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Abstract 

Models of attention in category learning tasks have typically treated attention as a 

weighting of how influential a feature is to the correct classification of the overall 

stimulus. Attention shifting is frequently modelled as occurring after the trial is completed 

(Kruschke, 1992). Recent work has demonstrated in detail how learned attention 

develops during the course of a single trial. Currently, there is no model which can 

account for the dynamic attentional shifts that are identified by eye-tracking data. 

Additionally, research is many fields has identified the need to explore cognitive models 

that are based on a more naturalistic view of human behaviour. New mathematical 

techniques utilizing concepts from dynamical systems has greatly increased the 

tractability of developing such models. This thesis describes two category learning 

experiments and introduces a new computational model that produces a real-time 

simulation of eye-movements in these tasks. Human data is compared with the model 

output and the implications of this model to category learning and related fields is 

discussed. 

Keywords: Category learning, Computational modelling, Attention, Dynamic field 
theory, Dynamical systems 
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Introduction 

One of the hallmarks of human cognitive capacities is our ability to classify 

objects from the physical environment into discrete categories. The capability to 

segregate that which is poisonous from that which is edible is surely a kind of 

categorization that would have aided our evolutionary ancestors. A key ability required 

for the correct classification of a stimulus is identifying which features of a class are 

those that are most likely to lead to correct classification and attending to those features 

accordingly. This remarkable ability is present both in early infancy when the capacity for 

categorization is first developing, and in experts who have developed intricate 

classification abilities. In a classic study of the sexing of chicks Biederman and Shiffrar 

(1987) documented the ability of experts to sex day old chicks with near perfect 

accuracy while performing over 1000 categorizations per hour. Their expertise was a 

result of their ability to identify and exploit the most informative features of the chicks sex 

while de-emphasising the irrelevant information. The ability to selectively attend has long 

been identified as forming a crucial component of human classification ability (Shepard, 

Hovland, & Jenkins, 1961).  

One of the most well known formal models of human categorization is an 

exemplar model known as the Context Model. In exemplar models, it is assumed that a 

category consists of a collection of stored instances which collectively define the class. 

The context model produces the probability that a stimulus will be assigned a particular 

classification and there has been well documented evidence supporting the validity of 
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the model (Busemeyer, Dewey, & Medin, 1984; Medin, Altom, Edelson, & Freko, 1982; 

Medin, Dewey, & Murphy, 1983). Nosofsky (1984, 1986 & 1988) extended the original 

model to cover continuous valued stimuli as well as to provide an explanation for the 

relationship between stimulus identification and stimulus classification. In the 

Generalized Context Model (GCM) a dimensional weight parameter was added that 

represented the amount of attention that was being applied to a stimulus dimension. The 

addition of the attention parameter unified explanations of identification and classification 

under the same explanatory framework by demonstrating that contradictory results can 

be explained by showing that different attention weights are being applied in the 

classification and identification tasks tasks (Logan, 2004). While the GCM includes an 

attention parameter that influences categorization, Nosofsky (1984) claimed that this 

parameter was selected by people in such a way so as to maximize the probability of 

correct classification and that the optimized attention weights are adjusted throughout 

learning. Although an assumption of optimized attention was made in the GCM it did not 

provide a computational mechanism to explain how these dimensional attention weights 

are learned.  

Kruschke (1992) developed a model, ALCOVE (attention learning covering map), 

that utilizes all the same exemplar based representational machinery that is present in 

the GCM, but incorporated an error-driven learning mechanism that drives the 

association between exemplars and categories. In addition, ALCOVE eschews attention 

weight free parameters for a mechanisms which is capable of learning these weights on 

a trial by trial basis. ALCOVE’s success at modeling numerous categorization results 

had a substantial impact on the field and stimulated the creation of a family of models 

that emphasize aspects of localized exemplar based categorization, dimensional 
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attention parameters with error-driven learning assumptions (Ashby & Alfonso-Reese, 

1998; Kruschke, 2001; Kruschke & Johansen, 1999; Love, Medin, & Gureckis, 2004). 

A feature of these models is that they implement a variety of attention that could 

be called task-specific. Attention in these models is a learnt attentional distribution that is 

applied invariantly to all stimuli that are present in the task domain. For instance, when 

learning to classify bird; these models will learn attention weightings for beaks and 

feathers, but are not capable of defining an attention profile for individual birds, even 

when this may be required for classification or when it may increase the efficiency of 

attentional allocation (Blair, Watson, Walshe, & Maj, 2009). In Blair et al. (2009) the 

authors demonstrated attentional allocations that are contrary to those that are predicted 

by the exemplar models previously reviewed. The authors showed that fixation durations 

to the relevant and irrelevant features differed for stimuli belonging to distinct categories. 

The authors also reported unique temporal characteristics of fixations to stimuli of 

differing categories with the most relevant features to classification of a particular stimuli 

being fixated first. That this stimulus-specific attention is not predicted by many of the 

earlier exemplar based models is a clear shortcoming of their ability to account for this 

important aspect of human performance in categorization tasks.  

Recent work using eye-tracking has made unique contributions to understanding 

the nature of attentional allocations under a variety of experimental conditions. Using 

head-mounted displays researchers have been able to study eye-movements as they 

develop during naturalistic tasks such as making tea or sandwiches and have 

demonstrated the importance of fixating on locations that will help to optimize 

performance on a task (Land, Mennie, & Rusted, 1999). For instance, when grasping the 

teapot the handle is likely going to be the most likely locus of information for successfully 

completing the task while the ability to flexibly monitor and shift gaze to a new location 
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such as to the spout when pouring has been identified as crucial to optimal performance. 

This line of research has revealed the important role that that contextual factors have in 

determining both where eye-movements will be programmed to land, where they will go 

next as well as how the information in the field of vision will be processed (Rothkopf, 

Ballard, & Hayhoe, 2007). For instance, using VR simulations and eye-tracking, Triesch, 

Ballard, Hayhoe and Sullivan (2003) were able to control exactly the point at which a 

feature in a tracked object became task irrelevant and observe the subtle shifts in 

attentional processing that resulted. The dynamic, context sensitive nature of gaze 

allocation is also active in social interaction. In Foulsham, Cheng, Tracy, Henrich and 

Kingstone (2010) the authors demonstrated that when watching a video of a group 

decision making, task participants would fixate on high status individuals more often and 

for longer.  

