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Dr. Gábor Tardos, Senior Supervisor

Dr. Funda Ergün, Supervisor
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Abstract

In this thesis, we give efficient algorithms and near-tight lower bounds for the following
problems in the streaming model.

Improving on the works of Monemizadeh and Woodruff from SODA’10 and Andoni,
Krauthgamer and Onak from FOCS’11, we give Lp-samplers requiring O(ε−p log2 n) space
for p ∈ (1, 2). Our algorithm also works for p ∈ [0, 1], taking Õ(ε−1 log2 n) space.

As an application of our sampler, we give an O(log2 n) space algorithm for finding
duplicates in data streams, improving the algorithms of Gopalan and Radhakrishnan
from SODA’09.

Given a stream that consists of a pattern of length m and a text of length n, the
pattern matching problem is to output all occurrences of the pattern. Improving on the
results of Porat and Porat from FOCS’09, we give a O(log n logm) space algorithm that
works entirely in the streaming model.

Finally we show several near-tight lower bounds for the above problems through new
results in communication complexity.
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is an amazing experience with many privileges. Among these, a clear winner for me
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Chapter 1

Introduction

In the classical model of computation, algorithms with linear space and time are consid-
ered optimal. This is well justified, as for most problems, any algorithm must inspect
the whole input and the input itself takes linear space. However, starting from late 90’s,
the explosion of data available to computers made even the optimal algorithms simply
impractical for some applications. For instance, consider a search engine that indexes a
large portion of the Web. In the classical model, the entire memory can be accessed in
unit time. However by todays technology it is simply not possible to have random access
memory large enough to fit a web index.

More importantly, recent advances in the Internet infrastructure changed how we
think of data in non-trivial ways. More data is being moved to the Cloud by the day,
whether it belongs to an end user or a large Internet business, which in turn decreases
the costs of cloud storage further. However, data stored remotely can no longer be
accessed randomly and must be transmitted over a network in a sequential order first.
Furthermore, the devices that form the Internet infrastructure often need to calculate
statistics about the data traffic so as to route the data traffic more efficiently. These
devices typically have very limited space.

By late 90’s it was clear that such advances in technology call for new formal models
of computation. In the streaming model, we assume that a sequence of data items are
given one by one to the algorithm. The algorithm should compute a function of the input
stream by maintaining a small memory. Here, in contrast with the classical model, the
input is not counted towards the space usage of the algorithm.

There are very early examples of streaming algorithms. For instance Morris [71] in
1978 shows that one can count the number of data items seen so far approximately using
O(log log n) bits, where n is an upper bound on the number of data items. Note that the
naive solution uses O(log n) bits, hence is exponentially worse. Also in 1978, Munro and
Paterson gave an O(

√
n log n) space algorithm that computes the median of a stream of

integers by doing two passes over the stream. Then in 1985, Flajolet and Martin [34]
gave a one-pass algorithm that computes a constant approximation to the number of
distinct items in a given stream using logarithmic space.

After these results, the streaming model attracted only little attention, until the
celebrated paper of Alon, Matias and Szegedy [1], where the authors studied the problem
of approximating frequency moments and gave strong lower bounds via communication
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CHAPTER 1. INTRODUCTION 2

complexity. As also touched upon above, by late 90’s the need for a formal model of
computation for small space algorithms was evident and a plethora of papers on the
streaming model followed [1].

The results presented in chapters 4 and 5 of this thesis appeared in a PODS 2011 paper
Tight Bounds for Lp Samplers, Finding Duplicates in Streams, and Related Problems
[52], joint with Hossein Jowhari and Gábor Tardos. The results presented in Chapter 6
appeared in a RANDOM 2010 paper Periodicity in Streams [29], joint with Funda Ergün
and Hossein Jowhari. The results of Chapter 3 are either from one of [52] and [29], or
from results in preparation, joint with Gábor Tardos and Hossein Jowhari.



Chapter 2

Preliminaries

Throughout this thesis we denote by [n] the set of integers {1, 2, . . . , n} and we denote by
[a..b] the set {a, a+ 1, . . . , b}, where a ≤ b are two integers. As usual, e denotes Euler’s
number 2.718 . . .. We consistently denote by log x the binary logarithm of x and by lnx
the natural logarithm of x. Let x and y be two n-dimensional vectors. We define the
coordinate-wise product operator ? as follows.

x ? y = (x1y1, . . . , xnyn)

A string is a finite length sequence x1, . . . , xn, where xi ∈ Σ for some set Σ, called
the alphabet. We denote by Σ∗ the set of all strings over Σ. The length of a string
x = x1, . . . , xn is denoted by |x|. Let x and y be two strings. We denote the concatenation
of x and y by x◦y or xy. If x and y have the same length, then we speak of the Hamming
distance between the two strings, which equals the number of positions in which x and y
differ and is denoted Ham(x, y). In the case we have Σ = {0, . . . , q − 1} for some integer
q, the weight of x ∈ Σ∗ is defined, which equals to the number of non-zero positions in x
and is denoted by wt(x).

2.1 The Streaming Model

Let f : Σ∗ → T be a function where T is an arbitrary set and Σ is an alphabet. In a
streaming problem we are allowed to do a few (typically one) left to right passes over
a sequence s ∈ Σ∗, called the stream, while maintaining a small memory, and after the
last pass, we are asked to output f(s). Let m, p ≥ 1 be integers and δ ∈ [0, 1] be a real.
A p-pass δ-error streaming algorithm A with space b = b(m, δ) consists of two stages
defined as follows. In the first stage the algorithm is given m, the length of the stream,
the desired error probability δ, and possibly other parameters. Through a randomized
computation, the algorithm prepares a b bit memory state for the second stage. Here b
is a function of m, δ and possibly other parameters given as input to the first stage. In
the second stage, the algorithm has only b bits of working memory—initialized in the
first stage—and has no access to randomness. The algorithm reads the stream at most p
times left to right (but has no write access to it) and after the last pass outputs a value,

3



CHAPTER 2. PRELIMINARIES 4

denoted A(s), with the property

Pr[A(s) 6= f(s)] ≤ δ

where the probability is over the randomness used in the first stage. Sometimes we
consider streaming problems of the form f : Σ∗ → T ∗ where the algorithms additionally
have access to a write-only stream on which the variable length output is written. In a
deterministic streaming algorithm no randomness is used in either stage.

In an update stream the alphabet consists of tuples (i, u), called updates, where i ∈ [n]
and u ∈ F, for some field F. The stream of updates implicitly define an n-dimensional
vector x ∈ Fn as follows. Initially, x is the zero vector. An update of the form (i, u) adds
u to the coordinate xi of x, leaving the other coordinates unchanged. Typically, when
a streaming problem takes an update stream as the input, the answer to the problem is
only a function of x but not the exact configuration of the stream.

In the strict turnstile model we are guaranteed that all coordinates of x are non-
negative at the end of the stream, although negative updates are still allowed. In the
general model such guarantee does not exist. In the more restrictive cash register model
only positive updates are allowed. Namely, for any update (i, u) we have u ≥ 0. A
notable special case is when u = 1 for all updates, where the input is no more called an
update stream but simply referred to as an item stream.

2.2 Probability

A probability distribution µ is a function µ : S → R for some countable set S, such that
µ(s) ≥ 0 for all s ∈ S and

∑
s∈S µ(s) = 1. We say that S is the support of µ and

write S = supp(µ). A random variable is, roughly speaking, a variable which equals
x with probability µ(x) for each x ∈ supp(µ), where µ is a probability distribution.
We say that X is distributed according to µ and write dist(X) = µ. Further, we let
supp(X) := supp(dist(X)), i.e., the support of a random variable is defined to be the
support of its distribution.

Let σ : S × T → R be a distribution. Define distributions µ and ν with support sets
respectively S and T as follows.

µ(s) =
∑
t∈T

σ(s, t) ν(t) =
∑
s∈S

σ(s, t)

We say that µ is the marginal distribution of σ for S and ν is the marginal distribution
of σ for T . A function π : S×T → R is said to be the product of µ and ν, and is denoted
π = µν, if π(s, t) = µ(s)ν(t) for all s ∈ S and t ∈ T .

We say that random variables X and Y are independent if dist(X,Y ) =
dist(X) dist(Y ). A collection of random variables X1, . . . , Xn is called k-wise independent
if for any I = {i1, . . . , it} ⊆ [n] having at most k elements, we have

dist(Xi1 , . . . , Xit) =

t∏
j=1

dist(Xij ).
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Namely, in a k-wise independent collection, every selection of at most k random variables
are distributed according to the product of their marginal distributions.

In the above definitions, probability distributions and random variables are assumed
to have countable support. These definitions can be extended to continuous support sets
as well, however this requires more care and the reader is referred to [41] for a rigorous
treatment. A distribution is called Bernoulli if it is supported on the set {0, 1}. We say
that a random variable is real-valued if its support is a subset of R. For a real-valued
random variable X, the expectation of X, denoted E[X], is defined as

E[X] =
∑
s∈S

sµ(s).

where µ = dist(X). It is easy to see that for a real a and two real-valued random variables
X and Y we have E[aX+Y ] = aE[X]+E[Y ]. This fact, although simple, is very powerful
and often referred to as the linearity of expectation.

For any linear (univariate) function f , by the above fact, we have E[f(X)] = f(E[X]).
The reader may expect that E[f(X)] ≥ f(E[X]) holds whenever f is a convex function.
This is indeed true as shown by Jensen’s inequality.

Lemma 2.1 (Jensen [50]). Let X be real-valued random variable and f be convex func-
tion. We have E[f(X)] ≥ f(E[X]).

2.3 Information Theory

Let µ and ν be two probability distributions, supported on the same set S. The Kullback-
Leibler divergence between µ and ν is denoted by D(µ ‖ ν) and defined as

D(µ ‖ ν) =
∑
s∈S

µ(s) log
µ(s)

ν(s)
.

Here, we take 0 log 0 to be 0. The divergence is undefined if there is an s ∈ S such that
µ(s) > 0 and ν(s) = 0. Some properties of the divergence are given in the next lemma.

Lemma 2.2. Let X,Y, U, V be arbitrary random variables such that supp(X) = supp(U)
and supp(Y ) = supp(V ) and E be an event determined by X. Set µ = dist(X) and
ν = dist(U). The following hold.

(i) D(µ ‖ ν) ≥ 0.

(ii) D(dist(X |E) ‖ dist(X)) = − log Pr[E].

(iii) D(dist(X,Y ) ‖ dist(U, V )) = D(µ ‖ ν)+ E
x∼X

[
D(dist(Y |X = x) ‖ dist(V |U = x))

]
Proof. Let S = supp(X). Statement (i) follows by noting

D(µ ‖ ν) = −
∑
s∈S

µ(s) log
ν(s)

µ(s)
≥ − log

∑
s∈S

ν(s) = 0
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where the inequality follows from Lemma 2.1. To prove statement (ii) we write

D(dist(X |E) ‖µ) =
∑
s∈E

µ(s)

Pr[E]
log

µ(s)

Pr[E] · µ(s)
= − log Pr[E].

Statement (iii) is obtained by straightforward calculation, however this takes space and
we refer the reader to Theorem 2.5.3 in [24] for a proof.

The following lemma will be used in this thesis, which is immediate from
Lemma 2.2 (iii) by an induction.

Lemma 2.3. Let X be a random variable that is supported on binary strings of length
n and Xi be the ith bit of X. We have D(dist(X) ‖ qn) ≥

∑n
i=1 D(dist(Xi) ‖ q) where qn

is the product of n copies of a Bernoulli distribution q.

Let X and Y be two random variables. The mutual information between X and Y ,
denoted I(X : Y ), is defined as

I(X : Y ) = D(dist(X,Y ) ‖ dist(X) dist(Y )).

The mutual information of a random variable with itself, i.e., the quantity I(X : X)
is called the self information or the Shannon entropy of X, which plays a central role
information and coding theory, among other areas. Shannon entropy is also denoted by
H(X) and can be extended to a conditional version in the usual way:

H(X |Y ) = E
y∼Y

[
H(X |Y = y)

]
.

It satisfies the following useful properties, whose proofs can be found in Section 2.1 in
[24].

Lemma 2.4. Let X and Y random variables. The following hold.

(i) H(X) ≥ 0, with equality if and only if X is fixed to a single value.

(ii) H(X) ≤ log | supp(X)|, with equality if and only if X is uniformly distributed on
its support.

(iii) H(X,Y ) = H(X |Y ) + H(Y ). This is called the chain rule for entropy.

(iv) H(X |Y ) ≤ H(X).

(v) H(X | f(Y )) ≥ H(X |Y ), for any function f . This is called the data processing
inequality.

For convenience, we also introduce the following two functions. Let p ∈ [0, 1] and
q ∈ (0, 1) be two reals. Define

D2(p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

H2(p) = p log
1

p
+ (1− p) log

1

1− p
= 1−D2(p ‖ 1/2)

where 0 log 0 is taken to be 0 as above. We will also need the following lemma, which is
often referred to as Fano’s inequality.
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Lemma 2.5 (Fano [31]). Let X and Y be two random variables and let f : supp(Y ) →
supp(X) be a function. Define δ = Pr[f(Y ) 6= X]. It holds that

H2(δ) + δ log(| supp(X)| − 1) ≥ H(X |Y ).

Proof. Let F be the indicator random variable for the event f(Y ) 6= X. By Lemma 2.4
we have

H(X |Y ) ≤ H(X,F |Y )

= H(X |Y, F ) + H(F |Y )

≤ H(X | f(Y ), F ) + H(F |Y ) (by Lemma 2.4 (v))

= δH(X | f(Y ), F = 1) + (1− δ) H(X | f(Y ), F = 0) + H(F |Y )

Note that conditioned on F = 0, we have X = f(Y ) and hence the middle term in the
above sum is zero. Thus,

H(X |Y ) ≤ δH(X | f(Y ), F = 1) + H(F |Y )

≤ δ log(| supp(X)| − 1) + H2(δ)

where the last inequality follows from Lemma 2.4 (ii), (iii) and (iv).

2.4 Concentration Bounds

Let X1, . . . , Xn be random variables such that E[Xi] = ε for some 0 ≤ ε ≤ 1. Define
X = X1 + · · ·+Xn. By linearity of expectation we have E[X] = εn. The classical results
of Chernoff [16] and Hoeffding [43] state that if each Xi is chosen independently, then X
is tightly concentrated around its expectation and the exact quantification is as follows.

Theorem 2.1 (Chernoff [16]). Let X = X1 + · · · + Xn, where Xi for i ∈ [n] are inde-
pendent binary random variables with expectation ε. Then for any ε ≤ γ ≤ 1 we have
Pr [X ≥ γn] ≤ 2−nD2(γ ‖ ε).

Proof. Let E be the event that X ≥ γn. Let µ be the Bernoulli distribution that equals
1 with probability ε.

− log Pr[E] = D(dist(X |E) ‖µn) (by Lemma 2.2 (ii))

≥
n∑
i=1

D(dist(Xi |E) ‖µ) (by Lemma 2.3)

≥ nD2(γ ‖ ε) (as D2(δ ‖ ε) ≥ D2(γ ‖ ε) for ε ≤ γ ≤ δ)

Hence, Pr[E] ≤ 2−nD2(γ ‖ ε) as required.

Furthermore, the above theorem is essentially tight as shown next. The following
result is standard, although the specific constants stated in the theorem follows from
Stanica’s relatively recent lower bound on the binomial coefficients.
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Theorem 2.2 (Stanica [80]). Let X = X1+· · ·+Xn, where Xi for i ∈ [n] are independent
binary random variables with expectation ε. Let 0 ≤ k ≤ n be an integer and define
γ = k/n. We have Pr [X = k] ≥ 2−nD2(γ ‖ ε)/

√
γ(1− γ)cn, where c = 2πe1/4n.

Theorem 2.1 will be enough to argue concentration in all of our impossibility results
and communication complexity upper bounds. In these settings, there is no limit to
the randomness we can use hence we enjoy the full power of Theorem 2.1. However,
in our streaming algorithms, we often do not have enough space to store the random
bits required to generate fully independent random variables. In such cases k-wise in-
dependence comes in handy. Recall that random variables X1, . . . , Xn are called k-wise
independent if for any I = {i1, . . . , it} ⊆ [n] having at most k elements, Xi1 , . . . , Xit

are distributed according to the product of their marginals. In [77], Schmidt et al. give
analogous results to Theorem 2.1 for k-wise independent random variables. We will use
the following result (see Lemma 3 and Theorem 4 in [77]).

Theorem 2.3 (Schmidt et al. [77]). Let X = X1 + · · ·+Xn, where X1, . . . , Xn are k-wise
independent binary random variables, each having expected value ε.

(i) For any ε ≤ γ ≤ ε+ (1− ε)k/n we have Pr[X ≥ γn] ≤ 2−nD2(γ ‖ ε).

(ii) For any ε+ (1− ε)k/n ≤ γ ≤ 1 we have Pr[X ≥ γn] ≤ (eε/γ)k.

We will also need concentration bounds for continuous random variables. Intuitively,
among all random variables Y with expectation ε that take values in the real interval
[0, 1], Bernoulli variables have the most spread out distribution. Hence it is plausible that
above concentration bounds hold for sum of arbitrary variables supported on [0, 1] too.
This intuition is verified in the following theorem, which is immediate from Theorem 5
in [77].

Theorem 2.4 (Schmidt et al. [77]). Let X = X1 + · · ·+Xn, where X1, . . . , Xn are k-wise
independent real valued random variables such that supp(Xi) = [0, 1] and E[Xi] = ε for
i ∈ [n]. Then for any 2ε+ ek/n ≤ γ ≤ 1 we have Pr[X ≥ γn] ≤ e−bk/2c.

2.5 Error Correcting Codes

Suppose that we want to colour the set of length-n strings over the alphabet [m] such
that if 0 < Ham(x, y) ≤ k then x and y have different colours. Clearly, such colouring
can be obtained using only

∑k
i=0

(
n
i

)
(m − 1)i colours. To see this, construct a graph

where each x ∈ [m]n is a node and there is an edge between x and y if Ham(x, y) ≤ k.
This graph has maximum degree l =

∑k
i=1

(
n
i

)
(m− 1)i, thus can be coloured using l+ 1

colours. By Theorem 2.1, log
∑k

i=0

(
n
k

)
≤ n − nD2(k/n ‖ 1/2) = nH2(k/n), hence we

have the following lemma. This fact is commonly attributed to Gilbert [39] who showed
it for the m = 2 case and with focus on a single colour class.

Lemma 2.6 (Gilbert [39]). There exists a mapping C : [m]n → {0, 1}s, where s =
k log(m− 1) + H2(k/n)n+O(1), such that for x, y ∈ [m]n satisfying 0 < Ham(x, y) ≤ d,
we have C(x) 6= C(y).
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In this section we will see the existence of such mappings that can further be computed
efficiently using small space as x is being defined by an update stream. Let n, k be integers
such that n ≥ k and F be a field with at least n elements. An n by k Vandermonde
matrix over F is given by

V =


1 α1 α2

1 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2

1 α3 α2
3 . . . αk−1

3
...

...
...

. . .
...

1 αn α2
n . . . αk−1

n


where α1, . . . , αn are distinct elements of F. It is well known that any square Vander-
monde matrix has full rank. Observing that any subset of rows of V is also a Vander-
monde matrix, we conclude that any k rows of V are linearly independent.

Theorem 2.5 (Joffe [51]). Let Fq be a finite field and k ≤ n be integers. Set S =
O(k log n + k log q). There is an algorithm that given i ∈ [n] and a seed r, outputs
Xi ∈ Fq using S space, such that when r is chosen uniformly at random, the random
variables X1, . . . , Xn are k-wise independent where each Xi is uniform on Fq. Further,
r can be represented using S bits.

Proof. Let l be the smallest integer such that ql ≥ n. Let g be a generator of Fql , that

is, the finite field of size ql. Let V be an n by k Vandermonde matrix over Fql , where we
set αi = gi. Denote the ith row of V by Vi. The seed r is an element of Fql . On input

i ∈ [n] and r the algorithm computes a = Vir and considering a as an element of Flq sets
Xi = a1, where we denote by a1 the first coordinate of a.

Clearly, r can be represented using S = O(k log n+k log q) bits and a can be computed
using the space S efficiently. Now we show that X1, . . . , Xn are k-wise independent and
each Xi is uniformly distributed. Let I ⊆ [n] have exactly k elements. Let VI be sub-
matrix of V constructed by taking rows Vi for i ∈ I. We argue that f(r) = VIr is a
bijection from Fql to itself. To see this, suppose VIr1 = VIr2. This implies r1 = r2 as VI
has full rank, as required. Thus when r is uniform on Fql , so is VIr. This completes the
proof.

The next theorem can be regarded as the computationally efficient version of Lemma
2.6 tailored for the streaming model. The following theorem and the corollary following
it are folklore, although we are unable to locate a reference.

Theorem 2.6. Let 1 ≤ s ≤ n. For any field F having infinitely many elements, there is
a linear map L : Fn → F2s and a recovery procedure that on input L(x), outputs x′ ∈ Fn
with the following guarantee. For any s-sparse vector x, it holds that x′ = x.

For any finite field Fq, there there is random linear map R : Fnq → F2s
ql
× Fq2sl, where

l is the smallest integer such that ql ≥ n, and a recovery procedure that on input R(x)
outputs DENSE or a x′ ∈ Fnq . If x is s-sparse, x′ = x with probability 1. Otherwise, the
procedure outputs DENSE with at least 1− n−s probability.
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Corollary 2.7. There is a streaming algorithm which, given an update stream over Fq,
takes O(s log n+s log q) bits of space and outputs x′ or DENSE such that for any s-sparse
vector x the output is x′ = x with probability 1 and for any vector x that is not s-sparse
the output is DENSE with probability at least 1− n−s.



Chapter 3

Communication Complexity

Communication complexity, introduced in [84] by Yao, studies the communication re-
quirements of computing a function whose input is distributed among several parties.
In the most basic and standard setting, two players, often referred to as Alice and Bob,
receive inputs x and y, respectively, and are required to evaluate f(x, y), where the func-
tion f is known in advance to both players. To this end, the players take turns sending
each other bit strings according to a predetermined protocol and finally the last player
to receive a message should find out f(x, y). Note that the players agree on a protocol
after seeing what f is and before receiving their input x, y. The basic question of com-
munication complexity is the minimal number of bits required to compute f , often when
there is a restriction on the number of rounds the players can take.

Intuitively, communication complexity abstracts away the time requirements of com-
putation, allowing us to prove lower bounds for computational problems by exploiting
information transfer barriers and space bottlenecks. Lower bounds in communication
complexity have applications in a wide range of areas including data stream algorithms,
circuit complexity, data structures (via the cell probe model), Turing machines, and
VLSI design. The excellent book of Kushilevitz and Nisan [62] covers the fundamentals
of communication complexity as well as its applications; although the area has taken a
long way since 1997, where [62] was published.

