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Abstract

A graph X is said to be integral if all eigenvalues of the adjacency matrix of X are integers.

This property was first defined by Harary and Schwenk who suggested the problem of

classifying integral graphs. Since the general problem of classifying integral graphs seemed

too difficult, graph theorists started to investigate special classes of graphs which included

trees, graphs of bounded degree, regular graphs and Cayley graphs. What proves so interesting

about this problem is that no one can yet identify what the integral trees are or which

5-regular graphs are integral. In this thesis, integral Cayley graphs are studied. Several

topics on the integral Cayley graphs are presented. First, a classification of integral Cayley

graphs over abelian groups in terms of the associated Boolean algebra of the subgroups is

presented. Secondly, the notions of character and representation integrality are introduced.

It has been shown that character integrality is a weaker notion than representation integrality.

An internal classification of character integral subsets is proved. General results about

representation integral subsets are presented and in an attempt to generalize the results from

abelian to non-abelian case, Hamiltonian and dihedral groups are studied. Thirdly, two open

problems about integrality of Cayley graphs are solved. Simple eigenvalues in Cayley graphs

are studied, and some observations lead to two interesting results in this topic. Finally, the

classification of cubic and 4-regular integral Cayley graphs are presented. A general approach

to characterize all integral Cayley graphs over abelian groups is presented. Furthermore, a

sharp upper bound over the size of the group in terms of the graph degree has been suggested

and proved. The thesis concludes with a section devoted to open problems and conjectures

in this area.
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Chapter 1

Preliminaries

1.1 Introduction

A graph essentially is a discrete mathematical model of a network of objects. For example,

such objects can be cities, computers, atoms, or those that are more abstract. Graphs are

applied in numerous fields, like chemistry, social science, electrical engineering, architecture,

computer science and many others. Roughly speaking, a graph is a set of vertices representing

the nodes of the network (cities, computers or atoms), and a set of edges between vertices.

These edges can represent roads between cities, links between computers, or bonds between

atoms. These edges may have weights, representing distances, capacities, forces, and they

can be directed (one-way roads). There is a large variety of problems in graph theory. One

classic example is the famous traveling salesman problem: given a list of cities and the

distances between each pair of cities, what is the shortest possible route to visit each city

exactly once and return to the origin city? For small graphs this problem may seem easy, but

as the number of vertices increases, the problem becomes very difficult. Such problem can

be applied to quite different areas, for example in planning, logistics, and the manufacture of

microchips or DNA sequencing, the process of determining the precise order of nucleotides

within a DNA molecule. One way to cope with the difficulty of working with large graphs is

to use computers. In order to read and store graphs into computers we represent graphs

with matrices.

Depending on the specific problem and personal preference, graph theorists use different

kinds of matrices to represent a graph, the most popular ones being the (0, 1)-adjacency

matrix and the Laplace matrix. Often, the algebraic properties of the matrix are used as a

1
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bridge between different kinds of structural properties of the graph. The relation between

the structural (combinatorial, topological) properties of the graph and the algebraic ones

of the corresponding matrix is therefore a very interesting one. For example, using the

spectrum of light, scientists have had great success in being able to indirectly determine the

compounds of chemicals that could not be directly measured. For instance, by examining

the light given off by stars we can determine their chemical composition, even though we

could never directly gather any material from those stars. Another interesting example is

from theoretical chemistry, where chemists associate a graph with hydrocarbon molecule.

The eigenvalues of the matrix of this graph are used to predict stability of the molecule. In

an analogous way we can use the spectra of various matrices (i.e., the eigenvalues of the

matrices) to get information about a graph that would otherwise be difficult to obtain.

In this chapter, we will provide some introductory comments about connections between

the eigenvalues of matrices and the properties of graphs in a general setting. The study of the

relations between these two objects is spectral graph theory. Thus to work in spectral graph

theory, one not only need to be familiar with graph theory but also must understand the

basic tools from algebra. Eigenvalues, eigenvectors, determinants, Courant-Fischer formula,

Perron-Frobenius and others are the tools of the trade.

In this thesis we study special classes of graphs which have a lot of structure. In the eye

of the mathematical beholder, graphs with significant structure and symmetry are the most

beautiful graphs. Cayley graphs are the main graphs we study and they are used in many

different areas. In computer science Cayley graphs are used for the design and analysis of

network architectures for parallel computers. Of course, the application of Cayley graphs in

an area like computer science is not limited to just this example. We refer readers interested

in further applications of Cayley graphs in computer science to [11, 21, 20].

1.1.1 Graphs

A graph (or sometimes a multi-graph) Γ = (V,E) consists of a set V of vertices and a set E

of edges and a relation that associates with each edge two vertices called its endpoints. We

only consider graphs with finite set of vertices and edges. The edge uv ∈ E joins vertices u

and v, and u and v are called the endpoints of the edge uv. We use u ∼ v to show there

is an edge between u and v. A loop is an edge vv ∈ E from a vertex v to itself. Multiple

edges are edges having the same pair of endpoints. A simple graph is a graph which does not

have any loop or multiple edges. All graphs studied in this thesis are simple unless otherwise
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stated. The order of Γ is the number of vertices of Γ and the size of Γ is the number of

edges. Vertices u and v are said to be adjacent or neighbors if they are the endpoints of

the same edge. The degree of a vertex v, denoted by deg(v), is the number of neighbors

of v. The maximum degree of a graph Γ, denoted by ∆(Γ), is the maximum degree of its

vertices. If all vertices have the same degree then the graph is called regular . We say a graph

is complete if any two vertices are adjacent, and empty if no two vertices are adjacent. The

complement Γ of a graph Γ is the graph on the same vertices, but with complementary edge

set, that is, two vertices are adjacent in Γ if they are not adjacent in Γ. Two graphs are

called isomorphic if there is a bijection between the respective vertex sets preserving edges.

A subgraph of a graph Γ is a graph X such that V (X) ⊆ V (Γ) and E(X) ⊆ E(Γ). If for

a subgraph X of Γ we have V (X) = V (Γ) then we call X a spanning subgraph and we say

X spans Γ. If S is a subset of V , then the induced subgraph of Γ on S, denoted by Γ[S], is

the subgraph of Γ with vertex set S and edge set consists of those edges in Γ that both their

endpoints are contained in S. We use Γ−S instead of Γ[V −S], if S = {v} then Γ−{v} will

be shortened to Γ− v. An independent set is a set of vertices which induces empty subgraph,

and a clique is an induced complete subgraph. A graph is called bipartite if the vertices can

be partitioned into two induced independent sets.

If two graphs are isomorphic, then we shall (in general) not distinguish between them, or

even call them the same. An automorphism of a graph is a bijection from the vertex set to

itself preserving edges. The set of automorphisms of a graph, with the composition operator,

forms a group, called the automorphism group.

A walk of length k from vertex u to vertex v (referred to as a (u, v)-walk) is a sequence

of, not necessarily distinct, vertices u = u0, u1, . . . , uk = v, such that for any i (0 ≤ i < k)

the vertices ui and ui+1 are adjacent. We call u and v the endpoints, and ui for 1 ≤ i < k

the internal vertices of the walk. If u = v, the walk is called a closed walk. If all vertices

are distinct then the walk is called a path. A cycle is a closed walk that all internal vertices

are distinct from each other and the end point. The girth of a graph is the length of its

shortest cycle. If the graph does not have any cycles, its girth is infinite. If there is a path

between any two vertices of the graph, then the graph is called connected . The maximal

connected subgraphs of G are called the components of Γ. The distance between two vertices

is the length of the shortest path between these vertices. The maximal distance taken over

all pairs of vertices is called the diameter of the graph.

The line graph L(Γ) of a simple graph Γ is obtained by associating a vertex with each
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edge of the graph and connecting two vertices with an edge if the corresponding edges of Γ

have a vertex in common.

Suppose Γ1 and Γ2 are two simple graphs with disjoin vertex sets V1 and V2 and edge sets

E1 and E2. The join of graphs Γ1 and Γ2, denoted by Γ1∇Γ2, is the graph with the vertex

set V1 ∪ V2 and the edge set consisting of those in E1 and E2 together with all the edges

joining V1 and V2.

The Cartesian product (denoted by Γ1�Γ2) of two simple graphs Γ1 and Γ2 has the

vertex-set V (Γ1)× V (Γ2). For u, v ∈ V (Γ1) and x, y ∈ V (Γ2), (u, x) is adjacent to (v, y) if

either “u = v and xy ∈ E(Γ2)” or “uv ∈ E(Γ1) and x = y”.

The tensor product of graphs Γ1 and Γ2 denoted by Γ1×Γ2, is a graph with the vertex-set

V (Γ1)× V (Γ2). For u, v ∈ V (Γ1) and x, y ∈ V (Γ2), (u, x) is adjacent to (v, y) in Γ1 × Γ2 if

“uv ∈ E(Γ1) and xy ∈ E(Γ2)”.

If Γ1 and Γ2 are (simple) graphs on the disjoint vertex sets V1 and V2 and edge sets E1

and E2 respectively, then we denote by Γ1∪̇Γ2 the simple graph with vertex set V = V1 ∪ V2

and edge set E = E1 ∪ E2. The graph Γ1∪̇Γ2 is called the disjoint union of Γ1 and Γ2. The

notation nΓ will represent the disjoint union of n copies of Γ.

Let Γ be a graph of order n. The adjacency matrix of Γ is the matrix A(Γ) ∈ RV×V

whose (u, v)-entry is equal to 1 if u is adjacent to v and 0 otherwise. Occasionally we consider

multi-graphs (possibly with loops) in which case (u, v)-entry is equal to the number of edges

from u to v. The spectrum of a graph Γ is by definition the spectrum of the adjacency matrix

A(Γ), that is, its set of eigenvalues together with their multiplicities. If λ1(Γ), . . . , λn(Γ) are

the eigenvalues of Γ we assume they are in the non-increasing order, that is:

λ1(Γ) ≥ · · · ≥ λn(Γ).

If λ1(Γ), . . . , λr(Γ) are the distinct eigenvalues of Γ with multiplicities k1, . . . , kr respectively,

then we denote the spectrum of Γ by:

Spec(Γ) = [λk11 , . . . , λ
kr
r ].

The characteristic polynomial of Γ is that of A(Γ). Graphs with the same spectrum are

called co-spectral .
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1.1.2 Linear Algebra

In this subsection, we discuss a number of results from linear algebra used throughout the

thesis. We use the standard notation in accordance with the book [33]. In will denote the

identity matrix of order n, and Jn will denote a (square) matrix of order n with all entries

equal to 1. jn will denote a vector of size n with all components equal 1. If the order of the

matrices or vectors are clear from the context, we will drop the subscripts and we will use I,

J or j to show the identity matrix, all ones matrix or all ones vector of the assumed order.

We use tr(A) to denote the trace of a square matrix A, and det(A) or |A| to denote the

determinant of A. All properties of trace and determinant are assumed. For two matrices A

and B we denote their Kronecker product or tensor product by A⊗B.

We begin with definitions of eigenvalues and eigenvectors for matrices in general. For

completeness we first define Hermitian adjoint, Hermitian and normal matrices. Let A = [aij ]

be a matrix over the field of complex numbers, C. The transpose of A, denoted by AT is the

matrix over the same field as A, with (i, j)-entry equal to aji (that is, rows are exchanged

for columns and vice versa).

The Hermitian adjoint A∗ of A is defined by A∗ = (A)T , where A is the entry-wise

conjugate of A. A complex square matrix A is a Hermitian (or self-adjoint) matrix if it is

equal to its own Hermitian adjoint, i.e., A = A∗ = (A)T . A complex square matrix A is a

normal matrix if A∗A = AA∗. A real Hermitian matrix is called a (real) symmetric matrix.

It should be added that if A is a real matrix, A∗ = AT and so it is normal if ATA = AAT .

Every Hermitian matrix, and hence every real symmetric matrix is normal.

Let A be an n× n matrix over C. We consider the equation

Ax = λx, x 6= 0,

where x is an n× 1 vector and λ is a scalar. If a scalar λ and a non-zero vector x happen

to satisfy this equation, then λ is called an eigenvalue of A and x is called an eigenvector

of A associated with λ. The set of all eigenvalues is called the spectrum of A. The set of

eigenvectors of A associated with the eigenvalue λ together with the zero vector is called the

eigenspace associated with λ. The dimension of this space is called the geometric multiplicity

of A. On the other hand, the algebraic multiplicity of A is the multiplicity of A as a root of

the polynomial det(A− λI). For Hermitian matrices the two multiplicities of A are equal.
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As the adjacency matrix of a graph is a Hermitian matrix, we do not distinguish between

geometric and algebraic multiplicity and speak solely about the multiplicity of an eigenvalue.

If x = (xv) ∈ RV is an eigenvector of A(Γ) corresponding to the eigenvalue λ then, we

have A(Γ)x = λx, which we can express as:

λxv =
∑
u∼v

xu (v ∈ V ).

The following are some basic results from linear algebra. See [23] for more details.

Theorem 1.1.1. Let A be a real n× n symmetric matrix. Then

• two eigenvectors of A with different eigenvalues are orthogonal.

• all eigenvalues of A are real numbers.

• Rn has an orthonormal basis consisting of eigenvectors of A.

Theorem 1.1.2. (Simultaneous diagonalization) Suppose F is a collection of commuting

n× n Hermitian matrices (i.e., AB = BA for A,B ∈ F), then Cn has a basis consisting of

common eigenvectors of all A ∈ F .

Consider two sequences of real numbers: λ1 ≥ · · · ≥ λn, and µ1 ≥ · · · ≥ µm with m < n.

The second sequence interlaces the first one whenever

λi ≥ µi ≥ λn−m+i for i = 1, . . . ,m.

Let A ∈ RV×V , where |V | = n. Let 0 < m ≤ n, a m×m symmetric minor of A is the matrix

obtained from A by restricting V to a subset U of size m. That is to say, a symmetric minor

of A on U obtained by deleting all rows and columns from A which are indexed by elements

of V \ U .

Theorem 1.1.3. (Interlacing eigenvalues) Let A be an n× n symmetric matrix with eigen-

values λ1 ≥ · · · ≥ λn. Let B be an (n− k)× (n− k) symmetric minor of A with eigenvalues

µ1 ≥ · · · ≥ µn−k, then the sequence of eigenvalues of B interlaces the sequence of eigenvalues

of A. i.e.

λi ≥ µi ≥ λi+k for i = 1, . . . , n− k.
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Since adjacency matrix of an induced subgraph of Γ is a symmetric minor of the adjacency

matrix of Γ, we can apply the interlacing theorem to induced subgraphs. Thus for any

induced subgraph X of Γ, the sequence of eigenvalues (in non-increasing order) of X interlaces

the sequence of eigenvalues (in non-increasing order) of Γ. A useful characterization of the

eigenvalues is given by the Rayleigh’s and Courant-Fisher’s formula (see [23] for more details).

• λn(A) = min{xTAx | x ∈ RV , ||x|| = 1}

• λ1(A) = max{xTAx | x ∈ RV , ||x|| = 1}

• λn−k+1(A) = min{max{xTAx | x ∈ RW , ||x|| = 1} | dim(W ) = k}

Theorem 1.1.4. (Perron-Frobenius) If an n× n matrix has nonnegative entries then it has

a nonnegative real eigenvalue λ which has maximum absolute value among all eigenvalues.

This eigenvalue λ has a nonnegative real eigenvector. If, in addition, the matrix has no block-

triangular decomposition (i.e., it does not contain a k × (n− k) block of 0-s disjoint from the

diagonal), then it has multiplicity 1 and the corresponding eigenvector is positive.

In the following theorem, the eigenvalues of Hermitean matrices A and B are arranged

in non-increasing order.

Theorem 1.1.5. (Weyl inequalities) Let A and B be Hermitian matrices of order n, and

let 1 ≤ i, j ≤ n.

1) If i+ j − 1 ≤ n then λi+j−1(A+B) ≤ λi(A) + λj(B).

2) If i+ j − n ≥ 1 then λi(A) + λj(B) ≤ λi+j−n(A+B).

1.1.3 Group theory and Algebra

In this section we will introduce the basic notation and properties of Algebraic structures

which we will use throughout the thesis. We are assuming the basic understanding of the most

common algebraic structures like groups, rings and algebras. Our notation and definitions for

groups has taken from [47], for rings and algebras from [34]. All groups considered are finite

written multiplicatively (unless otherwise stated), and all fields are subfields of the complex

numbers. The letters G, H and K are reserved for groups and subgroups unless otherwise

stated. We use 1 to denote both identity element and trivial subgroup {1}, the distinction

will be clear from the context. H 6 G means H is a subgroup of G and H E G means H is a
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normal subgroup of G. If g and h are elements of the group G, then gh = h−1gh denotes the

conjugate of g by h. The set of all conjugates of g in G is called the conjugacy class of g and

is denoted by clG (g). We denote the order of an element g in G by ord(g), and the order of

the group G by |G|. The exponent of a group is defined as the least common multiple of the

orders of all elements of the group. If there is no least common multiple, the exponent is

taken to be infinity. We denote the centralizer of a subset S of G by CG(S), which is the set

of all elements of G that commute with each element of S. When S = {g} is a singleton set,

then CG({g}) will be abbreviated to CG(g). We denote the center of a group G by Z(G),

which is
⋂
g∈G

CG(g). Let S be a subset of G, then the subgroup generated by S denoted by

〈S〉 is defined as the smallest subgroup of G containing S. Thus, 〈S〉 is the intersection of

all subgroups containing S. If G = 〈S〉, then we call S a generating set for G or a set of

generators of G. When S = {a}, is a singleton, then 〈{a}〉 will be shortened to 〈a〉 and this

called the cyclic subgroup generated by a. A group is cyclic if it is generated by a single

element. In all the group theory notation, the group in the subscripts will be deleted when

there is no danger of confusion or when the group is clear from the context. The notations

[G : H], G′ and [g, h] are stand for (respectively); the index of the subgroup H in G, the

derived subgroup of G and the commutator of g and h which is g−1h−1gh.

If G = H ×K, then πH (the canonical projection on H) is defined as follows:

πH : H ×K → H, πH(h, k) = h for all (h, k) ∈ H ×K.

The canonical projection on K is similarly defined and is denoted by πK . We denote the

group algebra of G over the field F by FG. That is, FG is the vector space over F with basis

G and multiplication defined by extending the group multiplication linearly. Therefore, FG
is the set of all formal sums

∑
g∈G agg where ag ∈ F and we assume 1 · g = g to have G ⊆ FG.

We multiply elements of FG according to multiplication in G, so we have∑
g∈G

agg

(∑
h∈G

bhh

)
=
∑
g∈G

∑
h∈G

agbhgh.

With this, FG will become an F-algebra of dimension |G|. Identifying
∑

g∈G agg with the

function g 7→ ag, we can view the vector space FG as the space of all F-valued functions on

G. We sometimes identify a subset S of G with the element
∑
s∈S

s of the group algebra CG.

Let V be a finite dimensional F-vector space. A linear representation (or simply a

representation) of G on V is a group homomorphism ρ : G 7→ GLF(V ), where GLF(V )
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denotes the group of invertible F-linear operators on V . The degree of representation is the

dimension of V . Let Mn(F) be the algebra of all n× n matrices over F, where n = dim(V ).

If we pick an ordered basis for V and denote the matrix corresponding to ρ(g) by ρ̃(g), then

ρ̃ is a group homomorphism from G to Mn(F). Two representations ρ1 and ρ2 of G on V1

and V2 respectively, are equivalent if there is a linear isomorphism T from V1 onto V2 such

that

Tρ1(g) = ρ2(g)T ∀g ∈ G

If ρ is a representation of G, then the character afforded by ρ (denoted by χρ) is the

linear functional on FG such that χρ(g) = tr(ρ(g)) for each g in G. It is clear that characters

are class functions (functions which are constant on the conjugacy classes) and the set of

characters will span the space of all class functions on G. By degree of χρ we mean the

degree of ρ which is simply χρ(1). A character of degree one is called a linear character .

The left regular representation ρreg of G on V = FG is defined by

ρreg(g) : FG 7→ FG, ρreg(g)

(∑
h∈G

ahh

)
=
∑
h∈G

ahgh.

If W is a ρ(g)-invariant subspace of V for each g ∈ G, then we call W a ρ(G)-invariant

subspace of V . If we restrict each ρ(g) to W , we will get ρW : G 7→ GL(W ) which is a linear

representation of G on W called the subrepresentation of ρ on W . If V has no ρ(G)-invariant

subspace, we call ρ an irreducible representation of G and the corresponding character χρ

an irreducible character of G. If V = W1 ⊕W2 and both W1 and W2 are ρ(G)-invariant

subspaces of V , then we write ρ = ρW1
⊕ ρW2

and we say ρ is a direct sum of ρW1
and ρW2

. If

we pick an ordered basis β1 for W1 and an ordered basis β2 for W2, and order them according

to (β1, β2), then the relation between corresponding matrix representations of ρ, ρW1
and

ρW2
is as follows:

ρ̃(g) =


ρ̃W1

(g) 0

0 ρ̃W2
(g)

 .
According to a theorem of Maschke, every representation of G can be decomposed into a

direct sum of irreducible sub-representations.

Theorem 1.1.6. If ρ1, . . . , ρk are a complete set of non-equivalent irreducible representations
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of G, then

ρreg =

k⊕
i=1

miρi,

where mi is the degree of ρi.

For a group G, we denote by IRR(G) and Irr(G) a complete set of non-equivalent

irreducible representations of G (over the field C) and the complete set of non-equivalent

irreducible characters of G, respectively. Note that IRR(G) is not necessarily unique, but

Irr(G) is unique. It is easy to see that |IRR(G)| = h(G) where h(G) is the class number of

G counting the number of conjugacy classes of G. If G is abelian, then every irreducible

representation ρ ∈ IRR(G) is 1-dimensional and thus it can be identified with its character

χρ ∈ Irr(G).

Let G and G
′

be finite groups and ρ : G 7→ GL(V ), ρ
′

: G
′ 7→ GL(V

′
) be two (complex)

representations corresponding to G and G
′
. We define ρ× ρ′ as

ρ× ρ′ : G×G′ 7→ GL(V ⊗ V ′)

(ρ× ρ′)(g, g′) = ρ(g)⊗ ρ′(g′)

for all (g, g
′
) ∈ G×G′ .

Theorem 1.1.7. Let IRR(G) = {ρ1, . . . , ρk} and IRR(G
′
) = {ρ′1, . . . , ρ

′
k}. Then

IRR(G×G′) = {ρi × ρ
′
j | 1 ≤ i ≤ h(G), 1 ≤ j ≤ h(G

′
)}.

If G is abelian, then each ρi is a homomorphism from G to F so (ρi × ρ
′
)(g, g

′
) =

ρi(g)⊗ ρ′(g′) = ρi(g)ρ
′
(g
′
) (under the assumption that 1⊗ v := v and so F⊗ V = V ).

Theorem 1.1.8. Let ρ be a matrix representation of G affording the character χ and let

g ∈ G such that ord(g) = n. Then

1. ρ(g) is similar to a diagonal matrix diag(ε1, . . . , εk).

2. εni = 1 for 1 ≤ i ≤ k.

3. χ(g) =
k∑
i=1

εi and |χ(g)| ≤ χ(1).

4. χ(g−1) = χ(g).



CHAPTER 1. PRELIMINARIES 11

Theorem 1.1.9. (Orthogonality Relations) Let g, h ∈ G and χi, χj ∈ Irr(G). Then

1.
∑
g∈G

χi(g)χj(g) = δij |G|.

2.
∑

χ∈Irr(G)

χ(g)χ(h) =

|CG(g)| if g and h are conjugate

0 otherwise

Theorem 1.1.10. If χreg is the character afforded by the regular representation ρreg of G.

Then

χreg(g) =

|G| if g = 1

0 otherwise

We notice that if N E G, then there is a one-to-one correspondence between representa-

tions of G/N and representations of G with kernel containing N . Furthermore, under this

correspondence, irreducible representations correspond to irreducible representations.
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1.2 Overview of the thesis

The rest of the thesis is organized as follows. In the second chapter, we discuss the known

results in the literature and motivate some problems. We will present a new proof of

the characterization of Cayley integral graphs over abelian groups. In chapter three, we

will extend our results from Chapter 2 to some classes of non-abelain groups. We will

consider integrality notion from different perspectives. Chapter four is totally devoted to two

classification problems. In chapter five, we classify groups which admit connected integral

Cayley graphs of small degree. Chapter six is a collection of miscellaneous results and a list

of conjectures and open problems in this area.



Chapter 2

Integral Cayley graphs over abelian

groups

The notion of the integral graphs was first introduced by Harary and Schwenk [32] who

suggested the problem of determining which graphs satisfy this property. This problem ignited

a significant investigation among algebraic graph theorists for integral graphs. Although this

problem is seemingly very simple to explain, its complexity is demonstrated in that it has

been actively researched by many mathematicians during the last forty years and is still

open for discussion. In fact; integral graphs are not only infinitely many but they exist in

almost all classes of graphs and among all orders, despite their rarity. The general problem

of “classification of all integral graphs” proved to be quite difficult to solve. Many graph

theorists started to investigate some special classes of graphs including; trees, graphs with

bounded degrees, regular graphs and Cayley graphs. What proves so interesting about this

problem is that no one yet can identify what the integral trees are or which 5-regular graphs

are integral.

Integral Cayley graphs have application in the study of perfect state transfer in quantum

mechanics. There one associates a weighted graph with a quantum system. Vertices are

representing the quantum spins, and weighted edges represent the strength to transfer

qubits along that edge. The associated graph Γ of a quantum system admits a perfect state

transfer from a vertex u to v if Aut(Γ)u = Aut(Γ)v, where Aut(Γ)u denotes the group of

automorphisms of Γ which fix u. It is easy to see that if there is a perfect states transfer

from a vertex u to v, then the subgraphs Γ− u and Γ− v are cospectral and the ratio of any

13
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two non-zero eigenvalues is rational. Integral graphs and in particular circulant graphs have

provided an extensive source of examples for perfect states transfers (for more details see [56]

and [29]). There have been many more applications of Theorem 2.2.2 within mathematics

and computer science. The key tool in all these results was an explicit way to determine

the integrality of circulant graphs. Theorem 2.4.4 now provides sufficient tools to lift those

results to the case of Cayley graphs over abelian groups ([17, 35]).

In this chapter we will investigate the integral Cayley graphs over abelian groups. We will

exhibit some general results about integral graphs and present a new proof of classification

of integral Cayley graphs over abelian groups.

2.1 Introduction

All matrices considered here are square matrices with entries from a subfield of the complex

numbers. A matrix M is integral if all its eigenvalues over the complex numbers are rational

integers. A graph Γ is called integral if its adjacency matrix is an integral matrix. Throughout

this thesis we shall assume that G is a finite group. We use the multiplicative notation when

G is non-abelian and sometimes additive notation in the case of abelian groups. Let S be a

symmetric subset (i.e., S = S−1) of G. The Cayley graph of G over S, denoted by Cay(G,S),

is the graph with vertex set G such that x and y (x, y ∈ G) are adjacent if xy−1 ∈ S. If S is

not a symmetric subset, then we will get the directed Cayley graph with vertex set G and

(x, y) is an arc if and only if xy−1 ∈ S. The Cayley graph Cay(G,S) is connected if and only

if S is a generating set of G. If S is not a generating set of G, then Cayley graph Cay(G,S)

is a disjoint union of [G : 〈S〉] copies of the connected Cayley graph Cay(〈S〉, S).

Recall that a multiset is a set S together with multiplicity function µS : S → N, where

µS(x) is a positive integer for every x ∈ S (counting “how many times x occurs in the

multiset”). We set µS(x) = 0 for x /∈ S. A multiset S of group elements is symmetric if

µS(s) = µS(s−1) for every s ∈ S. If S is a symmetric multiset of elements of a group G,

the Cayley multigraph Cay(G,S) is defined as above except that it is a multigraph and the

number of edges joining x, y in Cay(G,S) is equal to µS(xy−1). A Cayley graph Cay(G,S)

is regular of degree |S|.
Let Γ be a simple graph and λ1 ≥ · · · ≥ λn its sequence of eigenvalues. The sum

sk =
n∑
i=1

λki is called the k-th spectral moment which counts the number of closed walks of

length k in Γ. The characteristic and minimal polynomial of a graph are monic polynomials
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with integer coefficients, which implies that eigenvalues are algebraic integers. Since the

spectrum of a disconnected graph is the union of the spectra of its components, in any

investigation of integral graphs it is sufficient to consider only connected graphs.

Theorem 2.1.1. If Γ is a k-regular graph with eigenvalues k = λ1(Γ) ≥ · · · ≥ λn(Γ), then

Γ is a (n − k − 1)-regular graph with eigenvalues λ1(Γ) = n − k − 1 and for 2 ≤ i ≤ n,

λi(Γ) = −1− λn−i+2(Γ) .

As a result of this theorem, if Γ is a regular integral graph then the complement Γ of Γ

is also integral.

Theorem 2.1.2. Let Γ1 be a graph of order n with eigenvalues λ1 ≥ · · · ≥ λn, and Γ2 a

graph of order m with eigenvalues µ1 ≥ · · · ≥ µm. Then

• The eigenvalues of the Cartesian product Γ1�Γ2 are λi + µj for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

• The eigenvalues of the tensor product Γ1 × Γ2 are λiµj for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Thus the Cartesian product and tensor product of integral graphs are integral. For

example the hypercube Qn is defined recursively by Q1 = K2 and Qn = K2�Qn−1. Thus

eigenvalues of Qn are numbers n− 2i with multiplicity
(
n
i

)
for 0 ≤ i ≤ n.

Another example of a set consisting entirely of integral graphs is the set of complete

graphs Kn (n ≥ 1), with spectrum [(n− 1)1,−1n−1]. Cocktail-party graph CP (n) = nK2 is

integral with spectrum: [(2n− 2)1, 0n, (−2)n−1]. The complete multipartite graph Ks,...,s on

n = st vertices and t colour classes of sizes s is integral. It is the complement of the integral

graph tKs, thus the spectrum of Ks,...,s is: [(n− s)1, 0n−t, (−s)t−1]. The spectrum of a path

Pn of n vertices consists of numbers 2 cos( πk
n+1) for 1 ≤ k ≤ n. Thus the only integral path is

P2. One can easily see from a similar formula for eigenvalues of a cycle, that the only integral

cycles are C3, C4 and C6. Also since the spectrum of the complete bipartite graph Km,n is

[
(√
mn
)1
, 0m+n−2,

(
−
√
mn
)1

], thus Km,n is integral only if mn is a square of an integer.

If Γi are ri-regular integral graphs on ni vertices (1 ≤ i ≤ 2), then the join Γ1∇Γ2 is

integral if and only if (r1 − rr)2 + 4n1n2 is a perfect square (see [16]). The line graph L(Γ)

of a regular integral graph Γ is also integral.

Theorem 2.1.3. If Γ is a graph with d distinct eigenvalues then diameter of Γ is at most

d− 1.
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Using this theorem one can easily see that;

Theorem 2.1.4. The set of k-regular connected integral graphs is finite.

It is easy to see that in any graph Γ, λ1(Γ) ≤ ∆(Γ). If Γ is connected, equality happens

only in the case when Γ is regular. This can be used to prove that the set of connected

integral graphs with bounded maximum degree is finite.

Suppose Γ1 is a graph with n vertices and Γ2 is a graph with m vertices. The corona of

Γ1 by Γ2, denoted by Γ1 ◦ Γ2, is a graph with n+mn vertices obtained from Γ1 and n copies

of Γ2 by joining the i-th vertex of Γ1 to each vertex in the i-th copy of Γ2 (1 ≤ i ≤ n). The

subdivision graph of Γ, S(Γ), is obtained by inserting a single vertex in each edge of Γ.

Theorem 2.1.5 ([22]). The only connected integral graphs which are not 3-regular and whose

maximum vertex degrees are at most three are those illustrated in Figure 2.1.

K1 : K2 : C3 : C4 : C6 :

K2 ◦ 2K1 : S(K1,3) :

Figure 2.1: Non-cubic connected integral graphs with ∆ ≤ 3

Theorem 2.1.6 ([19, 51]). There are exactly thirteen connected cubic integral graphs. They

are: K4,K3,3, C3�K2, C4�K2, C6�K2, the Petersen graph, L(S(K4)), the Tutte’s 8-cage,

the graph on 10 vertices obtained from K3,3 by specifying a pair of nonadjacent vertices and

replacing each of them by a triangle, Desargues’ graph and its cospectral-mate, the graph

obtained from two (disjoint) copies of K2,3 by adding three edges between vertices of degree

two in different copies of K2,3, and a bipartite graphs on 24 vertices (with girth 6).

This theorem was proven by F.C. Bussemaker and D.M. Cvetković [19] in 1976. At the

same time, independently, the similar result was reported (and published a bit later) by

A.J. Schwenk [51]. These authors used different techniques to get the same result: F.C.

Bussemaker and D. Cvetković combined the aid of a computer with theoretical reasoning,

while A.J. Schwenk achieved the result completely “by hand and pencil”.
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Figure 2.2: Tutte 8-cage, smallest cubic graph of girth 8

The initial idea in the first case was to list all possible sets of distinct eigenvalues, then

find the possible multiplicities of them, subject to several restrictions resulting from the

connections between spectral moments and the numbers of vertices, edges and triangles, and

also from the Hoffman polynomial, and finally to deduce whether a graph with a considered

spectrum exists.

Using Brendan McKay’s program geng for generating graphs, one can see that there are

exactly 263 connected integral graphs on up to 11 vertices (see [14, 15, 16]). In 2009, Alon et

al. [4] showed that the total number of adjacency matrices of integral graphs with n vertices

is less than or equal to 2(n2)−
n

400 for a sufficiently large n.

There are many cospectral integral graphs. Infinitely many pairs of cospectral integral

regular graphs have been constructed in [13, 58]. The hypercube Qn is determined by its

spectrum for n < 4, but not for n ≥ 4. Indeed, there are precisely two graphs with spectrum

[41, 24, 06,−24,−41] ([31]).