A number of computational models have been applied to the theoretical 

understanding of the nature of eye-movements and visual attention in naturalistic real-

world tasks. Sprague and Ballard (2003) suggested the use of simulated agents as 

platforms to test cognitive theories and applied this approach to modelling attentional 

selection. The notion of using simulations to investigate theories of attention results from 

the observation that cognition can not be studied independently from an agent’s physical 

state and nor are the physical states separate from the cognitive states under 

investigation (Clark & Toribio, 1994). In their model, the simulated environment creates a 

direct link between perception, action and attention and allows for the observation of the 

relationship between cognition and the environment. Another strength of the simulation 

methodology is that it enables direct comparison of both human and model data as both 

are presented with identical environments and produce qualitatively similar types of 

behavioural data.  
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In order to understand the temporal nature of eye-movements, it is important to 

understand what role eye-movements play in the overall pattern of cognition. One 

approach has been to treat fixations as information accessing queries and quantify the 

informational value that they represent. This approach has had numerous successes in 

modelling human information access in a wide variety of tasks such as visual search  

and concept learning (Nelson & Cottrell, 2007). Renninger, Verghese and Coughlan 

(2007) predicted eye-movements during a shape learning task by selecting the fixation 

site that yields the maximum information gain and extended this to predicting sequences 

of fixations (Renninger, Coughlan, Verghese, & Malik, 2005). In similar work Najemnik 

and Geisler (2005) developed a model to account for fixation sequences during visual 

search and found that human results were consistent with locations predicted by the 

model to maximize the likelihood of correctly identifying the location of the target. In 

concept learning Nelson and Cottrell (2007) used eye-movement data obtained from a 

study replicating a classic category learning result (Rehder & Hoffman, 2005). They used 

a Bayesian conceptual model combined with a sampling function that is capable of 

selecting a feature of the stimulus that maximizes the likelihood of correct classification. 

This model provided good quantitative fits to the prediction of eye-movements in both 

early and late learning. In addition to their success in fitting human behavioural results, 

support for an information maximization principle is also grounded in neurobiology. Lee 

and Yu (2000) have argued that the entropy encoded in the neuronal clusters in V1 can 

be used in a predictive model of saccade landing sites and Nakamura (2006) has shown 

that signals observed in dorsal premotor cortex of the monkey are consistent with an 

information-theoretic encoding. Clearly, there is no shortage of research exploring the 

link between selective attention and its role in successful performance of wide range of 

cognitive tasks.  
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The goal of this thesis it to further the understanding of the cognitive mechanisms 

responsible for attentional control in classification. A shortcoming that many previous 

models have is that they have neglected to describe is how attention is shifted moment 

to moment within a single trial. For instance, in most of the Bayesian and connectionist 

models introduced earlier the level at which the eye-movements or attentional 

parameters are modelled is at the level of the trial or the task. While the model is 

capable of fitting human data that reflects the ongoing trial by trial shifting of attention 

they are not capable of producing data that reflect attention shifts as they occur during 

the ongoing, continual acquisition of information that occurs in many learning 

environments. One way in which these category learning models could be modified to 

reflect the kind of attention observed in  Blair et al. (2009) is to have attention update 

continuously after each successive saccade and have task goals be updated 

continuously as new information becomes available. While this would provide a higher 

resolution view of the role that attention has in category learning the resulting model 

would still be dissociated from important perceptual-motor influences reviewed earlier 

and would only result in a modest improvement over the discrete attention shifts that 

occur after each trial. Furthermore, since these models only calculate the value of the 

information contained at a target location in order to determine where an eye-movement 

should be placed, they are incapable of incorporating important aspects of human 

behaviour such as fixation duration differences.  

The goal of the present project is to introduce a model which is capable of 

coherently integrating multiple levels of explanation into a description of human 

performance during categorization tasks. Insight into the processes of human decision 

making have demonstrated that cognitive phenomena are best understood when studied 

as an interacting group of phenomena rather than as isolated systems operating 
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independently. Therefore, the rest of this thesis will be dedicated to developing and 

testing a new model of category learning that is in essence a real-time simulation of 

human eye-movements during a categorization task. The model involves the dynamic 

interaction of feature representation, vision, attention and motor pathways and produces 

data which is directly comparable to human eye-tracking data. 

 

Dynamic field theory - Theory and Applications 

An embodied view of cognition is one which emphasizes the close link between 

cognition, action and perception, describing them as inherently connected and mutually 

reliant. Dynamic systems theory is a framework from which these systems can be 

modelled and describe in a mathematically precise manner. One way in which dynamical 

systems are particularly useful is in describing the way in which small changes in the 

environment can have a massive non-linear impact on a systems behaviour. 

Observation of these kinds of non-linear phenomena in human perception is not a recent 

development (Necker, 1832). The necker cube is an example of a perceptual 

phenomenon in which a massive shift in the perception of the orientation of cube occurs 

despite an absence of any physical change in the orientation of the object. A number of 

theories have attributed this to the attractor dynamics of the low-level perceptual system 

(Kornmeier & Bach, 2004).  

Applying the concepts from dynamical systems to cognition requires identifying 

what specific properties of dynamical systems resemble aspects of human cognition. 

The primary features of dynamical systems that make it such an appealing way to 

understand human behaviour is the concept of attractor states and their associated 
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bifurcations, along with properties that result in the system moving from one attractor 

state to another. In dynamical systems terms a fixed-point attractor state occurs when 

the function describing the evolution of the dynamic system does not change under 

transformation. In a certain sense, these are the states that the dynamical system tends 

to move towards in the long run and states which the system can be said to prefer to 

stay in. Returning to the example of the necker cube, the attractor state would represent 

the state that the visual system is in when it has settled into one interpretation of the 

orientation of the cube. Crucial to the development of theories of cognition is the 

specification of how and why we move from one stable cognitive state to another. The 

analogy from dynamical systems is the concept of a bifurcation. Bifurcations occur when 

a dynamical system is placed into a state of instability and can lead to rapid large-scale 

changes in the overall organization of the system. The concept of bifurcation is 

especially interesting to the development of embodied cognitive theories. On the one 

hand, we are interested in understanding how cognitive states resist external influences 

and settle on a stable interpretation of the environment; however, the concept of a 

bifurcation explains how the system can respond flexibly by moving into a qualitatively 

new state when faced with environmental changes. 

