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Abstract
The severity of bovine respiratory infections has been linked to a variety of
factors, including environmental and nutritional changes, transportation, and social
reorganization of weaned calves. Fatal respiratory infections, however, usually occur
when a primary viral infection compromises host defences and enhances the severity
of a secondary bacterial infection. This viral–bacterial synergy can occur by a number
of different mechanisms and disease challenge models have been developed to analyse
host responses during these respiratory infections. A primary bovine herpesvirus-1
(BHV-1) respiratory infection followed by a secondary challenge with Mannheimia
haemolytica results in fatal bovine respiratory disease (BRD) and host responses to
these two pathogens have been studied extensively. We used this disease model to
demonstrate that stress significantly altered the viral–bacterial synergy resulting in
fatal BRD. Functional genomic analysis revealed that BHV-1 infection enhanced toll-
like receptors (TLR) expression and increased pro-inflammatory responses which
contribute to the severity of a Mannheimia haemolytica infection. TLRs play a critical
role in detecting bacterial infections and inducing pro-inflammatory responses. It is
difficult to understand, however, how stress-induced corticosteroids could enhance
this form of viral–bacterial synergy. Nuclear translocation of the glucocorticoid
receptor activates cell signalling pathways which inhibit both TLR signalling
and pro-inflammatory responses. The apparent conundrum between stress-induced
corticosteroids and enhanced BRD susceptibility is discussed in terms of present data
and previous investigations of stress and respiratory disease. Copyright  2005 John
Wiley & Sons, Ltd.
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Bovine respiratory disease (BRD)
complex and viral–bacterial synergy

Increased risk of fatal bacterial respiratory
infections following a primary viral infection has
been observed in a wide range of species. This
phenomenon is called viral–bacterial synergy and
was first observed following human influenza

epidemics, when a variety of secondary bacterial
respiratory infections were associated with increased
mortality [1,18,36]. Respiratory infections also
remain a major economic and clinical problem in
neonatal dairy calves, beef calves and other domes-
tic ruminants, such as sheep and goats. These natu-
ral infections provide excellent disease models for
investigating not only the interaction between viral
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and bacterial respiratory infections but also the role
of stress in determining the incidence and severity
of respiratory infections.

The aetiology and epidemiology of the BRD
complex have been extensively reviewed elsewhere
[4,9,20] and will only be discussed briefly. Fatal
bovine respiratory infections are frequently char-
acterized by a primary viral infection followed by
a secondary bacterial infection. Viral pathogens
implicated in this disease complex include bovine
parainfluenza-3 virus, bovine respiratory syncy-
tial virus, bovine viral diarrhea virus and bovine
herpesvirurus-1 (BHV-1), which appears to be of
primary importance. Bacterial pathogens impli-
cated in acute and chronic BRD include Pasteurella
multocida, Haemophilus somnus and Mycoplasma
spp. The major bacterial pathogen involved in acute
BRD appears to be Mannheimia haemolytica (M.
haemolytica), a normal commensal microorganism
present in the bovine upper respiratory tract. Thus,
the concept has emerged that specific mechanisms
must exist by which a primary BHV-1 infection
can enhance bacterial colonization and virulence
during a respiratory infection.

A variety of mechanisms have been proposed by
which primary viral infections enhance bacterial
colonization and invasion of the respiratory tract
and alter host responses to bacterial infection. An
experimental model of BRD, which consists of
a primary BHV-1 respiratory challenge followed
4 days later by an aerosol challenge with
M. haemolytica, has been used to consistently
reproduce the clinical and pathological symptoms
associated with fatal BRD infections. This model
has been used extensively to identify the potential
mechanisms underlying the viral–bacterial synergy
that results in fatal BRD [4,32,33]. A variety of
potential immune modulatory mechanisms have
been identified that may play an important role
in the viral–bacterial synergy observed following
a primary BHV-1 infection. These mechanisms
include altered alveolar macrophage function,
altered polymorphonuclear cell function, decreased
NK-cell activity and increased production of pro-
inflammatory cytokines.

The increased production of pro-inflammatory
cytokines that occurs during a primary BHV-1 is
of particular interest in view of the pathology asso-
ciated with an acute M. haemolytica respiratory
infection [2]. Within hours of bacterial colonization
of the lung there is a necrotizing inflammatory

response that is characterized by the increased pro-
duction of pro-inflammatory cytokines, such as IL-
1, IL-8, and TNFα [31,42], and increased polymor-
phonuclear leukocyte recruitment to the lung [37].
The bacterial components that contribute to the
activation of these inflammatory responses include
capsule polysaccharide, lipopolysacchide (LPS),
and leukotoxin [8,40]. It is now known that many
of these bacterial components can directly stimu-
late pro-inflammatory responses in a wide variety
of cells through interactions with toll-like recep-
tors (TLRs) [5]. Thus, understanding the regula-
tion of TLR signalling is critical for understanding
the pathogenesis of bacterial diseases, such as M.
haemolytica infection, which are characterized by
the induction of profound inflammatory responses
that cause destruction of lung tissue and sepsis.

