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Abstract

This paper presents an overview of mathematical work surrounding Montgomery’s pair

correlation conjecture.

The first chapter introduces the Riemann zeta function and Riemann’s method of com-

putation of the first several zeros on the vertical line 1
2

+ it.

Chapter 2 presents Montgomery’s pair correlation conjecture following his original pa-

per from 1971.

Chapter 3 concerns the Gaussian Unitary Ensemble of random matrices, used to model

particle physics and having eigenvalue distribution paralleling the distribution of nontrivial

zeros of the Riemann zeta function, as well as touching on similar matrix ensembles.

Chapter 4 presents empirical results of the distribution of nontrivial zeros, obtained

computationally by Odlyzko, and the methods used to obtain them.

The final chapter presents brief highlights of recent results which contribute to the

growing body of Riemann zeta-to-physics and Riemann zeta-to-random matrix theory cor-

respondence.
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Chapter 1

The Riemann Zeta Function

1.1 Introduction

In the middle of the eighteenth century, Euler formally rearranged the series1

1

1s
+

1

2s
+

1

3s
+

1

4s
+ . . .

into what has become known as the Euler product formula:
∞∑
n=1

1

ns
=
∏
p prime

(
∞∑
k=0

1

pks

)
=
∏
p prime

(
1

1− 1
ps

)
. (1.1)

Formal equality between the left- and right-hand sides of (1.1) follows from the fundamen-

tal theorem of arithmetic, as for every integer n = pa11 ·pa22 · · · p
ak
k , the term 1

p
a1
1 ·p

a2
2 ···p

ak
k

= 1
n

appears in the expansion on the right exactly once. While Euler was mainly interested in

this series for integer values of s (see [11]), Dirichlet in the nineteenth century took an

interest in letting s take real values:
∞∑
n=1

1

ns
, s ∈ R, (1.2)

where setting s = 1 gives the (divergent) harmonic series. Bernhard Riemann, who studied

under Dirichlet, took a major step forward by extending the definition of this function to

complex numbers s = σ + it, σ > 1, and naming the function ζ(s). The series converges
1In fact Euler further made some astute observations connecting the growth of

∑
1
n to the density of

primes (see [11]).

1
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in the domain σ > 1 as shown by the integral test:∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣
=
∞∑
n=1

1

nσ

≤
∫ ∞
1

1

xσ
dx+ 1

=
1

σ − 1
+ 1 <∞.

Thus the series
∑∞

n=1
1
ns

converges absolutely for σ > 1 and uniformly for σ ≥ 1 + ε.

We now have a function which is analytic in the region σ > 1 and the Euler product

formula (1.1) is valid in this region.

In order to analytically continue the function ζ(s) to the right half-plane <(s) > 0 we

introduce the closely related Dirichlet eta function η(s),

η(s) =
∞∑
n=1

(−1)n

ns
,

also known as the alternating zeta function. The function η(s) allows us to write

∞∑
n=1

(−1)n

ns
+
∞∑
n=1

1

ns
= 2

∞∑
n=2,4,...

1

ns

= 2
∞∑
n=1

1

(2n)s

= 21−s
∞∑
n=1

1

ns

= 21−sζ(s),

so that

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
.

Since the last series converges for σ > 0, this gives the analytic continuation of ζ(s) to the

region <(s) > 0.



CHAPTER 1. THE RIEMANN ZETA FUNCTION 3

The next step is to analytically continue ζ(s) to all of C. This can be shown using the

functional equation for ζ(s), for which we require the Gamma function:

Γ(s) :=

∫ ∞
0

e−tts−1dt.

We recall that Γ satisfies Γ(s+ 1) = sΓ(s) and interpolates the factorial function2: Γ(n) =

(n− 1)! for positive integers n. Substituting n2πx for t gives

Γ
(s

2

)
= (n2π)

s
2

∫ ∞
0

e−n
2πxx

s
2
−1dx.

Dividing both sides by (n2π)
s
2 and summing over positive integers n then gives

π−
s
2 Γ
(s

2

)
ζ(s) = π−

s
2 Γ
(s

2

) ∞∑
n=1

1

ns
=
∞∑
n=1

∫ ∞
0

e−n
2πxx

s
2
−1dx. (1.3)

We also require the following function. Define

$(x) :=
∞∑
n=1

e−n
2πx.

This function is related to Jacobi’s θ function, θ(x) :=
∑∞
−∞ e

−n2πx, by the simple relation

2$(x) = θ(x)− 1.

Then since the series given by$(x) is uniformly convergent on [0,∞),we may interchange

the order of summation and integration in (1.3) to obtain

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

( ∞∑
n=1

e−n
2πx

)
x
s
2
−1dx

=

∫ ∞
0

$(x)x
s
2
−1dx

=

∫ 1

0

$(x)x
s
2
−1dx+

∫ ∞
1

$(x)x
s
2
−1dx.

(1.4)

2For historical reasons the function Γ(n) is shifted by 1 from the factorial function, whereas the now-
antiquated Π function satisfies Π(n) = n!
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The Jacobi θ-function also satisfies a simple functional equation which allows us to write

2$(x) + 1 = x−
1
2

(
2$

(
1

x

)
+ 1

)
. (1.5)

Then (1.4) can be written as∫ ∞
1

$(x)x
s
2
−1dx+

∫ ∞
1

$

(
1

x

)
x
s−3
2 dx+

1

2

∫ 1

0

(
x
s−3
2 − x

s
2
−1
)
dx

=
1

s(s− 1)
+

∫ ∞
1

$(x)
(
x
s
2
−1 + x−

1+s
2

)
dx.

At this point Riemann defines

ξ(t) = Γ
(s

2

)
(s− 1)π−

s
2 ζ(s),

however it is conventional today to define ξ as a function of s (Riemann also mentions this

function in his paper without naming it). This function has a beautiful symmetry about the

line σ = 1
2

(and as we will see below shares all non-trivial zeros with ζ(s)):

ξ(s) = Γ
(s

2

)
π−

s
2 ζ(s) (1.6)

so that we have

ξ(s) = ξ(1− s). (1.7)

The function ξ(s) is entire on the complex plane C.

1.2 Location of Nontrivial Zeros

So-called trivial zeros of the ζ-function occur at negative even integers; this is clear from

(1.6) since the function Γ( s
2
) has simple poles at these locations.

The complex, or nontrivial zeros, are precisely the zeros of the function ξ(s). The

statement that ζ(1 + it) 6= 0 for all real t is equivalent to the Prime Number Theorem. The

conjecture that σ = 1
2

for all nontrivial zeros, is the Riemann Hypothesis (RH), and has

been verified for the first ten trillion zeros as of 2012 (see Chap. 4).

That the zeros occur for values of s having real part 0 ≤ σ ≤ 1 follows from the

symmetry of ξ(s) about σ = 1
2

and the fact that if σ > 1 then the logarithm log ζ(s) =

−
∑

p log(1− p−s) remains finite.
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The following argument will demonstrate that, in fact 0 < σ < 1. Taking σ > 1, the

Euler product formula for ζ(s) is

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
.

Taking the logarithm of each side of the above expression then gives

log ζ(s) = −
∑
p

log

(
1− 1

ps

)−1
.

The right hand side can then be expanded via the Taylor series for log(1− x) at x = 0:

log ζ(s) =
∑
p

∞∑
m=1

m−1p−sm

=
∑
p

∞∑
m=1

m−1p−σmp−imt

=
∑
p

∞∑
m=1

m−1p−σme−imt log p.

The real part of log ζ(s) is thus

< log ζ(s) =
∑
p

∞∑
m=1

m−1p−σm cos(mt log p).

The inequality

3 + 4 cos θ + cos(2θ) ≥ 0,

which is derived simply by expanding 2(cos θ + 1)2, can then be applied to the expression

for <(log ζ(s)) as follows:

3<(log ζ(σ)) + 4<(log ζ(σ + it)) + <(log ζ(σ + 2it))

=3
∑
p

∞∑
m=1

m−1p−σm + 4
∑
p

∞∑
m=1

m−1p−σm cos(mt log p) +
∑
p

∞∑
m=1

m−1p−σm cos(2mt log p)

=
∑
p

∞∑
m=1

m−1p−σm (3 + 4 cos(mt log p) + cos(2mt log p)) .



CHAPTER 1. THE RIEMANN ZETA FUNCTION 6

Since <(log(w)) = log |w| for all complex w, this becomes

3 log |ζ(σ)|+ 4 log |ζ(σ + it) + log |ζ(σ + 2it)| ≥ 0,

which is equivalent to

|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

The function ζ(s) has a simple pole at s = 1 with residue 1. Hence the Laurent series of

ζ(σ) at σ = 1 is

ζ(σ) =
1

1− σ
+ a0 + a1(σ − 1) + a2(σ − 1)2 + . . . =

1

1− σ
+ g(σ)

where g(σ) is analytic at σ = 1. If 1 < σ ≤ 2 then g(σ) = O(1) and so

ζ(σ) =
1

1− σ
+ O(1).

The mean value theorem can now be used to show that ζ(σ + it) = 0 for no t. Suppose to

the contrary that ζ(σ + it)=0 for t 6= 0. Then for any σ > 1,

|ζ(σ + it)| = |ζ(σ + it)− ζ(1 + it)|

= |σ − 1||ζ ′(σ0 + it)|

≤ A(σ − 1),

where 1 < σ0 < σ and A is dependent on t. It is also clear that |ζ(σ + 2it)| is bounded

by some B dependent on t, within any neighbourhood not containing s = 1. Now by

observing the degrees of the terms containing σ − 1, one sees that

lim
σ→1+

|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≤ lim
σ→1+

(
1

σ − 1
+ O(1)

)3

A4(σ − 1)4B

= 0.

This contradicts (1.2), establishing the result that ζ(1 + it) 6= 0 for any t.

The result is equivalent to the Prime Number Theorem, as proved independently by

Hadamard and de la Vallée Poussin [33].