3.1 Communication Games

Let X,Y, Z be arbitrary sets and let f : X × Y → Z be a function. In a two player
communication game, the first player, Alice, gets x ∈ X and the other player, Bob, gets
y ∈ Y . The aim of the players is to compute f(x, y) by communicating bits. In addition
to their input, the players have access to an infinite length shared random string R of
independent unbiased coin tosses.

The communication between Alice and Bob takes place according to a predetermined
protocol. A protocol consists of several rounds, where in a round a player sends a bit
string, called a message, to the other player. We assume that Alice always sends the first
message and no player sends messages in consecutive rounds (i.e., the players alternate).
The protocol terminates when a player announces the answer. For a protocol P , we

11
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denote by P (x, y) the value announced by the last player, when Alice’s input was x and
Bob’s input was y. Note that P (x, y) is a random variable, in case the protocol P depends
on the shared random string.

Let µ be a distribution supported on X × Y . We say that P is a (µ, δ)-distributional
error protocol for f if

Pr
R,(x,y)∼µ

[P (x, y) 6= f(x, y)] ≤ δ

where the probability is over both the input distribution µ and the shared random string
R. A deterministic protocol does not depend on R; i.e., no position of R is queried
throughout the execution of P . In a δ-error randomized protocol, for any x ∈ X and
y ∈ Y we have

Pr
R

[P (x, y) 6= f(x, y)] ≤ δ .

In an r-round protocol, the number of messages sent is at most r for any x, y and R. The
total communication complexity of a protocol is the maximum, over all x, y and R, the
number of bits sent in total by two parties. The maximum communication complexity is
the size of the longest message in a protocol for the worst x, y and R.

Let f be a communication problem. We let D(f) be the minimum total communica-
tion complexity, over all deterministic protocols for f that have zero distributional error
on the uniform distribution. We denote by Rδ(f) the minimum, over all δ-error random-
ized protocols P computing f , the total communication complexity of P . The quantities
Dr(f) and Rrδ(f) are defined similarly, except we take the minimum over protocols with
at most r rounds. When δ is not specified, we take it to be 1/3, i.e., R(f) := R1/3(f)
and Rr(f) := Rr1/3(f).

Let P be a δ-error randomized protocol and let E be the event that the protocol
makes an error, i.e., P (x, y) 6= f(x, y). For any input distribution µ supported on X×Y ,
we have

E
µ

[
Pr
R

[E]

]
≤ δ

Pr
µ,R

[E] ≤ δ

E
R

[
Pr
µ

[E]

]
≤ δ.

Hence, for the outer expectation in the last line, there exists a fixing of R, which makes
Prµ[E] no bigger than δ. Hard-coding this fixing to P , we obtain a deterministic protocol
with (µ, δ)-distributional error. This fact, known as the easy direction of Yao’s lemma, is
very useful in that it allows us to convert any randomized protocol to a deterministic one
without increasing its error (although changing the type of error guarantee); and in that
working with deterministic protocols is often much easier. The harder direction of Yao’s
lemma, roughly speaking, states that fixing the coins of a protocol as described above
will not make our lower bounds any weaker, given that µ is chosen carefully. Namely,
the lemma states that for any communication problem f , there exists a distribution µ
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such that any (µ, δ)-distributional error protocol for f needs to communicate at least
Rδ(f) bits. This direction of Yao’s lemma will not be used in this thesis hence we refrain
from stating it rigorously. Interested reader is referred to Section 3.4 in [62] (in specific,
Theorem 3.20) for a detailed account on the subject.

3.2 Augmented Indexing Problem

Consider the following two-player communication game. The first player, Alice, is given
a string x ∈ [m]n and the second player, Bob, is given an integer i ∈ [n] and the copies of
xj for j < i. The players exchange messages, with Alice sending the first message, and
the last player to receive a message should output xi. We refer to this problem as the
augmented indexing and denote it by AINDn

m.
The augmented indexing problem is well studied for binary alphabets, i.e., for the

m = 2 case. This case was first investigated in [68] by Miltersen et al.1 who showed that
any one-round randomized protocol for the problem must communicate Ω(n) bits. Later
on in [7], Bar-Yossef et al. gave the optimal (1−H2(δ))n bits lower bound for one-round
protocols. This problem (with binary alphabets) is also studied by [66, 13, 46] and [14]
with the goal of lower bounding the information cost of any randomized protocol. Here
we hand-wave the definition of information cost, however we note that it is tightly related
to the mutual information between players’ inputs and the messages sent in the protocol
and that it lower bounds R(AINDn

m). We refer the interested reader to [47] for a tutorial
on the subject.

To the best of our knowledge, the problem with arbitrary alphabets was first stud-
ied in [29] by Ergün, Jowhari and Sağlam who gave an Ω(n logm) lower bound for
any one-round protocol. Later on, in [49] by Jayram and Woodruff, a closely related
problem is studied. In their version of augmented indexing, Bob is additionally given
an a ∈ [m] and is required to determine whether xi = a or not. They show a tight
Ω(min{n log(1/δ), n logm}) bits lower bound for any one-round δ-error randomized pro-
tocol.

In this section we present the lower bound of Ergün et al. [29] and an almost matching
upper bound for the augmented indexing problem, which together show that

R1
δ(AINDn

m) = n logm− δn log(m− 1)

−H2(δ)n+O(log n+ log log(logm/δ)). (3.1)

Observe that our upper and lower bounds match up to an additive logarithmic factor.
However, in the following chapters the above precise formula will seldom be needed hence
we state the following more compact lower bound. The proof of Theorem 3.1 assumes the
correctness of Eq. (3.1), which we establish by the two lemmas following Theorem 3.1.

Theorem 3.1. For m ≥ 3 and 0 ≤ δ < 1 − e/m1−ε for some ε > 0, we have
R1
δ(AINDn

m) = Ω((1− δ)n logm). For m = 2, we have R1
δ(AINDn

m) ≥ (1−H2(δ))n.

1We note that they study the much more powerful round-elimination concept, however their results
imply non-trivial lower bounds for augmented indexing when m is a constant only.
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Proof. By Eq. (3.1), we have Rδ(AINDn
m) ≥ (1 − δ)n logm − H2(δ)n. This is Ω((1 −

δ)n logm) as long as (1− δ) logm(1− ε) > H2(δ) for some ε > 0. We bound

H2(δ) = (1− δ) log
1

1− δ
+ δ log

1

δ

≤ (1− δ) log
1

1− δ
+ (1− δ)/ ln 2 (by x ≥ ln(1 + x))

Hence we require (1 − δ) logm1−ε > (1 − δ)(log 1
1−δ + 1/ ln 2). This happens when

δ < 1−e/m1−ε for some ε > 0, as required. The second claim is obtained by substituting
m = 2 in Eq. (3.1).

Most of our lower bounds for streaming problems in Chapters 4, 5 and 6 are obtained
by reductions from Theorem 3.1. In each of these bounds one can, on the surface, replace
Theorem 3.1 with the well known results on binary augmented indexing. However, doing
the reduction from Theorem 3.1 instead makes our lower bounds hold even for protocols
with sub-constant success probability. This does not seem possible by reductions from the
binary augmented indexing problem as this problem admits a 0-communication protocol
with 1/2 success probability. Equation (3.1) follows directly from the following two
lemmas. Let us start with the upper bound.

Lemma 3.1. Let m ≥ 2. There is a 1-way protocol for AINDn
m that communicates

n logm− δn log(m− 1)−H2(δ)n+O(log n+ log log(logm/δ))

bits and outputs the correct answer with probability at least 1− δ.

Proof. Let δ′ = δ(1−1/(n logm)) and let r be a string chosen uniformly at random from
[m]n. We have

Pr
r

[Ham(x, r) ≤ δ′n] =

∑δ′n
i=0

(
n
i

)
(m− 1)i

mn
≥ 1

n
2H2(δ′)n (m− 1)δ

′n

mn

where the last inequality follows from standard lower bounds for the binomial coefficient
(cf. Theorem 2.2). Let p = n−12H2(δ′)n(m− 1)δ

′n/mn. The players pick ln(n logm/δ)/p
length-n strings r1, r2, . . ., each uniformly at random from [m]n and independently. If
there exists a j such that Ham(x, rj) ≤ δ′n then Alice sends j to Bob. Otherwise the
protocol fails. Upon receiving j, Bob outputs rj [i]. By symmetry, the value Bob outputs
is equal to xi with probability at least 1− δ′. Further, the probability that the protocol
fails can be bounded by

(1− p)ln(n logm/δ)/p <
δ

n logm
.

Hence with probability at least 1− δ Bob outputs a value and it is correct. The number
of bits Alice sends is

dlog(ln(n logm/δ)/p)e = n logm− δn log(m− 1)

−H2(δ)n+O(log n+ log log(logm/δ)).

as desired.
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Now we proceed with the lower bound.

Lemma 3.2. For m ≥ 2 and 0 ≤ δ ≤ 1, we have R1
δ(AINDn

m) ≥ n logm − δn log(m −
1)−H2(δ)n.

Proof. Our hard distribution is as follows. We give Alice a string X chosen uniformly at
random from [m]n. We give Bob a uniformly random integer I from [n] and the prefix of
X of length I − 1. Assume there is an δ-error randomized protocol for this problem. Let
M denote the message Alice sends when the inputs are drawn from our hard distribution.
Note that M is a random variable and the randomness is over both the input distribution
and the shared random string R. By Fano’s inequality (see Lemma 2.5)

H2(δ) + δ log(m− 1) ≥ H(XI |M,R,X1X2 . . . XI−1, I) (3.2)

=
1

n

n∑
i=1

H(XI |M,R,X1X2 . . . XI−1, I = i) (3.3)

=
1

n

n∑
i=1

H(Xi |M,R,X1X2 . . . Xi−1) (3.4)

=
1

n
H(X |M,R) (3.5)

≥ 1

n

(
H(X |R)−H(M)

)
. (3.6)

In steps (3.5) and (3.6) we have used the chain rule for entropy (cf. Lemma 2.4 (iii)).
Since X is an element of [m]n chosen uniformly at random and independently from R,
we have H(X |R) = n logm. Arranging, we obtain

R1
δ(AINDn) ≥ H(M) ≥ n logm− δn log(m− 1)−H2(δ)n (3.7)

as desired.

3.3 Sparse Indexing Problem

Historically, in randomized communication complexity, one takes a problem and shows
that any constant-error randomized protocol for this problem must communicate at least
as much as the deterministic protocols, up to constant factors. In other words, one shows
that the constant error and zero error complexities of the problem are asymptotically the
same. This is the case with classical problems, including inner product [17, 5], disjointness
[53, 76], as well as the augmented indexing problem of Section 3.2. In contrast, there
are several problems for which the best protocols we know have an O(log(1/δ)) term in
their communication requirements. Namely, these protocols communicate more as the
success probability approaches 1. However there are only a handful of communication
lower bounds which get sharper as the error decreases and obtaining such bounds recently
attracted considerable attention due to its applications in streaming algorithms.

In this section we investigate a variant of the indexing problem where the optimal
communication complexity depends on the desired error guarantee. Consider the follow-
ing communication problem which is parameterized by integers k and n. Alice gets a
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k-subset S ⊂ [n] and Bob gets an integer i ∈ [n], where we require that 2k ≤ n. The
players take turns exchanging messages, where the first message is sent by Alice, and
the last player to receive a message should decide whether i ∈ S or not. We denote this
problem by INDn

k . In this section, we show that R1
δ(INDn

k) = Θ(min{k log 1
δ , k log n

k }).
The following upper bound can be derived from the protocol of H̊astad and Wigderson
[42] and is stated explicitly for δ = 1/3 in [68].

Lemma 3.3 (Miltersen et al. [68]). We have R1
δ(INDn

k) = O(min{k log 1
δ , k log n

k }).

Proof. Recall that Alice is given a k-subset S with 2k ≤ n and Bob is given an integer
i ∈ [n]. If δ < k/n, Alice sends the entire description of S to Bob. This takes log

(
n
k

)
≤

k log(n/k) +O(k) bits.
If on the other hand δ ≥ k/n, then using the shared randomness, players pick L =

d(2/δ)k ln(2/δ)e random sets T1, T2, . . . independently as follows. Each Tl, where l ∈ [L],
is identically distributed and generated by including each j ∈ [n] in Tl with probability
δ/2, leaving j out with probability 1− δ/2, independently.

If there is an l such that S ⊆ Tl, then Alice sends the integer l to Bob. Otherwise
Alice announces i ∈ S. Upon receiving l, if i ∈ Tl, Bob announces that i ∈ S otherwise
he announces that i /∈ S.

Clearly, log((2/δ)k ln(2/δ)) = O(k log(1/δ)) bits are sent. Further, if i ∈ S, the
protocol reports this with probability one. Now suppose i /∈ S. If Alice cannot find an l
such that S ⊆ Tl, then Alice erroneously announces that i ∈ S. This has probability(

1 + (δ/2)k
)L
≤ δ/2.

Secondly, the protocol announces i ∈ S if i ∈ Tl. By construction, this has probability
δ/2. Hence by the union bound, the protocol announces i /∈ S with at least 1 − δ
probability. This completes the proof.

Now we present our lower bound which shows that the protocol above is tight up to
constant factors. We remark that the recent result of Jayram and Woodruff [49] also im-
plies the next theorem, and is slightly more general, although the two results are obtained
independently. While both proofs utilize information theory, the hard distributions used
in the proofs are different and the authors of [49] work with Shannon entropy whereas
the suitable tool for our distribution is the Kullback-Leibler divergence.

Theorem 3.2. For any δ ≤ 1/3 we have R1
δ(INDn

k) = Ω(min{k log 1
δ , k log n

k }).

Proof. For any 1/16 > δ > k/n we prove an Ω(k log δ−1) lower bound. Clearly, this
implies the claim of the theorem. Our hard distribution is as follows. We give Alice a
uniformly random k-subset S ⊂ [n]. With probability half we give Bob an integer from
[n] \ S uniformly at random, with probability half we give an integer from S uniformly
at random. We consider inputs of Alice as length-n binary strings with exactly k ones.

Assume there is a δ-error randomized protocol that communicates s bits. We fix
the coins of the protocol so that it makes at most δ error on our hard distribution. By
Markov’s inequality, there exists a message m such that for at least 2−s/2 fraction of the
input strings Alice sends m and conditioned on m Bob makes at most 2δ error. Let X be
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a string chosen uniformly at random among the strings for which Alice sends m. Let q be
a Bernoulli distribution which equals 1 with probability k/n. Finally, let Y be a random
variable distributed according to qn. We argue that the distribution of the inputs we give
to Alice and Y are very close to each other. By standard Chernoff tail estimates and the
fact that |Y | = k is the most likely case (see Theorem 2.2 for a rigorous treatment)

Pr[|Y | = k] >
1

8
√
k

(
1− Pr

[∣∣|Y | − k∣∣ > 4
√
k
])

= Ω(k−1/2).

Hence by Lemma 2.2 (ii) and the chain rule for the divergence (cf. Lemma 2.3) we have

s+
1

2
log k +O(1) ≥ D(dist(X) ‖ qn) ≥

n∑
i=1

D(dist(Xi) ‖ q). (3.8)

Define pi = Pr[Xi = 1] for i ∈ [n]. Recall that X is chosen randomly among strings
for which Alice sends m. Assume that Alice sent the message m and it is Bob’s turn to
announce the answer. If he outputs i ∈ S on input i he makes (1− pi)/(2(n− k)) error,
otherwise he outputs i /∈ S and makes pi/(2k) error. Therefore, the optimal strategy for
Bob is to output i ∈ S if pi > k/n, output i /∈ S otherwise. Let B be the set of indices
for which pi > k/n. Since the total error is at most 2δ when we condition on message
m, we have

1

2k

∑
i/∈B

pi +
1

2(n− k)

∑
i∈B

(1− pi) ≤ 2δ (3.9)

We relax the above equation and bound either term separately by 2δ. Observe also that
each string given to Alice has exactly k ones thus we have

n∑
i=1

pi = k. (3.10)

Combining the fact that
∑

i∈B pi ≤ k and δ > k/n with a 2δ upper bound on the second
term of (3.9) we obtain that |B| < 5δn. Let α =

∑
i∈B pi. Combining a 2δ upper bound

on the first term of (3.9) with (3.10) we get that

α ≥ (1− 4δ)k. (3.11)

Since the divergence is non-negative, we lower bound the total divergence as follows.

D(dist(X) ‖ qn) ≥
∑
i∈B

D2(pi ‖ k/n)

=
∑
i∈B

pi log
pi
k/n
−
∑
i∈B

(1− pi) log
1− k/n
1− pi
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In what follows, we lower bound the first term by Ω(k log 1
δ ) and upper bound the second

term by O(k).

−
∑
i∈B

pi log
k

npi
= −α

∑
i∈B

pi
α

log
k

npi

≥ −α log
∑
i∈B

k

αn
(by Jensen’s inequality, cf. Lemma 2.1)

= α log
αn

|B|k

≥ (1− 4δ)k log
(1− 4δ)

5δ
(by (3.11) and |B| < 5δn)

= Ω(k log
1

δ
)

Lastly, we have∑
i∈B

(1− pi) log
1− k/n
1− pi

=
∑
i∈B

(1− pi) log(1 +
pi − k/n

1− pi
)

≤ 1

ln 2

∑
i∈B

(pi − k/n) (by ln(x+ 1) ≤ x)

= O(k) (by (3.10))

Hence we see that s = Ω(k log 1
δ ) by (3.8) as desired.

3.4 Universal Relation

Consider the following two player communication game. Alice gets a string x ∈ {0, 1}n,
and Bob gets y ∈ {0, 1}n with the promise that x 6= y. The players exchange messages
and the last player to receive a message should output an index i ∈ [n] such that xi 6= yi.
We call this the universal relation communication problem and denote it by URn.

This relation has been studied in detail for deterministic communication, as it natu-
rally arises in the context of Karchmer-Wigderson games [58, 57]. We note however that
our definition is slightly unusual: in most settings both players must obtain the same in-
dex i such that xi 6= yi, whereas we are satisfied with the last player to receive a message
learning such an i. Clearly, the stronger requirement can be met in dlog ne additional
bits and one additional round. The additional bits are needed in the deterministic case
[81] but we are not concerned with O(log n) terms for our bounds, so the two models are
almost equivalent up to the shift of one in the number of rounds.

Note that, we can trivially obtain a n+ dlog ne bits protocol for URn in which both
players learn a difference. Alice simply sends her entire input to Bob and Bob replies
with the index of a difference. It turns out, however, one can do significantly better.
The best deterministic protocol for URn is due to Tardos and Zwick [81]. Improving
a previous result by Karchmer [57], they gave a 3 round deterministic protocol using
n + 2 bits of communication with both players learning the same index i and showed
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that n+ 1 bits is necessary for such a protocol. They also gave an n− blog nc+ 2 bit 2
round deterministic protocol for our weaker version of the problem, which is also tight
except for the +2 term. They also gave an n − blog nc + 4 bit 4 round protocol, where
both players find an index where x and y differ—but not necessarily the same index. It
follows that finding the same difference is harder for deterministic communication.

In this section, we study the randomized complexity of the universal relation problem
and give almost matching upper and lower bounds. In particular, Theorem 3.3 gives
several efficient randomized protocols for this relation and theorems 3.4 and 3.5 show
that these protocols are best possible up to O(log(1/δ)) terms.

In the next theorem, Statement (iii) is due to Feige et al. [32] and statements (i) and
(ii), to the best of our knowledge, first appeared in [52] by Jowhari, Sağlam and Tardos.

Theorem 3.3. Let δ ≤ 1/2 and n > 2 be arbitrary. The following statements hold.

(i) R1
δ(URn) = O(log2 n log 1

δ )

(ii) R2
δ(URn) = O(log n log 1

δ ).

(iii) Rδ(URn) = O(log n+ log 1
δ )

Proof. Statement (iii) follows directly from a result of Feige et al. [32] which appears as
Theorem 3.10 in this thesis.

Let us prove statement (i). Recall that each of Alice and Bob has a binary string,
called x and y respectively. Using the shared randomness, Alice and Bob pick t =
dlog ne+1 random binary strings r0, . . . , rt−1, each of length n, according to the following
procedure. The string ri is obtained by setting each coordinate independently to 1 with
probability 2−i and to zero with probability 1− 2−i. Let k = 4e ln(2/δ). By Lemma 2.6,
there is a mapping C : {0, 1}n → {0, 1}s where s = k log(n/k) + O(k) such that for any
u, v ∈ {0, 1}n satisfying 0 < Ham(u, v) ≤ k we have C(u) 6= C(v).

Recall that ? is the coordinate-wise multiplication operator. Alice sends to Bob the
vectors C(x?ri) for i = 0, . . . , t−1. Upon receiving these vectors, Bob finds the greatest
integer j < t such that C(x ? rj) 6= C(y ? rj). Then, Bob finds a vector x̂ with minimal
Hamming distance to y for which C(x̂?rj) = C(x?rj) and outputs an arbitrary mismatch
between x̂ and y.

Clearly, the protocol communicates O(log2 n log(1/δ)) bits. Let us show that the
index Bob outputs is a mismatch with probability at least 1− δ. Let h = Ham(x, y). We
argue that there exists a 0 ≤ j0 < t such that

k

4e
< E[Ham(x ? rj0 , y ? rj0)] ≤ k

2e
.

This is true, as otherwise there is an i such that h2−i ≤ k/(4e) and k/(2e) < h2−i+1,
which is a contradiction. Let E1 be the event that there is an i ∈ [j0..t − 1] such that
Ham(x ? ri, y ? ri) > k and let E2 be the event that Ham(x ? rj0 , y ? rj0) = 0. Note that
if none of these events happen, Bob is able to find a j such that C(x ? rj) 6= C(y ? rj);
further the vector x̂ Bob finds satisfies x̂ ? rj = x ? rj . The probability of E2 is easy to
bound: There are h positions i for which xi 6= yi and each such position is set to 1 in rj0
with probability 2−j0 > k/(4e). Hence the probability that none of the mismatches are
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set to 1 in rj0 is (1− k/(4e))h < e−k/(4e) ≤ δ/2. By Chernoff bounds (see Theorem 2.1),
the probability of E1 can be bounded by

Pr[E1] ≤
∞∑
i=0

2−D2(k/h ‖ 2−i·k/(2eh))·h

≤
∞∑
i=0

2−k(log(2i2e)−log e) ≤ 2−k+1 < δ/2

where the second inequality follows by ex ≥ x + 1. Hence, either event happens with
probability at most δ/2 and by the union bound with probability at least 1 − δ Bob
outputs a mismatch correctly.