Dynamic field theory (DFT) developed out of an observation that the traditional 

dynamical systems approach inadequately addresses several key aspects of higher 

level cognition such as how representational states influence behaviour (Spencer, J & 

Schöner, 2003). To incorporate representational states into the dynamical systems 

perspective, DFT introduces the notion of an activation field which is defined over the 

metric dimension of the phenomena being modeled. For instance, a simple example of a 

dynamic field would be a one that represents the frequency of a tone. In this example 

the scale of the field would represent the tuning of the field in terms of what frequencies 
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it is capable of responding to (see Figure 1). The formation of a peak at a particular 

location on the field would indicate that a tone of a particular frequency had been 

identified. Depending on the structure of the model under investigation the input to this 

field could be the result of input forces from the external environment, other fields 

internal to model or activation that the field itself is generating through self-excitation. 

These different sources of activation enumerate several of the possible attractor states 

that fields can find themselves in, such as a resting state, input-driven state and self-

sustaining state (see Figure 2). The resting state of a field occurs in the absence of any 

activation either external or internal to the field itself, and can be thought of as an initial 

state of the field. Input-driven states occur when the field stabilizes to form a peak of 

activity in a particular location due to forces external to the field but will return to the 

resting-state when external input is removed. The self-sustaining states occur when the 

interaction between units of a field is sufficiently strong to maintain a localized peak of 

activity in the absence of external input. The ability to maintain this activity internally, 

within the field itself is a concept crucial to DFT’s claims to providing a solution to the 

representational challenges of dynamical systems models of cognition (Johnson, 

Spencer, & Schoner, 2008).   

Another strength of DFT is that by developing a unified set of mathematical 

concepts it is possible to implement a theory as a computational model enabling a strong 

link between developing cognitive theories and testing them through experimentation.  
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Figure 1. Frequency Field 

 
Note. A simple example of a neural field for the detection of the frequency of a tone. The peak of 
activation represents the frequency that the model is selecting for at that current point in time. 

 

The DFT framework has a rich history of accounting for a diverse collection of 

experimental results from a variety of fields.  In Schöner, Kopecz and  Erlhagen (1997) 

the authors developed a theory of saccadic eye-movement planning that accounts for a 

number of aspects of human performance such as the variation in saccade averaging 

that occurs due to the spatial separation of targets, and in similar work Erlhagen and 

Schöner (2002) developed a model of movement preparation to account for the 

execution of motor plans. One area in which DFT models have had particular success is 

in the context of childhood development. Thelen, Schöner, Scheier, and Smith (2001) 

developed a theory of infant perseverative reaching in the A-not-B task. In this task a 

child repeatedly reaches for a toy which is consistently hidden at location A; even after 

the child watches the toy being hidden in a new location B, the child will perseverate in 

reaching for the toy at location A. Their model explains perseverative reaching as a 

result of the inability for infants at a certain stage of development to maintain a self-

sustained peak of activity at the newly presented location, and also demonstrated how 

the parameter controlling this behaviour changes over the course of development 

leading to the disappearance of this behaviour. DFT has also succeeded in modelling 

the relationship between high-level cognition such as object identification and the 
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mapping that those relationships have with motor surfaces. For instance, Faubel and 

Schöner (2008) situated a DFT model within an autonomous robot and had it learn to 

identify a large collection of objects in a small number of views and Spencer, 

Schneegans, and Hollingworth (2010) developed a model of the relationship between 

high-level visual working memory and saccade planning.  

Figure 2. Dynamic Neural Field Attractor States 

 
Note. The figure demonstrates three important states of dynamic neural fields. Throughout the 
course of a simulation any individual field will frequently transition between these three states. In 
a) the field is in a resting state, and is the state a field moves towards in the absence of input. b) 
occurs when external input is applied to their field, either from sensors connected to the external 
environment or from other fields internal to the model. In c) the field is in a state of self-excitation, 
which occurs when the activation dynamics of a single field are capable of sustaining activation in 
the absence of external input. 

The goal of this project is to apply concepts and methodologies from dynamic 

field theory to the construction of a model capable of demonstrating a high degree of 

attentional flexibility. Currently there is no model which is capable of modelling eye-

movements and attention at this level within the field of category learning. The proposed 

model would allow a far more detailed analysis of the relationship between attention and 

category learning.  
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Experiments 

Two eye-tracking experiments were conducted in order to generate data that 

could be compared with model output to determine the validity of the overall approach. 

Experiment 1 is identical to the eye-tracking study conducted by Blair et al. (2009) 

except that a modification was made to the physical properties of the stimuli. This was 

done in order to attempt to provide the most direct comparison between human and 

model behaviour. In Experiment 2, a novel category structure was introduced and eye-

tracking data was also collected. 

Methods 

Participants. In both experiments participants were from Simon Fraser University 

all who received course credit for participation in the study. There were 34 participants in 

Experiment 1 and 53 in Experiment 2. All students had either normal or corrected vision 

and no students reported colour blindness.  

Stimuli and Design 

Stimuli used in both studies were a three featured colour display with each colour 

presented horizontally across the midpoint of the screen. On each trial, the features 

varied between one of two distinct options, resulting is a total of eight possible stimuli. 

