exposes its pattern forming property by performing a linear stability

analysis on the finite plane with periodic boundary conditions, T2, and on the 2-sphere, S.

1.1 Diblock Copolymers

Monomers are molecules that are able to bond together to form long chains, or macro-

molecules, called polymers. These are ubiquitous in industry today. For example polystyrene

is used to make Styrofoam, while polyester is widely used in the textile industry.

Polymers are chosen according to their inherent properties whether it be chemical, elec-

trical, mechanical, or optical. In certain applications, one might wish to combine two differ-

ent properties in one material. For instance, monomer A might have a desired mechanical

property while monomer B has a desired optical property. One would like to ensure a

structured and even distribution of the two properties throughout the material. To this end,

chemists covalently bond two chains of polymers A and B, thus forming a macromolecule

1



CHAPTER 1. A MODIFIED CAHN-HILLIARD EQUATION 2

called a diblock copolymer. A diblock copolymer melt is a high-temperature, disordered

fluid composed of these macromolecules. When such a melt cools it can, under certain

circumstances, undergo a phase separation and naturally form a complex material with in-

tricate microstructure; in other words, domains of A and B nucleate and settle into a spatial

configuration at the microscopic scale [BF99].

1.2 The Cahn-Hilliard Energy Functional

Before deriving the modified Cahn-Hilliard equation, let us introduce some of the mathe-

matics by considering a slightly simpler problem. Suppose we are given a melted mixture

of two distinct fluids, A and B on a finite domain M with periodic boundary conditions.

The manifold M is also equiped with a metric g to measure distances. In this simpler case,

chains of A and B are not bonded together and are free to segregate. The Cahn-Hilliard

equation models this system as it is cooled.

At any point on M , there are relative densities ρA,ρB : M → [0,1]. These represent

the ratio of volume of A or B per volume of mixture, respectively. Suppose there are no

other components in our system and no vacuum is allowed to form, so that the following

constraint holds:

ρA +ρB = 1. (1.1)

One can therefore reduce the number of variables by one and solve for a single function

ũ : M → [−1,1] defined as

ũ := ρA−ρB. (1.2)

Notice ũ(x) = 1 means that there is no B at x ∈M , and ũ(x) =−1 means there is no A at

x. The remainder of this section is an overview of manipulations carried out in a rigorous

way in [CPW09] that lead to the modified Cahn-Hilliard equation.

The Cahn-Hilliard and modified Cahn-Hilliard equations are obtained by taking the

H−1 gradient flow of an energy that reasonably describes the preferences of the system. The

two fluids, A and B, will want to (i) be with like fluids, i.e. ũ = ±1 should be encouraged

and (ii) minimize the interface of interaction with the other fluid, i.e. boundaries (where

|∇ũ| � 1) should have minimal length. We work in the diffuse interface limit where the

transition layer has thickness γ . One possible choice of energy functional is the following,
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commonly known as the Cahn-Hilliard energy functional

E(ũ;γ) :=
1
4

∫
M
(1− ũ2)2dΩ(g) +

1
2γ2

∫
M
|∇ũ|2dΩ(g)

(i) (ii)

(1.3)

where dΩ(g) is an infinitesimal volume element that depends on the metric g. The param-

eter γ > 0 enables the control of the relative importance of the two terms in our energy.

Physically speaking, the energy should be bounded. Mathematically, (1.3) is bounded

when ∇ũ is bounded in L2. Therefore the energy minimizer ũ is in the space H1(M ). See

the appendix for a more precise definition. The gradient of a function ũ in this space must

have a finite L2 norm but is not necessarily continuous; therefore kinks in the minimizer of

(1.3) are allowed.

1.2.1 Adding the Non-Local Term

Now consider the diblock copolymer melt where the A and B fluids cannot macroscopically

segregate because each chain of A is attached to a chain of B. The energy functional needs

the added condition that (iii) ũ locally maintains its average value m. The H−1 norm of

ũ−m, (iii) in (1.4), is the ideal tool to impose such a constraint. This added feature leads

to the modified Cahn-Hilliard free energy functional

E(ũ;γ,m) :=
1
4

∫
M
(1− ũ2)2dΩ(g) +

1
2γ2

∫
M
|∇ũ|2dΩ(g) +

1
2

∫
M
|∇v|2dΩ(g)

(i) (ii) (iii)
(1.4)

where v solves

−∆v = ũ−m (1.5)

on M with periodic boundary conditions. With this energy functional one seeks a global

minimizer of E, with fixed γ and m, ũ ∈ {w ∈ H1(M )|
∫̄

w = m}.
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Link To Experiments

There are different ways to scale this PDE. The advantage of this scaling of the modified

Cahn-Hilliard functional is that the parameters γ and m it features can be related in a very

simple way to physically meaningful parameters [CPW09]. This helps one gain some

intuition in the expected qualitative behaviour of global minimizers. More importantly, it

helps relate results found numerically with the model to results found experimentally in the

laboratory.

Indeed γ is proportional to a product of parameters known in the polymer science liter-

ature as χN. The dimensionless Flory-Huggins parameter χ quantifies the incompatibility

of A and B per monomer, and N measures the length of a polymer chain in number of

monomers (χN is therefore a unitless dimensionless quantity). In other words, the larger

the χN the sharper the edges because if A and B feel a strong repulsion, there will be less

mixing at the domain boundaries. This also agrees with the model since in the functional

a large γ allows a greater larger variation at the boundaries, i.e. sharper edges. Physically,

the Flory-Huggins parameter is also inversely proportional to temperature. In the model, if

γ is decreased (temperature increased) then the fourth order term becomes more important

and we expect smoother solutions.

1.3 A Modified Cahn-Hilliard Equation

In order to locate the minimizer function ũ, one derives an evolution equation from the

modified Cahn-Hilliard energy functional by defining an artificial time variable t and re-

defining ũ : R+×M → [−1,1]. This way ũ will travel across the energy landscape in

directions that will decrease the Cahn-Hilliard free energy until it reaches a steady state

which will be an, at least local, minimizer of the energy. By formally computing the H−1

directional gradient of (1.4) and making ũ evolve along this direction one arrives [CPW09]

at the following gradient flow equation

ũt = ∆(ũ3)−∆ũ− 1
γ2 ∆

2ũ− (ũ−m) (1.6)
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where ũ(t, ·)∈
{

w∈H1(M )
∣∣∣ ∫̄w=m

}
for all t > 0. This fourth-order, non-linear parabolic

partial differential equation can be rescaled by rescaling ũ

u = ũ−m (1.7)

which yields

ut = ∆(u3 +3mu2)− (1−3m2)∆u− 1
γ2 ∆

2u−u (1.8)

where u(t, ·) ∈
{

w ∈ H1(M )
∣∣∣ ∫̄ w = 0

}
. The new u now represents the deviation from the

macroscopic average m. The goal of this thesis is to solve Equation 1.8 on general surfaces

numerically. We shall first briefly analyse the equation.

1.4 Linear Stability Analysis

Equation (1.8) is the form of the modified Cahn-Hilliard equation that will be studied in

this thesis.

This pattern-forming equation features bifurcation parameters, namely γ and m. Struc-

ture forms when the parameters are such that the homogeneous solution becomes linearly

unstable and certain modes grow in amplitude. The non-linear terms are responsible for

bounding the growth, while the most unstable modes dictate the length scale of the ob-

served patterns. Because of the crucial role played by linear stability, in this section we

provide a linear stability analysis of the equation on two different geometries: Td and the

2-sphere S.

1.4.1 In Td

Let us begin the analysis in Td , the d-dimensional hypercube of side 2π with periodic

boundary conditions, by considering spatially homogeneous solutions. In this case all the

spatial derivatives vanish leaving

ut =−u, in R+×Td (1.9)

which yields

u(t,x) = u0e−t , (t,x) ∈ R+×Td (1.10)
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which decays to u = 0. Therefore the constant solution u(t,x) ≡ 0 is linearly stable to all

spatially homogeneous perturbations. Recall from (1.7) that u = 0 means that there is no

deviation in volume fraction, ũ, from the macroscopic average m. This solution corresponds

to disorder: it does not exhibit any pattern or structure. At any point, any neighbourhood

contains as many A as B monomers per volume if m = 0, and the corresponding proportion

if m 6= 0.