In 1998, 4-regular integral graphs began to attract attention. In [54] Stevanović determined

all 24 connected 4-regular integral graphs avoiding ±3 in the spectrum. D. Cvetković, S.

Simić and D. Stevanović [24] found 1888 possible 4-regular bipartite integral graphs. The

potential spectra of bipartite 4-regular integral graphs were determined in [24]. They are

quite numerous and it cannot be expected that all 4-regular integral graphs will be determined

in the near future. Later, D. Stevanović obtained nonexistence results for some of these

potential spectra. It follows from these results that; except for 5 exceptional spectra, bipartite

4-regular integral graphs have at most 1260 vertices. As a corollary, a non-bipartite 4-regular

integral graph Γ has at most 630 vertices, unless Γ×K2 has one of these exceptional spectra.

For a survey of results regarding integral trees and other classes of integral graphs, we refer

the reader to [16].
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Figure 2.3: Complete Gray Code in hypercube Q4

2.2 Integral Cayley graphs

In this chapter, ωn (we will use ω when the index n is clear from the context) will denote

the primitive n-th root of unity e
2πi
n . Let G be an abelian group, generated by a subset S.

We know that every irreducible representation (character) of G is a group homomorphism

from G to C× (multiplicative group of C, i.e. C \ {0}). Thus ρ ∈ IRR(G) is uniquely

determined by its values on a generating set of the group. If g ∈ G is an element of order n,

then ρ(g) is an n-th root of unity. This fact provides an easy construction of all irreducible

representation of abelian groups. If G = 〈a〉 is a cyclic group of order n, then for each j

(1 ≤ j ≤ n) ρj(a) = ωjn will uniquely determine an irreducible representation of G. There

are h(G) = |G| such irreducible representations, which implies that the set {ρj | 1 ≤ j ≤ n}
should constitute a complete set of irreducible representations of G. If G is an abelian finite

group, then according to the fundamental theorem of finitely generated abelian groups, G is

isomorphic to a direct product of cyclic subgroups. This along with Theorem 1.1.7 provide

enough tools to construct all the irreducible representations of G.

The Cayley graph Cay(Cn, S), where Cn denotes a general cyclic group of order n and

S is an subset, is called a circulant graph of order n. In the context of circulant graphs

(especially in the examples) we use Zn (the additive group of integers modulo n) and the

additive notation. An alternate definition for a circulant graph is; any graph with a circulant
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adjacency matrix. Given this, the following theorem is easy to prove.

Theorem 2.2.1. If Γ = Cay(Zn, S), then Spec(Γ) = {λx | x ∈ Zn} where

λx =
∑
s∈S

ωsxn .

It is easy to see that an eigenvector corresponding to the eigenvalue λx in the above

theorem is the vector v = (ωkxn )k∈Zn .

Example 2.2.1. Let X = Cay(Z6, {2, 3}), then

Spec(X) = [2, ω2
6 − 1, ω4

6 + 1, ω3
6 + 1, ω2

6 + 1, ω4
6 − 1]

For an integer n ≥ 2 and a proper divisor d of n we define

Gn(d) = {k ∈ Zn | gcd(k, n) = d}.

Theorem 2.2.2 (So [52]). Let n be an integer, n ≥ 2, S ⊆ Zn, 0 6∈ S, −S = S. The

circulant Cay(Zn, S) is integral, if and only if there are proper divisors d1, . . . , dr of n such

that

S =
r⋃
j=1

Gn(dj).

In the rest of this chapter, we will provide necessary tools to extend this result and prove

a similar result for abelian groups.

An algebraic structure (L,∨,∧), consisting of a set L and two binary operations ∨
(disjunction), and ∧ (conjunction), on L is a lattice if the following axiomatic identities hold

for all elements a, b, c of L.

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c (Associative laws)

a ∨ b = b ∨ a a ∧ b = b ∧ a (Commutative laws)

a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a (Absorption laws).

A lattice can be defined as a partially ordered set in which any two elements have a

supremum and an infimum. A boolean algebra is a lattice equipped with a unary operation ¬,

called “complement” or “not”, and two elements 0 and 1, such that it satisfies the following

laws:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (Distributivity laws)
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a ∨ 0 = a a ∧ 1 = a (Identity laws)

a ∨ ¬a = 1 a ∧ ¬a = 0 (Complements laws).

It is easy to give a ring structure to a boolean algeba with ring multiplication corresponding

to ∧ and ring addition to exclusive disjunction; a + b := (a ∧ ¬b) ∨ (¬a ∧ b). In this ring

every element is an idempotent. Any ring with identity that every element is an idempotent

is called a boolean ring . Boolean rings with identity and boolean algebras are essentially

the same algebraic structure and we are not distinguishing them. The power set (set of

all subsets) of any given nonempty set S forms a boolean algebra with the two operations

∨ := ∪ (union) and ∧ := ∩ (intersection) and set difference with respect to S (complement)

as the unary operation. The smallest element 0 is the empty set and the largest element 1

is the set S itself. The boolean ring operations are intersection and symmetric difference

corresponding to ring multiplication and addition respectively.

Suppose S is a set and F is a family of subsets of S, then B(F ) stands for the lattice of

subsets of S obtained by arbitrary finite intersections, unions, and complements of the sets

in the family F . It is easy to see that this lattice is indeed a boolean algebra (called the

boolean algebra generated by F ). The minimal non-empty elements of this algebra are called

the atoms. Each element of B(F ) is expressible as a disjoint union of the atoms. Consider

the equivalence relation ∼ on S, where a ∼ b if and only if for every A ∈ F we have either

{a, b} ⊆ A or {a, b} ∩A = ∅.

Theorem 2.2.3. The equivalence classes of this relation are the atoms of B(F ).

Proof. If T is an atom, then for any set A ∈ F we have T ∩A ∈ B(F ). Since T ∩A ⊆ T and

T is an atom, we have either T ∩A = ∅ or T ∩A = T . Thus, elements of T are equivalent.

Let a ∈ T , if [a] is the equivalence class containing a, then from what we said we get; T ⊆ [a].

If a ∼ b then, for any A in F we have {a, b} ∩ A = ∅ or {a, b} ⊆ A. Since T ∈ B(F ) and

a ∈ T , we have b ∈ T . Then [a] ⊆ T and therefore, T = [a].

We let B(G) denote the boolean algebra generated by the subgroups of G. We show

below that the atoms of this boolean algebra are all subsets of elements which generate the

same cyclic subgroup of G.

Theorem 2.2.4. The atoms of the boolean algebra B(G) are the sets [a] = {b | 〈b〉 = 〈a〉}.
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Proof. We use the previous theorem to show that the equivalence classes of the relation ∼
are [a] = {b | 〈b〉 = 〈a〉}. As we know, a ∼ b if and only if every subgroup of G containing

either both elements or none of them. Since 〈a〉 is the smallest subgroup of G containing

a, thus b ∈ 〈a〉. This proves that [a] is a subset of 〈a〉. Now if a ∼ b then [a] = [b] and so

a ∈ [a] = [b] ⊆ 〈b〉. This proves that 〈a〉 ⊆ 〈b〉, with the symmetry we have the other side as

well.

We notice that in B(G) we have g ∼ h if and only if there are integers k and l coprime

with respect to o(g) = o(h) such that h = gk and g = hl.

We can define a similar algebraic structures for multisets, using multiset operations.

Formally, we take all atoms of the boolean algebra B(G) and take all multisets that can be

expressed as non-negative integer combinations of these atoms. This defines the collection

C(G) of multisets that is called the integral cone over B(G).

A theorem by Bridges and Mena (see [18]) gives a complete characterization of which

Cayley multigraphs over abelian groups are integral. Although the result of Bridges and

Mena was originally stated for simple Cayley graphs, indeed they proved the multigraph

version. For each group element g ∈ G, let Ag denote the permutation matrix (indexed by

G×G) associated with g and for a set S ⊆ G let AS =
∑

s∈S As. Bridges and Mena proved

that for an abelian group G, a complex linear combination of the matrices {Ag : g ∈ G} is a

rational matrix with rational eigenvalues if and only if it is a rational combination of the

matrices {AQ : Q is an atom of B(G)}.
There has been some interests in finding a new proof of this result. Notably, So’s result

(Theorem 2.2.2) is a new proof in the special case when G is a cyclic group, and Klotz and

Sander [38] found a new proof of the “if” direction for all abelian groups. In [10], our goal

was to give a new proof of Theorem 2.4.4. The proof presented is based on characters, and

is a fairly direct generalization of that given by So. However, the approach generalizes to

non-abelian groups and enables one to consider a more general classes of groups, as we will

see in the next chapter.

2.3 B-integrality

If Ω is a collection of graphs on the common vertex set V and B is an orthogonal basis of

CV , then we say that Ω is B-integral if for every X in Ω, B is a set of eigenvectors for X
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and all eigenvalues of X are integral. Equivalently, if A(X) denotes the adjacency matrix of

X, then A(X)B = BΛ, where Λ is a diagonal matrix with integer entries (and B is viewed

as a matrix whose columns are the vectors from B)1. If X and Y are (simple) graphs on the

same vertex set V , then we denote by X ∪ Y the simple graph on V in which vertices u, v

are adjacent if and only if they are adjacent in X or in Y (or in both). For any family of

graphs Ω on a common vertex set, we let U(Ω) be the closure of Ω under the operation ∪.

We begin with an easy lemma.

Lemma 2.3.1. (a) If X is B-integral and j ∈ B, then X is B-integral.

(b) If X and X ∩ Y are B-integral, then X ∩ Y is B-integral.

(c) If Ω is an intersection-closed family of B-integral graphs, then U(Ω) is B-integral.

Proof. (a) j ∈ B implies that X is a regular graph, so the result is clear from the fact that

A(X) +A(X) = J − I.

To prove (b), observe that A(X ∩ Y ) = A(X)−A(X ∩ Y ), thus

A(X ∩ Y )B = A(X)B −A(X ∩ Y )B = BΛ1 −BΛ2 = B(Λ1 − Λ2).

Since Λ1 and Λ2 are integral, so is their difference, hence X ∩ Y is B-integral.

By observing that A(X ∪ Y ) = A(X) +A(Y )−A(X ∩ Y ), a proof similar to the above

proof of (b) shows that (c) holds.

For any set of graphs Ω on a common vertex set V , we let B(Ω) denote the set of all

graphs on V which may be expressed using members of Ω and the operations ∩, ∪, and

complement.

Lemma 2.3.2. Let Ω be an intersection-closed family of B-integral graphs and assume that

j ∈ B. Then B(Ω) is B-integral.

Proof. Set Ω0 = Ω and for every k ∈ N recursively define

Ωk+1 = {X1 ∩ · · · ∩Xn : either Xi ∈ Ωk or Xi ∈ Ωk for every 1 ≤ i ≤ n, n ≥ 1}.

It is immediate that each Ωk is intersection-closed and it follows from De Morgan’s law that

B(Ω) = ∪∞k=0Ωk. To complete the proof, we shall show, by induction on k, that every graph

in Ωk is B-integral. As a base, we observe that this holds for k = 0 by assumption. For the

1Similar notion was defined by Klotz and Sander in [38].
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inductive step, let X be a graph in Ωk+1 and suppose that X = X1 ∩ · · · ∩X` ∩ Y1 ∩ · · · ∩ Ym
where X1, . . . , X`, Y1, . . . , Ym ∈ Ωk. Then we have

X =
(
∩`i=1Xi

)
∩
(
∪mj=1Yj

)
.

Since Ωk is intersection-closed and X ′ = X1 ∩ · · · ∩X` ∈ Ωk and X ′ ∩ (∪mj=1Yj) = (∪mj=1(X ′ ∩
Yj) ∈ U(Ωk), it follows from Lemma 2.3.1 that X is B-integral, as desired.

In the following lemma, G is a group not necessarily abelian.

Lemma 2.3.3. Let S and T be symmetric multisets of a group G. If g T = Tg (equality

holding as multisets) for every g ∈ G, then the adjacency matrices of Cayley multigraphs

Cay(G,S) and Cay(G,T ) commute.

Proof. Let AS and AT be the adjacency matrices of both Cayley multigraphs, and let g, h ∈ G.

Since S and T are symmetric, we have

(ASAT )g,h =
∑
x∈G

µS(gx−1)µT (xh−1) =
∑
x∈G

µSg(x)µTh(x)

=
∑
x∈G

µSg(xg)µTh(xg) =
∑
x∈G

µS(x)µThg−1(x).

Taking a similar expression for ATAS and using the fact that S and T are symmetric, we

derive

(ATAS)g,h =
∑
x∈G

µTgh−1(x)µS(x) =
∑
x∈G

µTgh−1(x−1)µS(x−1)

=
∑
x∈G

µhg−1T (x)µS(x).

To obtain equality for every g and h, it suffices to see that µThg−1(x) = µhg−1T (x) for every

g, h, x ∈ G; equivalently, µTk(x) = µkT (x) for every k, x ∈ G. But this is precisely our

assumption that Tk = k T .

Lemma 2.3.3 implies that the adjacency matrices of all Cayley multigraphs Cay(G,T ),

where T is any normal subgroup of G (or any other union of conjugacy classes), commute.

Therefore, they have a common set of eigenvectors.
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2.4 Integral Cayley graphs over abelian groups

Throughout this section, G will always be a (finite) abelian group. Let G∗ denote the dual

group of G, consisting of all complex characters of G. It is well known that G∗ is a group

under pointwise multiplication (according to 1.1.7), and that G∗ ∼= G. We define F to be

the matrix indexed by G∗ ×G and given by the rule that for α ∈ G∗ and x ∈ G we have

Fα,x = α(x). Note that each row of F is a character. Furthermore, it follows from the

orthogonality of characters 1.1.9 that FF ∗ = |G|In, where F ∗ is the conjugate transpose of

F and n = |G|. Finally, observe that if r is the exponent of G, then every element of F is an

rth root of unity.

In the remainder, for any vector v ∈ CA (where A is a non-empty index set) and any

n ∈ Z, we let vn denote the vector in CA given by coordinate-wise exponentiation, i.e.,

(vn)i = (vi)
n for each i ∈ A.

Observation 2.4.1. Let x, y ∈ G and let Fx, Fy denote the column vectors of F indexed by

x and y, respectively. If x ∼ y, then there exist integers j, k ∈ Z so that (Fx)j = Fy and

(Fy)
k = Fx.

Proof. Since x ∼ y, we may choose j, k ∈ Z so that xj = y and yk = x. Now, for any

character α ∈ G∗ we have α(y) = α(xj) = (α(x))j and it follows that Fy = (Fx)j . A similar

argument shows that Fx = (Fy)
k.

The following lemma is the key point in generalizing the sufficiency proof of Theorem

2.4.4 offered by Klotz and Sander in [38]. The proof presented here is due to Matt DeVos.

Lemma 2.4.2. Let v ∈ QG. If Fv ∈ QG∗, then for every x, y ∈ G with x ∼ y, we have

vx = vy.

Proof. Let Fx and Fy denote the column vectors of F indexed by x and y and let ` (m) be

the smallest integer so that every term of Fx (Fy) is a ` th (mth) root of unity. It follows from

Observation 2.4.1 that ` = m. Now, fix a primitive ` th root of unity ω and express each entry

of Fx and Fy in the form ωi for some i ∈ {0, 1, . . . , ` − 1}. Using this interpretation, and

recalling that u := Fv is rational, we obtain an expression for the (complex) inner product of

Fx and u as

Fx · u = (F ∗u)x =
`−1∑
i=0

ai ω
i
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where each ai ∈ Q. Note that Fx · u = (F ∗u)x = nvx. Now, let P (z) ∈ C[z] denote the

polynomial P (z) =
∑`−1

i=0 aiz
i−nvx. Observe that P (ω) = 0. Next, choose j ∈ {0, 1, . . . , `−1}

so that Fy = (Fx)j . Note that gcd(j, l) = 1. We may assume x 6= y, as otherwise there is

nothing to prove. It follows that j ≥ 2, so ` ≥ 3. The polynomial P has rational coefficients

and has ω as a root. It follows from this and the fact that the polynomial

Φ`(z) =
∏

i∈{1..`}:gcd(i,`)=1

(z − ωi)

is irreducible over Q, that ωj is also a root of P . But then we have

0 = P (ωj) =

`−1∑
i=0

aiω
ij − nvx = Fy · u− nvx

which implies that vy = 1
nFy · u = vx as desired.

Lemma 2.4.3. Let G be a finite abelian group, S a symmetric subset of G and χ ∈ Irr(G).

Consider the vector x = (χ(g))g∈G Then x is an eigenvector of Γ = Cay(G,S), with eigenvalue

λχ =
∑
s∈S

χ(s).

Proof. Considering the g-th entry of A(Γ)x we have:

(A(Γ)x)g =
∑
h∈G

A(Γ)g,hχ(h) =
∑
s∈S

A(Γ)g,sgχ(sg) =
∑
s∈S

χ(sg) = (
∑
s∈S

χ(s))χ(g) = λχχ(g)

Let X be a non-empty set and S ⊆ X. The characteristic vector of S, denoted by 1S , is

a vector in {0, 1}X such that 1S(x) = 1 if and only if x ∈ S. We are now ready to state and

prove the following theorem.

Theorem 2.4.4 (Bridges, Mena [18]). If G is an abelian group, then Cay(G,S) is integral if

and only if S ∈ C(G), where C(G) is the integral cone of multisets generated by the subgroups

of G.

Proof. (Necessity) By lemma 2.4.3 each character α as a vector in G∗ is an eigenvector

for Cay(G,S) with eigenvalue α(S) =
∑

g∈S α(g). Alternately, if we view α as a vector in

CG, this eigenvalue may be written as α · 1S . Suppose that Cay(G,S) is integral. Then we
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have α · 1S ∈ Q for every α ∈ G∗. Equivalently, F1S is rational-valued. But then, it follows

from the previous lemma that whenever x, y ∈ G satisfy x ∼ y, we have (1S)x = (1S)y. This

implies that S ∈ B(G), as desired.

(Sufficiency) Let Ω = {Cay(G,H) : H 6 G}. By Lemma 2.3.3, the adjacency matrices of

all graphs in Ω commute and hence they have a common orthogonal set B of eigenvectors.

For every X ∈ Ω we have that X has B as a basis of eigenvectors, and X is a disjoint union

of cliques (with loops at every vertex), so X is B-integral. It now follows from Lemma 2.3.2

that B(Ω) = {Cay(G,S) : S ∈ B(G)} is B-integral. Since the adjacency matrix AT of each

multigraph Cay(G, T ), T ∈ C(G), is an integral linear combination of adjacency matrices of

Cay(G,S), S ∈ B(G), also AT is B-integral. This completes the proof.

Let G be a cyclic group of order n generated by a. We want to determine the atoms of

B(G). To show that So’s result in 2.2.2 is a special case of the theorem 2.4.4.

We recall that ord(ak) = ord(a)
gcd(ord(a),k) . If d is a divisor of n, then ord(ad) = n

d . We have;

ord(aid) = ord((ad)i) =
ord(ad)

gcd(ord(ad), i)
=

n
d

gcd(nd , i)

Thus [ad] = {aid | (i, nd ) = 1} = {ak | gcd(k, n) = d}. This for the group Zn with additive

notation (see 2.2.2) turns to [d] = {k | gcd(k, n) = d} = Gn(d). Therefore, clearly Theorem

2.4.4 implies Theorem 2.2.2.



Chapter 3

Integral Cayley graphs over

non-abelian groups

In this chapter we consider the general case of Cayley integral graphs over non-abelian groups.

We will first list known results in this area. In the second section, we will introduce different

notions of integrality in the lattice of subsets of a group. Character and representation

integrailty are the main topics in this section. We characterize all character integral subsets

of a group, and prove that representation integrality is equivalent to integrality of the

corresponding Cayley graph. In the third section, we will study the integral Cayley graphs

over Hamiltonian groups. Last section will deal with integrality of Cayley graphs over

Dihedral groups.

3.1 Introduction

Theorem 3.1.1. Suppose Γ = Cay(G,S), where G is a finite group and S is a non-empty

subset of G. Then the following holds:

1) Γ is regular of degree |S|.

2) Γ is connected if and only if G = 〈S〉.

3) If 1 ∈ S then Γ has a loop at every vertex.

4) Γ is undirected if and only if S = S−1.

27
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In this thesis we only consider undirected graphs. In the light of the previous theorem,

we will always assume that S is a symmetric subset of G, i.e. S = S−1. In the study of

integral Cayley graphs, the usual assumption of 1 6∈ S is not necessary. This is because

including 1 in S will add one unit to every eigenvalues of the graph and that does not change

the integrality of the graph spectrum. However, we will always assume that S is identity

free. If for every g in G, we define rg : G → G given by rg(h) = hg, then one can check

that rg is an automorphism of Γ = Cay(G,S). The right regular permutation representation

of G is the set R(G) = {rg | g ∈ G}. One can check that R(G) is a group with function

composition and R(G) ' G. If Aut(G,S) = {α ∈ Aut(G) | α(S) = S}, then we have

Aut(G,S) = Aut(Γ) ∩Aut(G).

Let α be an automorphism of the group G. We have αrgα
−1 = rα(g), and so

R(G)Aut(G,S) 6 NAut(Γ)(R(G)).

Theorem 3.1.2. If Γ = Cay(G,S), then Aut(Γ) acts transitively on G, and so Γ is a

vertex-transitive graph.

Suppose Γ = Cay(G,S). The linear operator AΓ (associated with Γ) on CG, is defined

by its action on the basis G according to AΓ(h) =
∑

s∈S sh. The matrix of AΓ with respect

to the basis G is the adjacency matrix of Γ. It is clear from the definition of the left regular

representation ρreg that AΓ =
∑

s∈S ρreg(s).

Theorem 3.1.3 (Diaconis and Shahshahani [25]). Let G be a group and let S ⊆ G be a

multiset of elements of G. Let IRR(G) = {ρ1, . . . , ρk}. For t = 1, . . . , k, let dt be the degree

of ρt, and let Λt be the multiset of eigenvalues of the matrix
∑

g∈S µS(g)ρt(g). Then the

following holds:

(1) The set of eigenvalues of Cay(G,S) equals ∪kt=1Λt.

(2) If the eigenvalue λ occurs with multiplicity mt(λ) in
∑

g∈S µS(g)ρt(g) (1 ≤ t ≤ k), then

the multiplicity of λ in Cay(G,S) is
∑k

t=1 dtmt(λ).

Remark 3.1.4. Theorem 3.1.3 suggests that integrality of a Cayley graph Cay(G,S) is

equivalent to integrality of the matrices ρ(S) =
∑
s∈S

ρ(s) for every representation (reducible or

irreducible) ρ of G.
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Theorem 3.1.5 ([48]). Let G be a finite group of order n and Irr(G) = {χ1, . . . , χh}
with χi(1) = ni (i = 1 . . . h). Suppose S is a symmetric subset of G which is a union of

conjugacy classes. Then the spectrum of the Cayley graph Cay(G,S) can be arranged as

Λ = {λijk | i = 1, . . . , h; j, k = 1, . . . , ni} such that λi = λijk for 1 ≤ j, k ≤ ni, where λi is

an eigenvalue corresponding to χi that can be expressed as:

λi =

∑
s∈S

χi(s)

ni
.

Theorem 3.1.6 (Babai [13]). Let G be a finite group of order n, Irr(G) = {χ1, . . . , χh} with

χi(1) = ni (i = 1, . . . , h). Suppose also that S is a symmetric subset of G. Then the spectrum

of the Cayley graph Cay(G,S) can be arranged as Λ = {λijk | i = 1, . . . , h; j, k = 1, . . . , ni}
such that λij1 = . . . = λijni (this common value is denoted by λij). Furthermore, for any

natural number t we have:

λti1 + . . .+ λtini =
∑

s1,...,st∈S
χi(

t∏
l=1

sl).

Theorems 3.1.3 and 3.1.6 are served as bridges between spectral graph theory and

representations and characters of finite groups.

Theorem 3.1.7. Let Γ = Cay(G,S), where G is a finite group and S is a symmetric

generating subset of G. Then, Γ is bipartite if and only if G has a linear character which

maps each element s of S to −1.

Proof. We know by Theorem 3.1.1 that Γ is a connected graph and λ1 = |S| is a simple

eigenvalue. Thus Γ is bipartite if and only if −|S| is a simple eigenvalue of Γ. According to

Theorem 3.1.3, each non-linear representation produce multiple eigenvalues. This implies

that linear representations (characters) of G are the one which will produce −|S| as an

eigenvalue. Now it is clear from Theorem 1.1.8 that Γ is bipartite if any only if there is a

character θ of G such that θ(s) = −1 for every s in S.

Corollary 3.1.8. Let Γ = Cay(G,S), where S is a symmetric generating subset of a group

G. If S contains an element of odd order then Γ is not bipartite.

A group G is perfect if it is equal to its derived subgroup, i.e. G = G′. The index [G : G′]

of the derived subgroup G′ counts the number of linear characters of G.

Corollary 3.1.9. If G is a perfect group, then there is no bipartite Cayley graph over G.
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Proof. Since G is perfect, the only linear character of G is the trivial character which maps

each element of G to 1. Thus according to Theorem 3.1.7, for any subset S of G, Cay(G,S)

is not bipartite.

3.2 Character and representation integrality

We say a subset S of G is representation integral if for every matrix representation ρ of G,

the matrix ρ(S) =
∑
s∈S

ρ(s) is an integral matrix. In the same way, we call a subset S of G

character integral if for every character χ of G, χ(S) =
∑
s∈S

χ(s) is an integer.

We will write ρ-integral for representation integrality and χ-integral for character integrality.

We notice that the group algebra CG is a semi-simple algebra. Therefore, to check a subset

S of G is ρ-integral (χ-integral), it is sufficient to consider the irreducible representations

(characters). We denote the collection of subgroups, normal subgroups, χ-integral and

ρ-integral subsets of G by GG, NG, IGχ and IGρ , respectively. When we consider a single

group or when the group G is clear from the context, we will omit the letter G from the

notation.

Remark 3.2.1. The union of two χ-integral subsets of G is not generally a χ-integral subset,

whereas disjoin union of χ-integral subsets of G is always a χ-integral subset.

The situation for ρ-integral subsets is quite different from χ-integral sets, the fact that

“eigenvalues of a sum of two matrices are not the sums of the eigenvalues of the terms” has

made the situation quite undecidable. However, we have the following lemma.

Lemma 3.2.2. If S and T are disjoint ρ-integral subsets of G and ST = TS as multisets,

then S ∪ T is a ρ-integral subset of G.

Proof. It is easy to see that,

ST = TS ⇔ (
∑
s∈S

s)(
∑
t∈T

t) = (
∑
t∈T

t)(
∑
s∈S

s).

If ρ is any matrix representation of G, then this is equivalent with the fact that ρ(S)

and ρ(T ) are commuting matrices. Theorem 1.1.2 implies that eigenvalues of the matrix

ρ(S ∪ T ) = ρ(S) + ρ(T ) are the sum of the eigenvalues of ρ(S) and ρ(T ). Since S and T are

ρ-integral subsets of G, we conclude that ρ(S ∪ T ) is ρ-integral as well.
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Remark 3.2.3. We notice that for two subsets S and T of a finite group G, ST = TS

(multiset equality) if S ⊆ NG(T ).

Lemma 3.2.4. If ρ is a matrix representation of G then ρ(G) =
∑
g∈G

ρ(g) is an integral

matrix, that is to say G ∈ Iρ.

Proof. For every h in G we have:

ρ(G) =
∑
g∈G

ρ(g) =
∑
g∈G

ρ(hg) = ρ(h)(
∑
g∈G

ρ(g)) = ρ(h)ρ(G).

Thus if there is a h in G such that ρ(h) 6= I, then ρ(G) = 0 otherwise, ρ(G) = |G|I. In both

cases ρ(G) is an integral matrix.

From the above lemma, we deduce that the complement of a ρ-integral (χ-integral) subset

is again a ρ-integral (χ-integral) subset of G. Recall the equivalence relation ∼ in a group

G, for g1 and g2 in G, we have g1 ∼ g2 if and only if the subgroup 〈g1〉 generated by g1, is

equal to the subgroup 〈g2〉 generated by g2. This is equivalent to g1 = gk2 for some integer k

relatively prime with respect to the common order of g1 and g2.

Theorem 3.2.5. Let G be a finite group, and x =
∑
g∈G

cgg an element in QG. Suppose x

has the property that g1 ∼ g2 implies
∑

h∈cl(g1)

ch =
∑

h∈cl(g2)

ch. Then χ(x) is an integer for all

characters χ of G.

Proof. It suffices to show that χ(x) is rational for any irreducible character χ of G. Take E

to be the cyclotomic field of |G|-th roots of unity. We know that all character values, χ(g)

for g in G lie in this field.

Let σ be in Gal(E/Q). It suffices to show that σ((χ(x))) = χ(x). Now if ω is a primitive

|G|-th root of unity, then σ(ω) = ωk for some integer k co-prime to |G|. It follows for g in G

that σ(χ(g)) = χ(gk) (Theorem 1.1.8). Assume that L is a set of representatives of conjugacy

classes in G. Since characters are class functions, so for h ∈ cl(g) we have χ(g) = χ(h). Thus,

σ(χ(x)) =
∑
g∈L

( ∑
h∈cl(g)

ch

)
σ(χ(g)) =

∑
g∈L

( ∑
h∈cl(g)

ch

)
χ(gk).

We also know that ord(g) and k are relatively prime, because ord(g) | |G|. Consequently, g

and gk generate the same cyclic subgroup and so g ∼ gk. Since
∑

h∈cl(g)

ch =
∑

h∈cl(gk)

ch, and
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we notice that {gk | g ∈ L} is a complete set of representatives of conjugacy classes as well.

This yields

σ(χ(x)) =
∑
g∈L

( ∑
h∈cl(gk)

ch

)
χ(gk) =

∑
g∈G

cgχ(g) = χ(x).

It follows that χ(x) is rational and thus integer.

The converse of the previous theorem is true and we have the following result:

Theorem 3.2.6. Let G be a finite group, and let x =
∑
g∈G

cgg be an element in QG with the

property that for all irreducible characters λ of G, λ(x) ∈ Q. With these given, if g1 ∼ g2

(g1, g2 ∈ G), then we have
∑

h∈cl(g1)

ch =
∑

h∈cl(g2)

ch.

Proof. Since g1 ∼ g2, we have ord(g1) = ord(g2) = n for an integer n. Suppose g2 = gr1,

where r is co-prime to n. Let F be the field Q(ω), where ω is a primitive n-th root of unity.

There exists σ in Gal(F/Q) such that σ(ω) = ωr. Note that for all λ ∈ Irr(G), we have

σ(λ(g1)) = λ(gr1).

Now x =
∑
t∈G

ctt, where ct in Q for every t in G. For t in G let θt =
∑

λ∈Irr(G)

λ(t)λ̄, where λ̄ is

the complex-conjugate of λ. By character orthogonality we have:

θt(u) =

|CG(t)| if u and t are conjugate

0 otherwise

We have θt(x) = |CG(t)|
∑

g∈cl(t)

cg. Since this is rational, σ(θt(x)) = θt(x) for all t in G.

Also, by hypothesis, σ(λ(x)) = λ(x) for all λ in Irr(G).

We have

|CG(g1)|
∑

h∈cl(g1)

ch = θg1(x) = σ(θg1(x)) =

∑
σ(λ(g1))σ(λ̄(x)) =

∑
λ(g1

r)λ̄(x) =

θg1r(x) = θg2(x) = |CG(g2)|
∑

h∈cl(g2)

ch.

(3.1)

Since g1 ∼ g2 we have CG(g1) = CG(g2) and so
∑

h∈cl(g1)

ch =
∑

h∈cl(g2)

ch, as wanted.
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Theorem 3.2.7. A subset S of G is χ-integral if and only if for all elements g1 and g2 in

G, such that g1 ∼ g2 we have:

| cl(g1) ∩ S| = | cl(g2) ∩ S|.

Proof. We take x =
∑
s∈S

s =
∑
g∈G

cgg where

cg =

1 if g ∈ S

0 otherwise

Then using theorem 3.2.5 and 3.2.6 we have the desired result.

Theorem 3.2.8. Let G be a finite group. The following statements are true:

1) B(G) ⊆ Iχ.

2) B(N ) ⊆ Iρ.

3) Iρ ⊆ Iχ.

4) G ⊆ Iρ.

5) B(N ) ⊆ B(G).

6) B(G) = Iχ if and only if G is an abelian group.

7) If H 6 G, then IρH ⊆ IρG.

8) Each atom of B(G) belongs to Iρ.

9) If G = H ×K, then IρH × IρK ⊆ IρG.

10) If G = H ×K and S ∈ IρG, then πH(S) ∈ IρH and πK(S) ∈ IρK .

Proof. 1) Iχ is closed under disjoint union. Thus it suffices to prove that for every atom

[a]G of B(G) we have [a]G ⊆ Iχ. We know that [a]G = {b ∈ G | 〈b〉 = 〈a〉}. According

to Theorem 3.2.7, we need to prove, for g1 and g2 in G with g1 ∼ g2, that:

| cl(g1) ∩ [a]G | = | cl(g2) ∩ [a]G |.
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If ak ∈ cl(g1) ∩ [a]G , then we have gcd(ord(a), k) = 1 and ord(a) = ord(ak) = ord(g1).

Then gcd(k, ord(g1)) = 1. Since g1 ∼ g2, so g2 = gm1 for a m relatively prime

with respect to ord(g2) = ord(g1) = ord(a). We have akm ∈ cl(g2) and ord(a)

is relatively prime with respect to k and m, and so with respect to km. Then

akm ∈ [a]G ∩ cl(g2). This shows that | cl(g1) ∩ [a]G | ≤ | cl(g2) ∩ [a]G |. By symmetry we

have | cl(g1) ∩ [a]G | ≥ | cl(g2) ∩ [a]G | as required.