The colours used for Feature 1 varied between Red-Blue, Feature 2 varied between 

Green-Dark Blue and Feature 3 between Pink-Yellow (see Table 1 for stimuli 



 

13 

combinations). The eight possible stimuli were presented many times throughout the 

experiment such that in every block of 24 trials the subjects would see an equal number 

of each stimuli. Each feature subtended 4° of visual angle and features were separated 

by 11°. While each feature was presented in the same location for each subject such 

that the varying colours did not appear at different locations, the feature location and 

relevance to categorization was counterbalanced across participants. Table 1 indicates 

how category membership for the stimuli is defined.  A single row consisting of three 

colours represents a single stimuli. Next to each row the category that the stimuli 

belongs to is indicated. In both category structures the relevance of a feature to 

successful categorization varied between stimuli. By varying the relevance of features 

the goal is to elicit a variety of stimulus responsive attention (SRA) observed in Blair et 

al. (2009). In Experiment 1 it is possible to separate between the A and B categories by 

determining the value present in Feature 1. Once the information in this feature has 

been observed the value of either Feature 1 or Feature 2 will be relevant. In Experiment 

2 an exception pattern is defined such that Feature 1 is relevant for the classification of 

half of the stimuli, but due to the category exception further information is required to 

distinguish between category B stimuli and the A exception.  

The clear hierarchies that exist in these category structures are predicted to lead 

to attentional biases in the direction of features that have the highest relevance to 

categorization. Furthermore, due to the ordered nature of the relevance to classification 

it is predicted that there will be clear temporal patterns to the access of relevant features.  
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Table 1. Experiment 1 & 2 Category Structures 

 
Note. Experiment 1 is indicated by category structure a. In Experiment 1, the relevant features for 
categorization of A1 and A2 are features 1 and features 2. In Experiment 2, Feature 1 is relevant 
for all categories. Due to the presence of the category exception, stimuli will require either 1, 2 or 
3 features for correct classification. 

Procedure 

In both studies a trial consisted of fixation to a cross, stimulus presentation, 

making a categorization response and inspection of any feedback that was provided. 

The fixation cross was presented at a random position on the screen in order to 

minimize perceptual biases towards any particular initial position for the gaze such as at 

the central location of the display. Once the participants had detected and fixated at this 

location they pressed a button on the joystick that indicated their readiness to start the 

experiment. They were then presented with a stimulus and were required to determine 

which category it belongs to by studying its features. Participants were given as much 
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time as they felt necessary in order to study the features. Their response was made by 

pressing a button on the joystick that corresponded to the selected category label. Once 

they made their selection the screen would briefly flash red if they had made an incorrect 

response or green if they had correctly classified the stimulus. The stimulus was 

maintained on the screen while feedback on their performance was provided by showing 

the category label they selected in the top left corner of the screen and the correct 

category label in the top right. They were also allowed to study the feedback portion of 

the trial for as long as they required. If a participant did not master the task by making 24 

correct classifications in a row correct the experiment would terminate after the 200th 

trial. If the participant did reach the criterion of 24 in a row correct the experiment would 

move into a second phase for a further 72 trials. Phase 2 was identical to phase 1 in all 

aspects other than that feedback was removed for the remaining trials. After 

classification, participants would see a flash of grey for each trial and no information 

about the correct category was supplied in the upper right corner of the screen. 

Equipment 

A Tobii X120 eye-tracker sampling at a rate of 120Hz was used to record raw 

gaze data. In order to identify fixations a modified dispersion threshold algorithm was 

used with a threshold of 75 ms and 28 pixels (Salvucci & Goldberg, 2000). A fixation was 

considered to be located on a feature if it fell within 150 pixels to the left or right of the 

feature and 200 pixels above or below the feature. 
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Results 

Experiment 1 

In Experiment 1 17 out of 34 participants reached the learning criterion at an 

average of 111 trials. Accuracy among these participants was generally high with 

learners obtaining 71% accuracy before the criterion of 24 in a row correct and 91% 

after. Consistent with the increase in accuracy, a decrease in reaction time was also 

observed with post criterion reaction time dropping from 2715ms to 2329ms. The gaze 

data for 4 participants was excluded from the analysis, as the eye-tracker was able to 

collect less than 60% of their gaze throughout the experiment. In order to investigate 

patterns of attentional allocation that would indicate a stimulus-based profile of attention, 

an analysis of a trials mean total fixation duration to features grouped by category was 

conducted. Because the category structure separates between category A and B stimuli 

in terms of their relevant feature dimensions it was possible to collapse the analysis 

across categories. An ANOVA was conducted with feature and category included as 

within subjects variables. A Feature X Category interaction, F(2,77) = 11.13, p < .01  

was observed confirming results from Blair et al. (2009) which showed category 

dependent fixation durations. Strangely, multiple comparisons showed that participants 

fixated Feature 1 less than Feature 2 or Feature 3 a finding which is at odds with the 

overall relevance of this feature and is also contrary to what was reported in Blair et al. 

(2009).   

In order to investigate the temporal regularities present in the human data, we 

conducted a fixation probability analysis of the development of attentional allocation over 

the course of a trial. This analysis consists of separating a trial into equal size bins so 

that trials of different lengths can be compared. The probability that each feature will be 
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fixated is then calculated for that bin. The shading on the line shows the standard error 

of the fixation probabilities for that bin. This analysis provides a detailed look at how 

attention shifts in response to the information that is gathered during the task.  Fixation 

probability was calculated separately for each category, again with the As and the Bs 

grouped together due to their shared feature relevance. The results demonstrate an 

ordered temporal pattern to the allocation of attention (see Figure 4). On category A 

trials, Feature 1 initially has the highest probability of being fixated followed by an 

increase in Feature 2 fixation probability which is consistent with this Feature 2’s 

relevance to classification. The pattern of allocation is not as clear for category B stimuli 

but is nevertheless consistent with participants ordering their fixations based on 

informativeness, with Feature 1 and Feature 3 being equally probable of receiving a 

fixation early in the trial and Feature 3 being more likely to receive fixation later in the 

trial.  

Figure 3. Pre vs Post Criterion Accuracy for Experiment 1 and Experiment 2 

 
Note. Bars show the mean accuracy achieved by participants before and after reaching the 
criterion of 24 in a row correct. For a) mean accuracy was 71% and 91% and for b) the mean 
accuracy 83% and 91%. 
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While these results provide an indication that participants were utilizing category 

specific attentional allocations, the results were less robust than and contradict some 

results reported in the original Blair et al. (2009) study. In order to investigate possible 

reasons for this, a fixation probability analysis was conducted on stimulus locations to 

investigate the possibility of a location bias. Figure 6 shows the fixation probability to 

location averaged across all categories. The probability of fixating the central location is 

much higher at all stages of a trial regardless of category of feature relevance despite 

counter-balancing of location relevance and randomization of the initial gaze position. A 

central location bias would add a definite confound as it is difficult to determine whether 

a fixation to a feature was due to its spatial location or its feature relevance. Observing 

heat-maps of fixations over the course of learning provided further confirmation of a 

central location bias. Furthermore, heat-maps showed that some participants who had 

mastered the task appeared to look at nothing but the central location late in learning 

when only correct responses were being made. This leads to the speculation that 

participants may have been using peripheral vision to detect the value of distally located 

features. 