Next consider the linear part of the modified Cahn-Hilliard equation

ut =−(1−3m2)∆u− 1
γ2 ∆

2u−u (1.11)

and consider small perturbations to the homogeneous solution. Since we are in Td let us

decompose the perturbation into Fourier modes since they are the eigenfunctions of the

Laplace operator on Td

u(t,x) = ∑
k

ûk(t)eλkteik·x (1.12)

where |ûk(t)| � 1, for all k ∈ Nd .

Plugging the perturbation ansatz (1.12) into (1.11), and using orthogonality of Fourier

modes to decouple the problem, leads to the following growth rates λk for the kth perturba-

tion modes

λkûk =
[
(1−3m2)k2− 1

γ2 k4−1
]
ûk (1.13)

where k2 = |k|2. Henceforth, the label “kth modes” refers to all modes k ∈ Nd for which

|k|= k. The growth rate is plotted in Figure 1.1. One easily computes the quantities

k2
max =

γ2

2
(
1−3m2) (1.14)

and

λmax =
γ2

4
(
1−3m2)2−1. (1.15)

Given the form (1.12), the amplitude of the kth perturbation modes grows when λk > 0

and decays to 0 when λk < 0. In other words, pattern formation occurs when λk > 0

or γ(1−3m2) > 2; this is a curve in (γ,m) space known as the Order-Disorder Transition

(ODT) curve. Perturbation modes kmax grow the fastest, quickly dominating other decaying

or less rapidly growing modes.
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0 kmax
k

λmax

0

−1

λk

Figure 1.1: Growth rate of the kth perturbation modes. The allowed values of k are integers,

and the corresponding λk values are read off the curve.

Since Td is bounded, the Fourier spectrum is discrete and kmax may not be an integer.

In this case the allowed kmax modes are the k ∈ Nd with highest associated λk. These

perturbation modes dictate the length scale of the solution which is inversely proportional

to kmax.

Depending on the geometry, different patterns may form. For instance, in T1 the solu-

tion resembles a sine curve while in T2 the different combinations of kx and ky allow for

hexagonally packed spots as well as lamellar phases (characterized by stripes of alternating

A and B domains) [Mar08]. In T3 the patterns can become quite intricate with interweav-

ing domains of A and B and the (γ,m) phase diagram is a mosaic of seemingly stable

structures [MB96]. Presumably, the chosen pattern is the one that minimizes the non-local

Cahn-Hilliard energy functional given a set of bifurcation parameters γ and m.

1.4.2 On the 2-Sphere

The linear stability analysis of this equation on the 2-sphere S is remarkably similar to

the analysis in Td . This is due to the similarities between the Laplacian in Td and the
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Laplace-Beltrami operator on S. Indeed, on a sphere of radius R equation (1.8) becomes

ut = s2
∆S
(
u3 +3mu2)− s2 (1−3m2)

∆Su− s4

γ2 ∆
2
Su−u (1.16)

where ∆S is the Laplace-Beltrami operator and s = 1
R . Spatially homogeneous solutions

clearly still decay exponentially to u ≡ 0. The equation can be split into a linear and non-

linear part

ut = N {u}+L u (1.17)

where

N {u}= s2
∆S
(
u3 +3mu2) (1.18)

and

L =−s2(1−3m2)
∆S−

s4

γ2 ∆
2
S−1. (1.19)

For now, we are only concerned with the linear operator L . Using the same argument

as in Section 1.4.1 on the 2-sphere, perturbations should be decomposed into the eigen-

basis of the Laplace-Beltrami operator, namely the spherical harmonics Y n
l labeled by a

non-negative positive integer l and a second integer index −l ≤ n ≤ l. The eigenvalue

corresponding to Y n
l is −l(l +1), i.e.

∆SY n
l =−l(l +1)Y n

l . (1.20)

Expanding perturbations in spherical harmonics yields

u(t, ·) = ∑
l

∑
n

ûl
nY n

l (·)e
λ t . (1.21)

Plugging this into (1.27) in turn yields the following growth rate for the (l,n)th mode

λln = s2 (1−3m2) l(l +1)− s4

γ2 l2(l +1)2−1. (1.22)

The 2-sphere is a finite domain and the spectrum is discrete. The expression for λln

looks a lot like λk from Section 1.4.1 and one readily finds the location of the peak to be

lpeak(lpeak +1) =
γ2

2s2

(
1−3m2) , (1.23)

lpeak =−
1
2
+

1
2

√
1+

2γ2

s2 (1−3m2). (1.24)
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0 lmax
l

λmax

0

−1

λln

Figure 1.2: Growth rate of the lth perturbation mode. The (red) curve is only a guide. Since

l takes on positive integer values only, the growth rate is necessarily discrete (black dots).

However, since l must be an integer, the true fastest growing mode lmax will be one of the

integer values sandwiching lpeak, the one that yields the highest λ , namely λmax := λlmaxn,

refer to Figure 1.2.

Note that plugging (1.23) into (1.22) yields the following minimum condition for linear

instabilitiy:
γ2

4
(1−3m2)2−1 > 0. (1.25)

This is the same expression as in Td , the constant curvature does not affect the ODT curve.

We proceed with an asymptotic analysis of the behaviour of solutions to the equation

as we study problems that are very close to the ODT curve. Consider a fixed point in

parameter space (s, γ̄, m̄) on the ODT curve, and consider perturbing the problem in the

m-direction, i.e.

m = (1− ε)m̄ (1.26)

where ε � 1. So the perturbed problem becomes

ut = s2
∆S
(
u3 +3(1− ε)m̄u2)− s2 (1−3(1−2ε + ε

2)m̄2)
∆Su

− s4

4
[
1−3m̄2(1−2ε + ε

2)
]2

∆
2
Su−u (1.27)
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Expanding the solution asymptotically around the homogeneous solution

u = εu0 + ε
2u1 + ε

3u2 + . . . (1.28)

and plugging (1.28) into (1.27) leads to

(εu0 + ε
2u1 + ε

3u2 + . . .)t = s2
∆S

(
ε

3u3
0 +3m̄ε

2u2
0−3m̄ε

3u2
0 + . . .

)
+

− s2 [
ε(1−3m̄2)∆Su0 +6ε

2m̄2
∆Su0 + ε

2(1−3m̄2)∆Su1 + . . .
]
+

− s4

4
[
ε(1−3m̄2)2

∆
2
Su0 +12ε

2m̄2(1−3m̄2)∆2
Su0 + ε

2(1−3m̄2)2
∆

2
Su1 + . . .

]
+

− εu0 + ε
2u1 + . . . (1.29)

where we have ignored most ε3 terms. We now equate the orders individually:

First order:

(u0)t =−s2(1−3m̄2)∆Su0−
s4

4
(1−3m̄2)2

∆
2
Su0−u0 (1.30)

Second order:

(u1)t =−(1−3m̄2)∆Su1−
s4

4
(1−3m̄2)2

∆
2
Su1−u1+

+ s23m̄∆S
(
u2

0
)
−6ε

2s2m̄2
∆Su0−3s4m̄2(1−3m̄2)∆2

Su0 (1.31)

or more succinctly

(u1)t = L u1 +R{u0} (1.32)

Notice that the second-order equation looks like the first-order equation with a forcing

term that arises from the lower order solution u0. The first term of the second line of

(1.31) is where part of the non-linear term is felt. We know how to solve (1.30) with

spherical harmonics; u1 can similarly be solved for with spherical harmonics Y n
l as long

as there are no resonant forcing caused by the non-linear operator R. In other words, the

solvability condition from Fredholm’s alternative will dictate the allowed value(s) of n in

the u0 solution.