Role of stress in bovine respiratory
disease

A link between stress and respiratory infections
has been suggested by numerous studies in humans
and animals. Epidemiological studies have linked a
variety of psychological stressors with an increased
incidence and severity of respiratory infections in
humans [7,12,22]. A direct link between stress
and increased severity of respiratory infections was
suggested by increased levels of IL-6 in nasal
secretions following influenza B challenge of indi-
viduals assessed with higher psychological stress
[13]. Unfortunately, this study had no independent
measurement, such as serum or salivary corticos-
teroid levels, to determine whether the perception
of psychological stress correlated with a physiolog-
ical effect.

Studies in mice have revealed a more complex
interaction between psychological stress and res-
piratory infections. For example, restraint prior to
or following intranasal challenge with influenza
A virus resulted in reduced cellular infiltration in
lungs and draining lymph nodes and reduced pro-
duction of both Th1-type and Th2-type cytokines
[24,34]. A glucocorticoid receptor antagonist was
used in subsequent studies to confirm that the
effects of stress on cell trafficking and cytokine pro-
duction were mediated by elevated corticosterone
[17]. Thus, in this experimental model the induc-
tion of elevated glucocorticoids by a psychological
stressor was associated with a reduction in lung
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pathology and increased survival following a res-
piratory viral infection. In contrast, social reorgani-
zation was observed to increase both cellular infil-
tration in the lung and mortality following influenza
challenge of mice, and this increased mortality was
associated with a state of glucocorticoid insensi-
tivity [35]. Thus, it was suggested that increased
production of nerve growth factor (NGF) may have
contributed to the development of steroid insen-
sitivity. These studies demonstrated that different
types of psychological stressors have markedly dif-
ferent effects on host responses to viral respiratory
infections but did not investigate the interaction
between stress and viral–bacterial synergy in res-
piratory disease.

The stressors associated with increased risk of
BRD in weaned beef calves include restraint, social
reorganization, transport, and nutritional changes
[14]. There is contradictory evidence that the social
reorganization associated with weaning (abrupt
removal of calves from their dam) induces a
stress response with elevated serum corticosteroids
[15,28]. In contrast, short-term restraint of calves
induces a rapid but transient increase in serum cor-
ticosteroids and transport for 3–4 h results in a
48–72 h increase in plasma corticosteroids, and
transport has also been associated with increased
mortality in young calves [38]. Thus, transporta-
tion has been a major focus of studies investigat-
ing the potential effect of stress on either immune
function or respiratory disease in calves. Elevated
serum corticosteroid levels immediately following
transport have been associated with transient alter-
ations in blood leukocyte function [6,19] as well as
altered composition and function of bronchoalveo-
lar lavage cells [26]. It has been more difficult,
however, to demonstrate that transport and social
reorganization have a significant impact on either
morbidity or mortality due to BRD following a
primary BHV-1 infection [19]. Furthermore, cor-
ticosteroid therapy, a potent suppressor of inflam-
matory responses, can be beneficial in the treatment
of experimental M. haemolytica infection [29,39].
It should be noted, however, that corticosteroid
therapy was effective in the absence of a primary
viral infection. In conclusion, there is contradic-
tory evidence that stress, especially as measured
by elevated serum corticosteroids, enhances the
viral–bacterial synergy that results in fatal BRD
following infection by M. haemolytica.

Interaction between stress and
viral–bacterial synergy in BRD

The effects of different psychological stressors on
respiratory viral infections in mice suggest that
similar complex interactions probably occur among
the psychological, physical and nutritional stressors
associated with weaning and transport of calves.
We initiated an analysis of the potential interactions
among multiple stressors during BRD by using
the disease model of a primary BHV-1 respiratory
infection followed by an aerosol challenge with M.
haemolytica. This disease model induces clinical
signs of respiratory disease in all calves with a mor-
tality rate of 30–70% [3]. A combination of social
reorganization (abrupt separation of calf and dam)
and transportation was compared to transportation
alone immediately prior to BHV-1 infection, and
the severity of a secondary M. haemolytica chal-
lenge was then monitored through clinical signs
and mortality. Results showed that mortality due
to BRD was twice as high (80%) in calves expe-
riencing the combination of social reorganization
and transport. Functional genomics analyses were
then performed to identify possible mechanisms by
which a primary viral infection might enhance the
severity of a secondary bacterial infection. Gene
expression patterns of the two groups of calves
were further analysed to determine whether differ-
ences in serum corticosteroid levels might explain
the marked difference in BRD mortality rates.