Finally, we show statement (ii). It is well known that there is a 1-way communication
protocol that computes an (1 ± ε) approximation to Ham(x, y) with probability 1 − δ
using O(ε−2 log n log(1/δ)) bits [63, 23]. Using this protocol, in the first round the players
compute a (1 ± 1/3) approximation h′ to Ham(x, y) with 1 − δ/2 probability. Set k =
4e ln(2/δ) as before. Using the shared randomness, players choose a binary random string
r of length n by setting each coordinate to 1 with probability k/(3eh′). Bob sends to
Alice the vector C(y ? r) and Alice outputs a coordinate exactly as Bob does in the proof
of statement (i). Clearly, O(log n log(1/δ)) bits are sent in total. The proof of correctness
for statement (i) holds here mutatis mutandis.

We start with an easy theorem which shows an Ω(log n) communication bound for
any URn protocol.

Theorem 3.4. For any δ < 1 we have Rδ(URn) = Ω((1− δ) log n).

Proof. Let P be a δ-error protocol for URn and let µ be the uniform distribution on
binary string pairs (x, y) of Hamming distance 1. Let p be the probability, when the
inputs are drawn from µ, that the protocol terminates on Alice’s side with a correct
answer. Let q be the probability, when the inputs are drawn from µ, that the protocol
terminates on Bob’s side with a correct answer. Here the probabilities are over both
the input distribution and the shared random string R. Since the protocol has error
probability at most δ, we have p+ q ≥ 1− δ. In particular, either p or q is greater than
(1− δ)/2.

If q ≥ (1 − δ)/2, we will use P to transmit a log n bit integer from Alice to Bob,
otherwise we will use P to transmit such integer from Bob to Alice. Assume by symmetry
q ≥ (1− δ)/2. Given an integer j ∈ [n], Alice sets xj = 1 and xi = 0 for i 6= j. Bob sets
yi = 0 for i ∈ [n]. Then using the shared randomness players pick a length n permutation
π and permute their strings according to it. Further they pick a length n binary string r
uniformly at random and XOR the resulting strings with r. They run protocol P on the
final strings. Since the final strings constructed by the players are distributed according
to µ, with probability q, the protocol terminates on Bob’s side with a correct answer.
When this happens the output of the protocol is π(i), as the strings constructed by the
players differ only in this position. Hence, with probability q Bob learns π(i) and he can
infer i as he knows π.
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However, it is a simple fact that to transmit an integer from [n] with q probability,
one needs to send Ω(q log n) bits. To see this give Alice an integer J chosen uniformly
at random from [n] and let Π be the transcript of the protocol, i.e., the collection of all
messages sent in each round. By Fano’s inequality (Lemma 2.5),

q log n−H2(q) ≤ I(J : Π |R) ≤ Rδ(URn)

hence, Rδ(URn) ≥ 1
2(1− δ) log n− 1 as desired.

In the following theorem, we show that the 1-way protocol given in Theorem 3.3 (i)
is tight up to constant factors and the log δ−1 term. Theorem 3.4 and the next theorem
were published in the paper [52] by Jowhari, Sağlam and Tardos.

Theorem 3.5. For any δ < 1 we have R1
δ(URn) = Ω((1− δ) log2 n).

Proof. Suppose Alice and Bob want to solve the augmented indexing problem with Alice
receiving z ∈ [2t]s and Bob getting i ∈ [s] and zj for j < i.

Let them construct real vectors u and v as follows. Let eq ∈ R2t be the standard
unit vector in the direction of coordinate 1 ≤ q ≤ 2t. Alice forms the vectors wj by
concatenating 2s−j copies of ezj , then she forms u by concatenating these vectors wj for
j ∈ [s]. The dimension of u is n = (2s − 1)2t. Bob obtains v by concatenating the same
vectors wj for j ∈ [i− 1] (these are known to him) and then concatenating enough zeros
to reach the same dimension n.

Then, using the shared randomness, the players pick a length n permutation π uni-
formly at random and permute the coordinates of their vectors according to π. Now
Alice and Bob perform the R1

δ(URn)-length δ-error one-round protocol for URn. Sup-
pose the protocol does not err and it returns the coordinate r. By construction, π−1(r)
is a uniform random index where u and v differ. Note that each such index reveals one
coordinate zj ∈ [2t] to Bob for j ≥ i. As zj is revealed by 2s−j such indices, more than
half the time when the URn protocol does not err Bob learns the correct value of zi. This
yields a R1

δ(URn)-length one-way protocol for the augmented indexing problem with er-
ror probability (1 + δ)/2. By Theorem 3.1 we have R1

δ(URn) = Ω((1 − δ)st). Choosing
s = t proves the theorem.

3.5 Finding a Common Element

Consider the following communication problem which is parameterized by integers s and
m. Alice gets an m-subset A ⊂ [2m + s] and Bob gets an m-subset B ⊂ [2m + s] with
the guarantee that |A∩B| = 1. The players take turns exchanging messages and the last
player to receive a message should output the element in A∩B. We denote this problem
by FCEms .

Along the lines of Theorem 3.4, it can be shown that any protocol for FCE can be used
to transmit an integer from [m] between the two parties, therefore the communication
complexity of FCE is at least Ω(logm). Furthermore, it was observed in [40] that the
classical disjointness problem [53, 76] of size s reduces to FCE which, combined with the
previous observation, implies that R(FCEms ) = Ω(s+ logm). Note that this bound holds
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for protocols with arbitrary number of rounds. In the following theorem we give a protocol
that almost achieves this bound in two rounds only by communicating O(s log log s +
logm) bits.

Theorem 3.6. The following statements hold.

(i) D1(FCEms ) = O(s log(m/s))

(ii) R2
δ(FCEms ) = O(s log log(s/δ) log(1/δ) + logm).

Proof. Recall that the players are given m-subsets A and B, respectively, with the guar-
antee |A ∩ B| = 1. Let x and y be the characteristic vectors of respectively sets A and
B.

First we prove statement (i). By Lemma 2.6, there exists a mapping C : {0, 1}n →
{0, 1}k where k = O(s log(m/s)) such that for any u, v ∈ {0, 1}n satisfying 0 <
Ham(u, v) ≤ 2s + 4 we have C(u) 6= C(v). Let x′ be the string obtained by flipping
every bit in x. Alice sends C(x′) to Bob and Bob finds the closest string x̂ to y such that
C(x′) = C(x̂). Then Bob outputs the index i for which x̂i = 0 and yi = 1. Observe that
Ham(x′, y) = s+ 2, therefore x′ = x̂ and Bob finds the common element correctly.

Let us prove (ii) now. Assume s ≥ 16 as there is a O(logm) bits protocol when s is
smaller by (i). Using the shared randomness, players pick t = d3s ln(2/δ)e random sets
S1, . . . , St ⊆ [2m+ s], chosen according to the following procedure. Each j ∈ [2m+ s] is
included in Si with probability 1/s and left out with probability 1− 1/s independently.
This is repeated for each i = 1, . . . , t using fresh randomness. For each i we have

Pr
[
|A ∩B ∩ Si| = 1 and |A ∩B ∩ Si| = 0

]
=

1

s
(1− 1/s)s+1 >

1

3s

for s ≥ 16. Hence with probability all but at most (1− 1
3s)

3s ln(2/δ) < δ/2, there exists an
i such that Si contains the common element and each item in Si is contained in at least
one of A and B. Further, letting Ki = (A ∩B ∩ Si) ∪ (A ∩B ∩ Si), we have

E
[
|Ki|

]
=
s+ 2

s
< 2.

Let M = d12 log(s/δ)e. By Chernoff bounds (see Theorem 2.1) and the fact that each
j ∈ [2m + s] is included in Si independently, we have |Ki| < M for all i = 1, . . . , t
simultaneously with probability at least 1− δ/2.

Alice sends t integers c1, . . . , ct to Bob, where ci = −|A ∩ Si| (mod M). Bob adds in
mod M the value |B ∩ Si| to counter ci for each i = 1, . . . , t. After this addition, if no
counter equals 1 (mod M), the protocol fails. Otherwise, let i0 be an integer such that
ci0 = 1 (mod M). Now Bob sends i0 and the integer

∑
j∈Si0∩B

j to Alice, who adds to

the latter integer
∑

j∈Si∩A−j. It can be verified that if Ki0 = A ∩ B, the result of this
addition is the only element of A ∩B, i.e., the common element.

In total, Alice sends t = d3s ln(2/δ)e integers each of which takes O(log log(s/δ)) bits.
Bob replies with a single integer no bigger than m2 hence the total communication is
O(s log log(s/δ) log(1/δ) + logm) bits. The protocol fails if Bob cannot find an i0 such
that ci0 = 1 (mod M). This happens with at most δ/2 probability. Further, conditioned
on |Ki| < M for all i = 1, . . . , t, ci = 1 (mod M) if and only if |Ki| = A ∩B. Hence, by
the union bound, Alice outputs the common element with at least 1− δ probability.
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Now we show a lower bound for the one-way communication complexity of FCE. Let
us focus on the s = 1 case first. In what follows, A and B correspond to m-subsets of
[2m+ 1]. Let µ0 be an input distribution which gives Alice and Bob only disjoint sets A
and B and picks each such disjoint pair with equal probability. Our second distribution µ1

is the uniform distribution on m-subset pairs A,B having exactly one common element.
We show that in any protocol in which only Alice can toss coins, if the error is

polynomially small under µ1, then Alice must reveal Ω(logm) bits of information about
her set even under µ0. Formally, let Π be the message Alice sends and E be the event
that the protocol makes an error. Here, Π is a random variable and the randomness is
over the input distribution and the private coins of Alice. Bob’s answer depends solely
on Π and B, as Bob has no access to coins and hence is deterministic. We prove the
following.

Lemma 3.4. If we have Iµ0(A : Π | B) < 1
4 logm, then Prµ1 [E] ≥ 1

16m .

Proof. Assume for contradiction that Iµ0(A : Π | B) < (logm)/4 and Prµ1 [E] < 1/(16m).
Observe that Hµ0(A |B) = log(m + 1) and Iµ0(A : Π | B) = log(m + 1) − Hµ0(A |Π, B)
by the definition of mutual information. By Markov’s inequality, there exists a message
π such that

log(m+ 1)− H
µ0

(A |B,Π = π) <
1

2
logm and (3.12)

Pr
µ1

[E | Π = π] <
1

8m
(3.13)

hold simultaneously. From now on we fix this message π. Let ν be the distribution of
A conditioned on Π = π. Namely, ν(a) = Pr[A = a | Π = π], where the probability is
over either µ0 or µ1. This choice does not make a difference as both distributions have
the same marginal for Alice, that is, the uniform distribution on m-subsets of [2m+ 1].
Let ν0 be the distribution µ0 conditioned on Π = π and ν1 be µ1 conditioned on Π = π.
Note that for two m-subsets a, b ⊂ [2m+ 1] and h ∈ {0, 1} we have

νh(a, b) = µh(a, b)

(
2m+ 1

m

)
ν(a). (3.14)

Substituting ν0 in (3.12) and expanding the conditional entropy we get∑
b

Pr
ν0

[B = b] H
ν0

(A | B = b) >
1

2
logm. (3.15)

Now we argue that (3.15) forces the protocol to make many errors on distribution µ1.
Let a1, a2, b be distinct m-subsets of [2m + 1] such that a1 ∩ b = ∅ and a2 ∩ b = ∅. Let
c = (a1 ∪ b) ∪ (a2 ∪ b) ∪ d, where d is an arbitrary (m − 2)-subset of b. Observe that
|c| = m and c shares exactly one element with both a1 and a2. The protocol outputs
the same answer on inputs (a1, c) and (a2, c), as once Alice’s message is fixed, Bob’s
answer depends solely on his set, namely c. Since a1 ∩ c 6= a2 ∩ c, the protocol makes
min{ν1(a1, c), ν1(a2, c)} error, regardless of its answer on c. Moreover, we can relate the
ν0 measures of (ah, b) to ν1 measures of (ah, c) for h ∈ {0, 1} as follows

ν1(ah, c) = ν0(ah, b)
2

m2
. (3.16)
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To see this observe that µ0(ah, b) = (
(

2m+1
m

)
(m + 1))−1 and µ1(ah, c) =

(
(

2m+1
m

)(
m+1

2

)
m)−1, and recall µ and ν measures are proportional in the sense of (3.14).

Now we calculate the total error. For each input b of Bob, we construct a graph Gb
such that each input of Alice is a node. Further, between every two node a1, a2 that
satisfies |a1 ∩ a2| = m− 1, |a1 ∩ b| = |a2 ∩ b| = 1 and a1 ∩ b 6= a2 ∩ b, we put an edge of
weight min{ν1(a1, b), ν1(a2, b)}. Observe that each node a in Gb has degree m− 1, since
each neighbour of a intersects with b at a different element. Note that the weight of any
matching in Gb lower bounds the error Bob makes on input b. Further, we claim that
given any Gb, we can find a matching of weight ν1(Gb)/(2m− 3), where ν1(Gb) denotes
the total weight of all edges in the graph. Indeed, sorting the edges according to their
weight and greedily adding the edges to matching starting from the heaviest edge gives
such a guarantee, as we remove 2m − 4 edges from Gb for every edge we add to the
matching. Hence the total error on ν1 is at least

1

2m− 3

∑
b

ν1(Gb) (3.17)

=
1

2m− 3

∑
b

∑
a1 6=a2

∑
d

min{ν1(a1, c), ν1(a2, c)} (3.18)

where b is an m subset of [2m+1], a1, a2 range over all m-subsets of [2m+1]\b, d ranges
over (m− 2)-subsets of b and c = (a1 ∪ b) ∪ (a2 ∪ b) ∪ d. By (3.16), we can write (3.18)
as

2
(
m
2

)
m2(2m− 3)

∑
b

∑
a1 6=a2

min{ν0(a1, b), ν0(a2, b)} (3.19)

where a1, a2 are m-subsets of [2m+ 1] \ b.
Let x be a vector such that

∑n
i=1 xi = 1 and 0 ≤ x1 ≤ . . . ≤ xn ≤ 1. We claim that

1 − xn ≥ H(x)/ log n − 1/4 for large n. Recall that H(x) ≤ (1 − xn) log(n − 1) + 1 and
hence

(1− xn) + 1/4 ≥ (1− xn) + 1/ log n ≥ H(x)/ log n

whenever n > 16. Also note that
∑

i<j min{xi, xj} ≥ 1− xn. Therefore,∑
b

∑
a1 6=a2

min{ν0(a1, b), ν0(a2, b)}

≥
∑
b

Pr
ν0

[B = b]

(
Hν0(A |B = b)

log(m+ 1)
− 1/4

)
=

1

log(m+ 1)

∑
b

Pr
ν0

[B = b] H
ν0

(A |B = b)− 1

4

∑
b

Pr[B = b]

≥1/2− 1/4 = 1/4

where the last inequality follows from (3.15). Hence the protocol makes at least 1/(8m)
error on µ1, and this contradicts with (3.13), proving our claim.
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In the next theorem, through a direct-sum argument, we extend our results to all s.

Theorem 3.7. Let n > s be integers. It holds that R1
s/n(FCEns ) = Ω(s log(n/s)).

Proof. Recall that in FCEns the players receive n-subsets A,B of [2n+ s]. Assume that
n = sm for some integer m and consider the universe [2n+s] as partitioned into s blocks
of size 2m + 1. Each of Alice and Bob will get exactly m elements from each block.
We denote Alice’s subset in block i by Ai. Similarly, Bi denotes the elements Bob get
in ith block. Then, A =

⋃s
i=1Ai and B =

⋃s
i=1Bi. By b−i we denote a certain fixing

of Bob’s input for blocks j 6= i. In other words, b−i specifies an m-subset for Bob for
each block except i. For each such fixing, we define a distribution D(b−i) as follows: In
D(b−i), Bob’s elements in blocks j 6= i is fixed to values given by b−i. In blocks j 6= i,
Alice gets a random m-subset that does not intersect with Bob’s set. In block i we pick
sets according to µ1 (i.e., uniquely intersecting). Our hard distribution D is the average
of D(b−i) for all i and all fixings b−i, that is, the uniform distribution on pairs of sets
intersecting in a single element and containing equal number of elements from each block.

Assume there is a randomized one-way protocol for FCEns which communicates
s log(n/s)/16 bits and outputs a correct answer with high probability. We fix the coins of
this protocol in a way that it makes at most 1/(32n) error on D. Denote the messages of
the deterministic protocol we obtain by Π. By Markov’s inequality, the protocol makes
at most 1/(16n) error on D(b−i) for at least half of all fixings b−i, i ∈ [s]. Further

I
µs0

(A : Π | B) ≤ s log(n/s)/16 (3.20)

and hence, there is an integer k ∈ [s] and fixing b−k such that

Pr
D(b−k)

[E] < 1/(16m) and (3.21)

I
µs0

(Ak : Π | Bk, B−k = b−k) ≤ log(n/s)/8 (3.22)

Now we give a protocol for FCEm1 in which only Alice tosses coins. Alice and Bob are
given m-subsets S and T . Bob, in block j 6= k places the sets given in b−k. In block k,
he places the set T . For each j 6= k, Alice picks a random set that does not intersect the
set given in b−k (Recall that b−k is fixed and Alice knows it). In block k Alice places
the set S. The players run the protocol with these inputs. If S and T come from µ1,
the error is small by (3.21). If S and T come from µ0, then Alice reveals little by (3.22).
This contradicts with Lemma 3.4.

3.6 The Greater Than Problem

In the greater-than problem, two players are given integers, respectively 0 ≤ x, y <
2n, with the guarantee that x 6= y and are asked to determine whether x < y or the
other way around. In [81], a harder variant of the universal relation problem was also
studied, where two players are given length-n binary strings x, y and are required to
output the leftmost position in which x and y differ. It is easy to see that any protocol
for finding the leftmost difference is also a protocol for the greater-than problem. For
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finding the leftmost difference, Tardos and Zwick [81] give a deterministic protocol that
communicates n+ log∗ n bits in log∗ n+ 1 rounds. In fact, their protocol is tunable and
for any 1 ≤ r ≤ log∗ n, the protocol runs in r rounds using n + log(r) n + r bits of total
communication. Furthermore, they show that any r-round deterministic protocol that
finds the leftmost difference must communicate at least n+ log(r) n− 2 bits. Contrasting
this lower bound with the 2-round n−blog nc+2 bits protocol [81] for universal relation,
we see that finding the leftmost difference is harder than finding an arbitrary difference
in deterministic communication complexity. The gap between between the two is much
sharper in randomized communication as we shall see in this section.

The communication complexity of the greater-than problem was first studied by
Smirnov in [79]. In [32], Feige et al. give a randomized protocol for finding the left-
most difference (hence for the greater-than problem too) which communicates O(log n)
bits in total, taking O(log n) rounds. This result is given as Theorem 3.10 in this section.
In [68], Miltersen et al. show through a round elimination argument that any r-round ran-
domized protocol must have a message of size Ω(n1/r/2O(r)). They also give an r-round
protocol which sends O(n1/r log n) bits per message. Finally, in [78] the round elimi-
nation lemma of [68] was strengthened by Sen and Venkatesh to obtain the following
result.

Theorem 3.8 (Sen et al. [78]). In any r-round 1/3-error randomized protocol for the
greater than problem, there is a message of size at least Ω(n1/r/r2) bits.

In particular, this bound shows that the communication complexity of finding the
leftmost difference is polynomial for any constant r, whereas, by results of Section 3.4,
an arbitrary mismatch can be found using O(log n) bits in two rounds only. Hence
there is an exponential gap between finding the leftmost and an arbitrary difference in
randomized communication complexity. An O(n1/r log n) bits per message upper bound
was also mentioned in [78]. In the next theorem, we improve this upper bound slightly
and give an r-round protocol with O(n1/r) bits per round.

Theorem 3.9. Suppose Alice and Bob are given binary strings, respectively x and y,
of length n. There is an r-round protocol with O(n1/r) bits messages that finds the

leftmost difference of x and y except with probability at most 2−r−2 + r2−n
1/(2r)

. The
error probability can be simplified to 2−r−1 for r < log n/ log log n.

Proof. If r = 1, then Alice sends her entire input to Bob and Bob can solve the problem
with probability 1. Hence the theorem holds for r = 1. Let us assume r ≥ 2.

Let B = 26dn1/re. Players consider x and y as partitioned into B+1 non-intersecting
blocks of length precisely bn/Bc, except for the last block, which can be shorter. We
denote by Xi the concatenation of the first i blocks of x. Define Yi similarly for Bob’s
string.

In the first round, Alice sends one bit of information about each Xi to Bob as follows.
Using the shared randomness, the players pick B+1 random strings r1, r2 . . . , rB+1 where
ri is of length |Xi|. Each string is chosen uniformly at random and independently. Alice,
for each i = 1, . . . , B + 1, sends the dot product ri ·Xi. Here, this dot product and all
dot products in this proof are computed in modulo 2. Bob compares these values with
ri · Yi for i ∈ [B + 1]. Clearly, if Xi = Yi then the the dot products are equal. On the
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other hand, if Xi 6= Yi then the dot products will differ with probability half. Let j be
the smallest integer such that rj ·Xj 6= rj · Yj (mod 2). If there is no such integer take
j to be B + 1.

Now for each i = 1, . . . , j, Bob partitions block i further into B2i−j sub-blocks. We
denote the concatenation of the first k sub-blocks of block i by Yi,k. Define Xi,k similarly.
Bob sends to Alice a 1-bit hash about Yi,k for each i < j such that B2i−j > 1 and for
each k < 2j−i. Note that in total less than 2B bits will be sent. These hash values are
obtained as described above, i.e., by multiplying the sub-blocks in mod 2 with properly
sized random strings. On top of these hash values, for block j and for the first

√
B blocks

preceding j, Bob sends a
√
B-bits equality hash. Again, these has values are obtained by

multiplying the respective block with properly sized
√
B different (independently chosen)

random strings. Here, the number of bits sent is
√
B ·
√
B = B. Further, Bob sends the

integer j to Alice.
Upon receiving Bob’s message, Alice first inspects the

√
B bit long hashes and locates

the first block preceding j (or block j itself) for which her hashes and Bob’s hashes do
not agree. Let this be block i0. Note that the probability that the first mismatch is

to the left of first
√
B blocks preceding j is 2−

√
B. Further, these hashes are

√
B bits

long, hence the probability that there is a mismatch to the left of block i0 is O(2−n
1/(2r)

).
Note that players need to locate the left most mismatch block at the beginning of each
round, hence by the union bound, except with probability O(r2−n

2/r
), we may assume

such comparisons yield the correct answer.
After Alice locates i0, she zooms to block i0 discarding all other blocks. Then she

inspects the 1-bits hashes for Xi0,k where k ≤ 2j−i0 . Let k0 be the smallest integer
such that the hash values for Xi0,k0 and Yi0,k0 do not agree. Similarly, for k < k0, she
partitions the sub-block k further into B2k−k0 pieces and sends a 1-bit hash about each
prefix of this block. Similar to the previous round, she sends

√
B bit hashes for the

√
B

sub-blocks preceding k0. The protocol continues in the same manner until the end of the
(r − 1)th round. In the last round, the player to speak sends its entire remaining input
to the other player.