Unfortunately, this is not done in any more detail, and one may need to take the analysis

further into the third order equation to derive restrictions on values of n.
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1.5 Thesis Outline

Chapter 2 describes all the numerical methods implemented to solve the time-dependent

PDE (1.27) accurately on general smooth surfaces. Chapter 3 presents some test cases

and numerical results for the surface of the 2-sphere, providing convincing evidence that

the methods used can provide accurate solutions to more complicated equations. The last

section of Chapter 3 is also dedicated to numerical experiments on the Stanford bunny.

Finally, Chapter 4 closes with exciting possibilities for future work.



Chapter 2

Numerical Methods

This chapter presents in detail all the numerical machinery needed to numerically study

the mCH equation. We begin with an introduction to the Closest Point Method (CPM),

followed by the various time-stepping methods tried, and conclude with a description of

the algorithm used to compute surface integrals as well as the algorithm developed to find

and label domains on surfaces.

2.1 The Closest Point Method

The CPM is one of a larger class of methods called embedding methods. It solves an

equation on a complicated manifold by looking at a corresponding problem in a larger,

usually higher dimensional, space: the embedding space. The correspondence is non-

trivial, yet quite straightforward for most differential operators. Unlike other embedding

methods that might use the level set of a function, the CPM does not require an “inside” and

an “outside”, so the computational manifold can be open, closed, oriented, or non-oriented

(e.g., the Möbius strip). The method is not restricted to surfaces embedded in R3, it allows

solving on filaments in R3; or on the Klein bottle in R4.

When solving the equation in the embedding space, the CPM can be used with well-

known methods such as finite difference, finite volume, finite element, or even spectral

methods. Once the equation is solved, the desired solution on the manifold is obtained by

interpolating back onto the manifold.

The next section explains what surface representation is used by the CPM and how to

12
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compute it efficiently for general surfaces defined by triangulation. The subsequent section

lists the steps of the algorithm, followed by a description of a pair of subroutines imple-

mented to make the method more efficient, namely: banding and barycentric Lagrange

interpolation.

2.1.1 The Closest Point Representation

In order to compute a numerical solution on a surface accurately, the surface must be unam-

biguously identified. Whether a numerical solver has a parameterization, a triangulation, or

the level set of a given function, it must know where the surface lies. This section presents

the closest point representation that is used by the CPM.

Given a manifold M embedded in a space Rd consider the operator

cp : Rd →M (2.1)

such that for each point x ∈ Rd , cp(x) is the point on M that is closest to x, i.e.

cp(x) = argmin
y∈M

||x−y||L2(Rd), ∀x ∈ Rd (2.2)

where since M ⊂ Rd , (x−y) is well defined.

Note that this representation is not necessarily unique. Indeed, for certain pathological

manifolds, such as one with corners or kinks, it can be inherently non-unique, however,

for smooth surfaces a fine enough discretization will lead to a unique representation in a

neighbourhood of the surface.

Now consider the function

uM : M → R. (2.3)

This function can be extended to the embedding space by defining the function u : Rd→R
and the extension operator E : H1(M )→ H1(Rd) such that

u(x) := EuM (x) = uM (cp(x)). (2.4)

In other words, at every point in the embedding space, the operator E gives u the value of

uM at the corresponding closest point. Therefore, by construction, in a neighbourhood of

M , EuM is constant along directions normal to M . It follows that for all y ∈M

∇EuM (y) = ∇M uM (cp(y)), (2.5)
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where ∇ is the standard gradient in Rd and ∇M is the intrinsic gradient on M , which

is everywhere tangent to the manifold. Similar equalities hold for the ∇· and ∆ opera-

tors [RM08]. Simply applying an operator E before a linear operator does not always

provide the corresponding embedding space operator. As will be seen with the biharmonic

operator, a simple correction provides the correct extended operator.

With these equalities, a large class of PDEs can readily be translated from an equation

for uM on M to an equation for u in Rd by simply switching the manifold’s intrinsic

differential operators to their counterparts in the embedding space. This way one can use

a regular grid in Rd , where there exist known, studied, and accurate discrete operators to

numerically solve for an approximation to u. Once the approximation is found, it is a simple

matter of interpolating the grid node values u(x) back onto M to obtain an approximation

to uM . It is important to note that for time-dependent PDEs this must be done at each time

step, or at each stage of a Runge-Kutta method, in order to stay consistent with the original

equation.

The following section goes over the algorithm step-by-step and illustrates the simplicity

of the method on a simple example.

2.1.2 The Algorithm

Consider the heat equation on the unit circle, i.e. ∂

∂ t uM = ∆M uM , on M

uM (0, ·) = u0,
(2.6)

where M is the unit circle embedded in R2. Instead of solving this equation directly,

consider in turn the corresponding equation in the embedding space R2, i.e.ut = ∆u, in R2

u(0,x) = u0(cp(x)).
(2.7)

This is one of the simplest PDEs and solving it numerically in R2 can be much less chal-

lenging than (2.6) depending on M . There is a plethora of methods and schemes to choose

from depending on one’s accuracy and speed requirements and all will work with the CPM.
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A finite difference method with the second order centered stencil as a discretized Lapla-

cian operator will be used throughout the thesis. Since the objective in this section is to

introduce the method, no superfluous complications will be added. Therefore, the time-

stepping method adopted in this illustration is the forward Euler method. More sophisti-

cated, implicit and implicit-explicit time-stepping methods will be presented in Section 2.2.

Finally, quadratic Lagrange interpolation is used to extract uM from the solution u; a lower

order interpolation, such as bilinear interpolation leads to inconsistent methods [MR09].

Schematically the method is:

Step 1: Compute the closest point representation:

Define a regular grid {xi} in R2 and for each grid point xi find the corresponding

closest point cp(xi) on the surface.

Step 2: Extend the solution to R2:

Let component Ui correspond to u(xi). Before the first time step, set Ui = u0(cp(xi)),

in all subsequent steps set Ui = uM (cp(xi)).

Step 3: Evolve the PDE in R2 by one time step:

Update Ui according to: Ui = Ui + kD2Ui, where k is a time step respecting the

Courant-Friedrichs-Lewy (CFL) condition, and D2 is the standard second order fi-

nite differencing stencil for the Laplacian.

Step 4: Interpolate the solution back onto M :

Interpolate the points near the manifold to obtain approximations to uM (cp(xi)).

Step 5: Repeat steps 2-4 until the final time is reached.

Figure 2.1 provides a visualization of these steps. In practice, steps 4 and 2 are com-

bined and the result of the interpolation in step 4 can be directly assigned to Ui. This is

referred to as the extension step. In the previous section this was performed by the exten-

sion operator E.

Recall from Section 2.1.1 that the intrinsic manifold M gradient, divergence, and

Laplacian operators have simple counterparts in the embedding space namely �E where �

is any of those operators. However as suggested by (1.27), the equation of interest in this
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(a) Step 1: Get closest point representation of M . (b) Step 2: Extend initial condition to grid nodes.

(c) Step 3: Evolve PDE by a single time step on
grid.

(d) Step 4: Use solution Ui at green nodes to in-
terpolate the solution back onto M .

Figure 2.1: Visualization of the steps involved in the CPM. The view is zoomed on the first

quadrant. Black dots are grid nodes, the thicker one being a sample node. The blue curve is

the unit circle and the cyan square represents the closest point to the sample node. Finally

the green dots are grid nodes used in interpolating the solution at the cyan square dot.

Recall that in this example quadratic interpolation is used, for higher order interpolations a

wider band and consequently more green dots would be required.
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thesis has a biharmonic operator ∆2
M . In the CPM framework, this operator has to be split

into two Laplacian operators ∆M ∆M and each Laplacian must be preceded by an extension

step as in (2.5). The resulting operator is

∆
2
M → ∆E∆E. (2.8)

The consequences of this for the algorithm is simply that for a biharmonic operator, one

computes ∆EuM as was shown in Step 3; the result is stored and ∆E is performed on it.

