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Abstract

Many practical projects collect data without a careful study design. This, together

with possible inappropriate statistical approaches used in data analysis, may result in

questionable study conclusions. A fishery study, which intended to develop the site-

specific bioaccumulation factor relationships between the selenium concentration in fish

tissue and water, is an example of such projects and partly motivated this thesis project.

We analyze the study’s data with alternative statistical models to address the concerns

raised in the study review by Dr. Carl Schwarz. Further, aiming at providing a useful

guideline on data collection, we conduct a simulation study with various settings to

explore the efficiency loss in data analysis caused by data incompleteness.

Keywords: Linear Mixed Effects Model; Simulation; Unbalanced Data; Univariate and

Multivariate Response.
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Chapter 1

Introduction

Many practical projects may collect data with inappropriate or cost inefficient sampling

methods. This often yields lack of sufficient data to draw meaningful conclusions. Fur-

ther, the statistical data analyses of the projects are not always sound. The fishery

study [2] exemplifies the situations, we refer to this study as GA 2009 in the following.

In the report, the authors intended to develop statistical relationships of interest, but

their approach for data analysis could have been improved. This partially motivated my

project.

In the following of this chapter, we present first a brief review of GA 2009. It includes

the data collection process, the structure of the collected data, the data analysis and

their main results. Concerns about the report are then provided and used to motivate

our statistical investigation. Finally we outline the rest of this project.

1.1 Review of GA 2009

1.1.1 Background

In GA 2009, the researchers found that the mining activities have accelerated the re-

lease of native selenium (Se) into the water, resulting in increase of Se concentration

in the water. This could result as the Se concentration in the fish body also increases.

Previous studies have been conducted in the same area over years to compile measure-

ments of water, fish egg (or ovary) and fish diet Se concentrations. Researchers tried to

develop a bioaccumulation factor (BAF) relationships between fish tissue and water Se

concentrations. This is the primary study goal of the study.

1



CHAPTER 1. INTRODUCTION 2

1.1.2 Data Collection

The data were from previous studies conducted from year 1996 to 2008. The studies

collected measurements of the Se concentration of different water body (lakes or rivers

where the water samples were collected) among the area, and the Se concentrations of

selected fish tissues. Each selected fish was measured at up to three different tissue

types: whole body, muscle and egg. The fish species included in GA 2009 were denoted

as W, M and L. Some potential predictors were also measured for further data analysis,

such as the weight and length of a fish, the concentration level for chemical elements like

sulphur, or the Se concentration level in the fish dietary, etc.

Data Structure

In the study, the authors compiled the data collected by other researchers over the past

years from various sites (lakes or rivers) in the area. Each lake has its own ecosystem

type of lentic or lotic (lentic refers to standing or still water such as lake, lotic involves

flowing terrestrial waters such as rivers and streams). Table 1.1 summarizes the years

when the water Se concentration has been measured for each lake (labeled as A1∼C9).

In total, there were 27 lakes selected for fish sampling. The time range is wide but there

is a gap between the year 1996 and 2001. The majority of the lakes had only water

Se concentration measured at one year. Lake B7 is the one with most measurements,

collected in 5 years. This shows that the data set in GA 2009 is heavily unbalanced.

This unbalanced data set was likely due to the fact the data were collected by different

researchers with different study goals.

For a further view of the data set, a summary of the numbers of fish sampled from each

lake at each year is presented in Figure A.1. A summary of the number of observations

(Se concentration in fish tissue) and number of predictors (Se concentration in water)

at each year is given in Table A.1. We can see a heavy imbalance in the data from these

tables.

1.1.3 Response and Predictor Variables

GA 2009 stated that developing the BAF relationship of Se concentration between fish

tissue and water is of the primary interest. The response variable is the fish Se concen-

tration and all the other factors presented in the study are considered as the potential



CHAPTER 1. INTRODUCTION 3

Lake Name Year Ecosystem
A1 2003, 2006 Lotic
A2 2002, 2006 Lentic
A3 2008 Lentic
A4 2008 Lentic
A5 2002, 2005, 2006 Lentic
A6 2008 Lotic
A7 2008 Lotic
A8 2006 Lentic
A9 1996 Lotic
B1 1996, 2001 Lotic
B2 2001, 2002, 2006 Lotic
B3 2006 Lotic
B4 2006 Lotic
B5 2006 Lentic
B6 2002 Lentic
B7 1996, 2001, 2002, 2003, 2006 Lotic
B8 2002, 2004, 2005, 2006 Lentic
B9 2008 Lotic
C1 2006 Lentic
C2 2008 Lentic
C3 2001, 2002, 2003, 2006 Lotic
C4 2001, 2002 Lotic
C5 2001 Lotic
C6 2006 Lotic
C7 2008 Lotic
C8 2005 Lentic
C9 2001, 2002, 2004, 2005 Lotic

Table 1.1: Information on Lakes in GA 2009

predictor variables. The response and predictor variables are listed as follows.

Responses

The response variable is the Se concentration level for various tissue types within each

individual fish. Table 1.2 gives a summary of the response information.

Tissue Type Abbreviation Units Se Concentration Range
Whole body WB µg/g dw 0.34 to 2.20
Muscle MUSC µg/g dw 0.34 to 2.20
Egg EGG µg/g dw 0.34 to 2.20

Table 1.2: Information on Response Variable in GA 2009

The response values, the Se concentration in water and the Se concentration in fish

dietary had been log-transformed in order to let the data to have a normal distribution.
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No transformation were done on the other predictors.

A summary of the number of observations and number of predictors for each tissue type

is given in Table A.2. The tissue types muscle and egg have close number of observations

recorded (263 for muscle, 277 for egg), while whole body only has 114 observations.

Predictors

As mentioned before, the main goal of GA 2009 is to develop BAF relationships between

fish tissue Se concentration and water Se concentration. Therefore the water Se con-

centration is the predictor variable with the most interest. The data set also included

a number of other potential predictors, which are summarized in Table 1.3. (negative

values presented due to log transformation on the original data)

Predictor Name Abbreviation Units Value Range
Categorical Variables
Species n/a A, B and C
Ecosystem type n/a lentic and lotic
Tissue type n/a egg, muscle and whole body
Fish Characteristics
Sex sex n/a female or male
Age age years 1 to 16
Fork length FL mm 100 to 465
Wet weight WW g 9.4 to 1306
Stream Characteristics
Stream order ord ordinal 4 to 6
Stream length len km 19.76 to 213.43
Stream magnitude mag ordinal 56 to 1745
Fish richness rich ordinal 1 to 15
Water Quality Variables
Water Se SeWater µg/L -1 to 1.91
Sulphur S mg/L 0.2 to 86.95
Sulphate SO4 mg/L 1 to 302
Phosphate PO4 mg/L 0.006 to 0.28
Ammonia NH3 mg/L 0.0025 to 0.031
Dissolved organic carbon DOC mg/L 0.25 to 4.8
Total organic carbon TOC mg/L 0.69 to 6.5
Total organic phosphorous TOP mg/L 0.0039 to 0.0114
Hardness H mg CaCO3/L 89.99 to 515.27
pH pH pH units 7.7 to 8.35
Conductivity cond µS/cm 167.42 to 859.65
Total dissolved solids TDS mg/L 99.28 to 620.43
Total suspended solids TSS mg/L 2 to 15.87
Turbidity turb NTU 0.45 to 7.88
Dietary Se

Benthos Se Seinvert µg/g dw 0.176 to 1.490
Periphyton Se Seperi µg/g dw -0.509 to 0.279

Table 1.3: Information on Predictor Variables in GA 2009
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1.1.4 Main Results from GA 2009

In the appendix of GA 2009, the authors gave a summary of their analysis results.

The analyses were conducted under linear regression model with fish tissue, species and

ecosystem fixed. Although the authors did not explicitly specify the model in GA 2009,

it can be inferred from the report as:

Seijk = β0 + β1SeWaterij +
Q∑
q=1

βqYijq + εijk , (1.1)

where Seijk stands for the tissue (fix one) Se concentration for the kth fish sampled from

the ith lake at the jth year, SeWaterij denotes for the water Se concentration for the

ith lake at the jth year, Yijq refers to a set of other potential predictors, and εijk’s are

assumed to be i.i.d. with distribution N(0, σ2
ε ).

The following are the main findings based on model 1.1 from GA 2009, with Se concen-

tration in fish tissue the responses variable and Se concentration in water the predictor

variable of main interest.

For species W: significant BAF relationships were identified for all three tissue types

in both lentic and lotic systems.

For species L: significant BAF relationships were identified for whole body Se con-

centration in lentic systems only.

For species M: significant BAF relationships were identified for all three tissue types

in lotic system.

1.2 Discussion on GA 2009

Dr. Carl Schwarz in his review on GA 2009 ([9]) raised quite a few concerns. We cite

some of his comments along with our understanding in the following.

1.2.1 Not Accounting for Pseudo-replication

In GA 2009, the authors did not explicitly explain the sampling design. We can infer it

from their comments and associated plots as follows. First, a lake was selected at a time
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point (year). Then multiple fish were sampled from that lake. Therefore the fish collected

from each lake at a time point should be treated as pseudo-replicates ([3]) rather than

true replicates. Otherwise, it leads to the confounding of sampling error and process

error ([9]). Sampling error is the variability in Se concentration among fish sampled

from the same lake, and the process error occurs when the average Se concentration of

fish sampled from the same lake do not lie on the underlying regression line. We will

show this aspect later in Chapter 2.

The analyses in GA 2009 assumed that there is no process error. However, the residual

plots in the appendix of GA 2009 reveal strong evidence of the occurrence of process

error.

1.2.2 Dealing with Missing Covariates

For the available data set corresponding to GA 2009, the responses and predictors have

missing values in different proportions. In the analysis procedure of GA 2009, whenever

a covariate has a missing value, then that individual observation is removed from the

data set. Therefore the data set becomes smaller and smaller as more predictors are

added. Analyzing data using this approach does not fully extract the information in

the data, and therefore reduce the generality and predictive power of the resulting BAF

models. One can adapt the approach presented in [7] to impute the missing covariates.

The imputation procedures use the relationships among the predictors to extract more

information from the data set.

1.2.3 Dealing with Multivariate Responses

Although each fish may have multiple responses in GA 2009, the authors analyzed

data associated with different responses separately. However, there is strong correla-

tion among the responses. Analyzing the measurements in univariate way ignores this

information.