Recall that in the first round only B+1 bits are sent and for rounds 2 to r−1 players
send O(B) bits per round. Now we analyze the probability the input size exceeds B at
the end of the (r−1)th round. Imagine that we are tossing coins one after another, while
keeping track of how many heads and tails appeared so far. The probability of having
seen 6r heads at the point we reach our (r − 1)th tail can be calculated as

(
7r

r

)
2−6r ≤ (7e)r/26r < 2−r−2.

Let H be the size of the remaining input at the end of the (r−1)th round. Now we relate
the probability that H > B with the above experiment. Associate the event that a 1-bit
hash correctly detects a mismatch with the event that we see a tails and associate the
event that a 1-bit hash fails with the event that we see a heads. Note that each time a
1-bit hash fails, H is multiplied by two and each time a mismatch is detected we proceed
to the next round and H is divided by B = 26dn1/re. Hence, if at the time we reach our
(r − 1)th tail (i.e., when we are at the last round) we have seen no more than 6r heads,
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we have H < n1/r < B as desired. By the union bound, this happens with probability
at least 1− 2−r−2 + r2−n

1/(2r)
. This completes the proof

The error guarantee of Theorem 3.9 is meaningful only when r =
O(log n/ log log log n) and in particular the second error term increases above 1 if we
push r further than this threshold. At the extremum point, we obtain a log n/ log log log n
rounds protocol with O(log n log logn

log log logn) total communication and 1/ log n error probabil-
ity (further, each message is at most O(log log n) bits). It is an intriguing question at this
point whether the total communication can be brought down to O(log n) bits. An early
result due to Feige et al. shows that, in fact, this is possible by further increasing the
number of rounds to above log n. For completeness, we include the proof of this theorem
here.

Theorem 3.10 (Feige et al. [32]). There is a protocol that solves the greater than problem
with 1− δ probability in O(log n+ log 1

δ ) rounds by communicating O(log n+ log 1
δ ) bits

in total. Further, the protocol outputs the location of the first mismatch.

Proof. Without loss of generality, we assume that n = 2t for some integer t. If this is
not the case, the players can pad their inputs with sufficiently many zeros. We construct
a labelled tree of depth 4 log(n/δ) = 4t + 4 log(1/δ) on top of the input as follows. The
root of the tree is labelled by the interval [1, 2t]. For i ∈ [0..t − 1], every node at depth
i having label [a, b] has two children, such that the left one is labelled by [a,m] and the
right one is labelled by [m+ 1, b] where m = (b− a− 1)/2. Hence, at depth t there are
2t nodes, each labelled by [a, a] for distinct a ∈ [2t]. Every node at depth greater than t
has exactly one child, labelled the same as the parent.

We imagine that that a chip is placed at the root of the tree and in each round one
player moves the chip to an adjacent position. Intuitively, if the chip is located at a node
with label [a, b], this means that the players expect the leftmost mismatch to be between
a and b. In particular, the players aim at maintaining that x[a, b] 6= y[a, b] and they will
backtrack as soon as they detect that this condition is violated.

The protocol proceeds as follows. Let the chip be located at node v with label [a, b].
If v has two children, the label of the left child is [a,m] and the label of the right is
[m+ 1, b], where m = (b− a− 1)/2. Suppose it is Alice’s turn to speak. She sends 4-bit
equality hashes for the substrings x[a, b] and x[a,m]. Bob compares these hashes with
the hashes for y[a, b] and y[a,m], respectively. If the hashes for the interval [a, b] match,
he moves the chip to its parent. Otherwise, if the hashes for interval [a,m] match, he
moves the chip to the right child of v. In the final case, the chip is moved to the left
child of v. Let v′ be the node the chip is moved to.

After this, now it is Bob’s turn to speak, who first lets Alice know v′ (this takes 2
bits) and similarly sends hashes for v′ and the left child of v′. The players repeat this
exchanging messages for exactly 4t+ 4 log(1/δ) rounds. After the final round, if the chip
is on a node with a label of the form [a, a], then a is announced as the answer. Otherwise,
the protocol fails.

Clearly, the protocol takes O(log(n/δ)) rounds and 10 bits are sent in each round.
Now we analyze the probability of success. Let i be the first mismatch between x and
y and u be the deepest node with label [i, i]. Orient every edge in the tree so that
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starting from any node, following the edges leads us to u. Note that, at each round
with probability 7/8, equality hashes give the correct answer and the chip is moved to
a node which is closer to u. Initially the chip is at distance 4t + 4 log(1/δ) to u, hence
the expected distance of the chip to u after the final round is t+ log(1/δ). Moreover, the
correct answer is announced if the final distance is at most 3t+ 4 log(1/δ). By Chernoff
bounds, the final distance exceeds 3t + 4 log(1/δ) with probability less than δ. This
completes the proof.



Chapter 4

Lp-Sampling from Update
Streams

Sampling has become an indispensable tool in analyzing massive data sets, and partic-
ularly in processing data streams. In the past decade, several sampling techniques have
been proposed and studied for the data stream model [6, 27, 11, 22, 70, 3]. In this
chapter, we study Lp-samplers, a new variant of space efficient samplers for data streams
that was introduced by Monemizadeh and Woodruff in [70]. Roughly speaking, given a
stream of updates (additions and subtraction) to the coordinates of an underlying vector
x ∈ Rn, an Lp-sampler processes the stream and outputs a sample coordinate of x where
the i-th coordinate is picked with probability proportional to |xi|p.

In [70], it was observed that Lp-samplers lead to alternative algorithms for many
known streaming problems, including heavy hitters and frequency moment estimation.
Here in this thesis, we focus on a specific application, namely finding duplicates in long
streams; although our Lp samplers work and often give better space performance for all
applications listed in [70]. We refer the reader to [70] and [3] for further applications of
Lp-samplers.

Observe that we allow both negative and positive updates to the coordinates of the
underlying vector. In the case where only positive updates are allowed and p = 1, the
problem is well understood. For instance the classical reservoir sampling [60] from the
60’s (attributed to Alan G. Waterman) gives a simple solution as follows. Given a pair
(i, u), indicating an addition of u to the i-th coordinate of the underlying vector x, the
sampler having maintained s, the sum of the updates seen so far, replaces the current
sample with i with probability u/s, otherwise does nothing and moves to the next update.
It is easy to verify that this is a perfect L1-sampler and the space usage is only O(1)
words.

With the presence of negative updates, sampling becomes a non-trivial problem. In
this case, it is not clear at all how to maintain samples without keeping track of the
updates to the individual coordinates. In fact, the question regarding the mere existence
of such samplers was raised few years ago by Cormode, Muthukrishnan, and Rozenbaum
in [21]. Last year in SODA 2010, Monemizadeh and Woodruff [70] answered this question
affirmatively, however in an approximate sense. Before stating their results we give a

30
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formal definition of Lp-samplers.

Definition 1. Let x ∈ Rn be a non-zero vector. For p > 0 we call the Lp distribution
corresponding to x the distribution on [n] that takes i with probability

|xi|p

‖x‖pp
,

with ‖x‖p = (
∑n

i=1 |xi|p)1/p. For p = 0, the L0 distribution corresponding to x is the
uniform distribution over the non-zero coordinates of x.

We call a streaming algorithm a perfect Lp-sampler if it outputs an index according to
this distribution and fails only if x is the zero vector. An approximate Lp-sampler may fail
but the distribution of its output should be close to the Lp distribution. In particular, we
speak of an ε relative error Lp-sampler if, conditioned on no failure, it outputs the index
i with probability (1 ± ε)|xi|p/‖x‖pp ± n−c, where c is an arbitrary constant. For p = 0
the corresponding formula is (1± ε)/k± n−c for non-zero coordinates and ±n−c for zero
coordinates, where k is the number of non-zero coordinates in x. Unless stated otherwise
we assume that the failure probability is at most 1/2. In the above definition one can
consider c to be 2, but all existing constructions of Lp-samplers work for an arbitrary c
with just a constant factor increase in the space, so we will not specify c in the following
and ignore errors of probability n−c. A sampler that outputs an approximation of xi
along with a sample coordinate i is called an augmented sampler. In specific, we say that
an algorithm is ε relative error augmented sampler if it outputs a value x̂i that is within
(1± ε)xi.

Previous work A zero relative error L0-sampler which uses O(log3 n) bits was shown
in [35]. In [70], the authors gave an ε relative error Lp-sampler for p ∈ [0, 2] which takes
poly(ε−1, log n) space. They also showed a 2-pass O(polylog n) space zero relative error
Lp-sampler for any p ∈ [0, 2]. In addition to these, they demonstrated that Lp-samplers
can be used as a black-box to obtain streaming algorithms for other problems such as
Lp estimation (for p > 2), heavy hitters, and cascaded norms [48]. Unfortunately, due to
the large exponents in their bounds, the Lp-samplers given there do not lead to efficient
solutions for the aforementioned applications.

Very recently, Andoni, Krauthgamer and Onak in [3] improved the results of [70]
considerably. Through the adaptation of a generic and simple method, named precision
sampling, they managed to bring down the space upper bounds to O( 1

εp log4 n) bits for ε
relative error Lp-samplers for p ∈ [1, 2]. Roughly speaking, the idea of precision sampling
is to scale the input vector with random coefficients so that the i-th coordinate becomes
the maximum with probability roughly proportional to |xi|p. Moreover the maximum
(heaviest) coordinate is found through a small-space heavy hitter algorithm. In more de-
tail, for p = 1, the input vector (x1, . . . , xn) is scaled by random coefficients (t−1

1 , . . . , t−1
n ),

where each ti is picked uniformly at random from [0, 1]. Let z = (x1t
−1
1 , . . . , xnt

−1
n ) be

the scaled vector. Here the important observation is Pr[t−1
i ≥ t] = 1/t and hence, for

instance, by replacing t with ‖x‖1/|xi|, we get Pr[|zi| ≥ ‖x‖1] = |xi|/‖x‖1. (In the same

manner, one can scale xi by t
−1/p
i instead of t−1

i and get a similar result for general
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p.) It turns out, we only need to have a constant approximation to ‖x‖1 and look for a
coordinate in z that has reached a limit of Ω(‖x‖1). On the other hand it is shown that
the heaviest coordinate in z has a weight of Ω(log−1 n)‖z‖1 (with constant probability),
and thus a small-space heavy hitter computation can be used to find the maximum. In
particular, the Lp-sampler of [3] adapts the popular count-sketch scheme [15] for this
purpose.

Our contributions In this chapter, we give Lp-samplers requiring only O(ε−p log2 n)
space for p ∈ (1, 2). For p ∈ (0, 1), our space bound is O(ε−1 log2 n), while for the p = 1
case we have an O(log(1/ε)ε−1 log2 n) space algorithm. In essence, our sampler follows the
basic structure of the precision sampling method explained above. However compared to
[3], we do a sharper analysis of the error terms in the count-sketch, and through additional
ideas, we manage to get rid of a log factor and preserve the previous dependence on ε.
Roughly speaking, we use the fact that the error term in the count-sketch is bounded
by the L2 norm of the tail distribution of z (the heavy coordinates do not contribute).
On the other hand, taking the distribution of the random coefficients into account, we
bound this by O(‖x‖p), which enables us to save a log factor. Additionally, to preserve
the dependence on ε, we have to use a slightly more powerful source of randomness for
choosing the scaling factors (in contrast with the pairwise-independence of [3]), and take
care of some subtle issues regarding the conditioning on the error terms which are not
handled in the previous work (Lemma 4.3).

As p approaches zero, precision sampling becomes inefficient, as the random coeffi-

cients t
−1/p
i tend to infinity. For the p = 0 case, we present a zero relative error sampler

through a completely different approach. Briefly, our L0-sampler tries to detect a non-
zero coordinate by picking random subsets of [n]. The non-zero coordinates are found
by an exact sparse recovery procedure and Nisan’s PRG [73] is applied to decrease the
randomness involved. Our O(log2 n) space bound compares favourably to the previous
algorithms, which use respectively O(log3 n) space [35] and poly(log n, ε−1) space [70]
(the latter one gives only ε-relative error sampling).

In Section 4.3, we prove that sampling from 0, ±1 vectors requires Ω(log2 n) space, by
a reduction from the universal relation communication problem. In this special case p is
not relevant for Lp-sampling, hence this shows that our L0-sampling algorithm uses the
optimal space up to constant factors, and our Lp-sampler for p ∈ (0, 2) has the optimal
space (up to constant factors) for ε > 0 a constant.

Finally, we prove lower bounds for the problem of finding heavy hitters in update
streams, which is closely related to the Lp-sampling problem. This lower bound is ob-
tained by a direct reduction from the augmented indexing and proves that any Lp heavy
hitters algorithm (defined in Section 4.3) must use Ω( 1

φp log2 n) space, even in the strict
turnstile model. Our lower bound essentially matches the known upper bounds [20, 15, 54]
which work in the general update model.

Related work In [6, 11], the authors have studied sampling from sliding windows,
and the recent paper of Cormode et al. [22] generalizes the classical reservoir sampling
to distributed streams. These works only consider insertion streams. The basic idea of
random scaling used in [3] and in our paper has appeared earlier in the priority sampling
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technique [27, 18], where the focus is to estimate the weight of certain subsets of a vector,
defined by a sequence of positive updates.

Heavy hitter algorithms have been studied extensively. The work of Berinde et al. [9]
gives tight lower bounds for heavy hitters under insertion only streams. We are not
aware of similar works on general update streams, although the recent works of [4, 83],
where the authors show lower bounds for respectively approximate sparse recovery, and
Johnson-Lindenstrauss transforms (via augmented indexing) is closely related.

Notation Recall that an update stream is a sequence of tuples (i, u), where i ∈ [n]
and u ∈ F for some field F. The stream of updates implicitly define an n-dimensional
vector x ∈ Fn as follows. Initially, x is the zero vector. An update of the form (i, u) adds
u to the coordinate xi of x (leaving the other coordinates unchanged). In this chapter
we present our upper bounds as linear maps L : Fn → Fm where we set F = R for the
highest generality. Such linear maps can be converted to streaming algorithms assuming
that all the updates are integers (u ∈ Z) and the coordinates of the vector x throughout
the stream remain bounded by some value M = poly(n). Under these assumptions, we
can set F = Zp for some p > 2M and map the integers {−M, . . . ,M} to elements of Zp.
This way, maintaining L(x) requires updating m counters over Zp and takes O(m log n)
bits with fast update time (especially since the matrices we consider are sparse). This
discretization step is standard and thus we omit most details.

In the standard model for randomized streaming algorithms the random bits used
(to generate the random linear map L, for example) are part of the space bound (see
Section 2.1 for a precise definition of the model). In contrast, our lower bounds do not
make any assumption on the working of the streaming algorithm and allow for the random
oracle model, where the algorithm is allowed free access to a random string at any time.
All lower bounds are proved through reductions from communication problems given in
Chapter 3.

We say an event happens with low probability if the probability can be made less
than n−c. Here c > 0 is an arbitrary constant, for example one can set c = 2. The
actual value of c has limited effect on the space of our algorithm: it changes only the
unspecified constants hidden in the O notation. We will routinely ignore low probability
events, sometimes even O(n) of them, which is not a problem as we leave c unspecified.
Events complementary to low probability events are referred to as high probability events.

For 0 ≤ m ≤ n we call the vector x ∈ Rn m-sparse if all but at most m coordinates of
x are zero. We define Errm2 (x) = min ‖x− x̂‖2, where x̂ ∈ Rn ranges over all the m-sparse
vectors.

4.1 The Lp Sampler

In this section, we present our Lp sampler algorithm. In the following, we assume p ∈
(0, 2). This particular method does not seem to be applicable for the p = 2 case and we
know of no O(log2 n) space L2-sampling algorithm. We treat the p = 0 case separately
later.

We start by stating the properties of the two streaming algorithms we are going to use.
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Initialization Stage:

1. Set k = 2dlog(2/ε)e.
2. For p = 1, set m = O(log 1/ε) and for p 6= 1, set m = O(ε−max(0,p−1)) with large

enough constants.

3. Set β = ε1−1/p and l = O(log n) with a large enough constant factor.

4. Select k-wise independent uniform scaling factors ti ∈ [0, 1] for i ∈ [n].

5. Select the appropriate random linear functions for the execution of the count-sketch
algorithm and L and L′ for the norm estimations in the processing stage.

Processing Stage:

1. Use count-sketch with parameter m for the scaled vector z ∈ Rn with zi = xi/t
1/p
i .

2. Maintain a linear sketch L(x) as needed for the Lp norm approximation of x.

3. Maintain a linear sketch L′(z) as needed for the L2 norm estimation of z.

Recovery Stage:

1. Compute the output z∗ of the count-sketch and its best m-sparse approximation ẑ.

2. Based on L(x) compute a real r with ‖x‖p ≤ r ≤ 2‖x‖p.
3. Based on L′(z − ẑ) compute a real s with ‖z − ẑ‖2 ≤ s ≤ 2‖z − ẑ‖2.

4. Find i with |z∗i | maximal.

5. If s > βm1/2r or |z∗i | < ε−1/pr output FAIL.

6. Output i as the sample and z∗i t
1/p
i as an approximation for xi.

Figure 4.1: Our approximate Lp-sampler with both success probability and relative error
Θ(ε)

Both are based on maintaining L(x) for a well chosen random linear map L : Rn → Rn′

with n′ < n.
The count-sketch algorithm [15] is so simple we cannot resist the temptation to de-

fine it here. For parameter m, the count-sketch algorithm works as follows. It selects
independent samples hj : [n] → [6m] and gj : [n] → {1,−1} from pairwise independent
uniform hash families for j ∈ [l] and l = O(log n). It computes the following linear
function of x for j ∈ [l] and k ∈ [6m]: yk,j =

∑
i∈[n],hj(i)=k

gj(i)xi. Finally it outputs
x∗ ∈ Rn as an approximation of x with

x∗i = median
j∈[l]

gj(i)yh(i),j

for i ∈ [n]. The performance guarantee of the count-sketch algorithm is as follows. (For
a compact proof see a recent survey by Gilbert and Indyk [38].)

Lemma 4.1 (Charikar et al. [15]). For any x ∈ Rn and m ≥ 1 we have |xi − x∗i | ≤
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Errm2 (x)/m1/2 for all i ∈ [n] with high probability, where x∗ is the output of the count-
sketch algorithm with parameter m. As a consequence we also have

Errm2 (x) ≤ ‖x− x̂‖2 ≤ 3 Errm2 (x)

with high probability, where x̂ is the m-sparse vector best approximating x∗ (i.e., x̂i =
x∗i for the m coordinates i with |x∗i | highest and is x̂i = 0 for the remaining n − m
coordinates).

We will also need the following result for the estimation of Lp norms.

Lemma 4.2 (Kane et al. [55]). For any p ∈ (0, 2] there is a streaming algorithm based
on a random linear map L : Rn → Rl with l = O(log n) that outputs a value r computed
solely from L(x) that satisfies ‖x‖p ≤ r ≤ 2‖x‖p with high probability.

Our streaming algorithm on Figure 4.1 makes use of a single count-sketch and two
norm estimation algorithms. The count-sketch is for the randomly scaled version z of the
vector x. One of the norm approximation algorithms is for ‖x‖p, the other one approxi-
mates Errm2 (z) through the almost equal value ‖z − ẑ‖2. A standard L2 approximation
for z works if we modify z by subtracting ẑ in the recovery stage. One can get arbitrary
good approximations of Errm2 (x) this way.

First we estimate the probability that the algorithm aborts at the step 5 of the
recovery stage because s > βm1/2r. This depends on the scaling that resulted in z and it
will be important for us that the bound holds even after conditioning on any one scaling
factor.

Lemma 4.3. Conditioned on an arbitrary fixed value t of ti for a single index i ∈ [n] we
have Pr[s > βm1/2r | ti = t] = ε+ n−c.

Proof. First note that by Lemma 4.2 we have r ≥ ‖x‖p and s ≤ 2‖z − ẑ‖2 with high
probability. By Lemma 4.1 we have ‖z − ẑ‖ ≤ 3 Errm2 (z) also with high probability.
We may therefore assume that all of these inequalities hold, and in particular r ≥ ‖x‖p
and s ≤ 6 Errm2 (z). It is therefore enough to bound the probability that 6 Errm2 (z) >
βm1/2‖x‖p.

For simplicity (and without loss of generality) we assume that the fixed scalar is
tn = t and will freely use i for indexes in [n− 1].

Let T = β‖x‖p. For each i ∈ [n − 1] we define two variables z′i and z′′i determined
by zi as follows. The indicator variable z′i = 1 if |zi| > T and 0 otherwise. We set
z′′i = z2

i (1 − z′i)/T
2 ∈ [0, 1]. Let S′ =

∑
i∈[n−1] z

′
i and S′′ =

∑
i∈[n−1] z

′′
i . Note that

T 2S′′ = ‖z − w‖22, where w is defined by wi = ziz
′
i for i ∈ [n − 1] and wn = zn. Here w

is (S′ + 1)-sparse, so we have Errm2 (z) ≤ TS′′1/2 unless S′ ≥ m. It is therefore enough
to bound the probabilities of the events S′ ≥ m and S′′ > mβ2‖x‖2p/(6T )2 = m/36, each
with ε/2.

We have E[z′i] = |xi|p/T p, E[S′] ≤ β−p = ε1−p. Since z1, . . . , zn−1 are k-wise indepen-
dent, by concentration bounds of Schmidt et al. (see Theorem 2.3) we have

Pr[S′ ≥ m] < (eε1−p/m)k < ε/2
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k = 2dlog(2/ε)e. The calculation for S′′ is similar. We have

E[z′′i ] <

∫ ∞
|xi|p/T p

x2
i t
−2/pT−2dt =

p

2− p
|xi|pT−p.

Thus E[S′′] ≤ p
2−p‖x‖

p
pT−p = p

2−pε
1−p. Note that the z′′i are k-wise independent random

variables from [0, 1] and hence by Theorem 2.4 we get

Pr[S′′ > m/36] < e−bkc/2 ≤ ε/2

by our choice of k. This completes the proof of the lemma.

The fact that our algorithm is an approximate Lp-sampler with both relative error
and success probability ε follows from the following lemma.