The Prime Number Theorem can be stated as follows:

Ψ(x) ∼ x as x→∞ (1.8)
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where

Ψ(x) :=
∑
n≤x

Λ(n)

and

Λ(n) :=

log p for n = pk

0 otherwise.

Selberg and Erdős proved the Prime Number Theorem independently by elementary

methods (though there is some controversy in the history, see [6]). Here we present a brief

outline of the analytic proof, which uses the fact ζ(1 + it) 6= 0, following Apostol [1].

The first step of the proof is to define the integral

Ψ1(x) =

∫ x

1

Ψ(t)dt,

which is a continuous piecewise linear function and is more convenient to deal with than

Ψ(x).

Next, after showing that

Ψ1(x) ∼ 1

2
x2 as x→∞

implies (1.8), the bulk of the proof consists of proving that Ψ1(x) ∼ 1
2
x2. The following

equation is helpful for this:

Ψ1(x)

x2
=

1

2πi

∫ c+i∞

c−i∞

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds, where c > 1. (1.9)

The quotient −ζ ′(s)/ζ(s) has a pole of order 1 at s = 1 with residue 1. By subtracting this

pole a new formula is obtained:

Ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+i∞

c−i∞

xs−1

s(s+ 1)

(
−ζ
′(s)

ζ(s)
− 1

s− 1

)
ds, for c > 1.

(1.10)

Let

h(s) =
1

s(s+ 1)

(
−ζ
′(s)

ζ(s
− 1

s− 1

)
.

Then (1.10) can be rewritten as

Ψ1(x)

x2
− 1

2

(
1− 1

x

)2

=
1

2πi

∫ c+i∞

c−i∞
xs−1h(s)ds

=
xc−1

2π

∫ ∞
−∞

h(c+ it)eit log xdt.



CHAPTER 1. THE RIEMANN ZETA FUNCTION 8

It is now required to show that

lim
x→∞

xc−1

2π

∫ ∞
−∞

h(c+ it)eit log xdt = 0.

When c > 1, the Riemann-Lebesgue lemma shows that the integral converges. However,

due to the factor xc−1 there is an indeterminate form here. Moving the line of integration

to c = 1 causes this factor disappear. Since the integrand xs−1h(s) involves the quotient

ζ ′(s)/ζ(s), it is necessary to take a few more steps before the proof is complete.

Lemma 1.1. Suppose a function f(s) has a pole of order k at s = α. Then the quotient

f ′(s)/f(s) has a first order pole at s = α with residue k.

Proof. The function f(s) equals g(s)/(s−α)k, where g is analytic and nonzero at α. Thus

in some neighbourhood of α,

f ′(s) =
g′(s)

(s− α)k
− kg(s)

(s− α)k+1
=

g(s)

(s− α)k)

[
−k
s− α

+
g′(s)

g(s)

]
and so

f ′(s)

f(s)
=
−k
s− α

+
g′(s)

g(s)
.

This lemma implies that the function

−ζ
′(s)

ζ(s)
− 1

s− 1

is analytic at s = 1, since both terms have a first order pole at s = 1 with residue 1.

1.3 How Riemann Computed Zeros

Riemann’s insight in making his famous conjecture is certainly praiseworthy. It later be-

came clear, however, that Riemann had developed sophisticated methods to compute the

first few zeros off the real line. The ‘rediscovery’ of this method is credited to Carl Ludwig

Siegel (see [11]); the method is known is the Riemann-Siegel formula. We introduce the

formula after some preliminary steps.
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Recalling that the zeros we are looking for are those of the ξ function, and making use

of the symmetry given by ξ(s) = ξ(1− s), we have

ξ

(
1

2
+ it

)
= ξ

(
1

2
− it

)
= ξ

(
1

2
+ it

)
= ξ

(
1

2
+ it

)
,

indicating that ξ
(
1
2

+ it
)

is a real-valued function of t. By expanding

ξ

(
1

2
+ it

)
=

1

2

(
1

2
+ it

)(
−1

2
+ it

)
π−

1
2( 1

2
+it)Γ

( 1
2

+ it

2

)
ζ

(
1

2
+ it

)
= −1

2

(
1

4
+ t2

)
π−

1
4π−

it
2 Γ

(
1

4
+
it

2

)
ζ

(
1

2
+ it

)
,

we see that the argument of the complex part of the expression, namely

π−
it
2 Γ

(
1

4
+
it

2

)
ζ

(
1

2
+ it

)
,

is necessarily an integer multiple of 2π. Defining

θ(t) := arg

(
π−

it
2 Γ

(
1

4
+
it

2

))
,

it follows that arg(ζ(1
2

+ it)) = −θ(t). We then define

Z(t) := eiθ(t)ζ

(
1

2
+ it

)
,

and show that Z(t) is a real-valued function

Z(t) = eiθ(t)ζ
(1

2
+ it

)
= eiθ(t)e−iθ(t)

∣∣∣ζ(1

2
+ it

)∣∣∣
=
∣∣∣ζ(1

2
+ it

)∣∣∣.
The function Z(t) must be continuous since ζ

(
1
2

+ it
)

is analytic. We may thus find zeros

on the critical strip σ = 1
2

+ it by finding sign changes in Z(t).

Definition 1.2 (Riemann-Siegel Formula). The Riemann-Siegel Formula for Z(T) is given

by

Z(t) = 2

ν(t)∑
k=1

1√
k

cos[θ(t)− t log k] +R(t)



CHAPTER 1. THE RIEMANN ZETA FUNCTION 10

with

ν(t) =

⌊√
t

2π

⌋
,

p =

√
t

2π
−

⌊√
t

2π

⌋
=

√
t

2π
− ν(t),

R(t) = (−1)ν(t)−1
(
t

2π

)− 1
4
∞∑
k=0

ck

(√
t

2π
− ν(t)

)(
t

2π

)− k
2

= (−1)ν(t)−1
(
t

2π

)− 1
4
∞∑
k=0

ck(p)

(
t

2π

)− k
2

,

and where the ck are trigonometric functions which quickly become complicated (see (4.3)

for more details).

1.4 Deriving the Formula

In his seminal paper "On the Number of Primes Less Than a Given Magnitude," [25] in

order to prove the Prime Number Theorem Riemann establishes the following analytic

continuation of ζ(s) to the complex plane:

ζ(s) =
Γ(1− s)

2πi

∫ +∞

+∞

(−x)s

ex − 1

dx

x
, (1.11)

where the contour of integration begins at +∞, moves in the negative direction along the

real axis, circles the origin counterclockwise in the positive direction, and moves in the

positive direction back along the real axis to +∞. Following Edwards [11], two methods

of splitting finite sums from (1.11) are recombined to reach the desired result. The first is

to replace (ex − 1) =
∑
e−nx with

e−Nx

ex − 1
=

∞∑
n=N+1

e−nx

which yields

ζ(s) =
N∑
n=1

n−s +
Γ(1− s)

2πi

∫ +∞

+∞

e−Nx(−x)s

ex − 1

dx

x
. (1.12)
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The second is to change the contour of integration in (1.11) so that the circle around the

origin expands to include the poles ±2πi,±4πi, . . . ,±2Mπi, so that using the residue

theorem gives

ζ(s) = 2Γ(1− s)(2π)(s−1) sin
(πs

2

) M∑
n=1

ns−1 +
Γ(1− s)

2πi

∫
CM

(−x)s

ex − 1

dx

x
. (1.13)

The combination of the two techniques gives

ζ(s) =
N∑
n=1

n−s + 2Γ(1− s)(2π)(s−1) sin
(πs

2

) M∑
n=1

ns−1 +
Γ(1− s)

2πi

∫
CM

e−Nx(−x)s

ex − 1

dx

x
.

(1.14)

From this we obtain a formula for ξ(s) valid for all N,M, s, by multiplying by the factor
1
2
s(s− 1)Γ(s/2)π−s/2 which allows for functional symmetry:

ξ(s) = (s− 1)Γ

(
s+ 1

2

)
π−s/2

N∑
n=1

n−s

−sΓ
(

3− s
2

)
π(s−1)/2

M∑
n=1

ns−1 (1.15)

− sΓ(2− s/2)π(s−1)/2

(2π)s−1 sin(πs/2)4πi

∫
CM

(−x)se−Nx

ex − 1

dx

x
.



Chapter 2

Montgomery’s Pair Correlation
conjecture

Hugh Montgomery’s conjecture on the distribution of pairwise differences γ − γ′ for non-

trivial zeros 1
2

+ iγ of the Riemann Zeta Function is a seminal example the fruitful overlap

between number theory and physics. The realization of this possibility first took place when

Montgomery reluctantly allowed himself to be introduced to physicist Freeman Dyson.

When Montgomery told Dyson of his predictions, Dyson surprisingly was already familiar

with distribution, as it is the distribution of the pairwise distances between eigenvalues of

random Hermitian matrices.

Montgomery’s conjecture is that, for fixed real numbers α < β,

∑
0<γ,γ′≤T

2πα/ log T≤γ−γ′≤2πβ/ log T

1 ∼

(∫ β

α

1−
(

sin πu

πu

)2

du+ δ(α, β)

)
T

2π
log T

as T tends to infinity, where the double summation is over all pairs of nontrivial zeros

of 1
2

+ iγ of ζ(s) and where δ is the Dirac delta distribution, that is δ(α, β) = 1 if 0 ∈
[α, β], δ(α, β) = 0 otherwise. We may rephrase the conjecture by saying that the pair-

correlation (i.e. the 2-point correlation) function of the non-trivial zeros of the Riemann

zeta function is

R2(u) := 1−
(

sin πu

πu

)2

,

12
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Figure 2.1: The function 1−
(
sinπu
πu

)2
where the notation R2 will become clear in Chapter 3.

In his 1971 manuscript [18] Montgomery leads to this conjecture by first proving a theorem

and three corollaries which will be outlined here.