Dividing the analyses among species and environment was done probably for the same

reason, the heavily imbalanced data. In fact there are strong relationship between the

Se concentration in different species or environments, this information is ignored by the

authors. A mixed model analysis can be done with multivariate response data ([11]).

These considerations partly motivated my thesis project.
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1.3 Outline of the Thesis

We started with analyzing the fishery data from GA 2009 with linear mixed effects

models, considering both univariate and multivariate responses. SAS was used in the

analyses. To explore the inefficiency in the analysis led by the imbalanced data, we

conducted simulations with various settings. The simulated data were generated and

analyzed by R.

The rest of this thesis is organized as follows. In Chapter 2, the linear mixed effects

models are introduced to address the issues mentioned in 1.2.1 and 1.2.3. In Chapter

3, we show the information loss due to unbalanced data set by a simulation study with

different settings. In Chapter 4, we make some final remarks.



Chapter 2

Data Analysis

To address the issues mentioned in section 1.2, we analyzed the data in GA 2009 by

the linear mixed effects modeling approach ([1], [10]). This chapter presents our data

analyses. (Refer to Appendix C.1 for related SAS codes)

In 2.1, we will discuss under univariate data analysis under various models, model as-

sessment with concerns will be given. In 2.2, we will consider a more general model

with multivariate response (tissue types of a fish) under the same models with explicitly

specified covariance structure for random errors within each fish. Finally, in 2.3, we will

present a small example of using the multiple imputation method to impute the missing

covariates.

Remark: In GA 2009, relatively few data were available for species L (with number of

observations 60) and there were no data for the Se concentration of the muscle tissue.

There were no data for species M available from the lotic ecosystem. Species W has

relatively larger sample size and was available in both ecosystems and all tissue types,

therefore we focus on species W for development of BAF relationships.

The missing proportion for the predictor water Se concentration is very low (as shown

in Table 2.16), therefore we ignore these observations associated with missing water Se

concentration in the data analysis.

2.1 Univariate Data Analysis for Each Tissue Type

We only include the Se concentration in water as the only predictor variable in the

following models.

8



CHAPTER 2. DATA ANALYSIS 9

2.1.1 Analyzing Data Under Simple Linear Regression Model

Notation

Use i for index of lakes, referring to the lakes in Table 1.1; j for index of years, referring

to the years from 1996 to 2008; k for index of selected fish. Denote the fish tissue Se

concentration of current interest for the kth fish sampled from the ith lake at the jth

year by log(SeTissue)ijk ; the water Se concentration for the ith lake at the jth year by

log(SeH2o)ij .

For a particular fish tissue type, the linear fixed effects model is specified as

log(SeTissue)ijk = β0 + β1 log(SeH2o)ij + εijk , (2.1)

where the random error terms εijk’s (within lake variation) are independent with distri-

bution N(0, σ2
ε ).

Under the model 2.1, fix the tissue type to be EGG, we analyzed the data using SAS.

Table 2.1 summarizes the analysis results (sample size: 194), R2 and AICc criterion are

also given.

Remark: R2 is defined as the coefficient of multiple determination as [5]:

R2 =
SSR

SSTO
= 1− SSE

SSTO

where SSE and SSTO stand for the error sun of squares and total sum of squares re-

spectively. It is between 0 and 1, the larger R2 is, the ”better” the model is.

AIC stands for the Akaike’s information criterion and is defined as [5]:

AIC = n lnSSE − n lnn+ 2p

where n is the sample size and p is the number of parameters. AICc is AIC with a

correction:

AICc = AIC +
2p(p+ 1)
n− p− 1

AICc is recommended when n is small or p is large, and it converges to AIC when n gets

large. Here we just use AICc, but AIC is also proper. We search for models with the

smallest AICc criterion based on the same data set. Note that this criterion does NOT
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tell us how well a model fits the data set.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.965 0.032 185 30.4 < 0.0001
log(SeH2o) 0.394 0.026 185 15.12 < 0.0001
Covariance Parameters Estimates
Cov Parm Estimate Standard Error
Residual 0.086 0.009

R2 0.55 AICc 76

Table 2.1: Results under Model 2.1: Egg Tissue

In SAS whenever a missing covariate presents, the whole observation associated with

that covariate will be removed. For the EGG tissue, there are 7 missing observations

for water Se concentration, which results the number of observations used in the data

analysis is 187.

Figure A.2 shows the residual plot (residuals versus predicted values) under model 2.1,

no systematic pattern was shown, i.e. there is no evidence against the linearity and

constant variance of random errors for model 2.1 in this case.

Figure A.3 shows the normal quantile-quantile plot of residuals under model 2.1. It

shows the residuals do have a normal distribution.

Figure A.4 shows the plot of the data with the linear regression line. The plot shows

the sampling error and process error aspects. Sampling error is the variability in the

Se concentration levels among the fish from the same lake, also referred as within lake

variance, as εijk in model 2.1. If there is no pseudo-replication occurs, we expect the

average Se concentration would lie on the underlying regression line. However, in Figure

A.4, notice the concentration of Se in the fish sampled from some lakes are either all

above or all below the regression line, this is called process error.

Under the model 2.1, fix the tissue type to be MUSC, Table 2.2 summarizes the analysis

results (sample size: 198).

Note: The corresponding plots with respect to the tissue type MUSC and WB are
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Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.773 0.021 196 37.4 < 0.0001
log(SeH2o) 0.282 0.021 196 13.4 < 0.0001
Covariance Parameters Estimates
Cov Parm Estimate Standard Error
Residual 0.057 0.006

R2 0.48 AICc -0.7

Table 2.2: Results under Model 2.1: Musc Tissue

omitted, they are available upon request.

For the residual plot under model 2.1, no systematic pattern was shown. There is no

evidence against the linearity and constant variance of random errors for model 2.1 in

this case. Also the normal quantile-quantile plot of residuals under shows the residuals

do have a normal distribution.

The plot of the data with the linear regression line again shows the sampling error and

process error aspects. In the plot, the concentration of Se in the fish sampled from some

lakes are either all above or all below the regression line due to process error.

Under the model 2.1, fix the tissue type to be WB, Table 2.3 summarizes the analysis

results (sample size: 60).

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.733 0.044 58 16.67 < 0.0001
log(SeH2o) 0.412 0.052 58 7.99 < 0.0001
Covariance Parameters Estimates
Cov Parm Estimate Standard Error
Residual 0.074 0.014

R2 0.52 AICc 18.4

Table 2.3: Results under Model 2.1: WB Tissue

For the residual plot under model 2.1, no systematic pattern was shown. There is

no evidence against the linearity and constant variance of random errors for model

2.1. However, the normal quantile-quantile plot of residuals somehow shows normality
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assumption of the residuals may be violated in the case of tissue type WB.

The plot of the data with the linear regression line shows even stronger process error

aspect than the previous two cases. In the plot, the concentration of Se in the fish

sampled from almost all the lakes are either all above or all below the regression line

due to process error.

Summary: Under model 2.1, the estimates of the intercept and slope remain unbiased.

However, the consequence of treating data as independent observations when they are

in fact dependent is that the estimates of statistical significance would be exaggerated,

i.e. using the simple linear regression model which is incorrect for data analysis of GA

2009 will increase the Type I errors typically. The reported estimates of the standard

errors of the parameters are also underestimated.

2.1.2 Analyzing Data on Average Se Concentration under the Simple

Linear Regression Model

One way to deal with pseudo-replication is to take the average Se concentration within

one lake and do a regression analysis on the averages. Some lakes may have water Se

concentration over several years, we use the average water Se concentration of all years

for those lakes.

For a particular fish tissue type, the linear fixed effects model on the average Se concen-

tration is specified as

log(MeanSeTissue)i = β0 + β1 log(MeanSeH2o)i + εi , (2.2)

where we denote the average fish tissue Se concentration for the fish sampled from the

ith lake by log(MeanSeTissue)i ; the average water Se concentration for the ith lake by

log(MeanSeH2o)i, the random error terms εi’s are independent with distributionN(0, σ2
ε ).

Under the model 2.2, fix the tissue type to be EGG, we analyzed the data using SAS.

The sample size of the data set is now reduced to 17. Table 2.4 summarizes the analysis

results.
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Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.955 0.056 15 16.95 < 0.0001
log(MeanSeH2o) 0.395 0.055 15 15.12 < 0.0001

Table 2.4: Results on Average under Model 2.2: Egg Tissue

Figure A.5 shows the plot of the data with the linear regression line. Notice that the

standard errors of the intercept and slope are larger than the ones obtained under model

2.1 while the estimates of the intercept and slope are very similar under the two models.

Under the model 2.2, fix the tissue type to be MUSC. The sample size of the data set is

reduced to 14. Table 2.5 summarizes the analysis results.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.758 0.059 12 12.75 < 0.0001
log(MeanSeH2o) 0.286 0.072 12 3.96 0.0019

Table 2.5: Results on Average under Model 2.2: Musc Tissue

From Table 2.5, we again found the obtained standard errors of the intercept and slope

are larger than the ones obtained under model 2.1.

Under the model 2.2, fix the tissue type to be WB. The sample size of the data set is

reduced to 11. Table 2.6 summarizes the analysis results.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.746 0.093 9 8.03 < 0.0001
log(MeanSeH2o) 0.403 0.109 9 3.70 0.0049

Table 2.6: Results on Average under Model 2.2: Wb Tissue

Again, the standard errors of the intercept and slope are larger than the ones obtained



CHAPTER 2. DATA ANALYSIS 14

under model 2.1.

Summary: This approach will give approximately correct standard errors and P-values,

however, it only provides information on the effect of Se in the water upon the average

concentration in fish. Further, in GA 2009, the number of fish measured in each lake

vary significantly. Estimates are still unbiased, but not fully efficient.

2.1.3 Analyzing Data under Linear Mixed Effects Model

An appropriate way to deal with pseudo-replication is using a mixed model analysis that

incorporates both sampling and process error. We can explicitly introduce a random

effect for lake i to account for the among lake variance.

For a particular fish tissue type, the linear mixed effects model with random lake inter-

cept is specified as

log(SeTissue)ijk = β0 + β1 log(SeH2o)ij + δ0i + εijk . (2.3)

In model 2.3, we assume the random effects associated with lakes δ0i’s are independent

with N(0, σ2
δ ). We also assume that δ0i and εijk are mutually independent.

Under the model 2.3, fix the tissue type to be EGG, we analyzed the data using SAS.