Of course in an explicit scheme, the CFL condition for such an equation would be pro-

hibitive, so in practice such a biharmonic term would be treated implicitly as is discussed

in Section 3.1.2.

2.1.3 Banding

In the CPM, the two steps performed at every time step are the extension and the evolution

of the solution. As can be visualized in Figure 2.2, for any given point, the only grid node

values used in extending to it are located within a narrow band of the manifold M or, in

this case, the unit circle. Let us refer to this set of points as Sex. Notice that the width

of the band and hence the number of points in Sex depends on the order of interpolation.

Therefore none of the other grid nodes play a role in the extension step.

Consider accurately evolving the values at points in the set Sex, represented by green

dots in Figure 2.2. Given the chosen finite difference stencil, the points needed in the

evolution of Sex are contained within a slightly wider band whose bandwidth depends on

the order of interpolation as well as the width of the stencil. Therefore, this second set, Sev,

is a superset of Sex. In this example the stencil only requires a point in each direction to

evolve the equation. Therefore, Sev includes the green and red dots in Figure 2.2.

After the evolution step, the extension step resets all the grid node values to their cor-

responding closest point’s interpolated value. Hence, all grid nodes that are not included in

the set Sev (represented as black dots in Figure 2.2) take no active part in the computation.

Indeed, the set Sev contains all the points that come up in the entire algorithm. By ignor-

ing all other points, one significantly reduces memory overhead by an order of magnitude

while substantially increasing efficiency, allowing problems to be solved faster. In this ex-

ample if N represents the number of points to a side, rather than keep track and compute
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(a) Points used to extend a sample node (b) All points used in extension step

(c) Points used to evolve a sample node (d) All points used in evolution step

Figure 2.2: Spatial visualization of significant points used in the CPM. The view is zoomed

on the first quadrant. Black dots are grid nodes, the thicker one being a sample node. The

blue curve is the unit circle and the cyan square represents the closest point to the sample

node. Finally the green dots are grid nodes used in interpolating while the red are used

in evolving the green ones. Note a higher order interpolation would require more green

points and a wider differencing stencil would require more red points; this example is for a

second-order discretized Laplacian and quadratic interpolation.
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with N2 grid nodes, banding reduces the system size to cN points where c depends on the

order of interpolation and the width of the stencil. Naturally, fewer points translates to less

computation per time step. This effect is even more significant when using iterative solvers

with implicit-explicit schemes since in this case work is not linearly proportional to system

size.

2.1.4 Barycentric Lagrange Interpolation

As mentioned in the previous section, for time-dependent PDEs the interpolation (exten-

sion step) must be carried out for every point at each time step; hence it is important to

have an efficient interpolation routine. Since the embedding computational grid is fixed,

Barycentric Lagrange Interpolation is extremely efficient at the cost of a slight increase in

memory overhead.

Consider the Lagrange interpolant in one dimension – the extension to d dimensions

is straightforward: one simply applies the one-dimensional Lagrange interpolant to each

dimension. Given a grid {xi} with corresponding solution values Ui, the extension step

interpolates the values to obtain Uk at point xk. The pth Lagrange interpolation reads

Uk = ∑
i∈Np(xk)

Uivi
(
cp(xk)

)
(2.9)

with

vi(x) =
∏
j 6=i

(x− x j)

∏
j 6=i

(xi− x j)
(2.10)

where Np(x) is a set of points around cp(x) that depends on the order of interpolation p.

Because of the product nested in the sum, this process needs

O
([

(p+1)d−1 +(p+1)d−2 + · · ·+1
]
(p+1)2)

floating point operations per point in d dimensions; the factor in front of (p+ 1)2 comes

from performing one-dimensional interpolation in every direction. Since iterative implicit

solvers need to extend multiple times every time step, the interpolation step takes the bulk

of the processor time. Any improvement in the efficiency of this particular process can lead

to an almost equivalent processor time reduction for the entire program.
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The principle behind Barycentric Lagrange Interpolation (BLI) is to calculate and store

the interpolation weights for each point so as to reuse them every time the interpolation

routine is called. Naturally this only works because the grid and surface are fixed, which

fixes the weights as well. Following a few simple manipulations, (2.9) can lead to the

following equation

Uk =

∑
i∈Np(x)

WikUi

∑
i∈Np(x)

Wik
(2.11)

where

Wik =
wi(

cp(xk)− xi
) . (2.12)

The intermediate steps involved are clearly presented in [BT04]. In the case of a regular

grid such as the one used throughout the thesis, there is a simple definition of wi

wi = (−1)i
(

p
i

)
. (2.13)

Using BLI, the interpolation becomes a simple matrix multiplication where for each point

a p+1 dimensional dot product is computed.

2.2 Time-Stepping

As mentioned in Section 1.3, (1.8) is a fourth-order parabolic equation; the PDE induces

two very different time scales in the solution. Non-trivial solutions to this equation are

characterized by a very fast formation of domains followed by an extremely slow shifting

of these domains toward an optimal, energy minimizing spatial configuration. This is a

quintessential stiff problem whence the requirement for implicit time-stepping methods.

Several methods were implemented, methods with various stability and accuracy features,

usually one coming at the expense of the other. An explicit method, such as forward Euler,

can lead to prohibitively small time step restrictions. This is why all the methods tried have

an implicit flavour. This section presents a few relevant methods.
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2.2.1 Backward Euler

The simplest implicit scheme for solving time dependent PDEs is the backward Euler (BE)

method. Let Un ∈ RM where M represents the number of points considered in the com-

putation such that
(
Un
)

i = u(tn,xi) and let k be the time step. The method consists of

approximating the time derivative as follows

ut(tn+1,x)∼
1
k
(Un+1−Un) (2.14)

and evaluating the rest of the PDE at the next time step, i.e. at u(tn+1,x) or Un+1. Indeed,

in the problem at hand, implementing BE means considering the following

1
k
(Un+1−Un) = N {Un+1}+LUn+1 (2.15)

where N and L were defined in (1.18) and (1.19), respectively. In other words, BE

requires one to solve the non-linear system of coupled equations(
I− kN − kL

)
Un+1 =Un. (2.16)

This system is non-linear because of the operator N . One can use non-linear solvers such

as Newton’s method but these can be costly. Instead, in this thesis N is linearized and the

approximate iterative linear solver known as Generalized Minimal Residual (GMRES) is

used. Recall that N {u}= u3 +3mu2 and consider the following linearization.

N {Un+1} ∼ ¯N Un+1 =
(
U2

ap +3mUap
)
Un+1 (2.17)

where Uap is some explicit approximation of U . Notice that Un+1 is factored out and the

remaining factors of Un+1 are replaced with an explicit approximation Uap. One can imple-

ment a discretization of the desired order of accuracy for Uap and simple Taylor expansions

show that the following are first and second order, respectively.

Uap =Un = Un+1 +O(k) (2.18)

Uap = 2Un−Un−1 = Un+1 +O(k2) (2.19)

Adopting a more accurate Uap is unnecessary since BE is a first order method. Indeed, like

its explicit counterpart the forward Euler method, BE exhibits first order accuracy in time.
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However it features improved stability suitable for stiff problems. Our implementation

of the linearized BE method consists of solving the following linear system of equation

iteratively using GMRES: (
I− k ¯N − kL

)
Un+1 =Un (2.20)

where ¯N is defined in (2.17).

2.2.2 Crank-Nicholson

Like BE, Crank-Nicholson (CN) approximates the time derivative as (2.14). Where CN

differs from BE is that it uses a trapezoidal rule approximation of the right hand side such

that instead of (2.15) CN yields

1
k
(Un+1−Un) =

1
2

[
N {Un+1}+LUn+1

]
+

1
2

[
N {Un}+LUn

]
. (2.21)

With the linearization (2.17), the implementation of CN consists of solving the following

linear system of equations iteratively using GMRES:(
I− k

2
¯N − k

2
L
)
Un+1 =

(
I +

k
2

¯N +
k
2
L
)
Un. (2.22)

CN is known to be second order in time. Unfortunately, it does not damp high frequency

error as fast as BE. This can become a stability issue when large time-steps are taken.