Define

F (α) = F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

T iα(γ−γ
′)w(γ − γ′),

where α and T ≥ 2 are real. Montgomery uses w(u) = 4/(4 + u2) here as a suitable

weighting function.

Theorem 2.1. (Assume RH) For real α, T ≥ 2, and F (α) defined as above, F (α) is real

with F (α) = F (−α). If T > T0(ε) then F (α) ≥ −ε for all α. For fixed α such that

0 ≤ α < 1,

F (α) = (1 + o(1))T−2α log T + α + o(1)

as T tends to infinity. This holds uniformly for 0 ≤ α ≤ 1− ε.

It is necessary here to find a kernel r̂ with which to convolve F (α). Defining r̂ to be the

Fourier transform of r,

r̂(α) =

∫ ∞
−∞

r(u)e−2πiαudu
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gives the formula∑
0<γ,γ′≤T

r

(
(γ − γ′) log T

2π

)
w(γ − γ′) =

(
T

2π
log T

)∫ ∞
−∞

F (α)r̂(α)dα. (2.1)

We have

T

2π
log T

∫ ∞
−∞

F (α)r̂(α)dα =

∫ ∞
−∞

∑
γ,γ′∈[0,T ]

T iα(γ−γ
′)w(γ − γ′)r̂(α)dα

=
∑

γ,γ′∈[0,T ]

w(γ − γ′)
∫ ∞
−∞

T iα(γ−γ
′)r̂(α)dα

=
∑

γ,γ′∈[0,T ]

w(γ − γ′)
∫ ∞
−∞

r̂(α)e2πiα(γ−γ
′) log T/2πdα

=
∑

γ,γ′∈[0,T ]

r

(
(γ − γ′) log T

2π

)
w(γ − γ′).

Since this thoerem gives little information for the case α ≥ 1, attention here is restricted to

kernels r̂ which vanish outside [−1 + δ, 1− δ].

Corollary 2.2. (Assume RH) If 0 < α < 1 is fixed then∑
0<γ,γ′≤T

(
sinα(γ − γ′) log T

α(γ − γ′) log T

)
w(γ − γ′) ∼

(
1

2α
+
α

2

)
T

2π
log T,

and ∑
0<γ,γ′≤T

(
sin(α

2
)(γ − γ′) log T

α
2
(γ − γ′) log T

)2

w(γ − γ′) ∼
(

1

α
+
α

3

)
T

2π
log T.

The proof of the corollary requires the following two kernels obtained by Fourier trans-

form.

Lemma 2.3. For 0 < a < 1,

r1(u) =
sin(2πau)

2πau

has Fourier transform

r̂1(ξ) =
1

2a
χa(ξ)

where χa is the characteristic function for the interval [−a, a].
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Proof. This is verified by Fourier inversion:

r1(u) =

∫ ∞
−∞

r̂1(ξ)e
2πiuξdξ

=
1

2a

∫ a

−a
e2πiuξdξ

=
e2πiau − e−2πiau

2a(2πiu)

=
sin(2πau)

2πau
.

Lemma 2.4. The function

s(u) =

(
sin πu

πu

)2

has Fourier transform

ŝ(ξ) = (1− |ξ|)χ1(ξ).

Proof. Applying Fourier inversion gives

s(u) =

∫ ∞
−∞

ŝ(ξ)e2πiuξdξ

=

∫ 1

−1
(1− |ξ|)e2πiuξdξ

=

∫ 0

−1
(1 + ξ)e2πiuξdξ +

∫ 1

0

(1− ξ)e2πiuξdξ

=
1

(2πiu)2
(e2πiu + e−2πiu − 2)

=
2

(2πiu)2
(cos 2πu− 1)

=

(
sin πu

πu

)2

,

where the last equality is due to trigonometric identities.

Lemma 2.5. For 0 < a < 1,

r2(u) =

(
sinπau

πau

)2
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has Fourier transform

r̂2(ξ) =
1

a2
(a− |ξ|)χa(ξ).

Proof. Using the function ŝ(ξ) from the previous lemma gives

ŝ

(
ξ

a

)
=

(
1− |ξ|

a

)
χa(ξ)

=
1

a
(a− |ξ|)χa(ξ)

= a · r̂2(ξ).

Thus,

r2(u) =

∫ ∞
−∞

r̂2(ξ)e
2πiuξdξ

=
1

a

∫ ∞
−∞

ŝ

(
ξ

a

)
e2πiuξdξ

=

∫ ∞
−∞

ŝ(ξ)e2πiuξdξ

= s(au)

=

(
sin πau

πau

)2

.

The first of Montgomery’s corollaries can now be proved.

Proof. By the convolution formula (2.1) and for r̂1 as previously defined,

∑
γ,γ′∈[0,T ]

(
sin(2πa(γ − γ′) log T

2π
)

2πa(γ − γ′) log T
2π

)
w(γ − γ′) =

T

2π
log T

∫ ∞
−∞

F (u)r̂1(u)du.

The kernel r̂1 has support in (−1, 1) and so the integral on the right hand side can be
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computed as follows:∫ ∞
−∞

F (u)r̂1(u)du =
1

2a

∫ a

−a
F (u)du

=
1

a

∫ a

0

F (u)du

=
1

a

∫ a

0

[(1 + o(1))T−2u log T + u+ o(1)]du

=
1

a

∫ a

0

[(1 + o(1))e−2u log T log T + u+ o(1)]du

=
1

2a
+
a

2

as T → ∞. Using this expression for the integral in the convolution formula gives the

desired result,∑
γ,γ′∈[0,T ]

(
sin(a(γ − γ′) log T )

a(γ − γ′) log T

)
w(γ − γ′) ∼

(
1

2a
+
a

2

)
T

2π
log T.

The second formula is proved with the use of r̂2. Using the convolution formula gives

∑
γ,γ′∈[0,T ]

(
sin ((a/2)(γ − γ′) log T )

(a/2)(γ − γ′) log T

)2

w(γ − γ′) =
T

2π
log T

∫ ∞
−∞

F (u)r̂2(u)du.

The symmetry of F (u) and the support of r̂2 allows the integral to be computed as follows:∫ ∞
−∞

F (u)r̂2(u)du =
1

a2

∫ a

−a
F (u)(a− |u|)du

=
2

a

∫ a

0

F (u)du− 2

a2

∫ a

0

uF (u)du.

The first of these two integrals is

2

a

∫ a

0

F (u)du =
2

a

∫ a

0

[(1 + o(1))T−2u log T + u+ o(1)]du

=
2

a

∫ a

0

[(1 + o(1))e−2u log T log T + u+ o(1)]du

=
1

a
+ a
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as T →∞. The second integral is

2

a2

∫ a

0

uF (u)du =
2

a2

∫ a

0

u[(1 + o(1))T−2u log T + u+ o(1)]du

=
2a

3

as T →∞. Combining the two gives∫ ∞
−∞

F (u)r̂2(u)du =
1

a
+ a− 2a

3

=
1

a
+
a

3
,

which implies

∑
γ,γ′∈[0,T ]

(
sin ((a/2)(γ − γ′) log T )

(a/2)(γ − γ′) log T

)2

w(γ − γ′) =

(
1

a
+
a

3

)
T

2π
log T

as required.

The next corollary follows from the second half of Corollary 2.2:

Corollary 2.6. (Assume RH) As T tends to infinity,∑
0<γ≤T
ρ simple

1 ≥
(

2

3
+ o(1)

)
T

2π
log T,

where ρ are the nontrivial zeros of the zeta function.

Proof. Let mρ denote the multiplicity of a nontrivial zero ρ. Then∑
γ,γ′∈[0,T ]
γ=γ′

1 =
∑
γ∈[0,T ]

mρ,

since each zero ρ is counted m2
ρ times on each side. Now since w(0) = 1 and we have

sin 0/0 whenever γ = γ′, the following inequality must hold:

∑
γ∈[0,T ]

mρ ≤
∑

γ,γ′∈[0,T ]

(
sin ((a/2)(γ − γ′) log T )

(a/2)(γ − γ′) log T

)2

w(γ − γ′).
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By letting a = 1− δ and applying Corollary 2.2, one obtains, as T →∞,∑
γ∈[0,T ]

mρ ≤
(

1

1− δ
+

1− δ
3

)
T

2π
log T =

(
4

3
+ o(1)

)
T

2π
log T.

Note also that ∑
γ∈[0,T ]
ρ simple

≥
∑
γ∈[0,T ]

(2−mρ) = 2N(T )−
∑
γ∈[0,T ]

mρ,

where N(T ) is the number of zeros in the critical strip with height less than or equal to T .

Since, as estimated by Riemann and proved by von Mangoldt [11],

N(T ) ∼ T

2π
log T,

one may conclude that as T →∞∑
γ∈[0,T ]
ρ simple

≥ 2

(
T

2π
log T

)
−
(

4

3
+ o(1)

)
T

2π
log T =

(
2

3
+ o(1)

)
T

2π
log T.

Corollary 2.7. (Assume RH) One can find a constant λ so that

lim inf
n

(γn+1 − γn)(log γn/2π) ≤ λ < 1.

One may interpret this as saying that the difference between consecutive zeros dips be-

low the average (that is, below log γ/2π), by a proportion greater than 1 − λ, infinitely

often. This fact, together with the fact that a positive density of zeros satisfy γn+1 − γn ≤
2πλ/ log γn ([18]) implies the similar assertion

lim sup
n

(γn+1 − γn)(log γn/2π) ≥ λ′ > 1

for some constant λ′.