The REML (Restricted Maximum Likelihood) estimates of the intercept and slope along

with estimates of the variance components are given in Table 2.7.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.989 0.061 16.1 16.14 < 0.0001
log(SeH2o) 0.343 0.056 15.6 6.17 < 0.0001
Covariance Parameters Estimates
Cov Parm Subject Estimate Standard Error
Intercept Site 0.025 0.012
Residual 0.063 0.007

R2 0.69 AICc 46.8

Table 2.7: Results under Model 2.3: Egg Tissue

Figure A.6 shows the residual plot under model 2.3, no systematic pattern was shown.

Also comparing with the residual plot under model 2.1, we can see that when we take
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the among lake variance into account, the residuals now are approximately centered at

0 in general.

Figure A.7 shows the normal quantile-quantile plot of residuals under model 2.3. It

shows the residuals do have a normal distribution.

Comparing between the estimates and estimated standard errors for the intercept and

slope from Table 2.4 and Table 2.7, they are fairly close. Under model 2.1, the degree of

freedom for testing the intercept and slope is 185, which is the number of fish minus 2.

This is too large since the Se concentration levels in fish sampled from the same lake are

all correlated. Under model 2.2, the degrees of freedom are the number of lakes minus

2, which is more reasonable. Under model 2.3, the degrees of freedom for testing slope

is 15.6 (it is fractional since the number of fish differ among lakes). This number is close

to the number of lakes (17 in this case) minus 2.

The among lake variance (0.025) is much smaller than the within lake variance (0.063),

i.e. the sampling error is relatively large to the process error. This implies that for

future studies, it would be better to sample more fish per lake to obtain estimates with

smaller standard errors.

Under the model 2.3, fix the tissue type to be MUSC, the REML estimates of the

intercept and slope along with estimates of the variance components are given in Table

2.8.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.770 0.051 11.9 14.99 < 0.0001
log(SeH2o) 0.248 0.054 22 4.6 0.0001
Covariance Parameters Estimates
Cov Parm Subject Estimate Standard Error
Intercept Site 0.026 0.013
Residual 0.038 0.004

R2 0.67 AICc -49.7

Table 2.8: Results under Model 2.3: Musc Tissue

Note: The corresponding plots with respect to the tissue type MUSC and WB are



CHAPTER 2. DATA ANALYSIS 16

omitted, they are available upon request.

For the residual plot under model 2.3, no clear systematic pattern was shown. Comparing

with the residual plot under model 2.1, again, when we take the among lake variance

into account, the residuals are approximately centered at 0 in general. The normal

quantile-quantile plot of residuals shows the normality assumption of the residuals seems

questionable in this case.

Comparing between the estimates and estimated standard errors for the intercept and

slope from Table 2.5 and Table 2.8, they are quite similar. The among lake variance

(0.026) is less than the within lake variance (0.038), which implies that for future studies,

it would be better to sample more fish per lake to obtain estimates with smaller standard

errors.

Under the model 2.3, fix the tissue type to be WB, the REML estimates of the intercept

and slope along with estimates of the variance components are given in Table 2.9.

Fixed Effects Estimates
Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 0.830 0.095 8.9 8.75 < 0.0001
log(SeH2o) 0.245 0.098 19.3 2.49 0.022
Covariance Parameters Estimates
Cov Parm Subject Estimate Standard Error
Intercept Site 0.061 0.036
Residual 0.030 0.006

R2 0.83 AICc -7.4

Table 2.9: Results under Model 2.3: Wb Tissue

For the residual plot under model 2.3, no clear systematic pattern was shown. Com-

paring with the residual plot under model 2.1, when we take the among lake variance

into account, the residuals are approximately centered at 0 in general. The normal

quantile-quantile plot of residuals shows the normality assumption of the residuals seems

questionable in this case (with three outliers identified).

Comparing between the estimates and estimated standard errors for the intercept and

slope from Table 2.6 and Table 2.9, the estimates seem different (especially for slope),

the estimated standard errors are very close. The among lake variance (0.061) is twice

as the within lake variance (0.030), this is due to relatively small sample size of Se
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concentration in WB tissue.

Summary: Comparing the analysis results between model 2.1 and model 2.3, the esti-

mates for the intercept and slope are fairly close whereas the obtained estimated standard

errors under model 2.3 are generally larger than the ones obtained under model 2.1. Also,

based on the comparison between the AICc criterion of the two models for each tissue

type, we select model 2.3 as a more appropriate approach.

2.2 Multivariate Data Analysis

In GA 2009, each fish was measured up to three different tissue types. The responses

within each fish are probably correlated, therefore we need to consider a more general

model with multivariate responses to take this correlations into consideration. First we

present some scatter plots for the tissues.

2.2.1 Some Preliminary Plots

In GA 2009, each fish was sampled either from lentic or lotic ecosystem. In 2.1, we pulled

the data from both ecosystems together to increase the sample size. Here we show the

scatter plots under each of the ecosystems to see whether the ecosystem type has an

effect on the Se level in fish tissue.

Scatter Plots for Tissue Types

Figure A.8 shows the scatter plot under the lentic ecosystem. The plot shows there exist

very strong positive correlations among the fish tissue types. The Pearson correlation

coefficients given by SAS are:

ρEGG,MUSC = 0.90, ρEGG,WB = 0.94, ρMUSC,WB = 0.97

This implies the correlation between the responses are very similar under lentic ecosys-

tem.

Figure A.9 shows the scatter plot under the lotic ecosystem. The plot shows there exist

positive correlations among the fish tissue types (but not as strong as the case of lentic
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ecosystem). The Pearson correlation coefficients given by SAS are:

ρEGG,MUSC = 0.56, ρEGG,WB = 0.68, ρMUSC,WB = 0.83

This shows the ecosystem type may have an effect on the Se level in fish tissue. In this

project, we ignore the ecosystem effect to proceed our data analysis. However, one may

need to consider its effect in the future study.

Figure A.10 shows the scatter plot when we consider all data from both of the ecosystem

types. Again, the plot shows strong positive correlations among the tissue types. The

Pearson correlation coefficients given by SAS are:

ρEGG,MUSC = 0.87, ρEGG,WB = 0.94, ρMUSC,WB = 0.96

The correlation between the responses are very similar.

The sample standard errors of the three tissue types EGG, MUSC and WB are 0.44,

0.33 and 0.39 respectively. There is a difference for the variance of the Se level between

the tissue types, but not large.

2.2.2 Analyzing Data under the Simple Regression Model

Again, first we fit the data with linear fixed effects model, i.e. without accounting for

the process error. The estimators of the intercept and slope are different with respect to

different fish tissue types from the results of 2.1. Thus we consider the following model,

that is:

log(SeTissue)ijkl = β0 + β1 log(SeH2o)ij + β01MUSCijk + β02WBijk

+β11 log(SeH2o)ijMUSCijk + log(SeH2o)ijWBijk + εijk , (2.4)

where log(SeTissue)ijkl stands for the lth tissue Se concentration for the kth fish sampled

from the ith lake at the jth year (l = 1, 2, 3), log(SeH2o)ij is the water Se concentration

for the ith lake at the jth year, and MUSC and WB are two dummy variables (if tissue

type is MUSC, then MUSC equals 1, otherwise 0; also if tissue type is WB, then WB

equals 1, otherwise 0), εijkl is the random error term, since the responses are correlated

within fish as the scatter plots show us, we explicitly specify a covariance structure for
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εijkl, say Σε.

Based on the scatter plot, we propose Heterogeneous Compound Symmetry as a candi-

date covariance structure for εijkl, whose covariance structure can be specified as:

Σε =


σ2

1 σ1σ2ρ σ1σ3ρ

σ2σ1ρ σ2
2 σ2σ3ρ

σ3σ1ρ σ3σ2ρ σ2
3

 ,
where ρ denotes for the correlation between the tissue types within fish and we assume

they are equal, but we allow different variances at each tissue type.

Under the model 2.4, we analyzed the data using SAS. The estimates for the fixed effects

are shown in Table 2.10 (sample size: 445).

Effect Tissue Estimate Standard Error DF t Value Pr> |t|
Intercept 0.957 0.027 259 36.04 < 0.0001
log(SeH2o) 0.391 0.022 255 17.43 < 0.0001
Tissue WB -0.176 0.023 152 -7.66 < 0.0001
Tissue MUSC -0.196 0.017 160 -11.28 < 0.0001
log(SeH2o) * Tissue WB -0.039 0.026 136 -1.51 0.133
log(SeH2o) * Tissue MUSC -0.064 0.017 196 -3.85 0.0002

R2 0.61
AICc -138.1

Table 2.10: Solution for Fixed Effects Estimates under model 2.4

The estimates for the parameters in the covariance of εijkl are shown in Table 2.11.

Cov Parm Subject Estimate Standard Error
σ2
1 WB 0.064 0.008
σ2
2 MUSC 0.064 0.006
σ2
3 EGG 0.081 0.008
ρ Tissue 0.830 0.022

Table 2.11: Solution for Covariance Parameters Estimates under model 2.4
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From Table 2.11, the final covariance matrix estimates will be:
0.064 0.053 0.060

0.053 0.064 0.060

0.060 0.060 0.081

 ,
we assume all fish to have the same covariance structure.

Table 2.12 presents both the results of the fixed effect estimates under model 2.1 and

model 2.4.

Model 2.1 Model 2.4
Tissue Type Effect Estimate Se Effect Estimate Se
Egg Intercept 0.956 0.032 Intercept 0.957 0.027

log(SeH2o) 0.394 0.026 log(SeH2o) 0.391 0.022
Muscle Intercept 0.773 0.021 Intercept 0.761 0.017

log(SeH2o) 0.282 0.021 log(SeH2o) 0.327 0.017
WB Intercept 0.733 0.044 Intercept 0.781 0.023

log(SeH2o) 0.412 0.052 log(SeH2o) 0.352 0.026

Table 2.12: Comparison of Solutions for Fixed Effects Estimates

The estimates for intercept and slope are close, so are the estimates for the standard

errors.