2) Let X = {Cay(G,H) : H C G}. By Lemma 2.3.3, the adjacency matrices of all graphs

in X commute and hence they share a common orthogonal set B of eigenvectors. For

every X ∈ X we have that X has B as a basis of eigenvectors, and X is a disjoint

union of cliques (with loops at every vertex), so X is B-integral. It now follows from

Lemma 2.3.2 that B(X ) = {Cay(G,S) : S ∈ B(N )} is B-integral. Thus, for every

representation ρ of G and S ∈ B(N ) we have by the remark after Theorem 3.1.3 that

ρ(S) is integral. Thus S ∈ Iρ. This completes the proof.

3) If S ∈ Iρ then ρ(S) is an integral matrix for every representation ρ of G. If λ is a character

of G then λ is afforded by a representation ρλ of G. This implies λ(S) = tr(ρλ(S)).

Since trace of a square matrix is the sum of eigenvalues, the integrality of λ(S) follows

from the integrality of ρλ(S).

4) Suppose H ∈ G, and h ∈ H. We have,

ρ(H) =
∑
g∈H

ρ(g) =
∑
g∈H

ρ(gh) = ρ(h)(
∑
g∈H

ρ(g)) = ρ(h)ρ(H).

If there is an h in H such that ρ(h) 6= I, then ρ(H) = 0 otherwise ρ(H) = |H|I. In

both cases, ρ(H) is an integral matrix and so H ∈ Iρ.

5) This is obvious since N ⊆ G.

6) If G is abelian, then from Theorem 2.4.4 in Chapter 2, we have that B(G) = Iχ. We

prove that for a non-abelian group G, B(G) 6= Iχ. We suppose G is non-abelian and

B(G) = Iχ. We will prove that if a 6∈ Z(G), then ord(a) = 2. Suppose that a 6∈ Z(G)

and ord(a) 6= 2. If [a] denote the atom of B(G) containing a, then we know that

|[a]| = φ(ord(a)) > 1. If g ∈ G and b in [a], we claim that bg = g−1bg ∈ [a]. Otherwise,

if A =
(

[a]− {b}
)
∪ {bg}, then clearly for every χ ∈ Irr(G) we have χ(A) = χ([a]) ∈ Z.

This implies that [a] \A ∈ B(G) = Iχ. That is to say {b} ∈ B(G), which is impossible
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since the minimal set in B(G) containing b is the atom [a] which has more than one

element. Thus [a] is a union of conjugacy classes all of the same size. Let {a1, . . . , ak}
and l = | cl(ai)| be, respectively, the set of distinct representatives and the common

size of these classes. Because [a] ∈ B(G) = Iχ, we have

χ([a]) =
∑
b∈[a]

χ(b) =
k∑
i=1

lχ(ai) = l
k∑
i=1

χ(ai) ∈ Z.

We know the values of characters are algebraic integers, thus this implies
∑k

i=1 χ(ai) ∈
Z. This proves that {a1, . . . , ak} ⊆ [a] is a character integral set and thus an element

in B(G). As [a] is an atom this implies that {a1, . . . , ak} = [a], l = 1 and so a ∈ Z(G).

We know prove that G = Z(G). If g1, g2 6∈ Z(G), then ord(g1g2) = 2 because otherwise

g1g2 ∈ Z(G) ⇒ g1(g1g2) = (g1g2)g1 ⇒ g1g2 = g2g1 ⇒ ord(g1g2) = 2.

On the other hand, g1, g2 6∈ Z(G) implies that ord(g1) = ord(g2) = ord(g1g2) = 2,

which implies that g1g2 = g2g1. We have shown that if g1 6∈ Z(G), then g1 commutes

with all elements inside and outside of Z(G). By definition of Z(G) this implies that

g1 ∈ Z(G). This contradiction implies that there are no elements outside of Z(G) and

thus G = Z(G) and so G is abelian.

7) If ρ is a representation of G, then by restriction to H we will get a representation ρH of

H. If S ⊆ H, we have

ρ(S) =
∑
s∈S

ρ(s) =
∑
s∈S

ρH(s) = ρH(S).

Clearly, if S ∈ IHρ , then S ∈ IGρ .

8) Let a be an element in G and [a] the atom of B(G) containing a. If ρ is a matrix repre-

sentation of G, then the restriction of ρ to the cyclic group H = 〈a〉 is a representation

of H = 〈a〉. We have also IρH ⊆ IρG and hence it is no loss of generality to assume

G = 〈a〉. This implies that G is abelian, and so Iχ = Iρ. Since for an abelian group

we have B(G) = Iχ, it follows that [a] ∈ B(G) ⊆ Iρ.

9) Every irreducible representation of H ×K is the tensor product of an irreducible repre-

sentation of H with an irreducible representation of K. Notice that H and K commute
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element-wise. Assume ρ1 ∈ IRR(H) and ρ2 ∈ IRR(K). If S1 ∈ IHρ and S2 ∈ IKρ , then

we have;

(ρ1⊗ρ2)(S1×S2) =
∑

(s1,s2)∈S1×S2

ρ1(s1)⊗ρ2(s2) =
∑
s1∈S1

∑
ss∈S2

ρ1(s1)⊗ρ2(s2) = ρ1(S1)⊗ρ2(S2).

This proves, that S1 × S2 is in IGρ .

10) Let 1K denote the principal representation of K. If ρ ∈ IRR(H), Then ρ ⊗ 1K is a

representation of H ×K. Since (ρ⊗ 1K)(S) = ρ(πH(S)), we have πH(S) ∈ IHρ .

If we define a ≡N b if and only if 〈cl(a)〉 = 〈cl(b)〉 then one can easily check that the

classes of this equivalence relation are the atoms of B(N ). It is interesting if one can find an

easy way to describe an atom [a]N in this algebra. If D is an integral domain, then we say a

character χ of a group G is realized over D if all character values χ(g) (g ∈ G) are in D.

Theorem 3.2.9. Suppose P (G) denotes the power set of the group G. The following are

equivalent;

1) Iχ = P (G)

2) If g1 ∼ g2 then cl(g1) = cl(g2).

3) Every character of G is realized over Q.

Proof. (1⇒ 2), If we take S = cl(g1) in theorem 3.2.7, then we have | cl(g1)| = | cl(g1)∩cl(g2)|.
Since cl(g1) ∩ cl(g2) ⊆ cl(g1), this implies that cl(g1) ⊆ cl(g2). By symmetry we have;

cl(g1) ⊆ cl(g2) as well and so 2 is obtained.

(2⇒ 1) Another application of theorem 3.2.7 will imply that every subset S of G is character

integral and so Iχ = P (G).

(1⇔ 3) We notice that character values are algebraic integers, and so they are rational if

and only if they are integral.

If a finite group G satisfies one and therefore all the conditions in the theorem 3.2.9 then

G is called a rational group or a Q-group. There is no classification of rational groups, and

the list of rational groups contains lots of interesting groups. For further studies of rational



CHAPTER 3. INTEGRAL CAYLEY GRAPHS OVER NON-ABELIAN GROUPS 37

groups and their structures we suggest the interesting book “Structure and Representations

of Q-Groups” by Dennis Kletzing (see [37]). We call a group G, Cayley integral group if

Iρ = P (G). In Chapter 4, we will classify all Cayley integral groups. Interestingly, there

are just a few classes of Cayley integral groups. This proves once more that the notion of

representation integrality is more restrictive than character integrality.

3.3 Hamiltonian groups

In this section and next, we investigate to what extent theorem 2.4.4 would hold in some

other groups. As a natural candidate, we have decided to consider Dedekind groups, i.e.

groups whose every subgroup is normal. Every abelian group is Dedekind; non-abelian

Dedekind groups are also called Hamiltonian groups, and they have a simple characterization

that is due to Baer, cf. [30, Theorem 12.5.4].

Theorem 3.3.1. A finite group is Hamiltonian if and only if it can be written as a direct

product Q8 × A, where Q8 is the group of quaternions and A is an abelian group without

elements of order 4.

We provide sufficient and necessary conditions for integrality of the spectra of Cayley

multigraphs over such groups (Theorem 3.3.2). By using this characterization, we show that

integrality of Cayley graphs over Hamiltonian groups is easy to decide in certain special

cases, while it leads to challenging combinatorial problems in some other special cases.

Throughout this section, by boolean algebra we mean the boolean algebra generated by

subgroups, i.e. B(G). We use the simplified notation B(H) instead of B(GH) to denote the

boolean algebra generated by subgroups of H. Let H be the family of groups of the form

Q8 × A where A is a finite abelian group and Q8 is the quaternion group represented as

follows:

Q8 = 〈−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉.

Let us recall that a finite group G is Hamiltonian if it is non-abelian and every subgroup

of G is normal. By Baer’s result (Theorem 3.3.1), every Hamiltonian group is in H.

In this section, we obtain a necessary and sufficient condition for a multigraph Cay(G,S)

to be integral, where G ∈ H and S ⊆ G is a symmetric multiset of elements of G.

The table below is the character table of Q8.
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g ∈ Q8 1 −1 i j k

cl(g) {1} {−1} {i,−i} {j,−j} {k,−k}
1Q8 1 1 1 1 1

λi 1 1 1 -1 -1

λj 1 1 -1 1 -1

λk 1 1 -1 -1 1

ε 2 -2 0 0 0

where ε is the character afforded by the representation ρε defined below:

ρε(1) = I, ρε(i) =

(
i 0

0 −i

)
, ρε(j) =

(
0 1

−1 0

)
, ρε(k) =

(
0 i

i 0

)

where the value i appearing in the matrices is the complex imaginary unit
√
−1. Also note

that ρε(−g) = −ρε(g) for every g ∈ Q8 and that IRR(Q8) = {1Q8 , λi, λj , λk, ρε}.
Let G = Q8 ×A, where A is an abelian group, and let S ⊆ G be a symmetric multiset of

elements of G. For every q ∈ Q8, let Bq be the multiset

Bq = {a ∈ A | (q, a) ∈ S} (3.2)

in which the multiplicity of a ∈ Bq is equal to the multiplicity of (q, a) in S.

Since S is symmetric, we have B1 = B−1
1 , B−1 = B−1

−1 , and B−q = B−1
q for every

q ∈ Q8 \ {1,−1}. In particular, this implies that λ(B−q) = λ(Bq), for every λ ∈ Irr(A). For

every multiset D of elements of A, we define

λ̂(D) = λ(D)− λ(D−1) =
∑
g∈D

µD(g)(λ(g)− λ(g−1)) =
∑
g∈D

µD(g)(λ(g)− λ(g)).

In particular, for every q ∈ Q8, λ̂(Bq) = λ(Bq)− λ(B−q). The following is the main result of

this section.

Theorem 3.3.2. Let G = Q8 ×A, where A is an abelian group, and let S be a symmetric

multiset of elements of G. Then Cay(G,S) is integral if and only if the following holds:

(i) B1, B−1 ∈ C(GA).

(ii) The multiset union Bq ∪B−q ∈ C(GA), for every q ∈ Q8 \ {−1, 1}.

(iii) λ̂(Bi)
2 + λ̂(Bj)

2 + λ̂(Bk)
2 is a negative square of an integer, for every λ ∈ Irr(A).
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Proof. Lemma 3.1.3 shows that Cay(G,S) is integral if and only if the matrix
∑

s∈S µS(s)φ(s)

is integral for every φ ∈ IRR(G). Since φ is an irreducible representation of the direct product

Q8×A, it can be written in the form φ = ρ×λ for some ρ ∈ IRR(Q8) and λ ∈ Irr(A) (where

we identify Irr(A) and IRR(A) since all irreducible representations of A are 1-dimensional).

In other words, φ(q, a) = λ(a)ρ(q) for every (q, a) ∈ Q8 × A. Consequently, Cay(G,S) is

integral if and only if the matrices

A(ρ,λ) =
∑

(q,a)∈S

µS((q, a))(ρ× λ)(q, a) =
∑

(q,a)∈S

µS((q, a))λ(a)ρ(q)

are integral for every ρ ∈ IRR(Q8) and every λ ∈ Irr(A). By definition of Bq we can write

the matrix A(ρ,λ) in the following form:

A(ρ,λ) =
∑

(q,a)∈S

µS((q, a))λ(a)ρ(q) =
∑
q∈Q8

λ(Bq)ρ(q). (3.3)

Integrality of the matrix in (3.3) (with ρ = ρε and λ ∈ Irr(A) arbitrary) together with

the fact that the trace of a matrix is equal to the sum of its eigenvalues implies that

tr
(∑
q∈Q8

λ(Bq)ρε(q)
)

=
∑
q∈Q8

λ(Bq)ε(q) = 2(λ(B1)− λ(B−1)) ∈ Z.

It follows that

λ(B1)− λ(B−1) ∈ Q. (3.4)

Let ρ ∈ {1Q8 , λi, λj , λk} be a degree-one representation of Q8 and let λ ∈ Irr(A). Define

λ+(Bq) = λ(Bq)+λ(B−q). Observe that ρ(q) = ρ(−q) for every q ∈ Q8. Therefore, integrality

of the matrices A(ρ,λ) in (3.3) implies by the same argument as above that

ρ(1)λ+(B1) + ρ(i)λ+(Bi) + ρ(j)λ+(Bj) + ρ(k)λ+(Bk) ∈ Z.

This yields the following four conditions (one for each ρ ∈ {1, λi, λj , λk}):

λ+(B1) + λ+(Bi) + λ+(Bj) + λ+(Bk) ∈ Z

λ+(B1) + λ+(Bi)− λ+(Bj)− λ+(Bk) ∈ Z

λ+(B1)− λ+(Bi) + λ+(Bj)− λ+(Bk) ∈ Z (3.5)

λ+(B1)− λ+(Bi)− λ+(Bj) + λ+(Bk) ∈ Z

Since the matrix of coefficients of the linear system (3.5) is invertible, this implies that

λ+(Bq) ∈ Q for every q ∈ Q8. In particular, since λ+(B1) = λ(B1) + λ(B−1) ∈ Q, we
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conclude by using (3.4) that λ(B1) ∈ Q and λ(B−1) ∈ Q, while for q ∈ Q8 \ {1,−1}, we have

λ(Bq) + λ(B−q) ∈ Q.

Rationality of λ(X) for every λ ∈ Irr(A) has been discussed in the proof of Lemma 2.4.2,

where it was proved that this is equivalent to the condition that X ∈ C(GA). Therefore, the

conclusions stated in the previous paragraph imply (i) and (ii).

Conversely, notice that by Theorem 2.4.4, (i) and (ii) imply integrality of the matrices in

(3.3), where ρ is any degree-one representation of Q8 and λ ∈ Irr(A).

For (iii), we consider the degree-two representation ρε. As observed above, ρε(−q) =

−ρε(q) for every q ∈ Q8, and hence

∑
q∈Q8

λ(Bq)ρε(q) = λ̂(B1)I + λ̂(Bi)

(
i 0

0 −i

)
+ λ̂(Bj)

(
0 1

−1 0

)
+ λ̂(Bk)

(
0 i

i 0

)
.

As mentioned above, (3.4) implies that λ̂(B1) ∈ Z. Therefore,
∑

q∈Q8
λ(Bq)ρε(q) is integral

if and only if the matrix

M =

(
iλ̂(Bi) λ̂(Bj) + iλ̂(Bk)

−λ̂(Bj) + iλ̂(Bk) −iλ̂(Bi)

)
.

is integral. By considering the characteristic polynomial of M , it is easy to see that M is

integral if and only if λ̂(Bi)
2 + λ̂(Bj)

2 + λ̂(Bk)
2 is the negative square of an integer. Hence,

integrality of Cay(G,S) implies (iii), and conversely, (iii) implies integrality of the matrices

A(ρ,λ). This completes the proof.

3.4 Some special cases

In this section we consider some special cases of Hamiltonian groups by applying Theorem

3.3.2. This result gives a simple characterization in some cases, and leads to interesting

combinatorial problems in some other cases.

3.4.1 Simple Cayley graphs of Q8 × Cp, where p 6= 3

As the first special case of using Theorem 3.3.2 we consider Hamiltonian groups G = Q8×Cp,
where p 6= 3 is a prime and Cp is the cyclic group of order p. In analogy with the abelian case,

we obtain the following complete characterization for integrality of simple Cayley graphs

over this group. The multigraph version is different and is treated in a separate section.
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Theorem 3.4.1. Let p 6= 3 be a prime and let S be a symmetric subset of Q8 × Cp. The

Cayley graph Cay(Q8 × Cp, S) is integral if and only if S ∈ B(GQ8×Cp).

This result is a direct consequence of the following:

Theorem 3.4.2. Let G = Q8 ×Cp, for a prime p 6= 3. Let S ⊆ G be a symmetric subset of

G, and let Bq (q ∈ Q8) be defined as in (3.2). Then Cay(G,S) is integral if and only if the

following conditions hold:

(P1) B1, B−1 ∈ B(GCp).

(P2) For every q ∈ Q8 \ {1,−1}, Bq = B−q ∈ B(GCp).

Proof. By Theorem 3.3.2, it suffices to show that (P2) holds if and only if conditions

(ii) and (iii) in Theorem 3.3.2 hold. The “only if” part is trivial, since (P2) implies that

λ̂(Bi) = λ̂(Bj) = λ̂(Bk) = 0. For the “if” part suppose that conditions (ii) and (iii) of

Theorem 3.3.2 hold. By condition (iii), for every λ ∈ Irr(Cp) there is an integer αλ so that

λ̂(Bi)
2 + λ̂(Bj)

2 + λ̂(Bk)
2 = −α2

λ. (3.6)

Let e be the unit in Cp and let E1 = {e} and E2 = Cp \E1 be the two equivalence classes

of Cp. Let q ∈ Q8 \ {1,−1}. Recall that since S is symmetric we have B−1
q = B−q.

If Bq ∈ B(GCp) then B−q = Bq. This is true because B−1
q = B−q, and the sets E1 and

E2 are symmetric. Hence in this case Bq = B−q and λ̂(Bq) = 0. If p = 2, then every subset

of Cp is in B(GCp), so (P2) holds in this case, and we may henceforth assume that p ≥ 5.

If Bq 6∈ B(GCp), then by condition (ii) and the fact that B−1
q = B−q, we conclude that

E2 ⊆ Bq∆B−q, thus the support of Bq −B−q, viewed as an element of the group algebra

CCp, contains p− 1 distinct elements (that is, the whole class E2), where an element and

its inverse appear with opposite signs. In particular, the sum of coefficients of elements of

Bq −B−q is 0.

Let us write B′q = Bq \ B−q, and observe that for every q ∈ Q8, either B′q = ∅ or
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|B′q| = 1
2(p− 1). Now, (3.6) can be written as follows

−α2
λ = λ̂(Bi)

2 + λ̂(Bj)
2 + λ̂(Bk)

2

= λ̂(B′i)
2 + λ̂(B′j)

2 + λ̂(B′k)
2

= λ((B′i −B′−i)2) + λ((B′j −B′−j)2) + λ((B′k −B′−k)2)

= λ((B′i −B′−i)2 + (B′j −B′−j)2 + (B′k −B′−k)2)

= λ
(
−2(|B′i|+ |B′j |+ |B′k|)e+

∑
g∈E2

agg
)

= −2(|B′i|+ |B′j |+ |B′k|) + λ
(∑
g∈E2

agg
)

(3.7)

where ag ∈ Z for every g ∈ E2. Since the sum of coefficients in Bq −B−q is zero, it follows

that the sum of coefficients in (Bq −B−q)2 is also zero. Thus, (3.7) implies that∑
g∈E2

ag = 2(|B′i|+ |B′j |+ |B′k|). (3.8)

By (3.7), λ(
∑

g∈E2
agg) ∈ Q for every λ ∈ Irr(Cp). It follows by Lemma 2.4.2, that all

coefficients ag are equal, and from (3.8) we conclude that for every g ∈ E2:

ag =
2(|B′i|+ |B′j |+ |B′k|)

p− 1
.

We also know that for each non-principal character λ ∈ Irr(Cp) we have
∑

g∈Cp λ(g) = 0.

Thus,
∑

g∈E2
λ(g) = −1, and we can rewrite (3.7) as follows:

−α2
λ = −2(|B′i|+ |B′j |+ |B′k|)−

2(|B′i|+ |B′j |+ |B′k|)
p− 1

.

This gives the following conclusion:

α2
λ = 2(|B′i|+ |B′j |+ |B′k|)

p

p− 1
. (3.9)

We know that for every q ∈ Q8, |B′q| is either 0 or 1
2(p − 1). By (3.9), p − 1 divides

2(|B′i|+ |B′j |+ |B′k|). Let β denote the number of elements q ∈ {i, j, k} such that |B′q| =
p−1

2 .

Then we conclude from (3.9) that α2
λ = βp. Since 0 ≤ β ≤ 3 and p ≥ 5, this is possible only

when α = 0. However, in that case (P2) holds.
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3.4.2 Q8 × C3

The conclusion of Theorem 3.4.2 does not hold for p = 3. An example is provided in the

next observation.

Observation 3.4.3. Let G = Q8 ×C3, and S = {(i, 1), (−i, 2), (j, 1), (−j, 2), (k, 1), (−k, 2)}.
Then Cay(G,S) is integral but S 6∈ B(G).

To see this, we verify conditions (i)–(iii) of Theorem 3.3.2. Conditions (i) and (ii) are

obvious; (iii) is left to the reader.

This graph is indeed a very interesting vertex-transitive graph whose properties are

discussed below. Let us remark at this point that the proof of the Theorem 3.4.2 shows that

the example in Observation 3.4.3 is the only integral simple Cayley graph of Q8 × C3 (up to

Cayley graph isomorphisms and up to choice of B1, B−1 ∈ B(GC3)) that fails to satisfy the

conclusion of Theorem 3.4.2.

This graph has a natural tripartition according to the first coordinate, and the bipartite

graphs obtained from it by removing one of these tripartite classes is the Möbius-Kantor

graph. The Möbius-Kantor graph is the unique double-cover of the cube of girth 6 and it

sits naturally as a subgraph of the 4-cube. The graph of the 24-cell is also tripartite with

classes of size 8, and deleting any one yields a 4-cube.

3.4.3 Cayley multigraphs of Q8 × Cp

Theorem 3.4.2 does not hold for the multigraph case. In this section we shall provide infinitely

many examples confirming this. We let Cp = {at | 0 ≤ t < p}, the cyclic group of order p

generated by a. We consider the multisets Bq (q ∈ Q8 \ {1,−1}) defined as in (3.2), and

we set B1 = B−1 = ∅. In order to satisfy conditions (i)–(iii) of Theorem 3.3.2, we need that

Bq ∪B−q ∈ C(GCp) and λ̂(Bi)
2 + λ̂(Bj)

2 + λ̂(Bk)2 is a negative square of an integer, for every

λ ∈ Irr(Cp). As before, for every q ∈ Q8 \ {1,−1} we define B′q = Bq \ (Bq ∩B−q), where

Bq ∩B−q is the multiset in which the multiplicity of any x ∈ Cp is equal to the minimum of

multiplicities of x in Bq and in B−q. Thus, in particular, λ̂(Bq) = λ̂(B′q). Note that B′q and

B′−q are disjoint and the condition that generating multiset is symmetric is equivalent to the

requirement that the multiplicity of at (0 ≤ t < p) in B′q is the same as the multiplicity of

a−t in B′−q. The following is a well-known result from number theory.
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Lemma 3.4.4. If p is a prime number and p ≡ 1 (mod 4), then the Diophantine equation

x2 + y2 = pz2 has infinitely many solutions satisfying gcd(x, y, z) = 1.

A solution of the Diophantine equation x2 + y2 = pz2 is primitive if gcd(x, y, z) = 1.

Clearly, every integral multiple of (x, y, z) is also a solution. The solution (0, 0, 0) is called

the trivial solution.

Lemma 3.4.5. Let (r, s, t) be a non-trivial solution for the Diophantine equation x2 + y2 =

5z2. Let D1 = ra + sa2, D2 = ra + sa3 and D3 = 0, be elements of CC5, where a is a

generator of C5. Then

λ̂(D1)2 + λ̂(D2)2 + λ̂(D3)2 = −(5t)2.

Proof. For any x and y in R, we have the following equation in CC5:

(x(a− a4) + y(a2 − a3))2 = −2(x2 + y2) + (y2 − 2xy)(a+ a4) + (x2 + 2xy)(a2 + a3).

Thus,

λ̂(D1)2 = −2(r2 + s2) + (s2 − 2rs)λ(a+ a4) + (r2 + 2rs)λ(a2 + a3),

λ̂(D2)2 = −2(r2 + s2) + (r2 + 2rs)λ(a+ a4) + (s2 − 2rs)λ(a2 + a3).

Clearly, λ̂(D3)2 = 0. We notice also that for each non-principal character λ ∈ Irr(C5) we

have
∑4

i=1 λ(ai) = −1. Therefore, λ̂(D1)2 + λ̂(D2)2 + λ̂(D3)2 = −5(r2 + s2) = −(5t)2.

Corollary 3.4.6. There are infinitely many multisets S (none of which is a multiple of

another) such that Cay(Q8 × C5, S) is integral but S /∈ C(G).

Proof. Let us start with a primitive solution (m,n, α) of the Diophantine equation x2 + y2 =

5z2. Since (2m, 2n, 2α) is a solution of the Diophantine equation x2 + y2 = 5z2, we

can construct D1, D2 and D3 as in the previous lemma, i.e., D1 = 2ma + 2na2, D2 =

2na + 2ma3 and D3 = 0. Suppose without loss of generality that n ≤ m. Let us take

Bi = {2ma, (m+n)a2, (m−n)a3}, Bj = {(m+n)a, (m−n)a4, 2ma3}, B−i = B−1
i , B−j = B−1

j ,

and Bk = B−k = ∅ (where the coefficients of at in the the set notation denote multiplicities).

Then Bi+B−i ∈ C(GC5), Bj +B−j ∈ C(GC5), and Bk+B−k ∈ C(GC5). We also have B′i = D1,

B′j = D2 and B′k = D3. From the previous lemma we get

λ̂(Bi)
2 + λ̂(Bj)

2 + λ̂(Bk)
2 = λ̂(B′i)

2 + λ̂(B′j)
2 + λ̂(B′k)

2 = −(10α)2.
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So, clearly conditions (i)–(iii) of Theorem 3.3.2 are satisfied for the generating multiset S

arising from Bi, Bj and Bk, but Bi, Bj /∈ C(GC5). Thus S /∈ C(GQ8×C5), while according to

Theorem 3.3.2 the Cayley graph Cay(Q8 × C5, S) is integral.

The case p = 7 is similar. First, we observe that there are infinitely many primitive

solutions for Diophantine equation x2 + y2 + z2 = 7α2. If we assume (m,n, l, α) is one of

these solutions, then we can define

B′i = ma+ na2 + la3, B′j = la+ma2 + na3, B′k = na+ la2 +ma3.

It is easy to see that condition (iii) of Theorem 3.3.2 holds. As in Corollary 3.4.6, we can

define Bi, Bj and Bk using correspondence with B′i, B
′
j and B′k such that conditions (i)–(iii)

of Theorem 3.3.2 are satisfied. This gives rise to integral Cayley multigraphs of Q8 × C7

whose generating multiset is not in the lattice C(GQ8×C7).

3.4.4 Simple Cayley graphs of Q8 × Cd
p

As the last special case we consider the group G = Q8 × Cd
p , where p is a prime and

d ≥ 2. Here the abelian direct factor of G is an elementary abelian p-group, thus every

non-identity element has order p. If [a] denotes the equivalence class containing a with

respect to the relation ∼ in Cd
p and if a 6= e (where e is the identity element of Cd

p ), then

[a] = {at | 1 ≤ t ≤ p− 1}. We also know that [e] = {e}; we call this the trivial equivalence

class. Since each non-identity element in Cd
p has order p, each non-trivial class is of order

p− 1, and the number of non-trivial classes is equal to nd = pd−1
p−1 . Label these classes as Ar

for 1 ≤ r ≤ nd. If λ is a non-principal character of Cdp , then |Im(λ)| = p and therefore ker(λ)

is a subgroup of order pd−1.

Let us assume that Cay(G,S) is integral. Then we derive in the same way as in the case

of Q8 × Cp that there is an integer αλ such that

−α2
λ = λ̂(B′i)

2 + λ̂(B′j)
2 + λ̂(B′k)

2 = −2(|B′i|+ |B′j |+ |B′k|) + λ
( ∑
g∈Cdp\{e}

agg
)
. (3.10)

Since (3.10) holds for every λ ∈ Irr(Cdp ), we conclude by Lemma 2.4.2 that the coefficients ag
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are constant on each equivalence class Ar. Let br be the common value for ag, g ∈ Ar. Then

−α2
λ = −2(|B′i|+ |B′j |+ |B′k|) + λ

( nd∑
r=1

∑
g∈Ar

brg
)

= −2(|B′i|+ |B′j |+ |B′k|) +

nd∑
r=1

brλ(Ar). (3.11)

Since each Ar ∪ {e} is a subgroup of order p, we have

λ(Ar) =
∑
g∈Ar

λ(g) =

{
p− 1, Ar ⊆ ker(λ)

−1, Ar * ker(λ).
(3.12)

We also notice that for q ∈ {i, j, k} the element Bq −B−q of the group algebra has the sum

of the coefficients equal to zero. By using this fact in combination with (3.11) and (3.12) for

the case when λ is the principal character and noting that αλ = 0 in that case, we obtain

the following analogue of (3.9):

2(|B′i|+ |B′j |+ |B′k|) = (p− 1)

nd∑
r=1

br. (3.13)

Using (3.13), we have for every non-principal character λ:

α2
λ = 2(|B′i|+ |B′j |+ |B′k|)−

nd∑
r=1

brλ(Ar) =

nd∑
r=1

br(p− 1− λ(Ar)). (3.14)

The equality (3.12) shows that a non-zero contribution in the sum on the right side of

(3.14) arises only when Ar 6⊆ ker(λ). Let Iλ ⊆ {1, . . . , nd} be the set of values r for which

Ar 6⊆ ker(λ). Then we have:

α2
λ =

∑
r∈Iλ

br(p− 1− λ(Ar)) = p
∑
r∈Iλ

br. (3.15)

There is a natural geometric setting for these equations. View Cd
p as a vector space over

Cp and consider the projective geometry PG(d − 1, p) consisting of all subspaces of Cd
p .

The points in our projective geometry are the 1-dimensional subspaces of Cdp which are in

correspondence with A1, A2, . . . , And , and we label the point associated with Ai by bi. The

kernels of the non-principal characters of Cdp correspond to the hyperplanes in our projective

geometry (i.e. subspaces of dimension d − 1 of Cd
p ). So, equation 3.15 implies that the

sum of the labels on the complement of every hyperplane is an integer of the form a2/p.

Although this is a meaningful consequence, it is not difficult to find labellings of the points

in a projective geometry which satisfy this property, so a more complicated analysis will be

required to understand the integrality of such Cayley graphs.
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3.5 Dihedral groups

In this section, we will study the integrality of Cayley graphs over dihedral groups. Suppose

S is a symmetric generating set of Dn. We know that Cay(Dn, S) is integral if and only if

for every ρ in IRR(Dn), ρ(S) =
∑

s∈S ρ(s) is an integral matrix.

We have the following presentation for Dn, which we will be using throughout this chapter.

Dn = 〈a, b | an = b2 = 1, ab = ba−1〉

Here, we list some basic properties of Dn:

• |Dn| = 2n.

• Dn = {1, a, . . . , an−1, b, ba, . . . , ban−1}.

• For 1 ≤ i ≤ n we have cl(ai) = {ai, a−i}.

• If n is odd, then cl(bai) = {baj | 1 ≤ j ≤ n}.

• If n is even, then:

cl(ba2i) = {ba2j | 1 ≤ j ≤ n/2} and cl(ba2i−1) = {ba2j−1 | 1 ≤ j ≤ n/2}.

• For 1 ≤ i ≤ n, ai is called a rotation and bai = an−ib a reflection.

Suppose S is a subset of Dn. Let us introduce the following notation;

Srot = S ∩ {ai | 1 ≤ i ≤ n}, Sref = S ∩ {bai | 1 ≤ i ≤ n}.

Ŝrot = {i | ai ∈ Srot}, Ŝref = {i | bai ∈ Sref}.

Srot is the set of all rotations in S, and Sref is the set of all reflections in S. We will show

that Srot ∈ B(GCn), where Cn = 〈a〉 is the cyclic subgroup of Dn generated by the rotations.

3.5.1 Irreducible representations of Dn

In what will follow, ωn will denote a primitive n-th root of unity.
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• If n = 2k + 1, then IRR(Dn) = {λ0, λ1} ∪ {ρi | 1 ≤ i ≤ k}, where the representations

are determined by the following values:

λ0 : Dn → GL1(C) λ0(g) =

{
1 g = a

1 g = b

λ1 : Dn → GL1(C) λ1(g) =

{
1 g = a

−1 g = b

ρi : Dn → GL2(C) ρi(g) =



(
ωin 0

0 ω−in

)
g = a

(
0 1

1 0

)
g = b.

• If n = 2k, then IRR(Dn) = {λ0, λ1, λ2, λ3} ∪ {ρi | 1 ≤ i ≤ k − 1}, where the represen-

tations are determined by the following values:

λ0 : Dn → GL1(C) λ0(g) =

{
1 g = a

1 g = b

λ1 : Dn → GL1(C) λ1(g) =

{
1 g = a

−1 g = b

λ2 : Dn → GL1(C) λ0(g) =

{
−1 g = a

1 g = b

λ3 : Dn → GL1(C) λ1(g) =

{
−1 g = a

−1 g = b

ρi : Dn → GL2(C) ρi(g) =



(
ωin 0

0 ω−in

)
g = a

(
0 1

1 0

)
g = b.
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Notice the 2-dimensional representations ρi are well-defined for 1 ≤ i ≤ n, but to obtain a

complete set of irreducible 2-dimensional representations one needs to restrict to 1 ≤ i ≤
bn−1

2 c.
A subset A of Zn is called admissible if |

∑
a∈A ω

ak
n | is an integer, for every k such that

1 ≤ k < n. A subset T = {bai | i ∈ T̂} of reflections in Dn, is called admissible if T̂ is an

admissible subset of Zn.