Proof. To prove the corollary take r(u) = max(1− (|u|/λ), 0), leaving the choice of λ for

later. Since r̂(α) is nonnegative and
∫∞
0
r̂(α)dα <∞, it can be seen that(

T

2π
log T

)∫ ∞
−∞

F (α)r̂(α)dα ≥ (1 + o(1))

(
λ+ 2λ

∫ 1

0

α

(
sin πλα

πλα

)
dα

)
T

2π
log T.
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One may assume all but finitely many nontrivial zeros are simple, for otherwise γ =

0. It follows that the terms with γ = γ′ contribute an amount which is asymptotic to

(T/2π) log T . Thus ∑
0<γ,γ′≤T

0<γ−γ′<2πλ/ log T

1 ≥
(

1

2
+ o(1)

)
C(λ)

T

2π
log T

where

C(λ) = λ+
1

π2λ

∫ 2πλ

0

1− cosu

u
du− 1.



Chapter 3

The Gaussian Unitary Ensemble

3.1 Introduction

Wigner’s proposal for the probability density function of a sequence of energy levels with

identical spin and parity (called simple sequence) was as follows:

pW (s) =
πs

2
exp

(
−π

4
s2
)
,

where s = S/D, while for cases with mixed spin and parity the probability density function

is obtained by randomly superimposing the simple sequences making up the mix ([17]).

Definition 3.1. A square matrix A is Hermitian if it is equal to its own conjugate transpose

A†; that is, if A = (aij) then aij = aji for all i, j.

In quantum systems, eigenvalues En and wavefunctions ψn(r) arise as solutions to the

Schrodinger equation

Hψn(r) = Enψn(r),

where H is the Hamiltonian operator. Because H is Hermitian the eigenvalues are real. In

bound systems, the eigenvalues are discrete and we have the density

d(E) =
∞∑
n=1

δ(E − En)

where δ is the Dirac delta distribution.

21
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As the complexity of a system increases, for example in the case of increasing energy

in an atomic nucleus, the calculations become intractable. Wigner had the bright idea of

modeling the statistics with a certain kind of "random" ensemble which would preserve

those symmetries which were guaranteed by the system in question, while being indepen-

dent of the particular values of the inputs of the system. In this way general information

on the level structures of similar nuclei is obtained, such that comparing data obtained on

the energy levels particular of a particular isotope to the ensemble average can yield insight

into unusual properties of the isotope under study. Thus was born the use of random matrix

theory in nuclear physics.

The Gaussian Unitary Ensemble is one of a class of three matrix ensembles developed

in the study of energy levels of physical systems as pioneered by E. Wigner (see [17]) to

study the spectra of heavy atoms. Unlike the other two in this class, the Gaussian Sym-

plectic Ensemble (GSE) and Gaussian Orthogonal Ensemble (GOE), the systems modeled

by the GUE do not possess time-reversal invariance. In a classic 1963 article Dyson [10]

shows that for a given symmetry G of a system Z represented by matrices, the matrices

must be Hermitian for certain invariance properties to hold. Furthermore, he shows that

under these invariance conditions the set Z is a direct product of three irreducible compo-

nents: one corresponding to the algebra of R, one to the algebra of C and one to the algebra

of the quaternions.

A system with integral total spin (or angular momentum) and which is symmetrical

under time-reversal has a Hamiltonian matrix H which is symmetric (and therefore real

symmetric). The same can be said of a system with time-reversal symmetry and rotational

symmetry. The corresponding ensemble E1G in the space T1G of symmetrical real matrices

is defined by two requirements (see [17]):

1. The probability P (H)dH that a system of E1G will belong to the volume element

dH =
∏

j≤k dHjk is invariant under real orthogonal transformations:

P (H ′)dH ′ = P (H)dH



CHAPTER 3. THE GAUSSIAN UNITARY ENSEMBLE 23

where

H ′ = W THW

and

W TW = WW T = 1.

2. The probability density function P (H) is a product of independent functions of a

single variable:

P (H) =
∏
j≤k

fjk(Hjk).

More specificially, Mehta shows further that the form is

P (H) = const×
∏
j

exp[bHjj]
∏
j≤k

exp[−a(Hjk)
2],

with a, b real and a > 0.

The system just described is known as the Gaussian Orthogonal Ensemble or GOE. To see

why, note that condition 1 guarantees that probability density function is independent of the

choice of orthogonal basis for the system. Generally, if the basis is changed by a unitary

transformation ψ → Uψ then the Hamiltonian changes as U → UHU−1. Since U in the

case must be real and symmetric as well as unitary, it must be an orthogonal matrix (see

[29]).

In the case of physical systems with time-reversal symmetry and half-integer total spin

(or angular momentum), the appropriate Hamiltonians take the form of self-dual Hermitian

matrices. By definition a self-dual matrix is equal to its time reverse (H = HR). Rotational

symmetry is allowed but not required in this ensemble, called the Gaussian Symplectic

Ensemble or GSE. The space T4G of self-dual matrices thus contains T1G as a small subset

[29]. Matrices in the symplectic ensemble can either be written as N × N matrices with

quaternion entries, or as 2N × 2N matrices where the quaternion units are in 2× 2 matrix

form:

e1 =

[
i 0

0 −i

]
, e2 =

[
0 1

−1 0

]
, e3 =

[
0 i

i 0

]
, 1 =

[
1 0

0 1

]
,

where

e21 = e22 = e23 = −1
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and

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

The conditions defining this ensemble are:

1. The probability P (H)dH that a system of E4G will belong to the volume element

dH =
∏

j≤k dH
(0)
jk

∏3
λ=1

∏
j<k dH

(λ)
jk is invariant under symplectic transformations :

P (H ′)dH ′ = P (H)dH

where

H ′ = WRHW.

2. The probability density function P (H) is a product of independent functions of a

single variable:

P (H) =
∏
j≤k

f
(0)
jk (H

(0)
jk )

3∏
λ=1

∏
j<k

f
(λ)
jk (H

(λ)
jk ),

where the index λ is used to denote the quaternion units.

Our third ensemble is mathematically simplest and corresponds to physical systems without

time reversal symmetry. A Hamiltonian representing such a system may be represented by

an arbitrary Hermitian matrix. Interestingly, though, this ensemble represents a situation

which would be unrealistic in nuclear physics, as the atomic nucleus under observation

would have to be placed into an environment completely mixing its entire "natural" (i.e.

zero field) level structure [17]. This ensemble is the Gaussian Unitary Ensemble and will

be defined after some preliminaries. In addition to these three ensembles, one can also

consider two other cases which will not be covered here. The first is a mix of ensembles

to represent a system where time reversal invariance is weakly violated. The second is the

Gaussian ensemble of antisymmetric (anti-self-dual quaternion) Hermitian matrices, which

Mehta describes as elegant though not physically relevant [17].

3.2 Determining the joint probability density function from
the constraints

Following Mehta [17], we describe how the above pairs of requirements on each ensemble,

that is invariance under symmetry and independence of matrix elements (in order to achieve
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"randomness"), determine the form of the joint probability density function of matrix ele-

ments. First, due to a result of Weyl ([34]), the invariance requirement restricts P (H) to

depend on the traces of powers of H in the following way (see [17]).

Lemma 3.2. The invariants of an N × N matrix H under nonsingular transformations

given by

H → H ′ = AHA−1

can be expressed in terms of the traces of the first N powers of H . Furthermore, the trace

of the jth power of H is the sum of jth powers of its eigenvalues λ1, . . . , λN ,

TrHj =
N∑
k=1

λjk,

and any symmetric function of the λk can be expressed in terms of the first N of these

traces.

In the Gaussian Orthogonal Ensemble, we have

TrH2 =
N∑
j=1

θ2j , TrH =
N∑
j=1

θj,

where the θj are the eigenvalues of H . A real symmetric matrix H can be diagonalized by

a real orthogonal matrix:

H = UΘU−1 = UΘUT

where Θ is a diagonal matrix with elements θ1 ≤ θ2 ≤ . . . ≤ θN and the columns of U are

the normalized eigenvectors of H .

In the Symplectic Ensemble, we have the following [17]:

Theorem 3.3. Given a quaternion-real, self-dual matrix H , there is a symplectic matrix U

such that

H = UΘU−1 = UΘUR,

where Θ is diagonal, real and scalar.
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That Θ is scalar means that it consists ofN blocks of the form

[
θj 0

0 θj

]
, along the main

diagonal, so that there are N pairs of equal eigenvalues of H .

The matrix H corresponds to the Hamiltonian of a physical system that is invariant

under time reversal, has odd spin, and does not have rotational symmetry. Due to the

eigenvalues being paired, the energy levels in such a system are doubly degenerate. Here

we have

TrH2 = 2
N∑
j=1

θ2j , TrH = 2
N∑
j=1

θj.

Lemma 3.4. If three continuous, differentiable functions satisfy

f(xy) = g(x) + h(y)

then each of the functions must take the form a log x+ b.

Proof. The proof is given in [17] and uses elementary calculus.

Now consider a particular transformation H = U−1H ′U, where

U =


cos θ sin θ 0 . . . 0

− sin θ cos θ 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1


is a matrix which is at once orthogonal, symplectic and unitary. Then differentiating H =

U−1H ′U with respect to θ gives

∂H

∂θ
=
∂UT

∂θ
H ′U + UTH ′

∂U

∂θ
=
∂UT

∂θ
UH +HUT ∂U

∂θ
,

so that we have
∂H

∂θ
= AH +HAT ,

where

A =
∂UT

∂θ
U =


0 −1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0

 .
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Since the probability density function

P (H) =
∏
(λ)

∏
j≤k

f
(λ)
jk

(
H

(λ)
jk

)
is invariant under transformation by the matrix U , its derivative with respect to θ must be

zero: ∑ ∂f
(λ)
jk

∂H
(λ)
jk

∂H
(λ)
jk

∂θ
= 0.