2.2.3 Second Order Two-Step Methods

A family of second-order, two-step implicit-explicit (IMEX) methods were also imple-

mented, more specifically Equation (14) from [ARW95]. It allows the use of many different

schemes with a single implementation by simply taking two parameters. Article [ARW95]

considers the problem

ut = f (u)+g(u) (2.23)
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where f is to be solved explicitly and g is to be solved implicitly, then the family of second-

order two-step IMEX methods is

1
k

[(
γ +

1
2

)
Un+1−2γUn +

(
γ− 1

2

)
Un−1

]
= (γ +1) f (Un)− γ f (Un−1)+

+

[(
γ +

c
2

)
g(Un+1)+(1− γ− c)g(Un)+

c
2

g(Un−1)

]
(2.24)

where γ and c are free parameters that one can pick to choose a particular method. For

example, if one selects (γ,c) = (1
2 ,0), equation (2.24) becomes the well-known Crank-

Nicholson/Adams-Bashforth implicit-explicit method.

Within this class of methods, we mainly consider the second order Backward Differ-

entiation Formula (BDF2), which is obtained from (2.24) by choosing (γ,c) = (1,0). The

semi-implicit BDF2 time-stepping scheme is

3Un+1−4Un +Un−1 = 2k
(

2 f (Un)− f (Un−1)+g(Un+1)
)

(2.25)

where Un is defined in the previous section. In this thesis the following choices were made

for f and g:

f (u) = 0, (2.26)

g(u) = ¯N u+L u. (2.27)

The non-linear term is treated implicitly after proper linearization from (2.17). This leads

to the solution of the following linear system using GMRES.(
I− 2

3
k ¯N − 2

3
kL
)

Un+1 =
4
3

Un−
1
3

Un−1 (2.28)

Notice that the implementation is like a backward Euler method where the first-order ap-

proximation to the time derivative is replaced with a second order one-sided differencing

stencil. This is no accident, it is how (2.24) was designed.

2.2.4 Eyre’s Scheme

A scheme that one encounters when researching time-stepping methods for the Cahn-

Hilliard equation is the “unconditionally stable one-step scheme for gradient systems” sug-

gested by David J. Eyre in [Eyr97]. This scheme is said to be unconditionally gradient
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stable, which means that no matter the step size, the energy functional decreases after ev-

ery time-step. For the modified Cahn-Hilliard equation the linearized scheme is given by

[Mar08]

Un+1−Un = k
(
− 1

γ2 D2
2Un+1 +2D2Un+1−Un+1

)
+

+ k
(

D2(U3
n +3mU2

n +3mUn)−3D2Un

)
. (2.29)

Though the scheme’s stability is not contingent on the step size, the accuracy is. Therefore

considerable care must be taken when updating the time step size, suggesting the use of an

accurate error estimate (a component which has not yet been implemented). Eyre’s scheme

is not used in this thesis, however, it may be of value in situations where a reliable adaptive

time-stepping scheme is available.

2.3 Surfaces

Thus far, details about how the closest points are computed have been omitted. This is an

independent problem from the closest point method algorithm. It is performed only once

at the beginning of the run and, in fact, it could be performed only once per discretization,

saved to file, and loaded in for future runs. As it stands, this initialization takes such a neg-

ligible time when compared to the rest of the algorithm that the closest point computation

is repeated at the beginning of every run.

Without going into too much detail, the next two sections will present how triangu-

lated surfaces are read in, how the closest points are computed, and how surface integrals

(necessary for energy computation) are approximated.

2.3.1 Triangulated Surfaces and Closest Points

All our complex shapes are defined by triangulation, some found in the online reposi-

tory [AIM] while some other ones were built with the help of 3D CAD tools. These are

read in as a series of vertices followed by a series of triangles (three indices corresponding

to vertices in the vertex list). After this step, one may iterate either through the vertices or

the triangles.
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The naïve approach of finding the closest point for each grid node by iterating over all

triangles will take O(h−dN∆) work, where h is the spatial step, d is the dimension of the

embedding space, and N∆ is the number of triangles. Much of that work is unnecessary

since points outside the computational band do not contribute to the solution. Using a code

developed by Prof. Ruuth [MR08], one iterates through all the triangles, finding the closest

points for nodes within the bandwidth. For any node, the minimum distance to all nearby

triangles gives the closest point. This routine takes O(cN∆) work where c only depends on

the dimension d, the order of interpolation p, and the width of the differencing stencil.

2.3.2 Surface Integrals and Energy

When solving the modified Cahn-Hilliard equation it is important to have an estimate of the

non-local Cahn-Hilliard energy (1.4). This provides a comparison metric between states as

well as a quantitative measure of how much the solution is changing. We adopt a straight-

forward computational technique to compute surface integrals.

The barycentres and areas of all the triangles are computed and stored. Every time the

energy is requested, necessary quantities such as the solution, solution gradient, and non-

local term are interpolated at those barycentres. An approximation of the energy functional

is then computed at the barycentres with the computed quantities. Finally, each solution

value is multiplied by its corresponding triangle area and added to a running sum.

Figure 2.3 shows the linear convergence of this method with respect to the number of

triangles N∆. In Figure 2.3(a), the method was used to compute the integral of the real part

of the Y 3
4 spherical harmonic, I1, i.e.

I1 :=
∫

S
Re{Y 3

4 }dΩ (2.30)

the exact solution of which is known to be 1
2 . In Figure 2.3(b), the algorithm was also tested

in computing the non-local Cahn-Hilliard energy of the same spherical harmonic, i.e.

I2 :=
1
4

∫
S

(
1− (Y 3

4 )
2
)2

dΩ+
1

2γ2

∫
S
|∇Y 3

4 |2dΩ+
1
2

∫
S
|∇v|2dΩ (2.31)

where

−∆v = Y 3
4 (2.32)
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Figure 2.3: Convergence plots for the integral and non-local Cahn-Hilliard energy compu-

tations for the Y 3
4 spherical harmonic.

and the sample parameter space point (γ,m) = (2.2,0.125) was selected. in this case the

finest discretization (N∆ = 3.2 ·105) was used as an “exact” solution.

Figure 2.3 shows two log-log plots of the absolute error in the max-norm ||e||∞, i.e.

||ei||∞ = ||IN∆
− Ii||∞, (2.33)

against N∆. On a log-log plot, the slope of a linear fit to the data gives an approximation

to the polynomial order of convergence, e.g., if the slope is −1, then the method exhibits

first-order convergence with respect to growing numbers N∆.

Since this method uses local, planar approximations to the surface (the triangles), we

expect linear (first-order) convergence. This is very well depicted in the Figure 2.3(a), while

in Figure 2.3(b), the convergence is much better than we expect (slope of 1.24). This is due

to the way we chose our “exact” solution, it was computed with only twice the number of

triangles as the second-finest discretization, and hence the last data point has an artificially

small error. The order of convergence when discarding the final two data points is 1.08,

which is closer to the expected order.

The surface is approximated by piecewise planes (triangles). The area of each triangle

is computed by taking half of the moduli of the cross-product of two edges of the triangle.

This corresponds to locally approximating the metric of surface M by the standard flat

space metric.
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2.4 Adaptive Time-Stepping

Solutions to the modified Cahn-Hilliard equation typically feature a rapid, initial, transient

solution, followed by a slower evolution to a steady state. Initially, a very short time step

is necessary to accurately solve the equation as the solution evolves quickly. Maintain-

ing the small time step for the remainder of the computation would be grossly inefficient

because the evolution soon slows down dramatically. This leads us to consider adaptive

time-stepping, however, standard adaptive time-stepping methods require an accurate er-

ror estimate. Because we are interested in steady states, we chose a simpler approach: an

estimate of the relative L2-norm of the difference between the solution at two consecutive

time steps is computed and we control this relative change by taking shorter or larger time

step-sizes.