Several possible improvements could be made to eliminate the effect of a 

location bias. If the speculation that the central location bias is due to the fact that 

distally located features can be peripherally detected, then reducing the features size 

may help in making discriminating features more difficult. The features used were also 

highly salient and designed to be maximally discriminable from each other. Designing 

stimuli that are more similar and difficult to distinguish may also help to make peripheral 

detection difficult. It will also be important to thoroughly pilot the effect that the salience 

due to stimulus colour and size has on participants ability to detect the stimuli.  
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Figure 4. Fixations to Features by Relevance 

 
Figure 4. The lines show the probability of a feature being fixated at a particular point in a trial for 
Experiment 1. Data show the last 72 trials of the experiment after a participant had made 24 
consecutive correct responses. Fixation probabilities demonstrate a temporal pattern in the 
allocation of attention reflective of the hierarchical nature of the category structure. 

Experiment 2 

In Experiment 2, the same approach to the analysis was extended from 

Experiment 1. Participants found this task difficult as only 20 out of 53 reached criterion 

and were included in the analysis. Figure 3 shows that the same pattern of pre-post 

criterion accuracy was observed in this task, with participants improving their accuracy 

from 83% to 91% and participants reached the learning criterion after an average of 129 

trials.  

A fixation duration analysis was conducted with a ￼ ANOVA using feature and 

category as within subjects variables. The levels of the category variable selected were 

category A, B and A-exception because of the prediction that each would require a 

unique pattern of attentional allocation. Contrary to what had been predicted no Feature 

X Category interaction was observed, F(4,179) = .22, p = .92. Also, the predicted 

Feature X Category interaction for mean total fixation duration was not confirmed. A 

fixation probability analysis for Experiment 2 was also conducted but no interaction effect 
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was observed. As in Experiment 1 the perceptual bias to the central stimulus location 

was very large (see Figure 5). 

The goal of these studies was to provide experimental results that would improve 

upon  the ecological validity of (Blair et al., 2009) with respect to model comparisons. 

Arranging the stimulus in a row presents a convenient solution as this is the manner in 

which the model receives input. However, this spatial arrangement of features does 

represent a challenge due to strong biases that are present from activities such as 

reading that occur from left to right, or from a very strong bias towards fixating objects 

that are centrally located. While the results were not as robust as anticipated due to 

location confound, model results will be compared with predictions from the data 

observed in Blair et al. (2009) as well as the constrained results from Experiment 1 

making the assumption that with the appropriate modifications the colour based stimuli 

are capable of eliciting stimulus responsive attention.  
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Figure 5. Fixation Probability to Features by Location 

 
Note. This demonstrates the strong bias towards the central feature of all categories. The 
perceptual bias towards the central features adds significant noise to the results making between 
category attention results difficult to detect. The bias towards the central location is slightly 
stronger in Experiment 2 (b) than Experiment 1 (a). 
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Unnamed Computational Model (UCM) 

 
Through the coupled interaction of several neural fields, UCM is capable of 

generating fixation data in the context of standard category learning tasks. The model 

utilizes a saccade timing mechanism developed in unpublished work by Spencer et al. 

(2010).  The current model is unique in that no prior model has been able to simulate the 

temporal regularities that are present in the allocation of attention within the category 

learning paradigm. By measuring the activity on the saccade motor field as well as the 

resulting ballistic eye movement, temporal data that is directly analogous to a sequence 

of human fixation is generated. Furthermore, the fixations that are observed are a direct 

result of the low-level perceptual influences on attention as well as the top-down 

pressures from what has been learnt about the category structure. Figure 6 shows the 

basic structure of the model as well as the interactions between the components. The 

following section outlines a formal mathematical description of the generalized form of 

dynamic neural fields, as well as the equations describing the fields developed in this 

model. 

Model Description 

The general form of a dynamic neural field is given by (see Appendix of 

(Erlhagen & Schöner, 2002)): 
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1) 

 

Where  &u(x,t)  represents the rate at which a particular field site x is changing at time t  

and is negatively proportional to the amplitude of the field site u(x,t) . S(x,t)  is the 

external input being applied to the field, and is generally provided in the form of a 

gaussian given by: 

 

 
2) 

In all cases external input is combined with a parameter c  which defines the input 

strength to the field. The parameter is omitted to increase the readability of the 

equations. A resting state, h , is also included and yields a stable attractor to the 

dynamical system described by 1) when no external input is applied.   

The interaction of neurons within a field is modelled as local excitation and global 

inhibition. Roughly speaking, this results in neurons that are proximally located having 

greater excitatory force on each other than will neurons located further apart. The 

gradient of decline in excitation between field sites is given by: 

 

 
3) 

In order to simulate the non-linear nature of neural activation a sigmoidal non-linearity is 

added to the interaction kernel: 

 
4) 

The purpose of adding a sigmoidal non-linearity is to simulate the properties of biological 

neurons which generate activity only once they have reached a certain threshold.  
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Figure 6. Structure of the components of the simulator. 

 
Note. Arrows indicate direction of activation between fields. See text for description of the fields. 
a) Attention Field b) Saccade Motor Field, c) Visual Field d) Feature neruons and e) Feature 
Hypothesis neurons and f) Categorization neurons 

Attention field 

The equation for the attention field (Figure 6, a) is given by: 

 

 
5) 

The external input provided to this field arrives from several sources. V (x,t)  is an 

excitatory connection to the field that arrives from the visual field (see below for details). 