The form of A means this can be written in terms of a few entries of f and H:[(
− 1

f
(0)
11

∂f
(0)
11

∂H
(0)
11

+
1

f
(0)
22

∂f
(0)
22

∂H
(0)
22

)(
2H

(0)
12

)
+

1

f
(0)
12

∂f
(0)
12

∂H
(0)
12

(
H

(0)
11 −H

(0)
22

)]

+
N∑
k=3

(
− 1

f
(0)
1k

∂f
(0)
1k

∂H
(0)
1k

H
(0)
2k +

1

f
(0)
2k

∂f
(0)
2k

∂H
(0)
2k

H
(0)
1k

)

+
N∑
k=3

(
− 1

f
(1)
1k

∂f
(1)
1k

∂H
(1)
1k

H
(1)
2k +

1

f
(1)
2k

∂f
(1)
2k

∂H
(1)
2k

H
(1)
1k

)
= 0.

All of the two-term sums within braces must be constant, since they depend on mutually

exclusive sets of variables and sum to zero. Thus we may write, for example,

− 1

f
(0)
1k

∂f
(0)
1k

∂H
(0)
1k

H
(0)
2k +

1

f
(0)
2k

∂f
(0)
2k

∂H
(0)
2k

H
(0)
1k = C

(0)
k .

Dividing both sides of this equation byH(0)
1k H

(0)
2k and applying Lemma 3.4 implies that C(0)

k

must be zero. Thus

1

H
(0)
1k f

(0)
1k

∂f
(0)
1k

∂H
(0)
1k

H
(0)
2k =

1

H
(0)
2k f

(0)
2k

∂f
(0)
2k

∂H
(0)
2k

H
(0)
1k = −2a

for some constant a, and on integration we have

f
(0)
1k

(
H

(0)
1k

)
= exp

[
− a
(
H

(0)
1k

)2]
.

Extending the argument to other terms gives the general formula

P (H) = exp
(
− aTrH2 + bTrH + c

)
= ec

∏
j

exp
(
bH

(0)
jj

)∏
j≤k

exp
[
− a
(
H

(0)
jk

)2]
×
∏
λ

∏
j<k

exp
[
− a
(
H

(λ)
jk

)2]
.
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Following Mehta, the Gaussian Unitary Ensemble (GUE) of matrices may be defined

within the space of Hermitian matrices T2G in the following way. Let P (H)dH be the

probability that an element H = (Hjk) of T2G belongs to the volume element

dH =
∏
j≤k

d<(Hjk)
∏
j<k

d=(Hjk).

Then the definition of the GUE is as follows.

Definition 3.5. The Gaussian Unitary Ensemble is defined to be the set of matrices H in

T2G such that

(i) P (H)dH = P (H ′)dH ′ whenever H ′ = U−1HU for any unitary matrix U

(ii) The real and imaginary parts of Hjk, j < k, are statistically independent, as are the

diagonal elements Hjj.

P (H) may thus be expressed as the product of N2 functions, each of a single real variable:

P (H) =
∏
j≤k

fjk(<(Hjk))
∏
j<k

gjk(=(Hjk)).

Furthermore, each independent variable has Gaussian distribution with mean 0 and variance

1. Thus Odlyzko [21], defines the GUE as the family of N × N Hermitian matrices A =

(aij) where

ajj =
√

2σjj

ajk = σjk + iηjk for j < k

ajk = σkj − iηkj for k < j.

The necessity to scale the diagonal elements by the factor
√

2 is one of the reasons which

led to Dyson defining the circular ensembles (see Chapter 5) which do not share this minor

defect.

Theorem 3.6 (Pair correlation function for GUE). The pair correlation function for the

eigenvalues of the Gaussian Unitary Ensemble is

1−
(

sin πu

πu

)2

.
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Definition 3.7. The joint probability density function of the eigenvalues of an N × N

Hermitian matrix is

PN(x1, . . . , xN) = CN · exp

(
−

N∑
j=1

x2j

) ∏
1≤j<k≤N

|xj − xk|2

where −∞ < xj, xk <∞ for 1 ≤ j < k ≤ N.

In order to normalize PN to unity, i.e.,∫ ∞
−∞
· · ·
∫ ∞
−∞

PN(x1, . . . , xN)dx1 · · · dxN = 1,

the constant CN may be chosen to satisfy C−1N = 2−N(N−1)/2πN/2
∏N

j=1 j!.

Definition 3.8. The n-point correlation function for an N ×N matrix is defined

Rn(x1, . . . , xn) =
N !

(N − n)!

∫ ∞
−∞
· · ·
∫ ∞
−∞

PN(x1, . . . , xN)dx1 · · · dxN .

R2(x1, x2) is the 2-point or pair correlation function which will be calculated here.

Definition 3.9. The n-level cluster function for an N ×N matrix is defined

Tn(x1, . . . , xn) =
∑
G

(−1)n−m(m− 1)!
m∏
j=1

Rhj(xn1 , . . . , xnhj )

where G is any grouping of the indices (1, 2, . . . , n) into m ordered subsets Gj with hj
elements each, and with

∑m
j=1 hj = n.

These definitions yield a useful formula for the pair correlation function R2:

R2(x1, x2) = R1(x1)R1(x2)− T2(x1, x2).

Energy levels can be normalized to have mean spacing 1 by letting

x̄j =
xj
α
.

Then the limiting cluster function is

T n(x̄1, . . . , x̄n) = lim
n→∞

αnTn(x1, . . . , xn).
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Denoting by r2(GUE) the limiting 2-point correlation function for the GUE,

r2(GUE) = lim
N→∞

α2R2(x1, x2),

we obtain, in the limit,

r2(GUE) = 1− T 2(x̄1, x̄2).

Thus the theorem to be proved is that

T 2(x̄1, x̄2) =

(
sin πu

πu

)2

where u = |x̄1 − x̄2|, x̄1 = x1/α1, x̄2 = x2/α2, and αj is the mean local spacing of the

eigenvalues at xj, j = 1, 2. A detailed proof is given by Pierce in [23]; a brief outline is

given here. We start with Wigner’s famous result on mean spacings of consecutive eigen-

values as N tends to infinity:

Proposition 3.10 (Semi-Circle law). The density R1(x) of eigenvalues for the Gaussian

Unitary Ensemble has the following behaviour as N →∞:

R1(x)→ α(x) =

 1
π

√
2N − x2 for |x| <

√
2N ,

0 for |x| ≥
√

2N .

The proof of this proposition is given in [17].

To compute T 2 we will use oscillator wave functions φn(x), related to quantum har-

monic oscillators (see e.g. [14]). This requires several definitions.

Definition 3.11 (Hermite polynomials). Define for each n ≥ 0,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.
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The first few Hermite polynomials are (see [31]):

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

...

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240

...

These polynomials have generating function
∞∑
n=0

Hn(x)

n!
ωn = e2xω−ω

2

which can be obtained by writing the Taylor series expansion for the function e−x2 .This

leads to the following useful relations satisfied by the Hermite polynomials. For every

n ≥ 1,

H ′n(x) = 2nHn−1(x)

Hn+1(x) = 2xHn(x)−H ′n(x).

Following a useful method in [23], a scaled version of the Hermite polyomials Hn(x) is

introduced:

Definition 3.12 (h-functions). Define for each n ≥ 0,

hn(x) = Hn(x)e−
1
2
x2 .

The above relations for the Hermite polynomials lead to recurrence relations for the h-

functions: for every n ≥ 1, (
d

dx
+ x

)
hn(x) = 2nhn−1(x)(

− d

dx
+ x

)
hn(x) = hn+1(x),
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where the expressions in parentheses on the left are "creation" and "annihilation" operators

associated with quantum harmonic oscillators.

Definition 3.13 (Oscillator wave functions). Define for each n ≥ 0,

φn(x) = (−1)n(
√
π2nn!)−

1
2 e

1
2
x2 d

n

dxn
e−x

2

.

The Oscillator wave functions are also known as Hermite functions and can be shown

to form an orthonormal basis for L2(R). Thus

∫ ∞
−∞

φn(x)φm(x)dx =

1 if n = m

0 if n 6= m.
(3.1)

Lemma 3.14.
(i) lim

m→∞
(−1)mm1/4φ2m(x) =

1√
π

cos(πy)

(ii) lim
m→∞

(−1)mm1/4φ2m+1(x) =
1√
π

sin(πy)

where πy = 2
√
mx.

Proof. This follows from the asymptotic behaviour of the Hermite polynomials, detailed

by Bateman [12]:

lim
m→∞

(−1)m
√
m

22mm!
H2m

(
x

2
√
m

)
=

1√
π

cosx

and

lim
m→∞

(−1)m

22mm!
H2m+1

(
x

2
√
m

)
=

1√
π

sinx.

The main result can now be proved:

Theorem 3.15.

T 2(x̄1, x̄2) =

(
sin πu

πu

)2

where u = |x̄1 − x̄2|, x̄1 = x1/α1, x̄2 = x2/α2, and α1, α2 are the respective mean local

spacings of the eigenvalues at x1, x2.
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Proof. By the semi-circle law, as N →∞ the mean spacing at the origin is

α =
1

σ(0)
=

π

(2N)1/2
.

Since

T2(x1, x2) =

(
N−1∑
n=0

φn(x1)φn(x2)

)2

,

it follows that

T 2(x̄1, x̄2) = lim
N→∞

α2T2(x1, x2)

= lim
N→∞

(
π

(2N)1/2

)2
(
N−1∑
n=0

φn(x1)φn(x2)

)2

.

Here the Christoffel-Darboux identity comes in handy (see [30]):

Definition 3.16 (Christoffel-Darboux identity). For a sequence of orthogonal polynomials

the following relationship holds:

n−1∑
j=0

fj(x)fj(y)

mj

=
kn−1

mn−1kn

fn(x)fn−1(y)− fn(y)fn−1(x)

x− y

where kj is the leading coefficient of fj(x) and mj is the norm
∫
f 2
j (x)ω(x)dx with respect

to a suitable weighting function ω.

Applying the Christoffel-Darboux identity to the oscillator wave functions φj , with

(3.1) in mind, we have

N−1∑
n=0

φn(x1)φn(x2) =

(
N

2

)1/2
φN(x1)φN−1(x2)− φN−1(x1)φN(x2)

x1 − x2
.