Theorem 3.5.1. Cay(Dn, S) is integral if and only if Srot ∈ B(GCn) and Sref is an admissible

set of reflections.

Proof. We notice that by Theorem 3.1.3, integrality of Cay(Dn, S) is equivalent to ρ-

integrality of S. If S is ρ-integral, then it is χ-integral as well. If Srot ⊆ {1}, then

Srot ∈ B(GCn). Thus, suppose ai ∈ Srot, where 1 ≤ i ≤ n. Since S is a symmetric subset, we

have cl(ai) = {ai, a−i} ⊆ Srot. Theorem 3.2.7 implies that [ai] ⊆ Srot. Therefore, Srot is a

union of atoms of B(GCn), and so it belongs to B(GCn). If we invoke to the 2-dimensional

representations ρk (for 1 ≤ k < n), then |
∑

i∈Ŝref ω
ik
n | should be integer. This implies that

Sref is an admissible set of reflections. Conversely, suppose Srot ∈ B(GCn), and Sref is an

admissible set of reflections. By Theorem 2.4.4, Srot ∈ B(GCn) implies that λ(S) is integer

for any linear representation λ of Dn. We have ρk(S) =

(
u v̄

v ū

)
, where u =

∑
i∈Ŝrot ω

ik
n and

v =
∑

i∈Ŝref ω
ik
n . Since Srot ∈ B(GCn), we have u ∈ Z. We may write ρk(S) as:

ρk(S) =

(
u 0

0 u

)
+

(
0 v̄

v 0

)
= uI +

(
0 v̄

v 0

)
.

This implies that ρk(S) is integral if and only if

(
0 v̄

v 0

)
is integral. The eigenvalues of(

0 v̄

v 0

)
are ±|v|. Since Sref is an admissible set |v| is an integer, and therefore ρk(S) is

integral for 1 ≤ k < n. This completes the proof.

When n is a given small number, this theorem provides a good tool to decide about

integrality of Cay(Dn, S). However in the general case, it does not give us an easy explicit

criterion to decide if Cay(Dn, S) is integral or not. Clearly, one needs to classify all admissible

subsets of reflections to be able to reach at such a criterion. We will see in the reminder,

this is possible when n is a prime number and quite a challenging problem in general.
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3.5.2 The case Dp where p is a prime number

In the reminder of this chapter, we assume S is a symmetric generating set of Dn, and Sref

will denote the set of all reflections in S. We will need the following results.

Theorem 3.5.2. (Kronecker) Let α 6= 0 be an algebraic integer. If α is not a root of unity,

then at least one of conjugates of α has absolute value strictly greater than 1.

Corollary 3.5.3. Let τ be any root of unity and α ∈ Q[τ ] with |α| = 1. Then, α is a root

of unity.

Lemma 3.5.4. Suppose Sref is an admissible set, Ŝref = {i | bai ∈ Sref} and |
∑

i∈Ŝref
ωin| = c,

where c is an integer. If gcd(j, n) = 1, then we have |
∑

i∈Ŝref
ωijn | = c.

Proof. Since gcd(j, n) = 1, σj(ωn) = ωjn determines an automorphism σj in the GalQ(Q(ωn)).

Complex conjugation is in the center of the Galois extension Q(ωn) of Q. It follows that

complex conjugation preserves absolute values. If σ is in GalQ(Q(ωn)), then we have

|zσ| = |z|σ, where z ∈ Q(ωn). Then, applying σj , we get:

c = σj(c) = σj(|
∑
i∈Ŝref

ωin|) = |σj(
∑
i∈Ŝref

ωin)| = |
∑
i∈Ŝref

σj(ω
i
n)| = |

∑
i∈Ŝref

ωijn |.

Let P (z) =
∑

i∈Ŝref z
i ∈ Z[z]. Suppose |

∑
i∈Ŝref

ωin| = c, where c is an integer. If

Q(z) = zn
(
P (z)P (1/z)− c2

)
, then Q(z) ∈ Z[z]. By Lemma 3.5.4, Q(α) = 0 where α is an

arbitrary primitive n-th root of unity. This implies that,

P (z)P (1/z) = c2 + Φn(z)q(z, 1/z).

where Φn(z) is the n-th cyclotomic polynomial and q has integer coefficients. Therefore

P (1)2 = c2 + Φn(1)k ⇒ Φn(1) | P (1)2 − c2.

We notice that P (1) = |Sref |.

Theorem 3.5.5. Let p be a prime and S a symmetric generating set in Dp. Then, Cay(Dp, S)

is integral if and only if Srot ∈ B(Cp) and Sref is a set of reflections of size 1, p− 1 or p.
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Proof. The case p = 2 is obvious, hence in the reminder we assume that p is an odd prime.

Notice that Sref 6= ∅, because any generating set of Dp needs at least one reflection. By

Theorem 3.5.1, we just need to show that any non-empty admissible set of reflections in Dp

is of size 1, p− 1 or p.

Let |
∑

i∈Ŝref ω
i
p| = c, where c is an integer, and P (z) =

∑
i∈Ŝref z

i. We have P (1)2 =

|Sref |2 = c2 + Φp(1)k, where k is an integer. For a prime p, we have Φp(z) =
p−1∑
k=0

zk, which

implies that Φp(1) = p. Notice that c = |
∑

i∈Ŝref
ωip| ≤

∑
i∈Ŝref

|ωip| = |Sref |, with equality only if

|Sref | = 1.

If k = 0, then c = |Sref | and so |Sref | = 1. Suppose now k 6= 0, then p | |Sref | − c or

p | |Sref |+ c. We know c < |Sref | ≤ p, so if p | |Sref | − c, then c = 0 and |Sref | = p. In the

case, p | |Sref |+ c, and c 6= 0 we will have p = |Sref |+ c.

From |
∑

i∈Ŝref ω
i
p| = c, we have,

(
∑
i∈Ŝref

ωip)(
∑
i∈Ŝref

ω−ip ) = c2.

If we define di = |{(m,n) ∈ Ŝ2
ref | m− n ≡ i (mod p)}| then we have;

|Ŝref |+
∑

1≤i<p
diω

i
p = c2.

Notice that,
p−1∑
i=1

ωip = −1. Since |Ŝref | = |Sref | and di should all be equal to a common value

d, we have following set of equations:

• p = |Sref |+ c

• (p− 1)d = |Sref |2 − |Sref |

• −d = c2 − |Sref |

If we replace d in the middle equation with |Sref | − c2 obtained from the third equation,

and |Sref | with p− c from the first equation, then the second equation becomes:

p(p− c)− (p− 1)c2 = (p− c)2.

Since p is an odd prime and c < p, this equation implies that c = 0 or c = 1, and by

Kronecker’s result this means that Sref is a set of reflections of size p, p− 1 or 1.
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3.5.3 The general case

In this section we consider dihedral group Dn, where n is a composite number. From previous

section, immediately follows that we need to find all admissible subsets of Zn to characterize

all ρ-integral subsets of Dn. That is to say, we need to characterize all subsets T of Zn such

that the following is true:

|
∑
t∈T

ωtkn | ∈ Z. (3.16)

where ωn is a primitive n-th root of unity, and 1 ≤ k < n. In the previous section, we

proved that in Zp this happens if and only if |T | ∈ {0, 1, p− 1, p}. If T ∈ B(GZn), then T is

admissible. This is because
∑

t∈T ω
tk
n is an integer if and only if T ∈ B(GZn). If T is a subset

of Zn such that |T | ∈ {1, n− 1}, then T is admissible as well. An admissible subset T of Zn
is called a trivial admissible set if T ∈ B(GZn) or |T | ∈ {1, n− 1}. A primitive guess is that

every admissible set in Zn is of trivial kind. Following example provides a counter-example

to this primitive guess.

Example 3.5.1. If T = {1, 2, 3} and 0 ≤ k < 6, then |
∑
t∈T

ωtk6 | ∈ Z. Therefore T is a

non-trivial admissible set in Z6.

Proof. The absolute value of ω6 + ω2
6 + ω3

6 is 2. The atoms of B(GZ6) containing elements of

T are; [1] = {1, 5}, [2] = {2, 4} and [3] = {3}. Clearly T is not a union of atoms of B(GZ6),

and thus it is not in B(GZ6). Therefore T is a non-trivial admissible set in Z6.

In general, the problem of determining admissible sets in Zn is quite difficult. Indeed

this problem is related to a famous open conjecture known as Circulant Hadamard Matrix

Conjecture 3.5.7 given in the sequel.

Theorem 3.5.6. If n ≥ 4, then IDn
ρ is not a boolean algebra.

Proof. According to Theorem 3.2.8, part 8, each atom of B(Dn) is ρ-integral. We need to

prove that B(Dn) 6⊆ IDn
ρ . Since each reflection is of order 2, thus any subset of reflections is

in the boolean algebra of subgroups. Suppose S = {b, ba}. We have,

ρ1(S) = ρ1(b) + ρ1(ba) =

(
0 1 + ωn

1 + ωn 0

)
.

The eigenvalues of this matrix are±λ, where λ = |1+ωn|. We have |1+ωn| =
√

2(1 + cos(2π
n )),

which is an integer only if n = 2, 3. Therefore, for n ≥ 4, IDn
ρ is not a boolean algebra.
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An n×n matrix H is a Hadamard matrix if its entries are ±1 and its rows are orthogonal.

Equivalently, its entries are ±1 and HHt = nI. An n× n matrix H is circulant if each row

is a cyclic shift of the previous row. Equivalently, H = (hi−j), for some h0, h1, . . . , hn−1,

where indices i− j are taken modulo n. The column vector wj = (1, ωj , ω2j , . . . , ω(n−1)j)t

for 0 ≤ j < n is an eigenvector of the circulant matrix H, with the corresponding eigenvalue∑
0≤i<n hiω

ij .

Conjecture 3.5.7. There does not exist a circulant Hadamard matrix of order n > 4.

A circulant Hadamard matrix of order n could exist only if n is a square of an even

integer ([57]). The circulant Hadamard matrix is uniquely determined by the positions of

the +1 entries in the first row. Let us denote the set of positions of +1 in the first row by T .

Since
∑

0≤i<n ω
i = 0, and HHt = nI, we have,

4(
∑
t∈T

ωtj).(
∑
t∈T

ω−tj) = 4|
∑
t∈T

ωtj |2 = n.

This proves that |
∑

t∈T ω
tj | should be an integer for every choice of j (notice that n is a

square of an even integer). This suggest that the positions of +1 in the first row of a circulant

Hadamard matrix should form an admissible subset of Zn. Therefore, any classification of

admissible subsets of Zn will definitely be a push towards a finale of the circulant Hadamard

matrix conjecture. This is the main theme of the algebraic approach towards the circulant

Hadamard conjecture. This idea has recently been used as field descent method (see [39, 40])

to rule out many open cases of the circulant Hadamard matrix conjecture.

A Weil number is a complex number, all of its conjugates (over Q) have the same absolute

value. A d-Weil integer is a Weil number that is also an algebraic integer with absolute

value equal to d
1
2 . One may ask if every Weil number of absolute value 1 is necessarily a

root of unity. However, this is false. For example, the roots of the polynomial x2 + x
2 + 1

are Weil numbers of absolute value 1. Though, they are not roots of unity. Kronecker

Theorem implies that every Weil integer with absolute value 1 is a root of unity. There is no

classification of d-Weil integers (see [27, 46]). It is clear that integrality of Cayley graphs

over Dn is essentially a special case of classification of d2-Weil integers.



Chapter 4

CIS and Cayley integral groups

In this chapter, we solve two open problems regarding the classification of certain classes

of Cayley graphs with integer eigenvalues. We first classify all finite groups that have a

“non-trivial” Cayley graph with integer eigenvalues, thus solving a problem proposed by

Abdollahi and Jazaeri. The notion of Cayley integral groups was introduced by Klotz and

Sander. These are groups for which every Cayley graph has only integer eigenvalues. In the

second part of this chapter, all Cayley integral groups are determined.

4.1 Introduction

The notion of CIS groups as groups admitting no integral Cayley graphs besides complete

multipartite graphs, has been introduced by Abdollahi and Jazaeri [1], who classified all

abelian CIS groups. The question which non-abelian groups are CIS remained open. A

similar but more intriguing notion of Cayley integral groups was introduced by Klotz and

Sander in [38], where the abelian group case has been resolved, while the general case was left

open. The main results in this chapter are Theorems 4.2.2 and 4.3.2 in which we classify all

CIS groups and all Cayley integral groups. The first of these two results interestingly shows

that every finite non-abelian group admits a non-trivial Cayley graph whose eigenvalues are

all integral. We first present some preliminary results which we will use in the rest of this

chapter. A subgroup H of G is central if it lies inside the center of the group, i.e H ⊆ Z(G).

Lemma 4.1.1. Suppose H is a central normal subgroup of a group G. If G/H is cyclic,

then G is an abelian group.

54
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Proof. Suppose G/H = 〈Hx〉. If g1, g2 ∈ G, then there are integers m and n such that

Hg1 = Hxm and Hg2 = Hxn. Thus, there exist h1 ∈ H and h2 ∈ H such that g1 = h1x
m

and g2 = h2x
n. Notice that h1, h2 ∈ Z(G) (since H is central). We have;

g1g2 = (h1x
m)(h2x

n) = h1h2x
m+n = (h2x

n)(h1x
m) = g2g1.

Lemma 4.1.2. Suppose G is a p-group, where p is a prime number. If N is a normal

subgroup of G, then N ∩ Z(G) 6= 1.

Thus, the center of any p-group is non-trivial. We often use this fact without mentioning

it.

Theorem 4.1.3 (Miller and Moreno [42]). Let G be a non-abelian group with the property

that every proper subgroup is abelian. Then |G| has at most two prime divisors and there is

some prime p dividing the order of G such that the Sylow p-subgroup of G is normal.

If H is a subgroup of G, then G is a disjoint union of left (right) cosets of H. Suppose

G =
k⋃
i=1

aiH, where {aiH | 1 ≤ i ≤ k} is a distinct set of left cosets of H in G. In this

case, {ai | 1 ≤ i ≤ k} is called a left transversal of H in G. Right transversal is defined in

the same way using a partition to right cosets. In general a left transversal is not a right

transversal or vice versa, however for finite groups there is an interesting result:

Theorem 4.1.4. Let H be a subgroup of a finite group G. There is a left transversal of H

in G which is a right transversal as well.

Every where in this chapter, when we pick a random transversal of a subgroup H of a

finite group G, we are assuming that it is a two sided transversal. Thus we refer to it as a

“transversal” of H in G.

Let N and H be groups, and θ : H → Aut(N) be a group homomorphism. The external

semi-direct product N oθ H (or simply N o H when θ is understood) of N and H with

respect to θ is the group (N ×H; •) with (n1, h1) • (n2, h2) = (n1θh1(n2), h1h2). The identity

element of N oθ H is (1N , 1H), and the inverse of (n, h) = (θh−1(n−1), h−1).

Regarding N and H as subgroups of N oH via the canonical monomorphisms ιN (n) =

(n, 1H), and ιH(h) = (1N , h). We have the following properties:
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Proposition 4.1.1. Let G = N oH. Then:

• N is a normal subgroup of G.

• G = NH.

• N ∩H = 1 and G/N ∼= H.

Let G be a group with subgroups N and H. We say that G is the internal semi-direct

product of N and H if;

• N is a normal subgroup of G.

• G = NH.

• N ∩H = 1.

If G is the internal semi-direct product of N and H, then G ∼= NoθH via the homomorphism

θ : H → Aut(N) given by θh(n) = h−1nh.

Proposition 4.1.2. If G is a group with a normal subgroup N such that G/N ∼= H, then

there exists a homomorphism θ : H → Aut(N), such that G = N oθ H.

4.2 Cayley integral simple groups

In this section, we answer a question of Abdollahi and Jazaeri [1] concerning Cayley integral

simple groups. Abdollahi and Jazaeri defined a Cayley integral simple group (CIS group for

short) to be a group G with the property that the only connected integral Cayley graphs of

G are complete multipartite graphs. In addition to this, they noticed that given a symmetric

generating subset S of G, Cay(G,S) is a complete multipartite graph if and only if S is the

complement of a subgroup of G. Thus a simpler definition of a CIS group is that it is a group

G with the property that for a symmetric generating set S of G, we have that Cay(G,S) is

an integral graph if and only if S is the complement of a subgroup of G.

As part of their study of CIS groups, Abdollahi and Jazaeri gave a complete characteri-

zation of abelian CIS groups, which we state now.

Theorem 4.2.1 (Abdollahi and Jazaeri [1]). Let G be an abelian group. Then G is a CIS

group if and only if G ∼= Zp2 ,Zp for some prime number p, or G ∼= Z2 × Z2.
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In addition to this, they posed the following question.

Question 1. Which finite non-abelian groups are CIS groups?

We answer their question with the perhaps surprising answer that non-abelian finite CIS

groups do not exist. More formally, we show the following result.

Theorem 4.2.2. Let G be a CIS group. Then G is abelian and in particular is isomorphic

to either a cyclic group of order p or p2 for some prime p, or is isomorphic to Z2
2.

Our proof of Theorem 4.2.2 is essentially an induction argument on the order of the

group.

Theorem 4.2.3. Let G be a finite group and S a symmetric generating set of G such that

1 6∈ S. Then G \ S is a subgroup of G if and only if Cay(G,S) is a complete multipartite

graph. In particular a complete multipartite Cayley graph has equal number of vertices in

each partition and is integral

Proof. Suppose that H = G\S is a subgroup of G. Let {a1, a2, . . . , ak} be a transversal of H

in G, where k = [G : H]. We know that aja
−1
i ∈ H if and only if i 6= j. Clearly, this implies

that Cay(G,S) is a multipartite graph with parts {aiH | 1 ≤ i ≤ k}. Notice that each part is

of size |H|, and thus Cay(G,S) is integral. Conversely, suppose that Cay(G,S) is a complete

multipartite graph. Since Cayley graphs are regular, each partition of Cay(G,S) has equal

size. Let 1 6= g ∈ G \ S. Then g 6∼ 1 in Cay(G,S), because g = g1−1 6∈ S. Therefore g and 1

belong to one partition of Cay(G,S). Thus, all elements outside of S belong to the same

partition (the partition that 1 belongs to) and so there is no edge between them. Therefore,

if g1, g2 ∈ G \ S, then g1g
−1
2 6∈ S. This implies that G \ S is a subgroup of G.

We now show that the CIS property is closed under the process of taking subgroups and

homomorphic images.

Lemma 4.2.4. Let G be a CIS group. Then every subgroup and every homomorphic image

of G is also a CIS group.

Proof. Suppose H is a subgroup of G. We will show that H is a CIS group. Suppose, towards

a contradiction, that H is not a CIS group. Then there is a symmetric generating subset S of

H such that 1 6∈ S, H \S is not a subgroup of H, and such that Cay(H,S) is an integral graph.

We take T = S ∪ (G \H). Then T generates G, 1 6∈ T , and G \ T = H \ S is not a subgroup
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of G. Then the adjacency matrix of Cay(G,T ) is given by B := AS ⊗ Ik + Jn ⊗ (Jk − Ik),
where AS is the adjacency matrix of Cay(H,S), n = |H|, k = [G : H]. Since AS is Hermitian,

it is unitarily diagonalizable. In particular, we can find an orthogonal basis of eigenvectors of

AS , {w1, . . . ,wn}. We may assume that w1 = j, the vector whose coordinates are all equal

to one. Thus there are integers |S| = λ1, . . . , λn such that ASwi = λiwi for i = 1, . . . , n.

Notice that since Jn has each of its columns equal to j = w1, we have Jnw1 = nw1 and

Jnwi = 0 for i ≥ 2. Since Jk is symmetric and of rank 1, it has eigenvectors u1, . . . ,uk

with Jkui = kδ1,iui. Then S = {wi ⊗ uj | 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a basis of Cn ⊗ Ck.
Observe that B(wi ⊗ uj) = (λi + δ1,in(kδ1,j − 1))wi ⊗ uj . In particular, S is a complete set

of eigenvectors of B and thus every eigenvalue of B is an integer. Thus G is not a CIS group,

a contradiction.

For the second part, suppose N is a proper normal subgroup of G. We show, using a

proof by contradiction, that G/N is a CIS group. If G/N is not a CIS group, then there

exists a symmetric generating subset S̄ of G/N such that N 6∈ S̄, G/N \ S̄ is not a subgroup

of G/N and Cay(G/N, S̄) is an integral graph. Suppose S̄ = {Ns | s ∈ S}, where the set

S is symmetric in G. We have S ∩N = ∅. If we define T = ∪s∈S Ns, then clearly T is a

symmetric subset of G such that 1 6∈ T . Since G/N \ S̄ is not a subgroup of G/N , there

are g1 and g2 in G such that Ng1 and Ng2 do not belong to S̄ but Ng1g2 ∈ S̄. Thus, we get

g1g2 ∈ T and {g1, g2} ∩ T = ∅. This proves that G \ T is not a subgroup of G. It is easy to

see that the adjacency matrix of Cay(G,T ) is Jk ⊗AG/N , where k = |N | and AG/N is the

adjacency matrix of Cay(G/N, S̄). Since Jk has eigenvalues 0 with multiplicity k − 1 and k

with multiplicity 1, we deduce that Cay(G,T ) is an integral graph and thus G is not a CIS

group which contradicts our assumption. Therefore, G/N is a CIS group.

For the sake of completeness, we present a rather short proof of Theorem 4.2.1 based on

above result.

Proof of Theorem 4.2.1. Suppose p is a prime. The boolean algebra of Zp contains two

atoms [0] = {0} and [1] = Zp \ {0}. Clearly the only connected integral Cayley graph over Zp
is Cay(Zp, [1]), thus Zp is a CIS group. The boolean algebra of Zp2 contains atoms [0] = {0},
[p] = {pk | 1 ≤ k < p} and [1] = Zp \ {pk | 0 ≤ k < p}. In this case, S = [1] or S = [1] ∪ [p]

are the only symmetric generating sets avoiding the identity which generate integral graphs.

Both are the complement of subgroups of Zp2 , thus Zp2 is a CIS group as well. In Z2 × Z2,

{(1, 0), (0, 1), (1, 1)}, {(1, 0), (0, 1)}, {(1, 0), (1, 1)}, {(1, 1), (0, 1)} are the only generating sets
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which are a union of atoms of the boolean algebra. All these sets are the complement of

subgroups of Z2 × Z2, therefore Z2 × Z2 is a CIS group as well. To prove that there are no

other abelian CIS groups, suppose that G is an abelian CIS group of minimum order that is

not isomorphic to Z2 × Z2, Zp2 or Zp.
Suppose first that G = A×Zm, where m > 2 and |A| ≥ 2. Let S1 = A\{0}, S2 = Zm\{0}

and S = S1 ∪ S2. We notice that the Cayley graph Cay(G,S) is isomorphic to the Cartesian

product Cay(A,S1)� Cay(Zm, S2). Since Cay(A,S1) and Cay(Zm, S2) are complete graphs

and therefore integral, their Cartesian product Cay(G,S) is also integral. Since G \ S is not

a subgroup of G, we conclude that G is not a CIS group.

Since every abelian group is a direct product of cyclic subgroups whose orders are powers

of primes, we conclude from the above that G is either isomorphic to Zpn or to Zn2 for

some n > 2. Since subgroup of CIS groups are CIS, and since Zpn (Zn2 ) contains Zpn−1

(Zn−1
2 ) as a subgroup, we may assume that n = 3. However, Zp3 and Z3

2 are not CIS as

evidenced by the following generating sets. For Z3
2 we take S = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

whose Cayley graph is the 3-cube having only integral eigenvalues. For Zp3 = 〈a | ap3 = 1〉,
we let Y = {atp | t = 0, 1, . . . , p2 − 1} and Z = {atp2 | t = 0, 1, . . . , p − 1}. Now, take

S = Zp3 \ (Y \Z) whose complement contains ap but not ap
2
, and is therefore not a subgroup.

The corresponding Cayley graph is easily seen to be integral. This completes the proof.

Our inductive proof of Theorem 4.2.2 requires considering a few base cases, which are

covered by the following lemma.

Lemma 4.2.5. Suppose that G is one of the following groups: D4, Q8, A4, or a non-abelian

semi-direct product of two cyclic groups of prime order. Then G is not a CIS group.

Proof. We write D4 = 〈x, y | x4 = y2 = 1, yxy = x−1〉. Then S = {x, x3, y} is a symmetric

generating set whose complement is not a subgroup of D4. The Cayley graph Cay(D4, S) is

isomorphic to the graph of the 3-cube which is integral. Thus D4 is not a CIS group.

Let us now consider the group of quaternions, Q8 = {±i,±j,±k,±1}. We let S =

{±i,±j,−1}. Then S is a symmetric generating set and its complement is not a subgroup.

If θ is the element of the group algebra of Q8 corresponding to S then θ is sent to −I in the

irreducible 2-dimensional representation of Q8; in the one-dimensional representations it is

sent to an element in {−3, 1, 5}. This implies that Cay(Q8, S) is integral, and that Q8 is not

a CIS group.
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We next consider A4. We take S = {(12)(34), (123), (132), (124), (142), (234), (243),

(134), (143)} ⊆ A4. The complement is not a subgroup since (13)(24) and (14)(23) are in the

complement and their product is in S. Let θ denote the element

(12)(34) + (123) + (132) + (124) + (142) + (234) + (243) + (134) + (143)

of the group algebra of A4 corresponding to S. Since the sum of all three-cycles, which

we call z, is central in A4, we have that ρ(z) is a scalar multiple of the identity for every

irreducible representation ρ of A4. Since all characters of A4 are integer-valued, we see that

ρ(z) must be an integral multiple of the identity. Thus ρ(θ) has eigenvalues equal to the

eigenvalues of ρ((12)(34)) shifted by an integer. The eigenvalues of ρ((12)(34)) are in {±1},
since (12)(34) has order 2. This shows that all eigenvalues of ρ(θ) are integers. Thus A4 is

not a CIS group.

Finally, let G be a non-abelian semidirect product of two groups of prime order. Since

every semidirect product of Zp with Zp and every semidirect product of Z2 with Zp is abelian,

we may assume that G = 〈x | xp = 1〉o 〈y | yq = 1〉, where 2 < p < q are distinct primes. Let

S = {x, x2, . . . , xp−1, y, y2, . . . , yq−1}. Then S is symmetric and generates G. Since p > 2,

|G \ S| = pq − p − q + 2 does not divide pq, thus G \ S is not a group. Notice that the

element z = x + x2 + · · · + xp−1 is central in the group algebra of G. It follows that if

φ is any irreducible representation of G then φ(z) is a scalar multiple of the identity. In

fact, since x has order p, all of the eigenvalues of φ(x) are p-th roots of unity and hence

φ(z) = (p− 1)I (if φ(x) = 1), or φ(z) = −I (when φ(x) 6= 1). Thus, φ(z) has eigenvalues

in {−1, p− 1}. Similarly, since the eigenvalues of φ(y) are q-th roots of unity, we conclude

that φ(y) + φ(y2) + · · ·+ φ(yq−1) has eigenvalues in {−1, q− 1}. Thus z + y + · · ·+ yq−1 has

eigenvalues in {−2, q − 2, p− 2, p+ q − 2}. This implies that Cay(G,S) is an integral graph.

Thus G is not a CIS group.

Proof of Theorem 4.2.2. Suppose, towards a contradiction, that there exists a non-abelian

CIS group. We pick such a CIS group G of minimum order. By Lemma 4.2.4, every subgroup

of G is a CIS group. Thus, by minimality of G, we have that G is a non-abelian group with

the property that every proper subgroup of G is abelian.

By Theorem 4.1.3, G is either a p-group or there exist distinct primes p and q such that

|G| = paqb for some positive integers a and b and the Sylow p-subgroup of G is normal. We

consider these cases separately.
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Case I. G is a p-group.

Suppose that |G| = pk. Since G is non-abelian, we have k ≥ 3. Let us first assume that

k = 3. Every p-group has a non-trivial center. Since G is not abelian, G/Z(G) can not be

cyclic. This implies that |Z(G)| = p and G/Z(G) ∼= Zp × Zp. If G is a CIS group, then

Zp × Zp should be a CIS group as well (Lemma 4.2.4). Thus by Theorem 4.2.1 we have

p = 2. Thus G ∼= Q8 or D4, but according to Lemma 4.2.5, Q8 and D4 are not CIS groups.

Thus no p-group of order p3 is a CIS group. If G is a non-abelian p-group of order greater

than p3 then G has a subgroup of order p3 and thus it is not a CIS group.

Case II. G has order paqb, where p and q are distinct primes, a, b ≥ 1, and G has a normal

Sylow p-subgroup.

In this case the Sylow p- and Sylow q-subgroups are proper and hence must be abelian

by the minimality assumption on the order of G. Let P and Q denote the Sylow p- and the

Sylow q-subgroup of G, respectively. Then G ∼= P oQ. We consider the case that p = 2 and

p 6= 2 separately.

Subcase I: p is odd.

Since P is an abelian CIS group, we have P ∼= Zp or P ∼= Zp2 . Since Zp2 has a characteristic

subgroup of size p we see that G has a subgroup that is isomorphic to Zp oQ. Also, Q has

a subgroup isomorphic to Zq and since this normalizes the copy of Zp we see that G has a

subgroup isomorphic to Zp o Zq. Since there are no abelian CIS groups of order pq we see

that Zp o Zq is non-abelian and so by minimality of G we have G ∼= Zp o Zq. Since G is

non-abelian we have the result from Lemma 4.2.5.

Subcase II: p = 2.

In this case, |P | ∈ {2, 4}. If P is cyclic then P has a characteristic subgroup isomorphic to Z2

and thus G contains a copy of Z2 oQ. Notice that Z2 has only the trivial automorphism and

so Z2oQ ∼= Z2×Q, which is not a CIS group since all abelian CIS groups have order a power

of a prime. Thus P ∼= Z2 × Z2. Notice that Aut(P ) ∼= Z3 and so P oQ is abelian unless

q = 3. Since G is non-abelian, we conclude that q = 3 and that Q ∼= Z3 or Z9. Notice that

in either case, Q has a subgroup of size 3 that normalizes P and so G contains a subgroup

isomorphic to (Z2)2 o Z3. Since this group is necessarily a CIS group and since there are no

abelian CIS groups of order 12, we see that (Z2)2 o Z3 is a non-abelian semi-direct product
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and hence isomorphic to A4. But A4 is not a CIS group by Lemma 4.2.5 (iii). Thus we see

that we cannot have p = 2.

We have obtained a contradiction in each case and so we conclude that every CIS group

is abelian.

4.3 Cayley Integral Groups

Klotz and Sander [38] introduced the notion of a Cayley integral group. This is a group G

with the property that for every symmetric subset S of G, Cay(G,S) is an integral graph.

One of their results was a characterization of abelian integral groups.

Theorem 4.3.1 (Klotz and Sander [38]). The only abelian Cayley integral groups are

Zn2 × Zm3 , and Zn2 × Zm4 ,

where m and n are arbitrary non-negative integers.

The main result of this section is a complete characterization of Cayley integral groups,

which we now state.

Theorem 4.3.2. The only Cayley integral groups are

Zn2 × Zm3 , Zn2 × Zm4 , Q8 × Zn2 , S3, and Dic12,

where m,n are arbitrary non-negative integers, Q8 is the quaternion group of order 8, and

Dic12 is the dicyclic group of order 12.

We note that the dicyclic group of order 12 can be described as the non-abelian semi-direct

product Z3 o Z4. One of the interesting features is that it has S3 as a homomorphic image.

We also point out that S3 and Dic12 are the only non-nilpotent groups on the list.

Let us first describe some basic properties of Cayley integral groups.

Lemma 4.3.3. Let G be a Cayley integral group. Then every subgroup and every homomor-

phic image of G is also Cayley integral.

Proof. The claim for subgroups is obvious since for a subset S of a subgroup H ≤ G, The

Cayley graph Cay(G,S) consists of [G : H] copies of Cay(H,S).
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Next, suppose that K is a homomorphic image of G. Let π : G → K be a surjective

homomorphism and let S be a symmetric subset of K. Let T = π−1(S). Then T is

a symmetric subset of G. We let AG denote the adjacency matrix of Cay(G,T ). Then

AG = AH ⊗ Jk, where AH is the adjacency matrix of Cay(H,S), k = |G|/|K|, and Jk is the

k× k matrix with every entry equal to one. If w is an eigenvector of AH corresponding to an

eigenvalue λ and if j is the k× 1 matrix whose entries are all 1, then AG(w⊗ j) = kλ(w⊗ j).

Since λ is an algebraic integer, it must indeed be an integer. This implies that K is a Cayley

integral group.

Lemma 4.3.4. Let G be a finite group. If G is a Cayley integral group and g is a non-identity

element in G, then ord(g) ∈ {2, 3, 4, 6}.

Proof. We notice that the only integral cycles are C3, C4 and C6. Thus, Cay(〈g〉, {g, g−1}) is

not integral if ord(g) 6∈ {2, 3, 4, 6}.

Lemma 4.3.5. Let G be a finite group and S a symmetric subset of G. If for every s in S,

ord(s) ∈ {2, 3, 4, 6}, then S ∈ B(G).

Proof. We show that for every s of order 2, 3, 4 or 6, we have {s, s−1} ∈ B(G). Since S is a

symmetric subset, thus this will implies S ∈ B(G). We notice that the atom containing s in

B(G) is the set of generators of the cyclic group generated by s. If s is an element of of order

2, then [s] = {s}. If s is an element of order 3, 4 or 6, then [s] = {s, s−1}. Therefore in every

case, we have {s, s−1} ∈ B(G) and we are done.