Let ||∆Urel||2 be the L2-norm of the relative difference of two consecutive solutions and

let the target relative change be ||∆Ū ||2. Then our time steps are updated according to

knew =
||∆Ū ||2
||∆Urel||2

kold. (2.34)

The estimate of the L2-norm is computed using the same method described Section 2.3.2.

With this update rule, the time step can grow too large for the iterative solver to con-

verge. To avoid this problem we prescribe a maximum step size k̄. Since t scales with the

radius of the sphere, R, k̄ also scales with R. When a tight upper bound for the step-size

is found for a given problem and sphere size, the appropriate upper bound can be found

for different sphere sizes via the same scaling, i.e. if one doubles the sphere size, one can

safely double the upper bound.

2.5 Noise

Another difficulty in getting to the global minimizer of (1.4) is that the modified Cahn-

Hilliard energy landscape has many local minima and it is very easy to fall into one of

these stable wells of the energy. Once inside such a well, it is in principle impossible to

get out since the equation attracts the solution to the corresponding local minimizer. This

leads us to consider an external force. Additive space-time white noise is a particularly

natural choise of forcing term and loosely corresponds to random thermal fluctuation. The
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resulting equation looks like the Cahn-Hilliard-Cook equation with an added term due to

the non-local term in the energy. For a careful stochastic analysis of the Cahn-Hilliard-

Cook equation see [PD96]. The additive space-time white noise is uncorrelated in space

and time and the amplitude of the noise is scaled by a parameter ε . In order to eventually

settle into a steady state – hopefully the global minimizer – the parameter ε may be slowly

decreased to 0.

Numerically, noise is modeled by using a normal random number generator based on

the Box-Müller transform. Due to the discretized nature of the numerical problem, the

noise must also be scaled by the space and time step sizes in the following way. Let ξ ∈Rm

represent the noise term where m is the number of computational points in the system, and

let Z ∈ Rm be a vector of m independent identically distributed normal random variables

with a unit standard deviation. Then the implemented additive noise is

ξ =

√
k
hd Z (2.35)

where h and k are the space and time step sizes, respectively, and d is the dimension of

the embedding space. After further scaling (2.35) by ε as mentioned above, the noise is

added to the explicit part of the IMEX solver. For instance, adding space-time white noise

explicitly to (2.20) yields the system of equations(
I− k ¯N − kL

)
Un+1 =Un + εξ . (2.36)

2.6 Domain Finding

With a particular choice of parameters (γ,m), the modified Cahn-Hilliard equation on a

two-dimensional surface can produce a pattern characterized by circular spots arranged on

an imperfect hexagonal lattice. The particular pattern depends on the choice of parameters

γ and m. In general and especially on curved surfaces, structured solutions often contain

defects. Whether they are artifacts of the curvature or confinement, or naturally ocurring

defects that minimize the free energy, they are of great interest because of their effect on

the macroscopic properties of the material. A good way to systematically find these defects

on a hexagonal lattice is to make a list of all the spots and count the number of neighbours

for each.
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Our approach to counting spots begins by outputting the solution at each vertex of the

triangulated surface. Though the spots are easily detected by the human eye, an algorithm

was needed to detect spots automatically. It is assumed that spots are domains where u > ū

where ū is some threshold value. A list called ActiveList is kept where the ith component

of the list is deemed active if ui > ū and inactive otherwise. Therefore, after ActiveList

is initialized, all vertices that are contained in a spot are active. The algorithm then walks

through the vertices creating a list, SpotList, assigning an integer to each vertex. Vertices

with the same integer in SpotList belong to the same spot.

Algorithm 1 Domain Finding
SpotCount = 1

for all vertex i do
if vertex i is active then

AssignSpotCount ( i , SpotCount )

SpotCount++

end if
end for

This is a recursive algorithm because AssignSpotCount() calls itself.

Algorithm 2 AssignSpotCount
SpotList( i ) = SpotCount

Deactivate vertex i

for all vertex j neighbouring vertex i do
if vertex j is active then

AssignSpotCount ( j , SpotCount )

end if
end for

Algorithm 2 walks through all the active neighbours within a spot assigning the same

integer until there are no active vertices left. At the end of Algorithm 1, SpotList associates

each vertex with a single spot or none at all. A crude estimate of the barycentre of a spot

can be computed by simply taking the mean position of vertices within it. Note that this
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algorithm was used to number spots; it does not make any assumption on domain shape. In

Section 3.2.3 an example of this algorithm’s results is provided.

2.6.1 Neighbour Counting Algorithm

In a regime of phase space (γ,m) where the structure exhibits spots, one can be very in-

terested in systematically finding defects. One way of doing this is to count the number

of neighbours of each spot. We have developed an algorithm to give an estimate of the

number of neighbours per spot. The Domain Finding Algorithm (DFA) is used to label the

spots and locate the barycentres; the total number of spots is also output by the DFA. In

the neighbour counting algorithm, the total area of the surface is divided by the number

of spots. This gives an estimate for the area A of a hexagonal cell. The area is then con-

verted to a radius corresponding to a disk of area A. Each spot is considered a neighbour of

another if its barycentre is within this radius’ length of another spot.



Chapter 3

Numerical Results

This third chapter is devoted to the various results obtained using the implementations

discussed in the previous chapter. The first section covers results on test cases on the sphere

where the exact solution is known; this helps validate the code. More ambitiously, the next

section attempts to validate the code solving the modified Cahn-Hilliard equation where

the exact solution is not known. Finally, in the last section, the flexibility of the Closest

Point Method is revealed when the unmodified code is used to solve on the Stanford bunny,

a smooth yet complex shape.

3.1 Test Cases on the 2-Sphere

Before attempting to solve the modified Cahn-Hilliard equation on general surfaces, we

validate our code by predictably solving simpler problems on a familiar shape like the

2-sphere. These PDEs are not as challenging and, more importantly, their solutions are

known so convergence studies are straightforward.

3.1.1 The Heat Equation

Consider the following heat equation on the unit sphere Sut = ∆Su on S× (0,∞)

u = Y 0
1 at t = 0

(3.1)

31
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where in spherical coordinates Y 0
1 (θ ,φ) = cos(θ). The solution of (3.1) is known exactly:

u(t) = e−2tY 0
1 . (3.2)

The subset of R3 used as an embedding space is the box centered at the origin with

side L = 4. The orders of interpolation p that were run are p = 2,3,4, and 5, and the

discretizations N sampled are N = 41,61,81,101,121, and 141 where h = L
N−1 . This was

solved with three time-stepping methods: Backward Euler (BE), Crank-Nicholson (CN),

and the two-step Backward Differentiation Formula (BDF2). Since these are all implicit

methods, an appropriate time step size is k = O(h) and we take k = 1
8h. Since k ∼ N−1,

when plotting the max norm of the relative error against N on log-log axes a negative slope

of 1 or 2 is expected depending on whether the method is first or second-order, respectively.

Note since both the space and the time step are refined with growing N, this is a convergence

study of the algorithm, not of the individual time-stepping methods.

Figure 3.1 shows that the code produced the expected orders of convergence with all

three methods.

3.1.2 The Biharmonic Heat Equation

The modified Cahn-Hilliard equation has a biharmonic operator hence the importance of

being able to solve the biharmonic heat equation. The conditioning of this problem is poor

and with the same k = 1
8h condition GMRES took too many iterations to be practical (see

Appendix B). Improved speed was obtained by taking the time step size restriction k = 1
2h2.

Consider the biharmonic heat equation on the unit sphere Sut =−0.1∆2
Su on S× (0,∞)

u = Y 0
1 at t = 0.