Without loss of generality, it may be assumed that N = 2m is even, so that

2m−1∑
n=0

φn(x1)φn(x2) =
√
m
φ2m(x1)φ2m−1(x2)− φ2m−1(x1)φ2m(x2)

x1 − x2
.
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Recalling x̄1 = x1/α1 and x̄2 = x2/α2, we have πx̄1 = 2
√
mx1 and πx̄2 = 2

√
mx2. By

letting x1, x2 → 0 as
√
m→∞, and applying Lemma 3.14, gives

lim
m→∞

2m−1∑
n=0

φn(x1)φn(x2) = lim
m→∞

(
2
√
m

π

)
cosπx̄1 sin πx̄2 − sinπx̄1 cosπx̄2

π(x̄1 − x̄2)

= lim
m→∞

(
2
√
m

π

)
sin(π(x̄2 − x̄1))
π(x̄1 − x̄2)

.

We can then square both sides of the above:

lim
m→∞

(
2m−1∑
n=0

φn(x1)φn(x2)

)2

= lim
m→∞

(
2(2m)

π2

)(
sin(π(x̄2 − x̄1))
π(x̄1 − x̄2)

)2

.

By letting u = |x̄1 − x̄2|, this expression can now be used to obtain T 2(x̄1, x̄2):

T 2(x̄1, x̄2) = lim
N→∞

α2T2(x1, x2)

= lim
N→∞

(
π√
2N

)2
(
N−1∑
n=0

φn(x1)φn(x2)

)2

= lim
N→∞

(
π√
2N

)2(
2N

π2

)(
sin(π(x̄2 − x̄1))
π(x̄1 − x̄2)

)2

=

(
sin πu

πu

)2

.

Applying Proposition 3.10, the local mean spacings α1, α2 are

α1 =
1

σ(x1)
=

π

(2N − x21)1/2

α2 =
1

σ(x2)
=

π

(2N − x22)1/2

and it then follows that

T 2(x̄1, x̄2) = lim
N→∞

π2

(2N − x21)1/2(2N − x22)1/2

(
N−1∑
n=0

φn(x1)φn(x2)

)1/2

.
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Setting πx̄1 =
√

(2N − x21)x1, πx̄2 =
√

(2N − x22)x2 and again using Proposition 3.10,

we then obtain

T 2(x̄1, x̄2) =

(
sin πu

πu

)2

as required.



Chapter 4

Empirical Results

Computation of Riemann zeta zeros has a century-and-a-half long history, beginning of

course with Riemann’s work introduced in Chapter 1. Unpublished notes deciphered by

Siegel (see [11]) revealed Riemann’s technique (Riemann-Siegel formula) as well as close

estimates of several of the lowest zeros up the critical line. By 1925 Hutchinson had ver-

ified the Riemann Hypothesis for the first 138 nontrivial zeros using the Euler-Maclaurin

summation formula. Electromechanical tabulating machinery was used to establish RH for

the first 1041 zeros by Titchmarsh and Comrie; Turing improved this to 1104 zeros in 1953

(see below). The number of zeros on the real line grew well into the millions by the 1960s

and passed one billion in the 1980s. However, these computations aimed at establishing t

as real and did not produce the precise values for t which would be required to examine

closely the distribution of the zeros. Furthermore, zeros very high up the critical line would

be needed to study the asymptotic behaviour of the zeros, which the zeros are quite slow to

reach.

Monumental achievements in computing large numbers of zeros high up the critical

line, as well as extensive statistical evaluation of the distribution of the zeros, were made

by Andrew Odlyzko. Due to this work, the empirical equivalence of the distribution of

large Riemann zeros (and sometimes large zeros of other functions as well) to the GUE

distribution (or other random matrix ensemble) is often referred to as the Montgomery-

Odlyzko law.

In 1987 Odlyzko numerically computed sets of 105 zeros of the zeta function starting at

zeros with indices 1010, 1011, 2 × 1011 and 1012, with accuracy 10−8. These were some of

36
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the first results showing strong numerical support for the GUE hypothesis. However, even

with the availability of supercomputers to provide thousands of hours of high powered pre-

cise computing, faster computational methods were needed for results much higher up the

critical line. In 1988, with A. Schönhage, Odlyzko published a new algorithm for comput-

ing ζ(1
2

+ it) using the fast Fourier transform. This algorithm allowed the computation of

70 million zeros at height 1020 in 1989 followed by 175 million zeros at the same height in

1992. In 1998 Odlyzko computed 10000 zeros at height 1021; in 2001 ten billion zeros at

height 1022, and in 2002 twenty billion zeros at height 1023.

4.1 Turing’s Method

Turing’s attempted construction of a mechanical computer designed to find Riemann zeros

was cut short by the onset of World War II (see [5]). After the war he developed a new

computational strategy to take advantage of digital computers which by now far exceeded

the power mechanical devices. Recalling that the number N(T ) of zeros of ζ(σ + it) for

0 < σ < 1 and 0 < t < T satisfies

N(T ) = 1 +
θ(T )

π
+ S(T ),

where S(t) = π−1 arg ζ(1/2 + it). It is useful here to introduce Gram’s law and Rosser’s

rule. Recall the definitions from Chapter 1 of θ(t) and Z(t) :

θ(t) := arg

(
π−

it
2 Γ

(
1

4
+
it

2

))
,

and

Z(t) := eiθ(t)ζ

(
1

2
+ it

)
.

Definition 4.1 (Gram point, Gram interval). Let n ≥ 1. The n-th Gram point is defined

(see e.g. [11]) as the unique positive real number gn such that θ(gn) = πn. The interval

In := [gn, gn+1)

is then the n-th Gram interval.
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Gram’s law is that the function Z(t) has a single root (i.e. changes sign once) in each

Gram interval. The law is known to fail infinitely often; the first failure occurs in the 126th

Gram interval. Rosser et al. [11] observed that ‘missing’ roots tend to occur in neighbour-

ing intervals: if the n-th Gram interval has no roots then two roots will occur in the interval

numbered n − 2, n − 1, n + 1 or n + 2. Specifically, define a Gram point gn for which

(−1)nZ(gn) > 0 as good and otherwise bad. Then define a Gram block of length k ≥ 1 as

an interval beginning and ending with good Gram points and having all its interior Gram

points bad. Rosser’s rule then specifically states that each Gram block [gn, gn+k) has k roots

of Z(t). Like Gram’s law, Rosser’s rule fails infinitely often (as proved by Lehman[16]),

with the first failure at the Gram block beginning with g13999525[13].

A result by Littlewood (1924, see [11]), that
∫ T
0
S(t)dt = O(log T ), implies that

lim
T→∞

1/T

∫ T

0

S(t)dt = 0.

Thus it is reasonable to expect S(t) to hover around the value 0, and with this in mind,

following Gourdon in [26], we may call a Gram point gn regular if S(gn) = 0, that is if

N(gn) = n+ 1. Turing’s method involves finding a sequence (hn) such that (−1)nZ(gn +

hn) > 0, the sequence (gn + hn) increases, and hn is small and, if possible, zero. Turing

shows that if hm = 0 and the nearby hn (for n close to m) are relatively small then S(gm)

must be an even integer. This is based on the even parity of zeros off the real line for a given

height (symmetry of the functional equation (1.7)) and the fact that S(gm) = N(gm) −
m − 1. Turing then shows that gm must be regular, i.e. S(gm) = 0 by showing that

−2 < S(gm) < 2. To do this he obtains a quantitative version of Littlewood’s estimate,∣∣∣∣∫ t2

t1

S(t)dt

∣∣∣∣ ≤ 2.3 + 0.128 log
t2
2π
,

valid when t2 > t1 > 168π, and uses this to bound S(gm) as follows. For all k > 0,

− 1−
2.3 + 0.128 log(gm/2π) +

∑k−1
j=1 hm−j

gm − gm−k

≤ S(gm) ≤ 1 +
2.3 + 0.128 log(gm+k/2π) +

∑k−1
j=1 hm+j

gm+k − gm
.
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4.2 Odlyzko’s Methods

The Odlyzko-Schönhage algorithm improved calculation speed by a factor of 105 versus

a straightforward implementation of the Riemann-Siegel formula. The implementation of

the algorithm has several key components.

Odlyzko’s methods prior to the Schönhage collaboration involved two steps. The first

was to locate Gram blocks and search for the expected number of roots of Z(t) in each

block, establishing sign changes of Z(t), and refining the vertical location of the roots with

repeated computations of increasing accuracy. The second step was to evaluate Z(t) at

t± 8× 10−9 for each possible root t, establishing that the sign change of Z(t) was indeed

at t or, in the case when this check failed, leading to the recalculation of the zero with an

even higher precision algorithm.

Recall that on the line σ = 1/2, we have

ζ(1/2 + it) = e−iθ(t)Z(t).

As t goes to infinity, θ(t) satisfies the asymptotic formula

θ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+O(t−5)

where the terms in the expansion are given by a formula involving the Bernoulli numbers

(see e.g. [11]). The Riemann-Siegel Z-function is a real-valued function of the real variable

t (see (1.2); the formula used here is slightly different) and satisfies the Riemann Siegel

expansion

Z(t) = 2

ν(t)∑
n=1

cos(θ(t)− t log n)√
n

+R(t) (4.1)

R(t) = (−1)ν(t)−1
(
t

2π

)− 1
4

M∑
j=0

(−1)j
(
t

2π

)− k
2

Φj(z) +RM(t), (4.2)

with RM(t) = O(t−(2M+3)/4), and where z = 2(t − ν(t)) − 1 and the other notations are

as in (1.2).
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The first few Φj(z) are given by

Φ0(z) =
cos(1

2
πz2 + 3

8
π)

cos(πz)

Φ1(z) =
1

12π2
Φ

(3)
0 (z) (4.3)

Φ2(z) =
1

16π2
Φ

(2)
0 (z) +

1

288π4
Φ

(6)
0 (z).