2.2.3 Analyzing Data under the Linear Mixed Effects Model

Now we fit the data using a mixed effects model. The models is specified as follows:

log(SeTissue)ijkl = β0 + β1 log(SeH2o)ij + β01MUSCijk + β02WBijk

+β11 log(SeH2o)ijMUSCijk + log(SeH2o)ijWBijk

+δ0i + εijk , (2.5)

Under the model 2.5, we analyzed the data using SAS. We still specify

Heterogeneous Compound Symmetry as the covariance structure for εijkl. The estimates

for the fixed effects are shown in Table 2.13 (sample size: 445).
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Effect Tissue Estimate Standard Error DF t Value Pr> |t|
Intercept 0.969 0.055 18.6 17.53 < 0.0001
log(SeH2o) 0.341 0.049 25.4 6.99 < 0.0001
Tissue WB -0.163 0.023 177 -7.05 < 0.0001
Tissue MUSC -0.200 0.018 144 -10.91 < 0.0001
log(SeH2o) * Tissue WB -0.026 0.025 160 -1.00 0.318
log(SeH2o) * Tissue MUSC -0.050 0.018 149 -2.74 0.007

R2 0.74
AICc -191.2

Table 2.13: Solution for Fixed Effects Estimates under model 2.5

The estimates for the parameters in the covariance of εijkl are shown in Table 2.14.

Cov Parm Subject Estimate Standard Error
Intercept Lake 0.029 0.013
σ2
1 WB 0.037 0.006
σ2
2 MUSC 0.042 0.005
σ2
3 EGG 0.065 0.007
ρ Tissue 0.758 0.033

Table 2.14: Solution for Covariance Parameters Estimates under model 2.5

From Table 2.11, the final covariance matrix estimates will be
0.037 0.033 0.041

0.033 0.042 0.043

0.041 0.043 0.065

 ,
we assume all fish to have the same covariance structure.

Table 2.15 presents both the results of the fixed effect estimates under model 2.3 and

model 2.5.

The estimates for intercept and slope are close, however, the estimates for the standard

errors obtained under model 2.5 are generally smaller than the ones obtained under

model 2.3. This is because under model 2.5, we consider the strong relationship between

Se concentration in different tissue types and hence use more information from the data.

Also, comparing the AICc criterion between model 2.4 and model 2.5 (-138.1 and -191.2
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Model 2.3 Model 2.5
Tissue Type Effect Estimate Se Effect Estimate Se
Egg Intercept 0.989 0.061 Intercept 0.969 0.055

log(SeH2o) 0.343 0.056 log(SeH2o) 0.341 0.049
Muscle Intercept 0.770 0.051 Intercept 0.769 0.018

log(SeH2o) 0.248 0.054 log(SeH2o) 0.291 0.018
WB Intercept 0.830 0.095 Intercept 0.806 0.023

log(SeH2o) 0.245 0.098 log(SeH2o) 0.316 0.025

Table 2.15: Comparison of Solutions for Fixed Effects Estimates

respectively), we select model 2.5 as a better approach for data analysis.

2.2.4 Analyzing Data under the Linear Mixed Effects Model with Ran-

dom Intercept and Slope

As we mentioned before, in GA 2009, each lake may have Se concentration measured at

several years (refer to Table 1.1). Figure A.11 shows the plot of the raw data with the

fitted regression line for each of the lake. The responses is the Se concentration in fish

egg, and the predictor is the Se concentration in water. It seems the linear relationship

varies from lake to lake, this inspires us to consider a more general model compared with

model 2.5:

log(SeTissue)ijkl = β0 + β01 MUSC ijk + β02WBijk + β1 log(SeH2o)ij

+β11 MUSC ijk ∗ log(SeH2o)ij + β12WBijk ∗ log(SeH2o)ij

+δ0i + γ1i log(SeH2o)ij + εijkl , (2.6)

where we assume that γ1i’s are independent with N(0, σ2
γ), independent with εijkl but

may be correlated with δ0i.

Under the model 2.6, we analyzed the data using SAS. Again specify

Heterogeneous Compound Symmetry as the covariance structure for εijkl. The analysis

results show there are no significant improvement compared with model 2.5 (AICc cri-

terion equals to -194.5). In GA 2009, since there were only a few lakes with water Se

concentration measured over several years, this limits our investigation on the random

slope aspect. However, in the simulation study, we considered model 2.6 to generate the

simulated data.
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2.3 Discussion about Handling Missing Values of Other

Covariates

In GA 2009, the data set also includes some other covariates. However, these covariates

may have missing proportions from low to high. In this section, we still focus on the fish

species W. We want to include some of the fish characteristics variables into model 2.3,

say fish age. Table 2.16 presents the number of observations of water Se concentration,

fish age and fish length under each fish tissue:

Tissue Type Sample Size log(SeH2o) Age Length
EGG 194 187 128 192
MUSC 198 198 167 196
WB 60 60 60 60

Table 2.16: Summary of the Observed Information

The above table shows the missing proportion for water Se concentration or fish length

is small for all tissue type. Thus we ignore these missing values. However, the missing

proportion for age under tissue type EGG is about 0.34, which is high enough to be

concerned. Hence we focus on the case of tissue type EGG, and consider model 2.3 with

age variable added, that is:

log(SeTissue)ijk = β0 + β1 log(SeH2o)ij + Ageijk + δ0i + εijk . (2.7)

We want to find whether age has a significant effect on Se concentration in fish tissue.

Since there are missing values in age variable, we used the multiple imputation method

to impute the missing values of age via the following steps. We assume the missing data

are missing completely at random (MCAR).

First we fit a regression model for the age variable, that is, for variable age, a model

age = β0 + β1length + ε

is fitted using observations with observed values for variable age and its covariate length,

where ε’s are assumed to be i.i.d. with distribution N(0, σ2). Based on the fitted model,
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a new regression model is then drawn and is used to impute the missing values for the

age variable are imputed (See [12], pp. 2-3 for detailed imputation mechanism). We use

the Proc MI procedure in SAS at this step, and the code is given in Appendix C.1.4 .

Once we have a set of imputed data, we analyze them under model 2.7 to obtain a set of

parameter estimates and covariance matrices. Then we repeat the procedure a number

of times, the estimate are then combined to generate valid statistical inferences about

these parameters. Refer to Appendix C.1.5 for the corresponding SAS code.

At the final step, we use the Proc MIANALYZE procedure in SAS to combine the results

from last step and generate valid statistical inferences about the parameters of interest.

Refer to Appendix C.1.6 for the corresponding SAS code.

In the report of GA 2009, the authors used an ad hoc approach (use the truncated data

set with the observations associated with missing covariates removed) to deal with the

missing values. This approach will detect any large effects, but does not use all of the

information in the data. Table 2.17 presents the comparison of the parameter estimates

between the ad hoc approach and the imputation procedure.

ad hoc Approach
Parameter Estimate Std Error t Value Pr> |t|
Intercept 1.204 0.099 12.20 < 0.0001
log(SeH2o) 0.310 0.055 5.65 < 0.0001
age -0.034 0.012 -2.76 0.006
Imputation Procedure
Intercept 1.110 0.106 10.49 < 0.0001
log(SeH2o) 0.364 0.055 6.60 < 0.0001
age -0.026 0.013 -1.99 0.050

Table 2.17: Comparison of Solutions for Fixed Effects Estimates under the Two Ap-
proaches

Note that the estimates and the estimated standard errors for the parameters are pretty

close under the two approaches, however, we obtained more significant evidence of the

age effect using the imputation procedure (p-value 0.006 versus 0.050).

When there are variables with heavy missing proportions, it may be hard to detect the

significance of their effects. Then the multiple imputation procedure can be useful since

they use the relationships among the predictors to extract more information from the
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data.



Chapter 3

Simulation Study

In Chapter 2, we proposed a mixed effects model with random intercept and random

slope to fit the data. However, with an imbalanced data set as the one from GA 2009, it

may be difficult to obtain efficient estimates for parameters of interest. This motivated us

to perform a simulation study which inherits the data structure as GA 2009. The purpose

of the simulation study is to gain insights into the relation between the information loss

and the extent of imbalance of the available data set, and to provide a guideline on data

collection.

3.1 Design for the Simulation

3.1.1 Objectives

The purposes of this simulation study include the following:

To show that the correlations between tissues within each individual fish should be

taken into account in our model, instead of analyzing different tissue types separately

as the authors did in GA 2009.

To show how the parameter estimates computed from unbalanced or incomplete data

set differ from the ones obtained from the complete data set. The missing mechanisms

are missing at random (noninformative missing) or missing not at random (informative

missing). (See [6])

26
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3.1.2 Statistical Models

We chose the linear mixed effects model with random intercept and random slope to

generate data sets in the simulation study.

The model is specified as:

Y ijk = β
0i

+ β
1i
Xij + εijk , (3.1)

where Y ijk is a 3 dimensional vector which consists of the tissue Se concentrations for

the kth fish sampled from the ith lake at the jth time point. β
0i

is a 3 dimensional

vector which can be further decomposed as the fixed effects estimate β
0

and its random

component b0i (the process error). Similarly, β
1i

is a 3 dimensional vector which can be

further decomposed as the fixed effects estimate β
1

and its random component b1i. Xij

is the water Se concentration for the ith lake at the jth time point, and we assume that

Xij = α0 + e0i + α1tij + e1itij , (3.2)

where e0i’s are independent with distribution N(0, σ2
e0) and e1i’s are independent with

distribution N(0, σ2
e1), tij is the jth time point for the ith lake. εijk is a 3 dimensional

vector as the random errors for the tissue Se concentration for the kth fish sampled from

the ith lake at the jth time point. In this simulation study, We assume the covariance

structure for εijk, Σε, to be Compound Symmetry:

Σε = σ2
1


1 ρ1 ρ1

ρ1 1 ρ1

ρ1 ρ1 1

 .
We assume that the variance of Se concentration for all three tissue types to be the

same, σ2
1. ρ1 is the correlation among the tissue types within a fish. From Chapter 2,

it is biologically legitimate to assume this correlation to be the same between the fish

tissue types.

b0i is the random component for the intercept, which is a 3 dimensional vector with

mean vector 0 and covariance matrix Σb0 . b1i is the random component for the slope,

which is a 3 dimensional vector with mean vector 0 and covariance matrix Σb1 . All the

components within b0i are assumed to be mutually independent, so are the components
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within b1i.

We assume that b0i’s are i.i.d. (identically, independently distributed), so are b1i’s and

εijk’s. Also b0i’s and b1i’s are mutually independent against εijk’s. However, we allow

b0i and b1i (component of b0i and b1i respectively) to be correlated:

bi =

(
b0i

b1i

)
∼ Σb

For the random components b0i and b1i, we assume that all three components within b0i
have the same variance σ2

2, and all the three components within b1i also have the same

variance, which equals to σ2
2 as well. The covariance structure of Σb will be:

Σb = σ2
2

[
1 ρ2

ρ2 1

]
.