Field a also receives an excitatory connection from the saccade-motor field, and 
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provides an additional boost to the spatial location that is currently being selected for an 

eye-movement. Inhibition of return is also incorporated into this model by applying an 

inhibitory influence to the attention field at the most recently fixated feature location (see 

(Satel, Wang, Trappenberg, & Klein, 2011) for evidence supporting this interpretation of 

IOR). In order to influence eye-movements away from the currently fixated location once 

feature information has been collected an inhibitory influence is applied to the field at the 

foveal location driven eye-movements away from the currently fixated location.  

Saccade motor field 

This field controls the programming of a saccadic location (Figure 6, b). When a 

certain threshold of activity has been reached the models field of view is shifted to centre 

at approximately the location indicated by saccade field’s peak activity. The field 

dynamics are given by:  

 

 
6) 

 

where a(x,t)  is the excitatory input provided from the attention field and r(x,t)  is a 

global dampening of the field that results from a saccade target being selected. The 

strong global dampening is a feature of the saccade field that strongly pressures the field 

to select a single location as saccade target.  

Visual Field 

The dynamics in this field are unique and diverge slightly from the generalized 

description of field dynamics introduced earlier. The visual field  (Figure 6, c) is 

modelled as a two dimensional field where the y-axis represents a feature space (colour) 
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and the x-axis represents a retinotopic spatial field of view. The modified field equation in 

two dimensions is then:   

 

 
7) 

with excitatory connections to dimension x of the field originating in the attention field 

and an external excitatory connection to the y dimension of the field from the feature 

hypothesis pathway. The excitatory activation propagating to the feature dimension of 

the visual field acts as a way of supplementing the activity of features that are currently 

represented. 

Hebbian feature-learning pathway  

The hebbian learning module (Figure 6, d,e,f) is responsible for extracting 

features that have been detected from the environment and learning associations 

between features and categories. One motivation for using a Hebbian-learning 

mechanism is to overcome  challenges to the error-driven learning assumptions made 

by several influential models of category learning (Blair, Walshe, Barnes, & Chen, 

Submitted). 

Features and categories are represented as collections of neurons as opposed to 

fields, due to the discrete nature of both the features and categories.  

Although the same dynamic Hebbian processes could be applied to learn 

associations between two continuous valued neural fields, the discrete neural 

representation is simpler and no less valid for the scope of this project.  

The dynamic activation for the neurons is very similar to the general neural field 

representation, although without the intra-field dynamics. The equation is:  
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8) 

 

The term v t, y ftlocation( )( )  is provided as activation to a specific feature neuron as 

long as gaze has been directed to this feature on the visual field. tlocation  indicates that 

the excitatory input is coming from a region surrounding ftlocation  on the visual fields 

feature dimension. ft
inh

 describes an inhibitory connection between the two values of a 

feature. In these tasks the participants understand that the presence of one feature 

necessarily implies the absence of the feature paired at its location. In order to simulate 

this, an inhibitory influence from the detected feature is applied to the feature paired at 

the same location. This inhibitory force is applied as the negative of the activation 

present on the detected feature. Effectively, the feature nodes function to represent what 

features have been visually identified from the environment, passing this activation along 

to the category nodes via a matrix of associative connections between features and 

categories. In order to simplify the modelling of attentional learning, features could only 

be activated by visual detection before corrective feedback was applied. Simulation of 

model behaviour resulting from the feedback phase is left for future developments of the 

UCM.  

The excitatory connection from ccategories  originates from the activity present on 

each category node, weighted by the learned connection strength between feature and 

category.  The activation dynamics for the category nodes are similar:  
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9) 

 

All feature nodes have weighted excitatory connections to each category node, 

and the input to the category node is defined as ft feature .  

In order to pass activation representing the the hypothesized values for which 

features are most likely to contain information necessary for classification a separate 

cluster of neurons is defined which receive excitatory input from the category nodes. The 

activation to these nodes is generated by multiplying the activity present on the category 

nodes by the matrix of learnt associations between categories and features. The 

equation for this field is:  

 

 
10) 

An additional feature of these nodes is that pairs of hypotheses neurons share 

activation such that two nodes representing the same location in space are summed 

together to supplement their activation. The result of this is to have the hypothesis 

neurons provide the largest boost to the location, a combination of two features, whose 

sum of feature activation is the largest.  

Dynamic Hebbian Learning 

In order to learn associations between features and category, a dynamically 

updated version of a Hebbian learning rule was implemented:  
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11) 

This process increases the connection strength between feature and category neurons 

that are co-activated. Mi ( j,t)  indexes the weight between between feature node i  and 

category node j . Weights between category and feature nodes are strengthened when, 

f fti (t)( ) > 0  and f c( j,t)( ) > 0  (Sandamirskaya & Schöner, 2010). This describes the 

learning rule that implements an associative mechanism such that the strength of 

connection between feature and category nodes is increased when positive activity is 

detected on both nodes. 

Model Simulations 

In order to compare model behaviour with human participants 15 simulations 

were conducted. All simulations were conducted on the category structure indicated in 

Table 1a and the spatial location of Feature 1 was counter-balanced to appear in all 

three locations. Two simulations were excluded from the analysis because the model did 

not learn the category structure by the 200th simulated trial.  A trial for the model 

consisted of a starting position at one of two randomly selected stimulus locations 

between the features. The model was then free to fixate for 600 time steps (ts) before 

feedback was applied for 100 ts. This simplification was made in order to reduce the 

complexity of the modelling task while also maintaining important characteristics of 

behavioural experiments. During the feedback phase a boost was applied to the 

category node associated with the correct response, simulating the corrective feedback 

provided to human participants. The stimuli used were meant to roughly simulate human 

colour discriminations and had peak input responses separated by equal distances on 

the feature dimension of the visual field. One of the main strengths of this model is that it 
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produces a type of output that is directly comparable to human participants. As the 

model itself produces observable fixations, there is no need to make indirect 

observations about the overt allocation because the model itself overtly allocates. 

Therefore, in order to compare this model with human behaviour, similar techniques that 

were used for the human data will be applied to model output.  