Microarray and quantitative RT-PCR analysis
of blood mononuclear leukocytes confirmed sig-
nificant differences in gene expression follow-
ing BHV-1 infection when comparing the two
groups of calves [25]. Both groups displayed con-
served responses to BHV-1 infection, such as
increased expression of interferon-induced genes
(i.e. IFITM2; CA5B), pro-inflammatory genes (i.e.
BIRC1) and toll-like receptors (i.e. TLR2 and
TLR4). There were also many changes in gene
expression associated with lipid metabolism, ion
transport and cell growth. Many of these metabolic
functions are regulated by glucocorticoids, which
prompted us to analyse serum cortisol levels
throughout the course of BHV-1 infection. As
expected, both groups of calves had cortisolaemia
immediately following transport and at the time of
BHV-1 infection. However, only in the transport-
alone group did serum cortisol levels remain sig-
nificantly elevated at 24 h post-BHV-1 infection.
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As expected from previous investigations [19,38],
transport alone induced a cortisolaemia that per-
sisted for 48 h, but when transport was com-
bined with social reorganization then the cortiso-
laemia persisted for less than 24 h. Thus, there
appeared to be an inverse correlation between
the duration of cortisolaemia and mortality due
to BRD. This is consistent with previous reports
that elevated corticosteroids reduced the severity of
influenza infections in mice [24,34] and treatment

with glucocorticoids reduced the severity of M.
haemolytica infections [29,39].

Glucocorticoids are potent inhibitors of inflam-
mation by altering immune cell trafficking, effector
cell activity, and inhibiting pro-inflammatory gene
expression [10,16]. Elevated serum corticosteroid
levels result in nuclear translocation of the glu-
cocorticoid receptor and suppression of key tran-
scriptional regulators of pro-inflammatory genes,
such as NFκB and AP-1 (Figure 1). Glucocorticoid

Figure 1. Potential mechanisms by which stress may inhibit downstream TLR signalling. Blue lines represent signalling
pathways through which Toll-like receptors (TLRs) regulate the expression of pro-inflammatory cytokines. Red lines
represent mechanisms by which molecules induced by stress, e.g. glucocorticoids (GC) and IL-10, or Th2 cytokines, e.g.
IL-4 and IL-13, may inhibit pro-inflammatory gene expression through NFκB and AP-1 transcription factors. Glucocorticoid
receptor (GR) and IL-10 can inhibit NFκB activity through upregulation of IKBKA, which sequesters NFκB, thus preventing
downstream gene transcription. In addition, GC and IL-10 can stimulate the production of glucocorticoid-induced leucine
zipper protein (GILZ), which inhibits the functions of both NFκB and AP-1. IL-4 and IL-13 inhibit NFκB activity using a
similar mechanism. The AP-1 complex can also negatively regulate the GC receptor (GR), thereby suggesting a negative
feedback regulatory effect on the role of stress on TLR signalling. For simplicity, several nodes in this figure which represent
multiple subunits are collapsed into a single node (e.g. p38, JNK, etc.). Standard HUGO names were used for genes
when available. The following reports the alias names for these genes which are significantly different from the common
gene name used: MAP3K1/MEKK1; MAP3K14/NIK; MAP2K4/MKK4; MAP2K7/MKK7; MAP2K3/MKK3; MAP3K6/MKK6;
MAP2K1/MEK1; MAP2K2/MEK2; IKBKB/IKKβ ; IKBKG/IKKγ ; IKBKA/IKKα; NFKBIA/IκBα; NFKBIB/IκBβ
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inhibition of NFκB and AP-1 becomes of even
greater interest when attempting to explain the
potential mechanisms by which a primary viral
infection can enhance the pathogenicity of a
secondary bacterial respiratory infection. It was
recently reported that human respiratory syncytial
virus, which causes respiratory infections, induced
increased TLR4 expression on blood monocytes
[21]. In agreement with this observation, our func-
tional genomic analyses revealed that BHV-1 infec-
tion increased the expression of both TLR2 and
TLR4. TLR4 is required for LPS induction of pro-
inflammatory cytokines, and LPS is an important
molecule contributing to pulmonary responses to
M. haemolytica infection [8,40]. Thus, increased
TLR4 expression during BHV-1 infection poten-
tially increases the host cell capacity to pro-
duce pro-inflammatory cytokines in response to
M. haemolytica infection. Gene expression induced
by TLRs, however, is mediated primarily through
NFκB and AP-1 and thus TLR-mediated responses
can be modulated by the glucocorticoid receptor
(Figure 1). Inhibition of TLR4 signalling by ele-
vated glucocorticoids might be one possible expla-
nation for the reduction in BRD mortality observed
in the transport-alone group of calves which expe-
rienced a more sustained cortisolaemia.