Lemma 4.4. The probability that the algorithm of Figure 4.1 outputs the index i ∈ [n]
conditioned on a fixed value for r ≥ ‖x‖p is (ε± ε2)|xi|p/rp ± n−c. The relative error of
the estimate for xi is at most ε with high probability.

Proof. Optimally, we would output i ∈ [n] if |zi| > ε−1/pr. This happens if ti < ε|xi|p/rp
and has probability exactly ε|xi|p/rp. We have to estimate the probability that something
goes wrong and the algorithm outputs i when this simple condition is not met or vice
versa.

Three things can go wrong. First, if s > m1/2βr the algorithm fails. This is only a
problem for our calculation if it should, in fact, output the index i. Lemma 4.3 bounds
the conditional probability of this happening.

Having dealt with the s > βm1/2r case we may assume now s ≤ βm1/2r. We
also make the assumptions (high probability by Lemma 4.2) that ‖z − ẑ‖2 ≤ s and thus
Errm2 (z) ≤ ‖z−ẑ‖2 ≤ s ≤ βm1/2r. Finally, we also assume |z∗i −zi| ≤ Errm2 (z)/m1/2 ≤ βr
for all i ∈ [n]. This is satisfied with high probability by Lemma 4.1.

A second source of error comes from this βr possible difference between z∗i and
zi. This can only make a problem if ti is close to the threshold, namely (ε−1/p +
β)−p|xi|p/rp ≤ ti ≤ (ε−1/p − β)−p|xi|p/rp. The probability of selecting ti from this
interval is O(β/ε1+1/p|xi|p/rp) = O(ε2|xi|p/rp) as required.

Finally, the third source of error comes from the possibility that i should be output
based on |zi| > ε−1/pr, yet we output another index i′ 6= i because z∗i′ ≥ z∗i . In this case
we must have ti′ < (ε−1/p − β)−p|xi|p/rp. This has probability O(ε|xi′ |p/rp). By the
union bound the probability that such an index i′ exists is O(ε‖x‖pp/rp) = O(ε). Pairwise
independence is enough to conclude that the same bound holds after conditioning on
|zi| > ε−1/pr. This finishes the proof of the first statement of the lemma.

The algorithm only outputs an index i if s ≤ βm1/2r and |z∗i | ≤ ε−1/pr. The first
implies that the absolute approximation error for zi is at most βr, while the second lower
bounds the absolute value of the approximation itself by ε−1/pr, thus ensuring a βε1/p = ε

relative error approximation. Our approximation for xi = zit
1/p
i is z∗i t

1/p, so the relative
error is the same. Note that the inverse polynomial error probability comes from the
various low probability events we neglected. The same is true for the additive error term
in the distribution.
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The next theorem describes our final Lp-sampling algorithm as well as its space and
error bounds.

Theorem 4.1. For δ > 0 and ε > 0, 0 < p < 2 there is an O(ε) relative error one
pass augmented Lp-sampling algorithm with failing probability at most δ and having low
probability that the relative error of the estimate for the selected coordinate is more than
ε. The algorithm uses Op(ε

−max(1,p) log2 n log(1/δ)) space for p 6= 1 while for p = 1 the
space is O(ε−1 log(1/ε) log2 n log(1/δ)).

Proof. Using Lemma 4.4 and the fact that ‖x‖p ≤ r ≤ 2‖x‖p with high probability one
obtains that the failure probability of the algorithm in Figure 4.1 is at most 1−ε/2p+n−c.
Conditioning on obtaining an output, returning i has probability (1 +O(ε))|xi|p/‖x‖pp +
n−c. Clearly, the latter statement remains true for any number of repetitions and the
failure probability is raised to power v for v repetitions. Thus using v = O(log(1/δ)/ε)
repetitions (taking the first non-failing output), the algorithm is an O(ε) relative error δ
failure probability Lp-sampling algorithm. Here we assume v < n as otherwise recording
the entire vector x is more efficient.

The low probability of more than ε relative error in estimating xi also follows from
Lemma 4.4. In one round, the algorithm on Figure 4.1 uses O(m log n) counters for the
count-sketch and this dominates the counters for the norm estimators. Using standard
discretization this can be turned into an O(m log2 n) bit algorithm. For the discretization
we also have to keep our scaling factors polynomial in n. Recall that in the continuous

model these factors t
−1/p
i were unbounded. But we can safely declare failure if t−1

i > nc

for some i ∈ [n] as this has low probability n1−c. We have to do the v repetitions of
the algorithm in parallel to obtain a single pass streaming algorithm. This increases the
space to O(vm log2 n) which is the same as the one claimed in the theorem.

Note that the hidden constant in the space bound of the theorem depends on p,
especially that 1/(2 − p), 1/p and 1/|1 − p| factors come in. The last can always be
replaced by a log(1/ε) factor but the former ones are harder to handle. For p = 2 an
extra log n factor seems to be necessary for an algorithm along these lines, see [3].

As we will see in Theorem 4.3, our space bound is tight for ε and δ constants. Note
that the lower bound holds even if we only require the overall distribution of the Lp-
sampler to be close to the Lp distribution as opposed to the much more strict definition
of ε relative error sampling.

4.2 The L0 Sampler

For p near zero, the method of precision sampling becomes intractable. This is because

our scaling factors are t
−1/p
i which clearly rules out p = 0. In the following we present a

L0-sampler using a different approach.

Theorem 4.2. There exists a zero relative error L0 sampler which uses
O(log2 n log(1/δ)) bits and outputs a coordinate i ∈ [n] with probability at least 1− δ.

Proof. We first present our algorithm assuming a random oracle, and then we remove
this assumption through the use of the pseudo-random generator of Nisan [73]. Let Ik for
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k = 1, . . . , blog nc be subsets of [n] of size 2k chosen uniformly at random and I0 = [n].
For each k we run the sparse recovery procedure of Theorem 2.6 on the vector x restricted
to the coordinates in Ik with s set to d4 log(1/δ)e. We return a uniform random non-zero
coordinate from the first recovery that gives a non-zero s-sparse vector. The algorithm
fails if each recovery algorithm returns zero or DENSE.

Let J be the set of coordinates i with xi 6= 0 (the support of x). Disregarding the
low probability error of the procedure in Theorem 2.6 this procedure returns each index
i ∈ J with equal probability and never returns an index outside J . To bound the failure
probability we observe that for |J | ≤ s failure is not possible, while for |J | > s one has
k ∈ [blog nc] such that E[|Ik ∩ J |] = 2k|J |/n is between s/3 and 2s/3. For this k alone
1 ≤ |Ik ∩J | ≤ s is satisfied with probability at least 1− δ by the Chernoff bound limiting
failure probability by δ.

To get rid of the random oracle we use Nisan’s generator [73] that produces the
random bits for the algorithm (including the ones describing Ik and the ones for the
eventual random choice from Ik∩J) from an O(log2 n) length seed. It fools every logspace
tester including the one that tests for a fixed set J ⊆ [n] and i ∈ [n] if the algorithm
(assuming correct reconstruction) would return i. Thus this version of the algorithm,
now using O(log2 n) random bits and O(log2 log(1/δ)) total space, is also a zero relative
error L0-sampler with failure probability bounded by δ +O(n−c).

As we shall see in Section 4.3, this space bound is also tight for δ a constant and
better sampling is not possible even if we allow constant relative error or a small overall
distance of the output from the L0 distribution.

4.3 Lower bounds

Our first result in this section is a Ω(log2 n) lower bound for Lp-sampling for all p. This
result implies that our L0 sampler is optimal (up to constant factors) when δ < 1 a
constant and that our Lp sampler is optimal for δ, ε < 1 constants.

Theorem 4.3. Any one pass Lp-sampler with an output distribution, whose variation
distance from the Lp distribution corresponding to x is at most 1/3, requires Ω(log2 n)
bits of memory. This holds even when all the coordinates of x are guaranteed to be −1,
0 or 1.

For constants δ < 1 and ε < 1 the same lower bound holds for any ε relative error
Lp-sampler with failure probability δ.

Proof. We establish the correctness of the claim by a reduction from the universal relation
problem. Recall that in this problem two players Alice and Bob are given bit strings
u, v ∈ {0, 1} and are required to output an i such that ui 6= vi.

Given a one-pass Lp-sampler with space S, the players can solve the universal relation
by communicating S bits in one-round as follows. For each j ∈ [n] such that uj = 1, Alice
feeds the update (j, 1) to the streaming algorithm. Then she sends the memory contents
of the algorithm to Bob. Bob resumes the algorithm with the memory Alice sent and for
each j ∈ [n] for which vj = 1, he feeds the update (j,−1). Let x be the vector implicitly
defined by the update stream. Treating u, v as vectors in Zn, we have x = u − v. Note
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that the Lp distribution for x puts weight only on coordinates where u and v differ.
Hence, if the streaming algorithm at hand is an ε-relative error Lp-sampler or has an
output distribution with small variation distance to Lp-distribution of x, Bob learns an
i such that ui 6= vi with constant probability. Hence by Theorem 5.2, S = Ω(log2 n), as
required.

The next theorem shows that the 1/εp factor in the space usage of our augmented Lp
sampler is unavoidable.

Theorem 4.4. Any one pass augmented Lp-sampler with ε relative error requires
Ω(ε−p log n) space.

Proof. We show the claim by a reduction from the binary augmented indexing problem.
Assume Alice is given a 0-1 vector u of length n and Bob is given an integer i ∈ [n] and
a 0-1 vector v such that vj = uj for j < i and vj = 0 for j ≥ i. The goal of Bob is to find
out ui.

Suppose we have a one-pass ε relative error augmented Lp-sampling algorithm which
uses S bits of space. Using this algorithm we give a one-round S bits protocol for the
augmented indexing problem. Let n = st and consider the coordinates of u and v as
partitioned into s blocks of size t. Set b = d21/pe. For each j = 1, . . . , s, Alice multiplies
the coordinates of u in block j by bs−j and Bob multiplies the coordinates of v in block
j by bs−j . Then Alice generates the updates (j, uj) for j ∈ [n] and sends the memory
contents of the algorithm to Bob. Bob generates the updates (j,−vj) for j ∈ [n] so
as to make first i − 1 coordinates of x zero. Recall that x is the vector defined by
the updates. Then Bob generates the update (i, 3bs−di/tet1/p). By construction, with
constant probability, the ith coordinate will be sampled. Furthermore, if the algorithm
returns a (1± t−1/p) approximation to xi, Bob can recover the initial value of ui. Hence
by Theorem 3.1, S = Ω(st). Setting s = logb n and t = ε−p completes the proof, as p is
constant.

Theorem 4.5. Let p > 0 and φ ∈ (0, 1) be a reals. Any one pass (φ, p)-heavy hitter
algorithm in the strict turnstile model uses Ω(φ−p log2 n).

Proof. Suppose there is a one pass heavy hitter algorithm for parameters p and φ. We
allow for a random oracle and assume the updates are polynomially bounded in n and
integers. We can also restrict the number of updates to be O(φ−p log n) and assume all
coordinates of the final vector are positive (strict turnstile model). We turn this streaming
algorithm into a protocol for augmented indexing in a similar way as we transformed the
protocol for URn to a protocol for augmented indexing in the proof of Theorem 3.5. The
exponential growth is now achieved not by repetition but by multiplying the coordinates
with a growing factor.

Suppose Alice and Bob wants to solve the augmented indexing problem and Alice
receives y ∈ [2t]s and Bob gets i ∈ [s] and yj for j < i. Let them construct real vectors u

and v as follows. Let b = (1− (2φ)p)−1/p and let eq ∈ R2t be the standard unit vector in
the direction of coordinate q. Alice obtains u by concatenating the vectors dbs−jeeyj for
j ∈ [s]. The dimension of u is n′ = s2t. Bob obtains v by concatenating the same vectors
for j ∈ [i − 1] and then concatenating enough zeros, namely (s − i + 1)2t, to reach the
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same dimension n′. Now Alice and Bob perform the heavy hitter algorithm for the vector
x = u− v as follows. Alice generates the necessary updates to increase the initially zero
vector x ∈ Zn to reach x = u, maintains the memory content throughout these updates
and sends the final content to Bob. Now Bob generates the necessary updates to decrease
x = u to its final value x = u − v and maintains the memory throughout. Finally Bob
learns the heavy hitter set S the streaming algorithm produces and outputs z ∈ [2t] if
the smallest index in S is (i− 1)2t + z.

We claim that the above protocol errs only if the streaming algorithm makes an
error. Notice that all coordinates xl of x = u − v are zero except the ones of the form
xlj = dbs−je for lj = (j − 1)2t + yj , where i ≤ j ≤ s. Thus xli is the first non-zero
coordinate. So the claim is true if xli ≥ φ‖x‖p. Using dve < 2v for v ≥ 1 we get exactly
this:

φp‖x‖pp = φp
s∑
j=i

dbs−jep

< (2φ)pbp(s−i+1)/(bp − 1)

= bp(s−i) (since bp = 1/(1− (2φ)p))

≤ xpli

Let us now choose s = d(2φ)−p log ne and t = dlog n/2e. For large enough n this gives
n′ = s2t < n and all coordinates of x throughout the procedure remain under n. Still
if the streaming algorithm works with probability over 1/2, then by Theorem 3.1 the
message size of the devised protocol is Ω(st) = Ω(φ−p log2 n). This proves the theorem
as the message size of the protocol is the same as the memory size of the streaming
algorithm.



Chapter 5

Finding Duplicates and
Odd-frequency Items in Streams

5.1 Finding Duplicates

Suppose we are given an array a1, a2, . . . , an+1 of length n+1 where each ai ∈ [n]. In the
finding duplicates problem we are asked to output an item that appears at least twice in
the array. Observe that by the pigeonhole principle, existence of such item is guaranteed.
Here our goal is to design algorithms for finding a duplicate that use small space and
do few passes over the data. In [40] a one-pass randomized algorithm with O(log3 n)
space was presented which outputs a duplicate with constant probability. In this section,
we give another such algorithm that takes only O(log2 n) space. Further, we show that
our result is optimal; namely, any one pass algorithm for this problem requires Ω(log2 n)
space.

Before restricting our attention to streaming algorithms, let us see what happens
when we have random access to the array. We will assume a RAM model with words of
size O(log n) bits, where we can access any position in the array in constant time. In this
case, the following simple and elegant linear time algorithm, attributed to Robert W.
Floyd, finds an answer using 2 words of space. Consider the array a as a directed graph
on n + 1 vertices that are named by integers 1, . . . , n + 1. We imagine that there is an

n+ 1v n+ 1v

Figure 5.1: An example with l = 4 and k = 9. The left picture shows the initial placement
of the chips and the right picture shows the chips when the red chip reaches v.
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edge from node i to node ai for each i ∈ [n+ 1]. The algorithm goes as follows. We place
two distinct chips on node n + 1, say red and blue, and in each time step we advance
the red chip by following one outgoing arrow and advance the blue chip by following two
outgoing arrows in a row. Eventually, two chips will meet again, at which point we move
the blue chip back to node n+ 1. After this, in each time step, we advance both the red
and the blue chip by one arrow, until they meet again. To see why the chips will meet
again, let v be the first node that the red chip visits for the second time (i.e., where the
cycle begins), let l be the number of arrows that the red chip took to reach v for the
first time, and finally let k be the number of arrows the red chip takes between every
subsequent visit to v. Observe that when the red chip reaches v for the first time, the
blue chip is l (mod k) arrows away from v. Hence, after k − l (mod k) more moves the
two chips will meet somewhere in the cycle. Notice that following l more links from the
meeting point goes back to v. Therefore, after we move the blue chip back to node n+ 1,
both chips are l (mod k) arrows away from node v and hence the final encounter of the
two chips happens at v, whose label corresponds to a number that appears at least twice
in the array as desired (since there are two incoming edges). This algorithm runs in O(n)
time using O(log n) bits of space.

5.1.1 Deterministic Algorithms

Now let us return back to the streaming model where we are only allowed left to right
passes over the array. All deterministic algorithms presented here are folklore. A du-
plicate can be found using O(log n) bits of space in O(log n) passes deterministically as
follows. Let h = dn/2e and in the first pass count the number of i such that ai ∈ [h]. This
can be done using O(log n) space simply by incrementing a counter whenever the new
item is no bigger than h. If the final count is bigger than h, by the pigeonhole principle,
there exists a duplicate in the array which is between 1 and h. Hence in the subsequent
passes, we can safely discard elements bigger than h. Otherwise, there are more than
n− h items in [h+ 1, n] and in the subsequent passes we disregard elements that are in
[h]. Bisecting the alphabet [n] in each pass similarly gives us a duplicate after O(log n)
rounds.

This algorithm can be generalized to work in only p passes while taking
O(n1/p log1−1/p n) space as follows. In each of the first p− 1 passes, divide the alphabet
into K = d(n/ log n)1/pe blocks and count how many items appear in the stream from
each of these blocks. By the pigeonhole principle, there exists a block b which has more
appearances in the stream than the size of the block. In the next pass define the alphabet
to be the items in block b. It can be verified that after pass p−1, the size of the alphabet
has been reduced to O(K log n). In the last pass, we can simply keep a bit vector of size
O(K log n) to find a duplicate. Overall, we use O(n1/p log1−1/p n) bits in each pass as
desired.

Finding duplicates in streams was first considered in the context of fraud detection
in click streams [67]. Muthukrishnan in [72] also listed the above solutions and asked
whether there exists an algorithm which uses polylog n space while simultaneously tak-
ing a constant number of passes. In [82], Tarui showed that any p-pass deterministic
algorithm must use Ω(n1/(2p−1)) space to find a duplicate, thereby answering Muthukr-
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ishnan’s question negatively for deterministic algorithms. Observe that this lower bound
comes quite close to the p-pass upper bound, however there is still a gap of 1/p versus
1/(2p − 1) in the exponent, which likely comes from the limitations of 2-player games
used in the lower bound proof.

5.1.2 Randomized Algorithms

Finally in [40], Gopalan and Radhakrishnan gave a one-pass O(log3 n) bits randomized
algorithm with constant failure rate. The authors of [40] also conjectured that there is a
O(log n) bits algorithm. Here we settle the one-pass complexity of the finding duplicates
problem by giving an O(log2 n) space algorithm via a direct application of our L1 sampler
from Chapter 4, and by giving an Ω(log2 n) lower bound afterwards. Both the upper
bound and the lower bound appeared in [52] by Jowhari, Sağlam and Tardos.

Theorem 5.1. For any δ > 0 there is a O(log2 n log(1/δ)) space one-pass algorithm
which, given a stream of length n + 1 over the alphabet [n], outputs an i ∈ [n] or FAIL,
such that the probability of outputting FAIL is at most δ and the algorithm outputs a
letter i ∈ [n] that is no duplicate with low probability.

Proof. Let x be an n-dimensional vector, initially zero at each coordinate. We run the
L1-sampler of Theorem 4.1 on x, with both relative error and failure probability set to
1/2. Before we start processing the stream, we subtract 1 from each coordinate of x; i.e.,
we feed the updates (i,−1) for i = 1, . . . n to the L1 sampling algorithm. When a stream
item i ∈ [n] comes, we increase xi by 1; i.e., we generate the update (i, 1).

Observe that when the stream is exhausted, we have xi ≥ 1 for items i that have at
least two occurrences in the stream, xi = 0 for items that appear once, and xi = −1 for
items that do not appear. Note that our L1-sampler, if it does not fail, outputs an index
i and an approximation x∗ of xi. If x∗ is positive, we output i, if it is negative or the
L1-sampler fails, we output FAIL. We have

∑n
i=1 xi = 1, hence a perfect L1 sample from

x is positive with more than half probability. Taking into account that our L1-sampler
has 1/2 relative error and failure probability (and neglecting for a second the chance that
x∗ has different sign from xi) we conclude that we output a duplicate with probability
at least 1/4. The event that x∗ does not have the same sign as xi (and thus the relative
error is at least 1) has low probability. This low probability can increase the failure
probability and/or introduce error when we output non-duplicate items.

Repeating the algorithm O(log(1/δ)) times in parallel and accepting the first non-
failing output reduces the failure rate to δ but keeps the error rate low.

This space bound is best possible for δ < 1 a constant, as shown in the following
theorem.

Theorem 5.2. Any one-pass streaming algorithm that outputs a duplicate with constant
probability uses Ω(log2 n) space. This remains true even if the stream is not allowed to
have an element repeated more than twice.

Proof. We show our claim by a reduction from the universal relation problem (see Sec-
tion 3.4). Each of Alice and Bob is given a binary string of length n, respectively x
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and y. Further, the players are guaranteed that x 6= y. Alice sends a message to Bob,
after which Bob must output an index i ∈ [n] such that xi 6= yi. By Theorem 3.5,
solving this problem with any constant error probability requires Ω(log2 n) bits for one-
way communication. The players solve the given instance of universal relation problem
using a small space finding duplicates algorithm as follows. Alice constructs the set
S = {2i − 1 + xi | i ∈ [n]} ⊆ [2n] and Bob constructs T = {2i − yi | i ∈ [n]} ⊆ [2n].
Observe that |S| = |T | = n and xi 6= yi if and only if either 2i or 2i− 1 is in both S and
T .

Next, using the shared randomness, players pick a random subset P of [2n] of size n.
We have

Pr[|S ∩ P |+ |T ∩ P | ≥ n+ 1] > 1/8.

To see this, let i ∈ S ∩ T and j ∈ [2n] \ (S ∩ T ). We have |P ∩ {i, j}| = 1 with
probability more than 1/2. The sets P satisfying this can be partitioned into classes of
size four by putting Q ∪ {i}, Q ∪ {j} and their complements in the same class for any
Q ⊆ [2n]\{i, j}, |Q| = n−1. Clearly, at least one of the four sets P in each class satisfies
|S ∩ P |+ |T ∩ P | > n.

Given a streaming algorithm A for finding duplicates, Alice feeds the elements of
S ∩ P to A and sends the memory contents over to Bob, along with the integer |S ∩ P |.
If |S ∩P |+ |T ∩P | < n+ 1, Bob outputs FAIL. Otherwise, feeds arbitrary n+ 1−|S ∩P |
elements of T ∩ P to A. Note that no element repeats more than twice.

On the other hand |P | = n and we always give n+ 1 elements of P to the algorithm.
Also with constant probability, Bob finds an a ∈ S ∩ T , which in turn reveals an i such
that xi 6= yi. Therefore by Theorem 3.5, any algorithm for finding duplicates must use
Ω(log2 n) bits.

5.1.3 Finding Duplicates in Short Streams

Now we turn our attention to finding duplicates under weaker guarantees than above.
Assume that we have a stream of length n− s ≤ n over the alphabet [n] and we want to
output a duplicate, if one exists. For this problem, Gopalan et al. [40] gave a O(s log3 n)
space algorithm which finds a duplicate if one exists or reports that none exists with
constant error probability. Further, they showed that any such algorithm must use Ω(s)
bits of space. When s = Ω(n) the problem requires Ω(n) bits by the former bound and a
matching upper bound can be achieved by recording the entire stream in memory. Hence
from now on, we assume 2s < n.