Generating Data

Refer to Appendix C.2 for related R codes.

We assume that there are 30 lakes selected for this experiment and at each lake we have

water Se concentration measured over 10 years for the study. We further assume that

at each year there are 2 time points with water Se concentration measurements, and

exactly 30 fish have been sampled at a time point from each lake.

To generate the predictor Xij ’s, we first generate a set of time points tij from a uniform

distribution. Here each lake has measurements across ten years, and for each year, there

are two records of water Se concentration. Then the predictor values are generated

from equation 3.2. Random effects of εijk, b0i and b1i are generated from multivariate

covariance matrices Σε and Σb.

We set the true values of the parameters of interest as follows:

β
0

= (1, 1, 1) β
1

= (0.3, 0.3, 0.3).

Here we assume uniform intercept and slope. For Σε, let σ1 = 0.1 and ρ1 = 0.8. For Σb,
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let σ2 = 0.5 and ρ2 = 0.6.

Then we generate the response data Y ijk from model 3.1. The generated data set is

complete in this case. Each generated Y ijk has three columns, we set the first column

as the response for tissue type WB, the second column as the response for tissue type

MUSC, and the third column as the response for tissue type EGG. To generate an

incomplete data set, we consider two incompleteness settings, noninformative missing

and informative missing.

Noninformative missing

We can obtain a noninformative missing data set by randomly selecting 10 lakes out of

the total 30 lakes, 10 time points for each selected lake and sampling 10 fish at each

time point from each lake. We considered two settings: an hypothetical scenario with all

response components of every selected fish and a practical setting with possible missing

response components of selected fish.

Informative missing

We can obtain an informative missing data set by selecting lakes or fish according to

some certain conditions. For example, the lakes with the average water Se concentration

is higher than the overall average water Se concentration for all lakes, or the fish with

tissue Se concentration within some restricted range. Again, we consider two scenarios,

hypothetical and practical.

3.1.3 Plan to Analyze the Simulated Data

In the rest part of this chapter, we present analyses of the simulated data under three

candidate models. The analysis is organized as follows.

1. We consider these three models as the candidate models: linear fixed effects model,

linear mixed effects model with random intercept, and linear mixed effects model with

random intercept and slope.

2. We analyze the generated complete data with three candidate models either with

respect to each of the response components one by one, or as three dimensional response.

3. We analyze the generated incomplete data with three candidate models either with

respect to each of the response components one by one, or as multivariate response with

three dimension. The incomplete data can be generated under two settings, informative
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or noninformative. Also, under each incompleteness setting, we consider two scenarios,

hypothetical or practical.

3.2 Analysis of Generated Complete Data

3.2.1 Univariate Data Analysis

With each of the three candidate models, we repeated the analysis of simulated complete

data 100 times, and plot the 100 evaluations of the estimators.

Estimation for intercept

With each response component (i.e., response of generated tissue type), the intercept

estimates are nearly centered at the true value under all three models. The estimates

obtained under the fixed effects model have larger variation than the ones obtained

under the random intercept model and the random intercept and slope model, whereas

the latter has the smallest variation.

The result agrees to what we expected: the data set were originally generated under

model 3.1, hence when we fit the data using either fixed effects model or random intercept

model, the intercept estimators are less efficient than the one obtained under the random

intercept and slope model.

Estimation of reported standard error for intercept

The reported estimates of standard error obtained under the fixed effects model is less

than the ones obtained under the random intercept model and the random intercept

and slope model, and it also much less than its true value under the fixed effects model.

(comparing Figure B.1 and Figure B.4 , the standard error for the intercept estimates is

about 1.1 under the fixed effects model, but the average value of the reported standard

error is about 0.05) The reported standard error for intercept is highly underestimated

under the incorrect model (fixed effects model). Under the random intercept and slope

model (correct model), the reported standard error agrees with its true value (comparing

Figure B.1 and Figure B.4 , the standard error for the intercept estimates is about 0.09

under the random intercept and slope model, and the average value of the reported
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standard error is about 0.09).

Estimation for slope

With each response component, the slope estimates are almost centered at the true value

under all three models. Similar to the estimation for intercept, the estimates also show

different variations under the three models, as the estimates obtained under the random

intercept and slope model have the smallest variation.

Estimation of reported standard error for slope

Again, the reported estimates of standard error obtained under the fixed effects model is

less than the ones obtained under the random intercept model and the random intercept

and slope model, and it also much less than its true value under the fixed effects model.

(comparing Figure B.2 and Figure B.5 , the standard error for the intercept estimates is

about 0.48 under the fixed effects model, but the average value of the reported standard

error is about 0.02) The reported standard error for intercept is highly underestimated

under the incorrect model (fixed effects model). Under the random intercept and slope

model (correct model), the reported standard error agrees with its true value (comparing

Figure B.2 and Figure B.5 , the standard error for the intercept estimates is about 0.11

under the random intercept and slope model, and the average value of the reported

standard error is about 0.12).

Estimation for V ar(b0i), V ar(b1i) and ρ2

With each response component, the estimates of V ar(b0i) obtained under the random

intercept model are not centered at the true value. This is due to the random intercept

model does not account for the covariance structure specified for bi = (b0i, b1i), therefore

the approach gives a poor estimator for V ar(b0i).

Under the random intercept and slop model, the estimates for V ar(b0i) and V ar(b1i)

are nearly centered at the trues value with small variations. The estimates for ρ2 are

also centered at the true value with fairly small variation.

Figure B.1 to Figure B.3 present the histograms of the estimates for the intercept,

slope, and covariance parameter of Σb respectively. Figure B.4 and Figure B.5 present

the histograms of the reported standard error of the intercept and slope respectively.

With the third response component data (EGG tissue type) under the three models.
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3.2.2 Multivariate Data Analysis

We now present simulation results with analyzing the generated data of different tissue

types simultaneously.

Estimation for intercept

The intercept estimates are nearly centered at the true value under all three models.

The estimates obtained under the fixed effects model have larger variation than the ones

obtained under the random intercept model and the random intercept and slope model,

whereas the latter has the smallest variation.

Estimation for slope

The slope estimates are almost centered at the true value under the three models. Similar

to the estimation for intercept, the estimates also show different variations under the

three models, as the estimates obtained under the random intercept and slope model

have the smallest variation.

Estimation for ρ1

Under the fixed effects model and the random intercept model, the estimates for ρ1

are not centered at the true value. Under the random intercept and slope model, the

obtained estimates are centered at the true value with small variation.

Estimation for V ar(b0i), V ar(b1i) and ρ2

The estimates of V ar(b0i) obtained under the random intercept model are not centered

at the true value.

Under the random intercept and slope model, the estimates for V ar(b0i) and V ar(b1i)

are nearly centered at the true value with small variations. The estimates for ρ2 are also

centered at the true value with fairly small variation.

Figure B.6 to Figure B.8 present the histograms of the estimates for the intercept, slope,

ρ1, and covariance parameter of Σb under the three models.

We see that similar results obtained from multivariate data analysis and univariate data

analysis. The parameter estimates obtained under random intercept and slope model

usually has smaller variations than the ones obtained under other two models.

In reality, we often have to analyze a data set which is incomplete or imbalanced. In the
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following sections, we present parameter estimates under the three models from different

incomplete data generated as described in section 3.1.2 .

Note: The corresponding plots with respect to the following simulation settings are

omitted due to space constraints, they are available upon request.

3.3 Analysis of Generated Incomplete Data: Noninforma-

tive Missing

3.3.1 Univariate Data Analysis

Hypothetical Missing Scenario

Estimation for intercept

With each response component, the intercept estimates are almost centered at the true

value under the three models. The estimates obtained under the fixed effects model have

considerably larger variation than the ones obtained under the random intercept model

and the random intercept and slope model, whereas latter has the smallest variation.

Compared with the corresponding estimates obtained from analyses of the complete

data, the estimates obtained under the fixed effects model are much more sensitive to

missing information than the random intercept model and the random intercept and

slope model. The variation of the estimates obtained under the random intercept and

slope model only changes slightly. This shows us if we analyze the data set under

the random intercept and slope model, even with an incomplete data set, the obtained

parameter estimates are still close to the case when we have complete data set.

Estimation for slope

With each response component, the slope estimates are nearly centered at the true value

under the three models. Similar to the estimation for intercept, the estimates also show

different variations, as the ones obtained under the random intercept and slope model

have the smallest variation.

Compared with the corresponding estimates obtained from analyses of the complete

data, again we found that, the estimates obtained from the fixed effects model are much
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more sensitive to missing information than the random intercept model and the ran-

dom intercept and slope model. The variation of the estimates obtained under random

intercept and slope model only changes slightly.

Estimation for V ar(b0i), V ar(b1i) and ρ2

With each response component, under the random intercept model, the estimates for

V ar(b0i) are not centered at the true value. However, under the random intercept and

slope model, the estimates are almost centered at the true values of V ar(b0i), V ar(b1i)

and ρ2 with small variations.

Practical Missing Scenario

Similar findings to the case of hypothetical missing scenario been observed.

3.3.2 Multivariate Data Analysis

We now present simulation results with analyzing the generated data of different tissue

types simultaneously.

Hypothetical Missing Scenario

Estimation for intercept

The intercept estimates are not centered at the true value under the fixed effects model.

Under the random intercept model and the random intercept and slope model, the

intercept estimates are almost centered at the true value, whereas the latter has the

smallest variation.

Compared with the corresponding estimates obtained from analyses of the complete

data, the estimates obtained from the fixed effects model are much more sensitive to

missing information than the random intercept model and the random intercept and

slope model. The variation of the estimates obtained under the random intercept and

slope model only changes slightly. This shows us if we analyze the data set under

the random intercept and slope model, even with an incomplete data set, the obtained

parameter estimates are still close to the ones obtained when we have complete data set.

Estimation for slope

The slope estimates are nearly centered at the true value under the random intercept
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model and the random intercept and slope model, but not under the fixed effects model.

Similar to the estimation for intercept, the estimates also show different variations as the

ones obtained under the random intercept and slope model have the smallest variation.

Compared with the corresponding estimates obtained from analyses of the complete

data, again we found that, the estimates obtained from the fixed effects model are much

more sensitive to missing information than the random intercept model and the random

intercept and slope model. The variation of the estimates obtained under the random

intercept and slope model only changes slightly.