The simulations demonstrate that the model is capable of producing a rich 

collection of data that can be compared with human participants. While the model does 

not incorporate a decision process which would initiate a self-directed response to be 

made, responses were identified post-hoc by identifying the category node that had the 

largest activation prior to receiving feedback on a given trial. Similarly to the humans, we 

identified a criterion of 24 in a row correct. Using this method the model learnt the 

category structure in a mean of 127 trials.  In order to conduct an analysis of the models 

eye-movements to features, a fixation was identified as being located on a feature if was 

located with in 10 field units of the centre of the feature. Fixation durations were 

calculated as the number of time steps that occurred between the time a saccade landed 

on a feature and the time that the saccade moved away from the feature.  

Temporal ordering of fixations were analyzed by conducting a fixation probability 

analysis as was conducted with human participants. The analysis revealed that the 

model is capable of deploying its attention in an analogous way to that observed in 

Experiment 1 and seen more clearly in Blair et al. (2009) (see Figure 7 for original 

results). The trials selected for this analysis were the last 72 trials the simulated 

experiment and all trials were in the post criterion phase after the model had responded 

24 in a row correct.   
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Figure 8 shows that after learning the model is highly selective for Feature 1, the 

most diagnostic feature, then selecting either Feature 2 or Feature 3 depending on its 

relevance to correct classification. That is, for stimuli belonging to category A the model 

first fixates Feature 1 and then Feature 2, while on category B trials the model is most 

likely to fixate Feature 3 after first fixating Feature 1. This pattern of attentional allocation 

represents the optimal pattern of attentional allocation as it requires the fewest fixations 

in order to the classify the stimulus. Comparing the models post-learning behaviour with 

the first 72 trials of the simulation shows a striking  

Figure 7. Allocation of attention within trials in Blair et al. 2009 

 
Note. Lines show probability of fixation to each feature. Data were averaged across the final 72 
trials of Experiment 2 for Categories A1 and A2, shown in the left graph, and for B1 and B2, 
shown in the right graph.  Model results show a very similar temporal pattern of attentional 
allocation.  
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Figure 8. Model Fixation Probabilities after Learning 

 
Note. In a) the model initially selects strongly for Feature 1 which is always diagnostic followed by 
Feature 2 which is diagnostic of this category. In b) Feature 1 is selected for first followed by an 
increase in the probability of Fixating Feature 3.  

Figure 9. Model Fixation Probabilities for the First 72 Trials 

 
Note. There is almost no difference between a) and b) illustrating that the model does not show 
category differences in its temporal regularities before learning the category structure. 

difference in that no strong temporal regularities tied to feature relevance are observed 

which is consistent with the models lack of knowledge about feature relevance at this 

stage in learning (see Figure 9). One difference between the model and human 

behaviour is that the model appears to oscillate between fixations to the relevant 

features. This is a result of the model not having any control over when it has acquired 
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enough information to form a classification decision. The model is driven to fixate 

features until the trial time expires and therefore selects features that it has identified as 

most relevant on the current trial. In future extensions of the model a decision process 

will be implemented such that the model stops fixating and makes a response once it 

has detected that sufficient information has been gathered.  

An analysis was conducted of mean fixation duration to stimulus features 

grouped by category (see Figure 10). In Experiment 1, no significant differences were 

observed; however, in Blair et al. (2009) strong category specific fixation duration 

differences were reported with the same category structure simulated in the model. The 

results from the simulations clearly replicate the findings from the original study. Feature 

1 had relatively high fixation durations for both category A and B stimuli with Feature 1 

and Feature 2 fixation durations being highly dependent on whether the Feature was 

relevant for classification. The results from the fixation duration analysis closely parallel 

results observed in the original study (see Figure 11). 
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Figure 10. Allocation of attention within a trial. 

 
Note. Bars shows the mean total fixation duration that was allocated to a feature on a trial.  This 
demonstrates that more time is spent on features that are relevant to classification. In Experiment 
1, Feature 3 is irrelevant for Category A and Feature 2 is irrelevant for category B 
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Figure 11. Mean Fixation Duration to Features by Category (Blair et al. 2009) 

 

 
Note. Results reported in Blair, Watson, Walshe & Maj, 2009. (Used with permission) shows fixation 
durations to features on a trial are dependent on a features relevance to  classifying a stimulus. Category 
structure is identical to that used in Experiment 1. 
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Discussion 

The present work introduces a new model that is capable of predicting eye-

movements in a category learning task. Early results indicate that the model deploys its 

attention in a manner such that it strongly selects for stimulus features that are relevant 

for classification in a particular context. The project utilizes techniques from Dynamic 

Field Theory to construct a model that incorporates perceptuo-motor as well as cognitive 

influences of behaviour into an integrated framework. The project has shown how a 

collection of softly-assembled components interacting in real-time can generate flexible 

attentional control in a way that has not been captured by other models in the field of 

category learning. Most models of attentional selection in these task have taken the 

perspective that attention to features is shifted once a trial is concluded and after a 

participant has made a decision. Studies from eye-tracking in category learning, as well 

as research in other fields, has shown that attentional deployment is far more subtle than 

is captured by the simple picture of dimensional relevance shifted over trials. Humans 

are constantly shifting the focus of their attention in response to environmental cues that 

they discover in an ongoing processes of information acquisition. The explanatory target 

of this model has been to show how that this behaviour can emerge from the dynamic 

interplay between the low-level perceptual motor systems and the higher-level learning 

structures that have here been implemented here as a dynamic Hebbian process. The 

model implements an attentional representation that is initially driven solely by the 

salience properties early in learning and over time, this representation becomes highly 
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influenced by what the model has learnt about the category structure, much like human 

participants. The approach taken in this thesis can be seen as one implementation of an 

embodied cognitive agent. Embodiment is the perspective that cognitive states cannot 

be understood as being in a separate and independent relationship with the 

environment. Rather, it understands that there is a reciprocal relationship between the 

environment and cognition. In this model the dynamically changing scene that is being 

presented to the model is a direct result what the model has selected for its source of 

input, which in turn has a large scale impact on how it updates it’s theory of its 

environment.  