In this section, we give an algorithm for this problem which uses O(s log n + log2 n)
space and finds a duplicate, if one exists, with constant probability. If there is no dupli-
cate, our algorithm reports so with probability 1. Moreover, we prove in Theorem 5.4
that the space bound of our algorithm is best possible. This algorithm first appeared in
[52] by Jowhari, Sağlam and Tardos.

Theorem 5.3. For any δ > 0 there is an O(s log n + log2 n log(1/δ)) space one-pass
algorithm which, given a stream of length n − s over the alphabet [n], outputs NO-
DUPLICATE with probability 1 if the input sequence has no duplicates, otherwise it
outputs i ∈ [n] or reports FAIL. The returned number is a duplicate with high probability
while the probability of returning FAIL is at most δ.
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Proof. Let x be an n-dimensional vector updated according to the description in the proof
of Theorem 5.1; i.e., xi is one less than the number of times i appears in the stream. In
parallel, we run the exact recovery procedure of Theorem 2.6 with parameter 5s and the
1/2 relative error L1-sampler of Theorem 4.1 with failure rate 1/2, both on the vector x.
If the recovery algorithm returns a vector (as opposed to DENSE) we proceed and output
a positive coordinate of the vector assuming the sparse recovery algorithm did not err.
On the other hand, if the sparse recovery algorithm outputs DENSE, we consider the
output of the sampling algorithm. If it is (i, x∗) with x∗ > 0 we report i as a duplicate
otherwise (if x∗ ≤ 0 or the sampling algorithm fails) we output FAIL. Define

‖x‖+1 =
∑
i:xi>0

|xi| and ‖x‖−1 =
∑
i:xi<0

|xi|.

Note that ‖x‖+1 − ‖x‖
−
1 =

∑n
i=1 xi = −s. If ‖x‖+1 + ‖x‖−1 ≤ 5s, then x is 5s-sparse,

thus the sparse recovery procedure outputs x and the algorithm makes no error. Note
that the no repetition case falls into this category. If, however, ‖x‖+1 + ‖x‖−1 > 5s, then
the probability that a perfect L1 sample from x is positive is ‖x‖+1 /‖x‖1 > 2/5. Taking
into account the relative error and failing probability (but ignoring the low probability
event of the sampler outputting a wrong sign or sparse recovery algorithm reporting a
vector), we conclude that with probability at least 1/10 we get a positive sample and a
correct output, otherwise we output FAIL. The failure probability can be decreased to
δ by O(log(1/δ)) independent repetitions of the sampler. Note that the sparse recovery
does not have to be repeated as it has low error probability.

The sparse recovery procedure takes O(s log n) bits by Theorem 2.6 for s > 0 (it takes
O(log n) bits for s = 0) and each instance of the L1-sampler requires O(log2 n) bits by
Theorem 4.4, totalling O(s log n+ log2 n log(1/δ)) bits.

We remark the upper bounds given in the above theorem and Theorem 5.1 can be
stated in a bit more general form. Instead of considering repetitions in data streams one
can consider the problem of finding an index i with xi > 0 for a vector x ∈ Zn given by
an update stream. Let s = −

∑n
i=1 xi. If s < 0, then a positive coordinate exists and the

algorithm of Theorem 5.1 finds one using O(log2 n log(1/δ)) space with low error and at
most δ failure probability. If s ≥ 0 a positive coordinate does not necessarily exist, but
the algorithm of Theorem 4.1 finds one, report none exists or fails, with the error and
failure bounds claimed there using O(s log n+ log2 n log(1/δ)) bits.

In the next theorem we show that our algorithm for length n − s streams is best
possible.

Theorem 5.4. Let s < n be integers. Any one-pass streaming algorithm that outputs a
duplicate in a length n − s stream uses Ω(s log(n/s) + log2 n) space. This remains true
even if the stream is not allowed to have an element repeated more than twice.

Proof. Observe that an instance of size n − s − 1 of the original duplicates problem is
an instance of the duplicate problem with length n− s streams. Therefore, Theorem 5.2
implies a Ω(log2(n− s)) bound, which is Ω(log2 n) by our assumption on s.

We obtain the Ω(s log(n/s) bound by a reduction from the FCEms problem, where we
set 2m + s = n. Recall that in FCEms , two players, Alice and Bob are given m-subsets
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S, T ∈ [2m+s]. A streaming algorithm A for the duplicates problem at hand can be used
to solve FCE as follows. Alice feeds the elements of S to A and passes memory contents
to Bob. Bob feeds the elements of T to A which, in turn, outputs duplicate. Therefore
Bob learns an element in S ∩ T and by Theorem 3.7, R1(FCEms ) = Ω(s log(m/s)) and
hence the algorithm A must use Ω(s log(n/s)) bits of space. Observe that no item is
given more than twice to the algorithm. This completes the proof.

5.1.4 Finding Duplicates in Longer Streams

Let us consider finally the version of the duplicates problem where we have a stream of
length n + s > n over the alphabet [n]. Our lower and upper bounds are even farther
in this case. A duplicate can be found using O(min{log2 n, (n/s) log n}) bits of memory
in one pass with constant probability as follows. If we sample a random item from the
stream, it will appear again unless that was the last appearance of the letter. As there
are at most n last appearances in the stream of length n+s, the probability for a uniform
random sample to repeat later is at least s/(n + s). Therefore, if n/s < log n, we can
sample 4dn/se items from the stream uniformly at random and check if one of them
appears again to obtain a constant error algorithm for finding duplicates. If on the other
hand n/s ≥ log n, we use the algorithm in Theorem 5.1.

Combining our lower bound for the original version of the duplicates problem with
the Ω(log n) lower bound that follows from Theorem 3.4, we conclude that any streaming
algorithm that finds a duplicate in length n + s streams must use Ω(log2(n/s) + log n)
bits.

5.2 Finding Odd-frequency Items

In [66], the authors studied the problem of detecting whether a given sequence of paren-
theses is well-formed in the streaming model. It is assumed that the given sequence is
over an alphabet that consists of several pairs of parentheses, say (), [], {} etc., where each
pair includes one left and one right parenthesis. A sequence is said to be well-formed if
the parentheses in the sequence can be matched in pairs so that in each match-up the
the first symbol is a left parenthesis and the second one is the corresponding right paren-
thesis; further, the substring between every match-up is also a well-formed sequence. For
instance, the sequence [()]()([]) is well-formed whereas [(]), (() or ][ are not.

When the alphabet consists of a single pair of parentheses, say (), then the problem
can be trivially solved in one-pass and O(log n) bits of space as follows. We keep a
counter, initialized to zero, and we increment the counter when a left parenthesis arrives
and decrement it when a right parenthesis arrives. If the counter becomes negative at
some point, we immediately declare that the sequence is malformed. Otherwise, if the
counter is zero when the stream is exhausted, we say that the input is well-formed.
Clearly, this algorithm recognizes well-formed strings (and only those) using O(log n)
bits.

By contrast, if there are at least two sets of parentheses in the alphabet, it is easy to
see that any deterministic p-pass algorithm must use Ω(n/p) space, by a reduction from
the two-player equality problem. Namely, given a bit string x, Alice replaces each 1 with
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a ( and each zero with a [ and Bob replaces each 1 with a ) and each 0 with a ]. One sees
that x and y are equal if and only if the concatenation of Alice’s string and the reverse
of Bob’s string is well-formed. In [66], Maginez et al. give an O(

√
n log n) bits one-pass

randomized algorithm that works for any number of parenthesis and decides whether the
input is well-formed or not with high probability. Moreover, they prove an elegant lower
bound of Ω(

√
n log n) bits for any one-pass algorithm that outputs the answer with high

probability. Improving on a series of work including [13, 46], it is proven in [14] that in
fact for any p-pass algorithm with constant success probability, an Ω(

√
n/p) space bound

holds as long as all the passes are performed in the same direction.
Detecting whether a sequence of parentheses is well-formed is a fundamental problem

that is solved on a daily basis by every web browser, XML parser, code compiler and
interpreter. In fact, a very large fraction of the whole data available on the Internet is
XML marked and checking the integrity of such data as it is being received or sent over a
network is of very high importance. However, this requires Ω(

√
n) space [66], which can

be too costly for small memory devices like routers. Here we consider a relaxation of the
above problem. Given a sequence, if there exists an item that appears odd number of
times, we want to output one such item. Note that if a certain parenthesis type appears
an odd number of times, the sequence cannot be well-formed.

We define the problem formally as follows. Suppose we are given an array
a1, a2, . . . , am over the alphabet [n], where m is an odd number. In the odd frequency
item problem we are asked to output a symbol from the alphabet [n] that appears odd
number of times in the array. Observe that such symbol is guaranteed to exist, since
otherwise every item would repeat even number of times and the array would be of even
length.

5.2.1 Deterministic Algorithms

Let us present the following deterministic algorithms, which are all folklore. Similar to
the finding duplicates problem, an odd-frequency item can be found in O(log n) passes
using O(log n) space as follows. Let h = dn/2e and in the first pass compute the parity
of number of i such that ai ∈ [h]. This can be done by remembering h and keeping a
single bit and flipping it whenever the new item is no bigger than h. If the final parity
is odd, there exists an odd-frequency item in the array which is between 1 and h. Hence
in the subsequent passes we can safely discard elements bigger than h. Otherwise, the
parity of the array elements that are between h+1 and n is odd (since the array is of odd
length) and in the subsequent passes we disregard elements that are in [h]. Bisecting the
universe [n] in each pass similarly gives us an odd-frequency item after O(log n) passes.
Note that the counter takes only one bit however we still need to remember the upper
and lower bounds of the universe we are considering, therefore we use O(log n) bits of
space in each pass.

The above algorithm can be generalized to work in p-passes using O(n1/p + log n)
space for any 1 ≤ p ≤ dlog ne as follows. In each pass, we divide the alphabet into
Θ(n1/p) blocks and count in modulo two how many items appear in the stream from
each block. At the end of the pass, there is necessarily a block with odd parity. In the
next pass, we take this block as the universe. This is repeated for every pass. Note
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that in pass p the blocks are singletons, hence at the end of this pass, we locate an odd
frequency item.

Next, we observe that the above algorithm is close to being optimal. Namely, we show
a Ω(n1/(2p−1)) lower bound for any deterministic p-pass algorithm, through a reduction
from the Karchmer-Wigderson communication game for parity. In this game, the first
player, Alice, gets a length-n binary string x which has odd number of ones. Bob gets
a binary string y with even number of ones. The goal of the players is to agree on a
coordinate i such that xi 6= yi. It is well known [44] that in any r-round protocol for this
game there must be a message of size Ω(n1/r).

Theorem 5.5. Any p-pass deterministic algorithm for odd-frequency problem uses
Ω(n1/(2p−1)) bits of space.

Proof. Suppose there is a p-pass s-bits streaming algorithm for odd-frequency problem.
Using this algorithm, Alice and Bob can solve the parity communication game in 2p− 1
rounds with messages of size at most s as follows. Alice feeds to the streaming algorithm
the positions in which her string is one. Namely, she inputs the set {i | xi = 1} to the
algorithm. Then, she sends the memory contents of the algorithm to Bob, who similarly
inputs the set {i | yi = 1} to the algorithm. They repeat this p times, inputting the sets
in the same order, until the algorithm is given the data p times. Clearly, this can be done
in 2p− 1 rounds.

At the end, the algorithm outputs an odd-frequency item i which corresponds to a
position where xi 6= yi as desired. Hence any p-pass algorithm that finds an odd-frequency
item must use Ω(n1/(2p−1)) bits of memory.

5.2.2 Randomized Algorithms

Next we show that with help of randomization, above results can be improved signifi-
cantly. Namely, the next theorem gives an O(log2 n) space upper bound by appealing to
an isolation technique similar to that of the L0-sampler of Theorem 4.2.

Theorem 5.6. Let x be an n-dimensional vector defined by an update stream with in-
teger updates. There is a streaming algorithm that, given such update stream, uses
O(log2 n log(1/δ)) bits of space and outputs an integer i ∈ [n], FAIL or EVEN. If all
coordinates of x are even, the output is EVEN with probability 1. Otherwise, the proba-
bility the algorithm outputs EVEN or a coordinate i with xi even is at most δlogn � δ.
The algorithm outputs FAIL with at most δ probability.

Proof. Let X1, . . . , Xn be k-wise independent random variables for k = d4e ln(2/δ)e, such
that each Xi is uniformly distributed in F2t . Here, F2t is the finite field of size 2t and
t = dlog ne + 1. By Theorem 2.5, such variables can be efficiently generated in the
streaming model using O(k log n) bits of space. Consider a field element α ∈ F2t as a
binary string of length t. We define vectors r0, . . . , rt−1 ∈ Fn2 as follows. We set the jth
coordinate of ri to one if and only if first i positions of Xj ∈ F2t are all one. Otherwise
the coordinate is set to zero. We have Pr

[
ri[j] = 1

]
= 2−i for all 0 ≤ i < t and j ∈ [n].

Recall that x is the vector defined by the update stream. We consider x as a member
of Fn2 , i.e., we perform all updates in mod 2. By Theorem 2.6, there is a random linear
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map L : Fn2 → F4k logn
2 , and a recovery procedure with the following guarantee. On input

L(y) the recovery procedure outputs y if y is k-sparse. Otherwise it outputs DENSE
with probability at least 1− n−k.

Given the update stream, our algorithm simply computes the linear maps L(x ? ri)
for i = 0, . . . , t − 1. If the recovery procedure outputs DENSE on all L(x ? ri), our
algorithm outputs FAIL. Otherwise, if the recovery procedure outputs the zero vector on
all L(x ? ri), our algorithm outputs EVEN. Otherwise let i0 be the greatest integer such
that the recovery procedure returns a non-zero vector yi0 on L(x ? ri0). Our algorithm
outputs a non-zero coordinate of yi0 .

Each linear map L(x ? ri) takes O(k log n) bits by Theorem 2.6 and we have O(log n)
such maps. To generate ri for i = 0, . . . , t − 1 we need only O(k log n) bits altogether.
Hence the space usage is O(log2 n log(1/δ)) bits. If each item appears even number of
times, x is the zero vector hence the recovery procedure returns 0 in each invocation.
In this our algorithm outputs EVEN with probability 1 as desired. Suppose that our
algorithm outputs a coordinate i0 such that the recovery procedure returns a non-zero
vector yi0 on L(x ? ri0). Let j be a positive coordinate of yi0 . Observe that xj is even
only if x ? ri0 is not k-sparse and the recovery procedure fails to detect this. This has
probability at most δlogn by Theorem 2.6 and a union bound over all i0 ≤ t.

Let us finally bound the probability that our algorithm outputs FAIL. Let h = wt(x).
We argue that there exists a 0 ≤ i1 < t such that

k

4e
< E[wt(x ? ri1)] ≤ k

2e
.

This is true, as otherwise there is an i such that h2−i ≤ k/(4e) and k/(2e) < h2−i+1,
which is a contradiction. Let E be the event that wt(x ? ri1) = 0 or wt(x ? ri1) > k.
Note that for algorithm to output FAIL, E must happen. Probability of E is easy to
bound: since the coordinates of ri1 are k-wise independent, by the concentration bounds
of Schmidt et al. (Theorem 2.3 (i)) we have

Pr[E] ≤ 2−hD2(k/h ‖ k/(2eh)) + 2−hD2(0 ‖ k/(4eh)) ≤ δ

by our choice of k. This completes the proof.

Further, Theorem 5.6 is essentially tight as shown next.

Theorem 5.7. Any 1-pass streaming algorithm that solves the odd frequency item prob-
lem with constant error probability must use Ω(log2 n) bits of space.

Proof. We show the claim by a reduction from the universal relation (see Section 3.4). In
the universal relation problem, two players, Alice and Bob are given strings, respectively
x and y with the guarantee that x 6= y. Their goal is to find an i such that xi 6= yi.

Suppose there is an s-bit streaming algorithm A for finding an odd-frequency item.
We give an s + 1 bit one-way protocol for the universal relation problem. Using the
shared randomness, players pick a uniformly at random binary string r. Alice feeds to
A the set S = {i | xiri = 1} and sends memory contents of A to Bob, along with the
single bit integer |S| mod 2. Let T = {i | yiri = 1}. If |S| + |T | is an even number,
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the protocol fails. This has probability exactly 1/2. Otherwise Bob feeds T to A. The
algorithm, if it does not err, outputs an odd frequency item i, which corresponds to
a mismatch between x and y. However by Theorem 3.5 any one-way protocol for the
universal relation with constant success probability requires Ω(log2 n) bits and hence
s = Ω(log2 n). This completes the proof.



Chapter 6

Pattern Matching and Detecting
Periodicity in Item Streams

A sequence, informally speaking, is said to be periodic if it consists of repetitions of the
same block of characters. In this chapter we study detecting periodicity over a sequence
given as a stream. We present 1-pass randomized algorithms for discovering periodic
properties of a given stream that use sublinear (in most cases polylogarithmic) space and
per-character running time. The results presented in this chapter were published in the
paper [29] by Ergün, Jowhari and Sağlam.

The study of periodic sequences and patterns has been important in many fields
such as algorithms, data mining, and computational biology. Applications involving
weather patterns, stock market data mining, intrusion detection, etc. (e.g., see [28]) aim
to identify self-similar trends in large data in almost real time. Periodicity also generated
fundamental algorithmic tools for solving problems on sequences/strings. For instance,
the textbook Knuth-Morris-Pratt algorithm [61] computes the periods of all prefixes of
the pattern in its preprocessing stage. Periodicity remained central to many pattern
matching algorithms to this day [19, 2].

Formally, a sequence s of length n is said to be p-periodic if s[i] = s[i + p] for all
i = 1, . . . , |s| − p. The smallest p > 0 for which s is p-periodic is referred to as the period
of s. By convention, if the length of the period of s is at most n/2, then s is said to be
periodic, otherwise it is aperiodic.

Given the intimate relationship between periodicity and pattern matching, we first
investigate space efficient solutions for finding patterns. Recently Porat and Porat, in a
breakthrough result, presented a polylogarithmic space randomized algorithm for pattern
matching that does not require the storage of the entire pattern [74]. Briefly, given a
pattern u of length m, in an off-line step, they preprocess u and build O(log n) bits
sketches for logm prefixes of u (of geometrically increasing sizes) and use them to find
occurrences of the pattern in the length n stream. It is tempting to use the above result
to determine the exact period of the stream by searching various prefixes of the stream
in the remainder of it, however due the offline processing stage, the algorithm of [74]
does not lend itself to an efficient method to find periods. Before giving our periodicity
algorithm, we first develop a simple and more streaming-friendly algorithm for pattern

51
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matching. While our solution utilizes ideas similar in essence to those used by [74], it does
not require an offline preprocessing stage. In fact we show that taking only the Rabin-
Karp fingerprints (defined in Section 6.1) of u[1, 2], u[1, 4], . . . , u[1, 2i], . . . is sufficient to
get the same O(log n logm) bit space bound. Moreover, our pattern matching algorithm
enjoys a very clean and simple description.

Armed with a pattern matching algorithm that works fully in the streaming model,
next we develop a randomized streaming algorithm for computing the period of s. Our
algorithm makes a single pass over s and uses O(log2 n) space to find the period of s
granted that s is periodic, otherwise it reports that s is aperiodic. The limitation in
computing the period for aperiodic sequences turns out to be necessary as we later prove
that computing the period in 1-pass for aperiodic sequences requires linear space. On
the other hand we show that an additional pass will give us a O(log2 n) space solution
for periods of any length.

In addition to periodicity, our pattern matching algorithm enables us to get sublinear
solutions for frequency moments defined over substrings. In real-world applications,
periodic trends may be hidden or mixed with noise; thus, where exact periodicity is hard
to capture, one is likely to encounter instances where a stream is close to periodic. Hence,
measures that capture approximate periodicity are natural investigate. In this direction
we study distance to periodicity under Hamming distance: we define the distance of s
to p-periodicity as the minimum number of character substitutions required to make s
p-periodic.

Dp(s) = min
x is p-periodic

Ham(s, x).

It turns out that Dp(s) can be expressed as a product-sum of a certain function defined
over rows of a matrix Ap×d where n/p = d. The problem then is to compute L1 ◦
F
res(1)
1 (A) =

∑p
i=1 F

res(1)
1 (Ai) where Ai is the ith row of A and F

res(1)
1 (s), known as the

residual tail of sequence s, equals |s| − F∞(s). In general F
res(r)
k (s) =

∑m
i>r f

k
i , where

f1, . . . , fm are the character frequencies in decreasing order. Note that when r = 0 this
is the same as Fk, the kth frequency moment of s.

While there are space efficient algorithms for approximating F
res(1)
1 and F

res(r)
2 [15,

37, 9], aggregate computation of F
res(1)
1 over multiple streams has a different nature and

is a new challenge. For this problem, we present two 1-pass randomized algorithms. The
first algorithm is obtained by reducing the problem to computing L0 difference of two

vectors that are generated on the fly. This algorithm approximates L1 ◦F res(1)
1 (A) within

2 + ε factor using O( 1
ε2

log 1
ε log n) bits of space.

Our second algorithm returns a 1 + ε approximation of L1 ◦F res(1)
1 (A) using Õ( 1

ε10.5
)

space. To get such a result, we apply a combination of the first algorithm, sampling,
and exact sparse recovery. Briefly, the idea is that while the first algorithm computes an
almost accurate estimation of the contribution of the light-weight rows (i.e., rows with

F
res(1)
1 (Ai) ≤ εd), approximation guarantee of our estimator degrades to 2 for heavy

weight rows (i.e., rows with F
res(1)
1 (Ai) > εd). On the other hand using sampling and

a sparse recovery procedure we can get a better estimate of the heavy weight rows and
thus we will be able to compute a finer approximation of the total weight.
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Related Work Aside from the implicit implications of [74], at the time of publication,
[29] by Ergün, Jowhari and Sağlam was the first to investigate periodicity in the stream-
ing model, to the best of our knowledge. Subsequent to [29], Breslauer et al. [12] gave a
O(log n logm) bits pattern matching algorithm with worst case O(1) per-item processing
time and one-sided error guarantee. In specific their algorithm never misses a match,
whereas our algorithm may miss some occurrences with polynomially small probability.
In comparison, our algorithm takes O(logm) time per item, hence is slower. Also subse-
quently, Crouch et al. studied the distance periodicity problem [25]; although their choice
of the distance function is the `2 norm. They give one pass streaming algorithms that
compute (1 + ε) approximation to distance periodicity using O(ε−2 polylog n) space.