Estimation for ρ1

Under the fixed effects model or the random intercept model, the estimates of ρ1 are not

centered at the true value. However, under the random intercept and slope model, the

estimates are centered at the true value and with extremely small variation.

Estimation for V ar(b0i), V ar(b1i) and ρ2

Under the random intercept model, the estimates of V ar(b0i) are not centered at the true

value. Under the random intercept and slope model, the estimates are almost centered

at the true values of V ar(b0i), V ar(b1i) and ρ2.

Practical Missing Scenario

Similar findings to the case of hypothetical missing scenario been observed.

3.4 Analysis of Generated Incomplete Data: Informative

Missing

3.4.1 Univariate Data Analysis

Hypothetical Missing Scenario

Case I: Missing Upon Response Values

Estimation for intercept

With each response component, the intercept estimates are not centered at the true
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value under the three models.

Estimation for slope

With each response component, the slope estimates are not centered at the true value

under the fixed effects model. However, under the random intercept model and the

random intercept and slope model, the estimates are roughly centered at the true value

with quite small variations.

Estimation for V ar(b0i), V ar(b1i) and ρ2

With each response component, under the random intercept model, the estimates of

V ar(b0i) are almost centered at the true value. However, under the random intercept

and slope model, the estimates of V ar(b0i) and V ar(b1i) are not centered at the true

values. This is also the case for the estimates of ρ2.

Case II: Missing Upon Predictor Values

Estimation for intercept

With each response component, the intercept estimates are almost centered at the true

value under the three models. The estimates obtained under the fixed effects model have

the largest variation, whereas the estimates obtained under the random intercept and

slope model have the smallest variation.

Estimation for slope

With each response components, the slope estimates are almost centered at the true

value under the three models. Similar to the estimation for intercept, the estimates

obtained under the fixed effects model have the largest variation, whereas the estimates

obtained under the random intercept and slope model have the smallest variation.

Estimation for V ar(b0i), V ar(b1i) and ρ2

With each response component, under the random intercept model, the estimates of

V ar(b0i) are not centered at the true value. However, under the random intercept and

slope model, the estimates of V ar(b0i) and V ar(b1i) are almost centered at the true
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values with small variations. This is also the case for the estimates of ρ2.

Practical Missing Scenario

Similar findings to the case of hypothetical missing scenario been observed.

3.4.2 Multivariate Data Analysis

We now present simulation results with analyzing the generated data of different tissue

types simultaneously.

Hypothetical Missing Scenario

Case I: Missing Upon Response Values

Estimation for intercept

The intercept estimates are not centered at the true value under the three models.

Estimation for slope

The slope estimates are not centered at the true value under the fixed effects model.

However, under the random intercept model and the random intercept and slope model,

the estimates are almost centered at the true value with quite small variations.

Estimation for ρ1

Under the fixed effects model and the random intercept and slope model, the estimates

of ρ1 are not centered at the true value. However, under the random intercept model,

the estimates are almost centered at the true value with very small variation.

Estimation for V ar(b0i), V ar(b1i) and ρ2

Under the random intercept model, the estimates for V ar(b0i) are centered at the true

value. However, under the random intercept and slope model, the estimates for V ar(b0i)

and V ar(b1i) are not centered at the true values. This is also the case for the estimates

of ρ2.

Case II: Missing Upon Predictor Values

Estimation for intercept

Although the intercept estimates are not centered at the true value under the fixed effects
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model, the estimates are almost centered at the true value under the random intercept

model and the random intercept and slope model. The latter has the smallest variation.

Estimation for slope

Similar to the estimation for intercept, the slope estimates are not centered at the true

value under the fixed effects model. However, under the random intercept model and

the random intercept and slope model, the estimates are almost centered at the true

value with small variations.

Estimation for ρ1

Under the fixed effects model and the random intercept model, the estimates of ρ1 are

not centered at the true value. However, under the random intercept and slope model,

the estimates are almost centered at the true value with very small variation.

Estimation for V ar(b0i), V ar(b1i) and ρ2

Under the random intercept model, the estimates of V ar(b0i) are not centered at the

true value. However, under the random intercept and slope model, the estimates of

V ar(b0i) and V ar(b1i) are almost centered at the true value with small variations. This

is also true for the estimates of ρ2.

Practical Missing Scenario

Similar findings to the case of hypothetical missing scenario been observed.

3.5 Discussion and Some Further Studies

3.5.1 Summary on the Simulation Study

The following are the main findings from the simulation study:

1. Under all simulation settings, the parameter estimates obtained under the random

intercept and slope model are more concentrated to the true values (with much smaller

variation) compared to the estimates obtained under the fixed effects model and the

random intercept model.

2. When incompleteness of the data set is resulted from noninformative missing, under

the random intercept and slope model, we can still obtain the parameter estimates (both
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fixed effects and random components) which are reasonably close to the ones obtained

from the complete date set. This is also the case when we do not have all three tissue

Se concentration values available for every fish (i.e. , unbalanced data).

3. When incompleteness of the data set is resulted from informative missing as only

certain lakes have Se concentration measurements available. Under the random intercept

and slope model, we again can obtain good parameter estimates compared to the ones

obtained from the complete data set. However, this is not the case when incompleteness

of the data set is caused by informative missing as only certain fish have been sampled

for Se concentration measurement.

3.5.2 Some Further Simulation Studies

1. Various Intercept and Slope

Suppose we have different components within β
0

and β
1
. For example, set β

0
=

(0.5, 0.75, 1.0) and β
1

= (0.4, 0.3, 0.2) respectively.

Consider the random intercept and slope model only. We are interested in whether

the distribution of the parameter estimates will be different from the case of uniform

intercept and slope.

In this case, we reduced the number of lakes to 10 and the number of fish sampled from

each lake at each time point to 15.

Repeat the analysis of simulated complete data 100 times. The histograms of the pa-

rameter estimates are quite similar to the ones when we assume uniform intercept and

slope. In general, the distributions of the parameter estimates are almost centered at

the true values of the corresponding parameters.

2. Large σ1

In section 3.1.3 , the true value of parameter σ1 is set to be equal to 0.1. Therefore

the generated random error terms εijk’s are quite small. This may cause the difference

between tissue types due to covariance structure of εijk is not significant. Therefore

the histograms of the parameter estimates obtained by univariate data analysis and

multivariate data analysis are quite similar. If we increase the true value of σ1, we

expect that the distributions of the parameter estimates to have smaller variations by
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analyzing the data set simultaneously. Set σ1 to be equal to 0.6.

The simulation results show that with larger σ1, the distributions of the parameter

estimates do not differ too much between the methods of univariate data analysis and

multivariate data analysis. However, in general, the variation of the distribution of

the parameter estimates obtained by univariate data analysis are larger than the ones

obtained by multivariate data analysis. The results show evidence for the advantage of

analyzing data as multivariate responses.

3. Various Missing Probability

In this simulation study, for the practical missing scenario, the response component

missing probability is set to be 0.3. We can increase the missing probability and then

compare the histograms of the parameter estimates obtained by univariate data analysis

and multivariate data analysis. Set new missing probability to be 0.7.

We find that, with larger missing probability, the distributions of the parameter esti-

mates do not differ too much between the two methods of univariate data analysis and

multivariate data analysis. However, the variation of the distribution of the estimates

obtained by univariate data are a little larger than the ones obtained by multivariate

data analysis method. The results imply that if the missing probability of the response

is large, it is more appropriate to analyze the data set simultaneously.

4. New Statistical Models

In this simulation study, the data set were generated from model 3.1, which assumes

water Se concentration is linearly related with fish Se concentration. One may be inter-

ested in the case such that water Se concentration is linearly related with square of the

fish Se concentration, that is, the data are generated from the following model:

Y ijk = β
0i

+ β
1i
Xij + β

2i
X2
ij + εijk (3.3)

This model has quadratic form, thus when we still conduct the analysis as if the data

are generated from model 3.1, the obtained parameter estimates are expected to be far

away from the true values. A nonlinear model can also be possible.
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Final Remarks

4.1 Summary

Analyses presented in Chapter 2 show us that model 2.5 is an appropriate model to

carry out the data analysis for GA 2009. We found that, besides water Se concentration

which is the main predictor variable of the researcher’s concern, fish species, tissue type,

ecosystem, fish age, and fish length all have significant effects on the Se concentration

level in fish body.

Simulation studies presented in Chapter 3 are designed under the setting of GA 2009 and

the results show that, analyzing data under mixed effects model with random intercept

and random slope, one can obtain efficient and robust parameter estimators even when

the given data set is unbalanced or incomplete to some extent. Further, the simulation

suggests that more efficient inference can be made from balanced data.

4.2 Further Investigations

To study how robust is the proposed approach against non-normality of the responses

and to consider an alternative approach to deal with the non-normality.

To study different scenarios, we need to examine more simulation settings. For example,

we need to vary the size of lakes, number of fish been sampled, consider the number of

time points to be different from lake to lake just like the situation we have in GA 2009.

41
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With more simulation studies, we may further explore the proposed approach.

The ultimate goal is to provide a guideline to researchers for their future study designs.