Theorem 4.3.1 is an immediate consequence of these lemmas. We now show that the

property of being Cayley integral is equivalent to a weaker property.

Proposition 4.3.1. A group G is Cayley integral if and only if every connected Cayley

graph of G is integral.

Proof. One direction is obvious. Suppose now that every connected Cayley graph of G is

integral, but there is a subset S of G such that Cay(G,S) is not integral. Let T = G\(S∪{1}).
Note that Cay(G,S) is disconnected, thus its complementary graph, which is equal to

Cay(G,T ) is connected. Thus, by the assumption, Cay(G,T ) is integral. It is well-known

that the complement of a regular integral graph is also integral. This contradicts our

assumption that Cay(G,S) has non-integral eigenvalues.
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We note that the only Cayley integral cyclic groups are Zm with m ∈ {1, 2, 3, 4, 6}. Thus

if G is a Cayley integral group, then since subgroups of G are also Cayley integral, G can

not have any elements of order p where p is a prime greater than 3. In particular, Cauchy’s

theorem gives that G is a (2, 3)-group; i.e., the order of G is the product of a power of 2 and

a power of 3. A theorem of Burnside then gives that G is necessarily a solvable group.

We summarize the important points obtained so far in the following remark.

Remark 4.3.6. Let G be a group. Then:

1. G is a Cayley integral group if and only if Cay(G,S) is an integral graph for every

symmetric generating sets S of G;

2. if G is a Cayley integral group then so are subgroups and homomorphic images of G;

3. if G is a Cayley integral group then its order is a product of a power of 2 and a power

of 3 and all elements of G have order in {1, 2, 3, 4, 6};

4. G is a solvable group.

We will make use of this remark often without referring to it directly.

We next give a result that will be used to characterize Cayley integral groups. It shows,

roughly speaking, that if a group G has a symmetric generating set S such that Cay(G,S) is

an integral graph, then |G| cannot be too large compared to |S|.

Proposition 4.3.2. Let G be a finite group and let S be a symmetric generating set of G.

If Cay(G,S) is an integral Cayley graph, then the order of G divides 2(2|S| − 1)!. If, in

addition, G is perfect or S has an element of odd order, then |G| divides (2|S| − 1)!.

Proof. Let AS denote the adjacency matrix of Cay(G,S). For each group element g ∈ G, we

let Ag denote the permutation matrix (associated with the left-regular representation of G)

of g. We then have that AS =
∑

s∈S As. Let k = |S|. Since S is a symmetric generating

subset of G, Cay(G,S) is a k-regular connected graph. Therefore all eigenvalues of AS are

in the set {−k, . . . , k− 1, k}. A well-known consequence of the Perron-Frobenius Theorem is

that the eigenspaces of the eigenvalues k and −k are at most 1-dimensional since the graph

is connected. Moreover, −k is an eigenvalue if and only if the graph is bipartite. We now

look at the cases corresponding to whether Cay(G,S) is bipartite or not.

Case I. Cay(G,S) is not bipartite.
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In this case −k is not an eigenvalue of AS . Since AS is a symmetric matrix, it is diagonalizable

and therefore the minimal polynomial of AS divides

(x− k)

k−1∏
i=−k+1

(x− i).

If we take Φ(x) =
∏k−1
i=−k+1(x− i), then B := Φ(AS) will be nonzero, since AS has k as an

eigenvalue. Let j be the vector whose coordinates are all equal to one. This spans the kernel

of AS−kI. Since B is nonzero, there is some i such that Bei is nonzero, where ei is the vector

with a one as its i-th coordinate and zeros in every other coordinate. Moreover, (AS−kI)B = 0

and so Bei = c j for some c ∈ Z \ {0}. Then jTB = jT
∏k−1
i=−k+1(AS − iI) = (2k − 1)! jT .

Hence,

(2k − 1)! = (2k − 1)! jT · ei = jTBei = c jT · j = c|G|.

It follows that |G| divides (2k − 1)! in this case. Notice that this case necessarily occurs

if S contains an element of odd order. It also occurs when G is perfect. To see this, note

that Cay(G,S) being bipartite implies that there is a homomorphism φ from G to Z2 which

sends each element in S (and all elements in the bipartite class containing S) to 1. The

kernel of φ must contain G′ since the image is abelian, and so if G is perfect then φ would

need to be trivial.

Case II. Cay(G,S) is bipartite.

We let u be a nonzero integer vector with ASu = −ku. We can take u to be the vector

whose coordinates are all in {±1}, where we have a 1 in the g-th coordinate if and only if g

is in the kernel of the homomorphism from G to Z2 that sends each element of S to 1.

As before we let B = Φ(AS), where Φ is the polynomial described in Case I. Then

(A− kI)(A+ kI)B = 0 and so the range of B is contained in the span of j and u. Moreover,

B is nonzero since k and −k occur as eigenvalues of |A|. Thus there is some i such that

Bei = c j+du for some c, d ∈ Q, not both zero, with c j+du a vector with integer coordinates.

Notice that this implies that c+ d and c− d are integers.

Since AS is Hermitian and u and j are eigenvectors from distinct eigenspaces, we see that

u and j are orthogonal. As before, we have

jTB = Φ(k) jT = (2k − 1)! jT and uTB = Φ(−k)uT = −(2k − 1)! u.

Thus

(2k − 1)! = (2k − 1)! jT · ei = jTBei = c jT · j = c|G| (4.1)
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and

−(2k − 1)! = −(2k − 1)!uT · ei = duT · u = d|G|. (4.2)

By summing up (4.1) and (4.2), we see that (c + d)|G| = 0, thus d = −c. By taking the

difference, we obtain 2c|G| = 2(2k − 1)!. Since 2c = c− d is an integer, we conclude that |G|
divides 2(2k − 1)!.

We now classify all Cayley integral groups. During the course of giving our classification,

it will be useful to understand whether some groups of small order are Cayley integral or not.

Lemma 4.3.7. The following groups are Cayley integral groups:

(a) S3,

(b) the dicyclic group Dic12 (the non-trivial semi-direct product Z3 o Z4),

(c) Q8 × Zd2 for every d ≥ 0.

Proof. Notice that (a) follows from (b) since Dic12 has S3 as homomorphic image. We note

that Dic12 has 〈x, y | x3 = y4 = 1, yxy−1 = x−1〉 as a presentation. Any symmetric subset

S of Dic12 is a union of sets from {1}, {x, x2}, {y, y3}, {y2}, {xy, xy3}, {x2y, x2y3}, and

{xy2, x2y2}. Moreover, y2 is central and hence gets mapped to either the identity or to the

negative of the identity by any irreducible representation. We consider these cases separately.

If y2 is sent to −I then each of y + y3, xy + xy3, and x2y + x2y3 is sent to zero; and each of

xy2 + x2y2, y2, x+ x2, and 1 is sent to an integer scalar matrix. Thus each symmetric set S

has the property that the corresponding element of the group algebra is sent to an integer

scalar multiple of the identity and hence has integer eigenvalues. If, on the other hand, y2 is

sent to I then our representation factors through Dic12/〈y2〉 ∼= S3. Notice that if we let π

denote the isomorphism from Dic12/〈y2〉 to S3, in which the image of x is sent to (123) and

the image of y is sent to (12), then we see that the symmetric set S becomes a multi-set in

which we have at most two copies of {id}, at most three copies of {(123), (132)}, and either

zero or two copies of each of {(12)}, {(13)}, and {(23)}.
Both id and (123) + (132) are central in the group algebra and since the characters

of S3 are integer-valued we see that these elements are sent to integer multiples of the

identity in any irreducible representation of S3. Thus these sets have no affect on whether

we obtain a matrix with integer eigenvalues. Thus we may assume that the multi-set is a

union consisting of either 0 or 2 copies of each of {(12)}, {(13)}, {(23)}. Notice that these
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elements each have order 2 and so if the multi-set has size 2 (i.e., we have two copies of

a single transposition) then we obtain a matrix with eigenvalues in {±2}. Next, observe

that (12) + (13) + (23) is central and since the characters of S3 are integer-valued, we see

that if S has size 6 then we again obtain a matrix with integer eigenvalues. Finally, if our

multi-set has size 4 then by applying an inner automorphism we may assume that it is given

by {(12), (12), (13), (13)}. Then (12) + (13) maps to 2 under the trivial representation; to

−2 under the alternating representation; and has the same image as −(23) in the irreducible

2-dimensional representation of S3. Thus we see that in each case we obtain a matrix with

integer eigenvalues. This establishes (a) and (b).

To show (c), let G = Q8×Zd2 and let z be the central element of order 2 in Q8. If φ is an

irreducible representation of G then z must either be sent to the identity or to the negative

of the identity. If z is sent to the identity then φ in fact factors through G/〈z〉, which is an

elementary abelian 2-group and thus φ is one-dimensional and clearly any symmetric set will

be sent to an integer. If, on the other hand, φ(z) = −I, then notice that if u is an element

of order 4 then u2 = z and so the natural extension of φ to the group algebra of G sends

u+ u−1 = u(1 + z) to 0. Consequently, we only need to consider symmetric sets consisting

of elements of order 2. But all elements of order 2 are central in G and hence are mapped to

either I or −I by φ. It follows that Cay(G,S) is an integer Cayley graph for each symmetric

subset S of G, giving (c).

Lemma 4.3.8. The following groups are not Cayley integral groups:

(1) any dihedral group Dn with n ≥ 4;

(2) any non-abelian group of order 12 that is not isomorphic to Dic12;

(3) any non-abelian group of order 18;

(4) any non-abelian group of order 24;

(5) Q8 × Z4.

Proof. We first show (1). If n ≥ 4 and n 6∈ {4, 6} then Dn contains an element that is of order

r /∈ {1, 2, 3, 4, 6} and thus Dn is not Cayley integral (since the subgroup isomorphic to Zr is

not). Thus we only need to worry about n ∈ {4, 6}. Notice that Dn has the presentation
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〈x, y | x2 = yn = 1, xyx = y−1〉. We have a 2-dimensional representation θ of Dn given by

x 7→

(
0 1

1 0

)
, y 7→

(
ωn 0

0 ω−1
n

)
,

where ωn is the primitive n-th root of unity. Then if we use the symmetric generating set

S = {x, xy} we see that θ(x) + θ(xy) is given by(
0 1 + ωn

1 + ω−1
n 0

)
,

which has eigenvalues ±
√

2 + ωn + ω−1
n . We note that if n = 4 then this gives eigenvalues

±
√

2 and if n = 6 this gives eigenvalues ±
√

3. Thus we have (1).

We now consider (2). Notice that the only non-abelian groups of order 12 are, up

to isomorphism, Dic12, A4, and D6. By (1), we only need to consider A4. For A4 no-

tice that if we use the 4-dimensional representation ρ which associates to a permuta-

tion in A4 its corresponding permutation matrix and if we use the symmetric set S =

{(13)(24), (14)(23), (123), (132)}, then by extending ρ to the group algebra of A4 via linearity,

we see that (13)(24) + (14)(23) + (123) + (132) is represented by the matrix
0 1 2 1

1 0 2 1

2 2 0 0

1 1 0 2

 ,

which has eigenvalues 4,−1, −1±
√

17
2 . Thus A4 is not Cayley integral.

To prove (3), we note that up to isomorphism there are only three non-abelian groups of

order 18: D9, S3 × Z3, and the group E9
∼= Z2

3 oθ Z2, where θ is the map that sends every

element of Z2
3 to its inverse. The group D9 is not Cayley integral by (1). For S3×〈x | x3 = 1〉,

we take the representation that sends (σ, xj) 7→ ωjP (σ), where ω is the primitive third-root

of unity and P is the (reducible) 3-dimensional representation of S3 that associates to σ ∈ S3

the 3× 3 permutation matrix P (σ) of σ. If we extend this to the group algebra via linearity,

then the symmetric element ((12), x) + ((12), x2) + ((13), 1) is represented by the matrix
0 −1 1

−1 1 0

1 0 −1

 ,
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which has eigenvalues 0, ±
√

3. Thus S3 × Z3 is not Cayley integral. The group E9 has

presentation 〈x, y | x3 = y3 = [x, y] = 1〉o 〈z | z2 = 1〉, where the automorphism of 〈x, y〉
determining the semidirect product is x 7→ x−1, y 7→ y−1. Notice that xz, yz, and z all have

order 2. Thus we may consider the symmetric set S = {xz, z, yz}. We claim that the element

xz + z + yz in the group algebra has some representation with eigenvalues that are not all

integers. To see this, observe that 〈x〉 is a normal subgroup of E9 and when we mod out by

this group we have a group isomorphic to S3 with isomorphism given by ȳ 7→ (123), z̄ 7→ (12).

Then the image of xz + z + yz in the group algebra of S3 under the composition of maps

described above is 2(12) + (13). Notice that the 3-dimensional permutation representation of

S3 sends this element to 
0 2 1

2 1 0

1 0 2

 ,

which has eigenvalues {3,±
√

3}. Notice that this representation lifts to a representation of

E9 and thus we see that E9 is not Cayley integral.

To prove (4), we note that up to isomorphism there are 15 groups of order 24, 3 of which

are abelian. Of the remaining 12 there are only two that do not have any elements of order

8 or 12, do not contain a copy of D4, and do not contain a copy of a non-abelian group

of order 12 that is not isomorphic to Dic12. (These are necessary properties to be Cayley

integral by (1) and (2).) These two groups are SL2(Z3) and Dic12 × Z2, up to isomorphism.

Notice that S3 is a homomorphic image of Dic12 and so S3 × Z2 is a homomorphic image of

Dic12 × Z2. But S3 × Z2 is not Cayley integral by (2) and so neither is Dic12 × Z2. Note

that A4 is isomorphic to PSL2(Z3) and hence A4 is a homomorphic image of PSL2(Z3). This

shows that PSL2(Z3) is not Cayley integral by (2). This establishes (4).

Finally, to prove (5), we note that Q8 = 〈x, y, z | x2 = y2 = [x, y] = z, z2 = 1〉 has a

representation π determined by

x 7→

(
i 0

0 −i

)
, y 7→

(
0 1

−1 0

)
.

Thus Q8 × 〈t | t4 = 1〉 has a 2-dimensional representation ρ given by ρ((a, tj)) = ijπ(a) for

a ∈ Q8 and j ∈ Z, where i is a primitive fourth root of unity. If we use the symmetric set

S = {(x, t), (x−1, t−1), (y, t), (y−1, t−1)}, we see that ρ sends the element (x, t) + (x−1, t−1) +
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(y, t) + (y−1, t−1) from the group algebra to(
−2 2i

−2i 2

)
,

which has eigenvalues ±2
√

2 and hence Q8 × Z4 is not Cayley integral, giving us (5).

Corollary 4.3.3. Let H ≤ S4 be a Cayley integral subgroup of S4 that acts transitively on

{1, 2, 3, 4}. Then H has order 4.

Proof. We note that if H has order in {8, 12, 24} then H is isomorphic to one of D4, A4, or

S4 and hence is not Cayley integral by Lemma 4.3.8 (1), (2), and (4). Each subgroup of

order 6 is equal to the set of permutations that fix some element i ∈ {1, 2, 3, 4} and hence

does not act transitively on {1, 2, 3, 4}. Thus H has order in {1, 2, 3, 4}. It is straightforward

to check that a subgroup of order 1, 2, or 3 cannot act transitively on {1, 2, 3, 4} and thus H

has order 4.

We now start the classification of Cayley integral groups by first classifying the Cayley

integral 2-groups.

Lemma 4.3.9. Let Q be a Cayley integral 2-group. Then the following statements hold:

(i) Every element of order 2 is central.

(ii) If Q is non-abelian then any two elements that do not commute generate a subgroup

that is isomorphic to Q8.

Proof. Let N denote the set of elements in Q of order at most 2. We claim that N is a

group. To see this, it is sufficient to show that if x, y ∈ N then xy = yx since this implies

that (xy)2 = x2y2 = 1. This will show that the set of elements of order at most 2 is closed

under multiplication and hence forms a group. Moreover, it follows that N is abelian. Let

x, y ∈ N and let E denote the subgroup of N generated by x and y. Then E is a Cayley

integral group and applying Proposition 4.3.2 to the symmetric set S = {x, y}, we see that

|E| divides 12. Since E is in Q and Q is a 2-group, we see that E has order at most 4 and

thus is abelian. This means that x and y commute and since they were arbitrary elements of

N , we thus have that N is an abelian group as claimed. We note that N is normal, since the

set of elements of order at most 2 is closed under conjugation.
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To complete the proof of (i), we must show that N is a central subgroup of Q. Suppose,

towards a contradiction, that N is not central. Then there is some u ∈ Q such that

conjugation by u induces a non-trivial automorphism of N . Note that every element of Q

has order dividing 4. Therefore u2 ∈ N and so this automorphism must have order 2. Hence

there are x, y ∈ N with x 6= y such that uxu−1 = y and uyu−1 = x. Let Q1 denote the

subgroup of Q generated by x, y, and u. Then Q1 in non-abelian and has order 8 or 16.

Notice that Q1 has at least four elements of order 4 and hence must be isomorphic to D4 if it

has order 8; but D4 is not Cayley integral by Lemma 4.3.8 and so we see Q1 must have order

16. In particular, u has order 4 and 〈u〉 intersects 〈x, y〉 trivially. Thus Q1/〈u2〉 is a Cayley

integral group of order 8 and, as before, we see that it is isomorphic to D4, a contradiction.

It follows that each element of N is indeed central, which establishes (i).

We now prove (ii). Suppose that x, y ∈ Q and that they do not commute. By (i), x and

y must both have order at least 4. But since 〈x〉 and 〈y〉 are Cayley integral, their order

is equal to 4. Notice that since the square of every element is central, Q/N is elementary

abelian and so Q′ ⊆ N . In particular, [x, y] = z, where z ∈ Q is a central element of order 2.

We claim that x2 = y2 = z. To see this, suppose that x2 6= z and let H denote the subgroup

of Q generated by x and y. Then E := H/〈x2〉 is a Cayley integral 2-group and the image

of x in E now has order 2 and so it must be central. But the image of [x, y] = z in E is

non-trivial, a contradiction since by (i) we have that every element of order 2 in E is central.

It follows that x2 = y2 = z and so H is a non-abelian homomorphic image of the group with

presentation

〈s, t, u | s4 = t4 = u2 = 1, s2 = t2 = [s, t] = u, [s, u] = [t, u] = 1〉.

We note that this is just a presentation of Q8 and since H is non-abelian, we see that

H ∼= Q8.

Proposition 4.3.4. Let Q be a non-abelian Cayley integral 2-group. Then Q ∼= Q8 × Zd2
for some d ≥ 0.

Proof. By Lemma 4.3.9, every element of order 2 in Q is central and any pair of non-

commuting elements of Q generate a subgroup that is isomorphic to Q8. Moreover, every

element is of order 1, 2, or 4. Let u, v be elements of order 4 that generate a copy of Q8.

Then there is a central element z of order 2 such that u2 = v2 = [u, v] = z. We claim that

if w is another element of order 4 then w2 = z. To see this, note that if w2 6= z then w
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and u must commute since otherwise by Lemma 4.3.9 (ii) they generate a copy of Q8 with

w2 = [u,w] = u2 = z. Similarly, [w, v] = 1 and since w2 is central and not in {1, u2}, we

see that the group generated by u, v, and w is isomorphic to Q8 × Z4, which is not Cayley

integral by Lemma 4.3.8 (5). It follows that all elements of order 4 in Q have the same

square.

Let Z denote the central subgroup of Q consisting of elements of order at most 2. By

assumption, there exist u and v that do not commute and hence there is some z ∈ Z

such that u2 = v2 = [u, v] = z. We claim that Q is generated by u, v, and Z. To see

this, let Q0 denote the subgroup of Q generated by u, v, and Z and suppose that there

is some w ∈ Q \ Q0. Then w has order 4 and so w2 = z. If u and w commute then

(uw)2 = u2w2 = z2 = 1 and so uw ∈ Z, which gives that w ∈ Q0, a contradiction. Thus u

and w do not commute, which gives that u2 = w2 = [u,w] = z by Lemma 4.3.9 (ii). Similarly,

we have v2 = w2 = [v,w] = z. Notice that (uvw)2 = 1 and so uvw ∈ Z, which gives that

w ∈ v−1u−1Z ⊆ Q0, a contradiction. Thus Q = Q0 and so Q is generated by u, v and Z.

Now let H be the subgroup of Q generated by u and v. Then H ∼= Q8 and H ∩ Z = 〈z〉.
Note that Z is an elementary abelian 2-group and so there is an elementary abelian subgroup

Z1 such that Z1 ⊕ 〈z〉 = Z. Then we see that Q ∼= H × Z1
∼= Q8 × Zd2 for some d ≥ 0.

We now classify Cayley integral 3-groups. As it turns out, the classification in this case

is simpler.

Proposition 4.3.5. Every Cayley integral 3-group is elementary abelian.

Proof. Let x and y be two elements of a Cayley integral group P and let P0 denote the

subgroup of P generated by x and y. Then P0 is Cayley integral and so applying Proposition

4.3.2 to the symmetric set S = {x, x−1, y, y−1} gives that the order of P0 divides 7!. Since P0

is a 3-group, we see that |P0| divides 9. In particular P0 is abelian and so x and y commute.

Since all elements of P commute, we see that P is abelian. Since every element of P has

order 1 or 3, we see that P is an elementary abelian 3-group.

Corollary 4.3.6. Let G be a nilpotent Cayley integral group. Then G is either abelian or

G ∼= Q8 × Zd2 for some d ≥ 0.

Proof. If G is nilpotent then G must be a direct product of a Cayley integral 2-group and

a Cayley integral 3-group. Thus by Propositions 4.3.4 and 4.3.5, if G is non-abelian then
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G ∼= (Q8 × Zd2)× Ze3 for some d, e ≥ 0. Note that if e ≥ 1 then G contains a copy of Q8 × Z3

which is not Cayley integral by Lemma 4.3.8 (4). Hence e = 0 and the result follows.

We now begin to study non-nilpotent Cayley integral groups. We first show that such

groups necessarily have a unique Sylow 3-subgroup. To do this, we first require a few lemmas.

Lemma 4.3.10. Let G be a Cayley integral group. If G has a normal Sylow 2-subgroup then

G is nilpotent.

Proof. Suppose that this is not the case. Then we can pick a non-nilpotent Cayley integral

group G of smallest order with respect to having a normal Sylow 2-subgroup.

Let Q denote the Sylow 2-subgroup of G and let Z denote the center of Q. Let P be a

Sylow 3-subgroup of G. Then G is a semi-direct product P oQ. Since Z is a characteristic

subgroup of Q and Q is normal in G, we see that if x ∈ P then xZx−1 = Z. Pick z ∈ Z
of order 2. We claim that z commutes with every element of P . To see this, suppose

towards a contradiction, that there is some x ∈ P such that xz 6= zx. Then z1 := xzx−1 and

z2 := x2zx−2 have the property that the subgroup of Z generated by z, z1, z2 is an elementary

abelian 2-group of order either 4 or 8 and hence the group generated by x and z must have

order 12 or 24. By Lemma 4.3.8, the only non-abelian Cayley integral group of order either

12 or 24 is isomorphic to the dicyclic group of order 12, but this one does not have a normal

Sylow 2-subgroup, a contradiction.

Thus we see that xz = zx for every z ∈ Z and x ∈ P . This means that the centralizer of

z contains both P and Q and thus must contain all of G. Notice that H := G/〈z〉 is a Cayley

integral group with the property that it has a normal Sylow 2-subgroup. By minimality of

the order of G we see that H is nilpotent. It follows that G is nilpotent, since we obtained

H by taking the quotient of G with a central subgroup.

Lemma 4.3.11. Let G be a Cayley integral group generated by two elements of order 3.

Then G is isomorphic to Z3 or to Z3 × Z3.

Proof. Let x and y be elements of order 3 in G that generate G as a group. Notice that the

set S = {x, x−1, y, y−1} has size 4 and since x has odd order we see from Proposition 4.3.2

that the order of G divides 7!. Since G is a (2, 3)-group, we see that the order of G in fact

divides 144.
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We let n3 denote the number of Sylow 3-subgroups of H. It is known that n3 ≡ 1 (mod

3) and that n3 divides the index of the Sylow subgroup in G. Since |G| divides 144, the

index is 2t, where 0 ≤ t ≤ 4, thus n3 ∈ {1, 4, 16}.
If n3 = 1, then G has a unique Sylow 3-subgroup, which is elementary abelian by 4.3.5.

Hence x and y commute and so they generate a group of order 3 or 9. This yields the

conclusion of the lemma.

In the rest of the proof we argue by contradiction, considering the cases n3 = 4 and

n3 = 16 separately.

Suppose that n3 = 4. Then G acts on the Sylow 3-subgroups by conjugation, which gives

us a non-trivial homomorphism π from G to S4. Let G0 denote the image of G under π. Since

the collection of Cayley integral groups is closed under the process of taking subgroups and

homomorphic images, G0 is a Cayley integral subgroup of S4. Moreover, by construction G0

acts transitively on {1, 2, 3, 4} since G acts transitively on the set of Sylow 3-subgroups under

conjugation. By Corollary 4.3.3, G0 has order 4. Let N denote the kernel of π. Then N has

order dividing 36 and by construction it contains all Sylow 3-subgroups and in particular

contains x and y. But this means that the group generated by x, y is contained in N , a

contradiction since N is a proper subgroup of G. We conclude that n3 = 4 cannot occur.

Suppose next that n3 = 16. Suppose first that |G| 6= 144. Since n3 = 16, we know that

16 divides the order of G and since G is a proper divisor of 144 and 3 divides the order of G,

we see that |G| = 48. Then each pair of distinct Sylow 3-subgroups must intersect trivially

since they are all cyclic groups of order 3. Thus there are 16 · 2 = 32 elements of order 3.

This leaves 16 unaccounted elements, which necessarily make up a normal Sylow 2-subgroup.

By Lemma 4.3.10, we see that G is nilpotent and thus n3 = 1, a contradiction.

Suppose now that |G| = 144. If each pair of distinct Sylow 3-subgroups intersect trivially

then G has 8 · n3 = 128 elements of order 3. This leaves 16 unaccounted for elements in G,

which must make up a normal Sylow 2-subgroup. By Lemma 4.3.10, G is nilpotent, which

gives that n3 = 1, a contradiction.

Thus G has distinct Sylow 3-subgroups P and Q such that P ∩Q = 〈u〉 is a group of

order 3. Notice that P and Q both have order 9 and hence are abelian. It follows that CG(u),

the centralizer of u in G, contains the groups P and Q. It follows that its order is a multiple

of 9 and since it contains two distinct Sylow 3-subgroups it must have at least four Sylow

subgroups and so its order must in fact be in {36, 72, 144}.
Our next step is to show that CG(u) is normal in G. If CG(u) has order 72 or 144, this is
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automatic, so we may assume that |CG(u)| = 36. Then G acts on the left cosets of CG(u),

giving a homomorphism ρ to S4. Let E denote the image of ρ in S4. By assumption the

image of ρ is a Cayley integral group that acts transitively on {1, 2, 3, 4} and hence E must

have order 4 by Corollary 4.3.3. Thus the kernel of ρ has size 36 and since the kernel of ρ is

contained in CG(u), we see that CG(u) is normal in this case.

We now show that CG(u) = G. Since G is generated by x and y, it is sufficient to show

that u commutes with y. Let Z1 denote the Sylow 3-subgroup of the center of CG(u). Note

that Z1 is characteristic in CG(u) and hence normal in G. Moreover, Z1 is non-trivial since

u ∈ Z1. Notice that if Z1 has order 9 then it is a Sylow subgroup of G and since all Sylow

subgroups are conjugate and CG(u) is normal we see that x and y are in CG(u), which gives

that G = CG(u) since x and y are generators of G. Thus Z1 = 〈u〉. Notice that xZ1x
−1 = Z1

and so xux−1 ∈ {u, u−1}. If xu = u−1x then u = x3u = u−1x3 = u−1, a contradiction. Thus

xu = ux. Similarly, yu = uy, which gives that x, y ∈ CG(u) and so CG(u) = G.

Now H := G/〈u〉 = CG(u)/〈u〉 is a Cayley integral group of order 48 and is generated by

two elements of order 3. Since we already proved the lemma for groups whose order is less

than 144, we can apply the lemma to the group H. It follows that H has order 3 or 9. This

gives a contradiction and completes the proof by showing that n3 6= 16 when |G| = 144.

Proposition 4.3.7. Let G be a Cayley integral group. Then G has a normal abelian Sylow

3-subgroup.

Proof. By Lemma 4.3.11 any two elements of order 3 generate a group of order 3 or 9. Since

groups of orders 3 and 9 are abelian, it follows that any two elements of order 3 commute.

Thus the product of two elements of order 3 has order 1 or 3. This shows that elements of

order dividing 3 are closed under multiplication in G and hence form a group. This group is

necessarily the unique Sylow 3-subgroup of G and so G has a normal Sylow 3-subgroup. By

Proposition 4.3.5, this group must be abelian.

Corollary 4.3.8. Let G be a non-nilpotent Cayley integral group. Then G is isomorphic to

either S3 or Dic12.

Proof. By Proposition 4.3.7, G has a normal Sylow 3-subgroup, P ∼= Zd3. Moreover, d ≥ 1

since G is not nilpotent. Let Q be a Sylow 2-subgroup of G. Then G = P oQ.

We first claim that if x ∈ P and if y ∈ Q has order 2, then yxy−1 ∈ {x, x−1}. To see this,

suppose that yxy−1 = u 6∈ {x, x−1}. Then u is of order 3 and x and u generate a group of
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order 9 by Lemma 4.3.11. Consequently, x, y, u generate a non-abelian subgroup of G of

order 18. But this contradicts Lemma 4.3.8 (3), since a non-abelian group of order 18 cannot

be Cayley integral.

We next claim that if |P | ≥ 9 and if y ∈ Q has order 2, then yx = xy for every x ∈ P .

To see this suppose that there is some x ∈ P such that yx 6= xy. As shown above, we have

yxy−1 = x−1. Let u ∈ P be such that 〈x, u〉 has order 9. Then since yuy−1 ∈ {u, u−1}, we

see that u, x, y generate a non-abelian group of order 18. But this is a contradiction, since

Lemma 4.3.8 says that no such group can be Cayley integral. Thus we have shown that

either |P | = 3 or we have yx = xy whenever y ∈ Q has order 2 and x ∈ P .

We next claim that if |P | ≥ 9 and w ∈ Q then wxw−1 ∈ {x, x−1} for every x ∈ P . To

see this, suppose that this is not the case. Then wxw−1 = u 6∈ {x, x−1}. By the above, the

order of w is greater than 2 and since G is Cayley integral and w ∈ Q, its order must be

4. Thus w2 has order 2 and hence w2x = xw2. This implies that wuw−1 = x and so the

group generated by u, x, w is a non-abelian group of order 36 and w2 is central. Notice that

the quotient of the group generated by u, x,w by 〈w2〉 is a non-abelian group of order 18

and hence it cannot be Cayley integral by Lemma 4.3.8 (3). This is a contradiction and so

we conclude that if |P | ≥ 9 then whenever x ∈ P we have that 〈x〉 is normal in G since its

normalizer contains both P and Q.

We now claim that |P | ≤ 3. If |P | ≥ 9, then notice that P cannot be central in G since G

is not nilpotent. Thus there is some y ∈ Q and some x ∈ P such that xy 6= yx. We have just

shown that we must have yxy−1 = x−1. Pick u ∈ P such that u and x generate a subgroup

of P of order 9. Then 〈u, x〉 is normal in G, the group E generated by y, u, x has order 36,

and y2 is central in E. But by construction, E/〈y2〉 is a non-abelian group of order 18 and

hence cannot be Cayley integral. It follows that |P | ≤ 3, as claimed. Moreover, since G is

not nilpotent, |P | = 3.

We next claim that Q is abelian. If not, then Q contains a copy of Q8. Then G contains

a copy of P o Q8, which is not Cayley integral by Lemma 4.3.8 (4), since P o Q8 is a

non-abelian group of order 24. Thus Q is abelian.

Finally, we claim that Q has order at most 4. To see this, suppose that |Q| ≥ 8. By

assumption, G is non-nilpotent and so there is some u ∈ Q such that conjugation by u

induces a non-trivial automorphism of P . Since Q is an abelian 2-group of order at least 8,

there is a subgroup Q0 of Q of order 8 that contains u. Then P oQ0 is a non-abelian group

of order 24 and so by Lemma 4.3.8 (4) is not Cayley integral, a contradiction. Thus Q has
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order at most 4 and since G is not nilpotent it must have order at least 2. Hence G = P oQ

has order 6 or 12. Since G is not nilpotent, we see by Lemma 4.3.8 that G ∼= S3 if |G| = 6,

and G ∼= Dic12 if |G| = 12. This completes the proof.

We are now ready to give the proof of the classification result for Cayley integral groups.

Proof of Theorem 4.3.2. If G is not nilpotent, then by Corollary 4.3.8 we have that G ∼= Dic12

or G ∼= S3. If G is nilpotent and non-abelian then by Corollary 4.3.6 we see that G ∼= Q8×Zd2
for some d ≥ 0. If G is abelian then by Theorem 4.3.1 we have that G ∼= Zd3 × Ze2 or

G ∼= Zd2 × Ze4 for some d, e ≥ 0. By Lemma 4.3.7 all of these groups are Cayley integral.



Chapter 5

Integral Cayley graphs of small

degree

The study of integral Cayley graphs of small degree began with [2] by Abdollahi and

Vatandoost. They used a result of Schwenk [51] and classified all cubic integral Cayley

graphs. Essentially their method was to recognize Cayley graphs among the famous 13 cubic

integral graphs which was found by Schwenk. In another paper, Abdollahi and Vatandoost

(see [3]) attempted to classify all 4-regular integral Cayley graphs over abelian groups. They

found a list of possible orders of abelian groups which admit 4-regular integral Cayley graphs.