(3.3)

The solution of (3.3) is given exactly by

u(t) = e−4tY 0
1 . (3.4)

Once again, the subset of R3 used as an embedding space is the box centered at the

origin with side L = 4. The orders of interpolation p that were run are p = 2,3,4, and the

discretizations N sampled are N = 41,61,81,121 where h = L
N−1 . The same three methods
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Figure 3.1: Heat equation convergence plot: log-log plot of the max norm of the relative

error against the discretization N. As expected, BE shows first-order convergence while

CN and BDF2 both converge to second-order. Note that the p = 4 and p = 5 runs overlap

almost overlap.
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Figure 3.2: Biharmonic heat equation convergence plot: log-log plot of the max norm of

the relative error against the discretization N. BE is still first order in time but since k∼N−2

this translates to second order with respect to N. Were it not for the second order discretized

spatial scheme, CN and BDF2 would be expected to both exhibit fourth order convergence

with respect to N.
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as in the previous section were tried, namely BE, CN, and BDF2. When neglecting spatial

error and with k ∼ N−2, plotting the max norm of the relative error against N on log-log

axes is expected to yield a negative slope of 2 or 4 depending on whether the method is first

or second order, respectively. However, as can be seen in Figure 3.2, CN and BDF2 both

only exhibit second order convergence. This is due to the fact that the discretized Laplacian

is only second order accurate in space. Therefore, while the methods are second order in

time, the error made in the spatial discretization is the dominant error. A reduction of this

spatial error is possible, however, by considering a wider, higher order Laplacian stencil.

3.2 The Non-Local Cahn-Hilliard Equation

Having verified the correctness of the code for known test problems, the modified Cahn-

Hilliard equation can be attempted. Before the code is trusted for problems on complex

geometries, we consider the convergence of the method on the sphere.

3.2.1 Convergence Study

Though an analytical solution is not known for the mCH equation, a convergence study

may still be obtained by taking a very fine discretization as the “exact" solution. In this

case, the mCH solver was run on the unit sphere, the embedding grid was contained in

a box of side L = 4 centered at the origin, and the three methods BE, CN, and BDF2

were utilized. The code was run for interpolations of order p = 2,3,4 and discretizations

N = 41,61,81,101,121. The “exact” solution was a BDF2 run with p = 4 and N = 161.

Finally, the time step restriction used was k = 1
8h2 where once again h = L

N−1 .

Figure 3.3 presents the results. All three methods converge (to the “exact” solution). CN

and BDF2 still converged to second order. BE was slightly less effective on this problem

than on the heat and biharmonic heat equations but still managed an average negative slope

of 1.64.
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Figure 3.3: Modified Cahn-Hilliard equation convergence plot: log-log plot of the max

norm of the relative error against the discretization N. The order of convergence for BE has

dipped slightly while CN and BDF2 are still performing as well as in previous test cases.
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Figure 3.4: Evolution of the max-norm of the amplitude in time. The legend shows the

different values of γ . Note the γ = 2.4 amplitude decays, and the γ = 2.5 amplitude persists

while the γ > 2.5 amplitudes all grow exponentially to some plateau value.

3.2.2 Linear Stability Analysis and Bounded Amplitude

This section presents experiments to further validate the correctness of our implementa-

tion. On the one hand, we check that our code agrees with the linear stability analysis of

Section 1.4.2 for small amplitudes, while simultaneously, we show that the non-linear term

keeps the amplitude bounded.

On a sphere of radius R = 2, in an embedding box of L = 6, with a discretization

of N = 61, performing a quadratic (i.e. p = 2) interpolation, the modified Cahn-Hilliard

equation was run with initial condition u(0) = 1
25Y 3

4 . Multiple values of γ were tried but

m = 0 was fixed. For these runs BDF2 was used with adaptive time-stepping.

Note that with these particular choices of R, l and m, the initial perturbation profile (i.e.

Y 3
4 ) becomes unstable at precisely γ = 2.5; this value is obtained using (1.22). Indeed, at

the critical value γ = 2.5, the profile no longer decays, but instead persists. Above this

critical value, it grows exponentially. This is in agreement with Figure 3.4.

We further check that the growth rate is in agreement with (1.22). This is done for a
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Figure 3.5: Comparison of the numerical solution to the full non-linear mCH equation

(blue curve) to the analytic solution to the linear part of the mCH (red dashed curve). This

suggests that the non-linear term prevents the solution from growing indefinitely.

sample run where γ = 2.8. Figure 3.5 plots both the analytic solution to the linear part of the

mCH equation (red dashed curve) and the numerical solution to the full non-linear equation

(blue curve). The two curves agree until the amplitude grows beyond approximately 0.2

where the non-linear terms are no longer negligible.

3.2.3 Qualitative Agreement with Other Numerical Experiments

In this section we compare our implementation to other numerical results to the mCH

equation [TQZY05]. The approach taken by Tang et al. consists of partitioning the sphere

into cells and running a finite volume method on that discretization. The method is very

different yet we obtain very similar results as can be seen in Figure 3.6.

Our solutions are not steady states or energy minimizers but presumably computing for

larger times might lead us to convincing energy minimizers like the ones obtained by Tang

et al. We have obtained solutions in the presence of a white noise forcing term but we do

not yet have conclusive evidence that the addition of space-time white noise helps reach a
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(a) Tang et al. (b) Our result at T = 100

(c) Tang et al. (d) Our result at T = 100

Figure 3.6: Comparison with Tang et al. experiments. Given a γ , for sufficiently large

m (i.e. for a sufficiently asymmetric quantity of the different monomer types), the pattern

obtained will feature close packed spots like the ones observed in Figures 3.6(c) and 3.6(d).

Our runs took under 13 hours on a 32-bit 3 GHz processor.
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global minimizer or a steady state. More experimenting with different amplitudes of noise

is needed.

Figure 3.7: Demonstration of the domain finding algorithm. The computed centers of the

spots are shown as big black dots.

On the run featuring spots, our domain finding algorithm was run. In 25 seconds, it

found and labeled 89 spots shown in Figure 3.7. Moreover, it tabulated that 21 spots had

5 neighbours, 63 had 6 neighbours, and 5 spots had 7 neighbours. There is a topological

reason for a high number of 5-neighbour spots, however, according to [BVW10] for such a

number of total spots, there should be no 7-neighbour spots. This might be due to the fact

that we have not reached an energy minimizer.

3.3 General Smooth Surfaces

In this final section, we present results on a more complex surfaces. We have subsequently

solved the mCH equation on multiple surfaces, including the torus, and other shapes from

the AIM@SHAPE online repository [AIM]. For the purpose of demonstrating the ge-

ometric flexibility of our implementation, we show the solution on the Stanford bunny

contained in a box centered at the origin, of side L = 60. The chosen mCH parameters

were (γ,m) = (2.8,−0.3), the discretization used was N = 181, and the interpolation was

quadratic, i.e. p = 2. We prescribe normally distributed random noise N(0,0.1) at the
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initial time step and evolve the equation using adaptive time-stepping with BDF2. The

solution after 300 units of time is shown in Figure 3.8.

Figure 3.9 shows pathologies that can arise from allowing the time step to grow too

large. Notice that for CN time-stepping high frequency error is introduced. This is due

to the fact that Crank-Nicholson does not damp high frequency error nearly as rapidly as

BDF2 and BE do.

(a) Front (b) Back

Figure 3.8: Implementation solving the mCH equation on the Stanford bunny. This run

took just over 20 hours.
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(a) BDF2 (b) BDF2 (back)

(c) CN (d) CN (back)

Figure 3.9: Pathologies that can arise from large time steps.



Chapter 4

Conclusion

This thesis presents strong evidence suggesting that our implementation is capable of pro-

ducing an accurate approximation to the solution of the modified Cahn-Hilliard equation

on general surfaces. This section summarizes the major results and proposes avenues for

future work.

We have built an implementation in C of the CPM method along with time-stepping

methods, as well as time adaptivity and domain finding tools described in Chapter 2. This

implementation solved a fourth-order non-linear parabolic PDE called the modified Cahn-

Hilliard equation.