Under this guideline, the researchers may collect data with a more appropriate and

efficient sampling method to avoid unnecessary cost in their future study. A useful

guideline requires additional investigations.
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Tables and Figures of Chapter 1

and 2
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Year Variable N of Obs N of Missing Mean Min Max
1996 Setissue 34 50 0.859 0.473 1.679

Sewater 84 0 0.026 -1.000 0.934
2001 Setissue 100 95 0.991 0.544 1.614

Sewater 165 30 0.361 -0.194 1.096
2002 Setissue 84 87 0.915 0.342 2.006

Sewater 171 0 0.567 -0.602 1.914
2003 Setissue 15 30 1.145 0.612 1.790

Sewater 45 0 1.068 -0.097 1.910
2004 Setissue 7 14 0.984 0.543 1.747

Sewater 21 0 0.071 -0.602 1.753
2005 Setissue 80 76 1.258 0.779 2.146

Sewater 156 0 0.704 -0.602 1.910
2006 Setissue 269 28 1.019 0.446 2.048

Sewater 282 15 0.544 -0.301 1.763
2008 Setissue 65 211 1.608 0.523 2.201

Sewater 252 24 1.492 0.748 1.837

Table A.1: Summary of Fish Se Concentration and Water Se concentration by Year
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Tissue Type Variable N of Obs N of Missing Mean Min Max
WB Setissue 114 301 0.936 0.342 1.906

Sewater 392 23 0.721 -1.000 1.914
MUSC Setissue 263 152 0.869 0.446 1.883

Sewater 392 23 0.721 -1.000 1.914
EGG Setissue 277 138 1.348 0.477 2.201

Sewater 392 23 0.721 -1.000 1.914

Table A.2: Summary of Fish Se Concentration and Water Se concentration by Tissue
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Figure A.1: Number of Fish Sampled From Each Lake at Each Year
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Figure A.2: Residual plot: Egg Tissue
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Figure A.3: Normal quantile-quantile plot: Egg Tissue
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Figure A.4: Data with linear regression line: Egg Tissue
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Figure A.5: Data with linear regression line on average: Egg Tissue
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Figure A.6: Residual plot: Egg Tissue
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Figure A.7: Normal quantile-quantile plot: Egg Tissue
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Figure A.8: Scatter plot for tissue type under lentic ecosystem
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Figure A.9: Scatter plot for tissue type under lotic ecosystem
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Figure A.10: Scatter plot for tissue type under both ecosystem
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Figure A.11: Responses versus predictors for various lakes



Appendix B

Figures of Chapter 3

In all of the following plots, the solid vertical line represents the true value of the cor-

responding parameters and the dashed vertical line stands for the center of distribution

of parameter estimates. The true values of the corresponding parameters are given in

section 3.1.2 .
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Figure B.1: Comparison of Intercept Estimate Distribution, for the complete data set with
univariate data analysis.
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Figure B.2: Comparison of Slope Estimate Distribution, for the complete data set with univariate
data analysis.
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Figure B.3: Comparison of covariance parameter estimates distribution, for the complete data
set with univariate data analysis. (a) for V ar(b0i) under random intercept model, and (b), (c)
and (d) for V ar(b0i), V ar(b1i) and ρ2 respectively under random intercept and slope model.
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Figure B.4: Comparison of reported standard error of the intercept, for the complete data set
with univariate data analysis.
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Figure B.5: Comparison of reported standard error of the slope, for the complete data set with
univariate data analysis.



APPENDIX B. FIGURES OF CHAPTER 3 63

Figure B.6: Comparison of Parameter Estimate Distribution, for the complete data set with
multivariate data analysis under fixed effects model. (a), (b) and (c) for intercept, slope and
intra-class correlation coefficient ρ1 respectively.
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Figure B.7: Comparison of Parameter Estimate Distribution, for the complete data set with
multivariate data analysis under random intercept model. (a), (b), (c) and (d) for intercept,
slope, intra-class correlation coefficient ρ1 and V ar(b0i) respectively.
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Figure B.8: Comparison of Parameter Estimate Distribution, for the complete data set with
multivariate data analysis under random intercept and slope model. (a), (b), (c), (d), (e) and (f)
for intercept, slope, intra-class correlation coefficient ρ1, V ar(b0i), V ar(b1i) and ρ2 respectively.



Appendix C

Partial SAS and R Codes

C.1 Selected SAS Codes

C.1.1 SAS Codes for Data Analysis Under Fixed Effects Model

proc mixed method=reml CL data = SpeciesW c o v t e s t ;

c l a s s s p e c i e s year t i s s u e f i s h id ;

model Log Se = logwat se / ddfm = kr s o l u t i o n ;

repeated t i s s u e /sub=f i s h id type=csh ;

run ;

C.1.2 SAS Codes for Data Analysis Under Random Intercept Model

proc mixed CL method=reml data = SpeciesW c o v t e s t ;

c l a s s s i t e year t i s s u e s p e c i e s f i s h id ;

model Log Se = logwat se / ddfm = kr s o l u t i o n ;

random i n t e r c e p t / sub=s i t e ;

repeated t i s s u e / sub=f i s h id type=csh ;

run ;

C.1.3 SAS Codes for Data Analysis Under Random Intercept and

Slope Model

66
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proc mixed CL method=reml data = SpeciesW c o v t e s t ;

c l a s s s i t e year t i s s u e s p e c i e s f i s h id ecosystem sex ;

model Log Se = logwat se /ddfm = kr s o l u t i o n ;

random i n t e r c e p t logwat se / type=VC sub=s i t e ;

repeated t i s s u e / sub=f i s h id type=csh ;

run ;

C.1.4 SAS Codes for Imputing Missing Covariates

proc mi data = EGGtissue nopr int seed =899603 out=outmi

nimpute = 20 ;

/∗ Number o f imputat ions i s 20 ∗/

var l og se l ength age ;

monotone

/∗ Spec i f y monotone methods to impute v a r i a b l e s ∗/

reg ( l ength age ) ;

run ;

C.1.5 SAS Codes for Reading Mixed Model Results

proc mixed method = reml data=outmi ;

c l a s s s i t e ;

model Log Se = logwat se age / ddfm = kr covb s ;

random i n t e r c e p t / sub=s i t e s o l u t i o n ;

by Imputation ;

/∗ Analyze the 20 imputed complete data s e t s ∗/

ods output Solut ionF= mixparms

CovB = mixcovb ;

run ;

C.1.6 SAS Codes for Making Inference from Imputed Data Sets
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proc mianalyze parms = mixparms

covb ( e f f e c t v a r = rowcol ) = mixcovb ;

m o d e l e f f e c t s i n t e r c e p t logwat se age ;

run ;

C.2 Selected R Codes

C.2.1 R Codes For Generating Complete Data Set

numI<−30 #Number o f l a k e s

numJ<−20 #Number o f t imes o f o b s e r v a t i o n s

numK<−30 #Number o f f i s h from a l a k e at a time

SigmaE<−cbind (c ( 1 , 0 . 8 , 0 . 8 ) , c ( 0 . 8 , 1 , 0 . 8 ) , c ( 0 . 8 , 0 . 8 , 1 ) )

#C o r r e l a t i o n matrix o f the random e r r o r s

temp<−eigen ( SigmaE )

SigmaEhalf<−temp$ve c to r s%∗%diag ( sqrt ( temp$va lue s ) )%∗%
solve ( temp$ve c to r s )

#Square roo t o f matrix SigmaE

SigmaB<−cbind (c ( 1 , 0 . 6 ) , c ( 0 . 6 , 1 ) )

#C o r r e l a t i o n matrix o f ( b0i , b 1 i )

temp<−eigen (SigmaB)

SigmaBhalf<−temp$v ec to r s%∗%diag ( sqrt ( temp$va lue s ) )%∗%
solve ( temp$ve c to r s )

beta0<−c ( 1 , 1 , 1 ) #i n t e r c e p t term ( f i x e d )
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beta1<−c ( 0 . 3 , 0 . 3 , 0 . 3 ) #s l o p e term ( f i x e d )

#To genera te Xij ( l o g water Se o f l a k e i a t time j )

#Generate t imes to c o l l e c t data

#( from each l a k e over 10 years , 2 t imes o f o b s e r v a t i o n )

t imes<−matrix ( runif ( (2∗numI ) ,min=0,max=1) ,ncol=2)

for ( j in 1 : 9 )

t imes<−cbind ( times , matrix ( runif ( (2∗numI ) ,min=j ,

max=( j +1)) , ncol=2))

t imes<−round( times , 2 )

#To genera te a l p h a 0 i and a l p h a 1 i

alpha0<−rnorm(numI , mean=3,sd=1)

alpha1<−rnorm(numI , mean=1/10 , sd=0.1)

#Generate Xij

p r e d i c t o r<−alpha0+alpha1∗ t imes [ , 1 ]

for ( j in 2 :numJ)

p r e d i c t o r<−cbind ( p r ed i c to r , alpha0+alpha1∗ t imes [ , j ] )

i t h row and j th col for x i j

predictortmp<−0

for ( i in 1 : numI)

for ( j in 1 :numJ)

predictortmp<−c ( predictortmp , rep ( p r e d i c t o r [ i , j ] ,numK) )

predictortmp<−predictortmp [ 2 : ( numI∗numJ∗numK+1)]

#To genera te e i j k ( the random er ror ) wi th 3−dim
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tmp<−matrix (rnorm(3∗numI∗numJ∗numK,mean=0,sd=0.1) , ncol=3)

e r r o r<−tmp%∗%SigmaEhalf

#Column f o r 3 components ; row i=1−numI , j=1−numJ , k=1−numK

#To genera te b i ( the random e f f e c t s ) wi th 2−dim

tmp<−matrix (rnorm(numI∗2 ,mean=0, sd=0.5) , ncol=2)

randomeff<−tmp%∗%SigmaBhalf

col for b0i and b1i ; row i=1−numI

#To genera te Yi jk ( the response ) wi th 3−dim

tmp<−rep ( 0 , 3 )

for ( i in 1 : numI)

for ( j in 1 :numJ)

tmp<−rbind (tmp , t ( ( beta0+rep ( randomeff [ i , 1 ] , 3 ) ) + (

beta1+rep ( randomeff [ i , 2 ] , 3 ) ) ∗ p r e d i c t o r [ i , j ] ) )

tmp<−tmp [ 2 : ( numI∗numJ+1) , ]

response<−t (tmp [1 , ]+ t ( e r r o r [ 1 :numK, ] ) )

for ( j in 2 :numJ)

response<−rbind ( response ,

t (tmp [ j , ]+ t ( e r r o r [ ( ( j−1)∗numK+1):( j ∗numK) , ] ) ) )

for ( i in 2 : numI)

for ( j in 1 :numJ)

response<−rbind ( response ,

t (tmp [ ( ( i −1)∗numJ+j ) , ]+ t (

e r r o r [ ( ( i −1)∗numJ∗numK+(j−1)∗numK+1):

( ( i −1)∗numJ∗numK+j ∗numK) , ] ) ) )
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#Combine generated Xij and Yi jk

WB<−response [ , 1 ]

MUSC<−response [ , 2 ]

EGG<−response [ , 3 ]

wholedata<−c (WB, MUSC, EGG)

N<−numI∗numJ∗numK

p r e d i c t o r a l l<−c ( rep ( predictortmp , 3 ) )

f i s h i d<−seq ( from=1, to=N, by=1)

f i s h i d<−c ( rep ( f i s h i d , 3 ) )