In a related direction, Ergün et al. [30] gave an O(
√
n) tester for distinguishing

periodic strings from highly aperiodic ones under the Hamming distance in the property
testing model. Subsequently Lachish and Newman [64] showed a lower bound of Ω(

√
n)

for testing periodicity in the query model. With a focus on time complexity, Czumaj and
Gasieniec [26] presented an average case analysis for computing the exact period.

Bar-Yossef et al. [7] studied the sketching complexity of pattern matching. The work
of Indyk et al. [45] focuses on mining periodic patterns and trends in data streams while
reading data in large chunks from secondary memory. Numerous studies have been done
in the data mining community for detecting periodicity in time-series databases and
online data (e.g., see [28]), typically with quite different space considerations than in our
model. Streaming complexity of cascaded norms Lk ◦Lp over matrices is investigated in
depth by Jayram and Woodruff in [48]; see also [20, 70].

6.1 Preliminaries

We assume the input stream is a sequence of length n over the alphabet Σ = {0, 1, . . . , L}.
Recall that we represent the length of a string s with |s|, the ith element of s with s[i],
and the substring of s between locations i and j (inclusive) with s[i, j]. A d-substring is
a substring of length d. The concatenation of two sequences (or vectors) u, v is written
as u◦v or sometimes uv if concatenation is understood from the context. In this chapter
we denote by ui the concatenation of i instances of u.

Periodicity. A sequence is called p-periodic if s[i] = s[i + p] for all i = 1, . . . , |s| − p.
The smallest p > 0 for which s is p-periodic is called the period of s and is denoted per(s).
The following lemma is well-known and a proof of it can be found in [65, 33].

Lemma 6.1 (Lyndon et al. [65]). If s is both p-periodic and q-periodic where p+ q ≤ |s|,
then s is also gcd(p, q)-periodic.

We denote by Ms(t) the set of all positions in s where an exact occurrence of string
t starts; i.e., Ms(t) = {i | s[i, i + |t| − 1] = t}. The following lemma shows the relation
between per(t) and Ms(t).

Lemma 6.2. Let i ∈Ms(t) and let U = Ms(t) ∩ [i, i+ |t| − 1]. The following are true.

(i) Let j ∈ U where j > i and there is no k ∈ U such that i < k < j. If |i− j| ≤ |t|/2
then |i− j| = per(t).
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(ii) There is at most one j ∈ U such that |i− j| is not a multiple of per(t). Moreover
if |i− j| is not a multiple of per(t), then j = max (U).

Proof. First we prove claim (i). Let p = per(t). By the definition of period, t is |i− j|-
periodic. This implies that p ≤ |i − j|. Suppose p < |i − j|. We prove that there exists
a k ∈ Ms(t) where i < k < j. Since |i − j| ≤ 1/2|t|, by Lemma 6.1, we get that t
is gcd(p, |i − j|)-periodic and thus |i − j| is a multiple of p. This means that all the
consecutive blocks

s[i, i+ p− 1], s[i+ p, i+ 2p− 1], . . . , s[j − p, j − 1], s[j, j + p− 1]

are equal. Take k = j− p. Clearly k ∈Ms(t). This contradicts with our assumption and
proves the first claim.

To prove the second claim, we proceed as follows. Let |t| = lp + r, where l is an
integer and 0 ≤ r < p. Define i0 = i + |t| − r − p. If j ∈ U and j < i0, then |j − i| is
a multiple of p by applying Lemma 6.1 twice. Suppose for contradiction that there are
j1 < j2 in U such that both |j1 − i| and |j2 − i| are indivisible by p. From the previous
sentence j1 ≥ i0. Also, by definition of period |j1 − j2| ≥ p. Let s1 = s[i0, i + |t| − 1].
Since s1 is both |j1 − i0|- and p-periodic and |j1 − i0| + p ≤ |s1|, by Lemma 6.1 s1 is
gcd(|j1 − i0|, p)-periodic. In particular, s[i, i + p − 1] = s[i0, i0 + p − 1] = um for some
m > 1, a contradiction. This proves that there can be at most one j ∈ U such that |i− j|
is not divisible by p.

Now we show j1 = max (U) if |i− j1| is not divisible by p. Assume for contradiction
that there is a j2 ∈ U such that j2 > j1. From the previous paragraph, |j2 − i| is a
multiple of p and j1 > i0. Hence j2 = i0 + p. This means that t is (j2 − j1)-periodic,
which is a contradiction since |j2 − j1| < p.

Fingerprints. In Section 6.2 we use Rabin-Karp fingerprints [59], a standard sketching
tool which allows us to compare strings of arbitrary length in constant time. Fix an
integer alphabet Σ. Let q > |Σ| be a prime and r ∈ Z∗q be arbitrary. The Rabin-Karp
fingerprint of a string s ∈ Σ∗ is defined as

φq,r(s) =

|s|∑
i=1

s[i] · ri−1 (mod q).

The following facts are well-known and the reader is referred to [59, 74, 12] for the proofs.

(P1) φq,r(s) can be computed in one pass over s using O(log q) bits of space.

(P2) Let s 6= t be two strings and l = max(|s|, |t|). Prr[φq,r(s) = φq,r(t)] ≤ l
q−1 .

(P3) Given φq,r(s) and φq,r(t), we can obtain φq,r(st) by constant arithmetic operations
in Zq.

(P4) Given φq,r(st) and φq,r(s), we can obtain φq,r(t) by constant arithmetic operations
in Zq.

From now on, we set q = Θ(n4) and assume that r is chosen uniformly at random
from Z∗q at the beginning of the respective algorithm. We also omit the subscripts and
denote the fingerprint of s by φ(s).
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Sparse Recovery. Given an update stream that implicitly defines a vector x ∈ Rn,
we are interested in space efficient algorithm that recovers the non-zero coordinates of x.
We need such an algorithm as a subroutine in our main result of Section 6.5. Generally
it is known that when it is guaranteed that x will have at most r non-zero coordinates, a
O(r log n) space sparse recovery algorithm exists (see Section 2.5). In our case, since the
updates are limited (at most 2 updates to each coordinate), we use the following result
by Lipsky and Porat that gives a time and space efficient algorithm for the limited case
that we are interested in.

Theorem 6.1 (Lipsky et al. [75]). Let x, y ∈ Σn. There is a randomized 1-pass stream-
ing algorithm that, given the coordinates of x and y in arbitrary order, can check if
Ham(x, y) > r or not using O(r(log n + log |Σ|)) bits of space and O(log n) per-item
time. Moreover in case Ham(x, y) ≤ r, the algorithm finds all pairs (x[i], y[i]) where
x[i] 6= y[i]. The probability of error is at most n−1.

Having the above result, for positive integer k and n by n′ matrix A with entries
from [m], we define a randomized procedure SRr(A) as follows. Given the entries of
A in a column-order fashion, SRr(A) outputs all the content of the rows that contain
two entries that are different. If A has more than r number of such rows, with high
probability SRr(A) rejects the input. Given the above result, we can implement SRr(A)
in O(r(log n+ n′ logm)) bits.

6.2 Pattern Matching

We assume the input stream is the concatenation of the pattern u of length m and
the text s of length n. Here we present a 1-pass streaming algorithm that generates
the starting positions of the matches of u in s (equivalently, Ms(u)), on the fly using
logarithmic space and per-item time. To be precise, if s[i−m+ 1, i] = u, after receiving
s[i] our algorithm reports a match with high probability. Also, the probability that our
algorithm reports a match where there is no occurrence of u is bounded by n−1.

While it is easy to generate Ms(u) when u is small, the problem is non-trivial for large
u. The following lemma implies that given a streaming algorithm that finds length-m
patterns, by taking advantage of the Rabin-Karp fingerprints, we can obtain a streaming
algorithm for length-cm patterns using only O(c log n) extra space.

Lemma 6.3. Let k be an integer greater than m. Let A be a 1-pass algorithm that
generates Ms(u) using O(g) bits space. Given A and φ(u), there is a 1-pass algorithm
that outputs φ(s[i, i + k]) at position i + k for all i ∈ Ms(u) using space O(g + k

m log n)
bits.

Proof. The algorithm partitions the sequence of positions in Ms(u) (as generated by A)
into maximal contiguous subsequences where in each subsequence the distance between
consecutive positions is at most m

2 . To do this we only need to keep track of the last po-
sition in Ms(u). If the next position is more than m

2 characters apart then we start a new
maximal subsequence, otherwise the new position is appended to the last subsequence.

Now let a1, a2, . . . , ah ∈ Ms(u) be a maximal sequence of consecutive positions in
Ms(u) where |al+1−al| ≤ 1

2m for all l ∈ [h−1]. We claim that for this sequence we need



CHAPTER 6. PATTERN MATCHING AND PERIODICITY 56

to maintain at most four fingerprints to generate φ(s[al, al + k]) for all l ∈ [h]. To do
this, first we launch an individual process to generate φ(s[a1, a1 +k]) and Φ(s[a2, a2 +k]).
By Property (P3) from Section 6.1, this can be done by adding Φ(s[a1, a1 +m− 1]) and
φ(s[a1 +m, a1 + k]). Now if h < 3, our claim is proved. So suppose h ≥ 3.

First we note that by Lemma 6.2, we should have |al+1 − al| = per(u) for all l ∈
[h − 1]. As a result, when we reach the position a2 + m − 1, we have obtained the
value of per(u). Now let x = u[1,per(u)]. We show that it is possible to compute
φ(x) when we reach a3 + m − 1. To this end, when we are in a1 + m − 1, starting
from the next character we build a fingerprint until we reach a2 +m− 1. This gives us
φ(s[a1 +m, a2 +m− 1]). Note that if per(u) divides m, then s[a1 +m, a2 +m− 1] = x
and we are done. Otherwise s[a1 +m, a2 +m− 1] is x shifted r times to the left (cyclic
shift), where r = m (mod per(u)). Therefore

s[a1 +m, a2 +m− 1] = x[r + 1, per(u)] ◦ x[1, r].

Likewise, we have s[a2 +m, a3 +m− 1] = x[r+ 1,per(u)] ◦ x[1, r]. Therefore, at location
a2+m, we know the value of r and per(u), and consequently using this information, we can
build the fingerprints φ(x[r+1,per(u)]) and φ(x[1, r]) when we go over s[a2+m, a3+m−1].
Note that here we have used the properties (P3) and (P4) from Section 6.1. It follows
that we are able to construct φ(x) when we get to a3 +m− 1.

Now observe that s[al, al + k] is equivalent to the substring s[al−1, al−1 + k] after
removing a block of length per(u) from the left-end of it and adding s[al−1 + k, al− 1] to
the right-end. Therefore we can generate φ(s[al, al + k]) by having φ(s[al−1, al−1 + k]),
φ(s[al−1 + k, al − 1]), and φ(x). This proves our claim.

It should be clear that at each point in time, we run at most 4k
m parallel fingerprint

computations. Each fingerprint takes O(log n) space. This finishes the proof of the
lemma.

Our pattern matching algorithm is the result of a recursive application of Lemma 6.3.
First as we go over u, we build φ(u[1, 2i]) for all i ∈ [logm]. By Property (P1) this can
be done in 1-pass and using O(logm log n) bits of space. Let Ai be an algorithm that
generates Ms(u[1, 2i]) in space gi. When i < c where c is a small constant, we can use
the naive solution of storing the entire pattern which gives gi = O(log n). By Lemma 6.3,
we get an algorithm Ai+1 for Ms(u[1, 2i+1]) in space O(gi + log n) by fingerprint com-
parisons. Applying this O(log |u|) times we obtain an algorithm for Ms(u) using space
O(log |u| log n) bits. The success probability is at least 1 − logm/n2 and this is due to
the Property (P2) in Section 6.1 and the observation that we make at most O(n log |u|)
fingerprint comparisons. Hence we have the following theorem, which was published in
[29] by Ergün, Jowhari and Sağlam.

Theorem 6.2. There is a 1-pass streaming algorithm that generates Ms(u) in
O(log |u| log n) bits of space and O(log |u|) per-item processing time. The error prob-
ability is bounded by n−1.

Since our pattern matching algorithm only requires the fingerprints of a small set
of prefixes of the pattern, it can be used to generate Ms(s[1,m]) (where the pattern
itself is a prefix of the text) in one pass and in space O(logm log n) bits. This property
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of our algorithm will be essential in Section 6.4. In addition to Ms(u), our algorithm
generates Ms(u[1, 2i]) for each i = 1, . . . , logm, which leads to further space economy
in our periodicity algorithms in the next section. By contrast, we show in the following
theorem that any pattern matching algorithm that generates Ms(u[1, 2i]) for Ω(log |u|)
prefixes of u of geometrically increasing sizes must use Ω(log |u| log n) bits of space.

Theorem 6.3. Any one-pass streaming algorithm that generates Ms(u[1, 2i]) for i =
1, . . . , blogmc uses Ω(logm log(n/m)) space.

Proof. Suppose Alice and Bob are given an instance of the AINDh
k problem, where h =

blogmc and k = dn/me. Recall that Alice gets a string s ∈ [h]k and Bob gets an integer
i and sj for j < i. Bob is required to output si.

Alice creates a pattern x by appending 2j−1 copies of sj next to each other for each
j = 1, . . . , h. Namely,

x = s1 ◦ s2
2 ◦ . . . ◦ s

m/2
h .

Bob creates k = dn/me strings y1, . . . , yk, each of length at most m as follows.

yl = t1 ◦ t22 ◦ . . . ◦ t2
i−2

2 ◦ l2i−1

Bob’s text is the concatenation of all yl for l = 1, . . . , k. Given a pattern matching
algorithm with space S, Alice feeds x to the algorithm and sends the memory contents of
the algorithm to Bob. Then Bob continues the simulation of the algorithm and feeds the
text he constructed. Observe that the output of the algorithm reveals si. Hence we have
a one-way S bits protocol for the augmented indexing problem. Hence by Theorem 3.1,
we have S = Ω(h log k) = Ω(logm log(n/m)), as desired.

6.3 Finding the period

Testing whether the sequence s is periodic or not is equivalent to testing if there is a
suffix of s of length at least n

2 that matches a prefix of s. Hence for finding the period of
s, we just need to check the positions that match a certain prefix of s. Our algorithms for
testing periodicity has two stages. In the first stage, which we call the searching stage,
the algorithm finds the positions where they match the first half of s. This is done by
using the pattern matching algorithm of the previous section. Then, in the second stage,
which we call the verification stage, we check if the detected position can be the start
of a suffix that matches a prefix of s. However these stages are performed in parallel
as the search and verification of different positions might overlap. In the following, to
demonstrate the idea, first we present a weaker bound and then we handle the general
case.

Let T = Ms(s[1, n/2]). 1 By definition, s is periodic if there exists i ∈ T where
s[i+ 1, n] = s[1, n− i]. Now if i ≤ n/4, we can build both φ(s[i+ 1, n]) and φ(s[1, n− i])
in one pass over s and thus we can test whether per(s) ≤ n/4 or not as follows.

Run the pattern matching algorithm to find i = min (T ∩ [1, n/4]). Build φ(s[i+1, n])
and φ(s[1, n− i]). If φ(s[i+ 1, n]) = φ(s[1, n− i]) then per(s) = i otherwise output that
per(s) > n/4.

1To make the presentation simpler, we assume n is a power of 2.
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The reason that we only perform the test for min (T ∩ [1, n/4]) is a consequence of
Lemma 6.2. We do not need to check whether s[i + 1, n] = s[1, n − i] for i = cmin (T )
when c is an integer greater than 1 as, in this case, s[1, i] would be of the form u ◦ . . . ◦ u
(a cyclic string) and thus can not be the period of s. From these observations we get the
following lemma.

Lemma 6.4. There is a 1-pass streaming algorithm that decides whether per(s) ≤ n/4 or
not in space O(log2 n) bits. The algorithm also outputs the exact period if per(s) ≤ n/4.

For i > n/4, checking whether s[i + 1, n] = s[1, n − i] is not straightforward. This
is because when we find out i ∈ T , we have already crossed the point n − i and lost
the opportunity to build φ(s[1, n− i]). To solve this problem we conservatively maintain
a superset of T and prune it as we learn more about the input stream. First observe
that, for i ∈ T , since s[1, n − i] = s[1, n/2] ◦ s[n/2 + 1, n − i], it is enough to build
φ(s[n/2 + 1, n − i]). Now for i ∈ [1, n/2], let si = s[n/2 + 1, n − i]. Roughly speaking,
at each point in time, we maintain a dynamic set of positions R that will contain T
and for each i ∈ R we collect enough information to be able to construct φ(si). Also in
parallel we run a pattern matching process to generate T . Finally for each position in
{i ∈ R ∩ T | i 6= cmin (T ) for c ∈ N} we check whether φ(s[i + 1, n]) = φ(s[1, n − i]). If
φ(s[i+1, n]) = φ(s[1, n− i]) holds in one case, then we declare s to be periodic, otherwise
it is reported aperiodic.

The dynamic set Let Ik = [n/2−2k+1, n/2−2k−1] and let H = H1∪H2∪. . .∪Hlog(n/4)

where Hk = Ms(s[1, 2
k]) ∩ Ik. In other words, Hk is the positions of all occurrences of

s[1, 2k] that start within the interval Ik. Clearly T ⊆ H. In what follows, for a fixed k we
show how to compute Rk ⊆ Hk and, more importantly, how to maintain φ(si) for each
i ∈ Rk. Also we guarantee that every member of T will be added to R = R1∪. . .∪Rlog(n/4)

at some point. Initially all Rk are empty. First we distinguish two main cases. In both
cases, we use the pattern matching algorithm described in Section 6.2 to get the sequence
of positions in H. Also, when we detect i ∈ Hk, we add it to Rk. However, we might
prune Rk and remove some unnecessary elements. In the following let p = per(s[1, 2k]).

The case p > 1
42k. By Lemma 6.2, we get |Hk| < 4. Moreover, we detect i ∈ Hk before

reaching the end of si, and thus, we can build φ(si) at the right time. In this case we let
Rk = Hk. Clearly we can maintain R and the associated fingerprints in O(log n) space.

The case p ≤ 1
42k. Here things get a bit complicated. In this case Hk could be large

and if we maintain φ(si) for each i ∈ Hk individually, this might take linear space. To
solve this problem, first we note that, by Lemma 6.2, the positions in Hk have a succinct
representation as the distance between consecutive positions is exactly p. As result, we
can encode Rk using O(log n) space. Further, we take advantage of the periodic structure
of s[1, 2k] and possibly the substring s[2k + 1, 2k+1]. Consider that for i ∈ Hk, si is a
substring of s[i, i + 2k+1 − 1]. Now, loosely speaking, if the substrings {si} fall in a
periodic region, we can maintain all φ(si) by saving a constant number of fingerprints.
On the other hand, if the substring s[i, i+2k+1−1] is not periodic then we use the period
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Figure 6.1: A sample run of the algorithm in Section 6.3.

information of s[1, 2k+1] to prune Rk. To do this, we collect the following information
when we process the first half of the stream.

• Using the tester from Lemma 6.4, we compute p. If it is reported that p > 1
42k, then

Ik falls into the previous case. We also compute φ(s[1, p]) and φ(s[2k − p+ 1, 2k]).

• Let u1 ◦u2 ◦ . . .◦ut ◦u′ be a decomposition of s[2k +1, 2k+1] into consecutive blocks
of length p except possibly for the last block. Let x to be the maximum j such that
s[1, 2k] ◦ u1 ◦ . . . ◦ uj is p-periodic. We compute x.

Now let b1, b2, . . . , br be the elements of Hk in increasing order. Since |Ik| ≤ 1
22k,

we have |bi+1 − bi| = p for all i ∈ [r − 1]. Let v1 ◦ v2 ◦ . . . ◦ vl ◦ v′ be a decomposition
of the substring s[br + 2k, n/2 + 2k] into consecutive blocks of length p except possibly
the last block (see Figure 1 for a pictorial presentation of the substrings). Now let y
be the maximum j such that s[br, br + 2k − 1] ◦ v1 ◦ . . . ◦ vj is p-periodic. We consider
two cases. If y = l then {si | i ∈ Hk} are substrings of a periodic interval. Let eb1
be the right endpoint of sb1 , i.e. eb1 = n − b1. Note that we have eb1 > eb2 > . . . >
ebr . In this case, all the following substrings (except possibly the last one) are equal:
s[ebr + 1, ebr−1 ], s[ebr−1 + 1, ebr−2 ], . . . , s[eb2 + 1, eb1 ]. Therefore to compute φ(sbj ), we just
need to maintain φ(sb1) and φ(s[eb2 +1, eb1 ]). We compute φ(sb1) individually. So in this
case Rk = Hk. In the other case, we have y < l. We make the following claim.

Claim 6.4. If y < l and |r − j|+ y 6= x then bj /∈ T .

By Claim 6.4, |Hk ∩ T | ≤ 1. Consequently it is enough to maintain φ(sbj ) where
|j − r|+ y = x and φ(sb1). So in this case |Rk| ≤ 2.

It remains to state how to compute x and y. To compute x, we need to know p and
φ(s[2k − p+ 1, 2k]). This information can be obtained in one pass (see the observations
before Lemma 6.4). Computation of y is similar to x. Finally, given the above discussion,
for each k ∈ {1, 2, . . . , log(n/4)}, we need to keep O(1) number of fingerprints to maintain
Rk and its associated fingerprints which makes the total space O(log2 n) bits. Hence, we
get the following result.
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Theorem 6.5. There is a 1-pass randomized streaming algorithm that given s ∈ Σn

outputs per(s) if s is periodic, otherwise it reports that s is aperiodic. The algorithm uses
O(log2 n) bits of space and has O(log n) per-item running time. The error probability is
at most O(n−1).

The following theorem shows that in general finding the period in one pass requires
linear space.

Theorem 6.6. Every 1-pass randomized algorithm that computes per(s) requires Ω(n)
space.

Proof. Consider the communication game between Alice and Bob, respectively holding
strings a and b, both of length n, where the goal of the game is to compute per(a◦b). We
show that any one-way protocol that computes per(a ◦ b) requires Ω(n) communication
by a reduction from the augmented indexing problem (see Section 3.2). Suppose Alice
and Bob are given an instance of AINDn

2 . Recall that Alice gets an x ∈ {0, 1}n, and Bob
gets an index i ∈ [n− 1] and y ∈ {0, 1}i with the promise that y = x[1, i− 1]. Alice sets
a = x ◦ 2 and Bob sets b = 0n−i ◦ y ◦ 1. Clearly, per(a ◦ b) = i if and only if x[i+ 1] = 1.
Hence by Theorem 3.1 an Ω(n) communication bound holds for any 1-way protocol. The
claim of the theorem follows by noting that any 1-pass algorithm that computes per(s)
can be converted to a protocol for the above communication game.