We have shown that our implementation produces convergent solutions to the mCH

equation on the sphere. Furthermore, our solutions were in qualitative agreement with

results published by Tang et al. who implemented a completely different approach. Due

to the non-linearity of the equation and the symmetry of the sphere a direct quantitative

comparison of solutions (e.g. subtracting one from the other) is difficult. However, there

exist indirect strategies based on global properties of the pattern, for instance, for solutions

featuring spots, one can compare the number of spots on the domain, or even the number

of spots with 5, 6, or 7 neighbours. Presumably, these quantities would be invariant under

the sphere’s rotational symmetries. In this thesis we propose a simple algorithm for spot

finding and neighbour counting, though we do not make extensive use of it in this body of

work.

The mCH equation was solved numerically using three different time stepping methods:

BE, CN, and BDF2. CN and BDF2 are not only more accurate in time, but they solved the

43
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problems in just under half the time. Though this has not yet been demonstrated, we believe

it may be due to the higher accuracy, resulting in fewer GMRES iterations.

Our adapative time-stepping method allows our method to go from time steps on the

order of 10−3 at the start of the computation to 10−1 when the solution evolves much more

slowly. This helps reach steady states faster. Presently, it must be prevented from growing

too large to avoid instability.

The space-time white noise was successfully added to our implementation and numer-

ical solutions are reasonable. However, the addition of noise to the model substantially

slows down the computation. This is due to the iterative solver taking more iterations to

reach our tolerance. Therefore, we need to study more precisely the effect of the space-time

white noise forcing on the solution and decide whether the slowdown is compensated by

a faster approach to the global minimizer. Alternatively, we could consider adding white

noise forcing only when the solution stops evolving to kick it out of a possibly local mini-

mum of the energy.

Finally, we presented a numerical solution of the mCH on a general smooth surface,

namely the Stanford bunny. Solutions are qualitatively reasonable when considering the

solution on a sphere of similar size with the same mCH parameters (γ,m).

4.1 Future Work

There are many areas where our implementation can be improved in terms of performance

and added functionality. The following lists a few examples.

4.1.1 Parallelization

Increasing efficiency should be very straightforward; this is because most of the compu-

tation time is spent on a single subroutine: the BLI function for the extension step. This

is a very simple operation on each grid node of our computational domain and more im-

portantly, it is tremendously parallelizable. By that we mean each grid node value can be

computed separate from all other nodes. Rather than use a cluster, one can implement the

BLI routine to run on a graphical processing unit (GPU) which is a single chip that holds

up to 500 computing cores. It is a simple matter of learning one (or both) of the two most
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popular APIs: CUDA or OpenCL.

Moreover, with a GPU or multiple CPU cores available, our code can use a CUDA or

OpenCL implementation of GMRES, e.g. [fM].

4.1.2 Preconditioning

Presently, the GMRES solver adopted is a C implementation that takes in a left and a right

preconditioner [Ber]. We currently have no preconditioners for our method but these could

drastically decrease the number of iterations required to reach the desired tolerance and

hence substantially shorten processing times.

4.1.3 Brushes

The Closest Point Method is not limited to computing on surfaces embedded in three di-

mensions. In the CPM framework it is possible to solve equations defined on volumes

embedded in three dimensions, in other words, solving on a subset of R3 while extending

to a larger subset of R3. Adding this functionality to our implementation would be inter-

esting when considering diblock copolymer layers of non-negligible thickness on curved

surfaces. These are known in the literature as brushes.

4.1.4 Boundary Conditions

Another aspect that has been overlooked thus far, is the consideration of boundary con-

ditions (BC) and how they fit in the CPM. Indeed, for open surfaces, our current imple-

mentation simply adopts homogeneous Neumann boundary conditions which are imposed

naturally by the method. Imposing other types of BCs is a feature yet to be added to the

current code.

4.1.5 Effect of Curvature

Most of the results obtained in this thesis were limited to spherical domains, a shape with

constant curvature. One can ask how non-constant curvature can affect the micro-structure.

For instance, can patterns be made to align in a certain direction, or can one control the
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position and alignment of defects by introducing bumps and valleys on the computational

manifold?

4.1.6 Curvature Motion

For many applications, the dynamics of the modified Cahn-Hilliard equation are not needed,

only the steady state (which is hopefully the global minimizer) is wanted. This means that

we may apply external forces to our solution with hopes of decreasing the mCH energy. In

the case of lamellae on the sphere for example, undulated lamellae as seen in Figure 3.6

seem to be energetically less favorable than spirals that follow geodesics more closely.

Given this assumption, one may treat the solution with a few steps of curvature motion to

smooth out excess curvature in the lamella.

4.1.7 Varying γ

Thus far we have not considered problems with a time-dependent γ = γ(t). Since γ ∝ χ N

and χ ∝ T−1 where T is temperature, decreasing γ corresponds to increasing the tempera-

ture of the diblock copolymer melt. Physically, this facilitates the motion of the molecules.

Numerically, as can be seen in Figure 3.4, a smaller γ leads to smaller amplitudes which

facilitates the motion of interfaces. As discussed in [BVW10], as γ is decreased, there is

a pre-melting of defects; in other words the solution changes more easily around defects.

Our hope is that varying γ and possibly even m will help the solution out of local minimizer

states. Naturally the value of γ should be slowly varied back to its initial desired value.



Appendix A: The H1(S) Space

Some care must be taken when discussing functions in H1(S) since the notion of weak

derivatives and integration by parts is more complex on S than on T2. We adopt Hebey’s

notion of the H1(S) space which he names H p=2
k=1 (S) in [Heb96]. In the following we briefly

define this important space.

Let M be a smooth manifold with metric g. Let C∞(M ) be the space of infinitely

smooth functions on M and let C 1(M ) ⊂ C∞(M ) be the space of such functions that

have a continuous covariant derivative ∇u that is bounded in L2(M ). H1(M ) is defined to

be the completion of C 1(M ) with respect to the norm

||u||H1(M ) :=
(∫

M
u2
√

det(gi j)dx
) 1

2

+

(∫
M
|∇u|2

√
det(gi j)dx

) 1
2

. (4.1)

Equation (4.1) is called the H1(M ) norm.

On the sphere S and in spherical coordinates√
det(gi j)dx = R2 sin(θ)dφdθ . (4.2)

Functions in H1(S) are not necessarily in C 1(S) which means H1(S) includes functions

that have cusps, for example at boundary edges. Given the energy functional (1.4), we

must look for a solution in H1(S), because C 1(S) does not include all solutions that have a

bounded non-local Cahn-Hilliard energy.

Consider u∈H1(S), and a sequence {um} ⊂C1(S) such that um→ u with respect to the

H1(S) norm. Then the quantity ∇u is defined in a weak sense as

∇um ⇀ ∇u. (4.3)

Let φ ∈C∞, the previous weak convergence is to be understood as∫
S

∇umφR2dΩ→
∫

S
∇uφR2dΩ. (4.4)
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Appendix B: GMRES convergence

When solving the biharmonic heat equationut =−0.1∆2
Su on S× (0,∞)

u = Y 0
1 at t = 0,

(4.5)

with a time-step k = h
8 , the GMRES iterative solver was not converging to tolerance (10−6)

from the third time-step onward. Since the time-step in our actual runs was going to be

updated adaptively, we did not put too much importance in the initial value of the time

step.

The following results were obtained for h= 0.05. Figure 4.1 shows that as the time-step

is decreased, the norm of the residual approaches the desired tolerance.

Figure 4.2 shows the number of iterations required to reach the tolerance with respect

to the step-size condition. Though the step-size is halved and therefore the number of

time-steps to take is doubled, the number of GMRES iterations necessary is not decreased

proportionally. This is why in our biharmonic heat convergence studies, a condition k = h2

2

is taken with a tolerance of 10−5.
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Figure 4.1: Adjusting the step size to reach tolerance of 10−6. For different conditions

on k, the blue dots represent values of the norm of the residual at which further (GMRES)

iteration no longer lowers the residual.

Figure 4.2: GMRES Iterations required to reach tolerance depending on the step-size. No-

tice that as the step-size is decreased after h2

4 , a further decrease is not beneficial.
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