M<−numJ∗numK

sitetemp<−seq ( from=1, to=numI , by=1)

s i t e<−c ( rep ( s itetemp , each=M) )

s i t e<−c ( rep ( s i t e , 3 ) )

t i s s u e<−c ( rep (1 ,N) , rep (2 ,N) , rep (3 ,N) )

WholeData<−cbind ( wholedata , f i s h i d , s i t e , p r e d i c t o r a l l , t i s s u e )

WholeData<−WholeData [ order ( f i s h i d ) , ]

f i s h S e<−WholeData [ , 1 ]

f i s h i d<−WholeData [ , 2 ]

f i s h i d<−as . factor ( f i s h i d )

s i t e<−WholeData [ , 3 ]

s i t e<−as . factor ( s i t e )

waterSe<−WholeData [ , 4 ]

t i s s u e<−WholeData [ , 5 ]

t i s s u e<−as . factor ( t i s s u e )

C.2.2 R Codes For Data Analysis Under Fixed Effects Model

g l s r e s<−g l s ( f i s h S e˜waterSe , c o r r e l a t i o n=
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corCompSymm( form = ˜ 1 | s i t e / f i s h i d ) , na . action=na . omit ,

method=”ML” )

beta 0 [T]<− coef ( g l s r e s ) [ 1 ] #parameter e s t i m a t e s f o r be ta0

beta 1 [T]<− coef ( g l s r e s ) [ 2 ] #parameter e s t i m a t e s f o r be ta1

TissueRho [T]<−coef ( g l s r e s $model$ corStruct , unconstra ined

= FALSE) #parameter e s t i m a t e s f o r rho1

C.2.3 R Codes For Data Analysis Under Random Intercept Model

lme int<−lme ( f i x e d=f i s h S e˜waterSe , random=˜ 1 | s i t e , c o r r e l a t i o n=

corCompSymm( form =˜ 1 | s i t e / f i s h i d ) ,

na . action=na . omit , method=”ML” )

gamma 0 [T]<−f i x e d . ef fects ( lmeint ) [ 1 ]

#parameter e s t i m a t e s f o r be ta0

gamma 1 [T]<−f i x e d . ef fects ( lmeint ) [ 2 ]

#parameter e s t i m a t e s f o r be ta1

TissueRho [T]<−coef ( lmeint$model$ corStruct , unconstra ined=FALSE)

#parameter e s t i m a t e s f o r rho1

VarInt [T]<−VarCorr ( lmeint ) [ 1 ]

#parameter e s t i m a t e s f o r sigma2 ˆ2

C.2.4 R Codes For Data Analysis Under Random Intercept and Slope

Model

lme int<−lme ( f i x e d=f i s h S e˜waterSe ,

random=l i s t ( s i t e=pdCompSymm(˜waterSe ) ) ,

c o r r e l a t i o n=corCompSymm( form =˜ 1 | s i t e / f i s h i d ) ,

na . action=na . omit , method=”ML” )

gamma 0 [T]<−f i x e d . ef fects ( lmeint ) [ 1 ]

#parameter e s t i m a t e s f o r be ta0

gamma 1 [T]<−f i x e d . ef fects ( lmeint ) [ 2 ]

#parameter e s t i m a t e s f o r be ta1

TissueRho [T]<−coef ( lmeint$model$ corStruct , unconstra ined = FALSE)

#parameter e s t i m a t e s f o r rho1
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VarInt [T]<−VarCorr ( lmeint ) [ 1 ]

#parameter e s t i m a t e s f o r sigma2 ˆ2

VarSlope [T]<−VarCorr ( lmeint ) [ 2 ]

#parameter e s t i m a t e s f o r sigma2 ˆ2

CorIntSlope [T]<−as . numeric ( VarCorr ( lmeint ) [ , 3 ] ) [ 2 ]

#parameter e s t i m a t e s f o r rho2

C.2.5 R Codes For Generating Noninformative Missing Data Set

Hypothetical Scenario

numIsub<−10 #The number o f randomly s e l e c t e d l a k e s

numJsub<−10 #The number o f o b s e r v a t i o n t imes : once a year

numKsub<−10 #The number o f f i s h randomly s e l e c t e d from

#a l a k e at a time

#To s e l e c t the ” observed ” in format ion

l a k e i n d i c a t o r<−rep (1 ,numJ∗numK)

for ( i in 2 : numI)

l a k e i n d i c a t o r<−c ( l a k e i n d i c a t o r , rep ( i , numJ∗numK) )

t i m e i n d i c a t o r<−rep (1 ,numK)

for ( j in 2 :numJ)

t i m e i n d i c a t o r<−c ( t ime ind i ca to r , rep ( j , numK) )

t i m e i n d i c a t o r<−rep ( t ime ind i ca to r , numI)

f i s h i n d i c a t o r<−c ( 1 :numK)

f i s h i n d i c a t o r<−rep ( f i s h i n d i c a t o r , numI∗numJ)

l a k e s e l e c t e d<−sample (c ( 1 : numI ) , s i z e=numIsub , replace=F)

t i m e s e l e c t e d<−c ( 1 : ( numJ/2) )∗2−sample (c ( 0 , 1 ) , s i z e =1)

f i s h s e l e c t e d<−sample (c ( 1 :numK) , s i z e=numKsub , replace=F)
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p r e d i c t o r s e l e c t e d<−p r e d i c t o r [ l a k e s e l e c t e d , t i m e s e l e c t e d ]

p r ed i c t o r tmpse l e c t ed<−0

for ( i in 1 : numIsub )

for ( j in 1 : numJsub)

p r ed i c t o r tmpse l e c t ed<−c ( p red i c to r tmpse l e c t ed ,

rep ( p r e d i c t o r s e l e c t e d [ i , j ] , numKsub) )

p r ed i c t o r tmpse l e c t ed<−pred i c t o r tmpse l e c t ed [ 2 :

( numIsub∗numJsub∗numKsub+1)]

tmp<−rep ( 0 , 3 )

for ( i in l a k e s e l e c t e d )

for ( j in t i m e s e l e c t e d )

for ( k in f i s h s e l e c t e d )

tmp<−rbind (tmp , response [ ( l a k e i n d i c a t o r==i )&( t i m e i n d i c a t o r==j )

&( f i s h i n d i c a t o r==k ) , ] )

r e s p o n s e s e l e c t e d<−tmp [ 2 : ( numIsub∗numJsub∗numKsub+1) , ]

Practical Scenario

L<−numIsub∗numJsub∗numKsub

re sponse s e l e c t edB<−r e s p o n s e s e l e c t e d

for ( l in 1 : L ){
r e sponse s e l e c t edB [ l , ]<−i f e l s e (round( runif (3 )∗10)>3 ,

r e s p o n s e s e l e c t e d [ l , ] , rep (−999 ,3))

}

r e sponse s e l e c t edB [ r e sponse s e l e c t edB ==−999] <− NA
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C.2.6 R Codes For Generating Informative Missing Data Set

Missing Upon Predictor Values

#To determine the parameter v a l u e s

numJsub<−10 #the number o f o b s e r v a t i o n t imes : once a year

numKsub<−10 #the number o f f i s h randomly s e l e c t e d from

#a l a k e at a time

#To s e l e c t the ” observed ” in format ion

#To sample on ly t h o s e l a k e s wi th mean l o g water se g r e a t e r

#than o v e r a l l mean

l a k e i n d i c a t o r<−rep (1 ,numJ∗numK)

for ( i in 2 : numI)

l a k e i n d i c a t o r<−c ( l a k e i n d i c a t o r , rep ( i , numJ∗numK) )

t i m e i n d i c a t o r<−rep (1 ,numK)

for ( j in 2 :numJ)

t i m e i n d i c a t o r<−c ( t ime ind i ca to r , rep ( j , numK) )

t i m e i n d i c a t o r<−rep ( t ime ind i ca to r , numI)

f i s h i n d i c a t o r<−c ( 1 :numK)

f i s h i n d i c a t o r<−rep ( f i s h i n d i c a t o r , numI∗numJ)

tmp<−cbind (c ( 1 : numI ) , rep (0 , numI ) )

temp<−apply ( p r ed i c to r , 1 ,mean)

for ( i in 1 : numI){
i f ( temp [ i ]>mean( p r e d i c t o r ) )

tmp [ i , 2 ]<−1

}
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l a k e s e l e c t e d 2<−tmp [ tmp[ ,2 ]==1]

numIsub<−length ( l a k e s e l e c t e d 2 )/2

l a k e s e l e c t e d 2<−l a k e s e l e c t e d 2 [ c ( 1 : numIsub ) ]

numIsub<−length ( l a k e s e l e c t e d 2 ) #the number o f s e l e c t e d l a k e s

t i m e s e l e c t e d<−c ( 1 : ( numJ/2) )∗2−sample (c ( 0 , 1 ) , s i z e =1)

f i s h s e l e c t e d<−sample (c ( 1 :numK) , s i z e=numKsub , replace=F)

p r e d i c t o r s e l e c t e d 2<−p r e d i c t o r [ l a k e s e l e c t e d 2 , t i m e s e l e c t e d ]

p r ed i c t o r tmpse l e c t ed<−0

for ( i in 1 : numIsub )

for ( j in 1 : numJsub)

p r ed i c t o r tmpse l e c t ed<−c ( p red i c to r tmpse l e c t ed ,

rep ( p r e d i c t o r s e l e c t e d 2 [ i , j ] , numKsub) )

p r ed i c t o r tmpse l e c t ed<−pred i c t o r tmpse l e c t ed [ 2 :

( numIsub∗numJsub∗numKsub+1)]

tmp<−rep ( 0 , 3 )

for ( i in l a k e s e l e c t e d 2 )

for ( j in t i m e s e l e c t e d )

for ( k in f i s h s e l e c t e d )

tmp<−rbind (tmp , response [ ( l a k e i n d i c a t o r==i )&( t i m e i n d i c a t o r==j )&

( f i s h i n d i c a t o r==k ) , ] )

r e s p o n s e s e l e c t e d 2<−tmp [ 2 : ( numIsub∗numJsub∗numKsub+1) , ]

Missing Upon Response Values

#To s e l e c t the ” observed ” in format ion

#To record only t h o s e responses between (2 ,3) as observed

r e sponse s e l e c t edB2<−response
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for ( i in 1 :18000)

for ( j in 1 : 3 ){
i f ( ( response [ i , j ] <2) | ( response [ i , j ]>3))

r e sponse s e l e c t edB2 [ i , j ]<− −999 #miss ing i n d i c a t o r

}
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