Their list is incomplete and more than half of the possible sizes do not admit any abelian

group with an associated integral Cayley graph. Minchenko and Wanless [44] investigated

the 4-regular integral vertex-transitive graphs. They used the data provided by Cvetković,

Stevanović and others in [24, 54, 53, 55]. They managed to find all 4-regular bipartite

integral Cayley graphs and their associated groups. These results are derived primarily

from computer computations. In this chapter we characterize groups which admit connected

integral Cayley graphs of small degrees. All of our results are based on theoretical arguments.

In the first section, we characterize abelian groups which admit connected 3, 4 or 5-regular

integral Cayley graphs. We will find some general bounds and for a given fixed degree, we

explain a general approach to find all abelian groups for which there are connected integral

Cayley graphs of that degree. In the next section, we classify all non-abelian groups for

which there are connected cubic integral Cayley graphs. We explain the current state of

non-abelian groups which admit connected 4-regular integral Cayley graphs.

78
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5.1 Abelian groups admitting integral Cayley graphs of small

degree

In this section, we will determine abelian groups G which admit a connected integral Cayley

graph. We notice that if Cay(G,S) is a connected Cayley graph, then |G| divides 2(2|S| − 1)!

(see Theorem 4.3.2). In most cases, this bound is a lot bigger than the actual group order.

In this section, we provide a stronger bound in the case of abelian groups. It turns out that

this bound is sharp as well. We conjecture that in general |G| ≤ (|S|+ 1)! holds whenever

Cay(G,S) is integral and S is a symmetric generating set.

Lemma 5.1.1. For every positive integer n such that n 6= 6, we have:

2φ(n) ≥ n.

Equality happens only if n = 2 or n = 4.

Proof. It is known (see page 9 in [45]) that for n 6= 2, 6, φ(n) ≥
√
n. One can see that

φ(2) = 1 = log2 2, while φ(6) = 2 < 2.584 ≈ log2 6. Function f(x) =
√
x− log2 x is strictly

increasing for x > 9, and f(16) = 0. Hence, for n > 16 we have φ(n) ≥
√
n > log2 n. This

implies for n > 16 that 2φ(n) > n. Through direct calculation for 2 ≤ n ≤ 16, we have the

desired result, with equality just when n = 2 or n = 4.

Lemma 5.1.2. Let G be an abelian group and S a symmetric generating set of G such

that there is no element of order 6 in S. If Cay(G,S) is integral, then |G| ≤ 2|S|. Equality

happens only if S is a minimal symmetric generating set such that all elements in S are of

order 2 or 4.

Proof. We prove this by induction on the number of non-involution elements in S. We notice

that if S is a generating set of G, then |G| ≤
∏
s∈S ord(s) with equality only when S is a

minimal generating set. If all elements in S are involutions, then we are done. Suppose

the assertion is true for symmetric generating sets with at most d non-involutions, where

d is a non-negative integer. Let G be an abelian group and S a symmetric generating

set in G with d + 1 non-involutions such that Cay(G,S) is integral. Suppose s ∈ S is a

non-involution element in S. By Theorem 2.4.4, the integrality of Cay(G,S) implies that S

is a union of distinct atoms of the group algebra B(G). Thus [s] ⊆ S ([s] denotes the atom

containing s). Let S1 = S \ [s]. If H = 〈S1〉, then Cay(H,S1) is integral and S1 has less
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than d non-involutions. By the induction hypothesis |H| ≤ 2|S1|, with equality only if S1

is a minimal symmetric generating set of elements of orders 2 or 4. We have |[s]| = φ(k),

where k = ord(s) ≥ 2. Since |G| ≤ |H||〈s〉| = k|H|, we have |G| ≤ 2|S|−φ(k)k ≤ 2|S|. Equality

happens if and only if |G| = |H||〈s〉|, |H| = 2|S1| and 2φ(k) = k. From group theory, we have

|G| = |H〈s〉| = |H||〈s〉|
|H∩〈s〉| . Thus |G| = |H||〈s〉| if and only if |H ∩ 〈s〉| = 1. Therefore, s is

not a redundant generator in S. By induction hypothesis, |H| = 2|S1| if and only if S1 is a

minimal generating set consisting of elements of orders 2 or 4. Finally, Lemma 5.1.1 gives

that 2φ(k) = k if and only if k = 2 or k = 4. This completes the proof.

It is interesting that if G = Zn2 and S is a generating set of G consisting of n involutions,

then Cay(G,S) = Qn is integral. Therefore the inequality in Lemma 5.1.2 is sharp.

Theorem 5.1.3. Let G be an abelian group and S a symmetric generating set of G. Let α

denote the number of elements of order 6 in S and β = |S| − α. If Cay(G,S) is integral,

then |G| ≤ 2β6
α
2 .

Proof. Let S1 denote the subset of all elements of order 6 in S, and S2 = S \ S1. We have

G = 〈S1〉〈S2〉. Thus |G| ≤ |〈S1〉||〈S2〉|. By Theorem 2.4.4, S is a symmetric subset of G

which is a disjoint union of atoms of B(G). Therefore, S1 and S2 are also symmetric and they

are unions of disjoint atoms. This implies that |〈S1〉| ≤ 6
α
2 . We notice that Cay(〈S2〉, S2) is

integral graph satisfying the conditions of Lemma 5.1.2. Therefore |〈S2〉| ≤ 2|S2|. Combining

these two together, we have |G| ≤ 2β6
α
2 .

Corollary 5.1.4. Let G be an abelian group and S a symmetric generating set of G. If

Cay(G,S) is integral, then we have;

• |G| ≤ 2|S|+
α
2 , where α is the number of elements of order 6 in S.

• |G| ≤ 3|S|.

The following lemma is easy to prove.

Lemma 5.1.5. Suppose G1 and G2 are two finite groups with symmetric generating sets S1

and S2, respectively. Then the following statements hold:

• Cay(G1, S1)�Cay(G2, S2) = Cay(G1×G2, S), where S = (S1×{1G2})∪ ({1G1}× S2).

• Cay(G1, S1)× Cay(G2, S2) = Cay(G1 ×G2, S1 × S2).
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Notice that Cay(G1, S1)�Cay(G2, S2) is (|S1|+|S2|)-regular, and Cay(G1, S1)×Cay(G2, S2)

is |S1||S2|-regular.

We say that there is a r-regular integral Cayley graph over a group G, if G has a symmetric

generating set S such that Cay(G,S) is an r-regular integral graph.

Theorem 5.1.6. Suppose G is a cyclic group of even order and k a non-negative integer.

There is a connected (2k + 1)-regular integral Cayley graph over G if and only if there is a

connected 2k-regular integral Cayley graph over G.

Proof. Since G is cyclic of even order, there is a unique involution in G. Let S be a

symmetric generating set of G. Notice that S contains the involution of G if and only if

|S| is odd. Suppose |S| = 2k + 1 and a is the involution in S. We have G = 〈S \ {a}〉〈a〉,
and |G| = |〈S\{a}〉||〈a〉|

|〈S\{a}〉∩〈a〉| . We know |〈a〉| = 2, thus |〈S \ {a}〉 ∩ 〈a〉| is either 1 or 2. We

have |〈S \ {a}〉 ∩ 〈a〉| = 1 only if 〈S \ {a}〉 = G, and |〈S \ {a}〉 ∩ 〈a〉| = 2 in the case of

G ∼= 〈S \ {a}〉 × 〈a〉.
If 〈S \ {a}〉 = G, then S \ {a} determines a connected 2k-regular integral Cayley graph

over G.

If G ∼= 〈S \ {a}〉 × 〈a〉, then 〈S \ {a}〉 is of odd order, because the product of two cyclic

group is cyclic if and only if they are of co-prime orders. We have Cay(G,T ) ∼= Cay(〈S \
{a}〉, S \ {a})×Cay(〈a〉, {a}), where T = S \ {a} × {a}. Notice that Cay(〈S \ {a}〉, S \ {a})
and Cay(〈a〉, {a}) ∼= K2 are integral graphs. Since 〈S \ {a}〉 has a odd order, Corollary 3.1.8

implies that Cay(〈S \ {a}〉, S \ {a}) is a connected non-bipartite Cayley graph. Therefore,

Cay(G,T ) is connected, because it is a tensor product of a connected non-bipartite graph

with K2. Since |T | = 2k, we have a 2k-regular Cayley graph over G.

Conversely, suppose Cay(G,S) is a 2k-regular integral graph. Assume a is the involution

in G. Notice that a 6∈ S, and Cay(G,S ∪ {a}) is integral. Thus, there is a 2k + 1-regular

integral Cayley graph over G as well.

Theorem 5.1.7. Suppose G is an abelian group. If there is a connected cubic integral Cayley

graph over G, then G is isomorphic with one of the following groups:

Z2
2, Z4, Z2 × Z3, Z3

2, Z2 × Z4, Z2
2 × Z3.

Furthermore, each of these groups admits a cubic integral Cayley graph.

Proof. We notice that |G| is even and at least four. If G is cyclic, then according to Theorem

5.1.6 there should be an integral 2-regular graph (cycle) over G. This implies that |G| = 4, 6.
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Thus, if G is cyclic, then G ∼= Z4 or Z6
∼= Z2×Z3. It is easy to see that Cay(Z4,Z4\{0}) = K4,

Cay(Z2 × Z3, {(0, 1), (0, 2), (1, 0)}) = K2�K3 and Cay(Z2 × Z3, {(1, 1), (1, 2), (1, 0)}) = K3,3.

Thus, these groups admit cubic integral Cayley graphs.

If G is non-cyclic, then Lemma 5.1.2 and Theorem 5.1.3 imply |G| ≤ 12. The set S is

either consists of three involutions, or an involution and an element of order 4 or 6 along with

its inverse. This implies that |G| ∈ {4, 8, 12}. The case |G| = 12 happens only when S consists

of an involution and an element of order 6 and its inverse. In this case, G is necessarily in the

form G = Z2 × Z6
∼= Z2

2 × Z3. We have Cay(Z2
2 × Z3, {(1, 0, 1), (1, 0, 2), (1, 1, 0)}) = K2�C6,

which gives a cubic integral Cayley graph over this group. If there is no element of order 6

in S, then |G| ≤ 8, with equality just in the case that S is a symmetric generating set of

three involutions, or an involution and an element of order 4 and its inverse. Groups Z3
2 and

Z2 × Z4 are the only non-cyclic abelian groups of order 8 with such minimal generating sets.

Both are Cayley integral groups:

Cay(Z2 × Z4, {(1, 0), (0, 1), (0, 3)}) = K2�C4 = Q3

Cay(Z3
2, {(1, 0, 0), (0, 1, 0), (0, 0, 1)}) = Q3.

The only non-cyclic group of order 4 is Z2
2. Clearly, in this case S can be just Z2

2 − {0}. We

have Cay(Z2
2,Z2

2 − {0}) = K4, which is a cubic integral Cayley graph.

Corollary 5.1.8. If G is a cyclic group and Γ = Cay(G,S) is a connected cubic integral

graph, then G ∼= Z4 or Z2 × Z3, and Γ ∼= K4,K2�K3 or K3,3.

Proof. We proved in the previous lemma that Z4 and Z2 × Z3 are the only cyclic groups

which admit a cubic integral Cayley graph. We also showed that K4,K2�K3 and K3,3 are

connected cubic integral Cayley graphs over cyclic groups. The only cubic integral graph

on 4 vertices is K4. Thus, if G ∼= Z4, then Γ = K4 is the only cubic integral graph over G.

Suppose G ∼= Z2 × Z3. If Cay(G,S) is cubic integral graph, then Theorem 2.4.4 implies that

S is a generating set of G consisting of elements of order 2, 3 or 6. We know a cyclic group

has φ(k) elements of order k. Therefore, there is a unique involution in G which should be in

S. All other non-identity elements in G are of orders 3 or 6. Thus, we have just two choices

for S. First choice is, S = {a, b, b−1}, where a is the involution of G, and {b, b−1} the set

of all elements of order 3 in G. In this case, Cay(G,S) is isomorphic to K2�K3. Second

choice is, S = {a, c, c−1}, where a is the involution of G, and {c, c−1} the set of all elements

of order 6 in G. In this case, Cay(G,S) is isomorphic to K3,3. This completes the proof.
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Corollary 5.1.9. If Γ is a connected cubic integral Cayley graph of an abelian group, then

Γ ∼= K4,K2�K3,K3,3, Q3,K2�C6.

Proof. By theorem 2.4.4, if Cay(G,S) is a connected cubic integral graph over the abelian

group G, then S should be a disjoint union of atoms in the Boolean algebra B(G) of G. Since

|S| = 3, thus S is either consisting of three involutions, or is in the form {a, b, b−1}, where a

is an involution and b an element of order in {3, 4, 6}. We have already showed that these

graphs are all Cayley graph of an abelian group. It is easy to see that the only Cayley graphs

of order 4 or 6 are K4,K2�K3,K3,3.

Suppose G is an abelian group of order 12 which admits a connected cubic integral

Cayley graph. Let Cay(G,S) be a connected cubic integral Cayley graph over G. From

the proof of Theorem 5.1.7 is clear that S = {a, b, b−1}, where a is an involution and b an

element of order 6. Since G = 〈a〉〈b〉 and |G| = |〈a〉||〈b〉|, we have G = 〈a〉 × 〈b〉. This

implies that Cay(G,S) = Cay(〈a〉, {a})�Cay(〈b〉, {b, b−1}) = K2�C6. Thus, K2�C6 is the

only connected cubic integral Cayley graph over an abelian group of order 12.

Now, suppose G is an abelian group of order 8, and Cay(G,S) a connected cubic integral

Cayley graph over G. Lemma 5.1.2 implies that S is a minimal generating set of G consisting

of elements of orders 2 or 4. If all elements of S are of order 2, then G ∼= Z3
2, and clearly

in this case Cay(G,S) = Q3. Suppose S = {a, b, b−1}, where a is an involution and b an

element of order 4. Since G = 〈a〉〈b〉 and |G| = |〈a〉||〈b〉|, we have G = 〈a〉× 〈b〉. This implies

that G ∼= Z2 × Z4, and Cay(G,S) = Cay(〈a〉, {a})�Cay(〈b〉, {b, b−1}) = K2�C4. We notice

that K2�C4 = Q3. This completes the proof.

Theorem 5.1.10. Let G be an abelian group. If there is a connected 4-regular integral

Cayley graph over G, then G is isomorphic to one of the following groups:

cyclic groups Z5,Z6,Z8,Z10,Z12, or any abelian non-cyclic group of order 8, 9, 12, 16, 18, 24, 36,

other than Z2
2 × Z9 and Z2 × Z8.

Proof. Suppose Cay(G,S) is an integral 4-regular connected Cayley graph. We notice that

S should be in the Boolean algebra of the subgroups, thus it is a union of disjoint atoms.

Each atom [g] in BG(G) contains φ(ord(g)) elements. This implies that S cannot contain

any element g with φ(ord(g)) > 4. If g ∈ S and φ(ord(g)) = 4, then S = [g] and G = 〈g〉 is a

cyclic group.

We now first classify all the cyclic groups which admit a connected 4-regular integral

Cayley graph. We know that φ(n) = 4 if and only if n ∈ {5, 8, 10, 12}. Suppose G = 〈g〉 is a
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cyclic group, which admits a connected 4-regular integral Cayley graph Cay(G,S). Each

atom [a] in the boolean algebra, has φ(ord(a)) elements. This implies that if a is not an

involution, then [a] is of even size. We also notice that in a cyclic group, we have at most one

involution, and so S cannot contain an involution. By Theorem 2.4.4, S is either one single

atom [s], or a union of two atoms [s1] and [s2], where ord(s1) 6= ord(s2) ∈ {3, 4, 6}. Notice

that if S = [s1] ∪ [s2], then |G| ∈ {6, 12}. If S consist of a single atom [s], then G = 〈s〉 and

|G| ∈ {5, 8, 10, 12}. Notice that if G = 〈g〉 is a cyclic group of order in {5, 8, 10, 12}, then we

take S to be the atom containing the generator g. Clearly, S is a symmetric generator set

of G which belongs to the Boolean algebra B(G) of G. Thus, cyclic groups Z5,Z8,Z10,Z12

admit connected 4-regular integral Cayley graphs. If G = Z6, then the only choice for S is

[1] ∪ [2] = {1, 2, 4, 5}. Notice that we have,

Cay(Z5,Z5\{0}) = K5, Cay(Z6, {1, 2, 4, 5}) = 3K2 = K2,2,2, Cay(Z8, {1, 3, 5, 7}) = K4,4

Cay(Z10, {1, 3, 7, 9}) = K5�K2, Cay(Z12, {1, 5, 7, 11}) = 3C4.

Now suppose G is a non-cyclic abelian group of order at least five. Then S is a disjoint

union of at least two atoms of B(G). Since |S| = 4, S should be the union of two, three or

four atoms.

Suppose S is the disjoint union of two 2-element atoms [g1] and [g2]. Then G = 〈g1〉〈g2〉,
and |G| divides |〈g1〉||〈g2〉|. Since [g1] and [g2] are atoms of size 2, thus ord(g1) and ord(g2)

are 3, 4 or 6. This implies |G| ∈ {6, 8, 9, 12, 16, 18, 24, 36}. Suppose S is the disjoint union of

three atoms [g1], [g2] and [g3]. Then, we may assume g1 and g2 are involutions and g3 an

element of order 3, 4 or 6. We have that G = 〈g1〉〈g2〉〈g3〉, and |G| divides |〈g1〉||〈g2〉||〈g3〉|.
This case implies that |G| ∈ {6, 8, 12, 16, 24}. If S is a disjoint union of four atoms [g1], [g2],

[g3] and [g4]. Then g1, g2, g3 and g4 are necessarily involutions. Thus, |G| | 16. Since |G| ≥ 5,

we have |G| ∈ {8, 16}.
All abelian groups of order 6, 8, 9, 12 and 18 are Cayley integral groups (see Theorem

4.3.2) containing 4-element symmetric generating sets. Thus we need to check the case where

G is a group of order 16, 24 or 36.

If |G| = 16, then G contains no element of order 6. Thus, Lemma 5.1.2 implies that S

is a set of elements of orders 2 or 4. If G = Z4
2 or Z2

4, then G contains a generating set of

four involutions. Since G = Z2 × Z8 has three involutions, and cannot be generated by a

set of elements of order 2 and 4, there is no connected 4-regular integral Cayley graph over

Z2 × Z8.
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Suppose now |G| = 24. Lemma 5.1.2 implies that S = [g1] ∪ [g2], where ord(g1) = 6 and

ord(g2) = 4, or S = [g1] ∪ [g2] ∪ [g3], where ord(g1) = 6 and ord(g2) = ord(g3) = 2. Thus

G ∼= Z6×Z4 or Z6×Z2
2. We have Cay(Z6×Z4, {(1, 0), (5, 0), (0, 1), (0, 2)} = C6�C4. We notice

that Z6×Z2
2
∼= Z3

2×Z3 is a Cayley integral group (see Theorem 4.3.2) which has a symmetric

generating set of four elements, Cay(Z2
2 × Z6, {(1, 0, 1), (0, 1, 1), (1, 0, 5), (1, 1, 5)}) ∼= C4�C6.

If |G| = 36, then S = [g1] ∪ [g2], where ord(g1) = ord(g2) = 6. We have G = 〈g1〉 × 〈g2〉,
thus G ∼= Z6 × Z6. We have Cay(Z6 × Z6, {(1, 1), (1, 5), (5, 1), (5, 5)}) = C6�C6. Notice that

Z2
2 × Z9 6∼= Z6 × Z6, thus Z2

2 × Z9 cannot have a connected 4-regular integral Cayley graph.

This completes the proof.

Theorem 5.1.11. Let G be an abelian group of even order. There is a connected (2k + 1)-

regular integral Cayley graph over G if and only if G admits a connected 2k-regular integral

Cayley graph or G = H × Z2, where H is a group admitting a connected 2k-regular integral

Cayley graph.

Proof. Suppose G is a group of even order, and G admits a connected 2k-regular integral

Cayley graph. Suppose S is a symmetric generating set of G of size 2k such that Cay(G,S)

is integral. We know that S is in the Boolean algebra of the subgroups. Each atom in the

boolean algebra of subgroups, has even size unless it is a singleton atom consisting of an

involution. Since |S| = 2k, the number of involutions in S is even. We notice also any group

of even order has odd number of involutions. Therefore G has an involution which is not a

member of S. Suppose a is an involution that a 6∈ S. Now Cay(G,S ∪ {a}) is a connected

(2k + 1)-regular integral Cayley graph over G.

Suppose H is a group which admits a connected 2k-regular integral Cayley graph Γ.

Lemma 5.1.5 implies that Γ�K2 is a (2k + 1)-regular integral Cayley graph over H × Z2.

Conversely, suppose G is an even group which admits a connected (2k + 1)-regular

integral graph Cay(G,S). Since |S| = 2k + 1, S contains an involution. Suppose a is an

involution in S, then we have G = 〈S \ {a}〉〈a〉. There are two cases to consider. First

suppose a ∈ 〈S \ {a}〉, then clearly G = 〈S \ {a}〉. In this case, we have Cay(G, 〈S \ {a}〉)
which is a connected 2k-regular integral graph. The second case corresponds to a 6∈ 〈S \ {a}〉.
In this case, G = 〈S \ {a}〉 × Z2. Suppose H = 〈S \ {a}〉. Then, H admits a connected

2k-regular integral graph Cay(H,S \ {a}).

Corollary 5.1.12. Suppose {Gj}j∈J∪{Hi}i∈I is the collection of all abelian groups admitting

connected 2k-regular integral Cayley graphs (I and J are the index sets), where Hi for i ∈ I is
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of odd order and Gj for j ∈ J of even order. Then the collection of abelian groups admitting

connected (2k + 1)-regular integral Cayley graphs is:

{Gj}j∈J ∪ {Gj × Z2}j∈J ∪ {Hi × Z2}i∈I .

Therefore, classification of all abelian groups admitting connected integral Cayley graphs

of odd degree is essentially reduced to the even degree case. The method used in the proof of

Theorem 5.1.10, can be employed to classify all abelian groups admitting connected s-regular

integral Cayley graphs for s = 6, 8, . . .. However, it is not easy to classify all abelian groups

admitting connected s-regular integral Cayley graphs, when s is a big number. This is due

to the fact that there is not an easy classification of the solutions of the equation φ(x) = a,

for a given positive even integer a.

5.2 Non-abelian groups admitting cubic integral Cayley graphs

The following Theorem due to Schwenk has been proved in [51].

Theorem 5.2.1 (Schwenk). If Γ is a connected cubic integral graph, then Γ is isomorphic

to one of the graphs Γ1,Γ2, . . . ,Γ13 in Figures 5.1 and 5.2.

Lemma 5.2.2. Suppose n is odd, and S is a symmetric generating set of Dn. If Cay(Dn, S)

is bipartite, then S is a set of involutions.

Proof. To have Cay(Dn, S) bipartite, we need to have a linear character which sends each

element of S to −1. When n is odd, Dn has only one non-principal linear character, which

assign −1 to each reflection and 1 to each rotation. Thus S should be a set of reflections,

and consequently a set of involutions.

Lemma 5.2.3. Suppose G = H ×K with |H| 6∈ {1, 2, 3, 4, 6}. If there is a connected cubic

integral Cayley graph over G, then there is a connected cubic integral Cayley graph over H.

Proof. Part 10 of Theorem 3.2.8 implies that Cay(H,πH(S)) is integral. If |πH(S)| = 1,

then H = 〈h〉 is a cyclic group, where πH(S) = {h}. Because Cay(H,πH(S)) is integral,

each character of the group maps h to a rational number. This implies that |H| = 1 or 2,

which contradicts the hypothesis. If |πH(S)| = 2, then Cay(H, πH(S)) is a connected integral

2-regular graph. This implies that |H| ∈ {3, 4, 6}, which again contradicts the hypothesis.

Therefore, the only possible case is that |πH(S)| = 3, and so Cay(H,πH(S)) is a connected

cubic integral graph over H.
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Lemma 5.2.4. Graphs Γ3,Γ6,Γ10 and Γ11, in Figures 5.1 and 5.2 are not Cayley graphs.

Proof. Graph Γ6 is not vertex-transitive, and so not a Cayley graph. There is no integral

Cayley graph on Z10, and Z10 is the only abelian group of order 10. There is just one

non-abelian group of order 10, namely the dihedral group D5. Suppose S is a symmetric

generating set of D5. If Cay(D5, S) is integral, then Theorem 3.5.5 implies that |S| ≥ 4.

Hence, there is no connected cubic integral Cayley graph over D5. Therefore, graphs Γ10 and

Γ11 which each has 10 vertices, cannot be integral Cayley graphs. Suppose Γ3 is a Cayley

graph of a group G. Then G is isomorphic to D15,Z3 ×D5 or Z5 ×D3. From character

table of D15 is clear that all non-simple eigenvalues are of even multiplicity. Graph Γ3 has

eigenvalue 2 with multiplicity 9, thus Γ3 is not a Cayley graph of D15 . If Γ3 was a Cayley

graph of Z3 ×D5, then Lemma 5.2.3 implies that there is a connected cubic integral Cayley

graph over D5, which is not possible. Suppose G ∼= Z5×D3. Lemma 5.2.3 implies that there

is a connected cubic integral Cayley graph over Z5, which is not possible by Theorem 5.1.7.

Then Γ3 is not a Cayley graph and this completes the proof.

Lemma 5.2.5. Graphs Γ4 and Γ5, in Figures 5.1 and 5.2 are not Cayley graphs.

Proof. The girth of both Γ4 and Γ5 is 6. This implies that if one of these graphs is

in the form Cay(G,S), then S cannot have any element of order 4 or 5. Non-abelian

groups of order 20 are D10 = D5 × Z2, Z5 o Z4 and the Frobenius group with presentation

〈s, t | s4 = t5 = 1, ts = st2〉. The Frobenius group cannot be generated by involutions, and it

has no element of order 10, thus there is no bipartite connected cubic graph over it. Group

Z5 o Z4 has no symmetric generating set with three elements avoiding elements of order 4

and 5. If G = D10 = D5 × Z2, then Cay(D5, πD5(S)) is integral. This is not possible by

Lemma 5.2.3.

Theorem 5.2.6. If G is a non-abelian group, then there is a connected cubic integral Cayley

graph over G if and only if G is one of the following groups;

D3, D4, D6, A4, S4, A4 × Z2, D4 × Z3, D3 × Z4.

Furthermore, each of these groups has a connected cubic integral Cayely graph.

Proof. By Schwenk’s Theorem, possible connected integral Cayley graphs are of orders:

4, 6, 8, 9, 10, 12, 20, 24, 30.
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By Lemmas 5.2.4 and 5.2.5 and the fact that we are considering non-abelian groups, the

possible orders reduce to 6, 8, 12, 24. The only non-abelian group of order 6 is D3 = S3,

which is a Cayley integral group. Clearly, D3 has symmetric generating sets of size three.

If |G| = 8, then G = D4 or G = Q8. We showed in Lemma 4.2.5 that Cay(D4, {x, x3, y})
is the 3-cube. The quaternion group Q8 has a unique involution, and all other non-identity

elements are of order 4. Since Q8 cannot be generated by an involution and an element of

order 4, thus Q8 has no cubic integral Cayley graph.

If G is a non-abelian group of order 12, then G ∼= D6, A4,Dic12. Group Dic12 has

a unique involution. Since this involution is central, Dic12 cannot be generated by an

involution and an element of order less than 12. Since Dic12 is non-abelian, it has no element

of order 12. Consequently, it has no cubic integral Cayley graph. For G ∼= D6, we have

Cay(D6, {x, x5, y}) = K2�C6. If G ∼= A4 and S = {(12)(34), (123), (132)}, then Cay(A4, S)

is isomorphic to the graph Γ13 in the Figure 5.2. This completes the proof for non-abelian

groups of order 12.

Now, suppose G is a non-abelian group of order 24. There are 12 such groups:

S4, A4 × Z2, D4 × Z3, D3 × Z4, Z3 ×Q8, Z3 oQ8, Z3 o Z8, SL2(Z3),

D12, Dic12 × Z2, Z2 × Z2 × S3 = D6 × Z2, (Z6 × Z2) o Z2.

To analyze this case, all necessary information about non-abelian groups of order 24 has been

provided in Appendix A. We show that from this list, groups S4, A4 × Z2, D4 × Z3, D3 × Z4

admit connected cubic integral Cayley graphs, while the rest of the groups in the list do not

admit such Cayley graphs. Note that by Schwenk’s theorem, the only possible connected

cubic integral Cayley graph on 24 vertices is Γ8.

If G = S4, then S = {(12), (13), (14)} is a generating set. One can easily check that

Cay(S4, S) = Γ8. If G = A4 × Z2, then since Γ13 is a Cayley graph over A4, we have

Γ8 = Γ13 × K2 is a Cayley graph over A4 × Z2 (see Lemma 5.1.5). If G = D4 × Z3,

then Cay(G, {(x, 1), (x3, 2), (y, 0)}) is a connected cubic integral. If G = D3 × Z4, then

Cay(G, {(x, 1), (x2, 2), (y, 0)}) is a connected cubic integral graph over this group.

In the groups Z3 ×Q8, Z3 oQ8, Z3 o Z8 and SL2(Z3) there is a unique involution, and

it belongs to the center of the group. Therefore, these groups can not be generated by an

involution and an element of order less than 24. Since these groups are non-abelian, there is

no element of order 24 in any of them. Consequently, there is no connected cubic integral

Cayley graph over any of these groups.
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For all other non-abelian groups of order 24, we look for a symmetric generating set

of size three containing no element of order 3 or 4 (since Γ8 has girth 6). Because Γ8 is

bipartite, we notice that each element of the generating set should be mapped to −1 by an

irreducible linear character of the group.

The only rotation of order 2 in D12 is a6 (see 3.5). This element will map to 1 by all

linear representations of D12 (see 3.5.1). Therefore, if Cay(D12, S) is a connected cubic

integral graph, then S should consist of three reflections of D12. Using the linear character

of D12 (see 3.5.1), this implies that 3 and −3 have multiplicities greater than 1 which is not

possible. That is to say, there is no connected cubic integral Cayley graph over D12.

By Lemma 5.2.3, if there is a connected cubic integral Cayley graph Cay(D6 × Z2, S),

then Cay(D6, πD6(S)) should be a connected cubic integral Cayley graph as well. It is easy

to see that Cay(D6, πD6(S)) should be bipartite, but this implies that Cay(D6 × Z2, S),

which is a tensor product (see Lemma 5.1.5) of two bipartite graphs is disconnected. This

contradiction implies that Cay(D6×Z2, S) does not admit a connected cubic integral Cayley

graph.

We can apply Lemma 5.2.3 once more to eliminate Dic12 × Z2, because Dic12 does not

admit a connected cubic integral Cayley graph.

The only remaining group is the group (Z6 × Z2) o Z2 which is a solvable group with 9

conjugacy classes. One can check with character table and corresponding representations

that from all symmetric generating sets of size 3 of this group, the obtained Cayley graph is

not an integral graph. All the calculations for this group has been done in Appendix B.3.

5.3 Non-abelian groups admitting 4-regular integral Cayley

graphs

Now, we explain a method which was originally used by A.J. Schwenk in proving Theorem

5.2.1. While he used no computer help to prove his theorem, the adopted method for the

4-regular graphs needs lots of computations, and therefore computer help seems inevitable.

If Γ is a non-bipartite connected 4-regular integral graph, then the product Γ×K2 is

connected, bipartite, 4-regular and integral. Therefore, in determining 4-regular integral

graphs we can consider bipartite graphs only, and later extract non-bipartite graphs from

the decompositions of bipartite ones in the form Γ × K2. Suppose that Γ is a 4-regular

bipartite integral graph with 2n vertices. We may write the spectrum of Γ in the form
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[4, 3x, 2y, 1z, 02w,−1z,−2y,−3x,−4]. Cvetković et al. [24] found quadruples [x, y, z, w] that

give candidates for the spectrum of a bipartite 4-regular connected integral graph. They

called these “possible spectra”. Research activities regarding the set of possible spectra fall

into two streams: eliminate possible spectra based on new information and/or techniques, or

find graphs that realize a possible spectrum. Useful tools include an identity by Hoffman

[31] and equations relating the spectral moments to the closed walks of length l ≤ 6. All

bipartite 4-regular connected integral graph that avoid eigenvalues of ±3 and realize a possible

spectrum are found in [54]. Stevanović [53] eliminates spectra using equations arising from

graph angles. In the same paper he determines that the possible values for n are between

4 and 630, but for 5 exceptions. For a subgraph X of a graph Γ, suppose [X] denotes the

number of copies of X in Γ. The number of closed walks of length k in a 4-regular graph is

expressible in terms of n, [Ci] and some other subgraphs of Γ. The Diophantine equations

below are well-known:
1

2

∑
i

λ0
i = 1 + x+ y + z + w = n,

1

2

∑
i

λ2
i = 16 + 9x+ 4y + z = 4n,

1

2

∑
i

λ4
i = 256 + 81x+ 16y + z = 28n+ 4[C4],

1

2

∑
i

λ6
i = 4096 + 729x+ 64y + z = 232n+ 72[C4] + 6[C6].

Minchenko and Wanless [43] extended these equations to higher moments.

1

2

∑
i

λ8
i = 65536 + 6561x+ 256y + z = 2092n+ 1012[C4] + 144[C6] + 8[C8] + 16[C4.4]

+48[Θ2,2,2,2] + 24[Θ2,2,2] + 8[Θ3,3,1]

In the equation above, Ci.j denotes an i-cycle and a j-cycle sharing a vertex, and Θi1,i2,...,ik

denotes two vertices joined by internally disjoint paths of lengths ij for j = 1, . . . , k. A

vertex-transitive graph has the same number of k-cycles incident with each vertex, so the

number of vertices divides k[Ck]. This idea has been implemented in some computer programs

by Minchenko and Wanless [44] to eliminate those spectra among the possible spectra (of

4-regular bipartite connected integral graphs) which cannot be realized by a vertex-transitive

graph. As a consequence, they managed to find all 4-regular bipartite connected Cayley

integral graphs.
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Theorem 5.3.1. Suppose G is a finite group and S a generating symmetric set of size 4 in

G. If Cay(G,S) is integral, then G is a group such that:

|G| ∈ {5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 72, 120}.