van Zoest, Hunt, & Kingstone (2010) have stressed the importance of 

understanding the specific time course of stimulus processing. They show that tasks in 

which response is measured early in processing may be heavily influenced by low-level, 

bottom-up processes reliant on stimulus salience while tasks in which the behaviour is 

allowed to develop more slowly can incorporate more complex information such as task-

goals, context and prior knowledge. Category learning tasks of the type under 

investigation here are certainly of the latter variety. In these tasks participants have 

adequate time to explore various options and fully probe their prior experience in solving 

the task. While it is tempting to abstract away from the underlying stimulus properties, 

these aspects of a stimulus can have a great influence on task performance and can 

partially explaining fixations to high salience task-irrelevant features (Hickey, Van Zoest, 

& Theeuwes, 2010). A particular strength of the UCM is that its current behaviour is 

highly dependent on the stage in processing that it finds itself. Early in learning, the 

model is to a large degree driven by salience with a switch later in learning to knowledge 

driven allocational of attention. Within a single trial the importance of time to 

understanding the behaviour of the UCM is also clearly apparent as the attention that is 
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applied to a stimulus feature is directly connected with what information the model is 

currently representing about the category structure.  

Models such as the UCM that attempts to integrate multiple cognitive factors into 

an explanation of behaviour have unique benefits in that they naturally produce a rich set 

of data that can be compared to human participants. For instance, in the project 

currently under investigation we applied the model to the prediction of eye-movements in 

a category learning task. This type of measurement of the model was selected because 

of the availability of eye-tracking data that can be used to infer the hidden properties of 

attentional allocations in humans. However, in the UCM the saccadic eye-movement is a 

direct result of the ongoing activation present in the attentional field and can be directly 

observed. By modelling the attention-motor link in this dynamic manner allows 

observable manifestations of eye-movement behaviour such as fixation duration and 

saccade latency to be predicted from the underlying attentional control mechanisms. 

While this project focused solely on predictions that the model makes regarding the 

temporal nature of the eye-movements and fixation durations, future development of this 

model could be expanded into a framework to attempt to capture all aspects of eye-

movement behaviour in these tasks such as saccade latency as well feature dependent 

fixation durations. 

An assumption that is made in many popular category learning models, is that 

the shifting of attention is driven by errors that are detected on the current trial. Recent 

work has called this error driven assumption into question.  Blair et al. (Submitted) used 

a novel measure of error-bias which measures the degree of attention shifting that 

occurs on correct and incorrect trials. The authors conducted simulations of two 

influential exemplar-based categorization models on numerous category structures and 

confirmed their prediction that the models would show a strong error-bias. Results from 
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a number of experiments using these category structures demonstrated a different 

pattern of attentional shifting in actual human performance as the authors reported no 

specific difference in the error-bias for correct and incorrect trials. These results indicate 

that the error-driven assumptions that underlie numerous models of categorization may 

not be strongly founded in human performance. In the UCM the magnitude of the 

attentional shift is in no way connected with the model correctly or incorrectly classifying 

the stimulus. The learning mechanism that we implemented is a dynamic version of a 

Hebbian learning rule which simply associates the correct category node with the 

features that were observed on the current trial. This type of learning mechanism has 

been suggested by Blair et al. (Submitted) as alternative to the traditional error-driven 

approaches, and the UCM provides confirmatory evidence that such a mechanism 

produces attentional shifts analogously to human participants.  

The capability for a model of category learning to produce a full range of eye-

movement data is both new and exciting. The analysis of fixation probabilities represents 

a test case for the quality of the comparison that can be made between model output 

and human data. However, the current state of the model should be regarded to a large 

extent as a prototype for a model which extends more expansively into describing 

human behavioural processes. One aspect of the current model that was left 

undeveloped is a process that initiates a decision to be made and for feedback to begin. 

The lack of such a process limits the ability to make qualitative predictions about human 

behaviour as overt attentional data such as fixation durations, response times and total 

fixations are biased due to unrealistic trial lengths. Implementing a decision process 

would also allow the modeller to look much more closely at the appropriateness of the 

learning mechanism selected, as the models learning curve and response times can be 

directly compared to human responses. One candidate for such a mechanism would be 
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to implement a decision node that initiates a response once it has reached a certain 

threshold. The output value of the decision node could be designed to represent both the 

amplitude of the category nodes as well as the uncertainty of the correct category. As 

the model fixates through the scene and gathers information about the category 

structure the decision node will reach threshold and the model can internally generate a 

signal that it has obtained sufficient information to respond.  

One other aspect of the category learning task that has been neglected by 

current models as well as the UCM, is the feedback portion of category learning tasks. In 

Watson and Blair (2008) the authors showed a number of results that demonstrate the 

crucial importance of the feedback portion of the trial to learning the task in general. 

While the UCM does not assign any unique status to the feedback phase other than to 

activate the Hebbian learning processes, an exciting avenue for future development of 

this model would be to look into specific influences of post-response learning.  

In addition to development components of the model that lead to a more accurate 

match with human performance, there is significant room for the development of a 

connection between the pathways outlined in the model and known neurological models 

of attentional control. There has been a plethora of research into understanding the 

neural mechanisms responsible for attention guided eye-movements that have 

incorporated both bottom up and top-down influences. For instance, a pathway that 

involves the superior-colliculus and pulvinar has been identified as possibly responsible 

for the maintenance of attention to features of the visual field as well as the generation of 

saccade targets (Berman & Wurtz, 2011). This pathway is very similar to the visuo-motor 

pathway that the UCM models as a visual, attention and saccade field (see Figure 4 

a,b,c). One challenge to developing the link between the UCM and underlying 

neurobiology will be to show a link between a higher-level associative mechanism and 
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the lower level selective attention mechanisms that are predominantly influenced by 

stimulus salience.  

The main contribution of this thesis has been to make the first steps in 

developing a computational model capable of generate real-time eye-movement data 

during category learning tasks. By integrating a saccade generation system with an 

attentional system that is influenced by both top-down learned attention as well as 

stimulus salience the model is capable of simulating saccadic eye-movements that 

reflect human performance in high-level cognition. While the UCM is currently in an early 

phase of development, the connection between human eye-movement data and model 

output is encouraging. By developing the capacity for the model to more closely simulate 

human tasks the model will be in a unique position to describe aspects of human 

performance in category learning tasks that have not been previously attempted. 
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