Glucocorticoid inhibition of LPS-induced pro-
inflammatory responses is not consistent with the
observation that serum cortisol levels were close
to baseline at the time of M. haemolytica chal-
lenge. There is, however, another potential mecha-
nism by which corticosteroids may modulate pro-
inflammatory responses induced by M. haemolytica
infection. Another significant difference between
the two groups of calves was an increased level of
IL-10 expression in blood mononuclear cells iso-
lated from the transport-alone calves [25]. IL-10 is
a Th2-type cytokine with potent anti-inflammatory
activity and this cytokine can inhibit induction of
pro-inflammatory cytokines by LPS, which signals
through TLR4 [23]. Glucocorticoids may influence
the production of IL-10 indirectly by preventing
dendritic cell (DC) maturation and immature DC
play an important role in supporting Tregulatory cell
development [30]. Tregulatory cells play an important
role in regulating inflammatory responses through
the production of several cytokines, including IL-
10 and TGFβ. Thus, increased IL-10 expression
in blood mononuclear cells of the transport-alone
group of calves may be the result of the sustained

cortisolaemia which enhanced Tregulatory cell devel-
opment. Increased expression of IL-10, or other
Th2-type cytokines such as IL-4 or IL-13, would
then provide a mechanism (Figure 1) by which
stress-induced glucocorticoids could modulate pro-
inflammatory responses to LPS even after serum
corticosteroids had returned to baseline values.

Conclusions

Numerous epidemiological and experimental stud-
ies have provided substantial evidence that stress
has a significant impact on the incidence and
severity of respiratory infections. The interaction
between stress and disease susceptibility is com-
plex, with both the duration and nature of the
stressor determining whether there is enhanced
or decreased severity of the respiratory infection.
BRD represents a disease complex with a vari-
ety of stressors implicated as potential contribut-
ing factors. We have used a bovine respiratory
disease challenge model to begin defining molec-
ular mechanisms by which stress may modulate
the outcome of BRD infections. The model we
chose, a secondary bacterial challenge with M.
haemolytica, represents a respiratory infection in
which the induction of an acute pro-inflammatory
response and sepsis are major components of dis-
ease pathogenesis. Within this model, we identified
two unique mechanisms by which stress-induced
corticosteroids may modulate the viral–bacterial
synergy which contributes to fatal bacterial infec-
tions. Corticosteroids may directly inhibit pro-
inflammatory responses induced by increased TLR
expression through inhibition of the transcriptional
regulators NFκB and AP-1. In addition, corticos-
teroids may indirectly regulate TLR-induced pro-
inflammatory responses by supporting Tregulatory
cell development and increased IL-10 production.
It should be noted, however, that for other sec-
ondary bacterial pathogens, such as Haemophilus
somnus, pre-treatment with corticosteroid can exac-
erbate morbidity and mortality [11,27]. Thus, the
effect of stress on the severity of BRD may depend
as much on an interaction among multiple stressors
as the specific pathogens involved in this respira-
tory disease complex.

Functional genomic analysis provided insight
into the mechanisms by which stress-induced cor-
ticosteroids may modulate host responses to sec-
ondary bacterial respiratory infections. Another
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important question is the mechanism by which
one specific stressor, such as social reorganiza-
tion or weaning, was able to inhibit the cortiso-
laemia induced by transport. Weaning in combina-
tion with transport resulted in a truncated cortiso-
laemia, a failure to upregulate expression of IL-10
and a two-fold increase in BRD mortality. These
observations implicated corticosteroids as a criti-
cal factor in determining the outcome of BRD but
suggest that other factors may also contribute to
the interaction between stress and host responses.
NGF has been implicated as one factor that may
increase the severity of respiratory infections and
the source of NGF was the salivary gland [37]. Fur-
ther functional genomic analysis of the interaction
between stress and disease resistance should, there-
fore, include a variety of tissues that may produce
important immunoregulatory molecules. The inter-
action between stress and the immune system rep-
resents only one aspect of the complex interaction
between stress and the physiology and metabolism
of the whole organism.
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