Furthermore, there are precisely 17 isomorphism classes of connected 4-regular bipartite

Cayley integral graphs.
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Γ1 (3, 04,−3)
Γ2 (3, 13,−13,−3)

Γ3 (3, 29, 010,−29,−3)

Γ4 (3, 24, 15,−15,−24,−3)

Γ5 (3, 24, 15,−15,−24,−3)

Γ6 (3, 2, 12, 02,−12,−2,−3)

Γ8 (3, 26, 13, 04,−13,−26,−3)

Γ7 (3, 22, 1, 04,−1,−22,−3)

Figure 5.1: Connected cubic bipartite integral graphs.
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Γ9 (3,−13) Γ10 (3, 15,−24)

Γ12 (3, 2, 13,−12,−23)

Γ13 (3, 23, 02,−13,−23)

Γ11 (3, 1, 02,−22)

Figure 5.2: Connected cubic non-bipartite integral graphs.



Chapter 6

Miscellaneous results

In the first section of this chapter, we will study graphs with a small number of distinct

eigenvalues. In the second section, we will study simple eigenvalues in Cayley graphs. In the

last section, we propose some open problems and two conjectures.

6.1 Cayley graphs with small number of distinct eigenvalues

If Γ is a connected graph with exactly two distinct eigenvalues, then Γ is a complete graph

(see Theorem 2.1.3). The situation is not trivial for more than two distinct eigenvalues.

Let Γ be a graph which is neither empty nor complete. Then Γ is said to be a strongly

regular graph with parameters (n, k, λ, µ) if Γ is a k-regular graph on n vertices in which

every pair of adjacent vertices have λ common neighbors and every pair of non-adjacent

vertices have µ common neighbors. The cycle C4 is a (bipartite) strongly regular graph

with parameters (4, 2, 0, 2). The cycle C5 is a (non-bipartite) strongly regular graph with

parameters (5, 2, 0, 1). It is easily seen that for any n ≥ 6 the cycle Cn is not a strongly

regular graph. The Petersen graph and the cocktail party graphs are two other examples

of strongly regular graphs. Note that the complement of a strongly regular graph is also

strongly regular.

Theorem 6.1.1. For a simple graph Γ of order n, not complete or empty, with adjacency

matrix A, the following are equivalent:

(i) Γ is strongly regular with parameters (n, k, λ, µ) for certain integers k, λ, µ.

(ii) A2 = (λ− µ)A+ (k − µ)I + µJ for certain real numbers k, λ, µ.

94
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(iii) AJ = JA and A has precisely three distinct eigenvalues.

Thus, connected regular graphs with three distinct eigenvalues are precisely strongly

regular graphs. Moreover, the eigenvalues determine the parameters, and vice versa.

Theorem 6.1.2. Let Γ be a strongly regular graph with adjacency matrix A and parameters

(n, k, λ, µ). Let k, r and s (k > r > s) be the distinct eigenvalues of A with multiplicities 1,

f and g respectively. Then

(i) k(k − 1− λ) = µ(n− k − 1),

(ii) rs = µ− k, r + s = λ− µ, and

(iii) f, g = 1
2(n− 1∓ (r+s)(n−1)+2k

r−s ).

Lemma 6.1.3. Let Γ be a connected k-regular graph on n vertices with three distinct

eigenvalues. If not all eigenvalues are integral, then n is odd and k = n−1
2 .

Proof. The minimal polynomial of Γ has integer coefficients, and we know that λ1 = k is

an integer. Thus, r and s should be in the form a±
√
b

2 , for some integers a and b. Since r

and s are conjugate algebraic integers, their multiplicities in the characteristic polynomial

of Γ should be equal to each other. We have 1 + f + g = 1 + 2f = n. Thus f = n−1
2 . We

know that the sum of the eigenvalues is zero. Thus, k + an−1
2 = 0. This can happen only if

k = n−1
2 and a = −1.

The following conjecture due to Pablo Spiga, has find some attention.

Conjecture 6.1.4. There exists no (non-complete and non-empty) strongly regular Cayley

graph Γ, where Γ = Cay(G,S), G is a non-abelian simple group and Aut(Γ) is primitive on

the vertices.

By a theorem of Liebeck-Praeger-Saxl (Theorem 1.6 of the [41]), if such a Cayley graph

exist, then S should be a union of conjugacy classes. We prove that such a graph is integral,

and S should be in the boolean algebra of the subgroups.

Theorem 6.1.5. Suppose Γ = Cay(G,S), where G is a non-abelian simple group and Aut(Γ)

is primitive on the vertices. If Γ is a strongly regular graph, then Γ is an integral graph and

S should be in the boolean algebra of subgroups.



CHAPTER 6. MISCELLANEOUS RESULTS 96

Proof. By Feit-Thompson’s odd order theorem, every finite group of odd order is solvable.

Thus, if G is a non-abelian simple group, it should be of even order. Lemma 6.1.3 implies

that Γ = Cay(G,S) is an integral graph. Thus, S is χ-integral subset of G and Theorem

3.2.7 along with the fact that S is a union of conjugacy classes proves that S ∈ B(G).

6.2 Simple eigenvalues in Cayley graphs

In this section we study simple eigenvalues in Cayley graphs. An automorphism of a graph Γ

is a permutation π of V (Γ) such that A(Γ) = [auv] = [aπ(u)π(v)].

Theorem 6.2.1. Suppose Γ is a connected graph.

i) If all eigenvalues are simple, then Aut(Γ) is an elementary abelian 2-group.

ii) If Γ is vertex-transitive and all its eigenvalues are simple, then Γ has at most two vertices.

If G is a non-abelian group, then from Theorem 3.1.3 it is clear that each non-linear

character will produce multiple eigenvalues. Therefore, all simple eigenvalues of Cay(G,S)

are among numbers λ(S), where λ is an irreducible linear character of G. Each linear

character of G is a character of G/G′. We can therefore consider only the Cayley multigraphs

over abelian groups.

Theorem 6.2.2. Let G be a finite group and S a symmetric subset of G. All simple

eigenvalues of Cay(G,S) are integers, and the number of simple eigenvalues of Cay(G,S) is

at most n2(G) + 1, where n2(G) is the number of subgroup of index 2 in G.

Proof. Suppose λ is a simple eigenvalue of Cay(G,S), and x = (x(g))g∈G is the associated

eigenvector with x(1) = 1. Let us assume that λ 6= |S|. Consequently, x is not j. If h

is an element in G, then rh is in Aut(Cay(G,S)). Let Ph denote the permutation matrix

corresponding to the automorphism rh. We have PhA = APh, where A is the adjacency

matrix of the Cay(G,S). This implies that Phx is an eigenvector of λ as well. Notice

that Phx = (x(gh))g∈G, that is to say, Ph permutes the components of x according to the

permutation rh. Since λ is a simple eigenvalue, we have Phx = ax for a scalar a. We know

that Ph preserves the length of vectors, thus a = ±1. So far, we have deduced that for every

h ∈ G, we have Phx = ±x. Notice that if h is of odd order, then Phx = x. Let N(λ) be the

set of those h in G which satisfy Phx = x. Clearly the map h 7→ ah, where Phx = ahx, is
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a homomorphism from G to the subgroup {1,−1} of the multiplicative group of complex

numbers. N(λ) is the kernel of this homomorphism, and thus N(λ) is a subgroup of index at

most 2 in G. We notice that for the eigenvector x = (x(g))g∈G, we have x(g) = 1 if g ∈ N(λ)

and −1 otherwise. Therefore, λ = 2|N(λ) ∩ S| − |S| ∈ Z. We have N(λ) = G if and only if

λ = |S|. Thus when λ 6= |S|, each simple eigenvalue is associated with a unique subgroup of

index 2 in G. Thus, the number of simple eigenvalues in Cay(G,S) is at most n2(G) + 1,

where n2(G) is the number of subgroups of index 2 in G.

For any group G, we denote by G2 the subgroup generated by the squares of elements,

that is G2 = 〈{x2 | x ∈ G}〉. We say that G is generated by squares if G = G2. Note that G2

is normal in G. This is clear because, for every x, a ∈ G, a−1x2a = (a−1xa)2. Since every

element of odd order in G satisfies an equation like a = a2k, all elements of odd order are in

G2.

Theorem 6.2.3. The groups G and G/G2 have the same number of subgroups of index 2.

Proof. To see this, we start with the following observation: if H is a subgroup of index 2 in

G, then H is normal in G and the factor group G/H has order 2. Therefore, (xH)2 = H

for all x ∈ G. It follows that G2 ⊆ H. Since G2 is normal in G, then it is normal in H

and we can consider the factor group H/G2. This is a subgroup of G/G2 and we have

[G/G2 : H/G2] = [G : H] = 2. We have a map from the set of subgroups of G of index 2 to

the set of subgroups of G/G2 of index 2 by sending H to H/G2. It is easy to check that this

is a well defined bijection.

Notice that G/G2 is abelian since (xG2)2 = G2 for all x ∈ G. Therefore, G/G2 is an

elementary abelian 2-group. Let us assume that G/G2 ∼= Zn2 .

In addition to being a group, Zn2 has a natural structure of a vector space over Z2 with

vector addition being the usual group addition and scalar multiplication defined in the

natural way across components. Moreover, the subspaces and the subgroups of Zn2 coincide.

Finally, we notice that subgroups of index 2 (and so order 2n−1) correspond to subspaces of

dimension n− 1. Recall that an (n− 1)-dimensional subspace of an n-dimensional vector

space V is called a hyperplane of V . We now count the hyperplanes of finite dimensional

vector spaces over Z2.

Theorem 6.2.4. Every n-dimensional vector space over Z2 has 2n−1 hyperplanes.
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Proof. Every hyperplane is determined by choosing n−1 independent vectors of the space. So,

one can count the number of sets with k independent vectors to be (2n−1)(2n−2) . . . (2n−2k).

Since every hyperplane has dimension n − 1, it has (2n−1 − 1)(2n−1 − 2) . . . (2n−1 − 2n−2)

bases with n− 1 vectors. Thus the number of hyperplanes in Zn2 is:

(2n − 1)(2n − 2) . . . (2n − 2n−2)

(2n−1 − 1)(2n−1 − 2) . . . (2n−1 − 2n−2)
= 2n − 1.

Thus, if G is a group of order 2nm, where m is odd, then Cay(G,S) has at most 2n simple

eigenvalues. Notice that for any subgroup H of index 2 in G we have a unique eigenvalue

and eigenvector associated with H. If x is a vector in {1,−1}G which is +1 on coordinates

in H and −1 on the rest, then x is an eigenvector of Cay(G,S) with the corresponding

eigenvalue 2|S ∩H| − |S| (which is an integer with the same parity as |S|). This eigenvalue

is not necessarily simple, because it might be associated with other subgroups of index 2.

Corollary 6.2.5. If G is a finite group and S a symmetric generating set of G, then

Cay(G,S) has at least n2(G) + 1 integer eigenvalues.

Lemma 6.2.6. Suppose G is a finite group and S is a symmetric generating set of G. Then;

a) Every simple eigenvalue of Cay(G,S) is an integer.

b) If |G| is odd, then G has just one simple eigenvalue, namely |S|.

c) If |G| = 4k + 2, then G has at most 2 simple eigenvalues. In this case λ1 = |S| is simple,

and the other possible simple eigenvalue is of the form 4t− |S|, where 0 ≤ t ≤ b |S|−1
2 c.

d) If |G| = 4k, then G can have at most 2n simple eigenvalues, where |G| = 2nm and 2 - m.

In this case all simple eigenvalues are of the form 2t− |S|, where 0 ≤ t ≤ |S|.

Proof. We just need to prove part c. We first show that any group of order 4k + 2 has a

subgroup of index 2. Suppose G is a group of order 4k+ 2. Right regular representation of G

defines a homomorphism ϕ : G→ SG such that ϕ(g) = rg. The map sign from SG to {±1}
is a homomorphism which assign +1 to even permutations and −1 to odd permutations.

Therefore, % = (sign) ◦ ϕ is a homomorphism from G to {±1}. Suppose H is the kernel of %,

that is to say H is the set of elements g ∈ G such that sign(rg) = +1. Clearly, [G : H] ≤ 2.
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By a Theorem of Cauchy, there is a g ∈ G of order 2. Since g 6= 1, rg has no fixed points.

Because rg has order 2 in SG, it should be a product of 2k + 1 disjoint transpositions. It

follows that sign(rg) = −1 and we cannot have |H| = |G|. Now the eigenvalue corresponding

to H is in the form 2|S ∩H| − |S|. Since H is a subgroup and S a symmetric subset of G,

we have (H ∩ S)−1 = H−1 ∩ S−1 = H ∩ S. We notice that H has no involution, therefore

the symmetric subset H ∩ S of H has even size. This implies that the other possible simple

eigenvalue is in the form 4t− |S|, where 0 ≤ t ≤ b |S|−1
2 c.

Lemma 6.2.7. If H 6 G and ρ is a representation of G, then

ρ(H) =

|H|I if H ⊆ Kerρ

0 if H 6⊆ Kerρ
.

Proof. Suppose H 6 G, and h ∈ H. We have:

ρ(H) =
∑
g∈H

ρ(g) =
∑
g∈H

ρ(gh) = ρ(h)(
∑
g∈H

ρ(g)) = ρ(h)ρ(H).

If there is an h in H such that ρ(h) 6= I, then ρ(H) = 0 otherwise ρ(H) = |H|I.

Since in an abelian group irreducible representations are characters in Irr(G), we have the

following result as an immediate consequence of the previous lemma.

Corollary 6.2.8. If G is an abelian group, H 6 G and χ ∈ Irr(G), then

χ(H) =

|H| if H ⊆ Kerχ

0 if H 6⊆ Kerχ
.

Let s(Γ) denote the number of simple eigenvalues of a connected graph Γ. If G is a finite group,

suppose s(G) = max{s(Cay(G,S)) | S = S−1, 〈S〉 = G}, and s(k) = max{s(G) | |G| = k}.

Theorem 6.2.9. If k ≥ 3, then k0.386 ≤ s(k) ≤ k0.66.

Proof. Let G = Zm2 ×Z
m−1
3 . Each character of G is in the form λ×µ where λ is an irreducible

character of Zm2 and µ an irreducible character of Zm−1
3 . Suppose Zm2 = 〈x1, . . . , xm〉 and

Zm−1
3 = 〈y1, . . . , ym−1〉. We define S = {(xi, y) | 2 ≤ i ≤ m, y ∈ 〈y1, . . . , yi−1〉} ∪ {(x1, 1)}.

We have shown below that Cay(G,S) has maximum number of simple eigenvalues. Notice

that under an irreducible representation χ of G, χ(S) =
∑
s∈S

χ(s) is an element of the form
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m−1∑
j=0

aj3
j ,

where each aj is in {−1, 1, 0}.
Notice all such sums are distinct, and we only have one representation that gives sum

bj3
j with all bj = ±1, so we have 2m simple eigenvalues. This provides a lower bound of

|G|log(2)/ log(6) = |G|.386 on the number of simple eigenvalues. This establishes the lower

bound.

Let G be a finite group of order k, and S a symmetric generating subset of G. We have,∑
ρ∈IRR(G)

λ2
ρ = |S||G| ≤ |G|2/2. We also know that since all simple eigenvalues are integers,

we have:

∑
ρ∈IRR(G)

λ2
ρ ≥

∑
λi is simple

λ2
i ≥ t3/6.

Where t is the number of simple eigenvalues. Thus t ≤ |G|2/3 = k0.66.

There are many other interesting results about simple eigenvalues in Cayley graphs. Some

more results have been provided in [8].

6.3 Open problems and conjectures

In this section, we mention some open problems and outline some new conjectures.

Open Problem 6.3.1. Is there a similar description as in theorem 2.4.4 of the spectrum of

some other classes of non-abelian groups?

Open Problem 6.3.2. What is the necessary and sufficient conditions for,

• B(G) = Iρ?

• B(N ) = Iρ?

Open Problem 6.3.3. What are the admissible sets in Zn?

Open Problem 6.3.4. Determine all integral Cayley graphs with 4 distinct eigenvalues.
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Notice that there are many constructions for graphs with 4 distinct integral eigenvalues.

However, characterization of Cayley graphs with 4 distinct integral eigenvalues is still open.

We recall that for a graph Γ, s(Γ) denotes the number of simple eigenvalues of Γ. If G is

a finite group, s(G) = max{s(Cay(G,S)) | S = S−1, 〈S〉 = G}, and s(k) = max{s(G) | |G| =
k}.

Conjecture 6.3.5. ([8]) If k is a positive integer, then s(k) = O
(
k0.5

)
.

We proved in the second section of this chapter that if k ≥ 3, then k0.386 ≤ s(k) ≤ k0.67.

Although we have no example of groups where s(G) would be close to |G|0.5, we remark that

there are known constructions of non-Cayley graphs whose the number of simple eigenvalues

is close to this bound (see [50]).

Conjecture 6.3.6. Suppose G is a finite group and S a symmetric generating set of G. If

Cay(G,S) is integral, then |G| ≤ (|S|+ 1)!.

For abelian groups this conjecture is a consequence of Theorem 5.1.3. Charactrization of

connected cubic and 4-regular integral Cayley graphs, proves the conjecture for |S| ≤ 4. It is

interesting to see that the upper bound offered by conjecture 6.3.6 is sharp when |S| = 3 or 4.

We proved in chapter 4 that for G and S as in the conjecture 6.3.6, |G| divides 2(2|S| − 1)!.

If one use the Stirling’s formula to approximate (|S| + 1)! (and the fact that for x ≥ 1,

log(1 + x) ≤ x− x2

2 ), then we can see that conjecture is valid if |S| ≥ (log |G|)
1
4 . We notice

that for non-bipartite integral Cay(G,S) the conjecture turns to |G| ≤ (|S|+1)!
2 .



Appendix A

Representation theory in GAP

In this appendix, we provide all the necessary representation theory information regarding

non-abelian groups of orders 12, 18 and 24. In the following, E(n) will stand for a primitive

n-th root of unity. In the GAP the identity of the group is denoted by “<identity> of . . . ”.

The conjugacy class of element g in G is denoted by gG.

GAP, Version 4.6.4 of 04-May-2013 (free software, GPL)

| GAP | http://www.gap-system.org

Architecture: i686-pc-cygwin-gcc-default32

Libs used: gmp, readline

Loading the library and packages ...

Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0

Packages: AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.0, AutPGrp 1.5, Browse 1.8.2,

CRISP 1.3.6, Cryst 4.1.11,

CrystCat 1.1.6, CTblLib 1.2.2, FactInt 1.5.3, FGA 1.2.0, GAPDoc 1.5.1,

IO 4.2, IRREDSOL 1.2.1,

LAGUNA 3.6.3, Polenta 1.3.1, Polycyclic 2.11, RadiRoot 2.6, ResClasses

3.3.0, Sophus 1.23, SpinSym 1.5,

TomLib 1.2.2

Try ’?help’ for help. See also ’?copyright’ and ’?authors’

gap> LoadPackage( "repsn" );;

-------------------------------------------------------

Repsn for Constructing Representations of Finite Groups

Version 3.0.2
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Written by

Vahid Dabbaghian

-------------------------------------------------------

A.1 Representation theory of non-abelian groups of order 12

gap> l := AllSmallGroups(12);;

gap> Ds := List(l,StructureDescription);;

gap> A:=Filtered(l, x->IsAbelian(x)=false);;

gap>

gap> Cl := List( A, ConjugacyClasses);;

gap> RCl:=List(Cl, y->List(y, x->Representative(x)));;

gap> OCl := List( RCl, y-> List(y, x->Order(x)));;

gap> irr := List( A, Irr);;

gap> iRR:=List(irr, x->List(x, y->IrreducibleAffordingRepresentation(y)));;

gap> D:=[1..Length(A)];;

gap> for i in [1..Length(A)] do

> D[i]:=["the", i, "-th group in the list is", A[i],"A generating set of the

group:", GeneratorsOfGroup(A[i]), "Center of the group:", List(Center(A[i])),

"Conjugacy classes:", Cl[i], "Representatives of the classes are:", RCl[i],

"Order of representatives:", OCl[i], irr[i], "Irreducible Matrix

Representations:", iRR[i]];

> od;

gap> D;

Here is the list of all non-abelian group of order 12 along with their conjugacy

classes and irreducible characters and matrix representations:
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[ [ "the", 1, "-th group in the list is", C3 : C4,

"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ..., f2 ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G, f2*f3^G

],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f1*f2,

f2*f3 ],

"Order of representatives:", [ 1, 4, 2, 3, 4, 6 ],

"Character Table:"

[ Character( CharacterTable( C3 : C4 ), [ 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( C3 : C4 ), [ 1, -1, 1, 1, -1, 1 ] ),

Character( CharacterTable( C3 : C4 ), [ 1, -E(4), -1, 1, E(4), -1 ] ),

Character( CharacterTable( C3 : C4 ), [ 1, E(4), -1, 1, -E(4), -1 ] ),

Character( CharacterTable( C3 : C4 ), [ 2, 0, -2, -1, 0, 1 ] ),

Character( CharacterTable( C3 : C4 ), [ 2, 0, 2, -1, 0, -1 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], [ f1, f2, f3 ] ->

[ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ], [

[ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [

E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 2, "-th group in the list is", A4,
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"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ... ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f1^2^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f1^2 ],

"Order of representatives:", [ 1, 3, 2, 3 ],

"Character Table:"

[ Character( CharacterTable( A4 ), [ 1, 1, 1, 1 ] ),

Character( CharacterTable( A4 ), [ 1, E(3)^2, 1, E(3) ] ),

Character( CharacterTable( A4 ), [ 1, E(3), 1, E(3)^2 ] ),

Character( CharacterTable( A4 ), [ 3, 0, -1, 0 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ], [ [ -1, 0,

0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ], [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0,

0, 1 ] ] ] ] ],

[ "the", 3, "-th group in the list is", D12,

"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ..., f2 ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G,

f2*f3^G ],
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"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3,

f1*f2, f2*f3 ],

"Order of representatives:", [ 1, 2, 2, 3, 2, 6 ],

"Character Table:"

[ Character( CharacterTable( D12 ), [ 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( D12 ), [ 1, -1, -1, 1, 1, -1 ] ),

Character( CharacterTable( D12 ), [ 1, -1, 1, 1, -1, 1 ] ),

Character( CharacterTable( D12 ), [ 1, 1, -1, 1, -1, -1 ] ),

Character( CharacterTable( D12 ), [ 2, 0, -2, -1, 0, 1 ] ),

Character( CharacterTable( D12 ), [ 2, 0, 2, -1, 0, -1 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], [ f1, f2, f3 ] ->

[ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [

E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [

E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ] ]

gap>

gap>

A.2 Representation theory of non-abelian groups of order 18

gap>

gap> l := AllSmallGroups(18);;

gap> Ds := List(l,StructureDescription);;
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gap> A:=Filtered(l, x->IsAbelian(x)=false);;

gap>

gap> Cl := List( A, ConjugacyClasses);;

gap> RCl:=List(Cl, y->List(y, x->Representative(x)));;

gap> OCl := List( RCl, y-> List(y, x->Order(x)));;

gap> irr := List( A, Irr);;

gap> iRR:=List(irr, x->List(x, y->IrreducibleAffordingRepresentation(y)));;

gap> D:=[1..Length(A)];;

gap> for i in [1..Length(A)] do

> D[i]:=["the", i, "-th group in the list is", A[i],"A generating set of the

group:", GeneratorsOfGroup(A[i]), "Center of the group:", List(Center(A[i])),

"Conjugacy classes:", Cl[i], "Representatives of the classes are:", RCl[i],

"Order of representatives:", OCl[i], irr[i], "Irreducible Matrix

Representations:", iRR[i]];

> od;

gap>

gap> D;

Here is the list of all non-abelian group of order 18 along with their conjugacy

classes and irreducible characters and matrix representations:

[ [ "the", 1, "-th group in the list is", D18,

"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ... ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f2^2^G, f2*f3^G

],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f2^2,

f2*f3 ],

"Order of representatives:", [ 1, 2, 9, 3, 9, 9 ],
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"Character Table:"

[ Character( CharacterTable( D18 ), [ 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( D18 ), [ 1, -1, 1, 1, 1, 1 ] ),

Character( CharacterTable( D18 ), [ 2, 0, -1, 2, -1, -1 ] ),

Character( CharacterTable( D18 ), [ 2, 0, E(9)^2+E(9)^7, -1,

E(9)^4+E(9)^5, -E(9)^2-E(9)^4-E(9)^5-E(9)^7 ] ),

Character( CharacterTable( D18 ), [ 2, 0, E(9)^4+E(9)^5, -1,

-E(9)^2-E(9)^4-E(9)^5-E(9)^7, E(9)^2+E(9)^7 ] ),

Character( CharacterTable( D18 ), [ 2, 0, -E(9)^2-E(9)^4-E(9)^5-E(9)^7,

-1, E(9)^2+E(9)^7, E(9)^4+E(9)^5 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], [ f1, f2, f3 ]

-> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ]

], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(9)^7, 0 ], [ 0, E(9)^2

] ], [ [ E(3), 0 ], [ 0, E(3)^2 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(9)^5, 0 ], [ 0, E(9)^4

] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -E(9)^2-E(9)^5, 0 ], [ 0,

-E(9)^4-E(9)^7 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 2, "-th group in the list is", C3 x S3,

"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ..., f2, f2^2 ],
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"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G,

f2^2^G, f2*f3^G, f1*f2^2^G, f2^2*f3^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3,

f1*f2, f2^2, f2*f3, f1*f2^2, f2^2*f3 ],

"Order of representatives:", [ 1, 2, 3, 3, 6, 3, 3, 6, 3 ],

"Character Table:"

[ Character( CharacterTable( C3 x S3 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( C3 x S3 ), [ 1, -1, 1, 1, -1, 1, 1, -1, 1 ] ),

Character( CharacterTable( C3 x S3 ), [ 1, -1, E(3)^2, 1, -E(3)^2, E(3),

E(3)^2, -E(3), E(3) ] ),

Character( CharacterTable( C3 x S3 ), [ 1, -1, E(3), 1, -E(3), E(3)^2,

E(3), -E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x S3 ), [ 1, 1, E(3)^2, 1, E(3)^2, E(3),

E(3)^2, E(3), E(3) ] ),

Character( CharacterTable( C3 x S3 ), [ 1, 1, E(3), 1, E(3), E(3)^2,

E(3), E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x S3 ), [ 2, 0, 2, -1, 0, 2, -1, 0, -1 ] ),

Character( CharacterTable( C3 x S3 ), [ 2, 0, 2*E(3), -1, 0, 2*E(3)^2,

-E(3), 0, -E(3)^2 ] ),

Character( CharacterTable( C3 x S3 ), [ 2, 0, 2*E(3)^2, -1, 0, 2*E(3),

-E(3)^2, 0, -E(3) ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], [ f1, f2, f3 ] ->

[ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [

E(3)^2, 0 ], [ 0, E(3) ] ] ],
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[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3), 0 ], [ 0, E(3) ] ],

[ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3)^2, 0 ], [ 0, E(3)^2

] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 3, "-th group in the list is", (C3 x C3) : C2,

"A generating set of the group:", [ f1, f2, f3 ],

"Center of the group:", [ <identity> of ... ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f2*f3^G,

f2^2*f3^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3,

f2*f3, f2^2*f3 ],

"Order of representatives:", [ 1, 2, 3, 3, 3, 3 ],

" Character Table:"

[ Character( CharacterTable( (C3 x C3) : C2 ), [ 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( (C3 x C3) : C2 ), [ 1, -1, 1, 1, 1, 1 ] ),

Character( CharacterTable( (C3 x C3) : C2 ), [ 2, 0, 2, -1, -1, -1 ] ),

Character( CharacterTable( (C3 x C3) : C2 ), [ 2, 0, -1, 2, -1, -1 ] ),

Character( CharacterTable( (C3 x C3) : C2 ), [ 2, 0, -1, -1, -1, 2 ] ),

Character( CharacterTable( (C3 x C3) : C2 ), [ 2, 0, -1, -1, 2, -1 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], [ f1, f2, f3 ] ->

[ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [

E(3)^2, 0 ], [ 0, E(3) ] ] ],
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[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ]

], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ]

], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3), 0 ], [ 0, E(3)^2 ]

], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ] ]

gap>

gap>

gap>

A.3 Representation theory of non-abelian groups of order 24

gap> l := AllSmallGroups(24);;

Ds := List(l,StructureDescription);;

A:=Filtered(l, x->IsAbelian(x)=false);;

Cl := List( A, ConjugacyClasses);;

RCl:=List(Cl, y->List(y, x->Representative(x)));;

OCl := List( RCl, y-> List(y, x->Order(x)));;

irr := List( A, Irr);;

iRR:=List(irr, x->List(x, y->IrreducibleAffordingRepresentation(y)));;gap> Ds :=

List(l,StructureDescription);;

gap> A:=Filtered(l, x->IsAbelian(x)=false);;

gap>

gap> Cl := List( A, ConjugacyClasses);;

gap> RCl:=List(Cl, y->List(y, x->Representative(x)));;

gap> OCl := List( RCl, y-> List(y, x->Order(x)));;

gap> irr := List( A, Irr);;

gap> iRR:=List(irr, x->List(x, y->IrreducibleAffordingRepresentation(y)));;

#I Need to extend a representation of degree 2. This may take a while.
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#I Need to extend a representation of degree 2. This may take a while.