For j > 2 the expression for Φj(z) becomes complicated. However, explicit bounds for

RM(t) have been found and we have

|R0(t)| ≤ 0.127t−3/4, |R1(t)| ≤ 0.053t−5/4, |R2(t)| ≤ 0.011t−7/4.

Thus the choice M = 1 allows an absolute precision of Z(t) smaller than 2 × 10−14 for

zeros above the 1010th zero, which is sufficient to locate the zeros.

4.3 Odlyzko-Schönhage Algorithm

The Odlyzko-Schönhage algorithm, still based on the Riemann-Siegel formula, has three

main improvements to the computational methods just described. First is the application of

the Fast Fourier Transform to greatly speed up computations. Second is a new method of

rational function evaluation that allows the rapid evaluation at many points simultaneously.

The method is based on Taylor series expansions around a small set of points. Third,

the authors show that evaluation of ζ(σ + it) for t in a short interval can be reduced to

evaluating simple exponential sums at an evenly spaced grid of points [20].The Odlyzko-

Schönhage algorithm allows Z(t) to be evaluated efficiently in a range T ≤ t ≤ T + ∆,

where ∆ = O(
√
T ). Then we have

Z(t) =

k0−1∑
n=1

cos(θ(t)− t log n)√
n

+ <(e−iθ(t)F (t)) +
m∑

n=k1+1

cos(θ(t)− t log n)√
n

+R(t)

where R(t) is as above and F (t) is a complex function given by

F (t) = F (k0 − 1, k1; t) :=

k1∑
k=k0

exp(it log k) (4.4)
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where k1 = b
√
T/(2π)c and k0 is a fixed integer. For a fixed range [T, T + ∆], the values

k0 and k1 are fixed and the majority of computing time is taken to compute F (k0−1, k1; t).

The algorithm evaluates F (t) at evenly spaced values

t = T0, T0 + δ, . . . , T0 + (R− 1)δ

by computing the discrete Fourier transforms

uk =
R−1∑
j=0

F (T0 + jδ)ω−jk, ω = exp(2iπ/R),

for 0 ≤ k < R. Thus by inverse Fourier transform,

F (T0 + jδ) =
1

R

R−1∑
k=0

ukω
jk.

The values F (T0 + jδ) are obtained via Fast Fourier Transform (FFT) from the values uk;

values of R are taken to be powers of 2 to make this more efficient. By rearranging (4.4),

we can write uk = ωkf(ωk), where f(z) is given by

f(z) =

k1∑
k=k0

ak
z − bk

, bk = eδ log k, ak =
eiT0 log k

k1/2
(
1− eiRδ log k

)
. (4.5)

Here Odlyzko uses a Taylor series expansion on the variable z found in ak/(z − bk) (see

[20] for a detailed description).

4.4 Gourdon’s Optimization

In work described in an unpublished 2004 article [13], Xavier Gourdon verifies the Rie-

mann Hypothesis for the first 1013 zeros1and also computes two billion zeros starting with

index 1024.

The principal difference in Gourdon’s approach is to use Chebychev interpolation in

place of Taylor series at the step outlined at (4.5) above. Specifically, where Odlyzko uses

a Taylor series of the complex variable z of ak/(z − bk), Gourdon’s approach is to use
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Chebyshev interpolation of the function ak/(eiθ − bk) for real θ. Taking as abscissas the

points

αj = θ0 + Lγj, γj = cos
(2j + 1)π

2N

for the interval [θ0 − L, θ0 + L], the resulting interpolating polynomial of a function G(θ)

on this interval is

PN,θ0,L(θ) =
N−1∑
j=0

G(αj)RN(θ)

R′N(αj)(θ − αj)
,

where RN(θ) =
∏N−1

j=0 (θ − αj).

4.5 Long-Range Correlations

Odlyzko chose not to investigate δn + δn+1 + · · ·+ δn+k for k > 1. Already the behaviour

of δn + δn+1 varied from the GUE prediction compared to δn. He found that higher order

spacings were related to the distribution of primes rather than with the GUE.

Specifically, define the autocovariances of a set of δn be given by

ck(H,M) =
1

M

H+M∑
n=H+1

(δn − 1)(δn+k − 1).

An unpublished conjecture by Dyson, namely that ck would be approximately −1/2π2k2

for positive k was found to be true only for smaller and intermediate k. Correlations at

larger k values were better explained through a formula by Landau relating to the primes:

N∑
n=1

eiγny =

−
γN
2π
e−y/2 log p+O(ey/2 logN) if y = log pm,

O(e−y/2 logN) if y 6= log pm,

1Empirical results such as these lead to improved bounds on number theoretic functions. A line of in-
vestigation beginning with Rosser in 1941 uses the verification of the Riemann Hypothesis on the first
n critical zeta zeros to derive explicit estimates on certain number theoretic functions without assuming
RH. Rosser and Schoenfeld used verification of RH for zeros up to index 3,502,500 to prove that for
x > 1.04 × 107, |ψ(x) − x| < 0.0077629 x

log x , and |θ(x) − x| < 0.0077629 x
log x . More recently Ra-

maré and Saouter ([24]) used verification of RH up to height 3.3× 109 to prove the following: for every real
number x ≥ 10, 726, 905, 041, there exists at least one prime number p such that
x
(

1− 1
28,314,000

)
< p ≤ x.
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for fixed y > 0 and as N → ∞ (see [21]). The formula forces the spectrum of the δn to

consist of point masses at frequencies which correspond to prime powers, which then leads

to the behaviour of the ck observed in Odlyzko’s calculations.

4.6 Conclusions and Summary

The agreement between the known GUE distribution and the statistics calculated from

Odlyzko’s computed zeros is "generally good, and improves at larger heights" according

to Odlyzko [19]. This modest statement leaves room for doubt on results that are in fact

strong enough to become known as the Montgomery-Odlyzko law [32]; in part this is due

to the fact that even as high as computationally possible up the critical we go, we are far

from having a limiting distribution.



Chapter 5

Further Connections

In this chapter a very nontechnical outline of several recent approaches relating random

matrices to the Riemann zeta function is presented. The results in Chapters 3 and 4 on

the distribution of zeta zeros up the critical line demonstrate that the normalized GUE

spacing provides a very accurate match to the nontrivial zero spacings. The circular matrix

ensembles are invaluable in physical modeling and interesting in their own right. The

spectral interpretation of Riemann zeros (the Hilbert-Polya approach) will be discussed, as

will the log-normality of |ζ(s)| and a result concerning the apparent repellence of nontrivial

zeta zero differences by the heights of the zeros.

5.1 Circular Ensembles

Dyson introduced the circular ensembles to address some deficiencies in the Gaussian en-

sembles, such as the unequal weighting of matrix elements in the GUE.

To define the Circular Unitary Ensemble (CUE), characterize a system by a unitary ma-

trix S giving the transition probabilities between states. The eigenvalues of unitary matrices

take the form eiθj for angles 0 ≤ θ < 2π. The relation between S and the Hamiltonian H

can be imagined as

S = eiτH or S =
1− iτH
1 + iτH

but only for a short range of energy levels.

A CUE matrix S is invariant under the transformation S → USV where U, V are any

44
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unitary matrices satisfying S = UV.

Mehta demonstrates (see [17]) that in the limit N → ∞, the n-level correlation and

cluster functions for finite n are identical to those of the GUE. The same holds when com-

paring GOE to COE, and GSE to CSE.

In fact, the relationship between Dyson’s CUE, COE, and CSE and the GUE, GSE and

GOE is a fascinating one involving Cartan’s classical compact irreducible symmetric spaces

(see Katz and Sarnak, [15] for an excellent account). The CUE corresponds to U(N), the

COE to U(N)/O(N), and the CSE to U(2N)/USp(2N). Interestingly, the GUE is de-

fined on the non-compact dual space of U(N), which is GLN(C)/U(N); and similarly the

GOE is defined on GLN(R)/O(N), the non-compact dual of U(N)/O(N), and the GSE

is defined on U∗(2N)/USp(2N), the non-compact dual space of the U(2N)/USp(2N).

The pair correlation of eigenvalues on random unitary matrices may be given with re-

spect to Haar measure on U(N) as follows:

lim
N→∞

1

N

∫
U(N)

∑
1≤j,k≤N
j 6=k

f

(
N

2π
(θj − θk)

)
dAHaar =

∫ ∞
−∞

f(u)

(
1−

(sin πu

πu

)2)
du,

where eiθ1 , . . . , eiθN are the eigenvalues of A ∈ U(N).

Theorem 5.1. In the ensemble Eβc the probability of finding an eigenvalue of S in each of

the intervals (θj, θj + dθj), j = 1, . . . , N is given by

PNβ(θ1, . . . , θN)dθ1, . . . , dθN ,

where

PNβ(θ1, . . . , θN) = C ′Nβ
∏

1≤l<j≤N

|eiθl − eiθj |β.

Where β = 2 in the unitary ensemble case and β = 1, 4 in the orthogonal and symplectic

ensemble cases, respectively, and C ′Nβ is a constant which will disappear upon normaliza-

tion

This is to show the match between the circular and gaussian ensembles. Mehta further

proves that the n-level correlation function is

Rn(θ1, . . . , θn) = det[Sn(θj − θk)]j,k=1,...,n,
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and that level density is thus

R1(θ) = SN(0) =
N

2π
.

Similar results hold for the n-level cluster function of the circular ensembles, and in partic-

ular Mehta shows that for the CUE,

T2(θ1, θ2) =

(
sin πr

πr

)2

,

so that the limiting distribution again matches when comparing the circular ensemble as

compared to the gaussian ensemble.