6.4 Frequency moments over substrings

Let s be a string of length n, and k ≥ 0, d ≤ n be integers. We define the kth frequency
moment of d-substrings of s as

Fk,d(s) =
∑
u∈Σd

|Ms(u)|k.

To approximate Fk,d, one can create a fingerprint for each d-substring and feed this
stream of fingerprints to a standard Fk algorithm. Thus, using the algorithms of [55,
56, 36] we can (1 + ε)-approximate Fk,d with Õ(d + n1−2/k) space and Õ(1) per item
processing time for any k ≥ 0. It is not possible to obtain a o(d) algorithm however, if
we insist on constructing a fingerprint for each d-substring2. We note that by replacing
the reservoir sampling procedure of [1] with the pattern matching algorithm above, one
can (1 + ε)-approximate Fk,d using space Õ( 1

ε2
n1−1/k), in particular independent of d.

Unfortunately, the estimator of [1] does not give a bound for F0,d which is perhaps the
most commonly used moment for substrings, also known as the q-gram measure. Here
we present an Õ(1

ε

√
n) space randomized algorithm that (1 + ε)-approximates F0,d.

Theorem 6.7. There exists a 1-pass streaming algorithm that (1 + ε)-approximates F0,d

using Õ(1
ε

√
n) space.

2An easy information theoretic observation shows that sliding a fingerprint for d-substrings that pre-
serves equality with high probability requires Ω(d) space.
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Proof. Let s ∈ Σn be the stream. Let K be the set of all d-substrings of s and n′ =
n−d+ 1. Our basic estimator X is defined as follows. Let i be random position between
1 and n′. We set X = 0 if there exists a j > i such that s[i, i + d − 1] = s[j, j + d − 1],
we set X = n′ otherwise. We have E[X] = 1

n′
∑

w∈K n
′ = F0,d. Also, Var(X) ≤ E[X2] =

1
n′
∑

w∈K n
′2 ≤ n · F0,d. Let Y be the average of 3

ε

√
n repetitions of X. By Chebyshev’s

inequality,

Pr[|Y − F0,d| ≥ εF0,d] ≤
Var(Y )

ε2F 2
0,d

≤
√
n

3εF0,d
.

Right hand side is smaller than 1/3 when F0,d ≥ 1
ε

√
n. Note that we can compute each

X in O(log n log d) space in one pass using the pattern matching algorithm of Section
6.2.

Now we show that F0,d can be computed exactly using space Õ(F0,d). First we
show for |s| ≤ 2d, how to build the fingerprints of every distinct d-substrings of s in
O(F0, d(s) log2 n) bits of space, and handle the general case afterwards. Suppose |s| ≤ 2d.
We claim that s can be divided into three substrings s = u1 ◦u2 ◦u3, where |u1| and |u3|
are O(F0,d(s)) and per(u2) ≤ F0,d. Assume F0,d(s) < d/4, otherwise the claim is trivially
true. Now let t = F0,d(s) + 1 and let s1, . . . , sh be the consecutive d-substrings of s. By
assumption there exists si and sj such that i < j ≤ t and si = sj . Again by assumption
there exists sk and sl where (j+d−3t−1) ≤ k < l ≤ (j+d−2t) and sk = sl. This implies
that sl overlaps with sj in at least 2t− 1 characters. Moreover both per(sj) and per(sl)
are less than or equal to t− 1. Using Lemma 6.1, it can be shown that any r-substring
of a string with the period p, has period p if r ≥ 2p. By this fact, we conclude that the
last 2t−1 characters of sj has period per(sj). Consequently per(sj) = per(sl). Therefore
per(s[j, l+ d− 1]) = per(sj) ≤ t− 1 = F0,d(s). We let u1 = s[1, j− 1], u2 = s[j, l+ d− 1],
and u3 = s[l + d, |s|]. This proves our claim.

For |s| > 2d, we divide s into blocks of length at most 2d where each d-substring of
s belongs to exactly one block and moreover constant number of blocks intersect with
each other. We handle each block separately but we keep a unique storage for all the
fingerprints. Since constant number of blocks overlap and clearly the number of distinct
substrings in a block is less than F0,d(s), we use at most O(F0,d(s) log2 n) space.

Hence we compute 3
ε

√
n estimates for X, while we run the exact algorithm in parallel.

If at any point in the stream the exact algorithm detects that F0,d ≥ 1
ε

√
n we terminate

it and output the sampling estimate, otherwise we output the value computed by the
exact algorithm.

6.5 Approximating the distance to periodicity

Recall that Dp(s) is the minimum number of character changes on s ∈ Σn to make it
p-periodic. Assume WLOG that p divides n where n = dp, and view s as a p× d matrix
A where A(i, j) = s[(i − 1)p + j]. If p does not divide n, s can be represented by two
matrices. Then, Dp(s) is the the minimum number of substitutions in A to make every

row consist of d repetitions of the same character. Also, Dp(s) = L1 ◦ F res(1)
1 (A) =∑p

i=1 F
res(1)
1 (Ai). It is challenging to compute this quantity since we receive A in the
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column order: A(1, 1), . . . , A(p, 1), A(1, 2), . . . , A(p, 2), . . . To compute L1 ◦ F res(1)
1 (A)

exactly, one can compute the residual tail of each row in parallel using independent

counters, in O(|Σ|p) words of space. On the other hand, one can estimate F
res(1)
i (Ai)

within 1 − ε factor in O(1/ε) words of space in several ways. For instance, using the
Heavy Hitters algorithms in [69, 10] we can approximate F∞(Ai) with additive error

εF
res(1)
1 (Ai), giving the following bound.

Theorem 6.8. There is a deterministic streaming algorithm that approximates L1 ◦
F
res(1)
1 (A) within 1− ε factor using O(pε ) words of space.

Now we turn our attention to randomized algorithms. In the following, to simplify

notation, we use F (Ai) = F
res(1)
1 (Ai) and F (A) = L1 ◦ F res(1)

1 (A).

6.5.1 A (2 + ε) algorithm

The idea of this algorithm is to reduce F (A) to L0 of a vector where each item in s
represents a set of updates to this vector. Let fi(a) be the number of occurrences of
a ∈ [m] in Ai. We first observe the following.

Fact 6.9. F (Ai) ≥ 1
d

∑
a<b fi(a)fi(b) ≥ 1

2F (Ai).

Proof. Notice that 1
d

∑
a<b fi(a)fi(b) = 1

2(d − 1
d

∑
a f

2
i (a)). Clearly 1

d

∑
a f

2
i (a) ≤

max{fi(a)}. This proves the right hand side inequality. To prove the left inequality,
we need to show d ≥ 2 max{fi(a)} − 1

d

∑
a f

2
i (a). This is true because the RHS is maxi-

mized when max{fi(a)} = d.

One way to produce
∑

a<b fi(a)fi(b) is to compare each location of Ai with all other
locations and sum up the mismatches. To express this in terms of L0, let vi be an all
zero vector of length d2 with a coordinate for each (j, k) ∈ [d]× [d]. Given Ai(j) = l, add
l to vi(j, k) and subtract l from vi(k, j) for all k ∈ [d]. Then, L0(vi) = 2

∑
a<b fi(a)fi(b).

We generate the updates to vector v = v1 ◦ . . .◦vp as we go over A and estimate L0 using
the following result by Kane et al. [55].

Theorem 6.10. [55] Let x = (x1, . . . , xn) be an initially zero vector. Let the input
stream be a sequence of t updates to the coordinates of x of the form (i, u) where u ∈
{−M, . . . ,M} for an integer M and i is an index. There is a 1-pass streaming algorithm
for (1 + ε)-approximating L0(x) using space O(1/ε2 log n(log(1/ε) + log log(tM))), with
success probability 7/8, and with O(1) per-item processing time.

By Theorem 6.10 and Fact 6.9, we get a 2 + ε approximation for F (A) in space
O(1/ε2 log(1/ε) log(n)) bits. However, per-item processing time is Ω(d). To overcome
this, we pick a random subset S from [d] of size O( 1

ε2
log p) and, for j ∈ S, we compare

Ai(j) with all the coordinates of Ai. Now this gives us a vector v′i with dimension
d|S|. Fix an i and consider random variable L0(v′i). Let Yj be an indicator random

variable which is 1 iff j ∈ S. We have E[L0(v′i)] =
∑d

j=1 E[Yj ]
∑d

k=1 Ham(Ai(j), Ai(k)) =
2|S|
d

∑
a<b fi(a)fi(b). Since {Yj} are independent, using Chernoff bounds,

Pr
[
|L0(v′i)− E[L0(v′i)| > εE[L0(v′i)

]
≤ 1

8p
.
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By the union bound, the probability that L0(v′)
2|S| is away from 1

d

∑p
i=1

∑
a<b fi(a)fi(b) by

a factor of ε is at most 1/8. Given this and the fact that the underlying L0 estimation
itself gives a 1 + ε approximation we get a (1 + ε)2 = 1 + θ(ε) approximation using
polylogarithmic space and O(1/ε2 log p) per-item processing time. Hence we get the
following result, which was published in the paper [29] by Ergün, Jowhari and Sağlam.

Theorem 6.11. Let ε > 0. There is a 1-pass randomized streaming algorithm that

approximates L1 ◦ F res(1)
1 (A) within 2 + ε factor using O(1/ε2 log(1/ε)) words of space.

The error probability is at most 1/4.

6.5.2 A (1 + ε) algorithm

We start by making few observations that are crucial to the algorithm in this section.
Then we proceed with the description of our algorithm. Let F ′(Ai) = 1/d

∑
a<b fi(a)fi(b).

Recall that, in the previous algorithm, we used F ′(Ai) as an approximation for F (Ai).
The worst case for this approximation happens when F (Ai) is maximized, i.e., F∞(Ai) =
d/F0(Ai). On the other hand, when F (Ai) is low, the above quantity gives us a good
estimate. This is because F ′(Ai) is lower bounded by 1

d(d−F∞(Ai))F∞(Ai) which implies
the following.

Fact 6.12. Let ε ≥ 0. Suppose F (Ai) ≤ εd. We have F ′(Ai) ≥ (1− ε)F (Ai).

Define F ′(A) =
∑p

i=1 F
′(Ai). From the definitions, we get

F ′(A) +
1

2d

p∑
i=1

(F (Ai)
2 + F

res(1)
2 (Ai)) = F (A). (6.1)

Now let F ′′(Ai) = F (Ai)−F ′(Ai) = 1
2d(F (Ai)

2 +F
res(1)
2 (Ai)). From (6.1), it follows that

if we are given an estimate of F ′′(A) =
∑p

i=1 F
′′(Ai), by using the algorithm described

in the previous section, we get a 1 + Θ(ε) approximation for F (A). On the other hand,
Fact 6.12 tells us that we only need to compute F ′′(Ai) for rows with high contribution.

For t ≤ d define Ht to be the set {j | F res(1)
1 (Aj) ≥ t}. The following is a consequence of

Fact 6.12 and (6.1).

F (A) ≥ F ′(A) +
∑
i∈Hεd

F ′′(Ai) ≥ (1− ε)F (A). (6.2)

To estimate
∑

i∈Hεd F
′′(Ai), we estimate |Hεd| and we also take uniform samples from

the rows in Hεd. Now if the contribution of Hεd in F (A) is high, our samples give us a
good estimate of F ′′(Hεd), otherwise we can neglect the contribution of these rows.

The overall algorithm. Our algorithm has two main threads running in parallel. In
one thread, we run the 2 + ε approximation algorithm over A and in the other thread
we run the sampling procedure which we describe below. At the end, we add up the
outcome of these threads and that is the final output. In the following, we present our
sampling procedure along with the analysis of its correctness. At the end, we state the
considerations about the space usage and the final theorem.
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Let Bi〈1〉, . . . , Bi〈2 log n〉 be a random partitioning of the characters in Bi into 2 log n
equal-size sets, (note that each Bi〈j〉 is a string with k′ = 16

δ2
log n length.) Now for

j = 1, . . . , 2 log n, let

• αi,j = d2

2(t2)

∑
a fBi〈j〉(a)(fBi〈j〉(a)− 1).

• ϕi,j = 1
2d(F (Bi〈j〉⊕

d
k′ )2 + 1

2d(αi,j − F 2
∞(Bi〈j〉⊕

d
k′ )

Let ϕ(Bi) be the median of {ϕi,1, . . . , ϕi,2 logn}.

Figure 6.2: Description of ϕ(Bi)

Our sampling procedure is described two main phases. In the first phase, we downsize
the input matrix A, by picking a random subset of columns of size k = O( 1

δ2
log2 n). Let

B be the projection of A over the random columns. We define function ϕ(Bi) which
gives an estimate for F ′′(Ai). The description of this function is given in Figure 6.5.2.
Let x⊕t denote the string resulted from x by repeating each character t times. We use

F ((Bi)
⊕ d
k ) to estimate F (Ai), where k = |Bi|. Now let Gεd = {i|F ((Bi)

⊕ d
k ) ≥ εd}. In

the second phase of our sampling procedure, we take samples from Gεd. We do this step,
by devising the exact sparse recovery procedure that we described in the preliminaries
section. While we take sample i ∈ Gεd, we also compute ϕ(Bi). Finally we use these
samples to estimate

∑
i∈Gεd ϕ(Bi). The detailed steps of our algorithm is given in Figure

6.3.
We analyze the correctness of our algorithm in the following lemmas. In the next

lemma, we show that the matrix B, with high probability, satisfies two important prop-
erties. First, the sum

∑
i∈Gεd ϕ(Bi)), added with F ′(A), gives a good estimate of F (A).

Second, the rows in Gεd comprise a large enough fraction of the non-uniform rows in B.
The latter fact helps us in getting an efficient sampler for Gεd.

Lemma 6.5. Let δ < 1
10ε

2. With probability at least 1/8, the followings are the case.

1. |F (A)− F ′(A)−
∑

i∈Gεd ϕ(Bi)| ≤ 2εF (A).

2. Let γ = F (H2εd)
F (A) . We have |G0| ≤ 16k

γ |Gεd| where G0 is the set of non-uniform rows
in B.

Proof. First we prove for all i ∈ [p], with high probability, |F (Ai)−F ((Bi)
⊕ d
k )| ≤ δd and

|F ′′(Ai) − ϕ(Bi)| ≤ 5δd. Fix an i. By Chernoff bounds, for a ∈ Σ, with probability at
least 1− 1

8n3 ,
|f

(Bi)
⊕ d
k

(a)− fAi(a)| ≤ δd.

Consequently, using union bound, with probability at least 1 − 1
8n2 , we have |F (Ai) −

F ((Bi)
⊕ d
k )| ≤ δd.

Now for the second part, fix some j ∈ [2 log n] and consider the term ϕi,j . With
probability at least 1− 1

8n2 we have

|f
Bi〈j〉

⊕ d
k′

(a)− fAi(a)| ≤ δd.
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Therefore, with probability at least 1 − 1
8n , the error of the first term in ϕj,i, i.e.,

1
2d(F (Bi〈j〉⊕

d
k′ )2, is bounded by 2δd. To bound the error of the second term in ϕi,j ,

we use Chebyshev bound and the variance analysis of [8] (cf. Lemma 5.3) to estimate
F2. From [8], we have E[αi,j ] = F2(Ai) and Var(αi,j) ≤ d

t (F2(Ai))
3/2. Using Chebyshev’s

inequality, we get

Pr[|αi,j − F2(Ai)| > δd2] ≤ (F2(Ai))
3/2

δ2k′d3
.

Given that k′ = 16
δ2

log n, this probability is bounded by 1/(16 log n). It follows that
with probability at least 1− 1/(16 log n), the second term of ϕi,j has error at most 3δd.
Since ϕi is the median of 2 log n outcomes, with probability at least 1 − 1/(n2 log n) −
1/16n, we have |ϕ(Bi)− F ′′(Ai)| < 5δd.

Proof of (I): Following the above argument and using union bound, with probability
at least 1− p/(8n),

H(ε+δ)d ⊆ Gεd, ([p] \H(ε−δ)d) ∩Gεd = ∅ (6.3)

Since δ < 1
10ε

2, we get 5δd ≤ ε(ε− δ)d and hence for all i ∈ G, ϕi is away from F ′′(Ai) by
at most εF (Ai). Putting these observations, (6.2), and (6.3) together we get the desired
statement.

Proof of (II): We have E[F (B)] ≤ k
dF (A). Since always F (B) > |G0|, by Markov

inequality, we have Pr[|G0| > 16k
d F (A)] < 1/16. Assuming the event |G0| ≤ 16k

d F (A),

by definition of γ and the fact that F (H2εd) ≤ d|H2εd| we have |G0| ≤ 16k
γ |H2εd|. At the

other hand, from (6.3) it follows that H2εd ⊆ Gεd. This implies that |H2εd| ≤ |Gεd| and
consequently our statement is correct.

The following lemma implies that the outcome of the sampling procedure has small
error.

Lemma 6.6. Let W =
∑

i∈Gεd ϕ(Bi). With probability at least 1 − o( 1
n), the following

statements are the case.

1. v ≤ (1 + Θ(ε))W .

2. If F ′′(H2εd) ≥ εF (A), then v ≥ (1−Θ(ε))W .

Proof. First, we observe that if |Gεd| = 0 then always v = 0, and hence the above
statements are satisfied. Therefore in the following we assume |Gεd| > 0. To prove

(I), fix j ∈ [1
ε log p] and u ∈ [t]. Let βj = |Gεd|

(1+ε)j
. Consider the random variable zj,u.

Since the hash function h is uniform, E[zj,u] ≤ βj . By linearity of expectation, we
have E[zj ] ≤ βjt. Since the threads are independent, we get Pr(zj > (1 + ε)βjt) <

exp(− ε2βjt
4|Gεd|) < exp(− ε2t

4 ) < 1
n2 . Now let j′ be the smallest j such that βj ≥ 1. It follows

that, by applying union bound, with probability at least 1− log p
εn2 , we have ĵ ≤ j′+ 3 and

consequently,

(1 + ε)ĵ < (1 + Θ(ε))|Gεd| (6.4)
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We pick k = 32
δ2

log2 n random columns of A and let B be the projection of A over

sampled columns. Run the following in parallel for j = 1, . . . , 1
ε log p. Set l = 128k

ε1.5
.

1. Repeat the following for u = 1, . . . , (t = 128
ε4

log2 n) in parallel. The output of
the u-th thread is the pair (zj,u, vj,u).

(a) Select a function h(x) = (ax + b mod q) by picking a and b randomly
from the field Fq where q is the smallest prime ≥ p.

(b) Let Sj,u = {i|h(i) ≤ q
(1+ε)j

}.

(c) Run the SRl procedure over the projection of B over the rows in Sj,u. If
|Sj,u ∩G0| > l or Sj,u ∩Gεd = ∅, then stop and output zj,u = 0, vj,u = 0.
Otherwise let zj,u = |Sj,u ∩Gεd| and vj,u = ϕ(BiR) where iR is randomly
selected from i ∈ Sj,u ∩Gεd. Output the pair (zj,u, vj,u).

2. Let zj =
∑t

u zj,u. Partition the interval [t] into t1 = t
16 logn blocks of equal size,

T1, . . . , Tt1 . For c ∈ [t1], let Tj,c = {u|vj,u > 0, u ∈ Tc}. Select v̄j,c randomly
from the set of vj,u’s where u ∈ Tj,c. If Tj,c = ∅, then we set v̄j,c = 0. Set
vj =

∑t1
c v̄j,c. Let xj be the number of non-empty sets Tj,c where c ∈ [t1].

Output the triple (zj , vj , xj).

Let ĵ the largest j such that |zj − t| ≤ 2εt and xj = t1. The final output of this

phase is v = (1 + ε)ĵ
vĵ
t1

. If there is no such j then we then output v = 0.

Figure 6.3: Description of the sampling procedure.
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On the other hand, vĵ is the sum of t1 independent uniform samples from {ϕ(Bi)}i∈Gεd .
By Chernoff bound and the fact that ϕ(Bi) ≥ ε2

2 d, we get

Pr(|vĵ −
t1
|Gεd|

∑
i∈Gεd

ϕ(Bi)| > ε
t1
|Gεd|

∑
i∈Gεd

ϕ(Bi)) < exp(−ε
4t1
8

) <
1

n2
. (6.5)

This and (6.4) proves the statement of (I). To prove (II), we show that, given the
assumption of the statement, with high probability, we have ĵ ≥ j′ and xj′ = t1. This,
combined with (6.4) and (6.5), proves our claim. Consider the random variable rj′,u =

|Rj′,u|. Since the hash function h is uniform, we have E[rj′,u] = |G0|
(1+ε)j′

. Also since h

is pairwise independent, Var[rj′,u] = E[rj′,u] + 1
q−1 E

2[rj′,u]. As result, using Chebyshev
bound, we get

Pr
(
|rj′,u − E[rj′,u]| > sE[rj′,u]

)
≤ 1

s2
(
(1 + ε)j

′

|G0|
+

1

q − 1
). (6.6)

Now we observe that, by part (II) in Lemma 6.5, E[rj′,u] ≤ 32k
ε . After plugging this in

(6.6) and using the fact that |G0| ≥ |Gεd|, we get Pr
(
|rj′,u − E[rj′,u]| > 32ks

ε ) ≤ 2
s2

, and

consequently by setting s =
√

2
ε ,

Pr
(
rj′,u >

128k

ε1.5
) ≤ ε.

Now since l > 128k
ε1.5

, by linearity of expectation, E[zj′ ] > (1 − ε)t and therefore, by

Chernoff bound, Pr(zj′ < (1− 2ε)t) < exp(− ε2t
8 ).

It remains to show xj′ = t1 with high probability. For c ∈ [t1], let Xc be the indicator
variable for the event Tj′,c 6= ∅. By definition, xj′ =

∑t1
c Xc. Let Zc =

∑
u∈Tc zj′,u.

We have Pr(Xc) = Pr(Zc ≥ 1). By E[Zc] ≥ t
t1

(1 − ε), and Chernoff bound, we get

Pr(Zc < 1) < exp(−( t
4t1

)2). It follows that Pr(Xc) = 1 − exp(−( t
4t1

)2). Therefore, by

applying union bound, we get Pr(xj′ = t) ≥ 1− t1 exp(−( t
4t1

)2) > 1− t1
n2 .

Putting the statement of part (I) in Lemma 6.5, Lemma 6.6, and (6.2) give us our
main theorem in this section. Considering the parallel repetitions, the space usage of the
algorithm is governed by O(1

ε lt log n log p) which amounts to O( 1
ε10.5

log5 n) after plugging
the values. Finally, assuming n is large enough, we get the following theorem.

Theorem 6.13. There is a randomized 1-pass streaming algorithm that outputs a 1± ε
approximation of L1 ◦F res1 (Ap×d) with probability at least 3/4 using O( 1

ε10.5
log5 n) words

of space.
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