#I Need to extend a representation of degree 2. This may take a while.

gap> D:=[1..12];;

gap> for i in [1..12] do

> D[i]:=["the", i, "-th group in the list is", A[i],"A generating set of the

group:", GeneratorsOfGroup(A[i]), "Center of the group:", List(Center(A[i])),

"Conjugacy classes:", Cl[i], "Representatives of the classes are:", RCl[i],

"Order of representatives:", OCl[i], irr[i], "Irreducible Matrix

Representations:", iRR[i]];

> od;

gap> D;

Here is the list of all non-abelian group of order 24 along with their conjugacy

classes and irreducible characters and matrix representations:

[ [ "the", 1, "-th group in the list is", C3 : C8,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3, f2, f2*f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f2*f4^G, f3*f4^G, f1*f2*f3^G, f2*f3*f4^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f4,

f1*f2, f1*f3, f2*f3, f2*f4, f3*f4, f1*f2*f3, f2*f3*f4 ],

"Order of representatives:", [ 1, 8, 4, 2, 3, 8, 8, 4, 12, 6, 8, 12 ],
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[ Character( CharacterTable( C3 : C8 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1 ] ),

Character( CharacterTable( C3 : C8 ), [ 1, -1, 1, 1, 1, -1, -1, 1, 1, 1,

-1, 1 ] ),

Character( CharacterTable( C3 : C8 ), [ 1, -E(4), -1, 1, 1, E(4), -E(4),

-1, -1, 1, E(4), -1 ] ),

Character( CharacterTable( C3 : C8 ), [ 1, E(4), -1, 1, 1, -E(4), E(4),

-1, -1, 1, -E(4), -1 ] ),

Character( CharacterTable( C3 : C8 ), [ 1, -E(8), E(4), -1, 1, -E(8)^3,

E(8), -E(4), E(4), -1, E(8)^3, -E(4) ] ),

Character( CharacterTable( C3 : C8 ), [ 1, -E(8)^3, -E(4), -1, 1, -E(8),

E(8)^3, E(4), -E(4), -1, E(8), E(4) ] ),

Character( CharacterTable( C3 : C8 ), [ 1, E(8)^3, -E(4), -1, 1, E(8),

-E(8)^3, E(4), -E(4), -1, -E(8), E(4) ] ),

Character( CharacterTable( C3 : C8 ), [ 1, E(8), E(4), -1, 1, E(8)^3,

-E(8), -E(4), E(4), -1, -E(8)^3, -E(4) ] ),

Character( CharacterTable( C3 : C8 ), [ 2, 0, -2, 2, -1, 0, 0, -2, 1, -1,

0, 1 ] ),

Character( CharacterTable( C3 : C8 ), [ 2, 0, 2, 2, -1, 0, 0, 2, -1, -1,

0, -1 ] ),

Character( CharacterTable( C3 : C8 ), [ 2, 0, -2*E(4), -2, -1, 0, 0,

2*E(4), E(4), 1, 0, -E(4) ] ),

Character( CharacterTable( C3 : C8 ), [ 2, 0, 2*E(4), -2, -1, 0, 0,

-2*E(4), -E(4), 1, 0, E(4) ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -E(8) ] ], [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ]

] ],

[ f1, f2, f3, f4 ] -> [ [ [ -E(8)^3 ] ], [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1

] ] ],
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[ f1, f2, f3, f4 ] -> [ [ [ E(8)^3 ] ], [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1

] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ E(8) ] ], [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ]

], [ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -E(4), 0 ] ], [ [ -E(4), 0 ], [ 0,

-E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ E(4), 0 ] ], [ [ E(4), 0 ], [ 0,

E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ]

] ],

[ "the", 2, "-th group in the list is", SL(2,3),

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f4 ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f4^G, f1^2^G,

f1*f4^G, f1^2*f2^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f4, f1^2,

f1*f4, f1^2*f2 ],

"Order of representatives:", [ 1, 3, 4, 2, 3, 6, 6 ],

"Character Table:"

[ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( SL(2,3) ), [ 1, E(3)^2, 1, 1, E(3), E(3)^2,

E(3) ] ),
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Character( CharacterTable( SL(2,3) ), [ 1, E(3), 1, 1, E(3)^2, E(3),

E(3)^2 ] ),

Character( CharacterTable( SL(2,3) ), [ 2, -1, 0, -2, -1, 1, 1 ] ),

Character( CharacterTable( SL(2,3) ), [ 2, -E(3), 0, -2, -E(3)^2, E(3),

E(3)^2 ] ),

Character( CharacterTable( SL(2,3) ), [ 2, -E(3)^2, 0, -2, -E(3), E(3)^2,

E(3) ] ),

Character( CharacterTable( SL(2,3) ), [ 3, 0, -1, 3, 0, 0, 0 ] ) ],

"Irreducible Matrix Representations:"

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f2, f3, f4, f1*f2*f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [

0, E(4) ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [

1/2+1/2*E(4), 1/2+1/2*E(4) ], [

-1/2+1/2*E(4), 1/2-1/2*E(4) ] ]

],

[ f2, f3, f4, f1^2*f3*f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ],

[ 0, E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ -1/2*E(12)^8-1/2*E(12)^11,

-1/2*E(12)^8+1/2*E(12)^11 ],

[ 1/2*E(12)^8+1/2*E(12)^11,

-1/2*E(12)^8+1/2*E(12)^11 ]

] ],

[ f2, f3, f4, f1^2*f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [

0, E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1/2*E(12)^4-1/2*E(12)^7,

1/2*E(12)^4+1/2*E(12)^7 ],

[ -1/2*E(12)^4+1/2*E(12)^7,

1/2*E(12)^4+1/2*E(12)^7 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ], [ [

-1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],
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[ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ] ],

[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]

] ] ],

[ "the", 3, "-th group in the list is", C3 : Q8,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f2*f4^G, f3*f4^G,

f2*f3*f4^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f4,

f1*f2, f2*f4, f3*f4, f2*f3*f4 ],

"Order of representatives:", [ 1, 4, 4, 2, 3, 4, 12, 6, 12 ],

"Character Table:"

[ Character( CharacterTable( C3 : Q8 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 1, -1, -1, 1, 1, 1, -1, 1, -1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 1, -1, 1, 1, 1, -1, 1, 1, 1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 1, 1, -1, 1, 1, -1, -1, 1, -1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 2, 0, 0, -2, 2, 0, 0, -2, 0 ] ),

Character( CharacterTable( C3 : Q8 ), [ 2, 0, -2, 2, -1, 0, 1, -1, 1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 2, 0, 2, 2, -1, 0, -1, -1, -1 ] ),

Character( CharacterTable( C3 : Q8 ), [ 2, 0, 0, -2, -1, 0,

-E(12)^7+E(12)^11, 1, E(12)^7-E(12)^11 ] ),

Character( CharacterTable( C3 : Q8 ), [ 2, 0, 0, -2, -1, 0,

E(12)^7-E(12)^11, 1, -E(12)^7+E(12)^11 ] ) ],

"Irreducible Matrix Representations:",
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[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [ 0,

E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ E(4), 0 ], [ 0,

-E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [ 0,

E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ]

] ],

[ "the", 4, "-th group in the list is", C4 x S3,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3, f2, f2*f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f2*f4^G, f3*f4^G, f1*f2*f3^G, f2*f3*f4^G ],

"Representatives of the classes are:",

[ <identity> of ..., f1, f2, f3, f4, f1*f2, f1*f3, f2*f3, f2*f4, f3*f4,

f1*f2*f3, f2*f3*f4 ],

"Order of representatives:", [ 1, 2, 4, 2, 3, 4, 2, 4, 12, 6, 4, 12 ],

"Character Table:"

[ Character( CharacterTable( C4 x S3 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1 ] ),
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Character( CharacterTable( C4 x S3 ), [ 1, -1, -1, 1, 1, 1, -1, -1, -1,

1, 1, -1 ] ),

Character( CharacterTable( C4 x S3 ), [ 1, -1, 1, 1, 1, -1, -1, 1, 1, 1,

-1, 1 ] ),

Character( CharacterTable( C4 x S3 ), [ 1, 1, -1, 1, 1, -1, 1, -1, -1, 1,

-1, -1 ] ),

Character( CharacterTable( C4 x S3 ), [ 1, -1, -E(4), -1, 1, E(4), 1,

E(4), -E(4), -1, -E(4), E(4) ] ),

Character( CharacterTable( C4 x S3 ), [ 1, -1, E(4), -1, 1, -E(4), 1,

-E(4), E(4), -1, E(4), -E(4) ] ),

Character( CharacterTable( C4 x S3 ), [ 1, 1, -E(4), -1, 1, -E(4), -1,

E(4), -E(4), -1, E(4), E(4) ] ),

Character( CharacterTable( C4 x S3 ), [ 1, 1, E(4), -1, 1, E(4), -1,

-E(4), E(4), -1, -E(4), -E(4) ] ),

Character( CharacterTable( C4 x S3 ), [ 2, 0, -2, 2, -1, 0, 0, -2, 1, -1,

0, 1 ] ),

Character( CharacterTable( C4 x S3 ), [ 2, 0, 2, 2, -1, 0, 0, 2, -1, -1,

0, -1 ] ),

Character( CharacterTable( C4 x S3 ), [ 2, 0, -2*E(4), -2, -1, 0, 0,

2*E(4), E(4), 1, 0, -E(4) ] ),

Character( CharacterTable( C4 x S3 ), [ 2, 0, 2*E(4), -2, -1, 0, 0,

-2*E(4), -E(4), 1, 0, E(4) ] ) ],

"Irreducible Matrix Representations:"

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],
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[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -E(4), 0 ], [ 0,

-E(4) ] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(4), 0 ], [ 0, E(4)

] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 5, "-th group in the list is", D24,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f2*f4^G, f3*f4^G,

f2*f3*f4^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f4,

f1*f2, f2*f4, f3*f4, f2*f3*f4 ],

"Order of representatives:", [ 1, 2, 4, 2, 3, 2, 12, 6, 12 ],

"Character Table:"

[ Character( CharacterTable( D24 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( D24 ), [ 1, -1, -1, 1, 1, 1, -1, 1, -1 ] ),

Character( CharacterTable( D24 ), [ 1, -1, 1, 1, 1, -1, 1, 1, 1 ] ),

Character( CharacterTable( D24 ), [ 1, 1, -1, 1, 1, -1, -1, 1, -1 ] ),

Character( CharacterTable( D24 ), [ 2, 0, 0, -2, 2, 0, 0, -2, 0 ] ),

Character( CharacterTable( D24 ), [ 2, 0, -2, 2, -1, 0, 1, -1, 1 ] ),

Character( CharacterTable( D24 ), [ 2, 0, 2, 2, -1, 0, -1, -1, -1 ] ),

Character( CharacterTable( D24 ), [ 2, 0, 0, -2, -1, 0,

-E(12)^7+E(12)^11, 1, E(12)^7-E(12)^11 ] ),

Character( CharacterTable( D24 ), [ 2, 0, 0, -2, -1, 0, E(12)^7-E(12)^11,

1, -E(12)^7+E(12)^11 ] ) ],
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"Irreducible Matrix Representations:"

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -E(4), 0 ], [ 0, E(4)

] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(4), 0 ], [ 0, -E(4)

] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -E(4), 0 ], [ 0, E(4)

] ], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 6, "-th group in the list is", C2 x (C3 : C4),

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3, f2, f2*f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f2*f4^G, f3*f4^G, f1*f2*f3^G, f2*f3*f4^G ],

"Representatives of the classes are:",

[ <identity> of ..., f1, f2, f3, f4, f1*f2, f1*f3, f2*f3, f2*f4, f3*f4,

f1*f2*f3, f2*f3*f4 ],

"Order of representatives:", [ 1, 4, 2, 2, 3, 4, 4, 2, 6, 6, 4, 6 ],

"Character Table:"

[ Character( CharacterTable( C2 x (C3 : C4) ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1 ] ),
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Character( CharacterTable( C2 x (C3 : C4) ), [ 1, -1, -1, 1, 1, 1, -1,

-1, -1, 1, 1, -1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, -1, 1, 1, 1, -1, -1, 1,

1, 1, -1, 1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, 1, -1, 1, 1, -1, 1, -1,

-1, 1, -1, -1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, -E(4), -1, -1, 1, E(4),

E(4), 1, -1, -1, -E(4), 1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, E(4), -1, -1, 1, -E(4),

-E(4), 1, -1, -1, E(4), 1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, -E(4), 1, -1, 1, -E(4),

E(4), -1, 1, -1, E(4), -1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 1, E(4), 1, -1, 1, E(4),

-E(4), -1, 1, -1, -E(4), -1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 2, 0, -2, -2, -1, 0, 0, 2,

1, 1, 0, -1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 2, 0, -2, 2, -1, 0, 0, -2,

1, -1, 0, 1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 2, 0, 2, -2, -1, 0, 0, -2,

-1, 1, 0, 1 ] ),

Character( CharacterTable( C2 x (C3 : C4) ), [ 2, 0, 2, 2, -1, 0, 0, 2,

-1, -1, 0, -1 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -E(4) ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ E(4) ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -E(4) ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ E(4) ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ]

], [ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],
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[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 7, "-th group in the list is", (C6 x C2) : C2,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f2*f4^G, f3*f4^G,

f2*f3*f4^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f4,

f1*f2, f2*f4, f3*f4, f2*f3*f4 ],

"Order of representatives:", [ 1, 2, 2, 2, 3, 4, 6, 6, 6 ],

"Character Table:"

[ Character( CharacterTable( (C6 x C2) : C2 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1

] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 1, -1, -1, 1, 1, 1, -1, 1,

-1 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 1, -1, 1, 1, 1, -1, 1, 1,

1 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 1, 1, -1, 1, 1, -1, -1, 1,

-1 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 2, 0, -2, 2, -1, 0, 1, -1,

1 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 2, 0, 2, 2, -1, 0, -1, -1,

-1 ] ),
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Character( CharacterTable( (C6 x C2) : C2 ), [ 2, 0, 0, -2, 2, 0, 0, -2,

0 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 2, 0, 0, -2, -1, 0,

-E(3)+E(3)^2, 1, E(3)-E(3)^2 ] ),

Character( CharacterTable( (C6 x C2) : C2 ), [ 2, 0, 0, -2, -1, 0,

E(3)-E(3)^2, 1, -E(3)+E(3)^2 ] ) ],

"Irreducible Matrix Representations:"

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, 1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, -1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, 1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ],

[ "the", 8, "-th group in the list is", C3 x D8,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f4, f3, f3*f4, f3^2, f3^2*f4 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f3^2^G, f3*f4^G, f1*f2*f3^G, f1*f3^2^G,

f2*f3^2^G, f3^2*f4^G, f1*f2*f3^2^G ],
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"Representatives of the classes are:",

[ <identity> of ..., f1, f2, f3, f4, f1*f2, f1*f3, f2*f3, f3^2, f3*f4,

f1*f2*f3, f1*f3^2, f2*f3^2, f3^2*f4, f1*f2*f3^2 ],

"Order of representatives:", [ 1, 2, 2, 3, 2, 4, 6, 6, 3, 6, 12, 6, 6, 6, 12 ],

"CharacterTable:"

[ Character( CharacterTable( C3 x D8 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, -1, 1, 1, 1, -1, -1, 1, 1,

1, -1, -1, 1, 1 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, 1, 1, 1, -1, -1, 1, 1, 1,

-1, -1, 1, 1, -1 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, 1, -1, 1, 1, -1, 1, -1, 1, 1,

-1, 1, -1, 1, -1 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, -1, E(3)^2, 1, 1, -E(3)^2,

-E(3)^2, E(3), E(3)^2, E(3)^2, -E(3), -E(3), E(3), E(3) ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, -1, E(3), 1, 1, -E(3),

-E(3), E(3)^2, E(3), E(3), -E(3)^2, -E(3)^2, E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, 1, E(3)^2, 1, -1, -E(3)^2,

E(3)^2, E(3), E(3)^2, -E(3)^2, -E(3), E(3), E(3), -E(3) ] ),

Character( CharacterTable( C3 x D8 ), [ 1, -1, 1, E(3), 1, -1, -E(3),

E(3), E(3)^2, E(3), -E(3), -E(3)^2, E(3)^2, E(3)^2, -E(3)^2 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, 1, -1, E(3)^2, 1, -1, E(3)^2,

-E(3)^2, E(3), E(3)^2, -E(3)^2, E(3), -E(3), E(3), -E(3) ] ),

Character( CharacterTable( C3 x D8 ), [ 1, 1, -1, E(3), 1, -1, E(3),

-E(3), E(3)^2, E(3), -E(3), E(3)^2, -E(3)^2, E(3)^2, -E(3)^2 ] ),

Character( CharacterTable( C3 x D8 ), [ 1, 1, 1, E(3)^2, 1, 1, E(3)^2,

E(3)^2, E(3), E(3)^2, E(3)^2, E(3), E(3), E(3), E(3) ] ),

Character( CharacterTable( C3 x D8 ), [ 1, 1, 1, E(3), 1, 1, E(3), E(3),

E(3)^2,E(3), E(3), E(3)^2, E(3)^2, E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x D8 ), [ 2, 0, 0, 2, -2, 0, 0, 0, 2, -2,

0, 0, 0, -2, 0 ] ),

Character( CharacterTable( C3 x D8 ), [ 2, 0, 0, 2*E(3)^2, -2, 0, 0, 0,

2*E(3), -2*E(3)^2, 0, 0, 0, -2*E(3), 0 ] ),
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Character( CharacterTable( C3 x D8 ), [ 2, 0, 0, 2*E(3), -2, 0, 0, 0,

2*E(3)^2, -2*E(3), 0, 0, 0, -2*E(3)^2, 0 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, 1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ] ], [ f1, f2, f3, f4

] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0

], [ 0, 1 ] ],

[ [ E(3)^2, 0 ], [ 0, E(3)^2 ] ], [ [ -1, 0

], [ 0, -1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, 1 ] ],

[ [ E(3), 0 ], [ 0, E(3) ] ], [ [ -1, 0 ], [ 0, -1 ] ] ] ] ],

[ "the", 9, "-th group in the list is", C3 x Q8,

"A generating set of the group:", [ f1, f2, f3, f4 ],
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"Center of the group:", [ <identity> of ..., f4, f3, f3*f4, f3^2, f3^2*f4 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f3^2^G, f3*f4^G, f1*f2*f3^G,

f1*f3^2^G, f2*f3^2^G, f3^2*f4^G, f1*f2*f3^2^G ],

"Representatives of the classes are:",

[ <identity> of ..., f1, f2, f3, f4, f1*f2, f1*f3, f2*f3, f3^2, f3*f4,

f1*f2*f3, f1*f3^2, f2*f3^2, f3^2*f4, f1*f2*f3^2 ],

"Order of representatives:", [ 1, 4, 4, 3, 2, 4, 12, 12, 3, 6, 12, 12, 12, 6,

12 ],

"Character Table:"

[ Character( CharacterTable( C3 x Q8 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, -1, 1, 1, 1, -1, -1, 1, 1,

1, -1, -1, 1, 1 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, 1, 1, 1, -1, -1, 1, 1, 1,

-1, -1, 1, 1, -1 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, 1, -1, 1, 1, -1, 1, -1, 1, 1,

-1, 1, -1, 1, -1 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, -1, E(3)^2, 1, 1, -E(3)^2,

-E(3)^2, E(3), E(3)^2, E(3)^2, -E(3), -E(3), E(3), E(3) ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, -1, E(3), 1, 1, -E(3),

-E(3), E(3)^2, E(3), E(3), -E(3)^2, -E(3)^2, E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, 1, E(3)^2, 1, -1, -E(3)^2,

E(3)^2, E(3), E(3)^2, -E(3)^2, -E(3), E(3), E(3), -E(3) ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, -1, 1, E(3), 1, -1, -E(3),

E(3), E(3)^2, E(3), -E(3), -E(3)^2, E(3)^2, E(3)^2, -E(3)^2 ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, 1, -1, E(3)^2, 1, -1, E(3)^2,

-E(3)^2, E(3), E(3)^2, -E(3)^2, E(3), -E(3), E(3), -E(3) ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, 1, -1, E(3), 1, -1, E(3),

-E(3), E(3)^2, E(3), -E(3), E(3)^2, -E(3)^2, E(3)^2, -E(3)^2 ] ),
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Character( CharacterTable( C3 x Q8 ), [ 1, 1, 1, E(3)^2, 1, 1, E(3)^2,

E(3)^2, E(3), E(3)^2, E(3)^2, E(3), E(3), E(3), E(3) ] ),

Character( CharacterTable( C3 x Q8 ), [ 1, 1, 1, E(3), 1, 1, E(3), E(3),

E(3)^2, E(3), E(3), E(3)^2, E(3)^2, E(3)^2, E(3)^2 ] ),

Character( CharacterTable( C3 x Q8 ), [ 2, 0, 0, 2, -2, 0, 0, 0, 2, -2,

0, 0, 0, -2, 0 ] ),

Character( CharacterTable( C3 x Q8 ), [ 2, 0, 0, 2*E(3)^2, -2, 0, 0, 0,

2*E(3), -2*E(3)^2, 0, 0, 0, -2*E(3), 0 ] ),

Character( CharacterTable( C3 x Q8 ), [ 2, 0, 0, 2*E(3), -2, 0, 0, 0,

2*E(3)^2, -2*E(3), 0, 0, 0, -2*E(3)^2, 0 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [ 0,

E(4) ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [ -1, 0 ], [ 0, -1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [ 0,

E(4) ] ], [ [ E(3)^2, 0 ], [ 0, E(3)^2 ] ], [ [ -1, 0 ], [ 0, -1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ -1, 0 ] ], [ [ -E(4), 0 ], [ 0,

E(4) ] ], [ [ E(3), 0 ], [ 0, E(3) ] ], [ [ -1, 0 ], [ 0, -1 ] ] ] ]

],
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[ "the", 10, "-th group in the list is", S4,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ... ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f3^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3, f1*f3

],

"Order of representatives:", [ 1, 2, 3, 2, 4 ],

"Character Table:"

[ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] ),

Character( CharacterTable( S4 ), [ 2, 0, -1, 2, 0 ] ),

Character( CharacterTable( S4 ), [ 3, -1, 0, -1, 1 ] ),

Character( CharacterTable( S4 ), [ 3, 1, 0, -1, -1 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ E(3)^2, 0 ], [ 0,

E(3) ] ], [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1, 0, 0 ], [ 0, 0, -1 ], [ 0, -1, 0 ] ], [ [

0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ],
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[ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],

[ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ]

] ], [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0,

0, 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 0 ] ], [ [ 0,

1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ],

[ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],

[ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ]

] ] ] ],

[ "the", 11, "-th group in the list is", C2 x A4,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f1 ],

"Conjugacy classes:", [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G,

f1*f3^G, f2^2^G, f1*f2^2^G ],

"Representatives of the classes are:", [ <identity> of ..., f1, f2, f3,

f1*f2, f1*f3, f2^2, f1*f2^2 ],

"Order of representatives:", [ 1, 2, 3, 2, 6, 2, 3, 6 ],

"Character Table:"

[ Character( CharacterTable( C2 x A4 ), [ 1, 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( C2 x A4 ), [ 1, -1, 1, 1, -1, -1, 1, -1 ] ),

Character( CharacterTable( C2 x A4 ), [ 1, -1, E(3)^2, 1, -E(3)^2, -1,

E(3), -E(3) ] ),

Character( CharacterTable( C2 x A4 ), [ 1, -1, E(3), 1, -E(3), -1,

E(3)^2, -E(3)^2 ] ),

Character( CharacterTable( C2 x A4 ), [ 1, 1, E(3)^2, 1, E(3)^2, 1, E(3),

E(3) ] ),

Character( CharacterTable( C2 x A4 ), [ 1, 1, E(3), 1, E(3), 1, E(3)^2,

E(3)^2 ] ),
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Character( CharacterTable( C2 x A4 ), [ 3, -3, 0, -1, 0, 1, 0, 0 ] ),

Character( CharacterTable( C2 x A4 ),

[ 3, 3, 0, -1, 0, -1, 0, 0 ] ) ],

"Irreducible Matrix Representations:",

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ]

],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ], [ [

0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ],

[ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],

[ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ]

] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], [ [ 0,

1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ],

[ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],

[ [ -1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, 1 ]

] ] ] ],

[ "the", 12, "-th group in the list is", C2 x C2 x S3,

"A generating set of the group:", [ f1, f2, f3, f4 ],

"Center of the group:", [ <identity> of ..., f3, f2, f2*f3 ],

"Conjugacy classes:",

[ <identity> of ...^G, f1^G, f2^G, f3^G, f4^G, f1*f2^G, f1*f3^G, f2*f3^G,

f2*f4^G, f3*f4^G, f1*f2*f3^G, f2*f3*f4^G ],

"Representatives of the classes are:"

[ <identity> of ..., f1, f2, f3, f4, f1*f2, f1*f3, f2*f3, f2*f4, f3*f4,

f1*f2*f3, f2*f3*f4 ],
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"Order of representatives:", [ 1, 2, 2, 2, 3, 2, 2, 2, 6, 6, 2, 6 ],

"Character Table:"

[ Character( CharacterTable( C2 x C2 x S3 ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, -1, -1, -1, 1, 1, 1, 1,

-1, -1, -1, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, -1, -1, 1, 1, 1, -1, -1,

-1, 1, 1, -1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, -1, 1, -1, 1, -1, 1, -1,

1, -1, 1, -1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, -1, 1, 1, 1, -1, -1, 1,

1, 1, -1, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, 1, -1, -1, 1, -1, -1, 1,

-1, -1, 1, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, 1, -1, 1, 1, -1, 1, -1,

-1, 1, -1, -1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 1, 1, 1, -1, 1, 1, -1, -1,

1, -1, -1, -1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 2, 0, -2, -2, -1, 0, 0, 2,

1, 1, 0, -1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 2, 0, -2, 2, -1, 0, 0, -2,

1, -1, 0, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 2, 0, 2, -2, -1, 0, 0, -2,

-1, 1, 0, 1 ] ),

Character( CharacterTable( C2 x C2 x S3 ), [ 2, 0, 2, 2, -1, 0, 0, 2, -1,

-1, 0, -1 ] ) ],

"Irreducible Matrix Representations:"

[ [ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ],
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[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ -1, 0 ], [ 0, -1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ],

[ f1, f2, f3, f4 ] -> [ [ [ 0, 1 ], [ 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ] ], [

[ 1, 0 ], [ 0, 1 ] ], [ [ E(3)^2, 0 ], [ 0, E(3) ] ] ] ] ] ]

gap>



Appendix B

Cayley graphs programming

B.1 Spectrum computation with GAP

In this section, we provide a program which compute the spectrum of Cayley graphs of finite

group with respect to a symmetric generating set.

GAP, Version 4.6.4 of 04-May-2013 (free software, GPL)

| GAP | http://www.gap-system.org

Architecture: i686-pc-cygwin-gcc-default32

Libs used: gmp, readline

Loading the library and packages ...

Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0

Packages: AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.0, AutPGrp 1.5, Browse 1.8.2,

CRISP 1.3.6, Cryst 4.1.11,

CrystCat 1.1.6, CTblLib 1.2.2, FactInt 1.5.3, FGA 1.2.0, GAPDoc 1.5.1,

IO 4.2, IRREDSOL 1.2.1,

LAGUNA 3.6.3, Polenta 1.3.1, Polycyclic 2.11, RadiRoot 2.6, ResClasses

3.3.0, Sophus 1.23, SpinSym 1.5,

TomLib 1.2.2

Try ’?help’ for help. See also ’?copyright’ and ’?authors’

gap>

gap>

gap>

133
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Following program will compute all the eigenvalue of the Cayley graph, Cay(G,S), over

|G|-th cyclotomic field. Here G is a finite group and S a symmetric generating set.

gap>

gap>

gap>

gap> setproduct:=function(S,n)

T:=List(Cartesian(T,> S),i->i[1]*i[2]);

local T,m;

> end;

T:=S; m:=1;

> if n=1 then T:=S; fi;

> while n>m do

> T:=List(Cartesian(T,S),i->i[1]*i[2]);

> m:=m+1;

> od;

> return T;

> end;

local d,X,l;

X:=Irr(G)[i];

function( S, n ) ... end

gap>

gap> l:= List([1..d],j->sumceigenn(Gl,setprodauct(S,j)s,i));

sfinder:=function(G,g)

> local c;

> c:=ConjugacyClasses(G);

> return First([1..Length(c)],i->g in c[i]);

> end;

function( G, g ) ... end

gap>

gap> sumeigen:=function(G,S,t)

> local l,irr;

> irr:=Irr(G);

> l:=List(setproduct(S,t),i->classfinder(G,i));

> return List(irr,X->[Sum(l,i->X[i]), "deg=", X[1]]);

> end;

function( G, S, t ) ... end
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gap>

gap> sumeigenn:=function(G,S,i)

> local l,X;

> X:=Irr(G)[i];

> l:=List(S,i->classfinder(G,i));

> return Sum(l,i->X[i]);

> end;

function( G, S, i ) ... end

gap>

gap> sumeigennn:=function(G,S,i)

> local d,X,l;

> X:=Irr(G)[i];

> d:=X[1];

> l:= List([1..d],j->sumeigenn(G,setproduct(S,j),i));

> return l;

> end;

function( G, S, i ) ... end

gap>

gap>

gap> newtonformulae:=function(L)

> local n,a,A,B,i;

> n:=Size(L); a:=-L[1]; A:=[a];

> for i in [2..n] do

> a:=-(1/i)*(Sum(List([1..i-1],j->L[j]*A[i-j]))+L[i]);

> Add(A,a);

> od;

> return A;

> end;

function( L ) ... end

gap>

gap>

gap> root:=function(G, L)

> local m,n,x,f,r;

> x:=Indeterminate(Rationals,"x");

> n:=Size(L);

> m:=Order(G);

> r:=Field(E(m));
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> f:=Sum(List([1..n],j->L[j]*x^(n-j)))+x^n;

> return RootsOfPolynomial(r, f);

> end;

function( G, L ) ... end

gap>

gap> eigenX:=function(G,S,i)

> local d,X,l;

> X:=Irr(G)[i];

> d:=X[1];

>

> l:=root(G, newtonformulae(sumeigennn(G,S,i)));

> return [l, d];

> end;

function( G, S, i ) ... end

gap>

gap> eigenCayley:=function(G,S)

> return List([1..Size(ConjugacyClasses(G))],i->eigenX(G,S,i));

> end;

function( G, S ) ... end

gap>

gap> listexpand:=function(L)

> local a,i,j;

> a:=[];

> for i in [1..Size(L[1])] do

> for j in [1..L[2]] do

> Add(a,L[1][i]);

> od;

> od;

> return a;

> end;

function( L ) ... end

gap>

gap> EigenCayley:=function(G,S)

> local e1,E1,a,B,i;

> E1:=[];

> e1:=eigenCayley(G,S);

> a:=List(e1,i->listexpand(i));
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> for i in [1..Size(a)] do

> Append(E1,a[i]);

> od;

> B:=Set(E1);

> return List(B,i-> [i, Size( Filtered(E1,j->j=i))] );

> end;

function( G, S ) ... end

gap>

gap>

gap> G:=DihedralGroup(12);

<pc group of size 12 with 3 generators>

gap> A:=GeneratorsOfGroup(G);

[ f1, f2, f3 ]

gap> List(A, x->Order(x));

[ 2, 6, 3 ]

gap> B:=[A[1],A[2], A[3], Inverse(A[2]), Inverse(A[3])];

[ f1, f2, f3, f2*f3^2, f3^2 ]

gap> EigenCayley(G,B);

[ [ -3, 2 ], [ -1, 5 ], [ 1, 3 ], [ 3, 1 ], [ 5, 1 ] ]

gap> G:=DihedralGroup(20);

EigenCayley(G,B);<pc group of size 20 with 3 generators>

gap> A:=GeneratorsOfGroup(G);

[ f1, f2, f3 ]

gap> List(A, x->Order(x));

[ 2, 10, 5 ]

gap> B:=[A[1],A[2], A[3], Inverse(A[2]), Inverse(A[3])];

[ f1, f2, f3, f2*f3^4, f3^4 ]

gap> EigenCayley(G,B);

[ [ -2, 4 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 3, 1 ], [ 5, 1 ], [

-2*E(5)-2*E(5)^4, 2 ], [ -2*E(5)^2-2*E(5)^3, 2 ],

[ 2*E(5)^2+2*E(5)^3, 2 ], [ 2*E(5)+2*E(5)^4, 2 ] ]

gap>

B.2 Cayley graph construction with GRAPE
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Following program will construct the Cayley graph, Cay(G,S), where G is a finite group

and S a symmetric generating set. We can compute the automorphism group of the graph

as well.

gap>

gap>

gap>

gap> # We Test the isomorphism of graphs with Grape package in GAP

gap> # There are many more interesting functions to compute other graph parameters

gap>

gap>

gap> RequirePackage("grape");

----------------------------------------------------------------------------------------------------------------------------------------------

Loading GRAPE 4.6.1 (GRaph Algorithms using PErmutation groups)

by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).

Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/

----------------------------------------------------------------------------------------------------------------------------------------------

true

gap> G:=DihedralGroup(20);

<pc group of size 20 with 3 generators>

gap> A:=GeneratorsOfGroup(G);

[ f1, f2, f3 ]

gap> List(A, x->Order(x));

[ 2, 10, 5 ]

gap> B:=[A[1],A[2], A[3], Inverse(A[2]), Inverse(A[3])];

[ f1, f2, f3, f2*f3^4, f3^4 ]

gap> gamma:=CayleyGraph(G,B);;

gap> Diameter(gamma);

4

gap> Girth(gamma);

3

gap> IsBipartite( gamma );

false

gap> IsDistanceRegular( gamma );

false

gap> IndependentSet( gamma ) ;

[ 1, 5, 7, 10, 12, 17 ]
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gap> autG:=AutGroupGraph( gamma );;

gap> StructureDescription(autG);

"C2 x C2 x D10"

gap> cl:=List( ConjugacyClasses(G), x->Representative(x));

[ <identity> of ..., f1, f2, f3, f1*f2, f2*f3, f3^2, f2*f3^2 ]

gap> Group([cl[2],cl[5]])=G;

true

gap> C:=[cl[2],cl[5],cl[5]^-1];

[ f1, f1*f2, f1*f2 ]

gap> List(C, x->Order(x));

[ 2, 2, 2 ]

gap> gamma1:=CayleyGraph(G,C);;

gap> IsIsomorphicGraph( gamma1, gamma );

false

gap>

B.3 (Z6 ×Z2)oZ2 admits no connected cubic integral Cayley

graph

Here we show that group (Z6 × Z2) o Z2 does not admit a connected cubic integral Cayley

graph.

gap> l := AllSmallGroups(24);; A:=Filtered(l, x->IsAbelian(x)=false);; B:=List(A,

StructureDescription);

[ "C3 : C8", "SL(2,3)", "C3 : Q8", "C4 x S3", "D24", "C2 x (C3 : C4)", "(C6 x C2)

: C2", "C3 x D8", "C3 x Q8", "S4",

"C2 x A4", "C2 x C2 x S3" ]

gap>

gap>

gap>

gap>

gap> A[7];

(C6 x C2) : C2

gap> List(A[7], Order);
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[ 1, 3, 3, 2, 6, 6, 2, 6, 6, 2, 6, 6, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4 ]

gap> a6:=Filtered(A[7], x->Order(x)=6);

[ f3*f4, f3*f4^2, f2*f4, f2*f4^2, f2*f3*f4, f2*f3*f4^2 ]

gap> a2:=Filtered(A[7], x->Order(x)=2);

[ f3, f2, f2*f3, f1, f1*f4, f1*f4^2, f1*f3, f1*f3*f4, f1*f3*f4^2 ]

gap> d:=[];

[ ]

gap> for x in a6 do

> for y in a2 do

> if Order(Group(x,y))=24 then

> Add(d, [x,x^-1,y]);

> fi;

> od;

> od;

gap> d;

[ [ f2*f4, f2*f4^2, f1 ], [ f2*f4, f2*f4^2, f1*f4 ], [ f2*f4, f2*f4^2, f1*f4^2 ],

[ f2*f4, f2*f4^2, f1*f3 ],

[ f2*f4, f2*f4^2, f1*f3*f4 ], [ f2*f4, f2*f4^2, f1*f3*f4^2 ], [ f2*f4^2, f2*f4,

f1 ], [ f2*f4^2, f2*f4, f1*f4 ],

[ f2*f4^2, f2*f4, f1*f4^2 ], [ f2*f4^2, f2*f4, f1*f3 ], [ f2*f4^2, f2*f4,

f1*f3*f4 ],

[ f2*f4^2, f2*f4, f1*f3*f4^2 ], [ f2*f3*f4, f2*f3*f4^2, f1 ], [ f2*f3*f4,

f2*f3*f4^2, f1*f4 ],

[ f2*f3*f4, f2*f3*f4^2, f1*f4^2 ], [ f2*f3*f4, f2*f3*f4^2, f1*f3 ], [ f2*f3*f4,

f2*f3*f4^2, f1*f3*f4 ],

[ f2*f3*f4, f2*f3*f4^2, f1*f3*f4^2 ], [ f2*f3*f4^2, f2*f3*f4, f1 ], [

f2*f3*f4^2, f2*f3*f4, f1*f4 ],

[ f2*f3*f4^2, f2*f3*f4, f1*f4^2 ], [ f2*f3*f4^2, f2*f3*f4, f1*f3 ], [

f2*f3*f4^2, f2*f3*f4, f1*f3*f4 ],

[ f2*f3*f4^2, f2*f3*f4, f1*f3*f4^2 ] ]

gap> s:=[];

[ ]

gap> for x in d do

> Add(s, EigenCayley(A[7],x));

> od;

gap> s;
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[ [ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ],[ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ],[

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],
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[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ],[ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ],

[ [ -3, 1 ], [ -2, 2 ], [ -1, 1 ], [ 0, 4 ], [ 1, 1 ], [ 2, 2 ], [ 3, 1 ], [

-E(8)+E(8)^3, 4 ], [ E(8)-E(8)^3, 4 ] ] ],

gap>
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