5.2 Riemann Zeros and the Spectral Interpretation

The analogy between Riemann Zeros and physics has a history going back at least to the

1910s (see [27]) and the Hilbert-Polya conjecture, which states the possibility that a Her-

mitian operator exists with Riemann zeros as its eigenvalues. Much work since then has

expanded on this approach in several ways, where different physical systems are taken as

bases for the analogy to the mathematical ζ-function. The Hilbert-Polya conjecture posits

that the nontrivial zeros of the Riemann zeta function may correspond to the eigenvalues of

a self-adjoint linear operator (a Hamiltonian, H). While attempts to find such an operator

explicitly have failed, much progress has been made in this direction (see for example the

work of Connes, [7]).

Using a similarity between fluctuations of the counting function for the Riemann zeros

(see e.g. [2]),

N (t) =
∞∑
n=1

Θ(t− tn),

where Θ denotes the unit step function, and vibration frequencies for a chaotic dynamical

system, the function N (t) may be decomposed into a smooth part and a fluctuating part:

N (t) = 〈N (t)〉+Nfl(t),

where the smooth part is

〈N (t)〉 =
θ(t)

π
+1 =

1

π

[
arg Γ

(
1

4
+

1

2
it

)
− 1

2
t log π

]
+1 =

t

2π
log

(
t

2πe

)
+

7

8
+O

(
1

t

)
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and the fluctuating part is

Nfl(t) =
1

π
lim
ε→0
= log ζ

(
1

2
+ it+ ε

)
.

Formally substituting the Euler product (1.1) for ζ(s) into the above expression gives

Nfl(t) = − 1

π
=
∑
p

log

{
1− exp(−it log p)

√
p

}
(5.1)

= − 1

π

∑
p

∞∑
m=1

exp(−1
2
m log p)

m
sin(tm log p). (5.2)

In this way the fluctuations are seen as oscillatory contributions from the prime powers pm,

exponentially decreasing for fixed p as m increases. A prime p has a t-period

τp =
2π

log p

equivalent to a wavelength in a physical system, which we compare to the following (see

[8]). Let N(E) be the number of eigenvalues λ of the Hamiltonian H , a quantum me-

chanical system obtained by quantizing a certain classical system. Then here we may also

decompose N(E) into a smooth and a fluctuating part:

N(E) = 〈N(E)〉+Nfl(E),

and the fluctuating part may be expanded asymptotically as

Nfl(E) ∼ 1

π

∑
γ

∞∑
m=1

1

m

1

2 sinh
(mλγ

2

) sin(T#
γ mE) (5.3)

where the first sum is over periodic orbits γ and and an orbit γ has period T#
γ and instability

exponent λγ . The similarity between (5.2) and (5.3) is striking and has been both enticing

and frustrating for researchers such as Connes, as the sign difference is not easily accounted

for in the spectral interpretation ([8]).

5.3 A central limit theorem and a promising conjecture

A theorem of Selberg (see [21]) is as follows
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Theorem 5.2. For any rectangle B ⊂ C,

lim
T→∞

1

T
#

{
t ∈ [T, 2T ] :

log ζ(1/2 + it)√
(log log T )/2

∈ B

}
=

1

2π

∫∫
B

exp(−(x2 + y2)/2)dxdy.

This gives a Gaussian distribution of the real and imaginary parts of

log ζ(1/2 + iT )/
√

(1/2) log log T ,

independent from one another and with unit variance and zero mean, in the limit as T goes

to infinity. Thus we can compare this to the distribution given by random matrix theory.

Let Z(U, θ) be the characteristic polynomial for the CUE. Keating and Snaith show that

< logZ
√

1/2 logN and= logZ/
√

1/2 logN independently tend to Gaussian distributions

with mean 0 and variance 1 in the limit as N goes to infinity, providing a sort of central

limit theorem as with Selberg’s above for the Riemann zeta function. Thus to make a

comparison between this ensemble’s eigenvalue distribution and computed statistics of the

zeta zero distribution, they associate N with log(T/2π) and choose the appropriate N .

Using Odlyzko’s computations [21] around height 1020, with t ≈ 1.5×1019, the appropriate

value for N is 42. Interestingly, while both the computed distribution of < log ΛA for

matrices in U(42) and the distribution of < log ζ(1/2 + it) near the 1020th zero deviate

slightly from their asymptotic normal distribution (when scaled to have variance 1), the

two curves match one another perfectly, and indication that the two limiting distributions

(as N → ∞ and as log(T/2π) → ∞ respectively) approach the asymptotic limit at the

same rate. The formula by Keating and Snaith obtain a similar formula for U(N)[28]:

Theorem 5.3. For any rectangle B ⊂ C,

lim
N→∞

meas

A ∈ U(N) :
log ΛA(eiθ)√

1
2

logN
∈ B

 =
1

2π

∫∫
B

exp(−(x2 + y2)/2)dxdy,

where ΛA is the characteristic polynomial of the unitary matrix A:

ΛA(s) = det(I − A∗s) =
N∏
n=1

(
1− se−iθn

)
.

Some conjectures involving very complicated integrals over ratios of ζ(s) such as the

following example by Conrey, Farmer, and Zirnbauer (given in [28]) provide evidence for

very deep connections between ζ(s) and random matrices:
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Conjecture 5.4. Let −1/4<(α),<(β) < 1/4, 1/ log T � <(γ),<(δ) < 1/4,

=(α),=(β),=(γ),=(δ)�ε T
1−ε for any ε > 0, and s = 1/2 + it. Then∫ T

0

ζ(s+ α)ζ(1− s+ β)

ζ(s+ α)ζ(1− s+ δ)
dt (5.4)

=

∫ T

0

(
ζ(1 + α + β)ζ(1 + γ + δ)

ζ(1 + α + δ)ζ(1 + β + γ)
Aζ(α, β; γ, δ) (5.5)

+ e− log t
2π (α + β)

ζ(1− α− β)ζ(1 + γ + δ)

ζ(1− β + δ)ζ(1− α + γ)
Aζ(−β,−α; γ, δ)

)
dt+O(T 1/2+ε), (5.6)

where

Aζ = (α, β; γ, δ) =
∏
p

(1− 1/p1+α+β)(1− 1/p1+γ+δ)

(1− 1/p1+α+δ)(1− 1/p1+β+γ)

∫ 1

0

(
1− e(θ)

p1/2+γ

)(
1− e(−θ)

p1/2+δ

)
(

1− e(θ)

p1/2+α

)(
1− e(−θ)

p1/2+β

)dθ
and e(θ) = e2πiθ.

The conjecture has a strong analogy with a theorem which the same authors proved (see

[9]):

Theorem 5.5. For <(γ),<(δ) > 0,∫
U(N)

ΛA(e−α)ΛA∗(e
−β)

ΛA(e−γ)ΛA∗(e−δ)
dAHaar =

z(α + β)z(γ + δ)

z(α + δ)z(β + δ)
+ e−N(α+β) z(−α− β)z(γ + δ)

z(−β + δ)z(−α + γ)
,

where z(x) = 1/(1− e−x).

Some of the strength of this analogy comes from the consideration that both z(x) and

ζ(1 + x) have poles at x = 0 with residue 1. Thus with N corresponding to log(t/2π), the

symmetry of the two formulae is apparent, lending further strength to the random matrix

theory-Riemann zeta function correspondence.

Snaith [28] gives a theorem, assuming the above conjecture, which sheds light on the

question of zeta zero differences "repelling" zeta zeros.

5.4 Zero-Repulsion Phenomenon

A statistical analysis of low-lying zeros (see for example [22]) seems to indicate that the

gaps between non-normalized, non-trivial Riemann zeros 1/2 + iγ are repelled by the
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values taken by the imaginary parts γ. That is to say it that plots of values γj − γk, for all

pairs j, k less than some fixed n, show distinctive local minima around the values 14.13,

21.02, 25.01, 30.42, etc. which the reader might recognize as the first few non-trivial

Riemann zeros. However, examination of zeros higher up the critical line shows that this

relationship is not as simple as for lower on the critical line. At sufficiently high ranges it

becomes apparent that while Riemann zeros occur frequently within a short distance from

local minima in the distribution of pair spacings, they do not exhibit the close match that

occurs at short heights. Rather, what is responsible for this phenomenon seems to come

from two facts. First, the lower Riemann zeros occur when local minima of |ζ(1 + it)|
occur. Second, if we accept Conjecture 5.4 then following theorem of Snaith (see [28])

holds:

Theorem 5.6. For f a suitable, even test function and assuming Conjecture 5.4, we have∑
0≤γj ,γk≤T

f(γj − γk) =
1

(2π)2
<
[
2T

(
ζ ′

ζ

)′
(1 + iX)− 2T ·B(iX) + T

(
log

T

2π

)2

−2T log
T

2π
+ 2T +

2ζ(1− iX)ζ(1 + iX)A(iX)

(2π)iX

(
T 1−iX − 1

1− iX

)]
,

where

A(s) =
∏
p

(
1− 1

p1+s

)(
1− 2

p
+

1

p1+s

)(
1− 1

p

)−2
,

B(s) =
∑
p

(
log p

p1+s − 1

)
,

While the expression is very complicated, an examination of the formula reveals, as-

suming the theory is correct, the influence of ζ(1 + it) on the pairwise distribution of zeta

zeros.

5.5 3,4, and n-point correlations

In [3], Bogomolny and Keating extend Montgomery’s approach to 3- and 4-point correla-

tions of the non-trivial Riemann zeta function and show that these, too, are identical to the

equivalent correlation functions of the Gaussian Unitary Ensemble. In [4] the same authors

extend the same results to all n.
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5.6 Conclusions

The last two decades have seen an explosion in work connecting random matrix ensem-

bles to L-functions and in particular the Riemann ζ-function. While these approaches as

of yet hold no promises of a proof (or disproof) of the Riemann Hypothesis, the spectral

interpretation of the Riemann zeta function has been strengthened in many ways. Mean-

while the the rich and growing body of correspondence between random matrix theory and

number theory has immense theoretical value in its own right, and the theory on both the

mathematical and physical side continues to grow deeper an broader.
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